V. Berg, B. Lecouvet, F. Moysan, P. Maldague, B. Jamart et al., MR assessment of red marrow distribution and composition in the proximal femur: correlation with clinical and laboratory parameters, Skeletal Radiology, vol.26, issue.10, pp.589-96, 1997.
DOI : 10.1007/s002560050291

T. Lahtinen, E. Alhava, P. Karjalainen, and T. Romppanen, The effect of age on blood flow in the proximal femur in man, J Nucl Med Off Publ Soc Nucl Med. nov, vol.22, issue.11, pp.966-72, 1981.

G. Bridgeman and M. Brookes, Blood supply to the human femoral diaphysis in youth and senescence, J Anat. juin, vol.188, pp.611-632, 1996.

R. Prisby, M. Ramsey, B. Behnke, J. Dominguez, A. Donato et al., Aging Reduces Skeletal Blood Flow, Endothelium-Dependent Vasodilation, and NO Bioavailability in Rats, Journal of Bone and Mineral Research, vol.12, issue.Suppl 2, pp.1280-1288, 2007.
DOI : 10.1359/jbmr.070415

K. Liao and D. Solomon, Traditional cardiovascular risk factors, inflammation and cardiovascular risk in rheumatoid arthritis, Rheumatology, vol.52, issue.1, pp.45-52, 2013.
DOI : 10.1093/rheumatology/kes243

M. Bredella, M. Torriani, R. Ghomi, B. Thomas, D. Brick et al., Vertebral Bone Marrow Fat Is Positively Associated With Visceral Fat and Inversely Associated With IGF-1 in Obese Women, Obesity, vol.36, issue.1, pp.49-53, 2011.
DOI : 10.1016/j.bone.2004.07.008

D. Iorgi, N. Mittelman, S. Gilsanz, and V. , Differential effect of marrow adiposity and visceral and subcutaneous fat on cardiovascular risk in young, healthy adults, International Journal of Obesity, vol.162, issue.12, pp.1854-60, 2005.
DOI : 10.1002/jmri.20367

B. Adler, K. Kaushansky, and C. Rubin, Obesity-driven disruption of haematopoiesis and the bone marrow niche, Nature Reviews Endocrinology, vol.13, issue.12, pp.737-785, 2014.
DOI : 10.1101/gad.231944.113

K. Pelton, J. Krieder, D. Joiner, M. Freeman, S. Goldstein et al., Hypercholesterolemia Promotes an Osteoporotic Phenotype, The American Journal of Pathology, vol.181, issue.3, pp.928-964, 2012.
DOI : 10.1016/j.ajpath.2012.05.034

C. Ackert-­?bicknell, HDL cholesterol and bone mineral density: Is there a genetic link?, Bone, vol.50, issue.2, pp.525-558, 2012.
DOI : 10.1016/j.bone.2011.07.002

J. Scolaro, M. Schenker, S. Yannascoli, K. Baldwin, S. Mehta et al., Cigarette Smoking Increases Complications Following Fracture, The Journal of Bone and Joint Surgery-American Volume, vol.96, issue.8, pp.674-81, 2014.
DOI : 10.2106/JBJS.M.00081

S. Van-eeden and J. Hogg, The response of human bone marrow to chronic cigarette smoking, European Respiratory Journal, vol.15, issue.5, pp.915-936, 2000.
DOI : 10.1034/j.1399-3003.2000.15e18.x

M. Fini, F. Salamanna, F. Veronesi, P. Torricelli, A. Nicolini et al., Role of obesity , alcohol and smoking on bone health, Front Biosci Elite Ed, vol.4, pp.2686-706, 2012.

R. Wüst, K. Winwood, D. Wilks, C. Morse, H. Degens et al., Effects of Smoking on Tibial and Radial Bone Mass and Strength May Diminish with Age, The Journal of Clinical Endocrinology & Metabolism, vol.95, issue.6, pp.2763-71, 2010.
DOI : 10.1210/jc.2009-2462

A. Agustí, J. Barberà, E. Wouters, V. Peinado, and P. Jeffery, Lungs, Bone Marrow, and Adipose Tissue. A Network Approach to the Pathobiology of Chronic Obstructive Pulmonary Disease, American Journal of Respiratory and Critical Care Medicine, vol.188, issue.12, pp.1396-406, 2013.
DOI : 10.1164/rccm.201308-1404PP

T. Poulton, W. Murphy, J. Duerk, C. Chapek, and D. Feiglin, Bone marrow reconversion in adults who are smokers: MR Imaging findings., American Journal of Roentgenology, vol.161, issue.6, pp.1217-1238, 1993.
DOI : 10.2214/ajr.161.6.8249729

