S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman et al., The 2012 Plasma Roadmap, Journal of Physics D: Applied Physics, vol.45, issue.25, p.253001, 2012.
DOI : 10.1088/0022-3727/45/25/253001

T. Lagarde, Y. Arnal, and J. Pelletier, of the applied field frequency on the characteristics of Ar and diffusion plasmas sustained at electron cyclotron resonance above multipolar magnetic field structures Plasma Sources Sci, Technol, vol.6, p.386, 1997.

A. Srivastava and J. Asmussen, Comparison of the operational performance of a compact electron cyclotron resonance plasma source at excitation frequencies of 2.45 GHz or 915 MHz, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.11, issue.4, pp.1307-1319, 1993.
DOI : 10.1116/1.578544

A. Lacoste and J. Pelletier, Applicateur d'onde de surface pour la production de plasma, 2014.

A. Lacoste, T. Lagarde, S. Béchu, Y. Arnal, and J. Pelletier, Multi-dipolar plasmas for uniform processing: physics, design and performance Plasma Sources Sci, Technol, vol.11, p.407, 2002.

L. Latrasse, A. Lacoste, J. Sirou, and J. Pelletier, High density distributed microwave plasma sources in a matrix configuration: concept, design and performance Plasma Sources Sci, Technol, vol.16, p.7, 2007.

H. Le-quoc, A. Lacoste, S. Miraglia, and S. Béchu, MgH2 thin films deposited by one-step reactive plasma sputtering, International Journal of Hydrogen Energy, vol.39, issue.31, pp.17718-17743
DOI : 10.1016/j.ijhydene.2014.08.096

URL : https://hal.archives-ouvertes.fr/in2p3-01068590

H. Le-quoc, A. Lacoste, S. Béchu, A. Bès, D. Bourgault et al., Deposition of thin films of Mg2Si1?xSnx solid solution by plasma-assisted co-sputtering J. Alloys Compd, pp.73-81, 2012.

L. Latrasse, A. Lacoste, J. C. Sánchez-lópez, A. Bès, M. Rayar et al., High deposition rates of uniform films in tetramethylsilane-based plasmas generated by elementary microwave sources in matrix configuration, Surface and Coatings Technology, vol.203, issue.16, pp.2343-2352, 2009.
DOI : 10.1016/j.surfcoat.2009.02.121

URL : https://hal.archives-ouvertes.fr/in2p3-00385208

H. Mehedi, J. Achard, D. Rats, O. Brinza, A. Tallaire et al., Low temperature and large area deposition of nanocrystalline diamond films with distributed antenna array microwave-plasma reactor, Diamond and Related Materials, vol.47, pp.58-65
DOI : 10.1016/j.diamond.2014.05.004

G. Regnard, Développement d'une nouvelle génération de plasmas micro-ondes à conditions opératoires élargies Thèse, 2011.

S. Ichimaru, Basic Principles of Plasma Physics, 1973.

K. Uchijima, T. Takemoto, J. Morikawa, and O. , Direct observation of transition to electron Bernstein waves from electromagnetic mode by three mode-conversion scenarios in the dipole confinement torus plasma, Plasma Physics and Controlled Fusion, vol.57, issue.6, p.65003, 2015.
DOI : 10.1088/0741-3335/57/6/065003

D. Sahu and S. , Utilizing upper hybrid resonance for high density plasma production and negative ion generation in a downstream region, Journal of Applied Physics, vol.112, issue.6, p.63304, 2012.
DOI : 10.1063/1.4752868

H. Laqua, Electron Bernstein wave heating and diagnostic, Plasma Physics and Controlled Fusion, vol.49, issue.4, p.1, 2007.
DOI : 10.1088/0741-3335/49/4/R01

H. Sugai, I. Ghanashev, and M. Nagatsu, High-density flat plasma production based on surface waves Plasma Sources Sci, Technol, vol.7, pp.192-205, 1998.

