A. Stamp, P. A. Wäger, and S. Hellweg, Linking energy scenarios with metal demand modeling?The case of indium in CIGS solar cells. Resources, Conservation and Recycling, pp.156-167, 2014.

D. , A. R. Barkhouse, R. Haight, N. Sakai, H. Hiroi et al., Cd-free buffer layer materials on Cu 2 ZnSn(S x Se 1-x ) 4 : Band alignments with ZnO, ZnS, and In 2 S 3, Applied Physics Letters, issue.19, p.100193904, 2012.

M. I. Hossain, P. Chelvanathan, M. M. Alam, M. Akhtaruzzaman, K. Sopian et al., Potential buffer layers for Cu2ZnSnS4 (CZTS) solar cells from numerical analysis, pp.450-454, 2013.

S. Siebentritt, Alternative buffers for chalcopyrite solar cells, Solar Energy, vol.77, issue.6, pp.767-775, 2004.
DOI : 10.1016/j.solener.2004.06.018

T. K. Todorov, K. B. Reuter, and D. B. Mitzi, High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber, Advanced Materials, vol.14, issue.432, pp.156-159, 2010.
DOI : 10.1002/adma.200904155

E. Wesoff, Samsung Now the New CIGS Solar Module Efficiency Record Holder, 2013.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov et al., Device Characteristics of CZTSSe Thin-Film Solar Cells with 12, 6% Efficiency. Advanced Energy Materials, vol.4, issue.7, 2014.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (version 43). Prog, Photovolt : Res. Appl, pp.1-9, 2013.

W. Shockley and H. J. Queisser, Junction Solar Cells, Journal of Applied Physics, vol.32, issue.3, p.510, 1961.
DOI : 10.1063/1.1736034

S. Schorr, Structural aspects of adamantine like multinary chalcogenides, Thin Solid Films, vol.515, issue.15, pp.5985-5991, 2007.
DOI : 10.1016/j.tsf.2006.12.100

S. Schorr, The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study, Solar Energy Materials and Solar Cells, vol.95, issue.6, pp.1482-1488, 2011.
DOI : 10.1016/j.solmat.2011.01.002

A. R. Denton and N. W. Ashcroft, Vegard???s law, Physical Review A, vol.43, issue.6, p.3161, 1991.
DOI : 10.1103/PhysRevA.43.3161

S. B. Zhang, S. Wei, A. Zunger, and H. Katayama-yoshida, chalcopyrite semiconductor, Physical Review B, vol.57, issue.16, p.9642, 1998.
DOI : 10.1103/PhysRevB.57.9642

S. Chen, A. Walsh, X. Gong, and S. Wei, Classification of Lattice Defects in the Kesterite Cu 2 ZnSnS 4 and Cu 2 ZnSnSe 4 Earth-Abundant Solar Cell Absorbers, Advanced Materials, issue.11, pp.251522-1539, 2013.

D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, The path towards a high-performance solution-processed kesterite solar cell, Solar Energy Materials and Solar Cells, vol.95, issue.6, pp.1421-1436, 2011.
DOI : 10.1016/j.solmat.2010.11.028

S. Siebentritt, M. Igalson, C. Persson, and S. Lany, The electronic structure of chalcopyrites-bands, point defects and grain boundaries, Progress in Photovoltaics : Research and Applications, pp.390-410, 2010.
DOI : 10.1002/pip.936

R. Haight, X. Shao, W. Wang, and D. B. Mitzi, surface and grain boundaries, Applied Physics Letters, vol.104, issue.3, p.33902, 2014.
DOI : 10.1063/1.4862791

M. Souilah, A. Lafond, C. Guillot-deudon, S. Harel, and E. M. Evain, Structural investigation of the Cu 2 Se-In 2 Se 3 -Ga 2 Se 3 phase diagram, X-ray photoemission and optical properties of the, Journal of Solid State Chemistry, issue.10, pp.1832274-2280, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00849310

I. V. Dudchak and L. V. Piskach, Phase equilibria in the Cu2SnSe3???SnSe2???ZnSe system, Journal of Alloys and Compounds, vol.351, issue.1-2, pp.145-150, 2003.
DOI : 10.1016/S0925-8388(02)01024-1

J. J. Scragg, T. Ericson, T. Kubart, M. Edoff, and C. Platzer-björkman, Films during Annealing, Chemistry of Materials, vol.23, issue.20, pp.4625-4633, 2011.
DOI : 10.1021/cm202379s

I. D. Olekseyuk, I. V. Dudchak, L. V. Piskach-]-r, and . Shannon, Phase equilibria in the Cu Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, vol.23, issue.325, pp.751-767, 1976.

M. Paris, L. Choubrac, A. Lafond, C. Guillot-deudon, . Et-stéphane et al., Solid-State NMR and Raman Spectroscopy To Address the Local Structure of Defects and the Tricky Issue of the Cu/Zn Disorder in Cu-Poor, Zn-Rich CZTS Materials, Inorganic Chemistry, vol.53, issue.16, pp.538646-8653, 2014.
DOI : 10.1021/ic5012346

A. Walsh, S. Chen, S. Wei, . Et-xin-gao, and . Gong, Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4, Advanced Energy Materials, vol.22, issue.303, pp.400-409, 2012.
DOI : 10.1002/aenm.201100630

A. Björn and . Andersson, Materials availability for large-scale thin-film photovoltaics, Progress in Photovoltaics : Research and Applications, pp.61-76, 2000.

S. R. , T. , and S. M. Mclennan, The continental crust, its composition and evolution : an examination of the geochemical record preserved in sedimentary rocks, Blackwell Scientific, 1985.

D. B. Mitzi, O. Gunawan, T. K. Todorov, and D. A. Barkhouse, Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.100, issue.481, pp.37120110432-20110432, 1996.
DOI : 10.1038/nature02389

M. Alexandre, Synthese de couches minces resistives par pulverisation cathodique magnetron pour l'elaboration de resistances etalons calculables en courant alternatif, 2011.

