A. Badawy, T. Luxton, R. Silva, K. Scheckel, M. Suidan et al., Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions, Environmental Science & Technology, vol.44, issue.4, pp.1260-1266, 2010.
DOI : 10.1021/es902240k

T. Ben-moshe, I. Dror, and B. Berkowitz, Transport of metal oxide nanoparticles in saturated porous media, Chemosphere, vol.81, issue.3, pp.387-393, 2010.
DOI : 10.1016/j.chemosphere.2010.07.007

X. Chen and S. Mao, Titanium Dioxide Nanomaterials:?? Synthesis, Properties, Modifications, and Applications, Chemical Reviews, vol.107, issue.7, pp.2891-2959, 2007.
DOI : 10.1021/cr0500535

G. Cornelis, K. Hund-rinke, T. Kuhlbusch, N. Brink, . Van-den et al., Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review, Critical Reviews in Environmental Science and Technology, vol.29, issue.24, pp.2720-2764, 2014.
DOI : 10.1007/s00360-005-0482-4

G. Cornelis, L. Pang, C. Doolette, J. Kirby, and M. Mclaughlin, Transport of silver nanoparticles in saturated columns of natural soils, Science of The Total Environment, vol.463, issue.464, pp.463-464120, 2013.
DOI : 10.1016/j.scitotenv.2013.05.089

L. Duester, C. Prasse, J. Vogel, J. Vink, and G. Schaumann, Translocation of Sb and Ti in an undisturbed floodplain soil after application of Sb2O3 and TiO2 nanoparticles to the surface, Journal of Environmental Monitoring, vol.42, issue.5, pp.1204-1211, 2011.
DOI : 10.1039/c1em10056d

J. Fang, X. Shan, B. Wen, J. Lin, and G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environmental Pollution, vol.157, issue.4, pp.1101-1109, 2009.
DOI : 10.1016/j.envpol.2008.11.006

J. Fang, X. Shan, B. Wen, J. Lin, G. Owens et al., Transport of copper as affected by titania nanoparticles in soil columns, Environmental Pollution, vol.159, issue.5, pp.1248-1256, 2011.
DOI : 10.1016/j.envpol.2011.01.039

A. Jacobson, S. Dousset, F. Andreux, and P. Baveye, Electron Microprobe and Synchrotron X-ray Fluorescence Mapping of the Heterogeneous Distribution of Copper in High-Copper Vineyard Soils, Environmental Science & Technology, vol.41, issue.18, pp.6343-6349, 2007.
DOI : 10.1021/es070707m

URL : https://hal.archives-ouvertes.fr/hal-00199956

A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, Journal of Nanoparticle Research, vol.40, issue.19, pp.1-17, 2013.
DOI : 10.1007/s11051-013-1692-4

L. Adams, D. Lyon, and P. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Research, vol.40, issue.19, pp.3527-3532, 2006.
DOI : 10.1016/j.watres.2006.08.004

C. Ai, G. Liang, J. Sun, X. Wang, P. He et al., Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil, Soil Biology and Biochemistry, vol.57, pp.30-42, 2013.
DOI : 10.1016/j.soilbio.2012.08.003

S. Bates, D. Berg-lyons, J. Caporaso, W. Walters, R. Knight et al., Examining the global distribution of dominant archaeal populations in soil, The ISME Journal, vol.63, issue.5, pp.908-917, 2011.
DOI : 10.1111/j.1574-6941.2009.00775.x

A. Bissett, M. Brown, S. Siciliano, and P. Thrall, Microbial community responses to anthropogenically induced environmental change: towards a systems approach, Ecology Letters, vol.2, pp.128-139, 2013.
DOI : 10.1111/ele.12109

S. Brar, M. Verma, R. Tyagi, and R. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge ??? Evidence and impacts, Waste Management, vol.30, issue.3, pp.504-520, 2010.
DOI : 10.1016/j.wasman.2009.10.012

K. Broos, J. Mertens, and E. Smolders, TOXICITY OF HEAVY METALS IN SOIL ASSESSED WITH VARIOUS SOIL MICROBIAL AND PLANT GROWTH ASSAYS: A COMPARATIVE STUDY, Environmental Toxicology and Chemistry, vol.24, issue.3, pp.634-640, 2005.
DOI : 10.1897/04-036R.1

G. Cornelis, K. Hund-rinke, T. Kuhlbusch, N. Brink, . Van-den et al., Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review, Critical Reviews in Environmental Science and Technology, vol.29, issue.24, pp.2720-2764, 2014.
DOI : 10.1007/s00360-005-0482-4

A. Servin, W. Elmer, A. Mukherjee, R. Torre-roche, . La et al., A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield, Journal of Nanoparticle Research, vol.104, issue.1, pp.1-21, 2015.
DOI : 10.1007/s11051-015-2907-7

J. Shen, L. Zhang, Y. Zhu, J. Zhang, and J. He, Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam, Environmental Microbiology, vol.103, issue.6, pp.1601-1611, 2008.
DOI : 10.1111/j.1462-2920.2008.01578.x

B. Shipley, Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference, 2002.

M. Simonin, J. Guyonnet, J. Martins, M. Ginot, and A. Richaume, Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance, Journal of Hazardous Materials, vol.283, pp.529-535, 2015.
DOI : 10.1016/j.jhazmat.2014.10.004

URL : https://hal.archives-ouvertes.fr/hal-01197005

M. Simonin and A. Richaume, Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review, Environmental Science and Pollution Research, vol.107, issue.18, pp.1-14, 2015.
DOI : 10.1007/s11356-015-4171-x

T. Sun, F. Gottschalk, K. Hungerbühler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environmental Pollution, vol.185, pp.69-76, 2014.
DOI : 10.1016/j.envpol.2013.10.004

R. Taketani and S. Tsai, The Influence of Different Land Uses on the Structure of Archaeal Communities in Amazonian Anthrosols Based on 16S rRNA and amoA Genes, Microbial Ecology, vol.11, issue.4, 2010.
DOI : 10.1007/s00248-010-9638-1

M. Tourna, T. Freitag, G. Nicol, and J. Prosser, Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms, Environmental Microbiology, vol.31, issue.5, pp.1357-1364, 2008.
DOI : 10.1073/pnas.0600756103

A. Treusch, S. Leininger, A. Kletzin, S. Schuster, H. Klenk et al., Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling, Environmental Microbiology, vol.61, issue.12, pp.1985-1995, 2005.
DOI : 10.1111/j.1462-2920.2005.00906.x