D. Felson, Osteoarthritis as a disease of mechanics, Osteoarthritis and Cartilage, vol.21, issue.1, pp.10-15, 2013.
DOI : 10.1016/j.joca.2012.09.012

G. Yoshida, T. Hirano, and H. Shindo, Deformation and vascular occlusion of the growing rat femoral head induced by mechanical stress, Journal of Orthopaedic Science, vol.5, issue.5, pp.495-502, 2000.
DOI : 10.1007/s007760070029

M. Beck, K. Siebenrock, B. Affolter, H. Nötzli, J. Parvizi et al., Increased Intraarticular Pressure Reduces Blood Flow to the Femoral Head, Clinical Orthopaedics and Related Research, vol.424, issue.424, pp.149-52, 2004.
DOI : 10.1097/01.blo.0000128296.28666.35

R. Schoeniger, N. Espinosa, R. Sierra, M. Leunig, and R. Ganz, Role of the extraosseus blood supply in osteoarthritic femoral heads? Clin Orthop, sept, vol.467, issue.9, pp.2235-2275, 2009.

P. Hardouin, V. Pansini, and B. Cortet, Bone marrow fat, Joint Bone Spine, vol.81, issue.4, pp.313-322, 2014.
DOI : 10.1016/j.jbspin.2014.02.013

T. Kubo, K. Kimori, F. Nakamura, S. Inoue, M. Fujioka et al., Blood flow and blood volume in the femoral head of healthy adults according to age: Measurement with positron emission tomography (PET), Annals of Nuclear Medicine, vol.15, issue.3, pp.231-236, 2001.
DOI : 10.1007/BF02987837

H. Hamaguchi, M. Fujioka, K. Takahashi, T. Hirata, M. Ishida et al., Age-related changes in the hemodynamics of the femoral head as evaluated by early phase of bone scintigraphy, Annals of Nuclear Medicine, vol.14, issue.3, pp.35-40, 2006.
DOI : 10.1007/BF02985588

S. Tuljapurkar, T. Mcguire, S. Brusnahan, J. Jackson, K. Garvin et al., Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging, Journal of Anatomy, vol.52, issue.5, pp.574-81, 2011.
DOI : 10.1111/j.1469-7580.2011.01423.x

K. Yoo, H. Lee, Y. Cho, Y. Lim, Y. Kim et al., Anti-inflammatory Effects of Botulinum Toxin Type A in a Complete Freund???s Adjuvant-Induced Arthritic Knee Joint of Hind Leg on Rat Model, Neurotoxicity Research, vol.153, issue.Pt 17, pp.32-41, 2014.
DOI : 10.1007/s12640-013-9447-7

H. Heikkilä, A. Hielm-­?björkman, M. Morelius, S. Larsen, J. Honkavaara et al., Intra-articular botulinum toxin A for the treatment of osteoarthritic joint pain in dogs: A randomized, double-blinded, placebo-controlled clinical trial, The Veterinary Journal, vol.200, issue.1, pp.162-171, 1997.
DOI : 10.1016/j.tvjl.2014.01.020

S. Sun, C. Hsu, H. Lin, Y. Chou, J. Chen et al., Efficacy of intraarticular botulinum toxin A and intraarticular hyaluronate plus rehabilitation exercise in patients with unilateral ankle osteoarthritis: a randomized controlled trial, Journal of Foot and Ankle Research, vol.60, issue.l, p.9, 2014.
DOI : 10.1136/ard.60.6.612

C. Marchini, M. Acler, M. Bolognari, A. Causero, D. Volpe et al., Efficacy of botulinum toxin type A treatment of functional impairment of degenerative hip joint: Preliminary results, J Rehabil Med. juill, vol.42, issue.7, pp.691-694, 2010.

A. Boon, J. Smith, D. Dahm, E. Sorenson, D. Larson et al., Efficacy of Intra-Articular Botulinum Toxin Type A in Painful Knee Osteoarthritis: A Pilot Study, PM&R, vol.2, issue.4, pp.268-76, 2010.
DOI : 10.1016/j.pmrj.2010.02.011

J. Singh, M. Mahowald, and S. Noorbaloochi, Intraarticular Botulinum Toxin A for Refractory Painful Total Knee Arthroplasty: A Randomized Controlled Trial, The Journal of Rheumatology, vol.37, issue.11, pp.2377-86, 2010.
DOI : 10.3899/jrheum.100336

F. Hameed and J. Ihm, Injectable Medications for Osteoarthritis, PM&R, vol.4, issue.5, 2012.
DOI : 10.1016/j.pmrj.2012.02.010