K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw et al., Cu 2 ZnSnS 4 -type thin film solar cells using abundant materials, Thin Solid Films, issue.15, pp.5155997-5999, 2007.

G. Brammertz, M. Buffì-ere, Y. Mevel, Y. Ren, A. E. Zaghi et al., based solar cells, Applied Physics Letters, vol.102, issue.1, p.13902, 2013.
DOI : 10.1063/1.4775366

H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi et al., Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E???B evaporated precursors, Solar Energy Materials and Solar Cells, vol.49, issue.1-4, pp.407-414, 1997.
DOI : 10.1016/S0927-0248(97)00119-0

J. J. Scragg, D. M. Berg, and P. J. Dale, A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers, Journal of Electroanalytical Chemistry, vol.646, issue.1-2, pp.52-59, 2010.
DOI : 10.1016/j.jelechem.2010.01.008

H. Araki, Y. Kubo, K. Jimbo, W. S. Maw, H. Katagiri et al., thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors, physica status solidi (c), vol.6, issue.5, pp.1266-1268, 2009.
DOI : 10.1002/pssc.200881182

J. Woo-cho, A. Ismail, S. J. Park, W. Kim, S. Yoon et al., Synthesis of Cu 2 ZnSnS 2 thin Films by a precursor solution paste for thin film solar cell applications, ACS Applied Materials & Interfaces, p.130507134035005, 2013.

K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Cu2ZnSnS4Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing, Solar Energy Materials and Solar Cells, vol.93, issue.5, pp.583-587, 2009.
DOI : 10.1016/j.solmat.2008.12.009

G. M. Ilari, C. M. Fella, C. Ziegler, A. R. Uhl, Y. E. Romanyuk et al., solar cell absorbers spin-coated from amine-containing ether solutions, Solar Energy Materials and Solar Cells, vol.104, pp.125-130, 2012.
DOI : 10.1016/j.solmat.2012.05.004

A. Fischereder, T. Rath, W. Haas, H. Amenitsch, J. Albering et al., Formation from Metal Salts and Thioacetamide, Chemistry of Materials, vol.22, issue.11, pp.3399-3406, 2010.
DOI : 10.1021/cm100058q

T. Schnabel, M. Löw, and E. Ahlswede, Vacuum-free preparation of 7.5% efficient Cu2ZnSn(S,Se)4 solar cells based on metal salt precursors, Solar Energy Materials and Solar Cells, vol.117, pp.324-328, 2013.
DOI : 10.1016/j.solmat.2013.06.021

Y. Sun, Y. Zhang, H. Wang, M. Xie, K. Zong et al., Novel non-hydrazine solution processing of earth-abundant Cu2ZnSn(S,Se)4 absorbers for thin-film solar cells, Journal of Materials Chemistry A, vol.101, issue.362, pp.6880-6887, 2013.
DOI : 10.1039/c3ta10566k

Y. Sun, K. Zong, H. Zheng, H. Wang, J. Liu et al., Ethylene glycol-based dip coating route for the synthesis of Cu2ZnSnS4 thin film, Materials Letters, vol.92, pp.195-197, 2013.
DOI : 10.1016/j.matlet.2012.10.120

S. Pramod and . Patil, Versatility of chemical spray pyrolysis technique, Materials Chemistry and physics, vol.59, issue.3, pp.185-198, 1999.

N. Kamoun, H. Bouzouita, and E. B. Rezig, Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique, Thin Solid Films, vol.515, issue.15, pp.5949-5952, 2007.
DOI : 10.1016/j.tsf.2006.12.144

J. Madarász, P. Bombicz, M. Okuya, and S. Kaneko, Thermal decomposition of thiourea complexes of Cu(I), Zn(II), and Sn(II) chlorides as precursors for the spray pyrolysis deposition of sulfide thin films, Solid State Ionics, vol.141, issue.142, pp.141-142439, 2001.
DOI : 10.1016/S0167-2738(01)00740-8

D. Song, W. Kim, K. Mahmood, H. W. Kang, . Seung-bin et al., Preparation of Cu2ZnSnS4 thin films by using electrospray method: Experimental and modeling approach on film growth, Journal of Alloys and Compounds, vol.567, pp.89-96, 2013.
DOI : 10.1016/j.jallcom.2013.03.025

S. Huang, W. Luo, and Z. Zou, thin films by the ultrasonic spray pyrolysis method, Journal of Physics D: Applied Physics, vol.46, issue.23, p.46235108, 2013.
DOI : 10.1088/0022-3727/46/23/235108

W. Yang, H. Duan, B. Bob, H. Zhou, B. Lei et al., Novel solution processing of high-efficiency earth-abundant Cu 2 ZnSn(S,Se) 4 solar cells, Advanced Materials, issue.47, pp.246323-6329, 2012.

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov et al., Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency, Energy & Environmental Science, vol.91, issue.5, p.7060, 2012.
DOI : 10.1002/pip.1174

T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen et al., Solar Cells, Advanced Energy Materials, vol.91, issue.1, pp.34-38, 2013.
DOI : 10.1002/aenm.201200348

N. Cori, . Bucherl, R. Karl, . Oleson, W. Et-hugh et al., Thin film solar cells from sintered nanocrystals, Current Opinion in Chemical Engineering, vol.2, issue.2, pp.168-177, 2013.

A. Nag, M. V. Kovalenko, J. Lee, W. Liu, B. Spokoyny et al., Metal-free inorganic ligands for colloidal nanocrystals NH 2 ? as surface ligands, Journal of the American Chemical Society, issue.27, pp.13310612-10620, 2011.

