. D. Achillep, S. Celi, D. Puccio, F. Forte, and P. , Anisotropic AAA: Computational comparison between four and two fiber family material models, J. of Biomechanics, pp.44-57, 2011.

S. Annerel, T. Claessens, J. Degroote, P. Segers, and J. Vierendeels, Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments, Medical Engineering & Physics, vol.36, issue.8, pp.1014-1037, 2014.
DOI : 10.1016/j.medengphy.2014.05.004

S. Avril, J. Huntley, and C. R. , In vivo measurements of blood viscosity and wall stiffness in the carotid using PC-MRI, Revue europ??enne de m??canique num??rique, vol.18, issue.1, pp.18-27, 2009.
DOI : 10.3166/ejcm.18.9-20

URL : https://hal.archives-ouvertes.fr/emse-00497702

S. Avril, P. Badel, and . Dupreya, Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements, Journal of Biomechanics, vol.43, issue.15, pp.43-58, 2010.
DOI : 10.1016/j.jbiomech.2010.07.004

URL : https://hal.archives-ouvertes.fr/hal-00543316

F. Balezeau, O. Basketry, P. Hardeman, M. Rampling, and H. Meiselman, Developpements methodologique en IRM dynamique: vers la caracterisation des etats precancereux et cancereux du foie " , Signal and Image processing, vivo hemorheology Handbook of Hemorheology and hemodynamics, pp.322-338, 2007.

O. Basketry, M. Boynard, G. Cokelet, P. Connes, B. Cooke et al., New guidelines for hemorheological laboratory techniques, Clin Hemorheol Microcirc, pp.4275-97, 2009.

J. P. Becquemin and D. Ernenwein, Anévrysme de l'aorte abdominale, Revue du Praticien, issue.48, pp.1601-1607, 1998.

D. Belhomme, M. Neveux, and C. Laurian, Anévrisme de l'aorte ascendante et de l'aorte abdominale

. Maladie-du-tissu-Élastique, ?Sang Thrombose Vaisseaux, Janvier, vol.17, issue.1, pp.69-70, 2005.

F. Benra, H. Dohmen, J. Pei, S. Schuster, and B. Wan, A Comparison of One-Way and Two-Way Coupling Methods for Numerical Analysis of Fluid-Structure Interactions, Journal of Applied Mathematics, vol.1, issue.6, 2011.
DOI : 10.1115/1.2201629

P. Berthier and P. Flaud, Comportement rhéologique stationnaire d'une dispersion concentrée de silice-bentonite:modélisation et aspects prédictifs, Les cahiers de réologie, pp.119-129, 1995.

P. Bihari, A. Shelke, T. H. Nwe, M. Mularczyk, K. Nelson et al., Strain Measurement of Abdominal Aortic Aneurysm with Real-time 3D Ultrasound Speckle Tracking, European Journal of Vascular and Endovascular Surgery, vol.45, issue.4, pp.45-49, 2013.
DOI : 10.1016/j.ejvs.2013.01.004

. Bra1988, A. Branchereau, and L. Scotti, Anévrysmes rompus de l'aorte sous rénale: les urgences en chirurgie vasculaire, pp.81-95, 1988.

A. Branchereau, Anévrysmes de l'aorte abdominale, Revue du Praticien, vol.42, issue.6, pp.761-766, 1992.

C. Brossard, J. Monnier, P. Barricau, F. Vandernoot, L. Sant et al., Principles and Applications of Particle Image Velocimetry, Journal Aerospace Lab Issue, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01180587

B. Cholley, S. Shroff, and J. Sandelski, Differential Effects of Chronic Oral Antihypertensive Therapies on Systemic Arterial Circulation and Ventricular Energetics in African-American Patients, Circulation, vol.91, issue.4, pp.911052-62, 1995.
DOI : 10.1161/01.CIR.91.4.1052

B. P. Cholley and S. G. Shroff, Mesure non invasive des propriétés élastiques de l'aorte : technique et intérêt physiopathologique, pp.572-580, 1997.

