?. Icosahedral, Where are the atoms? Physical review letters Symmetry operations for displacively modulated structures, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, vol.56, issue.333, pp.861-493, 1977.

A. Katz and M. Duneau, Quasiperiodic patterns and icosahedral symmetry, Journal de Physique, vol.47, issue.2, pp.181-196, 1986.
DOI : 10.1051/jphys:01986004702018100

P. A. Kalugin, A. I. Kitaev, and L. S. Levitov, Al0.86Mn0.14 -A six-dimensional crystal. ZhETF Pisma Redaktsiiu, pp.119-121, 1985.
URL : https://hal.archives-ouvertes.fr/jpa-00232567

S. Francoual-en-physique-de-l-'université-grenoble, I. T. Janssen, G. Chapuis, and M. D. Boissieu, Dans les quasicristaux de symétrie icosaédrique et dans leurs approximants 1/1 périodiques Aperiodic crystals from modulated phases to quasicrystals. s.l Structure factors of harmonic and anharmonic Fibonacci chains by molecular dynamics simulations, Physical Review B, vol.27, issue.7514, pp.144203-144214, 2006.

A. I. Goldman and R. F. Kelton, Quasicrystals and crystalline approximants. Physics, Reviews of Modern Indexing of icosahedral quasiperiodic crystals, Journal of Materials Research, vol.65, issue.101, pp.13-26, 1986.

V. Henley and C. L. Elser, Crystal and quasicrystal structures in Al-Mn-Si alloys. Physical review letters, p.2883, 1985.

M. Audier and P. Guyot, Mn quasicrystal atomic structure, diffraction data and Penrose tiling, Philosophical Magazine Part B, vol.10, issue.1, pp.43-51, 1986.
DOI : 10.1103/PhysRevLett.53.1951

L. X. He, Y. H. Wu, and K. H. Kuo, Decagonal quasicrystals with different periodicities along the tenfold axis in rapidly solidified Al65Cu20M15 (M= Mn, Fe, Co or Ni) Journal of materials science letters, pp.1284-1286, 1988.

W. Steurer and K. H. Kuo, Five-dimensional structure analysis of decagonal Al65Cu20Co15, Acta Crystallographica Section B Structural Science, vol.46, issue.6
DOI : 10.1107/S0108768190007133

S. Ritsch, C. Beeli, R. Luck, and K. Hiraga, Pentagonal Al-Co-Ni quasicrystal with a superstructure. Philosophical magazine letters, Acta Crystallographica Section B: Structural Science, vol.46, issue.795, pp.703-712, 1990.

K. Hiraga, F. J. Lincoln, and W. Sun, Structure and Structural Change of Al–Ni–Co Decagonal Quasicrystal by High-Resolution Electron Microscopy, Proceedings of the 5th International Conference on Quasicrystals. S. Ritsch, H.-U, pp.308-314, 1991.
DOI : 10.2320/matertrans1989.32.308

C. Nissen and . Beeli, Avignon : World Scientific Singapore, 1995. 38. Ekman, W. Structure analysis of the binary alloys of transition elements with Zn, Cd and Al, Phys. Chem. B, vol.12, pp.57-77, 1931.

A. M. Douglas, The structure of Co2Al9 Acta Crystallographica, The Crystal Structure of Co2Al5. Zeitschrift für Kristallographie-Crystalline Materials, pp.19-24, 1938.

J. P. Newkirk, P. J. Black, and A. Damjanovic, The refinement of the Co2Al5 structures, Acta Crystallographica, vol.14, issue.5, pp.532-533, 1961.
DOI : 10.1107/S0365110X61001637

Y. Grin, U. Burkhardt, M. Ellner, and K. Peters, Crystal structure of orthorhombic Co4Al13, Journal of Alloys and Compounds, vol.206, issue.2, pp.243-247, 1994.
DOI : 10.1016/0925-8388(94)90043-4

URL : https://hal.archives-ouvertes.fr/hal-00978014

J. Frenkel, Wave mechanics. s.l. : Tisomo. Phys, 1936.

M. T. Dove, Introduction to Lattice Dynamics. s.l, 1993.

M. Lundstrom, Fundamentals of Carrier Transport, 2000.
DOI : 10.1017/CBO9780511618611

P. Debye, Zur theorie der spezifischen wärmen. Ann. Physik, pp.789-840, 1912.

A. Einstein, Die plancksche theorie der strahlung und die theorie der spezifischen wärme

H. Schober, S. Petit, and S. Rols, Les excitations dans la matière condensée. Vibrations et phonons. s.l. : Editions de Physiqye, 2009.

R. Lortz, R. Viennois, A. Petrovic, Y. Wang, P. Toulemonde et al., Phonon density of states, anharmonicity, electron-phonon coupling, and possible multigap superconductivity in the clathrate superconductors Ba8Si46 and Ba24Si10 : factors behind the large difference in Tc, Physical Review B, vol.77, pp.204-507, 2008.

H. Schober, H. Itoh, A. Klapproth, V. Chihaia, and W. F. Kuhs, Guest-host coupling and anharmonicity in clathrate hydrates, The European Physical Journal E - Soft Matter, vol.12, issue.1, pp.41-49, 2003.
DOI : 10.1140/epje/i2003-10026-6

A. M. Stoneham, Theory of defects in solids . s.l Dynamics of impurities in crystals. s.l. : Dynamical Properties of Solids, pp.285-384, 1975.

A. W. Harrison, Solid State Theory. s.l, 1970.

A. J. Sievers and S. Takeno, Isotope Shift of a Low-Lying Lattice Resonant Mode, Physical Review, vol.140, issue.3A, pp.10-31, 1965.
DOI : 10.1103/PhysRev.140.A1030

H. Schober, W. Paulus, J. R. Meinnel-14, L. Cunnigham, W. M. Muhlestein et al., Spectroscopie neutronique, un outil idéal pour le scientifique des matériaux. s.l Investigation of inband resonant modes in Cr-W alloys by inelastic neutron scattering, Observation of localized vibrations in Cu-4% Al by coherent inelastic neutron scattering, pp.173-221, 1968.

A. D. Caplin, G. Grüner, and J. B. Dunlop, V: An Einstein Solid, Physical Review Letters, vol.30, issue.22, pp.11-38, 1973.
DOI : 10.1103/PhysRevLett.30.1138

A. D. Caplin and L. K. Nicholson, V: well defined local modes in a metallic solid, Journal of Physics F: Metal Physics, vol.8, issue.1, pp.51-75, 1978.
DOI : 10.1088/0305-4608/8/1/010

G. J. Legg and P. C. Lanchester, V, Journal of Physics F: Metal Physics, vol.8, issue.10, pp.21-25, 1978.
DOI : 10.1088/0305-4608/8/10/012

K. Niizeki, A classification of special points of icosahedral quasilattices, Journal of Physics A: Mathematical and General, vol.22, issue.20, pp.4295-4302, 1989.
DOI : 10.1088/0305-4470/22/20/010

K. Niizeki and T. Akamatsu, Special points in the reciprocal space of an icosahedral quasicrystal and the quasi-dispersion relation of electrons, Journal of Physics: Condensed Matter, vol.2, issue.12, pp.27-59, 1990.