E. Attard, F. Poly, C. Commeaux, F. Laurent, A. Terada et al., -like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices, Environmental Microbiology, vol.63, issue.2, pp.315-326, 2010.
DOI : 10.1111/j.1462-2920.2009.02070.x

URL : https://hal.archives-ouvertes.fr/hal-00636896

M. Baalousha, Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter, Science of The Total Environment, vol.407, issue.6, pp.2093-2101, 2009.
DOI : 10.1016/j.scitotenv.2008.11.022

S. Brar, M. Verma, R. Tyagi, and R. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge ??? Evidence and impacts, Waste Management, vol.30, issue.3, pp.504-520, 2010.
DOI : 10.1016/j.wasman.2009.10.012

K. Broos, J. Mertens, and E. Smolders, TOXICITY OF HEAVY METALS IN SOIL ASSESSED WITH VARIOUS SOIL MICROBIAL AND PLANT GROWTH ASSAYS: A COMPARATIVE STUDY, Environmental Toxicology and Chemistry, vol.24, issue.3, pp.634-640, 2005.
DOI : 10.1897/04-036R.1

A. Cantarel, J. Bloor, T. Pommier, N. Guillaumaud, C. Moirot et al., O fluxes in an upland grassland ecosystem, Global Change Biology, vol.18, issue.8, pp.2520-2531, 2012.
DOI : 10.1111/j.1365-2486.2012.02692.x

URL : https://hal.archives-ouvertes.fr/halsde-00722571

R. Cathcart, E. Schwiers, and B. Ames, Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay, Analytical Biochemistry, vol.134, issue.1, pp.111-116, 1983.
DOI : 10.1016/0003-2697(83)90270-1

J. Charrier and C. Anastasio, On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals, Atmospheric Chemistry and Physics Discussions, vol.12, issue.5, pp.11317-11350, 2012.
DOI : 10.5194/acpd-12-11317-2012-supplement

O. Choi and Z. Hu, Nitrification inhibition by silver nanoparticles, Water Science & Technology, vol.59, issue.9, p.1699, 2009.
DOI : 10.2166/wst.2009.205

G. Cornelis, K. Hund-rinke, T. Kuhlbusch, and N. Brink, Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review, Critical Reviews in Environmental Science and Technology, vol.29, issue.24, pp.2720-2764, 2014.
DOI : 10.1007/s00360-005-0482-4

D. Dalzell, S. Alte, E. Aspichueta, A. De-la-sota, J. Etxebarria et al., A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge, Chemosphere, vol.47, issue.5, pp.535-545, 2002.
DOI : 10.1016/S0045-6535(01)00331-9

N. Dassonville, N. Guillaumaud, F. Piola, P. Meerts, and F. Poly, Niche construction by the invasive Asian knotweeds (species complex Fallopia): impact on activity, abundance and community structure of denitrifiers and nitrifiers, Biological Invasions, vol.61, issue.5, pp.1115-1133, 2011.
DOI : 10.1007/s10530-011-9954-5

URL : https://hal.archives-ouvertes.fr/halsde-00591789

R. Domingos, N. Tufenkji, and K. Wilkinson, Aggregation of Titanium Dioxide Nanoparticles: Role of a Fulvic Acid, Environmental Science & Technology, vol.43, issue.5, pp.1282-1286, 2009.
DOI : 10.1021/es8023594

T. Freitag, L. Chang, C. Clegg, and J. Prosser, Influence of Inorganic Nitrogen Management Regime on the Diversity of Nitrite-Oxidizing Bacteria in Agricultural Grassland Soils, Applied and Environmental Microbiology, vol.71, issue.12, pp.8323-8334, 2005.
DOI : 10.1128/AEM.71.12.8323-8334.2005

R. French, A. Jacobson, B. Kim, S. Isley, R. Penn et al., Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles, Environmental Science & Technology, vol.43, issue.5, pp.1354-1359, 2009.
DOI : 10.1021/es802628n

L. Gandois, A. Probst, and C. Dumat, Modelling trace metal extractability and solubility in French forest soils by using soil properties, European Journal of Soil Science, vol.287, issue.8, pp.271-286, 2010.
DOI : 10.1111/j.1365-2389.2009.01215.x

I. Gelfand and D. Yakir, Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest, Soil Biology and Biochemistry, vol.40, issue.2, pp.415-424, 2008.
DOI : 10.1016/j.soilbio.2007.09.005

Y. Ge, J. Schimel, and P. Holden, and ZnO Nanoparticles on Soil Bacterial Communities, Environmental Science & Technology, vol.45, issue.4, pp.1659-1664, 2011.
DOI : 10.1021/es103040t

E. Hotze and J. Bottero, Theoretical Framework for Nanoparticle Reactivity as a Function of Aggregation State, Langmuir, vol.26, issue.13, pp.11170-11175, 2010.
DOI : 10.1021/la9046963

E. Hotze, T. Phenrat, and G. Lowry, Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment, Journal of Environment Quality, vol.39, issue.6, 1909.
DOI : 10.2134/jeq2009.0462

E. Jeong, S. Chae, S. Kang, and H. Shin, Effects of silver nanoparticles on biological nitrogen removal processes, Water Science & Technology, vol.65, issue.7, pp.1298-1303, 2012.
DOI : 10.2166/wst.2012.005

A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, Journal of Nanoparticle Research, vol.40, issue.19, pp.1-17, 2013.
DOI : 10.1007/s11051-013-1692-4

A. Keller, H. Wang, D. Zhou, H. Lenihan, G. Cherr et al., Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices, Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices, pp.1962-1967, 2010.
DOI : 10.1021/es902987d

S. Klaine, P. Alvarez, G. Batley, T. Fernandes, R. Handy et al., NANOMATERIALS IN THE ENVIRONMENT: BEHAVIOR, FATE, BIOAVAILABILITY, AND EFFECTS, Environmental Toxicology and Chemistry, vol.27, issue.9, pp.1825-1851, 2008.
DOI : 10.1897/08-090.1

M. Könneke, A. Bernhard, J. De-la-torre, C. Walker, and J. Waterbury, Isolation of an autotrophic ammonia-oxidizing marine archaeon, Nature, vol.16, issue.7058, pp.543-546, 2005.
DOI : 10.1093/nar/gkh293