N. Choudhury, O. Bouchot, R. Rouleau, D. Tremblay, R. Cartier et al., Local mechanical and structural properties of healthy and diseased human ascending aorta tissue, Cardiovascular Pathology, vol.18, issue.2, pp.18-83, 2009.
DOI : 10.1016/j.carpath.2008.01.001

D. Álamo, J. C. Marsden, A. L. , and L. J. , Recent Advances in the Application of Computational Mechanics to the Diagnosis and Treatment of Cardiovascular Disease, Cardiovascular Translational Medicine (VII), issue.7, pp.62-781, 2009.

V. Deplano and Y. Knapp, Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm, Journal of Biomechanics, vol.40, issue.11, pp.2406-2419, 2007.
DOI : 10.1016/j.jbiomech.2006.11.017

URL : https://hal.archives-ouvertes.fr/hal-00137129

V. Deplano, C. Meyer, C. Guivier-curien, and E. Bertrand, New insights into the understanding of flow dynamics in an in vitro model for abdominal aortic aneurysms, Medical Engineering & Physics, vol.35, issue.6, pp.6-800, 2013.
DOI : 10.1016/j.medengphy.2012.08.010

W. Dettmer and D. Peric, A computational framework for fluid???structure interaction: Finite element formulation and applications, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.41-43, pp.195-5754, 2006.
DOI : 10.1016/j.cma.2005.10.019

D. Dormont, M. Duyme, C. Marsault, M. Baulac, M. Sahel et al., Evaluation du volume cérébral : Reproductibilité et précision d'une technique 3D IRM, 1996.

B. J. Doyle, J. Killion, and A. Callanan, Use of the photoelastic method and finite element analysis in the assessment of wall strain in abdominal aortic aneurysm models, Journal of Biomechanics, vol.45, issue.10, pp.45-1759, 2012.
DOI : 10.1016/j.jbiomech.2012.05.004

A. Duprey, K. Khanafer, M. Schlicht, S. Avril, D. Williams et al., In Vitro Characterisation of Physiological and Maximum Elastic Modulus of Ascending Thoracic Aortic Aneurysms Using Uniaxial Tensile Testing, European Journal of Vascular and Endovascular Surgery, vol.39, issue.6, pp.39-700, 2010.
DOI : 10.1016/j.ejvs.2010.02.015

URL : https://hal.archives-ouvertes.fr/hal-00543452

F. Ene, numerical and experimental investigation of factors influencing abdominal aortic aneurysm haemodynamics, PhD, Galway-Mayo Institute of Technology, p.2011

J. Fabian and C. Saliou, Anévrysme de l'aorte abdominale, Revue du Praticien, issue.45, pp.1309-1316, 1995.

M. F. Fillinger, M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy, In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk, Journal of Vascular Surgery, vol.36, issue.3, pp.36-589, 2002.
DOI : 10.1067/mva.2002.125478

M. F. Fillinger, S. P. Marra, M. L. Raghavan, and F. E. Kennedy, Prediction of rupture risk in abdominal aortic aneurysm during observation: Wall stress versus diameter, Journal of Vascular Surgery, vol.37, issue.4, pp.37724-732, 2003.
DOI : 10.1067/mva.2003.213

T. Fukushima, T. Matsuzawa, and T. Homma, Visualization and finite element analysis of pulsatile flow in models of the abdominal aortic aneurysm, Bio-rheology, issue.2, pp.26109-26139, 1989.

Y. Fung, Biomechanics : Mechanical Properties of Living Tissues, 1993.

A. Franquet, S. Avril, R. Le-riche, P. Badel, F. C. Schneider et al., A New Method for the In Vivo Identification of Mechanical Properties in Arteries From Cine MRI Images: Theoretical Framework and Validation, IEEE Transactions on Medical Imaging, vol.32, issue.8, 2013.
DOI : 10.1109/TMI.2013.2257828

URL : https://hal.archives-ouvertes.fr/hal-00805124

A. Franquet, S. Avril, R. Le-riche, P. Badel, and F. Schneider, Identification of the in vivo elastic properties of common carotid arteries from MRI: A study on subjects with and without atherosclerosis, Journal of the Mechanical Behavior of Biomedical Materials, vol.27, issue.11, pp.27184-203, 2013.
DOI : 10.1016/j.jmbbm.2013.03.016

URL : https://hal.archives-ouvertes.fr/hal-00805128

]. Gao2006, . F. Gao, H. Ueda, . Gangli, and H. Okada, Fluid structure interaction simulation in three-layered aortic aneurysm model under pulsatile flow: Comparison of wrapping and stenting, J. of Biological Physics, issue.5, pp.32-435, 2006.