D. Coninck, T. Jans, L. Sys, G. Huysse, W. Verstraeten et al., Dynamic contrast-enhanced MR imaging for differentiation between enchondroma and chondrosarcoma, European Radiology, vol.24, issue.11, pp.3140-52, 2013.
DOI : 10.1007/s00330-013-2913-z

T. Bäuerle, M. Merz, D. Komljenovic, S. Zwick, and W. Semmler, Drug-Induced Vessel Remodeling in Bone Metastases as Assessed by Dynamic Contrast Enhanced Magnetic Resonance Imaging and Vessel Size Imaging: A Longitudinal In vivo Study, Clinical Cancer Research, vol.16, issue.12, pp.3215-3240, 2010.
DOI : 10.1158/1078-0432.CCR-09-2932

M. Boesen, O. Kubassova, R. Bouert, M. Axelsen, M. Ostergaard et al., Correlation between computer-aided dynamic gadolinium-enhanced MRI assessment of inflammation and semi-quantitative synovitis and bone marrow oedema scores of the wrist in patients with rheumatoid arthritis--a cohort study, Rheumatology, vol.51, issue.1, pp.134-177, 2012.
DOI : 10.1093/rheumatology/ker220

M. Cimmino, F. Barbieri, M. Boesen, F. Paparo, M. Parodi et al., Dynamic Contrast-enhanced Magnetic Resonance Imaging of Articular and Extraarticular Synovial Structures of the Hands in Patients with Psoriatic Arthritis, The Journal of Rheumatology Supplement, vol.89, issue.0, pp.44-52, 2012.
DOI : 10.3899/jrheum.120242

J. Griffith, D. Yeung, J. Leung, T. Kwok, and P. Leung, Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy, European Radiology, vol.97, issue.6, pp.1160-1169, 2011.
DOI : 10.1007/s00330-010-2054-6

V. Savvopoulou, T. Maris, A. Koureas, A. Gouliamos, and L. Moulopoulos, Degenerative endplate changes of the lumbosacral spine: Dynamic contrast-enhanced MRI profiles related to age, sex, and spinal level, Journal of Magnetic Resonance Imaging, vol.2, issue.2, pp.382-391, 2011.
DOI : 10.1002/jmri.22444

R. Aaron, J. Dyke, D. Ciombor, D. Ballon, J. Lee et al., Perfusion Abnormalities in Subchondral Bone Associated with Marrow Edema, Osteoarthritis, and Avascular Necrosis, Annals of the New York Academy of Sciences, vol.1117, issue.1, pp.124-161, 2007.
DOI : 10.1196/annals.1402.069

W. Chan, Y. Liu, G. Huang, M. Lin, S. Huang et al., Relationship of Idiopathic Osteonecrosis of the Femoral Head to Perfusion Changes in the Proximal Femur by Dynamic Contrast-Enhanced MRI, American Journal of Roentgenology, vol.196, issue.3, pp.637-680, 2011.
DOI : 10.2214/AJR.10.4322

M. Libicher, C. Kasperk, M. Daniels-­?wredenhagen, T. Heye, H. Kauczor et al., Dynamic contrast-enhanced MRI for monitoring bisphosphonate therapy in Paget???s disease of bone, Skeletal Radiology, vol.37, issue.2, pp.225-255, 2013.
DOI : 10.1007/s00256-012-1423-4

E. Amarteifio, M. Krix, S. Wormsbecher, S. Demirel, S. Braun et al., Dynamic contrast-enhanced ultrasound for assessment of therapy effects on skeletal muscle microcirculation in peripheral arterial disease: Pilot study, European Journal of Radiology, vol.82, issue.4, pp.640-646, 2013.
DOI : 10.1016/j.ejrad.2012.11.022

M. Weber, M. Krix, and S. Delorme, Quantitative evaluation of muscle perfusion with CEUS and with MR, European Radiology, vol.41, issue.Suppl 2, pp.2663-74, 2007.
DOI : 10.1007/s00330-007-0641-y

S. Lovitt, F. Marden, B. Gundogdu, and M. Ostrowski, MRI in myopathy, Neurologic Clinics, vol.22, issue.3, pp.509-547, 2004.
DOI : 10.1016/j.ncl.2004.03.008

J. Budzik, L. Thuc, V. Demondion, X. Morel, M. Chechin et al., In vivo MR tractography of thigh muscles using diffusion imaging: initial results, European Radiology, vol.15, issue.12, pp.3079-85, 2007.
DOI : 10.1007/s00330-007-0713-z

C. Khalil, J. Budzik, E. Kermarrec, V. Balbi, L. Thuc et al., Tractography of peripheral nerves and skeletal muscles, European Journal of Radiology, vol.76, issue.3, pp.391-398, 2010.
DOI : 10.1016/j.ejrad.2010.03.012