Q. Guo, M. Grayson, W. Ford, C. J. Yang, H. W. Hages et al., Enhancing the performance of CZTSSe solar cells with Ge alloying, Solar Energy Materials and Solar Cells, vol.105, pp.132-136, 2012.
DOI : 10.1016/j.solmat.2012.05.039

H. Matsushita, T. Maeda, A. Katsui, and T. Takizawa, Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu???III???IV???VI4 and Cu2???II???IV???VI4 (II=Zn,Cd; III=Ga,In; IV=Ge,Sn; VI=Se), Journal of Crystal Growth, vol.208, issue.1-4, pp.416-422, 2000.
DOI : 10.1016/S0022-0248(99)00468-6

E. Mellikov, D. Meissner, T. Varema, M. Altosaar, M. Kauk et al., Monograin materials for solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.1, pp.65-68, 2009.
DOI : 10.1016/j.solmat.2008.04.018

D. Dumcenco and Y. Huang, The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy, Optical Materials, vol.35, issue.3, pp.419-425, 2013.
DOI : 10.1016/j.optmat.2012.09.031

C. A. Cattley, C. Cheng, S. M. Fairclough, L. M. Droessler, N. P. Young et al., Low temperature phase selective synthesis of Cu 2 ZnSnS 4 quantum dots, Chemical Communications, issue.36, p.493745, 2013.

A. Shavel, D. Cadavid, M. Ibáñez, A. Carrete, and A. Cabot, Nanocrystals in a Flow Reactor, Journal of the American Chemical Society, vol.134, issue.3, pp.1438-1441, 2012.
DOI : 10.1021/ja209688a

M. Li, W. Zhou, J. Guo, Y. Zhou, Z. Hou et al., Synthesis of Pure Metastable Wurtzite CZTS Nanocrystals by Facile One-Pot Method, The Journal of Physical Chemistry C, vol.116, issue.50, pp.11626507-26516, 2012.
DOI : 10.1021/jp307346k

Y. Zhao, W. Zhou, J. Jiao, Z. Zhou, and S. Wu, Aqueous synthesis and characterization of hydrophilic Cu2ZnSnS4 nanocrystals, Materials Letters, vol.96, pp.174-176, 2013.
DOI : 10.1016/j.matlet.2013.01.059

O. Zaberca, J. Oftinger, . Chane-ching, . Datas, . Lafond et al., Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers, Nanotechnology, vol.23, issue.18, p.23185402, 2012.
DOI : 10.1088/0957-4484/23/18/185402

URL : https://hal.archives-ouvertes.fr/hal-00866309

H. Dong, T. Schnabel, E. Ahlswede, and C. Feldmann, Polyol-mediated synthesis of Cu2ZnSn(S,Se)4 kesterite nanoparticles and their use in thin-film solar cells, Solid State Sciences, vol.29, pp.52-57, 2014.
DOI : 10.1016/j.solidstatesciences.2014.01.006

B. Anne, Formulation des encres pour l'impression, 2007.

K. Eiroma, J. Forsman, E. Hult, A. Auvinen, T. Sipiläinen-malm et al., Water-based carboncoated copper nanoparticle fluid?formation of conductive layers at low temperature by spin coating and inkjet deposition, Journal of Imaging Science and Technology, vol.56, issue.4, pp.40501-40502, 2012.

H. Zhou, W. Hsu, H. Duan, B. Bob, W. Yang et al., CZTS nanocrystals: a promising approach for next generation thin film photovoltaics, Energy & Environmental Science, vol.2, issue.481, p.2822, 2013.
DOI : 10.1038/am.2012.2

F. C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Solar Energy Materials and Solar Cells, vol.93, issue.4, pp.394-412, 2009.
DOI : 10.1016/j.solmat.2008.10.004

M. Kumar, R. Seelaboyina, K. Taneja, A. Venkata-madiraju, A. Kumar-keshri et al., Synthesis of CIS Nanoink and Its Absorber Layer without Selenization, Conference Papers in Energy, vol.12, issue.5, pp.1-3, 2013.
DOI : 10.1016/j.tsf.2004.11.078

C. and J. Brinker, Sol-gel science : the physics and chemistry of sol-gel processing, 1990.

K. Antoine-de, Synthèse de nouveaux types de nanocristaux semiconducteurs pour application en cellules solaires, 2012.

K. , X. Steirer, M. O. Reese, B. L. Rupert, N. Kopidakis et al., Ultrasonic spray deposition for production of organic solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.4, pp.447-453, 2009.

M. Pudas, N. Halonen, P. Granat, and J. Vähäkangas, Gravure printing of conductive particulate polymer inks on flexible substrates, Progress in Organic Coatings, vol.54, issue.4, pp.310-316, 2005.
DOI : 10.1016/j.porgcoat.2005.07.008

R. Faddoul, Optimisation des procédés d'impression dédiésdédiésà la production de masse de composants microélectroniquesmicroélectroniquesà base de céramique, 2012.

M. Pudas, J. Hagberg, and S. Leppävuori, Printing parameters and ink components affecting ultra-fine-line gravure-offset printing for electronics applications, Journal of the European Ceramic Society, vol.24, issue.10-11, pp.10-112943, 2004.
DOI : 10.1016/j.jeurceramsoc.2003.11.011

Z. Zhou, Y. Wang, D. Xu, and Y. Zhang, Fabrication of Cu2ZnSnS4 screen printed layers for solar cells, Solar Energy Materials and Solar Cells, vol.94, issue.12, pp.2042-2045, 2010.
DOI : 10.1016/j.solmat.2010.06.010

G. Lewin-hufnagel and D. Blasiar, Southwest Prevention Center, et Southwest Center for the Application of Prevention Technologies. Handbook of print media. Southwest Prevention Center, College of Continuing Education, 2001.