G. Kowalchuk and J. Stephen, Ammonia-Oxidizing Bacteria: A Model for Molecular Microbial Ecology, Annual Review of Microbiology, vol.55, issue.1, pp.485-529, 2001.
DOI : 10.1146/annurev.micro.55.1.485

S. Leininger, T. Urich, and M. Schloter, Archaea predominate among ammonia-oxidizing prokaryotes in soils, Nature, vol.36, issue.7104, pp.806-809, 2006.
DOI : 10.1073/pnas.82.20.6955

Z. Liang, A. Das, and Z. Hu, Bacterial response to a shock load of nanosilver in an activated sludge treatment system, Water Research, vol.44, issue.18, pp.5432-5438, 2010.
DOI : 10.1016/j.watres.2010.06.060

X. Li, Y. Zhu, T. Cavagnaro, M. Chen, J. Sun et al., Do ammonia-oxidizing archaea respond to soil Cu contamination similarly asammonia-oxidizing bacteria?, Plant and Soil, vol.27, issue.1-2, pp.209-217, 2009.
DOI : 10.1007/s11104-009-9947-7

G. Lowry, K. Gregory, S. Apte, and J. Lead, Transformations of Nanomaterials in the Environment, Environmental Science & Technology, vol.46, issue.13, pp.6893-6899, 2012.
DOI : 10.1021/es300839e

N. Maximova and O. Dahl, Environmental implications of aggregation phenomena: Current understanding, Current Opinion in Colloid & Interface Science, vol.11, issue.4, pp.246-266, 2006.
DOI : 10.1016/j.cocis.2006.06.001

A. Menard, D. Drobne, and A. Jemec, Ecotoxicity of nanosized TiO2. Review of in vivo data, Environmental Pollution, vol.159, issue.3, pp.677-684, 2011.
DOI : 10.1016/j.envpol.2010.11.027

J. Mertens, K. Broos, S. Wakelin, G. Kowalchuk, D. Springael et al., Bacteria, not archaea, restore nitrification in a zinc-contaminated soil, The ISME Journal, vol.62, issue.8, pp.916-923, 2009.
DOI : 10.1046/j.1351-0754.2003.0558.x

D. Mitrano, S. Motellier, S. Clavaguera, and B. Nowack, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environment International, vol.77, pp.132-147, 2015.
DOI : 10.1016/j.envint.2015.01.013

URL : https://hal.archives-ouvertes.fr/cea-01344057

A. Neal, What can be inferred from bacterium???nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?, Ecotoxicology, vol.256, issue.5, pp.362-371, 2008.
DOI : 10.1007/s10646-008-0217-x

B. Nowka, H. Daims, and E. Spieck, Comparison of Oxidation Kinetics of Nitrite-Oxidizing Bacteria

J. Ollivier, D. Schacht, R. Kindler, J. Groeneweg, M. Engel et al., Effects of repeated application of sulfadiazine-contaminated pig manure on the abundance and diversity of ammonia and nitrite oxidizers in the root-rhizosphere complex of pasture plants under field conditions, Frontiers in Microbiology, vol.4, 2013.
DOI : 10.3389/fmicb.2013.00022

J. Ollivier, N. Wanat, A. Austruy, A. Hitmi, E. Joussein et al., Abundance and Diversity of Ammonia-Oxidizing Prokaryotes in the Root???Rhizosphere Complex of Miscanthus ?? giganteus Grown in Heavy Metal-Contaminated Soils, Microbial Ecology, vol.63, issue.4, pp.1038-1046, 2012.
DOI : 10.1007/s00248-012-0078-y

URL : https://hal.archives-ouvertes.fr/hal-00964622

D. Petersen, S. Blazewicz, M. Firestone, D. Herman, M. Turetsky et al., Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska, Environmental Microbiology, vol.61, issue.4, pp.993-1008, 2012.
DOI : 10.1111/j.1462-2920.2011.02679.x

L. Pokhrel, B. Dubey, and P. Scheuerman, Natural water chemistry (dissolved organic carbon, pH, and hardness) modulates colloidal stability, dissolution, and antimicrobial activity of citrate functionalized silver nanoparticles, Environ. Sci.: Nano, vol.47, issue.453, pp.45-54, 2014.
DOI : 10.1039/C3EN00017F

J. Prosser and G. Nicol, Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation, Trends in Microbiology, vol.20, issue.11, pp.523-531, 2012.
DOI : 10.1016/j.tim.2012.08.001

R. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2015.

D. Roux-michollet, S. Czarnes, B. Adam, D. Berry, C. Commeaux et al., Effects of steam disinfestation on community structure, abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil, Soil Biology and Biochemistry, vol.40, issue.7, pp.1836-1845, 2008.
DOI : 10.1016/j.soilbio.2008.03.007

URL : https://hal.archives-ouvertes.fr/halsde-00305179

S. Ruyters, J. Mertens, D. Springael, and E. Smolders, Stimulated activity of the soil nitrifying community accelerates community adaptation to Zn stress, Soil Biology and Biochemistry, vol.42, issue.5, pp.766-772, 2010.
DOI : 10.1016/j.soilbio.2010.01.012

S. Ruyters, G. Nicol, J. Prosser, B. Lievens, and E. Smolders, Activity of the ammonia oxidising bacteria is responsible for zinc tolerance development of the ammonia oxidising community in soil: A stable isotope probing study, Soil Biology and Biochemistry, vol.58, pp.244-247, 2013.
DOI : 10.1016/j.soilbio.2012.12.003

C. Schleper, G. Jurgens, and M. Jonuscheit, Genomic studies of uncultivated archaea, Nature Reviews Microbiology, vol.177, issue.6, pp.479-488, 2005.
DOI : 10.1093/bioinformatics/16.10.944

A. Schramm, D. Beer, J. De-heuvel, S. Van-den-ottengraf, and R. Amann, Microscale Distribution of Populations and Activities of Nitrosospira and Nitrospira spp. along a Macroscale Gradient in a Nitrifying Bioreactor: Quantification by, Situ Hybridization and the Use of Microsensors

A. Servin, W. Elmer, A. Mukherjee, R. De-la-torre-roche, H. Hamdi et al., A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield, Journal of Nanoparticle Research, vol.104, issue.1, pp.1-21, 2015.
DOI : 10.1007/s11051-015-2907-7

B. Shipley, Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference, 2002.

M. Simonin, J. Guyonnet, J. Martins, M. Ginot, and A. Richaume, Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance, Journal of Hazardous Materials, vol.283, pp.529-535, 2015.
DOI : 10.1016/j.jhazmat.2014.10.004