J. Hafner and M. Krajci, Elementary Excitations and Physical properties, in Physical properties of quasicrystals. s.l, Phys. Rev. Lett, vol.59, issue.12, pp.13-65, 1987.

J. P. Lu and J. L. Birman, Electronic structure of a quasiperiodic system, Physical Review B, vol.36, issue.8, pp.44-71, 1987.
DOI : 10.1103/PhysRevB.36.4471

J. P. Lu and J. L. Birman, Acoustic-wave propagation in quasiperiodic, incommensurate, and random systems, Physical Review B, vol.38, issue.12, pp.8067-8075, 1988.
DOI : 10.1103/PhysRevB.38.8067

M. Quilichini, Phonon excitations in quasicrystals. s.l. : Reviews of Modern Physics, p.277, 1997.

J. H. Los, An approach to the lattice dynamics of quasicrystals. s.l. : Thesis, 1992.

J. Los, T. Janssen, and F. Gähler, THE PHONON SPECTRUM OF THE OCTAGONAL TILING, International Journal of Modern Physics B, vol.07, issue.06n07, pp.1505-1525, 1993.
DOI : 10.1142/S0217979293002468

M. Windischn, J. Hafner, M. Kraj?í, and M. Mihalkovi?, Structure and lattice dynamics of rational approximants to icosahedral Al-Cu-Li, Physical Review B, vol.49, issue.13, pp.8701-8718, 1994.
DOI : 10.1103/PhysRevB.49.8701

J. Los and T. Janssen, Lattice dynamics of three-dimensional quasi-crystals, Journal of Physics: Condensed Matter, vol.2, issue.48, pp.9553-9568, 1990.
DOI : 10.1088/0953-8984/2/48/009

G. Poussigue, C. Benoit, M. De-boissieu, and R. Currat, Inelastic neutron scattering by quasi-crystals: A model for icosahedral Al-Mn; for Al-Mn-Pd comparison with the experimental results, Journal of Physics: Condensed Matter, vol.6, issue.3, pp.659-680, 1994.
DOI : 10.1088/0953-8984/6/3/007

J. Hafner and M. Krajci, Propagating and confined vibrational excitations in quasicrystals, Journal of Physics: Condensed Matter, vol.5, issue.16, pp.24-89, 1993.
DOI : 10.1088/0953-8984/5/16/008

M. Quilichini, G. Heger, B. Hennion, S. Lefebvre, and A. Quivy, Inelastic neutron scattering study of acoustic modes in a monodomain AlCuFe quasicrystal, Journal de Physique, vol.51, issue.17, pp.1785-1790, 1990.
DOI : 10.1051/jphys:0199000510170178500

URL : https://hal.archives-ouvertes.fr/jpa-00212489

M. Quilichini, B. Hennion, G. Heger, S. Lefebvre, and A. Quivy, Inelastic neutron scattering study of icosahedral AlFeCu quasicrystal, J. Phys. II, vol.2, pp.125-130, 1992.
URL : https://hal.archives-ouvertes.fr/jpa-00247618

M. Quilichini, B. Hennion, and G. Heger, Inelastic neutron scattering study of icosahedral AlFeCu quasicrystal, J. Non-Cryst. Solids, vol.153, pp.568-572, 1993.
URL : https://hal.archives-ouvertes.fr/jpa-00247618

M. Quilichini and T. Janssen, Phonon excitations in quasicrystals . Reviews of Modern Physics, pp.227-314, 1997.

A. I. Goldman, C. Stassis, R. Bellissent, H. Mouden, N. Pyka et al., Inelastic-neutron-scattering measurements of phonons in icosahedral Al-Li-Cu, Physical Review B, vol.43, issue.10, pp.8763-8767, 1991.
DOI : 10.1103/PhysRevB.43.8763

F. W. Mouden and . Gayle, Phonons in icosahedral and cubic AlLiCu, Phys. Rev. B: Condens. Matter Mater. Phys, vol.45, pp.10280-10291, 1992.

R. Quilichini, C. Currat, and . Janot, Optic modes in the AlPdMn icosahedral phase, J. Phys.: Condens. Matter, vol.7, pp.7299-7308, 1995.

K. Shibata, R. Currat, M. De-boissieu, T. J. Sato, H. Takakura et al., Dynamics of the ZnMgY icosahedral phase, Journal of Physics: Condensed Matter, vol.14, issue.8, pp.1847-1863, 2002.
DOI : 10.1088/0953-8984/14/8/313

H. Sato, R. Takakura, A. P. Currat, and . Tsai, Lattice dynamics of the Zn?Mg?Sc icosahedral quasicrystal and its Zn?Sc periodic 1/1 approximant, Nat. Mater, vol.6, pp.977-984, 2007.

F. Dugain, M. De-boissieu, K. Shibata, R. Currat, T. J. Sato et al., Inelastic neutron scattering study of the dynamics of the AlNiCo decagonal phase, The European Physical Journal B, vol.7, issue.4, pp.513-516, 1999.
DOI : 10.1007/s100510050640

M. De-boissieu, R. Currat, S. Francoual, and E. Kats, Sound-mode broadening in quasicrystals: A simple phenomenological model, Physical Review B, vol.69, issue.5, pp.977-983, 2004.
DOI : 10.1103/PhysRevB.69.054205

H. Takakura, C. P. Gomez, A. Yamamoto, M. De-boissieu, and A. P. Tsai, Atomic structure of the binary icosahedral Yb???Cd quasicrystal, Nature Materials, vol.37, issue.1, pp.58-63, 2007.
DOI : 10.1038/nmat1799

URL : https://hal.archives-ouvertes.fr/hal-00204459

H. Euchner, M. Mihalkovi?, F. Gähler, M. R. Johnson, H. Schober et al., phase, Physical Review B, vol.83, issue.14, pp.144202-144219, 2011.
DOI : 10.1103/PhysRevB.83.144202

URL : https://hal.archives-ouvertes.fr/hal-00640183

M. De-boissieu, R. Currat, S. Francoual, and E. Kats, Sound-mode broadening in quasicrystals: A simple phenomenological model, Physical Review B, vol.69, issue.5, pp.54-205, 2004.
DOI : 10.1103/PhysRevB.69.054205

. Schmalzl, Vibrational properties of MgZn2 Zeitschrift für Kristallographie International journal for structural, physical, and chemical aspects of crystal, Vols, vol.224, issue.12, pp.97-100, 2009.