D. Lussanet, Q. Van-golde, J. Beets-­?tan, R. Post, M. Huijberts et al., Dynamic contrast-enhanced MRI of muscle perfusion combined with MR angiography of collateral artery growth in a femoral artery ligation model, NMR in Biomedicine, vol.25, issue.8, pp.717-742, 2007.
DOI : 10.1002/nbm.1133

B. Saltin, Capacity of blood flow delivery to exercising skeletal muscle in humans, The American Journal of Cardiology, vol.62, issue.8
DOI : 10.1016/S0002-9149(88)80007-9

P. Rueckert and P. Hanson, Comparison of Arterial Occlusion and Ischaemic Exercise for the Study of Vasodilatation in the Human Calf, Clinical Science, vol.88, issue.6, pp.643-652, 1979.
DOI : 10.1042/cs0880643

M. Duet, M. Virally, O. Bailliart, J. Kevorkian, A. Kedra et al., Whole-body 201Tl scintigraphy can detect exercise lower limb perfusion abnormalities in asymptomatic diabetic patients with normal Doppler pressure indices, Nuclear Medicine Communications, vol.22, issue.9, pp.949-54, 2001.
DOI : 10.1097/00006231-200109000-00002

W. Ament, J. Lubbers, G. Rakhorst, W. Vaalburg, G. Verkerke et al., Skeletal muscle perfusion measured by positron emission tomography during exercise, Pfl???gers Archiv European Journal of Physiology, vol.436, issue.5, pp.653-661, 1998.
DOI : 10.1007/s004240050685

E. Amarteifio, S. Wormsbecher, S. Demirel, M. Krix, S. Braun et al., Assessment of skeletal muscle microcirculation in type 2 diabetes mellitus using dynamic contrast-enhanced ultrasound: A pilot study, Diabetes and Vascular Disease Research, vol.81, issue.5, pp.468-70, 2013.
DOI : 10.1148/radiol.2273011499

J. Raynaud, S. Duteil, J. Vaughan, F. Hennel, C. Wary et al., Determination of skeletal muscle perfusion using arterial spin labeling NMRI: Validation by comparison with venous occlusion plethysmography, Magnetic Resonance in Medicine, vol.41, issue.2, pp.305-316, 2001.
DOI : 10.1002/mrm.1192

L. Frank, E. Wong, L. Haseler, and R. Buxton, Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling, Magnetic Resonance in Medicine, vol.243, issue.2, pp.258-67, 1999.
DOI : 10.1002/(SICI)1522-2594(199908)42:2<258::AID-MRM7>3.0.CO;2-E

H. Ledermann, H. Heidecker, A. Schulte, C. Thalhammer, M. Aschwanden et al., and Flowmetry Measurements during Ischemia and Reactive Hyperemia???Initial Experience, Radiology, vol.241, issue.2, pp.477-84, 2006.
DOI : 10.1148/radiol.2412050701

M. Noseworthy, D. Bulte, and J. Alfonsi, BOLD magnetic resonance imaging of skeletal muscle, Semin Musculoskelet Radiol. déc, vol.7, issue.4, pp.307-322, 2003.

H. Ledermann, A. Schulte, H. Heidecker, M. Aschwanden, K. Jäger et al., Blood Oxygenation Level-Dependent Magnetic Resonance Imaging of the Skeletal Muscle in Patients With Peripheral Arterial Occlusive Disease, Circulation, vol.113, issue.25, pp.2929-2964, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.605717

A. Padhani, C. Hayes, S. Landau, and M. Leach, Reproducibility of quantitative dynamic MRI of normal human tissues, NMR in Biomedicine, vol.60, issue.2, pp.143-53, 2002.
DOI : 10.1002/nbm.732

K. Wright, N. Seiberlich, J. Jesberger, D. Nakamoto, R. Muzic et al., Simultaneous magnetic resonance angiography and perfusion (MRAP) measurement: Initial application in lower extremity skeletal muscle, Journal of Magnetic Resonance Imaging, vol.188, issue.5, 2013.
DOI : 10.1002/jmri.24020

O. Schoierer, K. Bloess, D. Bender, I. Burkholder, H. Kauczor et al., Dynamic contrast-enhanced magnetic resonance imaging can assess vascularity within fracture non-unions and predicts good outcome, European Radiology, vol.34, issue.2, 2013.
DOI : 10.1007/s00330-013-3043-3

P. Iversen and G. Nicolaysen, The distribution of blood flow and glucose uptake within single skeletal muscles in the awake rabbit, Acta Physiologica Scandinavica, vol.243, issue.3, pp.373-81, 1990.
DOI : 10.1111/j.1748-1716.1990.tb09012.x

P. Iversen and G. Nicolaysen, Local blood flow and glucose uptake within resting and exercising rabbit skeletal muscle, Am J Physiol. juin, vol.260, issue.6 2, pp.1795-801, 1991.