URL : https://hal.archives-ouvertes.fr/hal-01197005

M. Simonin, L. Roux, X. Poly, F. Lerondelle, C. Hungate et al., Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply, Microbial Ecology, vol.10, issue.3, pp.248-263, 1007.
DOI : 10.1007/s00248-015-0604-9

M. Simonin and A. Richaume, Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review, Environmental Science and Pollution Research, vol.107, issue.18, pp.11356-11371, 1007.
DOI : 10.1007/s11356-015-4171-x

G. Subrahmanyam, H. Hu, Y. Zheng, A. Gattupalli, J. He et al., Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols, Applied Soil Ecology, vol.77, pp.59-67, 2014.
DOI : 10.1016/j.apsoil.2014.01.011

T. Sun, F. Gottschalk, K. Hungerbühler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environmental Pollution, vol.185, pp.69-76, 2014.
DOI : 10.1016/j.envpol.2013.10.004

B. Thio, D. Zhou, and A. Keller, Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles, Journal of Hazardous Materials, vol.189, issue.1-2, pp.556-563, 2011.
DOI : 10.1016/j.jhazmat.2011.02.072

P. Tourinho, C. Van-gestel, S. Lofts, C. Svendsen, A. Soares et al., Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates, Environmental Toxicology and Chemistry, vol.42, issue.8, pp.1679-1692, 2012.
DOI : 10.1002/etc.1880

A. Treusch, S. Leininger, A. Kletzin, S. Schuster, H. Klenk et al., Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling, Environmental Microbiology, vol.61, issue.12, pp.1985-1995, 2005.
DOI : 10.1111/j.1462-2920.2005.00906.x

D. Valentine, Adaptations to energy stress dictate the ecology and evolution of the Archaea, Nature Reviews Microbiology, vol.155, issue.4
DOI : 10.1038/nrmicro1619

E. Vitorge, S. Szenknect, J. Martins, V. Barthès, A. Auger et al., Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: Syntheses and characterizations, Environmental Pollution, vol.184, pp.605-612, 2014.
DOI : 10.1016/j.envpol.2013.07.031

E. Vitorge, S. Szenknect, J. Martins, and J. Gaudet, Size- and concentration-dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling, Environmental Science: Processes & Impacts, vol.39, issue.8, pp.1590-1600, 2013.
DOI : 10.1039/C3EM30860J

S. Wertz, V. Degrange, J. Prosser, F. Poly, C. Commeaux et al., Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance, Environmental Microbiology, vol.61, issue.9, pp.2211-2219, 2007.
DOI : 10.1073/pnas.96.4.1463

URL : https://hal.archives-ouvertes.fr/halsde-00155947

S. Wertz, A. Leigh, and S. Grayston, Effects of long-term fertilization of forest soils on potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers, FEMS Microbiology Ecology, vol.79, issue.1, pp.142-154, 2012.
DOI : 10.1111/j.1574-6941.2011.01204.x

E. Wessén and S. Hallin, Abundance of archaeal and bacterial ammonia oxidizers ??? Possible bioindicator for soil monitoring, Ecological Indicators, vol.11, issue.6, pp.1696-1698, 2011.
DOI : 10.1016/j.ecolind.2011.04.018

S. Allison and J. Martiny, Resistance, resilience, and redundancy in microbial communities, Proceedings of the National Academy of Sciences, vol.105, issue.Supplement 1, pp.11512-11519, 2008.
DOI : 10.1073/pnas.0801925105

A. Bissett, M. Brown, S. Siciliano, and P. Thrall, Microbial community responses to anthropogenically induced environmental change: towards a systems approach, Ecology Letters, vol.2, pp.128-139, 2013.
DOI : 10.1111/ele.12109

S. Brar, M. Verma, R. Tyagi, and R. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge ??? Evidence and impacts, Waste Management, vol.30, issue.3, pp.504-520, 2010.
DOI : 10.1016/j.wasman.2009.10.012

G. Cornelis, K. Hund-rinke, T. Kuhlbusch, N. Brink, . Van-den et al., Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review, Critical Reviews in Environmental Science and Technology, vol.29, issue.24, pp.2720-2764, 2014.
DOI : 10.1007/s00360-005-0482-4

N. Dassonville, N. Guillaumaud, F. Piola, P. Meerts, and F. Poly, Niche construction by the invasive Asian knotweeds (species complex Fallopia): impact on activity, abundance and community structure of denitrifiers and nitrifiers, Biological Invasions, vol.61, issue.5, pp.1115-1133, 2011.
DOI : 10.1007/s10530-011-9954-5

URL : https://hal.archives-ouvertes.fr/halsde-00591789

R. Dinesh, M. Anandaraj, V. Srinivasan, and S. Hamza, Engineered nanoparticles in the soil and their potential implications to microbial activity, Geoderma, vol.173, issue.174, pp.19-27, 2012.
DOI : 10.1016/j.geoderma.2011.12.018

J. Fang, X. Shan, B. Wen, J. Lin, and G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environmental Pollution, vol.157, issue.4, pp.1101-1109, 2009.
DOI : 10.1016/j.envpol.2008.11.006

B. Griffiths and L. Philippot, Insights into the resistance and resilience of the soil microbial community, FEMS Microbiology Reviews, vol.37, issue.2, pp.112-129, 2013.
DOI : 10.1111/j.1574-6976.2012.00343.x

A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, Journal of Nanoparticle Research, vol.40, issue.19, pp.1-17, 2013.
DOI : 10.1007/s11051-013-1692-4

R. Liu and R. Lal, Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions, Science of The Total Environment, vol.514, pp.131-139, 2015.
DOI : 10.1016/j.scitotenv.2015.01.104

J. Mertens, K. Broos, S. Wakelin, G. Kowalchuk, D. Springael et al., Bacteria, not archaea, restore nitrification in a zinc-contaminated soil, The ISME Journal, vol.62, issue.8, pp.916-923, 2009.
DOI : 10.1046/j.1351-0754.2003.0558.x

D. Navarro, S. Banerjee, D. Watson, and D. Aga, Differences in Soil Mobility and Degradability between Water-Dispersible CdSe and CdSe/ZnS Quantum Dots, Environmental Science & Technology, vol.45, issue.15, pp.6343-6349, 2011.
DOI : 10.1021/es201010f

C. Nickel, S. Gabsch, B. Hellack, A. Nogowski, F. Babick et al., Mobility of coated and uncoated TiO2 nanomaterials in soil columns ??? Applicability of the tests methods of OECD TG 312 and 106 for nanomaterials, Journal of Environmental Management, vol.157, pp.230-237, 2015.
DOI : 10.1016/j.jenvman.2015.04.029

B. Pan and B. Xing, Applications and implications of manufactured nanoparticles in soils: a review, European Journal of Soil Science, vol.10, issue.4, pp.437-456, 2012.
DOI : 10.1111/j.1365-2389.2012.01475.x

R. Core-team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2015.

J. Rotthauwe, K. Witzel, and W. Liesack, The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations, Appl Environ Microbiol, vol.63, pp.4704-4712, 1997.