M. Boissieu and . De, Phonons, phasons and atomic dynamics in quasicrystals, Chemical Society Reviews, vol.219, issue.12, pp.6778-6786
DOI : 10.1039/c2cs35212e

URL : https://hal.archives-ouvertes.fr/hal-00781285

A. Einstein, Die plancksche theorie der strahlung und die theorie der spezifischen wärme

R. Peierls, Zur kinetischen Theorie der W??rmeleitung in Kristallen, Annalen der Physik, vol.13, issue.8, pp.1055-1101, 1929.
DOI : 10.1002/andp.19293950803

J. M. Ziman, Electrons and phonons. s.l, 1960.

G. P. Srivastava, The Physics of Phonons . s.l, 1990.

J. Nye, Physical properties of crystals. s.l, 1985.

W. Kohn and J. M. Luttinger, Quantum theory of electrical transport phenomena . Physical Review, pp.590-612, 1957.

D. A. Greenwood, The Boltzmann Equation in the Theory of Electrical Conduction in Metals, Proceedings of the Physical Society, p.585, 1958.
DOI : 10.1088/0370-1328/71/4/306

J. Callaway, Model for Lattice Thermal Conductivity at Low Temperatures, Physical Review, vol.113, issue.4, pp.1046-1052, 1959.
DOI : 10.1103/PhysRev.113.1046

M. G. Holland, Analysis of Lattice Thermal Conductivity, Physical Review, vol.132, issue.6, pp.24-61, 1963.
DOI : 10.1103/PhysRev.132.2461

P. G. Klemens, Thermal Resistance due to Point Defects at High Temperatures, Physical Review, vol.119, issue.2, pp.507-509, 1960.
DOI : 10.1103/PhysRev.119.507

D. S. Smith, S. Fayette, C. Grandjean, R. Martin, T. Telle et al., Thermal Resistance of Grain Boundaries in Alumina Ceramics and Refractories, Journal of the American Ceramic Society, vol.25, issue.1, pp.105-111, 2003.
DOI : 10.1111/j.1151-2916.2003.tb03285.x

P. G. Klemens, The Scattering of Low-Frequency Lattice Waves by Static Imperfections, Proceedings of the Physical Society. Section A, vol.68, issue.12
DOI : 10.1088/0370-1298/68/12/303

C. Nan and R. Birringer, Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model, Physical Review B, vol.57, issue.14, pp.8264-8268, 1979.
DOI : 10.1103/PhysRevB.57.8264

D. J. Evans and G. P. Morris, Statistical Mechanics of Non-Equilibrium Liquids. s.l 17. F. Müller-Plathe . A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J Chem Phys, vol.106, pp.6082-6085, 1990.

B. C. Daly and H. J. Maris, Calculation of the thermal conductivity of superlattices by molecular dynamics simulation, Physica B: Condensed Matter, vol.316, issue.317, pp.247-249, 2002.
DOI : 10.1016/S0921-4526(02)00476-3

B. C. Daly, H. J. Maris, K. Imamura, and S. Tamura, Molecular dynamics calculation of the thermal conductivity of superlattices, Physical Review B, vol.66, issue.2, pp.24301-24308, 2002.
DOI : 10.1103/PhysRevB.66.024301

C. Nieto-draghi and J. B. Avalos, Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems, Molecular Physics, vol.92, issue.14, pp.2303-2307, 2003.
DOI : 10.1063/1.451198

X. L. Tang and J. J. Dong, Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A First principles calculation and implications for lattice thermal conductivity . Phys. Earth Planet Inter, pp.33-38, 2009.

P. Chantrenne and S. Volz, Thermique à l'échelle sub-micronique Introduction à la dynamique moléculaire. Techniques de l'Ingenieur Thermique à l'échelle sub-micronique, Conduction thermique aux nanoéchelles, pp.290-291, 2002.

L. Verlet, Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, pp.98-104, 1967.

S. Kotake and S. Wakuri, Molecular Dynamics Study of Heat Conduction in Solid Materials., JSME International Journal Series B, vol.37, issue.1
DOI : 10.1299/jsmeb.37.103

S. G. Volz and G. Chen, Molecular-dynamics simulation of thermal conductivity of silicon crystals, Physical Review B, vol.61, issue.4, pp.103-108, 1994.
DOI : 10.1103/PhysRevB.61.2651

S. Stackhouse, L. Stixrude, and B. B. Karki, Theoretical Methods for Calculating the Lattice Thermal Conductivity of Minerals . Reviews in Mineralogy & Geochemistry, pp.253-269, 2010.

P. K. Schelling, S. R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Physical Review B, vol.65, issue.14, pp.144-306, 2002.
DOI : 10.1103/PhysRevB.65.144306

D. Terris, K. Joulain, D. Lemonnier, D. Lacroix, and P. Chantrenne, Role of electron?phonon coupling in thermal conductance of metal?nonmetal interfaces, Int. J. Ther. Sci. Applied Physics Letters, vol.48, issue.8423, pp.14-67, 2004.

E. T. Swartz and R. O. , Thermal boundary resistance . Reviews of Modern Physics, pp.605-671, 1989.

L. Koester, Neutron Scattering lengths and fundamental neutron interactions. s.l. : Neutron Physics Springer Tracts in Modern Physic, 1977.

D. Strauch, A. P. Mayer, and B. Dorner, Phonon eigenvectors in Si determined by inelastic neutron scattering. Zeitschrift für Physik B Condensed Matter, pp.405-410, 1990.

D. Strauch and B. Dorner, Lattice dynamics of alpha -quartz. I. Experiment, Journal of Physics: Condensed Matter, vol.5, issue.34, pp.6149-6155, 1993.
DOI : 10.1088/0953-8984/5/34/003

H. Schober, D. Strauch, K. Nützel, and B. Dorner, Lattice dynamic of alpha -quartz. II. Theory, Journal of Physics: Condensed Matter, vol.5, issue.34, pp.6149-6155, 1993.
DOI : 10.1088/0953-8984/5/34/004

H. Schober, Spectroscopie neutronique : un outil id??al pour le scientifique des mat??riaux, Journal de Physique IV (Proceedings) EDP sciences, pp.173-202, 2003.
DOI : 10.1051/jp4:20030006

S. Rolls, S. Petit, J. Combet, and F. Leclercq-hugeux, Diffusion Inélastique des neutrons pour l'étude des excitations dans la matière condensée . s.l. : JDN 16, 2008.

M. T. Cooper and R. Nathans, The resolution function in neutron diffractometry. I. The resolution function of a neutron diffractometer and its application to phonon measurements, Acta Crystallographica, vol.23, issue.3, pp.357-367, 1967.
DOI : 10.1107/S0365110X67002816

M. Popovici, On the resolution of slow-neutron spectrometers. IV. The triple-axis spectrometer resolution function, spatial effects included Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, pp.507-513, 1975.

