D. Fengel and G. Wegener, Wood: chemistry, ultrastructure, reactions, 1984.
DOI : 10.1515/9783110839654

T. N. Adams, Kraft recovery boilers, Tappi press, 1997.

C. Chirat, D. Lachenal, and M. Sanglard, Extraction of xylans from hardwood chips prior to kraft cooking, Process Biochemistry, vol.47, issue.3, pp.381-385, 2012.
DOI : 10.1016/j.procbio.2011.12.024

C. Monot and B. , Evangelista et C. Chirat, «Relationship between lignin-carbohydrates complexes (LCC) from chips and pulps and their,» chez International Pulp Bleaching Conference, 2014.

J. Boucher and C. , Chirat et D. Lachenal, «Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol,» Energy Conversion and Management, pp.1120-1126, 2014.

M. Sanglard, C. Chirat, B. Jarman, and D. Lachenal, Biorefinery in a pulp mill: simultaneous production of cellulosic fibers from Eucalyptus globulus by soda-anthraquinone cooking and surface-active agents, Holzforschung, vol.67, issue.5, pp.481-488, 2013.
DOI : 10.1515/hf-2012-0178

J. Gullichsen, J. Paulapuro, and E. Vakkilainen, Chemical pulping. Books 6A and 6B, Papermaking Science and Technology, 1999.

R. P. Green and G. Hough, Chemical recovery in the alkaline pulping processes, 1998.

M. Naqvi, J. Yan, and E. Dahlquist, Black liquor gasification integrated in pulp and paper mills: A critical review, Bioresource Technology, vol.101, issue.21, pp.8001-8015, 2010.
DOI : 10.1016/j.biortech.2010.05.013

D. Parrish, «Black Liquor Recovery Boilers -An Introduction,» The national board of boiler and pressure vessel inspectors, 1998.

B. Blackwell and T. King, Chemical reaction in kraft recovery boilers, 1985.

M. Bardin, «Etude de l'encrassement de la chaudière à liqueur noire Action du MnO2 sur le blanchiment, Projet de fin d'étude),» INPG EFPG, International paper -usine de Saillat, 2002.

S. Consonni, R. E. Katofsky, and E. D. Larson, A gasification-based biorefinery for the pulp and paper industry, Chemical Engineering Research and Design, vol.87, issue.9, pp.1293-1317, 2009.
DOI : 10.1016/j.cherd.2009.07.017

C. Lévy, «Les techniques de cogénération,» Techniques de l'Ingénieur, Sources d'énergie hors nucléaire, 1996.

G. Comodi, L. Cioccolanti, L. Pelagalli, M. Renzi, S. Vagni et al., A survey of cogeneration in the Italian pulp and paper sector, Applied Thermal Engineering, vol.54, issue.1, pp.336-344, 2013.
DOI : 10.1016/j.applthermaleng.2013.01.038

. Copacel, «Les statistiques de l'industrie papetière française -2011, 2012.

A. Peterson, F. Vogel, R. Lachance, M. Froling, and M. , Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies, Energy & Environmental Science, vol.37, issue.1, pp.32-65, 2008.
DOI : 10.1039/b810100k

A. Kruse and N. , Water ??? A magic solvent for biomass conversion, The Journal of Supercritical Fluids, vol.96, pp.36-45, 2015.
DOI : 10.1016/j.supflu.2014.09.038

G. Akgul and A. Kruse, Influence of salts on the subcritical water-gas shift reaction, The Journal of Supercritical Fluids, vol.66, pp.207-214, 2012.
DOI : 10.1016/j.supflu.2011.10.009

Y. Matsumura, T. Minowa, B. Potic, and A. Kruse, Biomass gasification in near- and super-critical water: Status and prospects, Biomass and Bioenergy, vol.29, issue.4, pp.269-292, 2005.
DOI : 10.1016/j.biombioe.2005.04.006

E. Dinjus, A. Kruse, and N. Troger, Hydrothermal Carbonization - 1.??Influence of Lignin in Lignocelluloses, Chemical Engineering & Technology, vol.48, issue.22, pp.2037-2043, 2011.
DOI : 10.1002/ceat.201100487