G. Martin, S. Hoath, and . Hutchings, Inkjet printing - the physics of manipulating liquid jets and drops, Journal of Physics: Conference Series, vol.105, p.12001, 2008.
DOI : 10.1088/1742-6596/105/1/012001

H. P. Le, Progress and Trends in Ink-jet Printing Technology, Journal of Imaging Science and Technology, pp.49-62, 1997.

H. Wijshoff, The dynamics of the piezo inkjet printhead operation???, Physics Reports, vol.491, issue.4-5, pp.77-177, 2010.
DOI : 10.1016/j.physrep.2010.03.003

M. Barret, Impression par jet dematì ere de transistors organiques sur support souple, 2007.

S. Magdassi, The chemistry of inkjet inks, 2010.
DOI : 10.1142/6869

T. Vidmar, M. Topi?, P. Dzik, . Et-ur?a-opara, and . Kra?ovec, Inkjet printing of sol???gel derived tungsten oxide inks, Solar Energy Materials and Solar Cells, vol.125, pp.87-95, 2014.
DOI : 10.1016/j.solmat.2014.02.023

D. Peter, R. Angelo, . Kronfli, R. Et-ramin, and . Farnood, Synthesis and inkjet printing of aqueous ZnS :Mn nanoparticles, Journal of Luminescence, vol.136, pp.100-108, 2013.

E. Tekin, P. J. Smith, and U. S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles, Soft Matter, vol.2, issue.4, p.703, 2008.
DOI : 10.1039/b711984d

A. W. By-jolke-perelaer, C. E. De-laat, U. S. Hendriks, and . Schubert, Inkjet-printed silver tracks : low temperature curing and thermal stability investigation, Journal of Materials Chemistry, issue.27, p.183209, 2008.

A. Chiolerio, M. Cotto, P. Pandolfi, P. Martino, V. Camarchia et al., Ag nanoparticle-based inkjet printed planar transmission lines for RF and microwave applications: Considerations on ink composition, nanoparticle size distribution and sintering time, Microelectronic Engineering, vol.97, pp.8-15, 2012.
DOI : 10.1016/j.mee.2012.03.036

M. Arin, P. Lommens, C. Simon, G. Hopkins, J. Pollefeyt et al., Deposition of photocatalytically active TiO 2 films by inkjet printing of TiO 2 nanoparticle suspensions obtained from microwave-assisted hydrothermal synthesis, Nanotechnology, issue.16, p.23165603, 2012.

F. Cyrot-lackmann, Sur le calcul de la coh??sion et de la tension superficielle des m??taux de transition par une m??thode de liaisons fortes, Journal of Physics and Chemistry of Solids, vol.29, issue.7, pp.1235-1243, 1968.
DOI : 10.1016/0022-3697(68)90216-3

B. Cabane, Formulation des dispersions, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00015989

R. M. Meixner, D. Cibis, K. Krueger, . Et-holger, and . Goebel, Characterization of polymer inks for drop-on-demand printing systems, Microsystem Technologies, vol.290, issue.8, pp.1137-1142, 2008.
DOI : 10.1007/s00542-008-0639-7

S. Thai and . Vu, Rhéologie des suspensions non newtoniennes, 2010.

A. Einstein, Eine neue Bestimmung der Molek??ldimensionen, Annalen der Physik, vol.17, issue.2, pp.289-306, 1906.
DOI : 10.1002/andp.19063240204

M. Irvin and . Krieger, A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres, Journal of Rheology, vol.3, issue.1, p.137, 1959.

C. Ancey-ethéì-ene-jorrot, Yield stress for particle suspensions within a clay dispersion, Journal of Rheology, vol.45, issue.2, p.297, 2001.
DOI : 10.1122/1.1343879

H. C. Hamaker, The London???van der Waals attraction between spherical particles, Physica, vol.4, issue.10, pp.1058-1072, 1937.
DOI : 10.1016/S0031-8914(37)80203-7

B. Faure, G. Salazar-alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal et al., Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens, Science and Technology of Advanced Materials, vol.112, issue.2, p.23001, 2013.
DOI : 10.1126/science.1217654

W. Peng, L. , and A. F. Routh, Why Do Drying Films Crack ? Langmuir, pp.9885-9888, 2004.

R. Noguera, M. Lejeune, and T. Chartier, 3D fine scale ceramic components formed by ink-jet prototyping process, Journal of the European Ceramic Society, vol.25, issue.12, pp.2055-2059, 2005.
DOI : 10.1016/j.jeurceramsoc.2005.03.223

J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Reviews of Modern Physics, vol.69, issue.3, p.865, 1997.
DOI : 10.1103/RevModPhys.69.865

D. Kuscer, G. Stavber, G. Trefalt, and M. Kosec, Formulation of an Aqueous Titania Suspension and its Patterning with Ink-Jet Printing Technology, Journal of the American Ceramic Society, vol.17, issue.6, pp.487-493, 2012.
DOI : 10.1111/j.1551-2916.2011.04876.x

W. I. Goldburg, Dynamic light scattering, American Journal of Physics, vol.67, issue.12, p.1152, 1999.
DOI : 10.1119/1.19101

D. Jeffrey, K. Clogston-et-anil, and . Patri, Zeta Potential Measurement, Characterization of Nanoparticles Intended for Drug Delivery, pp.63-70, 2011.