B. Dorner, The normalization of the resolution function for inelastic neutron scattering and its application Acta Crystallographica Section A: Crystal Physics, Diffraction Theoretical and General Crystallography, pp.319-327, 1972.

J. ?aroun and J. Kulda, Neutron ray-tracing simulations and data analysis with RESTRAX. SPIE proceedings, pp.124-133, 2004.

F. Mezei, Neutron spin echo: A new concept in polarized thermal neutron techniques, Zeitschrift f??r Physik A Hadrons and nuclei, vol.255, issue.2
DOI : 10.1007/BF01394523

N. Martin, C. Klimko, and P. Stadler, Étude structurale et dynamique de plusieurs systèmes magnétiques par la technique de l'écho de spin neutronique résonant Grenoble : s.n., 2012. 17. Klimko, S. ZETA, A zero field spin echo method for very high resolution study of elementary excitations and first application, Thèse de doctorat

T. Hippert, E. Geissler, J. L. Hodeau, E. Lelièvre-berna, and J. R. Regnard, Grenoble) and First application for measurements of http://www.ill.eu/fr/instruments-support/instruments-groups/instruments/in6 Neutron and Xray spectroscopy. s.l, Physica B Condensed Matter, vol.335, issue.85, pp.188-191, 1998.

H. R. Sharma, W. Theis, P. Gille, and K. H. Rieder, Faceting of the two-fold decagonal

S. Ritsch, C. Beeli, H. U. Nissen, T. Gödecke, M. Scheffer et al., Philosophical magazine letters. Philosophical magazine letters, pp.67-75, 1998.

W. Steurer, W. Haibach, B. Zhang, S. Kek, and R. Lück, The structure of decagonal Al70Ni15Co15, Acta Crystallographica Section B Structural Science, vol.49, issue.4, pp.661-675, 1993.
DOI : 10.1107/S0108768193003143

A. Yamamoto and S. Weber, Five-dimensional superstructure model of decagonal AlNiCo quasicrystals. Physical review letters, pp.4430-4433, 1997.

A. Cervellino, T. Haibach, and W. Steurer, Structure solution of the basic decagonal Al???Co???Ni phase by the atomic surfaces modelling method, Acta Crystallographica Section B Structural Science, vol.58, issue.1, pp.8-33, 2001.
DOI : 10.1107/S0108768101018936/sn0016sup2.hkl

M. Kraj?í, J. Hafner, and M. Mihalkovi?, Atomic and electronic structure of decagonal Al-Ni-Co alloys and approximant phases, Physical Review B, vol.62, issue.1, pp.243-255, 2000.
DOI : 10.1103/PhysRevB.62.243

A. Yamamoto, K. Kato, T. Shibuya, and S. Takeuchi, Atomic structure of a decagonal AlCoNi quasicrystal. Physical review letters, pp.1603-1606, 1990.

H. Takakura, A. Yamamoto, and A. P. Tsai, The structure of a decagonal Al72Ni20Co8 quasicrystal Acta Crystallographica Section A: Foundations of Crystallography, pp.576-585, 2001.

M. Mihalkovi?, C. L. Henley, and M. Widom, Combined energy?diffraction data refinement of decagonal AlNiCo Journal of non-crystalline solids, pp.177-183, 2004.

P. Kuczera, J. Wolny, F. Fleischer, and W. Steurer, Structure refinement of decagonal AlNiCo, superstructure type I. . Philosophical Magazine, Vols, vol.91, pp.19-21, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00631267

H. R. Sharma, M. Shimoda, and A. P. Tsai, Quasicrystal surfaces: structure and growth of atomic overlayers Advances in Physics, pp.403-464, 2007.

S. Lim, M. Mihalkovic, and C. L. Henley, Matching rules from Al?Co potentials in an almost realistic model. Zeitschrift für Kristallographie International journal for structural, physical, and chemical aspects of crystalline materials, pp.11-12, 2008.

K. Hiraga, F. J. Lincoln, and W. Sun, Structure and Structural Change of Al–Ni–Co Decagonal Quasicrystal by High-Resolution Electron Microscopy, Materials Transactions, JIM, vol.32, issue.4, pp.308-314, 1991.
DOI : 10.2320/matertrans1989.32.308

M. Mihalkovi? and M. Widom, Tile decoration model of the W-(Al?Co?Ni) approximant. Philosophical Magazine, Vols, vol.86, pp.3-5, 2006.

M. Kraj?í, J. Hafner, and M. Mihalkovi?, Ab initio study of the surface of a decagonal

Y. Yan, S. J. Pennycook, and A. P. Tsai, Direct imaging of local chemical disorder and columnar vacancies in ideal decagonal AlNiCo quasicrystals. Physical review letters, p.5145, 1998.

A. Thiel, High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science, pp.1354-1356, 2005.

F. Dugain, M. Mihalkovic, and J. B. Suck, Temperature dependence of the generalized vibrational density of states of decagonal Al71.5Co13.5Ni15 and its approximant Al71.5Co15.5Ni13. Journal of non-crystalline solids, pp.860-864, 1999.

F. Dugain, M. De-boissieu, K. Shibata, R. Currat, T. J. Sato et al., Inelastic neutron scattering study of the dynamics of the AlNiCo decagonal phase, The European Physical Journal B, vol.7, issue.4, pp.513-516, 1999.
DOI : 10.1007/s100510050640

M. Moriarty, D. N. Widom, T. Basov, F. Timusk, J. Barakat et al., Total-energy-based prediction of a quasicrystal structure Anisotropic optical conductivity of decagonal quasicrystals . Physical review letters, Physical Review B, vol.65, issue.23, pp.104205-104211, 1994.

E. Cockayne and M. Widom, Ternary model of an AlCuCo decagonal quasicrystal. Physical review letters, pp.598-601, 1998.

B. Zhang, V. Gramlich, and W. Steurer, Al13-x(Co1Ni)4. Zeitschrift für Kristallographie, pp.498-503, 1995.

Y. Grin, U. Burkhardt, M. Ellner, and K. Peters, Crystal structure of orthorhombic Co4Al13, Journal of Alloys and Compounds, vol.206, issue.2, pp.243-247, 1994.
DOI : 10.1016/0925-8388(94)90043-4

URL : https://hal.archives-ouvertes.fr/hal-00978014

M. Mihalkovi? and M. Widom, binary alloy system, Physical Review B, vol.75, issue.1, pp.14207-14217, 2007.
DOI : 10.1103/PhysRevB.75.014207

M. Armbrüster, Y. Grin, K. Kovnir, and R. Schlögl, Complex Metallic Phases in Catalysis, Complex Metallic Alloys:Fundamentals and Applications, pp.385-398, 2011.
DOI : 10.1002/9783527632718.ch10

S. Matsuo, H. Nakano, T. Ishimasa, and Y. Fukano, Magnetic properties and the electronic structure of a stable Al-Cu-Fe icosahedral phase, Journal of Physics: Condensed Matter, vol.1, issue.38, pp.6893-6899, 1989.
DOI : 10.1088/0953-8984/1/38/015

E. Belin, Z. Dankhazi, A. Sadoc, Y. Calvayrac, T. Klein et al., Electronic distributions of states in crystalline and quasicrystalline Al-Cu-Fe and Al-Cu-Fe-Cr alloys, Journal of Physics: Condensed Matter, vol.4, issue.18, pp.4459-4472, 1992.
DOI : 10.1088/0953-8984/4/18/012

J. Hafner and M. Kraj?í, Electronic structure and stability of quasicrystals: Quasiperiodic dispersion relations and pseudogaps . Physical review letters Coles. The transition metals and their alloys Advances in Physics, pp.2321-2324, 1954.