M. Turner, Collisionless electron heating in an inductively coupled discharge, Physical Review Letters, vol.71, issue.12, pp.1844-1851, 1993.
DOI : 10.1103/PhysRevLett.71.1844

S. Rauf and M. J. Kushner, A self-consistent analytical model for non-collisional heating, Plasma Sources Science and Technology, vol.6, issue.4, pp.518-541, 1997.
DOI : 10.1088/0963-0252/6/4/009

K. Mubarak, K. J. Bois, and R. Zoughi, A simple, robust, and on-site microwave technique for determining water-to-cement ratio (w/c) of fresh Portland cement-based materials, IEEE Transactions on Instrumentation and Measurement, vol.50, issue.5, pp.1255-63, 2001.
DOI : 10.1109/19.963194

G. Bianchi, M. Dionigi, D. Fioretto, and R. Sorrentino, A microwave system for moisture monitoring in wet powders for industrial applications Microwave Symposium Digest, IEEE MTT-S International Microwave Symposium Digest, pp.1603-1609, 1999.

Y. Wei and S. Sridhar, Technique for measuring the frequency???dependent complex dielectric constants of liquids up to 20 GHz, Review of Scientific Instruments, vol.60, issue.9, pp.3041-3047, 1989.
DOI : 10.1063/1.1140601

M. A. Stuchly, T. W. Athey, G. M. Samaras, and G. Taylor, Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part II - Experimental Results, IEEE Transactions on Microwave Theory and Techniques, vol.30, issue.1, pp.87-92, 1982.
DOI : 10.1109/TMTT.1982.1131022

T. Kim and J. Pack, MEASUREMENT OF ELECTRICAL CHARACTERISTICS OF FEMALE BREAST TISSUES FOR THE DEVELOPMENT OF THE BREAST CANCER DETECTOR, Progress In Electromagnetics Research C, vol.30, pp.189-99
DOI : 10.2528/PIERC12050704

B. L. Mclaughlin and P. Robertson, Miniature open-ended coaxial probes for dielectric spectroscopy applications, Journal of Physics D: Applied Physics, vol.40, issue.1, p.45, 2007.
DOI : 10.1088/0022-3727/40/1/S08

Y. Wei, Z. Sridhar, and S. , Radiation-corrected open-ended coax line technique for dielectric measurements of liquids up to 20 GHz Microw. Theory Tech, IEEE Trans. On, vol.39, pp.526-557, 1991.

D. Misra, A study on coaxial line excited monopole probes for in situ permittivity measurements Instrum, Meas. IEEE Trans. On IM, vol.36, pp.1015-1024, 1987.

B. García-baños, J. M. Catalá-civera, A. J. Canós, and F. Peñaranda-foix, Design rules for the optimization of the sensitivity of open-ended coaxial microwave sensors for monitoring changes in dielectric materials, Measurement Science and Technology, vol.16, issue.5, p.1186, 2005.
DOI : 10.1088/0957-0233/16/5/019

C. Gabriel, T. Chan, and E. Grant, Admittance models for open ended coaxial probes and their place in dielectric spectroscopy, Physics in Medicine and Biology, vol.39, issue.12, p.2183, 1994.
DOI : 10.1088/0031-9155/39/12/004

G. Deschamps, Impedance of an antenna in a conducting medium Antennas Propag, IRE Trans. On, vol.10, pp.648-50, 1962.

Y. Kok, Y. Abbas, and Z. , Analytical and Numerical Analysis of Fringing Field at Aperture Open-Ended Waveguides Modeling & Simulation, AICMS 08. Second Asia International Conference on pp, pp.277-82, 2008.

K. Balmain, The properties of antennas in plasmas Ann, Télécommunications, vol.34, pp.273-83, 1979.

K. Balmain, The impedance of a short dipole antenna in a magnetoplasma, IEEE Transactions on Antennas and Propagation, vol.12, issue.5, pp.605-622, 1964.
DOI : 10.1109/TAP.1964.1138278

K. Balmain, Dipole admittance for magnetoplasma diagnostics, IEEE Transactions on Antennas and Propagation, vol.17, issue.3, pp.389-92, 1969.
DOI : 10.1109/TAP.1969.1139426

B. Bhat and B. Rao, Experimental investigations on the impedance behavior of a cylindrical antenna in a collisional magnetoplasma, IEEE Transactions on Antennas and Propagation, vol.21, issue.1, pp.70-77, 1973.
DOI : 10.1109/TAP.1973.1140413

D. T. Nakatani and H. Kuehl, Input impedance of a short dipole antenna in a warm anisotropic plasma, 1, Kinetic theory Radio Sci, pp.433-477, 1976.