L. P. Xiao, Z. J. Shi, F. Xu, and R. C. Sun, Hydrothermal carbonization of lignocellulosic biomass, Bioresource Technology, vol.118, pp.619-623, 2012.
DOI : 10.1016/j.biortech.2012.05.060

Y. Matsumura, M. Harada, H. Komiyama, Y. Yoshdda, and H. Ishttani, Biomass Gasification in Supercritical Water with Partial Oxidation, «Biomass Gasification in Supercritical Water with Partial Oxidation, pp.919-925, 2003.
DOI : 10.3775/jie.82.919

F. Ondze, «Gazéification de biomasse humide en eau supercritique : approches expérimentales et études énergétiques, Thèse en Génie des procédés, 2012.

A. Leybros, «Etude de la destruction de systèmes polyphasiques en milieu eau supercritique, Thèse en Sciences de l'environnement, 2009.

S. S. Toor, L. Rosendhal, and A. Rudolf, Hydrothermal Liquefaction of Biomass, pp.2328-2342, 2011.
DOI : 10.1007/978-3-642-54458-3_9

D. C. Elliott, Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2011.

W. L. Marshall and E. U. Franck, Ion product of water substance, 0???1000?????C, 1???10,000 bars New International Formulation and its background, Journal of Physical and Chemical Reference Data, vol.10, issue.2, pp.295-304, 1981.
DOI : 10.1063/1.555643

E. Schmidt, Properties of Water and Steam in SI-Units, 1977.

M. Uematsu and E. U. Franck, Static Dielectric Constant of Water and Steam, «Static Dielectric Constant of Water and Steam, pp.1291-1306, 1980.
DOI : 10.1063/1.555632

D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt, and S. B. Jones, Hydrothermal liquefaction of biomass: Developments from batch to continuous process, Bioresource Technology, vol.178, pp.147-156, 2015.
DOI : 10.1016/j.biortech.2014.09.132

R. Beauchet, F. Monteil-rivera, and J. M. Lavoie, Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels), Bioresource Technology, vol.121, pp.328-334, 2012.
DOI : 10.1016/j.biortech.2012.06.061

URL : https://hal.archives-ouvertes.fr/hal-00881545

S. Cheng, Z. Yuan, M. Leitch, M. Anderson, and C. C. Xu, Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio, Industrial Crops and Products, vol.44, pp.315-322, 2013.
DOI : 10.1016/j.indcrop.2012.10.033

D. Schmiedl, G. Unkelbach, J. Graf, and R. Schweppe, «Studies in catalyzed hydrothermal degradation processes on Sulphur-free Lignin and extractive separation of aromatics SYNTHONs,» chez Nordic Wood Biorefinery Conference, 2009.

K. Okuda, M. Umetsu, and S. Takami, Disassembly of lignin and chemical recovery???rapid depolymerization of lignin without char formation in water???phenol mixtures, Fuel Processing Technology, vol.85, issue.8-10, pp.803-813, 2004.
DOI : 10.1016/j.fuproc.2003.11.027

Y. Yu, X. Lou, and H. Wu, «Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods,» Energy and Fuels, pp.46-60, 2008.

A. Liu, Y. K. Park, Z. Huang, B. Wang, R. O. Ankumah et al., Biswas, «Product identification and distribution from hydrothermal conversion of walnut shells,» Energy and Fuels, pp.446-454, 2006.

M. Wahyudiono, M. Sasaki, and . Goto, Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water, Chemical Engineering and Processing: Process Intensification, pp.1609-1619, 2008.
DOI : 10.1016/j.cep.2007.09.001

B. Zhang, M. Keitz, and K. , Thermochemical liquefaction of high-diversity grassland perennials, Journal of Analytical and Applied Pyrolysis, vol.84, issue.1, pp.18-24, 2009.
DOI : 10.1016/j.jaap.2008.09.005

S. Karagöz, T. Bhaskar, A. Muto, and Y. Sakata, Hydrothermal upgrading of biomass: Effect of KCO concentration and biomass/water ratio on products distribution, Bioresource Technology, vol.97, issue.1, pp.90-98, 2006.
DOI : 10.1016/j.biortech.2005.02.051