H. Paucot, ICP-MS : couplage plasma induit par haute fréquence?spectrométrie de masse, 2010.

H. Bernard, M. Jean-yves, G. Jérôme, and D. Manuel, Spectrométrie d'absorption dans l'infrarouge, 2012.

R. Jacky, Microscopié electroniquè a balayage -Principe etéquipementetéquipement, 2013.

E. F. Bertaut, Raies de Debye???Scherrer et repartition des dimensions des domaines de Bragg dans les poudres polycristallines, Acta Crystallographica, vol.3, issue.1, pp.14-18, 1950.
DOI : 10.1107/S0365110X50000045

X. Fontané, L. Calvo-barrio, V. Izquierdo-roca, E. Saucedo, A. Pérez-rodriguez et al., In-depth resolved Raman scattering analysis for the identification of secondary phases: Characterization of Cu2ZnSnS4 layers for solar cell applications, Applied Physics Letters, vol.98, issue.18, p.98181905, 2011.
DOI : 10.1063/1.3587614

M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-roca et al., thin films, Applied Physics Letters, vol.104, issue.2, p.21901, 2014.
DOI : 10.1063/1.4861593

B. Beverskog and I. Puigdomenech, Revised Pourbaix Diagrams for Copper at 25 to 300??C, Journal of The Electrochemical Society, vol.144, issue.10, pp.3476-3483, 1997.
DOI : 10.1149/1.1838036

T. Naoto, Intercomparison of thermodynamic databases, 2005.

D. Robert, E. Hancock-et-arthur, and . Martell, Ligand design for selective complexation of metal ions in aqueous solution, Chemical Reviews, vol.89, issue.8, pp.1875-1914, 1989.

P. Paoletti, Formation of metal complexes with ethylenediamine: a critical survey of equilibrium constants, enthalpy and entropy values, Pure and Applied Chemistry, vol.56, issue.4, 1984.
DOI : 10.1351/pac198456040491

L. S. Prabhumirashi and J. K. Khoje, TGA and DTA studies on en and tmn complexes of Cu(II) chloride, nitrate, sulphate, acetate and oxalate, Thermochimica Acta, vol.383, issue.1-2, pp.109-118, 2002.
DOI : 10.1016/S0040-6031(01)00683-9

D. D. Perrin and I. G. Sayce, Stability constants of polynuclear mercaptoacetate complexes of nickel and zinc, Journal of the Chemical Society A: Inorganic, Physical, Theoretical, vol.A, pp.82-89, 1967.
DOI : 10.1039/j19670000082

L. S. Guinesi, C. A. Ribeiro, M. S. Crespi, and A. M. Veronezi, Tin(II)-EDTA complex: kinetic of thermal decomposition by non-isothermal procedures, Thermochimica Acta, vol.414, issue.1, pp.35-42, 2004.
DOI : 10.1016/j.tca.2003.10.011

A. W. Wills, M. S. Kang, A. Khare, W. L. Gladfelter, and D. J. Norris, Thermally Degradable Ligands for Nanocrystals, Thermally Degradable Ligands for Nanocrystals, pp.4523-4530, 2010.
DOI : 10.1021/nn100637u

H. Azimi, Y. Hou, and C. J. Brabec, Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells, Energy Environ. Sci., vol.1, issue.452, p.1829, 2014.
DOI : 10.1039/c3ta13157b

G. Larramona, S. Bourdais, A. Jacob, C. Choné, T. Muto et al., 8.6% Efficient CZTSSe Solar Cells Sprayed from Water???Ethanol CZTS Colloidal Solutions, The Journal of Physical Chemistry Letters, vol.5, issue.21, pp.3763-3767, 2014.
DOI : 10.1021/jz501864a

K. Prashant, M. L. Sarswat, and . Free, An investigation of rapidly synthesized Cu 2 ZnSnS 4 nanocrystals, Journal of Crystal Growth, vol.372, pp.87-94, 2013.

H. Jiang, P. Dai, Z. Feng, W. Fan, and J. Zhan, Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4, Journal of Materials Chemistry, vol.6, issue.15, p.7502, 2012.
DOI : 10.1002/pip.1174

. Kuo-chin, J. Hsu, L. Liao, . Chao, . Et-yaw-shyan et al., Fabrication and Characterization of Cu 2 ZnSnS4 Powders by a Hydrothermal Method, Japanese Journal of Applied Physics, issue.6R, p.52061202, 2013.

W. Liu, B. Guo, C. Mak, A. Li, X. Wu et al., Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells, Thin Solid Films, vol.535, pp.39-43, 2013.
DOI : 10.1016/j.tsf.2012.11.073

C. F. Shih-hsiung-wu, H. C. Shih, Y. Y. Pan, . Wang, . Ho-min-chen et al., Investigation of vulcanization of non-crystalline Cu 2 ZnSnS 4 nano-particles, Thin Solid Films, vol.544, pp.19-23, 2013.

O. Zaberca, A. Gillorin, B. Durand, and J. Y. Chane-ching, A general route to the synthesis of surfactant-free, solvent-dispersible ternary and quaternary chalcogenide nanocrystals, Journal of Materials Chemistry, vol.80, issue.9, p.6483, 2011.
DOI : 10.1039/c1jm10894h

Y. Zhou, W. Zhou, M. Li, Y. Du, and S. Wu, Particles for a Low-Cost Solar Cell: Morphology Control and Growth Mechanism, The Journal of Physical Chemistry C, vol.115, issue.40, pp.19632-19639, 2011.
DOI : 10.1021/jp206728b

L. Shi and Q. Li, Thickness tunable Cu2ZnSnSe4 nanosheets, Thickness tunable Cu 2 ZnSnSe 2 nanosheets, p.6507, 2011.
DOI : 10.1039/c1ce05746d

C. Li, E. Ha, W. Wong, C. Li, K. Ho et al., A facile arrested precipitation method for synthesis of pure wurtzite Cu2ZnSnS4 nanocrystals using thiourea as a sulfur source, Materials Research Bulletin, vol.47, issue.11, pp.473201-3205, 2012.
DOI : 10.1016/j.materresbull.2012.08.014

J. Xu, X. Yang, Q. Yang, T. Wong, and C. Lee, Hierarchical Microspheres as an Effective Counter Electrode Material for Quantum Dot Sensitized Solar Cells, The Journal of Physical Chemistry C, vol.116, issue.37, pp.19718-19723, 2012.
DOI : 10.1021/jp306628m

Y. Zhang, T. Yoshihara, and A. Yamada, Synthesis of Cu$_{2}$ZnSn(S,Se)$_{4}$ Nanoparticles for Application in Low-Cost Solar Cells, Applied Physics Express, vol.5, issue.1, p.12301, 2012.
DOI : 10.1143/APEX.5.012301

S. Sawanta, H. Mali, C. S. Kim, P. S. Shim, C. Patil et al., Polyvinylpyrrolidone (PVP) assisted single-step synthesis of kesterite Cu

C. Shannon, B. A. Riha, A. L. Parkinson, and . Prieto, Solution-Based Synthesis and Characterization of Cu 2 ZnSnS 4 Nanocrystals, Journal of the American Chemical Society, issue.34, pp.13112054-12055, 2009.