P. Iversen, M. Standa, and G. Nicolaysen, Marked regional heterogeneity in blood flow within a single skeletal muscle at rest and during exercise hyperaemia in the rabbit, Acta Physiologica Scandinavica, vol.33, issue.Suppl. 168, pp.17-28, 1989.
DOI : 10.1111/j.1748-1716.1989.tb08625.x

A. Greenbaum, P. Etherington, S. Manek, O. Hare, D. Parker et al., Measurements of oxygenation and perfusion in skeletal muscle using multiple microelectrodes, Journal of Muscle Research and Cell Motility, vol.18, issue.2, pp.149-59, 1997.
DOI : 10.1023/A:1018653521686

A. Faranesh, D. Kraitchman, and E. Mcveigh, Measurement of kinetic parameters in skeletal muscle by magnetic resonance imaging with an intravascular agent, Magnetic Resonance in Medicine, vol.36, issue.5, pp.1114-1137, 2006.
DOI : 10.1002/mrm.20884

D. Isbell, F. Epstein, X. Zhong, J. Dimaria, S. Berr et al., Calf muscle perfusion at peak exercise in peripheral arterial disease: Measurement by first-pass contrast-enhanced magnetic resonance imaging, Journal of Magnetic Resonance Imaging, vol.8, issue.5, pp.1013-1033, 2007.
DOI : 10.1002/jmri.20899

B. Versluis, W. Backes, M. Van-eupen, K. Jaspers, P. Nelemans et al., Magnetic Resonance Imaging in Peripheral Arterial Disease, Investigative Radiology, vol.46, issue.1, pp.11-24, 2011.
DOI : 10.1097/RLI.0b013e3181f2bfb8

R. Jiji, A. Pollak, F. Epstein, P. Antkowiak, C. Meyer et al., Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease, Journal of Cardiovascular Magnetic Resonance, vol.15, issue.1, p.14, 2013.
DOI : 10.1161/CIRCULATIONAHA.109.930636

Y. Gordon, S. Partovi, M. Müller-­?eschner, E. Amarteifio, T. Bäuerle et al., Dynamic contrast-­?enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion, Cardiovasc Diagn Ther. avr, vol.4, issue.2, pp.147-64, 2014.

R. Leppek, O. Hoos, A. Sattler, S. Kohle, S. Azzam et al., MR-Imaging of Lower Leg Muscle Perfusion, Herz, vol.29, issue.1, pp.32-46, 2004.
DOI : 10.1007/s00059-004-2532-1

A. Lutz, D. Weishaupt, B. Amann-­?vesti, T. Pfammatter, K. Goepfert et al., Assessment of skeletal muscle perfusion by contrast medium first-pass magnetic resonance imaging: Technical feasibility and preliminary experience in healthy volunteers, Journal of Magnetic Resonance Imaging, vol.35, issue.1, pp.111-132, 2004.
DOI : 10.1002/jmri.20092

A. Nygren, D. Greitz, and L. Kaijser, Skeletal Muscle Perfusion During Exercise Using Gd-DTPA Bolus Detection, Journal of Cardiovascular Magnetic Resonance, vol.2, issue.4, pp.263-70, 2000.
DOI : 10.3109/10976640009148690

A. Nygren and D. Greitz, Delayed contrast agent kinetics in ischemic skeletal muscle, Journal of Magnetic Resonance Imaging, vol.23, issue.2, pp.171-177, 2006.
DOI : 10.1002/jmri.20482

M. Weber, H. Krakowski-­?roosen, S. Delorme, H. Renk, M. Krix et al., Relationship of Skeletal Muscle Perfusion Measured by Contrast-Enhanced Ultrasonography to Histologic Microvascular Density, Journal of Ultrasound in Medicine, vol.25, issue.5, pp.583-91, 2006.
DOI : 10.7863/jum.2006.25.5.583

M. Weber, H. Krakowski-­?roosen, W. Hildebrandt, L. Schröder, I. Ionescu et al., Assessment of Metabolism and Microcirculation of Healthy Skeletal Muscles by Magnetic Resonance and Ultrasound Techniques, Journal of Neuroimaging, vol.88, issue.suppl 2, pp.323-354, 2007.
DOI : 10.1111/j.1552-6569.2007.00156.x

S. Hunter, Sex differences in human fatigability: mechanisms and insight to physiological responses, Acta Physiologica, vol.465, issue.Pt 3, pp.768-89, 2014.
DOI : 10.1111/apha.12234