C. Chirat, Cours de bioproduits

M. Sasaki, Z. Fang, Y. Fukushima, and T. Adschiri, Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water, Industrial & Engineering Chemistry Research, vol.39, issue.8, pp.2883-2890, 2000.
DOI : 10.1021/ie990690j

H. Rasmussen, H. R. Sørensen, and A. S. Meyer, Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms, Carbohydrate Research, vol.385, pp.45-57, 2014.
DOI : 10.1016/j.carres.2013.08.029

S. Yin, A. K. Mehrotra, and Z. Tan, Alkaline hydrothermal conversion of cellulose to bio-oil: Influence of alkalinity on reaction pathway change, Bioresource Technology, vol.102, issue.11, pp.6605-6610, 2011.
DOI : 10.1016/j.biortech.2011.03.069

T. M. Aida, K. Tajima, M. Watanabe, Y. Saito, K. Kuroda et al., «Reactions of d-fructose in water at temperatures up to 400 °C and pressures up to 100 MPa, Journal of Supercritical Fluids, vol.42, pp.11-110, 2007.

T. L. Yong and Y. Matsumara, «Kinetic analysis of lignin hydrothermal conversion in suband supercritical water, Industrial and Engineering Chemistry Research, vol.52, pp.116-5626, 2013.

J. Barbier, N. Charon, N. Dupassieux, A. Loppinet-serani, C. Mahé et al., Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways, Biomass and Bioenergy, vol.46, pp.479-491, 2012.
DOI : 10.1016/j.biombioe.2012.07.011

URL : https://hal.archives-ouvertes.fr/hal-00751718

L. Zhang, C. Xu, and P. Champagne, «Overview of recent advances in thermo-chemical conversion of biomass,» Energy Conversion and Management, pp.1969-982, 2012.

P. Daorattanachai, N. Viriya-empikul, and N. Laosiripojana, Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water, Bioresource Technology, vol.144, pp.504-512, 2013.
DOI : 10.1016/j.biortech.2013.06.124

R. P. Nielsen, G. Olofsson, and E. G. Søgaard, CatLiq ??? High pressure and temperature catalytic conversion of biomass: The CatLiq technology in relation to other thermochemical conversion technologies, Biomass and Bioenergy, vol.39, pp.399-402, 2012.
DOI : 10.1016/j.biombioe.2012.01.035

M. Sugano, H. Takagi, K. Hirano, and K. Mashimo, Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry, Journal of Materials Science, vol.44, issue.7, pp.2476-2486, 2008.
DOI : 10.1007/s10853-007-2106-8

H. Boucard, «Contributions to the understanding of hydrothermal processesApplication to Black Liquor, Thèse en Génie des procédés et de l'Environnement, 2014.

Y. Zhu, M. J. Biddy, S. B. Jones, D. D. Elliott, and A. J. , Dchmidt, «Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading, pp.384-394, 2014.

A. Sinag, A. Kruse, and P. Maniam, Hydrothermal conversion of biomass and different model compounds, The Journal of Supercritical Fluids, vol.71, pp.80-85, 2012.
DOI : 10.1016/j.supflu.2012.07.010

M. Mozaffarian, E. P. Deurwaarder, and S. Kersten, Green Gas " (SNG) production by supercritical gasification of biomass, 2004.

S. Galera and F. J. Ortiz, Techno-economic assessment of hydrogen and power production from supercritical water reforming of glycerol, Fuel, vol.144, pp.307-316, 2015.
DOI : 10.1016/j.fuel.2014.12.033

Q. Yu, «Etude de procédés de conversion de biomasse en eau supercritique pour l'obtention d'hydrogène. Application au glucose, glycérol et bio-glycérol, Thèse en Génie des procédés et de l'environnement, 2012.

Y. Yoshida, K. Dowaki, Y. Matsumara, R. Matsuhashi, D. Li et al., Comprehensive comparison of efficiency and CO2 emissions between biomass energy conversion technologies???position of supercritical water gasification in biomass technologies, Biomass and Bioenergy, vol.25, issue.3, pp.13-257, 2003.
DOI : 10.1016/S0961-9534(03)00016-3

S. Kersten, B. Potic, W. Prins, and W. P. , Van Swaaij, «Gasification of model compounds and wood in hot compressed water, Industrial and Engineering Chemistry Research, vol.45, pp.4196-4177, 2006.