P. D. Gatehouse, J. Keegan, L. A. Crowe, S. Masood, R. H. Mohiaddin et al., Applications of phase-contrast flow and velocity imaging in cardiovascular MRI, European Radiology, vol.21, issue.Suppl 4, pp.2172-2184, 2005.
DOI : 10.1007/s00330-005-2829-3

D. Gosset, P. Simler, and J. Dasic, Traitement chirurgical d'un anévrisme de l'aorte abdominale, 2008.

R. H. Haynes, Physical basis of the dependence of blood viscosity on tube radius, Am. J. Physiol, pp.1193-1200, 0198.

C. M. He and M. R. Roach, The composition and mechanical properties of abdominal aortic aneurysms, Journal of Vascular Surgery, vol.20, issue.1, pp.20-26, 1994.
DOI : 10.1016/0741-5214(94)90169-4

G. Holzapfel, T. Gasser, and R. Ogden, A new Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models, Journal of Elasticity, pp.61-102, 2000.
DOI : 10.1007/0-306-48389-0_1

URL : https://hal.archives-ouvertes.fr/hal-01297725

G. Holzapfel, T. Gasser, and M. Stadler, A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis, European Journal of Mechanics - A/Solids, vol.21, issue.3, pp.441-63, 2002.
DOI : 10.1016/S0997-7538(01)01206-2

G. A. Holzapfel, Determination of material models for arterial walls from uniaxial extension tests and histological structure, Journal of Theoretical Biology, vol.238, issue.2, pp.238-290, 2006.
DOI : 10.1016/j.jtbi.2005.05.006

URL : https://hal.archives-ouvertes.fr/hal-01299856

D. C. Iliopoulos, R. P. Deveja, E. P. Kritharis, D. Perrea, G. D. Sionis et al., Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms, Medical Engineering & Physics, vol.31, issue.1, pp.31-32, 2009.
DOI : 10.1016/j.medengphy.2008.03.002

A. Karimi, M. Navidbakhsh, A. Shojaei, and S. Faghihi, Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries, Materials Science and Engineering: C, vol.33, issue.5, pp.33-2550
DOI : 10.1016/j.msec.2013.02.016

K. Khanafer, A. Duprey, M. Zainal, M. Schlicht, D. Williams et al., Determination of the elastic modulus of ascending thoracic aortic aneurysm at different ranges of pressure using uniaxial tensile testing, The Journal of Thoracic and Cardiovascular Surgery, vol.142, issue.3, pp.142-682, 2011.
DOI : 10.1016/j.jtcvs.2010.09.068

V. Lacroix, I. Aboyans, A. Guessous, and P. Leclerc, De la recommandation d'un dépistage à son (non) implantation : le cas de l'anévrisme de l'aorte abdominale, p.3256, 2009.

A. Lalande, IRM cardio-vasculaire, des séquences d'acquisition aux paramètres physiologiques, 2012.

E. Lansac, D. Centa, I. Jondeau, and G. , Particularités de la chirurgie de l'aorte thoracique dans le syndrome de Marfan, MT Cardio. Mai-Juin, vol.3, issue.3, pp.212-225, 2007.