H. Jones, The phase boundaries in binary alloys, part 2: the theory of the ??, ?? phase boundaries, Proceedings of the Physical Society, pp.250-257, 1937.
DOI : 10.1088/0959-5309/49/3/307

T. Fujiwara and T. Yokokawa, Universal pseudogap at Fermi energy in quasicrystals. Physical review letters, pp.333-336, 1991.

. Hume, Rothery phases and quasicrystals in transition metal aluminides Progress in materials science, pp.679-788, 2005.

J. Dubois, Properties- and applications of quasicrystals and complex metallic alloys, Chemical Society Reviews, vol.51, issue.95
DOI : 10.1016/j.apsusc.2012.03.053

E. Belin-ferré and . Sebastián-alarcón, Singapore : Book series on CMAs Enforcement of matching rules by chemical ordering in the decagonal AlCuCo quasicrystal Surfaces d'alliages métalliques complexes à base d'alumium et de cobalt: structure atomique et électronique et absorption, Surface properties and engineering of complex intermetallics 46. G. T. de Laissardiere, D. Mayou. Clusters and localization of electrons in quasicrystals, pp.123-148, 1993.

M. Kraj?í, J. Hafner, and M. Mihalkovi?, Electronic structure and transport properties of decagonal Al-Cu-Co alloys, Physical Review B, vol.56, issue.6, pp.3072-3085, 1997.
DOI : 10.1103/PhysRevB.56.3072

G. Trambly-de-laissardière, D. Nguyen-manh, L. Magaud, J. P. Julien, F. Lackmann et al., Electronic structure and hybridization effects in Hume-Rothery alloys containing transition elements Charge decomposition analysis of the electron localizability indicator: a bridge between the orbital and direct space representation of the chemical bond First principles methods using CASTEP, J. Phys.Rev. B Chemistry-A European Journal Z. Kristallogr, vol.52, issue.220, pp.572-51, 1995.

J. M. Dubois and E. Belin-ferré, Chapitre 7 and 10, Complex Metallic Alloys: Fundamentals and Applications, 2007.

M. J. Powell, A method for minimizing a sum of squares of non-linear functions without calculating derivatives. The Computer Journal, pp.303-307, 1965.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, Minimizing multimodal functions of continuous variables with the ???simulated annealing??? algorithm, ACM Transactions on Mathematical Software, vol.13, issue.3, pp.262-280, 1987.
DOI : 10.1145/29380.29864

R. Phillips, J. Zou, A. E. Carlsson, and M. Widom, Electronic-structure-based pair potentials for aluminum-rich cobalt compounds, Physical Review B, vol.49, issue.14, p.9322, 1994.
DOI : 10.1103/PhysRevB.49.9322

J. A. Moriarty and M. Widom, series, p. 7905. 7. D. Pettifor, . Bonding and Structure of Molecules and Solids, 1995.
DOI : 10.1103/PhysRevB.56.7905

H. Sato, R. Takakura, A. P. Currat, and . Tsai, Lattice dynamics of the Zn?Mg?Sc icosahedral quasicrystal and its Zn?Sc periodic 1/1 approximant, Nat. Mater, vol.6, pp.977-984, 2007.

P. Brommer and F. Gähler, Effective potentials for quasicrystals from ab-initio data. Philosophical Magazine, Vols, vol.86, issue.6, pp.753-758, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00513619

S. Hocker, F. Gähler, and P. Brommer, Molecular dynamics simulation of aluminum diffusion in decagonal quasicrystals. Philosophical Magazine, Vols, vol.86, issue.6, pp.1051-1057, 2006.

M. Mihalkovi?, H. Elhor, and J. B. Suck, Low-energy phonon excitations in the decagonal quasicrystal Al70Co15Ni15 and in crystalline Al13Co4 phases, Materials Science and Engineering: A, vol.294, issue.296, pp.654-657, 2000.
DOI : 10.1016/S0921-5093(00)01133-3

M. Daw, S. Foiles, and M. Baskes, The embedded-atom method: a review of theory and applications, Materials Science Reports, vol.9, issue.7-8, pp.7-8, 1993.
DOI : 10.1016/0920-2307(93)90001-U

M. Mihalkovi?, W. J. Zhu, C. L. Henley, and R. Phillips, Icosahedral quasicrystal decoration models. II. Optimization under realistic Al-Mn potentials, Physical Review B, vol.53, issue.14, pp.9021-9035, 1996.
DOI : 10.1103/PhysRevB.53.9021

M. Moriarty and . Widom, Total-energy-based prediction of a quasicrystal structure, Physical Review B, vol.65, issue.10, p.104205, 2002.

M. Kraj?í and J. Hafner, Structure and stability of quasicrystals: Modulated tiling models, From Hamiltonians to Phase Diagrams, pp.10669-282, 1987.
DOI : 10.1103/PhysRevB.46.10669

M. Mihalkovi? and C. Henley, Empirical oscillating potentials for alloys from ab initio fits and the prediction of quasicrystal-related structures in the Al-Cu-Sc system, Physical Review B. 2012, vol.85, pp.92-102

. Annexe, Les spectres des phonons TA (INS) et les fits dans la direction basse symétrie de (400)- (206) 1. http://lammps.sandia.gov/. [online] 2

M. Kaviany, Heat transfer physics . s.l, 2014.

G. D. Samolyuk, S. I. Golubov, Y. N. Osetsky, and R. E. Stoller, Molecular dynamics study of influence of vacancy types defects on thermal conductivity of ??-SiC, Journal of Nuclear Materials, vol.418, issue.1-3, pp.1-3, 2001.
DOI : 10.1016/j.jnucmat.2011.06.036

J. Dong, O. F. Sankey, and C. W. Myles, Theoretical Study of the Lattice Thermal Conductivity in Ge Framework Semiconductors, Physical Review Letters, vol.86, issue.11, pp.2361-2364, 2001.
DOI : 10.1103/PhysRevLett.86.2361