J. Barbier, N. Charon, N. Dupassieux, and A. , Hydrothermal conversion of glucose in a batch reactor. A detailed study of an experimental key-parameter: The heating time, The Journal of Supercritical Fluids, vol.58, issue.1, pp.114-120, 2011.
DOI : 10.1016/j.supflu.2011.05.004

URL : https://hal.archives-ouvertes.fr/hal-00608537

C. M. Huelsman and P. E. Savage, Intermediates and kinetics for phenol gasification in supercritical water, Physical Chemistry Chemical Physics, vol.45, issue.8, pp.2090-2910, 2012.
DOI : 10.1039/c2cp23910h

F. L. Resende, Supercritical water gasification of biomass, The University of Michigan: Thèse en Chemical Engineering, 2009.

D. A. Cantero, D. Bermejo, and M. J. , High glucose selectivity in pressurized water hydrolysis of cellulose using ultra-fast reactors, Bioresource Technology, vol.135, pp.697-703, 2013.
DOI : 10.1016/j.biortech.2012.09.035

A. Kruse, A. Krupka, V. Scharzkopf, and C. Gamard, Influence of Proteins on the Hydrothermal Gasification and Liquefaction of Biomass. 1. Comparison of Different Feedstocks, Industrial & Engineering Chemistry Research, vol.44, issue.9, pp.3013-3020, 2005.
DOI : 10.1021/ie049129y

J. Yu and P. E. Savage, Decomposition of Formic Acid under Hydrothermal Conditions, Industrial & Engineering Chemistry Research, vol.37, issue.1, pp.2-10, 1998.
DOI : 10.1021/ie970182e

B. Kabyemela, T. Adschiri, R. Malaluan, and K. Arai, Glucose and Fructose Decomposition in Subcritical and Supercritical Water:?? Detailed Reaction Pathway, Mechanisms, and Kinetics, Industrial & Engineering Chemistry Research, vol.38, issue.8, pp.2888-2895, 1999.
DOI : 10.1021/ie9806390

A. Chuntanapum and Y. Matsumura, Char Formation Mechanism in Supercritical Water Gasification Process: A Study of Model Compounds, Industrial & Engineering Chemistry Research, vol.49, issue.9, pp.4055-4062, 2010.
DOI : 10.1021/ie901346h

L. Fiori and M. , Supercritical water gasification of biomass for H2 production: Process design, Bioresource Technology, vol.121, pp.139-147, 2012.
DOI : 10.1016/j.biortech.2012.06.116

Z. Fang, T. Sato, J. Smith, K. Inomata, J. A. Arai et al., Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water, Bioresource Technology, vol.99, issue.9, pp.3424-3430, 2008.
DOI : 10.1016/j.biortech.2007.08.008

M. Osada, T. Sato, M. Watanabe, and K. Arai, CATALYTIC GASIFICATION OF WOOD BIOMASS IN SUBCRITICAL AND SUPERCRITICAL WATER, Combustion Science and Technology, vol.41, issue.1-3, pp.537-552, 2013.
DOI : 10.1021/ef00041a002

M. Osada, T. Sato, M. Watanabe, T. Adschiri, and K. Arai, Low-Temperature Catalytic Gasification of Lignin and Cellulose with a Ruthenium Catalyst in Supercritical Water, Energy & Fuels, vol.18, issue.2, pp.327-333, 2004.
DOI : 10.1021/ef034026y

K. Ehara, S. Saka, and H. Kawamoto, Characterization of the lignin-derived products from wood as treated in supercritical water, Journal of Wood Science, vol.15, issue.Suppl, pp.320-325, 2002.
DOI : 10.1007/BF00831354

H. Pinkowska and P. , Hydrothermal decomposition of alkali lignin in sub- and supercritical water, Chemical Engineering Journal, vol.187, pp.410-414, 2012.
DOI : 10.1016/j.cej.2012.01.092

G. Gonzalez and J. , Reactions of vanillic acid in sub- and supercritical water, The Journal of Supercritical Fluids, vol.31, issue.1, pp.57-66, 2004.
DOI : 10.1016/j.supflu.2003.09.015

C. M. Huelsman and P. E. Savage, Reaction pathways and kinetic modeling for phenol gasification in supercritical water, The Journal of Supercritical Fluids, vol.81, pp.200-209, 2013.
DOI : 10.1016/j.supflu.2013.05.012

D. Castello, A. Kruse, and L. Fiori, «Supercritical water gasification of glucose/phenol mixtures as model compounds for ligno-cellulosic biomass, » Chemical Engineering Transactions, vol.37, pp.193-198, 2014.