E. Spencer and S. , Electron density and electron neutral collision frequency in the ionosphere using plasma impedance probe measurements, Journal of Geophysical Research: Space Physics, vol.14, issue.3, p.113, 2008.
DOI : 10.1029/2006JA011806

V. Rumsey, Reaction concept in electromagnetic theory Phys, Rev, vol.94, p.1483, 1954.

S. W. Lee and Y. Lo, Current distribution and input admittance of an infinite cylindrical antenna in anisotropic plasma, IEEE Transactions on Antennas and Propagation, vol.15, issue.2, pp.244-52, 1967.
DOI : 10.1109/TAP.1967.1138871

R. G. Stone, J. K. Alexander, and R. Weber, Measurements of antenna impedance in the ionosphere???II, Planetary and Space Science, vol.14, issue.10, pp.1007-1023, 1966.
DOI : 10.1016/0032-0633(66)90137-1

P. Bletzinger and M. Flemming, Impedance characteristics of an rf parallel plate discharge and the validity of a simple circuit model, Journal of Applied Physics, vol.62, issue.12, pp.4688-95, 1987.
DOI : 10.1063/1.339019

B. Andries, G. Ravel, and P. , Electrical characterization of radio???frequency parallel???plate capacitively coupled discharges, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.7, issue.4, pp.2774-83, 1989.
DOI : 10.1116/1.576177

P. Bletzinger, Experimental characteristics of rf parallel???plate discharges: Influence of attaching gases, Journal of Applied Physics, vol.67, issue.1, p.130, 1990.
DOI : 10.1063/1.345291

M. Kanoh, M. Yamage, and T. , End-point Detection of Reactive Ion Etching by Plasma Impedance Monitoring, Japanese Journal of Applied Physics, vol.40, issue.Part 1, No. 3A, p.1457, 2001.
DOI : 10.1143/JJAP.40.1457

F. Bose, R. Patrick, and H. Baltes, Characterization of plasma etch processes using measurements of discharge impedance, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, issue.4, pp.2805-2814, 1994.
DOI : 10.1116/1.587195

M. Dewan, P. J. Mcnally, T. Perova, and P. Herbert, Use of plasma impedance monitoring for the determination of SF 6 reactive ion etch process end points in a SiO 2 /Si system, Materials Research Innovations, vol.5, issue.2, pp.107-123, 2001.
DOI : 10.1007/s100190100137

T. Motomura, Y. Kasashima, O. Fukuda, F. Uesugi, H. Kurita et al., Note: Practical monitoring system using characteristic impedance measurement during plasma processing, Review of Scientific Instruments, vol.85, issue.2, pp.26103-026103
DOI : 10.1063/1.4863882

R. Stonies, S. Schermer, E. Voges, and J. Broekaert, A new small microwave plasma torch Plasma Sources Sci, Technol, vol.13, p.604, 2004.

F. Iza and J. Hopwood, Split-ring resonator microplasma: microwave model, plasma impedance and power efficiency Plasma Sources Sci, Technol, vol.14, p.397, 2005.

L. Muguira, J. Portilla, P. J. Gonzalez, N. Garmendia, J. Feuchtwanger et al., Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.741, pp.95-103, 2014.
DOI : 10.1016/j.nima.2013.12.054

I. Dey, Y. Toyoda, N. Yamamoto, and H. Nakashima, Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements Phys, p.93502, 2014.

M. Moisan and Z. Zakrzewski, Plasma sources based on the propagation of electromagnetic surface waves, Journal of Physics D: Applied Physics, vol.24, issue.7, p.1025, 1991.
DOI : 10.1088/0022-3727/24/7/001

M. Moisan, R. Grenier, and Z. Zakrzewski, The electromagnetic performance of a surfatron-based coaxial microwave plasma torch, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.50, issue.8, pp.781-790, 1995.
DOI : 10.1016/0584-8547(94)00162-O

S. Holtrup, A. Sadeghfam, H. Heuermann, and P. Awakowicz, Characterization and Optimization Technique for Microwave-Driven High-Intensity Discharge Lamps Using Hot <formula formulatype="inline"> <tex Notation="TeX">${S}$</tex></formula>-Parameters, IEEE Transactions on Microwave Theory and Techniques, vol.62, issue.10, pp.2471-80, 2014.
DOI : 10.1109/TMTT.2014.2342652

J. D. Kim, S. H. Kim, H. J. Kim, S. W. Shin, J. J. Choi et al., Impedance measurement system for a microwave-induced plasma, Journal of the Korean Physical Society, vol.60, issue.6, pp.907-918, 2012.
DOI : 10.3938/jkps.60.907

T. Fleisch, Y. Kabouzi, M. Moisan, J. Pollak, E. Castaños-martínez et al., Designing an efficient microwave-plasma source, independent of operating conditions, at atmospheric pressure Plasma Sources Sci, Technol, vol.16, p.173, 2007.