A. Mcgaughey and M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations, International Journal of Heat and Mass Transfer, vol.47, issue.8-9, pp.1799-1816, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.11.009

N. Bernstein, J. L. Feldman, and D. J. Singh, Calculations of dynamical properties of skutterudites: Thermal conductivity, thermal expansivity, and atomic mean-square displacement, Physical Review B, vol.81, issue.13, pp.1343-1344, 2010.
DOI : 10.1103/PhysRevB.81.134301

Y. H. Lee, R. Biswas, C. M. Soukoulis, C. Z. Wang, C. T. Chan et al., Molecular-dynamics simulation of thermal conductivity in amorphous silicon, Physical Review B, vol.43, issue.8, pp.6573-6580, 1991.
DOI : 10.1103/PhysRevB.43.6573

N. W. Ashcroft and N. D. Mermin, Solid State of solid argon from molecular dynamics simulations. The Journal of chemical physics, Physics. s.l, vol.120, issue.8, pp.3765-3769, 1976.

. Müller-pathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal Of Chemical Physics, pp.60-82, 1997.

W. C. O-'mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology. s.l Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, vol.31, pp.52-62, 1985.

L. J. Porter, J. F. Justo, and S. Yip, The importance of Gr??neisen parameters in developing interatomic potentials, Journal of Applied Physics, vol.82, issue.11, pp.5378-5381, 1997.
DOI : 10.1063/1.366305

C. J. Glassbrenner and G. A. Slack, Thermal Conductivity of Silicon and Germanium from 3K to the Melting Point. Physical Review, pp.1058-1069, 1964.

K. Esfarjani, G. Chen, and H. T. Stokes, Heat transport in silicon from first-principles calculations, Physical Review B, vol.84, issue.8, pp.85204-85215, 2011.
DOI : 10.1103/PhysRevB.84.085204

P. K. Schelling, S. R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity Molecular-dynamics simulation of thermal conductivity of silicon crystals, Physical Review B Physical Review B, vol.65, issue.614, pp.1443-1449, 2000.

D. Broido, A. Ward, and N. Mingo, Lattice thermal conductivity of silicon from empirical interatomic potentials, Physical Review B, vol.72, issue.1, pp.143-151, 2005.
DOI : 10.1103/PhysRevB.72.014308

D. P. Sellan, E. S. Landry, J. E. Turney, A. J. Mcgaughey, and C. H. Amon, Size effects in molecular dynamics thermal conductivity predictions, Physical Review B, vol.81, issue.21, pp.2143-2148, 2010.
DOI : 10.1103/PhysRevB.81.214305

H. P. Singh, Determination of thermal expansion of germanium, rhodium and iridium by X-rays. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, pp.469-471, 1968.

J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, vol.39, issue.8, pp.5566-5568, 1989.
DOI : 10.1103/PhysRevB.39.5566

K. Ding and H. C. Andersen, Molecular-dynamics simulation of amorphous germanium, Physical Review B, vol.34, issue.10, pp.6987-6991, 1986.
DOI : 10.1103/PhysRevB.34.6987

S. J. Clark, Abstract, Zeitschrift f??r Kristallographie - Crystalline Materials, vol.220, issue.5/6, pp.567-570, 2005.
DOI : 10.1524/zkri.220.5.567.65075

A. Ward and D. A. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge, Physical Review B, vol.81, issue.8, pp.852-857, 2010.
DOI : 10.1103/PhysRevB.81.085205

E. E. Inyushkin and . Haller, Thermal conductivity of germanium crystals with different isotopic compositions, Physical Review B, vol.56, issue.15, pp.9431-9478, 1997.

J. Dolin?ek, M. Komelj, P. Jegli?, S. Vrtnik, D. Stani? et al., Anisotropic magnetic and transport properties of orthorhombic Al13Co4, Physical Review B, vol.79, issue.18, pp.184-201, 2009.

C. J. Glassbrenner and G. A. Slack, Thermal conductivity of silicon and germanium from 3

H. Lee, R. Biswas, C. M. Soukoulis, C. Z. Wang, C. T. Chan et al., Physical Review Moleculardynamics simulation of thermal conductivity in amorphous silicon, 4A) , p. A1058. 29, pp.65-73, 1964.

H. Davy, On a Combination of Oxymuriatic Gas and Oxygene Gas, Philosophical Transactions of the Royal Society of London, vol.101, issue.0, pp.155-162
DOI : 10.1098/rstl.1811.0008

L. Pauling, The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement, Journal of the American Chemical Society, vol.57, issue.12, pp.2680-2684, 1935.
DOI : 10.1021/ja01315a102

A. J. Karttunen, T. F. Fässler, M. Linnolahti, and T. A. Pakkanen, Structural Principles of Semiconducting Group 14 Clathrate Frameworks, Inorganic Chemistry, vol.50, issue.5, pp.1733-1742
DOI : 10.1021/ic102178d

J. S. Kasper, P. Hagenmuller, M. Pouchard, and C. Cros, Clathrate Structure of Silicon Na8Si46 and NaxSi136 (x < 11), Science, vol.150, issue.3704, pp.1713-1714, 1965.
DOI : 10.1126/science.150.3704.1713

C. Cros, M. Pouchard, and P. Hagenmuller, Sur une nouvelle famille de clathrates min??raux isotypes des hydrates de gaz et de liquides. Interpr??tation des r??sultats obtenus, Journal of Solid State Chemistry, vol.2, issue.4, pp.570-581, 1970.
DOI : 10.1016/0022-4596(70)90053-8

G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, Semiconducting Ge clathrates: Promising candidates for thermoelectric applications, Applied Physics Letters, vol.73, issue.2, pp.178-180, 1998.
DOI : 10.1063/1.121747

G. A. Slack and D. M. , Rowe. s.l. : CRC Handbook for Thermoelectrics, 1995.

A. A. Demkov, O. F. Sankey, K. E. Schmidt, G. B. Adams, and M. O. Keeffe, Theoretical investigation of alkali-metal doping in Si clathrates, Physical Review B, vol.50, issue.23, pp.17001-17011, 1994.
DOI : 10.1103/PhysRevB.50.17001

M. Burkhardt, J. T. Baitinger, Y. Zhao, and . Grin, Atomic Interactions in the p-Type Clathrate I Ba8Au5,3Ge40,7. Inorganic Chemistry, pp.1250-1257, 2011.

A. Custers, R. Haghighirad, K. D. Hofler, F. Luther, W. Ritter et al., Atomic ordering and thermoelectric properties of the n-type clathrate Ba8Ni3,5Ge42,1. Dalton Transactions Superconductivity in silicon based barium-inclusion clathrates. Chemical Physics Letters, pp.1071-1077, 1998.