Z. Li and C. Kleinstreuer, Blood flow and structure interactions in a stented abdominal aortic aneurysm model, Medical Engineering & Physics, vol.27, issue.5, pp.369-382, 2005.
DOI : 10.1016/j.medengphy.2004.12.003

Z. Y. Li, J. U-king-im, T. Y. Tang, E. Soh, T. C. See et al., Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm, Journal of Vascular Surgery, vol.47, issue.5, pp.47-928, 2008.
DOI : 10.1016/j.jvs.2008.01.006

S. Lilly, D. Jacobs, . Jr, R. Kronmal, D. Bluemke et al., Arterial compliance across the spectrum of ankle-brachial index: The multiethnic study of atherosclerosis, Atherosclerosis, vol.233, issue.2, p.2014691
DOI : 10.1016/j.atherosclerosis.2014.01.029

J. Marcotte, R. Ouimet, and G. Landry, Le coeur et les vaisseaux sanguins, Lettres en main, 2004.

M. C. Martin, K. A. Giles, F. B. Pomposelli, A. D. Hamdan, M. C. Wyers et al., R??sultats nationaux de la chirurgie ouverte pour an??vrysme de l???aorte abdominale incluant ?? un pontage r??nal ou visc??ral, Annales de Chirurgie Vasculaire, vol.24, issue.1, pp.24-118, 2010.
DOI : 10.1016/j.acvfr.2010.07.010

M. Markle, A. Frydrychowicz, S. Kozerke, M. Hope, and O. Wieben, 4D flow MRI, 4D flow MRI, pp.1015-1036, 2012.
DOI : 10.1002/jmri.23632

J. Mazeyrat and O. Romain, Wireless communicative stent for follow-up of abdominal aortic aneurysm, 2006 IEEE Biomedical Circuits and Systems Conference
DOI : 10.1109/BIOCAS.2006.4600352

D. Molony, A. Callanan, and E. Kavanagh, Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft, BioMedical Engineering OnLine, vol.8, issue.1, p.24, 2009.
DOI : 10.1186/1475-925X-8-24

L. Morris, P. Delassus, and . Callanan, 3-D Numerical Simulation of Blood Flow Through Models of the Human Aorta, Journal of Biomechanical Engineering, vol.127, issue.5, p.767, 2005.
DOI : 10.1115/1.1992521

L. Morris, P. Delassus, and P. Grace, Effects of flat, parabolic and realistic steady flow inlet profiles on idealised and realistic stent graft fits through Abdominal Aortic Aneurysms (AAA), Medical Engineering & Physics, vol.28, issue.1, pp.19-26, 2006.
DOI : 10.1016/j.medengphy.2005.04.012

N. Demanget, Analyses des performances mécaniques des endoprothèses aortiques par simulation numérique:application au traitement des anévrismes tortueux, Thèse de doctorat de l'école Nationale Supérieure des Mines de Saint-étienne le 4 décembre 2012

P. E. Norman, K. Jamrozik, M. M. Lawrence-brown, M. T. Le, C. A. Spencer et al., Population based randomized controlled trial on impact of screening on mortality from abdominal aortic aneurysm, BMJ, issue.7477, p.3291259, 2004.

P. Norman and J. Powell, Abdominal Aortic Aneurysm: The Prognosis in Women Is Worse Than in Men, Circulation, vol.115, issue.22, pp.2865-2874, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.671859

N. J. Pelc, M. A. Bernstein, A. Shimakawa, and G. H. Glover, Encoding strategies for three-direction phase-contrast MR imaging of flow, Journal of Magnetic Resonance Imaging, vol.12, issue.4, pp.405-413, 1991.
DOI : 10.1002/jmri.1880010404

T. Pham, C. Martin, J. Elefteriades, and W. Sun, Biomechanical characterization of ascending aortic aneurysm with concomitant bicuspid aortic valve and bovine aortic arch, Acta Biomaterialia, vol.9, issue.8, 2013.
DOI : 10.1016/j.actbio.2013.04.021

. Pri1992, A. R. Pries, D. Neuhaus, and P. , Blood viscosity in tube flow: dependence on diameter and hematocrit, Am. J. Physiol, vol.1, pp.263-1770, 1992.