B. Parker, S. Smithmyer, J. Pelberg, A. Mishkin, M. Herr et al., Sex differences in leg vasodilation during graded knee extensor exercise in young adults, Journal of Applied Physiology, vol.103, issue.5, pp.1583-91, 1985.
DOI : 10.1152/japplphysiol.00662.2007

Y. Saito, M. Iemitsu, T. Otsuki, S. Maeda, and R. Ajisaka, Gender Differences in Brachial Blood Flow during Fatiguing Intermittent Handgrip, Medicine & Science in Sports & Exercise, vol.40, issue.4, pp.684-90, 2008.
DOI : 10.1249/MSS.0b013e3181614327

A. Hogarth, A. Mackintosh, and D. Mary, Gender-related differences in the sympathetic vasoconstrictor drive of normal subjects, Clinical Science, vol.112, issue.6, pp.353-61, 1979.
DOI : 10.1042/CS20060288

URL : https://hal.archives-ouvertes.fr/hal-00479350

S. Hunter and R. Enoka, Sex differences in the fatigability of arm muscles depends on absolute force during isometric contractions, J Appl Physiol Bethesda Md déc, vol.91, issue.6, pp.2686-94, 1985.

C. Roepstorff, M. Thiele, T. Hillig, H. Pilegaard, E. Richter et al., AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise, The Journal of Physiology, vol.397, issue.1, pp.125-163, 2006.
DOI : 10.1113/jphysiol.2006.108720

R. Meyer, T. Towse, R. Reid, R. Jayaraman, R. Wiseman et al., BOLD MRI mapping of transient hyperemia in skeletal muscle after single contractions, NMR in Biomedicine, vol.17, issue.6, pp.392-400, 2004.
DOI : 10.1002/nbm.893

B. Jacobi, G. Bongartz, S. Partovi, A. Schulte, M. Aschwanden et al., Skeletal muscle BOLD MRI: From underlying physiological concepts to its usefulness in clinical conditions, Journal of Magnetic Resonance Imaging, vol.19, issue.Suppl, pp.1253-65, 2012.
DOI : 10.1002/jmri.23536

B. Damon, M. Wadington, D. Lansdown, and J. Hornberger, Spatial heterogeneity in the muscle functional MRI signal intensity time course: effect of exercise intensity, Magnetic Resonance Imaging, vol.26, issue.8
DOI : 10.1016/j.mri.2008.01.023

T. Finni, J. Hodgson, A. Lai, V. Edgerton, and S. Sinha, Nonuniform strain of human soleus aponeurosis-tendon complex during submaximal voluntary contractions in vivo, Journal of Applied Physiology, vol.95, issue.2, pp.829-866, 1985.
DOI : 10.1152/japplphysiol.00775.2002

T. Finni, J. Hodgson, A. Lai, V. Edgerton, and S. Sinha, Mapping of movement in the isometrically contracting human soleus muscle reveals details of its structural and functional complexity, Journal of Applied Physiology, vol.95, issue.5, pp.2128-2161, 1985.
DOI : 10.1152/japplphysiol.00596.2003

J. Hodgson, T. Finni, A. Lai, V. Edgerton, and S. Sinha, Influence of structure on the tissue dynamics of the human soleus muscle observed in MRI studies during isometric contractions, Journal of Morphology, vol.179, issue.5, pp.584-601, 2006.
DOI : 10.1002/jmor.10421

H. Lee, T. Finni, J. Hodgson, A. Lai, V. Edgerton et al., Soleus aponeurosis strain distribution following chronic unloading in humans: an in vivo MR phase-contrast study, Journal of Applied Physiology, vol.100, issue.6, 1985.
DOI : 10.1152/japplphysiol.01085.2005

H. Miura, K. Mccully, L. Hong, S. Nioka, and C. B. , Regional Difference of Muscle Oxygen Saturation and Blood Volume during Exercise Determined by Near Infrared Imaging Device., The Japanese Journal of Physiology, vol.51, issue.5, pp.599-606, 2001.
DOI : 10.2170/jjphysiol.51.599

R. Richardson, L. Haseler, A. Nygren, S. Bluml, and L. Frank, Local perfusion and metabolic demand during exercise: a noninvasive MRI method of assessment, J Appl Physiol Bethesda Md oct, vol.91, issue.4, pp.1845-53, 1985.

A. Agur, V. Ng-­?thow-­?hing, K. Ball, E. Fiume, and N. Mckee, Documentation and three-dimensional modelling of human soleus muscle architecture, Clinical Anatomy, vol.17, issue.4, pp.285-93, 2003.
DOI : 10.1002/ca.10112

M. Song, E. Ruts, J. Kim, I. Janumala, S. Heymsfield et al., Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women, Am J Clin Nutr. 1 mai, vol.79, issue.5, pp.874-80, 2004.

