Structural modelling of the complex Cenozoic zone of the Levant Basin offshore Lebanon

Abstract : The Levant Basin is located at the easternmost Mediterranean at the intersection of three major tectonic plates (Africa, Arabia, Eurasia and the smaller Anatolian microplate). The Levant Fracture System (Arabia-Africa plate boundary) borders the basin to its east and represents a 1000 km long left-lateral transform system linking rifting in the Red Sea with plate convergence along the Taurus Mountains (Arabia-Eurasia plate boundary). The Levant Basin is bordered to the north by the Cyprus Arc (Africa-Eurasia plate boundary). The interaction between these tectonic plates had important consequences on the evolution of the Levant Basin whereby its eastern boundary has been affected by deformation along the Levant Fracture System. This major plate boundary is associated with a restraining bend in Lebanon and has been active since the Late Miocene. Until recent days, the absence of seismic data in the central Levant Basin was an obstacle against characterizing the tectonic setting of the basin. In this area, the geometry, kinematics and the age of the tectonic structures are poorly understood. A focal question thus remains on how the Levant Basin was affected by this adjacent plate boundary. Therefore, what is the impact of the deformation along the Levant Fracture System since the Late Miocene on this basin and how can we assess it? Has the latter been affected by other tectonic regimes prior to the onset of transpression? If so, how would the existing structures influence the style of modern deformation? In this study, high quality 2D and 3D seismic reflection data (with two 4290 m3 3D seismic cubes and seven 830 km long 2D seismic lines) were interpreted allowing identification and timing of the structures in the Levant Basin offshore Lebanon. Several fault families, mapped along the margin, are remnants of a lasting and complex tectonic history since Mesozoic times. These include NNE-SSW striking thrust faults active during the early Tertiary and inactive since the Pliocene; NNE-SSW striking anticlines folded during the Late Miocene and overlying pre-existing structuresd; and ENE-WSW striking dextral strike-slip faults inherited from Mesozoic times and reactivated during the Late Miocene. Only the dextral strike-slip faults show evidence of current activity and are interpreted to be linked to transpression along the Levant Fracture System. They constitute the westward extension of the plate boundary, formed under a transpressif regime and a NW-SE compression. We have showed how this plate boundary has evolved through the Neogene with a decrease in the shortening component during the Pliocene.The identification of pre-existing structures along the eastern Levant margin shed the light on the deep structuration affecting this area, inherited from Mesozoic tectonic events. The impact of these structures was tested through analogue modeling. Results indicated a considerable impact of pre-existing structures on the development of the restraining bend, localizing deformation at the onset of transpression and responsible of segmenting the restraining bend along an ENE direction. These ENE-WSW faults are thus major and are most likely associated with the deformation affecting the Palmyra basin since the Mesozoic, which is thus extending westward to Lebanon. This study has shown the important role of a margin on a strike-slip plate boundary. Namely, the development of antithetic faults (local dextral strike-slip faults in a regional sinistral strike-slip plate boundary) known in other similar plate boundaries is associated with a deep crustal anisotropy localizing the subsequent deformation.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01272001
Contributor : Abes Star <>
Submitted on : Wednesday, February 10, 2016 - 1:02:09 AM
Last modification on : Friday, March 22, 2019 - 1:31:10 AM
Long-term archiving on : Saturday, November 12, 2016 - 3:37:15 PM

File

2015PA066316o.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01272001, version 1

Citation

Ramadan Ghalayini. Structural modelling of the complex Cenozoic zone of the Levant Basin offshore Lebanon. Earth Sciences. Université Pierre et Marie Curie - Paris VI, 2015. English. ⟨NNT : 2015PA066316⟩. ⟨tel-01272001⟩

Share

Metrics

Record views

327

Files downloads

311