M. L. Raghavan, M. W. Webster, and D. A. Vorp, Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model, Annals of Biomedical Engineering, vol.20, issue.5, pp.24-573, 1996.
DOI : 10.1007/BF02684226

M. L. Raghavan and D. A. Vor, Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability, Journal of Biomechanics, vol.33, issue.4, pp.475-482, 2000.
DOI : 10.1016/S0021-9290(99)00201-8

M. L. Raghavan, . J. Kratzberg, E. M. Dde-tolosa, M. M. Hanaoka, P. Walker et al., Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm, Journal of Biomechanics, vol.39, issue.16, pp.39-3010, 2006.
DOI : 10.1016/j.jbiomech.2005.10.021

M. L. Raghavan, M. M. Hanaoka, J. A. Kratzberg, M. L. Higuchi, and E. S. Da-silva, Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms, Journal of Biomechanics, vol.44, issue.13, pp.31-32, 2009.
DOI : 10.1016/j.jbiomech.2011.06.004

M. L. Rag2011-]-raghavan, M. M. Hanaoka, J. A. Kratzberg, M. L. Higuchi, and . S. Da-silvae, Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms, Journal of Biomechanics, vol.44, issue.13, pp.44-57, 2011.
DOI : 10.1016/j.jbiomech.2011.06.004

C. Reeps, M. Gee, A. Maier, M. Gurdan, H. H. Eckstein et al., The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm, Journal of Vascular Surgery, vol.51, issue.3, pp.51-54, 2009.
DOI : 10.1016/j.jvs.2009.10.048

J. F. Rodriguez, C. Ruiz, M. Doblaré, G. A. Holzapfel, . Hennebelle-f et al., Mechanical stresses in abdominal aortic aneurysm Material anisotropy a parametric study Methodology for the assessment of measuring uncertainties of articulated arm coordinate measuring machines, IX Internatinal Conference on Computational Plasticity, pp.25-39, 2007.

R. Ch, La pompe cardiaque, le débit cardiaque et son contrôle, 2010.

P. Rissland, Y. Alemu, S. Einav, J. Ricotta, and D. Bluestein, Abdominal aortic aneurysm risk of rupture:patient-specific FSI simulations using anisotropic model, J. of Biomechanical Engineering, pp.131-134, 2009.

M. S. Sacks, Biaxial Mechanical Evaluation of Planar Biological Materials, J. of Elasticity, pp.61199-246, 2000.
DOI : 10.1007/0-306-48389-0_7

A. Salsac, Evolution des contraintes hemodynamiques lors de la croissance des anevrismes aortiques abdominaux, thèse soutenue l'école polytechnique, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017919

]. C. Sco2005, A. Scotti, S. Shkolnik, and E. Muluk, Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness, BioMedical Engineering OnLine, vol.4, p.64, 2005.

C. M. Scotti and E. A. Finol, Compliant biomechanics of abdominal aortic aneurysms: A fluid???structure interaction study, Computers & Structures, vol.85, issue.11-14, pp.11-14, 2007.
DOI : 10.1016/j.compstruc.2006.08.041

C. M. Scotti, J. Jimenez, S. C. Muluk, and E. A. Finol, Wall stress and flow dynamics in abdominal aortic aneurysms:finite element analysis vs.fluid?structure interaction, Computer Methods in Biomechanics and Biomedical Engineering, issue.11, pp.301-322, 2008.

B. R. Simon, M. V. Kaufmann, M. A. Mcafee, A. L. Baldwin, and L. M. Wilson, Identification and determination of material properties for porohyperelastic analysis of large aneurysm, J. Biomech. Eng, issue.2, pp.120188-194, 1998.

C. Slager, J. Wentzel, J. Schurbiers, J. Oomen, J. Kloet et al., True 3-Dimensional Reconstruction of Coronary Arteries in Patients by Fusion of Angiography and IVUS (ANGUS) and Its Quantitative Validation, Circulation, vol.102, issue.5, pp.511-516, 2000.
DOI : 10.1161/01.CIR.102.5.511

D. P. Sokolis, H. Boudoulas, and P. E. Karayannacos, Assessment of the aortic stress???strain relation in uniaxial tension, Journal of Biomechanics, vol.35, issue.9, pp.91213-1223, 2002.
DOI : 10.1016/S0021-9290(02)00073-8

F. Stefanov, P. Delassus, and L. Morris, Stent graft performance in the treatment of abdominal aortic aneurysms: The influence of compliance and geometry, Journal of Biomechanics, vol.46, issue.2, p.18

F. Stefanov, A haemodynamic evaluation of patient-specific bifurcated stent-graft devices for the treatment of abdominal aortic aneurysms " , Thesis submitted for the Degree of Doctor of Philosophy, 2014.