A. Servin, W. Elmer, A. Mukherjee, R. Torre-roche, . La et al., A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield, Journal of Nanoparticle Research, vol.104, issue.1, pp.1-21, 2015.
DOI : 10.1007/s11051-015-2907-7

M. Simonin, J. Guyonnet, J. Martins, M. Ginot, and A. Richaume, Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance, Journal of Hazardous Materials, vol.283, pp.529-535, 2015.
DOI : 10.1016/j.jhazmat.2014.10.004

URL : https://hal.archives-ouvertes.fr/hal-01197005

M. Simonin and A. Richaume, Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review, Environmental Science and Pollution Research, vol.107, issue.18, pp.1-14, 2015.
DOI : 10.1007/s11356-015-4171-x

T. Sun, F. Gottschalk, K. Hungerbühler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environmental Pollution, vol.185, pp.69-76, 2014.
DOI : 10.1016/j.envpol.2013.10.004

M. Tourna, T. Freitag, G. Nicol, and J. Prosser, Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms, Environmental Microbiology, vol.31, issue.5, pp.1357-1364, 2008.
DOI : 10.1073/pnas.0600756103

A. Treusch, S. Leininger, A. Kletzin, S. Schuster, H. Klenk et al., Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling, Environmental Microbiology, vol.61, issue.12, pp.1985-1995, 2005.
DOI : 10.1111/j.1462-2920.2005.00906.x

M. Auffan, J. Rose, J. Bottero, G. Lowry, J. Jolivet et al., Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nature Nanotechnology, vol.245, issue.10, 2009.
DOI : 10.1038/nnano.2009.242

URL : https://hal.archives-ouvertes.fr/hal-00446833

S. Bates, D. Berg-lyons, J. Caporaso, W. Walters, R. Knight et al., Examining the global distribution of dominant archaeal populations in soil, The ISME Journal, vol.63, issue.5, pp.908-917, 2011.
DOI : 10.1111/j.1574-6941.2009.00775.x

T. Ben-moshe, I. Dror, and B. Berkowitz, Transport of metal oxide nanoparticles in saturated porous media, Chemosphere, vol.81, issue.3, pp.387-393, 2010.
DOI : 10.1016/j.chemosphere.2010.07.007

T. Ben-moshe, S. Frenk, I. Dror, D. Minz, and B. Berkowitz, Effects of metal oxide nanoparticles on soil properties, Chemosphere, vol.90, issue.2, pp.640-646, 2013.
DOI : 10.1016/j.chemosphere.2012.09.018

O. Bondarenko, A. Ivask, A. Käkinen, and A. Kahru, Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action, Environmental Pollution, vol.169, pp.81-89, 2012.
DOI : 10.1016/j.envpol.2012.05.009

P. Calow, Ecology in ecotoxicology: some possible ???rules of thumb???, ECOtoxicology: Ecological Dimensions, 1996.
DOI : 10.1007/978-94-009-1541-1_2

J. Buffle, K. Wilkinson, S. Stoll, M. Filella, and J. Zhang, A Generalized Description of Aquatic Colloidal Interactions:?? The Three-colloidal Component Approach, Environmental Science & Technology, vol.32, issue.19, pp.2887-2899, 1998.
DOI : 10.1021/es980217h

X. Chen and S. Mao, Titanium Dioxide Nanomaterials:?? Synthesis, Properties, Modifications, and Applications, Chemical Reviews, vol.107, issue.7, pp.2891-2959, 2007.
DOI : 10.1021/cr0500535

I. Chowdhury, D. Cwiertny, and S. Walker, Combined Factors Influencing the Aggregation and Deposition of nano-TiO2 in the Presence of Humic Acid and Bacteria, 2012.

G. Cornelis, K. Hund-rinke, T. Kuhlbusch, N. Brink, . Van-den et al., Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review, Critical Reviews in Environmental Science and Technology, vol.29, issue.24, pp.2720-2764, 2014.
DOI : 10.1007/s00360-005-0482-4

G. Cornelis, L. Pang, C. Doolette, J. Kirby, and M. Mclaughlin, Transport of silver nanoparticles in saturated columns of natural soils, Science of The Total Environment, vol.463, issue.464, pp.120-130, 2013.
DOI : 10.1016/j.scitotenv.2013.05.089

G. Cornelis, B. Ryan, M. Mclaughlin, J. Kirby, D. Beak et al., Nanoparticles in Soils, Environmental Science & Technology, vol.45, issue.7, pp.2777-2782, 2011.
DOI : 10.1021/es103769k

C. Coutris, E. Joner, and D. Oughton, Aging and soil organic matter content affect the fate of silver nanoparticles in soil, Science of The Total Environment, vol.420, pp.327-333, 2012.
DOI : 10.1016/j.scitotenv.2012.01.027

T. Darlington, A. Neigh, M. Spencer, O. Nguyen, and S. Oldenburg, NANOPARTICLE CHARACTERISTICS AFFECTING ENVIRONMENTAL FATE AND TRANSPORT THROUGH SOIL, Environmental Toxicology and Chemistry, vol.28, issue.6, pp.1191-1199, 2009.
DOI : 10.1897/08-341.1

F. Demoling, D. Figueroa, and E. Bååth, Comparison of factors limiting bacterial growth in different soils, Soil Biology and Biochemistry, vol.39, issue.10, pp.2485-2495, 2007.
DOI : 10.1016/j.soilbio.2007.05.002

M. Elimelech, J. Gregory, and X. Jia, Particle Deposition and Aggregation: Measurement, Modelling and Simulation, 2013.

T. Erguder, N. Boon, L. Wittebolle, M. Marzorati, and W. Verstraete, Environmental factors shaping the ecological niches of ammonia-oxidizing archaea, FEMS Microbiology Reviews, vol.33, issue.5, pp.855-869, 2009.
DOI : 10.1111/j.1574-6976.2009.00179.x