H. E. Porteanu, S. Kuhn, and R. Gesche, Low-Power Microwave Plasma Conductivity Plasma Sci, IEEE Trans. On, vol.37, pp.44-53, 2009.
DOI : 10.1109/tps.2008.2005833

H. E. Porteanu, R. Gesche, and K. Wandel, An inductively coupled miniature plasma jet source at microwave frequencies Plasma Sources Sci, Technol, vol.22, p.35016, 2013.

D. Jorgesen and C. Marki, Directivity and VSWR measurements : understanding return loss measurements, 2012.

J. Margot-chaker, M. Moisan, Z. Zakrzewski, V. M. Glaude, and G. Sauvé, Phase sensitive methods to determine the wavelength of electromagnetic waves in lossy nonuniform media: The case of surface waves along plasma columns, Radio Science, vol.19, issue.6, pp.1120-1152, 1988.
DOI : 10.1029/RS023i006p01120

H. Kokura, K. Nakamura, and I. Ghanashev, Plasma Absorption Probe for Measuring Electron Density in an Environment Soiled with Processing Plasmas, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 9A, p.5262, 1999.
DOI : 10.1143/JJAP.38.5262

K. Nakamura, Highly sensitive plasma absorption probe for measuring low-density high-pressure plasmas, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.21, issue.1, pp.325-356, 2003.
DOI : 10.1116/1.1532740

J. Pelletier, B. S. Bes, A. Lacoste, and A. , Device and method for producing and/or confining a plasma, 2010.

D. Carl, Axial radio frequency electric field intensity and ion density during low to high mode transition in argon electron cyclotron resonance discharges, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.9, issue.2, p.339, 1991.
DOI : 10.1116/1.585572

A. Aanesland and A. Fredriksen, Pressure dependent mode transition in an electron cyclotron resonance plasma discharge, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.19, issue.5, pp.2446-52, 2001.
DOI : 10.1116/1.1387053

G. Cunge, B. Crowley, D. Vender, and M. Turner, Characterization of the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry: bi-stability and hysteresis, Plasma Sources Science and Technology, vol.8, issue.4, pp.576-86, 1999.
DOI : 10.1088/0963-0252/8/4/309

A. Perry, The application of the helicon source to plasma processing, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.9, issue.2, p.310, 1991.
DOI : 10.1116/1.585611

V. A. Godyak, R. Piejak, and B. Alexandrovich, Electrical characteristics and electron heating mechanism of an inductively coupled argon discharge Plasma Sources Sci, Technol, vol.3, pp.169-76, 1994.

C. Riccardi, E. Agostini, and M. Fontanesi, Study of plasma impedance for electrostatic waves coupling, Plasma Physics and Controlled Fusion, vol.37, issue.7, pp.763-71, 1995.
DOI : 10.1088/0741-3335/37/7/006

S. Béchu, Caractérisations électrostatique et optique du fonctionnement de sources plasma micro-onde dipolaires. Application à la production de faisceaux d'électrons et d'ions H? Mémoire de HDR, 2010.

T. Tran, Caractérisation et modélisation des plasmas micro-onde multi-dipolaires application à la pulvérisation assistée par plasma multi-dipolaire Thèse, 2006.

V. A. Godyak, Nonequilibrium EEDF in gas discharge plasmas, IEEE Transactions on Plasma Science, vol.34, issue.3, pp.755-66, 2006.
DOI : 10.1109/TPS.2006.875847

D. Tuma, A Quiet Uniform Microwave Gas Discharge for Lasers, Review of Scientific Instruments, vol.41, issue.10, pp.1519-1539, 1970.
DOI : 10.1063/1.1684334

L. Paquin, D. Masson, M. R. Wertheimer, and M. Moisan, Amorphous silicon for photovoltaics produced by new microwave plasma-deposition techniques Can, J. Phys, vol.63, pp.831-838, 1985.