W. Sun and M. Sacks, Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues, Biomechanics and Modeling in Mechanobiology, vol.7, issue.10, pp.190-199, 2005.
DOI : 10.1007/s10237-005-0075-x

J. Swedenborg and P. Eriksson, The Intraluminal Thrombus as a Source of Proteolytic Activity, Annals of the New York Academy of Sciences, vol.98, issue.1, pp.1085133-1085141, 2006.
DOI : 10.1161/CIRCULATIONAHA.104.517391

T. E. Sathe, S. Cragin, T. Nanna, B. Conklin, B. S. Pausewang et al., Modelling of fluid?structure interactions with the space?time finite elements: Arterial fluid mechanics

T. E. Tezduyar1, S. Sathe1, M. Schwaab, and B. S. Conklin, Arterial fluid mechanics modeling with the stabilized space???time fluid???structure interaction technique, International Journal for Numerical Methods in Fluids, vol.137, issue.5, pp.57-601, 2008.
DOI : 10.1002/fld.1633

C. A. Taylor and J. D. Humphrey, Open problems in computational vascular biomechanics: Hemodynamics and arterial wall mechanics, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.45-46, pp.45-46, 2009.
DOI : 10.1016/j.cma.2009.02.004

J. Tong, T. Cohnert, P. Regitnig, and G. A. Holzapfel, Effects of Age on the Elastic Properties of the Intraluminal Thrombus and the Thrombus-covered Wall in Abdominal Aortic Aneurysms: Biaxial Extension Behaviour and Material Modelling, European Journal of Vascular and Endovascular Surgery, vol.42, issue.2, pp.42-207, 2011.
DOI : 10.1016/j.ejvs.2011.02.017

J. Tong, A. J. Schriefl, T. Cohnert, and G. A. Holzapfel, Gender Differences in Biomechanical Properties, Thrombus Age, Mass Fraction and Clinical Factors of Abdominal Aortic Aneurysms, European Journal of Vascular and Endovascular Surgery, vol.45, issue.4, pp.45-46, 2013.
DOI : 10.1016/j.ejvs.2013.01.003

R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. Tezduyar, Computation of cardiovascular fluid? structure interactions with the DSD/SST method, Proceedings of the 6th World Congress on Computational Mechanics, 2004.

R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar, Fluid???structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.45-46, pp.45-46, 2009.
DOI : 10.1016/j.cma.2008.08.020

M. C. Toungara, Influence du comportement mécanique des artères sur la prédiction de la rupture des anévrismes de l'aorte abdominale " , 19ème Congrès Français de Mécanique, pp.24-28, 2009.

M. Truijers, J. A. Pol, L. J. Schultzekool, S. M. Van-sterkenburg, M. F. Fillinger et al., Wall Stress Analysis in Small Asymptomatic, Symptomatic and Ruptured Abdominal Aortic Aneurysms, European Journal of Vascular and Endovascular Surgery, vol.33, issue.4
DOI : 10.1016/j.ejvs.2006.10.009

. Val2006, A. Valencia, and F. Solis, Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery, Computers and Structures, pp.84-1326, 2006.

J. Vande-geest, M. Sacks, and D. Vorp, The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta, Journal of Biomechanics, vol.39, issue.7, pp.39-1324, 2006.
DOI : 10.1016/j.jbiomech.2005.03.003

V. J. Geest, M. S. Sacks, and D. A. Vorp, A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms, J.of Biomechanics, pp.39-52, 2006.

J. P. Vassal, S. Avril, and K. Genovese, Caractérisation des propriétés mécaniques d'un tronçon d'aorte par méthode inverse basée sur une mesure ex-vivo " , 19ème Congrès Français de Mécanique, pp.24-28, 2009.

A. K. Venkatasubramaniam, M. J. Fagan, T. B. Mehta, K. J. Ray, G. Kuhan et al., A comparative study of aortic wall stress using finite element analysis for ruptured and nonruptured abdominal aortic aneurysms, Eur J Vasc Endovasc Surg, pp.28168-176, 2004.