F. L. Resende and P. E. Savage, Kinetic model for noncatalytic supercritical water gasification of cellulose and lignin, AIChE Journal, vol.29, pp.2412-2420, 2010.
DOI : 10.1002/aic.12165

T. Yoshida and Y. Matsumura, Gasification of Cellulose, Xylan, and Lignin Mixtures in Supercritical Water, Industrial & Engineering Chemistry Research, vol.40, issue.23, pp.5469-5474, 2001.
DOI : 10.1021/ie0101590

E. Weiss-hortala, A. Kruse, C. Ceccarelli, and R. Barna, Influence of phenol on glucose degradation during supercritical water gasification, The Journal of Supercritical Fluids, vol.53, issue.1-3, pp.42-47, 2010.
DOI : 10.1016/j.supflu.2010.01.004

URL : https://hal.archives-ouvertes.fr/hal-01377140

D. Castello, A. Kruse, and L. Fiori, Low temperature supercritical water gasification of biomass constituents: Glucose/phenol mixtures, Biomass and Bioenergy, vol.73, pp.84-94, 2015.
DOI : 10.1016/j.biombioe.2014.12.010

Y. Izumizaki, K. C. Park, Y. Tachibana, H. Tomiyasu, and Y. Fuji, Organic decomposition in supercritical water by an aid of ruthenium (iv) oxide as a catalyst-exploitation of biomass resources for hydrogen production-, Progress in nuclear energy, pp.1544-552, 2005.
DOI : 10.1016/j.pnucene.2005.05.057

C. Cao, L. Guo, H. Jin, Y. Lu, and X. Zhang, The influence of alkali precipitation on supercritical water gasification of glucose and the alkali recovery in fluidized-bed reactor, International Journal of Hydrogen Energy, vol.38, issue.30, pp.13293-13299, 2013.
DOI : 10.1016/j.ijhydene.2013.07.068

A. Kruse, D. Forchheim, M. Gloede, F. Ottinger, and J. Zimmermann, Brines in supercritical biomass gasification: 1. Salt extraction by salts and the influence on glucose conversion, The Journal of Supercritical Fluids, vol.53, issue.1-3, pp.64-71, 2010.
DOI : 10.1016/j.supflu.2010.01.001

C. Cao, L. Guo, Y. Chen, S. Guo, and Y. Lu, Hydrogen production from supercritical water gasification of alkaline wheat straw pulping black liquor in continuous flow system, International Journal of Hydrogen Energy, vol.36, issue.21, pp.13528-13535, 2011.
DOI : 10.1016/j.ijhydene.2011.07.101

M. Schubert, J. Aubert, J. B. Muller, and F. Vogel, Continuous salt precipitation and separation from supercritical water. Part 3: Interesting effects in processing type 2 salt mixtures, The Journal of Supercritical Fluids, vol.61, pp.44-54, 2012.
DOI : 10.1016/j.supflu.2011.08.011

C. Cao, L. Guo, H. Jin, S. Guo, Y. Lu et al., The influence of alkali precipitation on supercritical water gasification of glucose and the alkali recovery in fluidized-bed reactor, International Journal of Hydrogen Energy, vol.38, issue.30, pp.13293-13299, 2013.
DOI : 10.1016/j.ijhydene.2013.07.068

S. Guo, L. Guo, and H. Jin, Supercritical water gasification of glycerol: Intermediates and kinetics, The Journal of Supercritical Fluids, vol.78, pp.95-102, 2013.
DOI : 10.1016/j.supflu.2013.03.025

D. Castello and L. Fiori, Kinetics modeling and main reaction schemes for the supercritical water gasification of methanol, The Journal of Supercritical Fluids, vol.69, pp.64-74, 2012.
DOI : 10.1016/j.supflu.2012.05.008

V. Sricharoenchaikul, Assessment of black liquor gasification in supercritical water, Bioresource Technology, vol.100, issue.2, pp.638-643, 2009.
DOI : 10.1016/j.biortech.2008.07.011

L. Myréen, I. Rönnlund, K. Lundqvist, J. Ahlbeck, and T. Westerlund, «Waste to energy by industrially integrated SCWG -Effect of process parameters on gasification of industrial biomass, » Chemical Engineering Transactions, vol.19, pp.7-12, 2010.