B. Groen, H. Hamer, T. Snijders, J. Van-kranenburg, D. Frijns et al., Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes, Journal of Applied Physiology, vol.116, issue.8, pp.998-1005, 1985.
DOI : 10.1152/japplphysiol.00919.2013

G. Payne and S. Bearden, The Microcirculation of Skeletal Muscle in Aging, Microcirculation, vol.13, issue.4
DOI : 10.1080/10739680600618710

J. Favor, R. Kraus, J. Carrithers, S. Roseno, T. Gavin et al., Sex differences with aging in nutritive skeletal muscle blood flow: impact of exercise training, nitric oxide, and ??-adrenergic-mediated mechanisms, AJP: Heart and Circulatory Physiology, vol.307, issue.4, pp.524-556, 2014.
DOI : 10.1152/ajpheart.00247.2014

A. Schulte, M. Aschwanden, and D. Bilecen, Calf Muscles at Blood Oxygen Level???Dependent MR Imaging: Aging Effects at Postocclusive Reactive Hyperemia, Radiology, vol.247, issue.2, pp.482-491, 2008.
DOI : 10.1148/radiol.2472070828

M. Joyner, N. Dietz, and J. Shepherd, From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs, J Appl Physiol Bethesda Md déc, vol.91, issue.6, pp.2431-2472, 1985.

M. Krix, M. Weber, H. Krakowski-­?roosen, H. Huttner, S. Delorme et al., Assessment of Skeletal Muscle Perfusion Using Contrast-Enhanced Ultrasonography, Journal of Ultrasound in Medicine, vol.24, issue.4, pp.431-472, 2005.
DOI : 10.7863/jum.2005.24.4.431

P. Nuutila and K. Kalliokoski, Use of positron emission tomography in the assessment of skeletal muscle and tendon metabolism and perfusion, Scandinavian Journal of Medicine and Science in Sports, vol.10, issue.6, pp.346-50, 2000.
DOI : 10.1034/j.1600-0838.2000.010006346.x

B. Forster, Is functional MR imaging of skeletal muscle the ultimate tool for assessment of peripheral arterial occlusive disease? Radiology, nov, vol.241, issue.2, pp.329-359, 2006.

P. Peetrons, Ultrasound of muscles, European Radiology, vol.12, issue.1, pp.35-43, 2002.
DOI : 10.1007/s00330-001-1164-6

S. Delorme and M. Krix, Contrast-enhanced ultrasound for examining tumor biology, Cancer Imaging, vol.6, issue.1, pp.148-52, 2006.
DOI : 10.1102/1470-7330.2006.0023

F. Calliada, R. Campani, O. Bottinelli, A. Bozzini, and M. Sommaruga, Ultrasound contrast agents, European Journal of Radiology, vol.27, issue.2, pp.157-60, 1998.
DOI : 10.1016/S0720-048X(98)00057-6

E. Amarteifio, M. Weber, S. Wormsbecher, S. Demirel, H. Krakowski-­?roosen et al., Dynamic Contrast-Enhanced Ultrasound for Assessment of Skeletal Muscle Microcirculation in Peripheral Arterial Disease, Investigative Radiology, vol.46, issue.8, pp.504-512, 2011.
DOI : 10.1097/RLI.0b013e3182183a77

E. Wong, R. Buxton, and L. Frank, A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging, Magnetic Resonance in Medicine, vol.5, issue.3, pp.348-55, 1998.
DOI : 10.1002/mrm.1910400303

A. Boss, P. Martirosian, C. Claussen, and F. Schick, Quantitative ASL muscle perfusion imaging using a FAIR-TrueFISP technique at 3.0???T, NMR in Biomedicine, vol.366, issue.1, pp.125-157, 2006.
DOI : 10.1002/nbm.1013

J. Toussaint, K. Kwong, F. Mkparu, R. Weisskoff, P. Laraia et al., Perfusion changes in human skeletal muscle during reactive hyperemia measured by echo-planar imaging, Magnetic Resonance in Medicine, vol.90, issue.1, pp.62-71, 1996.
DOI : 10.1002/mrm.1910350109

K. Donahue, J. Van-kylen, S. Guven, A. El-­?bershawi, W. Luh et al., Simultaneous gradient-echo/spin-echo EPI of graded ischemia in human skeletal muscle, Journal of Magnetic Resonance Imaging, vol.24, issue.5, pp.1106-1119, 1998.
DOI : 10.1002/jmri.1880080516

V. Lebon, P. Carlier, C. Brillault-­?salvat, and A. Leroy-­?willig, Simultaneous measurement of perfusion and oxygenation changes using a multiple gradient-echo sequence: application to human muscle study, Magnetic Resonance Imaging, vol.16, issue.7, pp.721-730, 1998.
DOI : 10.1016/S0730-725X(98)00088-5