E. A. Carbone, S. Hübner, J. M. Palomares, and J. Van-der-mullen, The radial contraction of argon microwave plasmas studied by Thomson scattering, Journal of Physics D: Applied Physics, vol.45, issue.34, p.345203, 2012.
DOI : 10.1088/0022-3727/45/34/345203

Y. Kabouzi, M. D. Calzada, M. Moisan, K. Tran, and C. Trassy, Radial contraction of microwave-sustained plasma columns at atmospheric pressure, Journal of Applied Physics, vol.91, issue.3, pp.1008-1027, 2002.
DOI : 10.1063/1.1425078

A. Sola, J. Cotrino, A. Gamero, and V. Colomer, Study of surface-wave-produced plasma column lengths, Journal of Physics D: Applied Physics, vol.20, issue.10, p.1250, 1987.
DOI : 10.1088/0022-3727/20/10/007

M. Kaening, L. Hitzschke, B. Schalk, M. Berger, S. Franke et al., Mercury-free high pressure discharge lamps dominated by molecular radiation, Journal of Physics D: Applied Physics, vol.44, issue.22, p.44, 2011.
DOI : 10.1088/0022-3727/44/22/224005

M. Kettlitz, R. Kozakov, H. Hoft, and M. Boos, Molecular Radiation From Microwave- Excited High-Pressure Plasmas Plasma Sci, IEEE Trans. On, vol.39, pp.2996-3003, 2011.

C. Johnston, Transport and equilibrium in molecular plasmas: the sulfur lamp, 2003.

T. Mizojiri, M. Ikeuchi, Y. Morimoto, and M. Kando, Compact Sulfur Lamps Operated by Antenna-Excited Microwave Discharge, Japanese Journal of Applied Physics, vol.47, issue.10, pp.8012-8018, 2008.
DOI : 10.1143/JJAP.47.8012

H. Mott-smith and I. Langmuir, The Theory of Collectors in Gaseous Discharges Phys. Rev, pp.727-63, 1926.

J. Laframboise, University of Toronto Institute for Aerospace Studies 1966 Theory of spherical and cylindrical langmuir probes in a collisionless

J. E. Allen, R. Boyd, and R. P. , The Collection of Positive Ions by a Probe Immersed in a Plasma, Proceedings of the Physical Society. Section B, vol.70, issue.3, p.297, 1957.
DOI : 10.1088/0370-1301/70/3/303

M. J. Druyvesteyn, Der Niedervoltbogen, Zeitschrift f??r Physik, vol.64, issue.11-12, pp.781-98, 1930.
DOI : 10.1007/BF01773007

V. A. Godyak, R. Piejak, and B. Alexandrovich, Measurement of electron energy distribution in low-pressure RF discharges Plasma Sources Sci, Technol, vol.1, p.36, 1992.

A. Rousseau, E. Teboul, and S. Béchu, Comparison between Langmuir probe and microwave autointerferometry measurements at intermediate pressure in an argon surface wave discharge, Journal of Applied Physics, vol.98, issue.8, p.83306, 2005.
DOI : 10.1063/1.2112172

URL : https://hal.archives-ouvertes.fr/in2p3-00372705

T. Lagarde, Y. Arnal, A. Lacoste, and J. Pelletier, Determination of the EEDF by Langmuir probe diagnostics in a plasma excited at ECR above a multipolar magnetic field Plasma Sources Sci, Technol, vol.10, p.181, 2001.

J. Rubinstein and J. Laframboise, Theory of axially symmetric probes in a collisionless magnetoplasma: Aligned spheroids, finite cylinders, and disks, Physics of Fluids, vol.26, issue.12, pp.3624-3631, 1958.
DOI : 10.1063/1.864123

R. R. Arslanbekov, N. A. Khromov, and A. A. Kudryavtsev, Probe measurements of electron energy distribution function at intermediate and high pressures and in a magnetic field Plasma Sources Sci, Technol, vol.3, p.528, 1994.

V. I. Demidov, S. V. Ratynskaia, R. Armstrong, and K. Rypdal, The analysis of probe I?V characteristics in the presence of a magnetic field Czechoslov, J. Phys, vol.48, pp.275-80, 1998.