B. Böhme, U. Aydemir, A. Ormeci, W. Schnelle, M. Baitinger et al., with HCl, Science and Technology of Advanced Materials, vol.8, issue.5, pp.410-415, 2007.
DOI : 10.1524/ncrs.2007.0035

A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger et al., A guest-free germanium clathrate, Nature, vol.33, issue.7109, pp.320-323, 2006.
DOI : 10.1021/ja9844175

M. Beekman, W. Schnelle, H. Borrmann, M. Baitinger, Y. Grin et al., Intrinsic Electrical and Thermal Properties from Single Crystals of Na24Si136, Physical Review Letters, vol.104, issue.1, pp.183-201, 2010.

. Iversen, Experimental charge densities of semiconducting cage structures containing alkaline earth guest atoms, Angewandte Chemie, vol.112, issue.20, pp.3759-3762, 2000.

S. Bentien, B. B. Johnsen, and . Iversen, Strong phonon charge carrier coupling in thermoelectric clathrates, 24th International Conference on Thermoelectrics (ICT 05) . S. Johnsen, A. Bentien, G, pp.7281-7290, 2002.
DOI : 10.1103/PhysRevB.73.094301

H. Madsen, M. Nygren, B. B. Iversen, and I. Ieee, Clemson : s.n, pp.226-229, 2005.

E. Zintl and . Intermetallische-verbindungen, Angewandte Chemie, pp.1-6, 1939.

G. K. Madsen, K. Schwarz, P. Blaha, and D. J. Singh, Electronic structure and transport in type-I and type-VIII clathrates containing strontium, barium, and europium, Physical Review B, vol.68, issue.12, pp.1252-1264, 2003.
DOI : 10.1103/PhysRevB.68.125212

M. W. Dharma-wardana, The thermal conductivity of the ice polymorphs and the ice clathrates. The Journal of Physical Chemistry, pp.4185-4190, 1983.

J. S. Tse and M. A. White, Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate. The Journal of Physical Chemistry, pp.5006-5011, 1988.

W. Johnson, Anharmonic motions of Kr in the clathrate hydrate, Nature Materials, vol.4, issue.12, pp.917-921, 2005.

J. S. Tse, V. P. Shpakov, V. R. Belosludov, F. Trouw, Y. P. Handa et al., Coupling of localized guest vibrations with the lattice modes in clathrate hydrates, Europhysics Letters (EPL), vol.54, issue.3, pp.354-360, 2001.
DOI : 10.1209/epl/i2001-00250-2

. Steglich, Are type-I clathrates Zintl phases and 'phonon glasses and electron single crystals? Physica B: Condensed Matter, pp.39-43, 2003.

C. Gatti, L. Bertini, N. P. Blake, and B. B. Iversen, Guest???Framework Interaction in Type I Inorganic Clathrates with Promising Thermoelectric Properties: On the Ionic versus Neutral Nature of the Alkaline-Earth Metal Guest A in A8Ga16Ge30 (A=Sr, Ba), Chemistry - A European Journal, vol.9, issue.18, pp.4556-4568, 2003.
DOI : 10.1002/chem.200304837

B. B. Lefmann and . Iversen, Avoided crossing of rattler modes in thermoelectric materials. Nature materials, pp.811-815, 2008.

S. Grin, M. Paschen, and . De-boissieu, Phononic filter effect of rattling phonons in the thermoelectric clathrate Ba8Ge40+xNi6?x, Phys. Rev. B, vol.86, issue.22, pp.2243-2246, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00794211

. Dianoux, Phonon density of states of silicon clathrates: characteristic width narrowing effect with respect to the diamond phase, Physical Review B, vol.59, issue.15, pp.10099-10105, 1999.

C. W. Myles, J. Dong, O. F. Sankey, C. A. Kendziora, and G. S. Nolas, Vibrational properties of tin clathrate materials, Physical Review B, vol.65, issue.23, pp.2352-2360, 2002.
DOI : 10.1103/PhysRevB.65.235208

B. C. Chakoumakos, B. C. Sales, and D. G. Mandrus, Structural disorder and magnetism of the semiconducting clathrate Eu8Ga16Ge30, Journal of Alloys and Compounds, vol.322, issue.1-2, pp.127-134, 2001.
DOI : 10.1016/S0925-8388(01)01169-0

B. C. Chakoumakos, B. C. Sales, D. G. Mandrus, and G. S. Nolas, Structural disorder and thermal conductivity of the semiconducting clathrate Sr8Ga16Ge30, Journal of Alloys and Compounds, vol.296, issue.1-2, pp.80-86, 2000.
DOI : 10.1016/S0925-8388(99)00531-9

V. Keppens, B. C. Sales, D. Mandrus, B. C. Chakoumakos, and C. Laermans, When does a crystal conduct heat like a glass? Philosophical magazine letters, pp.807-812, 2000.

M. Christensen, N. Lock, J. Overgaard, B. B. Iversen-39, S. Blake et al., Crystal structures of thermoelectric n-and p-type Ba8Ga16Ge30 studied by single crystal, multitemperature, neutron diffraction, conventional X-ray diffraction and resonant synchrotron X-ray diffraction Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30 ThermalVibrations in Crystallography, ) single crystals, pp.15657-15665, 1975.

M. Christensen, S. Johnsen, F. Juranyi, and B. B. Iversen, Clathrate guest atoms under pressure, Journal of Applied Physics, vol.105, issue.7, pp.73508-73517, 2009.
DOI : 10.1063/1.3099589

G. S. Nolas and C. A. Kendziora, Raman scattering study of Ge and Sn compounds with type-I clathrate hydrate crystal structure, Physical Review B, vol.62, issue.11, pp.7157-7161, 2000.
DOI : 10.1103/PhysRevB.62.7157

T. Takasu, T. Hasegawa, N. Ogita, M. Udagawa, M. A. Avila et al., investigated by Raman scattering, Physical Review B, vol.74, issue.17, pp.174303-174308, 2006.
DOI : 10.1103/PhysRevB.74.174303

J. Baumert, C. Gutt, V. P. Shpakov, J. S. Tse, M. Krisch et al., Lattice dynamics of methane and xenon hydrate: Observation of symmetry-avoided crossing by experiment and theory, Physical Review B, vol.68, issue.17, pp.174301-174308, 2003.
DOI : 10.1103/PhysRevB.68.174301

G. Cordier and P. Woll, Neue ternäre intermetallische Verbindungen mit Clathratstruktur

. Ba8-(-t, T. Si, . Ni, . Pd, . Pt et al., Electronic structure of Si and Ge gold-doped clathrates, Journal of the Less Common Metals, pp.6-40, 1991.