B. Espinasse, E. Hotze, and M. Wiesner, in Porous Media:?? Effects of Organic Macromolecules, Ionic Composition, and Preparation Method, Environmental Science & Technology, vol.41, issue.21, pp.7396-7402, 2007.
DOI : 10.1021/es0708767

J. Fang, X. Shan, B. Wen, J. Lin, and G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environmental Pollution, vol.157, issue.4, pp.1101-1109, 2009.
DOI : 10.1016/j.envpol.2008.11.006

J. Fang, X. Shan, B. Wen, J. Lin, G. Owens et al., Transport of copper as affected by titania nanoparticles in soil columns, Environmental Pollution, vol.159, issue.5, pp.1248-1256, 2011.
DOI : 10.1016/j.envpol.2011.01.039

K. Giller, E. Witter, and S. Mcgrath, Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review, Soil Biology and Biochemistry, vol.30, issue.10-11, pp.1389-1414, 1998.
DOI : 10.1016/S0038-0717(97)00270-8

F. Gottschalk, T. Sonderer, R. Scholz, and B. Nowack, , ZnO, Ag, CNT, Fullerenes) for Different Regions, Environmental Science & Technology, vol.43, issue.24, pp.9216-9222, 2009.
DOI : 10.1021/es9015553

B. Griffiths and L. Philippot, Insights into the resistance and resilience of the soil microbial community, FEMS Microbiology Reviews, vol.37, issue.2, pp.112-129, 2013.
DOI : 10.1111/j.1574-6976.2012.00343.x

G. Guo, H. Deng, M. Qiao, Y. Mu, and Y. Zhu, Effect of pyrene on denitrification activity and abundance and composition of denitrifying community in an agricultural soil, Environmental Pollution, vol.159, issue.7, pp.1886-1895, 2011.
DOI : 10.1016/j.envpol.2011.03.035

R. Handy, . Kammer-f-von-der, J. Lead, M. Hassellöv, R. Owen et al., The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology, vol.26, issue.335, pp.287-314, 2008.
DOI : 10.1007/s10646-008-0199-8

H. Hildebrand and K. Franke, A new radiolabeling method for commercial Ag0 nanopowder with 110mAg for sensitive nanoparticle detection in complex media, Journal of Nanoparticle Research, vol.71, issue.10, pp.1-7, 2012.
DOI : 10.1007/s11051-012-1142-8

P. Holden, J. Schimel, and H. Godwin, Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates, Current Opinion in Biotechnology, vol.27, pp.73-78, 2014.
DOI : 10.1016/j.copbio.2013.11.008

E. Hotze, J. Bottero, and M. Wiesner, Theoretical Framework for Nanoparticle Reactivity as a Function of Aggregation State, Langmuir, vol.26, issue.13, pp.11170-11175, 2010.
DOI : 10.1021/la9046963

M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv et al., Heavy metal removal from water/wastewater by nanosized metal oxides: A review, Journal of Hazardous Materials, vol.211, issue.212, pp.211-212317, 2012.
DOI : 10.1016/j.jhazmat.2011.10.016

D. Jaisi and M. Elimelech, Single-Walled Carbon Nanotubes Exhibit Limited Transport in Soil Columns, Environmental Science & Technology, vol.43, issue.24, pp.9161-9166, 2009.
DOI : 10.1021/es901927y

D. Jaisi, N. Saleh, R. Blake, and M. Elimelech, Transport of Single-Walled Carbon Nanotubes in Porous Media: Filtration Mechanisms and Reversibility, Environmental Science & Technology, vol.42, issue.22, pp.8317-8323, 2008.
DOI : 10.1021/es801641v

S. Jeong and S. Kim, Aggregation and transport of copper oxide nanoparticles in porous media, Journal of Environmental Monitoring, vol.38, issue.9, pp.1595-1600, 2009.
DOI : 10.1039/b907658a

J. Jiang, G. Oberdörster, and P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, Journal of Nanoparticle Research, vol.85, issue.1, pp.77-89, 2008.
DOI : 10.1007/s11051-008-9446-4

S. Jomini, J. Labille, P. Bauda, and C. Pagnout, Modifications of the bacterial reverse mutation test reveals mutagenicity of TiO2 nanoparticles and byproducts from a sunscreen TiO2-based nanocomposite, Toxicology Letters, vol.215, issue.1, pp.54-61, 2012.
DOI : 10.1016/j.toxlet.2012.09.012

URL : https://hal.archives-ouvertes.fr/hal-01426292

Y. Ju-nam and J. Lead, Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications, Science of The Total Environment, vol.400, issue.1-3, pp.396-414, 2008.
DOI : 10.1016/j.scitotenv.2008.06.042

R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser et al., Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment, Environmental Pollution, vol.156, issue.2, pp.233-239, 2008.
DOI : 10.1016/j.envpol.2008.08.004

F. Kandeler, C. Kampichler, and O. Horak, Influence of heavy metals on the functional diversity of soil microbial communities, Biology and Fertility of Soils, vol.26, issue.3, pp.299-306, 1996.
DOI : 10.1007/BF00335958

D. Kasel, S. Bradford, J. ?im?nek, T. Pütz, H. Vereecken et al., Limited transport of functionalized multi-walled carbon nanotubes in two natural soils, Environmental Pollution, vol.180, pp.152-158, 2013.
DOI : 10.1016/j.envpol.2013.05.031

A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, Journal of Nanoparticle Research, vol.40, issue.19, pp.1-17, 2013.
DOI : 10.1007/s11051-013-1692-4

M. Khin, A. Nair, V. Babu, R. Murugan, and S. Ramakrishna, A review on nanomaterials for environmental remediation, Energy & Environmental Science, vol.701, issue.3, pp.8075-8109, 2012.
DOI : 10.1155/2012/817187

M. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Pérez-rivera et al., Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants, Environmental Science & Technology, vol.43, issue.17, pp.6757-6763, 2009.
DOI : 10.1021/es901102n

P. Kool, M. Ortiz, and C. Van-gestel, Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil, Environmental Pollution, vol.159, issue.10, pp.2713-2719, 2011.
DOI : 10.1016/j.envpol.2011.05.021

G. Kowalchuk and J. Stephen, Ammonia-Oxidizing Bacteria: A Model for Molecular Microbial Ecology, Annual Review of Microbiology, vol.55, issue.1, pp.485-529, 2001.
DOI : 10.1146/annurev.micro.55.1.485

