Modélisation ab initio de la plasticité dans les métaux hexagonaux : zirconium et titane purs et effet de l’oxygène - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2015

Ab initio modeling of plasticity in HCP metals : pure zirconium and titanium and effect of oxygen

Modélisation ab initio de la plasticité dans les métaux hexagonaux : zirconium et titane purs et effet de l’oxygène

Résumé

We performed atomistic simulations to determine screw dislocations properties in pure zirconium and titanium and to explain the hardening effect attributed to oxygen alloying in both hexagonal close-packed transition metals. We used two energetic models: ab initio calculations based on the density functional theory and calculations with an empirical potential.The complete energetic profile of the screw dislocation when gliding in the different slip planes is obtained in pure Zr. Our calculations reveal the existence of a metastable configuration of the screw dislocation partially spread in the first order pyramidal plane. This configuration is responsible for the cross slip of screw dislocations from prismatic planes, the easiest glide planes, to pyramidal or basal planes. This energy profile is affected by oxygen addition. Ab initio calculations reveal two main effects: oxygen enhances pyramidal cross slip by modifying the dislocation core structure, and pins the dislocation in its metastable sessile configuration.The same modeling approach is applied to titanium. In pure Ti, the same configurations of the screw dislocation in Zr are obtained, but with different energy levels. This leads to a different gliding mechanism. The same way as in Zr, oxygen enhances pyramidal glide in Ti by modifying the dislocation core structure. Besides, oxygen atom lowers the energy of the metastable configuration but not enough to pin the dislocation in this sessile configuration.
Nous menons une étude en simulations atomiques des propriétés des dislocations vis dans le zirconium et le titane pur, et de l'effet durcissant de l'oxygène dans ces deux métaux de transition de structure hexagonale compacte. Nous utilisons deux modèles énergétiques : les calculs ab initio, basés sur la théorie de la fonctionnelle de la densité, et les calculs en potentiel empirique.Ce travail permet d'abord d'établir le profil énergétique complet de la dislocation vis dans le Zr pur au cours de ses différents modes de glissement. Nos calculs révèlent l'existence d'une configuration métastable de la dislocation vis partiellement étalée dans le plan pyramidal de première espèce. Cette configuration est responsable du glissement dévié de la dislocation vis du plan prismatique, plan principal de glissement, vers le plan pyramidal ou le plan basal. Ce profil énergétique est modifié par l'ajout d'atomes d'oxygène en impureté. L'oxygène favorise le glissement dévié dans le plan pyramidal ce qui entraine un durcissement du glissement prismatique, et il piège la dislocation dans la configuration métastable sessile.La même démarche de modélisation est ensuite appliquée au titane. Dans le Ti pur, les mêmes configurations de la dislocation vis dans le Zr sont obtenues, mais avec des niveaux énergétiques différents. Ceci conduit à un mécanisme de glissement différent. Tout comme dans le Zr, l'oxygène favorise le glissement pyramidal dans le Ti en affectant la structure de cœur de la dislocation. De plus, la présence de l'oxygène fait baisser l'énergie de la configuration métastable mais pas suffisamment pour la piéger.
Fichier principal
Vignette du fichier
CHAARI_2015_archivage.pdf (31.07 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-01269636 , version 1 (05-02-2016)

Identifiants

  • HAL Id : tel-01269636 , version 1

Citer

Nermine Chaari. Modélisation ab initio de la plasticité dans les métaux hexagonaux : zirconium et titane purs et effet de l’oxygène. Matériaux. Université Grenoble Alpes, 2015. Français. ⟨NNT : 2015GREAI087⟩. ⟨tel-01269636⟩
354 Consultations
180 Téléchargements

Partager

Gmail Facebook X LinkedIn More