J. D. Chung, A. J. Mcgaughey, and M. Kaviany, Role of Phonon Dispersion in Lattice Thermal Conductivity Modeling, Journal of Heat Transfer, vol.126, issue.3, pp.376-380, 2004.
DOI : 10.1115/1.1723469

C. Cros, M. Pouchard, and P. Hagenmuller, Sur une nouvelle famille de clathrates min??raux isotypes des hydrates de gaz et de liquides. Interpr??tation des r??sultats obtenus, Journal of Solid State Chemistry, vol.2, issue.4, pp.570-581, 1970.
DOI : 10.1016/0022-4596(70)90053-8

G. S. Nolas and G. A. Slack, Thermoelectric clathrates, 136. 56. N. W. Ashcroft, N. D. Mermin. Solid state physics. Brooks/Cole, 1976.

G. A. Jeffrey, J. E. Atwood, and D. D. Davies, in Structural aspects of inclusion compounds formed by inorganic and organometallic host lattices, 1984.

. Takabatake, Off-center rattling modes and glasslike thermal conductivity in the type-I clathrate Ba8 Ga16Sn30 Phonon dynamics of type-i clathrate Sr8Ga16Ge30 studied by inelastic neutron scattering, Physical Review B. 2010 J. Phys. Soc. Jpn, vol.81, issue.77, pp.205-207, 2008.

H. Mutka, Les vibrations dans des cages sont-elles des modes «hochet»-comment aller audelà de la densité d'états des échantillons polycristallins? s.l. : Ecole thématique de la Société Française de la Neutronique SFN, pp.529-543, 2010.

J. C. Slater, Atomic Radii in Crystals, The Journal of Chemical Physics, vol.41, issue.10, pp.3199-3204, 1964.
DOI : 10.1063/1.1725697

J. Kulda, E. Farhi, and C. M. Zeyen, Thermal variation of phonon frequency and line width in Ge studied by TAS spin-echo, Physica B: Condensed Matter, vol.297, issue.1-4, pp.37-39, 2001.
DOI : 10.1016/S0921-4526(00)00835-8

M. C. Refson and . Payne, First principles methods using CASTEP, Z. Kristallogr, vol.220, pp.567-570, 2005.

M. G. Holland, Analysis of Lattice Thermal Conductivity, Physical Review, vol.132, issue.6, pp.2461-2471, 1963.
DOI : 10.1103/PhysRev.132.2461

. Monochromateur-d-spacing-monochromateur, DM = 3.3535 Å. Mosaïcité : ETAM = 0.015 radian Courbure horizontale : CHM = 0 radian Courbure verticale : CVM = 1 radian

. Analyseur-d-spacing-analyseur, DA = 3.3535 Å. Mosaïcité : ETAA = 0.008 radian Courbure horizontale : CHA = 1 radian

. Dans-notre-expérience, nous n'avons pas placé de collimations sur le trajet des neutrons Donc les paramètres H0, et V3, pour les collimations horizontales et verticales respectivement, sont égales à zéros. Ensuite nous avons défini les paramètres des deux diaphragmes (fentes) que nous avons introduit sur le chemin des neutrons

M. Omini, A. Sparavigna, and D. A. Broido, ) ont développé une méthode itérative pour résoudre la forme inélastique de l'équation BTE avec l'approximation du temps de relaxation assumant la dispersion élastique Cette méthode a été appliquée pour prévoir la conductivité thermique de l'argon, du krypton Omini et A. Sparavigna développent les calculs LD avec les termes anharmoniques pour fournir les probabilités de diffusion à trois-phonons

B. La-méthode, J. Été-proposée-par, and . Ladd, Leur méthode a ensuite été généralisée par McGaughey et Kaviany (7) Ils l'ont appliqué pour estimer la conductivité thermique dans l'argon, le silicium et le germanium

A. J. Ladd, B. Moran, and W. G. Hoover, Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics, Physical Review B, vol.34, issue.8, pp.34-50, 1986.
DOI : 10.1103/PhysRevB.34.5058

M. Omini and A. Sparavigna, An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity, Physica B: Condensed Matter, vol.212, issue.2, pp.101-112, 1995.
DOI : 10.1016/0921-4526(95)00016-3

D. A. Broido and T. L. Reinecke, Lattice thermal conductivity of superlattice structures, Physical Review B, vol.70, issue.8, pp.81310-81314, 2004.
DOI : 10.1103/PhysRevB.70.081310

D. A. Broido, A. Ward, and N. Mingo, Lattice thermal conductivity of silicon from empirical interatomic potentials, Physical Review B, vol.72, issue.1, pp.14308-14316, 2005.
DOI : 10.1103/PhysRevB.72.014308

D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles Applied Physics Letters, pp.231922-231926, 2007.

A. Mcgaughey and M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations, International Journal of Heat and Mass Transfer, vol.47, issue.8-9, pp.1799-1816, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.11.009

K. Suekuni, M. A. Avila, K. Umeo, and T. Takabatake, Cage-size control of guest vibration and thermal conductivity in Sr8Ga16Si30? xGex, Physical Review B, vol.75, pp.195-210, 2007.

M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka et al., Glasslike versus crystalline thermal conductivity in carrier-tuned Ba8Ga16X30 clathrates (X= Ge, Sn), Physical Review B, vol.74, issue.12, pp.1251-1260, 2006.

M. Kaviany, Heat transfer physics . s.l, 2014.

G. Nilsson and G. Nelin, Phonon Dispersion Relations in Ge at 80 ??K, Physical Review B, vol.3, issue.2, pp.364-369, 1971.
DOI : 10.1103/PhysRevB.3.364

M. T. Dove, Introduction to Lattice Dynamics. s.l, 1993.

M. G. Holland, Analysis of Lattice Thermal Conductivity, Physical Review, vol.132, issue.6, pp.24-61, 1963.
DOI : 10.1103/PhysRev.132.2461

C. Kittel, Introduction to solid states, 1986.

M. D. Tiwari and B. K. , Analysis of the Lattice Thermal Conductivity of Germanium, Physical Review B, vol.4, issue.10, pp.3527-3553, 1971.
DOI : 10.1103/PhysRevB.4.3527

J. D. Chung, A. J. Mcgaughey, and M. Kaviany, Role of Phonon Dispersion in Lattice Thermal Conductivity Modeling, Journal of Heat Transfer, vol.126, issue.3, pp.376-380, 2004.
DOI : 10.1115/1.1723469

J. M. Ziman, Electrons and phonons. s.l, 1960.

J. Callaway, Model for Lattice Thermal Conductivity at Low Temperatures, Physical Review, vol.113, issue.4, pp.1046-51, 1959.
DOI : 10.1103/PhysRev.113.1046

K. C. Sood and M. K. Roy, Longitudinal phonons and high-temperature heat conduction in germanium, Journal of Physics: Condensed Matter, vol.5, issue.3, pp.301-312, 1993.
DOI : 10.1088/0953-8984/5/3/006