J. Labille, J. Feng, C. Botta, D. Borschneck, M. Sammut et al., Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment, Environmental Pollution, vol.158, issue.12, pp.3482-3489, 2010.
DOI : 10.1016/j.envpol.2010.02.012

J. Leahy and R. Colwell, Microbial degradation of hydrocarbons in the environment, 1990.

H. Lecoanet, J. Bottero, and M. Wiesner, Laboratory Assessment of the Mobility of Nanomaterials in Porous Media, Environmental Science & Technology, vol.38, issue.19, pp.5164-5169, 2004.
DOI : 10.1021/es0352303

H. Lecoanet and M. Wiesner, Velocity Effects on Fullerene and Oxide Nanoparticle Deposition in Porous Media, Environmental Science & Technology, vol.38, issue.16, pp.4377-4382, 2004.
DOI : 10.1021/es035354f

L. Lehtovirta-morley, K. Stoecker, A. Vilcinskas, J. Prosser, and G. Nicol, Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil, Proceedings of the National Academy of Sciences, vol.108, issue.38, pp.15892-15897, 2011.
DOI : 10.1073/pnas.1107196108

Y. Li, W. Zhang, J. Niu, and Y. Chen, Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles, ACS Nano, vol.6, issue.6, 2012.
DOI : 10.1021/nn300934k

R. Liu and R. Lal, Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions, Science of The Total Environment, vol.514, pp.131-139, 2015.
DOI : 10.1016/j.scitotenv.2015.01.104

M. Loreau, S. Naeem, and P. Inchausti, Biodiversity and Ecosystem Functioning: Synthesis and Perspectives, 2002.

G. Lowry, K. Gregory, S. Apte, and J. Lead, Transformations of Nanomaterials in the Environment, Environmental Science & Technology, vol.46, issue.13, pp.6893-6899, 2012.
DOI : 10.1021/es300839e

N. Martineau, J. Mclean, C. Dimkpa, D. Britt, and A. Anderson, Components from wheat roots modify the bioactivity of ZnO and CuO nanoparticles in a soil bacterium, Environmental Pollution, vol.187, pp.65-72, 2014.
DOI : 10.1016/j.envpol.2013.12.022

H. Mcshane, G. Sunahara, J. Whalen, and W. Hendershot, Differences in Soil Solution Chemistry between Soils Amended with Nanosized CuO or Cu Reference Materials: Implications for Nanotoxicity Tests, Environmental Science & Technology, vol.48, issue.14, pp.8135-8142, 2014.
DOI : 10.1021/es500141h

J. Mertens, K. Broos, S. Wakelin, G. Kowalchuk, D. Springael et al., Bacteria, not archaea, restore nitrification in a zinc-contaminated soil, The ISME Journal, vol.62, issue.8, pp.916-923, 2009.
DOI : 10.1046/j.1351-0754.2003.0558.x

. Millenium-ecosystem-assessment, Ecosystems and human well-being, 2005.

D. Mitrano, S. Motellier, S. Clavaguera, and B. Nowack, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environment International, vol.77, pp.132-147, 2015.
DOI : 10.1016/j.envint.2015.01.013

URL : https://hal.archives-ouvertes.fr/cea-01344057

D. Navarro, S. Banerjee, D. Watson, and D. Aga, Differences in Soil Mobility and Degradability between Water-Dispersible CdSe and CdSe/ZnS Quantum Dots, Environmental Science & Technology, vol.45, issue.15, pp.6343-6349, 2011.
DOI : 10.1021/es201010f

A. Nel, T. Xia, L. Mädler, and N. Li, Toxic Potential of Materials at the Nanolevel, Science, vol.311, issue.5761, pp.622-627, 2006.
DOI : 10.1126/science.1114397

C. Nickel, S. Gabsch, B. Hellack, A. Nogowski, F. Babick et al., Mobility of coated and uncoated TiO2 nanomaterials in soil columns ??? Applicability of the tests methods of OECD TG 312 and 106 for nanomaterials, Journal of Environmental Management, vol.157, pp.230-237, 2015.
DOI : 10.1016/j.jenvman.2015.04.029

J. Niemeyer and F. Gessler, Determination of free DNA in soils, Journal of Plant Nutrition and Soil Science, vol.165, issue.2, pp.121-124, 2002.
DOI : 10.1002/1522-2624(200204)165:2<121::AID-JPLN1111121>3.0.CO;2-X

J. Ollivier, D. Schacht, R. Kindler, J. Groeneweg, M. Engel et al., Effects of repeated application of sulfadiazine-contaminated pig manure on the abundance and diversity of ammonia and nitrite oxidizers in the root-rhizosphere complex of pasture plants under field conditions, Frontiers in Microbiology, vol.4, 2013.
DOI : 10.3389/fmicb.2013.00022

E. Oton, C. Quince, G. Nicol, J. Prosser, and C. Gubry-rangin, Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota, The ISME Journal, vol.70, issue.1, 2015.
DOI : 10.3389/fmicb.2012.00210

B. Pan and B. Xing, Applications and implications of manufactured nanoparticles in soils: a review, European Journal of Soil Science, vol.10, issue.4, pp.437-456, 2012.
DOI : 10.1111/j.1365-2389.2012.01475.x

M. Pester, T. Rattei, S. Flechl, A. Gröngröft, A. Richter et al., amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions, Environmental Microbiology, vol.107, issue.2, pp.525-539, 2012.
DOI : 10.1111/j.1462-2920.2011.02666.x

F. Piccinno, F. Gottschalk, S. Seeger, and B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, Journal of Nanoparticle Research, vol.43, issue.9, pp.1-11, 2012.
DOI : 10.1007/s11051-012-1109-9

J. Priester, Y. Ge, V. Chang, P. Stoimenov, J. Schimel et al., Assessing interactions of hydrophilic nanoscale TiO2 with soil water, Journal of Nanoparticle Research, vol.53, issue.1, pp.1-13, 2013.
DOI : 10.1007/s11051-013-1899-4

J. Prosser and G. Nicol, Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation, Trends in Microbiology, vol.20, issue.11, pp.523-531, 2012.
DOI : 10.1016/j.tim.2012.08.001

J. Raes and P. Bork, Molecular eco-systems biology: towards an understanding of community function, Nature Reviews Microbiology, vol.33, issue.9, pp.693-699, 2008.
DOI : 10.1038/nrmicro1935