Q. Guo, H. W. Hillhouse, and R. Agrawal, Nanocrystal Ink and Its Use for Solar Cells, Journal of the American Chemical Society, vol.131, issue.33, pp.11672-11673, 2009.
DOI : 10.1021/ja904981r

C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo et al., Synthesis of Cu 2 ZnSnS 2 nanocrystals for use in low-cost photovoltaics, Journal of the American Chemical Society, issue.35, pp.13112554-12555, 2009.

H. Wei, W. Guo, Y. Sun, Z. Yang, and Y. Zhang, Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals, Materials Letters, vol.64, issue.13, pp.1424-1426, 2010.
DOI : 10.1016/j.matlet.2010.03.034

T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo et al., Preparation and photoelectrochemical properties of densely immobilized Cu 2 ZnSnS 4 nanoparticle films, Journal of Materials Chemistry, issue.25, p.205319, 2010.

J. Wang, X. Xin, and . Et-zhiqun-lin, Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics, Nanoscale, vol.9, issue.8, p.3040, 2011.
DOI : 10.1039/c1nr10425j

C. Zou, L. Zhang, D. Lin, Y. Yang, Q. Li et al., Facile synthesis of Cu 2 ZnSnS 4 nanocrystals, CrystEngComm, issue.10, p.133310, 2011.

H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang et al., Tunable band gap Cu 2 ZnSnS 4x Se 4(1-x) nanocrystals : experimental and first-principles calculations, CrystEngComm, issue.7, p.132222, 2011.

X. Lu, Z. Zhuang, Q. Peng, and Y. Li, Wurtzite Cu 2 ZnSnS 4 nanocrystals : a novel quaternary semiconductor, Chemical Communications, issue.11, p.473141, 2011.

J. Wang, J. Hu, Y. Guo, and L. Wan, Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic???inorganic hybrid photodetectors, NPG Asia Materials, vol.131, issue.1, p.2, 2012.
DOI : 10.1038/am.2012.2

A. Singh, H. Geaney, F. Laffir, and K. M. Ryan, Nanorods and Their Perpendicular Assembly, Journal of the American Chemical Society, vol.134, issue.6, pp.2910-2913, 2012.
DOI : 10.1021/ja2112146

K. Sudip, A. Saha, . Guchhait, J. Et-amlan, and . Pal, Cu 2 ZnSnS 4 (CZTS) nanoparticle based nontoxic and earth-abundant hybrid pn-junction solar cells, Physical Chemistry Chemical Physics, issue.22, p.148090, 2012.

Q. Tian, X. Xu, L. Han, M. Tang, R. Zou et al., Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells, CrystEngComm, vol.29, issue.11, p.143847, 2012.
DOI : 10.1039/c2ce06552e

M. Zhou, Y. Gong, J. Xu, G. Fang, Q. Xu et al., Colloidal CZTS nanoparticles and films: Preparation and characterization, Journal of Alloys and Compounds, vol.574, pp.272-277, 2013.
DOI : 10.1016/j.jallcom.2013.05.143

H. Nishi, T. Nagano, S. Kuwabata, and T. Torimoto, nanoparticles prepared by a solution-based approach, Phys. Chem. Chem. Phys., vol.7, issue.2, p.672, 2014.
DOI : 10.1039/C3CP53946F

R. Ahmad, M. Distaso, H. Azimi, C. J. Brabec, and W. Peukert, Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles, Journal of Nanoparticle Research, vol.546, issue.18, 2013.
DOI : 10.1007/s11051-013-1886-9

Y. Kim, K. Woo, I. Kim, Y. S. Cho, S. Jeong et al., Highly concentrated synthesis of copper-zinc-tin-sulfide nanocrystals with easily decomposable capping molecules for printed photovoltaic applications, Nanoscale, vol.2, issue.21, p.510183, 2013.
DOI : 10.1039/c3nr03104g

K. Ou, . Jian-cin-fan, C. Jem-kun-chen, L. Huang, J. Chen et al., Hot-injection synthesis of monodispersed Cu 2 ZnSn(SxSe 1-x ) 4 nanocrystals : tunable composition and optical properties, Journal of Materials Chemistry, issue.29, p.2214667, 2012.

C. Wang, C. Zhu, and T. Zhang, Preparation and characterization of Cu2ZnSn(S,Se)4 thin film as photovoltaic absorber material for solar cells, Materials Letters, vol.108, pp.62-64, 2013.
DOI : 10.1016/j.matlet.2013.06.091

S. Suehiro, K. Horita, K. Kumamoto, M. Yuasa, T. Tanaka et al., Nanocrystal Solar Cells: Efficient Stripping of Surface Insulating Layers Using Alkylating Agents, The Journal of Physical Chemistry C, vol.118, issue.2, pp.804-810, 2014.
DOI : 10.1021/jp408360j

L. Boyd and . Earl, The colorful complexes of copper(II), Journal of Chemical Education, vol.62, issue.9, p.798, 1985.

S. B. Sant and B. R. Sant, Titrimetric Determination of 2-Mercaptoacetic (or Thioglycolic) Acid by Copper(II), Analytical Chemistry, vol.31, issue.11, pp.311879-1880, 1959.
DOI : 10.1021/ac60155a063