I. Rönnlund, L. Myréen, K. Lundqvist, J. Ahlbeck, and T. Westerlund, Waste to energy by industrially integrated supercritical water gasification ??? Effects of alkali salts in residual by-products from the pulp and paper industry, Energy, vol.36, issue.4, pp.2151-2163, 2011.
DOI : 10.1016/j.energy.2010.03.027

J. Alonso, «Etude de la gazéification en eau supercritique de la liqueur noire

C. Cao, L. Guo, J. Yin, H. Jin, W. Cao et al., «Supercritical water gasification of coal with waste black liquor as inexpensive additives,» Energy and fuels, pp.384-391, 2015.

«. Chemrec, ». Web-de-la-companie-chemrec, and . En, Available: http://www.chemrec.se

. Zimmerman, «Process of making vanillin», US Brevet, vol.2399607, 1943.

B. L. Flynn, «Wet Air Oxidation For Black Liquor Recovery, Chemical Engineering Progress, vol.72, pp.66-68, 1976.

V. Deloule, «Rapport de stage assistant ingénieur Simulation du procédé de gazéification de la liqueur noire

G. Heyen and . Laboratoire, Analyse et synthèse des systèmes chimiques, université de Liège, 2002.

A. G. Chakinala, S. Kumar, A. Kruse, S. R. Kersten, W. P. Van-swaaij et al., Supercritical water gasification of organic acids and alcohols: The effect of chain length, The Journal of Supercritical Fluids, vol.74, pp.8-21, 2013.
DOI : 10.1016/j.supflu.2012.11.013

A. Kruse, D. Meier, and P. Rimbrecht, Gasification of Pyrocatechol in Supercritical Water in the Presence of Potassium Hydroxide, Industrial & Engineering Chemistry Research, vol.39, issue.12, pp.4842-4846, 2000.
DOI : 10.1021/ie0001570

O. Sato, A. Yamaguchi, Y. Murakami, T. Takahashi, Y. Enda et al., Supercritical Water Gasification of Residue from Ethanol Production from Japanese Cedar, «Supercritical Water Gasification of Residue from Ethanol Production from Japanese Cedar130] NIST, «WebBook de Chimie NIST, pp.3861-3866, 2011.
DOI : 10.1021/ef400753x

H. A. Ruiz, R. M. Rodriguez-jasso, B. D. Fernandes, A. A. Vicente, and J. A. , Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review, Renewable and Sustainable Energy Reviews, vol.21, pp.35-51, 2013.
DOI : 10.1016/j.rser.2012.11.069

G. Haarlemmer, G. Boissonnet, E. Peduzzi, and P. A. , Setier, «Investment and production costs of synthetic fuels ? A literature survey,» Energy Available: https://www, pp.667-676, 2014.

E. D. Larson, S. Consonni, and R. E. Katofsky, «A Cost-Benefit Assessment of Biomass Gasification Power Generation in, 2003.

S. Galera and F. J. Ortiz, Techno-economic assessment of hydrogen and power production from supercritical water reforming of glycerol, Fuel, vol.144, pp.307-316, 2015.
DOI : 10.1016/j.fuel.2014.12.033

E. Gasafi, M. Y. Reinecke, A. Kruse, and L. Schebek, Economic analysis of sewage sludge gasification in supercritical water for hydrogen production, Biomass and Bioenergy, vol.32, issue.12, pp.185-1096, 2008.
DOI : 10.1016/j.biombioe.2008.02.021

H. Lyu, K. Chen, X. Yang, R. Younas, X. Zhu et al., Two-stage nanofiltration process for high-value chemical production from hydrolysates of lignocellulosic biomass through hydrothermal liquefaction, Separation and Purification Technology, vol.147, pp.276-283, 2015.
DOI : 10.1016/j.seppur.2015.04.032