C. Robichaud, A. Uyar, M. Darby, L. Zucker, and M. Wiesner, Production As a Basis for Exposure Assessment, Environmental Science & Technology, vol.43, issue.12, pp.4227-4233, 2009.
DOI : 10.1021/es8032549

J. Rousk, K. Ackermann, S. Curling, and D. Jones, Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities, PLoS ONE, vol.42, issue.3, p.34197, 2012.
DOI : 10.1371/journal.pone.0034197.s001

J. Schimel, J. Bennett, and N. Fierer, Microbial community composition and soil nitrogen cycling: is there really a connection?, pp.171-188, 2005.
DOI : 10.1017/CBO9780511541926.011

J. Schimel and S. Schaeffer, Microbial control over carbon cycling in soil, Frontiers in Microbiology, vol.3, 2012.
DOI : 10.3389/fmicb.2012.00348

M. Schloter, O. Dilly, and J. Munch, Indicators for evaluating soil quality, Agriculture, Ecosystems & Environment, vol.98, issue.1-3, pp.255-262, 2003.
DOI : 10.1016/S0167-8809(03)00085-9

K. Semple, K. Doick, K. Jones, P. Burauel, A. Craven et al., Peer Reviewed, 2004.

A. Servin, W. Elmer, A. Mukherjee, R. Torre-roche, . La et al., A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield, Journal of Nanoparticle Research, vol.104, issue.1, pp.1-21, 2015.
DOI : 10.1007/s11051-015-2907-7

W. Shoults-wilson, B. Reinsch, O. Tsyusko, P. Bertsch, G. Lowry et al., Role of Particle Size and Soil Type in Toxicity of Silver Nanoparticles to Earthworms, Soil Science Society of America Journal, vol.75, issue.2, p.365, 2011.
DOI : 10.2136/sssaj2010.0127nps

M. Simonin and A. Richaume, Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review, Environmental Science and Pollution Research, vol.107, issue.18, pp.1-14, 2015.
DOI : 10.1007/s11356-015-4171-x

B. Sohm, F. Immel, P. Bauda, and C. Pagnout, in the dark, PROTEOMICS, vol.15, issue.1, pp.98-113, 2015.
DOI : 10.1002/pmic.201400101

URL : https://hal.archives-ouvertes.fr/hal-01101796

C. Som, M. Berges, Q. Chaudhry, M. Dusinska, T. Fernandes et al., The importance of life cycle concepts for the development of safe nanoproducts, Toxicology, vol.269, issue.2-3, pp.160-169, 2010.
DOI : 10.1016/j.tox.2009.12.012

P. Sun, A. Shijirbaatar, J. Fang, G. Owens, D. Lin et al., Distinguishable Transport Behavior of Zinc Oxide Nanoparticles in Silica Sand and Soil Columns, Science of The Total Environment, vol.505, pp.189-198, 2015.
DOI : 10.1016/j.scitotenv.2014.09.095

T. Sun, F. Gottschalk, K. Hungerbühler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environmental Pollution, vol.185, pp.69-76, 2014.
DOI : 10.1016/j.envpol.2013.10.004

B. Thio, D. Zhou, and A. Keller, Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles, Journal of Hazardous Materials, vol.189, issue.1-2, pp.556-563, 2011.
DOI : 10.1016/j.jhazmat.2011.02.072

Y. Tian, B. Gao, C. Silvera-batista, and K. Ziegler, Transport of engineered nanoparticles in saturated porous media, Journal of Nanoparticle Research, vol.7, issue.7, pp.2371-2380, 2010.
DOI : 10.1007/s11051-010-9912-7

Y. Tian, B. Gao, Y. Wang, V. Morales, R. Carpena et al., Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns, Journal of Hazardous Materials, vol.213, issue.214, pp.265-272, 2012.
DOI : 10.1016/j.jhazmat.2012.01.088

P. Tourinho, C. Van-gestel, S. Lofts, C. Svendsen, A. Soares et al., Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates, Environmental Toxicology and Chemistry, vol.42, issue.8, pp.1679-1692, 2012.
DOI : 10.1002/etc.1880

T. Tsuzuki, Commercial scale production of inorganic nanoparticles, International Journal of Nanotechnology, vol.6, issue.5/6, pp.567-578, 2009.
DOI : 10.1504/IJNT.2009.024647

N. Van-straalen, Peer Reviewed: Ecotoxicology Becomes Stress Ecology, Environmental Science & Technology, vol.37, issue.17, pp.324-330, 2003.
DOI : 10.1021/es0325720

E. Vitorge, Développement et utilisation de nanotraceurs pour l'étude du transport de colloïdes en milieu poreux, Expérimentations et Modélisations. phdthesis, 2010.

V. Antisari, L. Carbone, S. Gatti, A. Vianello, G. Nannipieri et al., Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil, Soil Biology and Biochemistry, vol.60, pp.87-94, 2013.
DOI : 10.1016/j.soilbio.2013.01.016

Y. Wang, B. Gao, V. Morales, Y. Tian, L. Wu et al., Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions, Journal of Nanoparticle Research, vol.46, issue.9, pp.1-9, 2012.
DOI : 10.1007/s11051-012-1095-y

M. Whiteside, K. Treseder, and P. Atsatt, The brighter side of soils: Quantum dots track organic nitrogen through fungi and plants, Ecology, vol.221, issue.1, pp.100-108, 2009.
DOI : 10.1016/j.jcrysgro.2005.06.051

Y. Yang, Y. Wang, P. Westerhoff, K. Hristovski, V. Jin et al., Metal and nanoparticle occurrence in biosolid-amended soils, Science of The Total Environment, vol.485, issue.486, pp.485-486441, 2014.
DOI : 10.1016/j.scitotenv.2014.03.122

K. Zhalnina, P. De-quadros, F. Camargo, and E. Triplett, Drivers of archaeal ammoniaoxidizing communities in soil, Front Microbiol, vol.3, 2012.

Y. Zhang, Y. Chen, P. Westerhoff, and J. Crittenden, Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles, Water Research, vol.43, issue.17, pp.4249-4257, 2009.
DOI : 10.1016/j.watres.2009.06.005

D. Zhou, A. Abdel-fattah, and A. Keller, Clay Particles Destabilize Engineered Nanoparticles in Aqueous Environments, Environmental Science & Technology, vol.46, issue.14, pp.7520-7526, 2012.
DOI : 10.1021/es3004427