Q. Fernando and H. Freiser, Chelating Properties of ??-Mercaptopropionic Acid, Journal of the American Chemical Society, vol.80, issue.18, pp.4928-4931, 1958.
DOI : 10.1021/ja01551a042

S. Abe, R. Karel?apekkarel?karel?apek, . Bram-de-geyter, . Et-zeger, and . Hens, Tuning the Postfocused Size of Colloidal Nanocrystals by the Reaction Rate: From Theory to Application, ACS Nano, vol.6, issue.1, pp.42-53, 2012.
DOI : 10.1021/nn204008q

B. Minceva-sukarova, M. Najdoski, I. Grozdanov, and C. J. , Raman spectra of thin solid films of some metal sulfides, Journal of Molecular Structure, vol.410, issue.411
DOI : 10.1016/S0022-2860(96)09713-X

M. Scocioreanu, M. Baibarac, I. Baltog, I. Pasuk, and E. T. Velula, Photoluminescence and Raman evidence for mechanico-chemical interaction of polyaniline-emeraldine base with ZnS in cubic and hexagonal phase, Journal of Solid State Chemistry, vol.186, pp.217-223, 2012.
DOI : 10.1016/j.jssc.2011.12.012

P. Fernandes, P. Salomé, A. Et, and . Da-cunha, A study of ternary Cu 2 SnS 3 and Cu 3 SnS 4 thin films prepared by sulfurizing stacked metal precursors, Journal of Physics D : Applied Physics, issue.21, p.43215403, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569616

K. Bon-kweon, Synthesis, Crystal Structure, and Characterization of Copper (II) Acetate Complex, BULLETIN-KOREAN CHEMICAL SOCIETY, vol.22, issue.1, pp.113-116, 2001.

H. William, D. G. Shaw, and . Walker, The decomposition of thiourea in water solutions, Journal of the American Chemical Society, vol.78, issue.22, pp.5769-5772, 1956.

M. Krunks, . Leskelä, . Mutikainen, and . Niinistö, A Thermoanalytical Study of Copper(I) Thiocarbamide Compounds, Journal of Thermal Analysis and Calorimetry, vol.56, issue.2, pp.479-484, 1999.
DOI : 10.1023/A:1010184107901

F. Roux, S. Amtablian, M. Anton, G. Besnard, L. Bilhaut et al., Chalcopyrite thinfilm solar cells by industry-compatible ink-based process, Solar Energy Materials and Solar Cells, pp.86-92, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00996640

J. G. Che, C. T. Chan, W. E. Jian, and T. C. Leung, Surface atomic structures, surface energies, and equilibrium crystal shape of molybdenum, Physical Review B, vol.57, issue.3, pp.1875-1880, 1998.
DOI : 10.1103/PhysRevB.57.1875

W. Vollnhofer, C. Eisenmenger-sittner, J. Hell, M. Kiniger, B. Schwarz et al., The influence of temperature treatment and carbon addition on the surface morphology and the surface energy of molybdenum layers on carbon substrates, Surface and Interface Analysis, vol.1, issue.3-4, pp.3-4526, 2008.
DOI : 10.1002/sia.2613

J. U. Wieneke, B. Kommoß, O. Gaer, I. Prykhodko, and M. Ulbricht, Systematic Investigation of Dispersions of Unmodified Inorganic Nanoparticles in Organic Solvents with Focus on the Hansen Solubility Parameters, Industrial & Engineering Chemistry Research, vol.51, issue.1, pp.327-334, 2012.
DOI : 10.1021/ie201973u

. Sho-hsun, J. Wang, C. Liu, C. Pai, P. Chen et al., Hansen solubility parameter analysis on the dispersion of zirconia nanocrystals, Journal of Colloid and Interface Science, vol.407, pp.140-147, 2013.

C. M. Hansen, The three dimensional solubility parameter. Danish Technical : Copenhagen, p.14, 1967.

S. Vollmer, G. Witte, and C. Wöll, Structural Analysis of Saturated Alkanethiolate Monolayers on Cu(100):?? Coexistence of Thiolate and Sulfide Species, Langmuir, vol.17, issue.24, pp.7560-7565, 2001.
DOI : 10.1021/la0107852

D. Aldakov, A. Lefrançois, and P. Reiss, Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications, Journal of Materials Chemistry C, vol.186, issue.suppl. 3, pp.3756-3888, 2013.
DOI : 10.1039/c3tc30273c

R. A. Nyquist and W. J. Potts, Characteristic infrared absorption frequencies of thiol esters and related compounds, Spectrochimica Acta, vol.15, pp.514-538, 1959.
DOI : 10.1016/S0371-1951(59)80348-9

A. Carrete, A. Shavel, X. Fontané, J. Montserrat, J. Fan et al., Antimony-Based Ligand Exchange To Promote Crystallization in Spray- Deposited Cu 2 ZnSnSe 4 Solar Cells, Journal of the American Chemical Society, issue.43, pp.13515982-15985, 2013.

J. Peter, T. Yunker, M. A. Still, A. G. Lohr, and . Yodh, Suppression of the coffee-ring effect by shape-dependent capillary interactions, Nature, issue.7360, pp.476308-311, 2011.

P. Oluwatosin-babatunde, W. J. Hong, K. Nakaso, . Et-jun, and . Fukai, Effect of Solute- and Solvent-Derived Marangoni Flows on the Shape of Polymer Films Formed from Drying Droplets, AIChE Journal, vol.11, issue.3, pp.699-702, 2013.
DOI : 10.1002/aic.14031

F. Alexander and . Routh, Drying of thin colloidal films, Reports on Progress in Physics, vol.76, issue.4, p.46603, 2013.

C. G. Wilber, Toxicology of selenium: A review, Clinical Toxicology, vol.44, issue.4, pp.171-230, 1980.
DOI : 10.1248/cpb.26.703

W. Li, J. Chen, H. Cui, F. Liu, and X. Hao, Inhibiting MoS2 formation by introducing a ZnO intermediate layer for Cu2ZnSnS4 solar cells, Materials Letters, vol.130, pp.87-90, 2014.
DOI : 10.1016/j.matlet.2014.05.089

. Westgate, Fabrication of Cu 2 ZnSnS 4 solar cell on a flexible glass substrate, Thin Solid Films, vol.562, pp.574-577, 2014.

S. López-marino, M. Placidi, A. Pérez-tomás, J. Llobet, V. Izquierdo-roca et al., Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer, Journal of Materials Chemistry A, vol.105, issue.481, p.8338, 2013.
DOI : 10.1039/c3ta11419h

V. Kosyak, M. A. Karmarkar, and M. A. Scarpulla, thin films, Applied Physics Letters, vol.100, issue.26, p.263903, 2012.
DOI : 10.1063/1.4731875

J. Ge, Y. Wu, C. Zhang, S. Zuo, J. Jiang et al., Comparative study of the influence of two distinct sulfurization ramping rates on the properties of Cu2ZnSnS4 thin films, Applied Surface Science, vol.258, issue.19, pp.7250-7254, 2012.
DOI : 10.1016/j.apsusc.2012.02.141

J. J. Scragg, J. Timo-wätjen, M. Edoff, T. Ericson, T. Kubart et al., A Detrimental reaction at the molybdenum back contact in Cu 2 ZnSn(S,Se) 4 thin-film solar cells, Journal of the American Chemical Society, issue.47, pp.13419330-19333, 2012.

R. B. Chalapathy, G. S. Jung, and . Et-byung-tae-ahn, Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells, Solar Energy Materials and Solar Cells, vol.95, issue.12, pp.953216-3221, 2011.
DOI : 10.1016/j.solmat.2011.07.017

B. D. Chernomordik, A. E. Béland, D. D. Deng, L. F. Francis, S. Eray et al., Thin Films Formed By Annealing Colloidal Nanocrystal Coatings, Chemistry of Materials, vol.26, issue.10, pp.3191-3201, 2014.
DOI : 10.1021/cm500791a

C. Wang and A. Manthiram, Low-Cost CZTSSe Solar Cells Fabricated with Low Band Gap CZTSe Nanocrystals, Environmentally Friendly Binder, and Nonvacuum Processes, ACS Sustainable Chemistry & Engineering, vol.2, issue.4, pp.561-568, 2014.
DOI : 10.1021/sc400465m

E. M. Mkawi, K. Ibrahim, M. K. Ali, M. A. Farrukh, K. Et-nageh et al., Solvent solution-dependent properties of nonstoichiometric cubic Cu2ZnSnS4 nanoparticles, Chemical Physics Letters, vol.608, pp.393-397, 2014.
DOI : 10.1016/j.cplett.2014.06.011

W. Wang, H. Shen, F. Jiang, X. He, and . Et-zhihao-yue, Low-cost chemical fabrication of Cu2ZnSnS4 microparticles and film, Journal of Materials Science: Materials in Electronics, vol.14, issue.6, pp.1813-1817, 2013.
DOI : 10.1007/s10854-012-1017-x

X. He, H. Shen, J. Pi, C. Zhang, and Y. Hao, Synthesis of Cu2ZnSnS4 films from sequentially electrodeposited Cu???Sn???Zn precursors and their structural and optical properties, Journal of Materials Science: Materials in Electronics, vol.519, issue.8, pp.4578-4584, 2013.
DOI : 10.1007/s10854-013-1445-2

J. Lehner, M. Ganchev, M. Loorits, N. Revathi, T. Raadik et al., Structural and compositional properties of CZTS thin films formed by rapid thermal annealing of electrodeposited layers, Journal of Crystal Growth, vol.380, pp.236-240, 2013.
DOI : 10.1016/j.jcrysgro.2013.06.012

W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, and M. Matsumura, Single-step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure, Electrochimica Acta, vol.88, pp.436-442, 2013.
DOI : 10.1016/j.electacta.2012.10.076

M. Espindola-rodriguez, M. Placidi, O. Vigil-galán, V. Izquierdo-roca, X. Fontané et al., Compositional optimization of photovoltaic grade Cu2ZnSnS4 films grown by pneumatic spray pyrolysis, Thin Solid Films, vol.535, pp.67-72, 2013.
DOI : 10.1016/j.tsf.2012.12.082

G. Gurieva, M. Guc, L. I. Bruk, V. Izquierdo-roca, A. Pérez-rodríguez et al., thin films grown by spray pyrolysis: characterization by Raman spectroscopy and X-ray diffraction, physica status solidi (c), vol.10, issue.7-8, pp.1082-1085, 2013.
DOI : 10.1002/pssc.201200856

D. D. Shivagan, P. J. Dale, A. P. Samantilleke, and L. M. Peter, Electrodeposition of chalcopyrite films from ionic liquid electrolytes, Thin Solid Films, vol.515, issue.15, pp.5155899-5903, 2007.
DOI : 10.1016/j.tsf.2006.12.092

A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron???phonon coupling, doping and nonadiabatic effects, Solid State Communications, vol.143, issue.1-2, pp.47-57, 2007.
DOI : 10.1016/j.ssc.2007.03.052

P. A. Fernandes, P. M. Salomé, and A. F. Da-cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering, Journal of Alloys and Compounds, vol.509, issue.28, pp.7600-7606, 2011.
DOI : 10.1016/j.jallcom.2011.04.097

P. A. Fernandes, P. M. Salomé, and A. F. Da-cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films, Thin Solid Films, vol.517, issue.7, pp.2519-2523, 2009.
DOI : 10.1016/j.tsf.2008.11.031