A. Leroy-­?willig, BOLD indirect vs. ASL direct measurement of muscle perfusion, Journal of Applied Physiology, vol.99, issue.1, pp.376-383, 1985.
DOI : 10.1152/japplphysiol.00012.2005

D. Wigmore, B. Damon, D. Pober, and J. Kent-­?braun, MRI measures of perfusion-related changes in human skeletal muscle during progressive contractions, Journal of Applied Physiology, vol.97, issue.6, pp.2385-94, 1985.
DOI : 10.1152/japplphysiol.01390.2003

S. Partovi, M. Aschwanden, B. Jacobi, A. Schulte, U. Walker et al., Correlation of muscle BOLD MRI with transcutaneous oxygen pressure for assessing microcirculation in patients with systemic sclerosis, Journal of Magnetic Resonance Imaging, vol.44, issue.4, pp.845-51, 2013.
DOI : 10.1002/jmri.24046

S. Partovi, A. Schulte, M. Aschwanden, D. Staub, D. Benz et al., Impaired skeletal muscle microcirculation in systemic sclerosis, Arthritis Research & Therapy, vol.14, issue.5, p.209, 2012.
DOI : 10.1136/ard.2008.095919

URL : http://doi.org/10.1186/ar4047

S. Partovi, A. Schulte, B. Jacobi, M. Klarhöfer, A. Lumsden et al., Blood oxygenation level-dependent (BOLD) MRI of human skeletal muscle at 1.5 and 3 T, Journal of Magnetic Resonance Imaging, vol.111, issue.5, pp.1227-1259, 2012.
DOI : 10.1002/jmri.23583

S. Partovi, S. Karimi, B. Jacobi, A. Schulte, M. Aschwanden et al., Clinical implications of skeletal muscle blood-oxygenation-level-dependent (BOLD) MRI, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.301, issue.2, pp.251-61, 2012.
DOI : 10.1007/s10334-012-0306-y

J. Dyke and R. Aaron, Noninvasive methods of measuring bone blood perfusion, Annals of the New York Academy of Sciences, vol.42, issue.1, pp.95-102, 2010.
DOI : 10.1111/j.1749-6632.2009.05376.x

F. Lecouvet, A. Larbi, V. Pasoglou, P. Omoumi, B. Tombal et al., MRI for response assessment in metastatic bone disease, European Radiology, vol.10, issue.7, 2013.
DOI : 10.1007/s00330-013-2792-3

M. Boesen, O. Kubassova, R. Bouert, M. Axelsen, M. Østergaard et al., Correlation between computer-aided dynamic gadolinium-enhanced MRI assessment of inflammation and semi-quantitative synovitis and bone marrow oedema scores of the wrist in patients with rheumatoid arthritis--a cohort study, Rheumatology, vol.51, issue.1, pp.134-177, 2012.
DOI : 10.1093/rheumatology/ker220

M. Cimmino, F. Barbieri, M. Boesen, F. Paparo, M. Parodi et al., Dynamic Contrast-enhanced Magnetic Resonance Imaging of Articular and Extraarticular Synovial Structures of the Hands in Patients with Psoriatic Arthritis, The Journal of Rheumatology Supplement, vol.89, issue.0, pp.44-52, 2012.
DOI : 10.3899/jrheum.120242

M. Libicher, C. Kasperk, M. Daniels-­?wredenhagen, T. Heye, H. Kauczor et al., Dynamic contrast-enhanced MRI for monitoring bisphosphonate therapy in Paget???s disease of bone, Skeletal Radiology, vol.37, issue.2, pp.225-255, 2013.
DOI : 10.1007/s00256-012-1423-4

A. Rastogi, O. Kubassova, L. Krasnosselskaia, A. Lim, K. Satchithananda et al., Evaluating automated dynamic contrast enhanced wrist 3T MRI in healthy volunteers: One-year longitudinal observational study, European Journal of Radiology, vol.82, issue.8, pp.1286-91, 2013.
DOI : 10.1016/j.ejrad.2013.02.041

J. Bijlsma, F. Berenbaum, and F. Lafeber, Osteoarthritis: an update with relevance for clinical practice, The Lancet, vol.377, issue.9783, pp.2115-2141, 2011.
DOI : 10.1016/S0140-6736(11)60243-2

A. Karantanas and E. Drakonaki, The Role of MR Imaging in Avascular Necrosis of the Femoral Head, Seminars in Musculoskeletal Radiology, vol.15, issue.03, pp.281-300, 2011.
DOI : 10.1055/s-0031-1278427

I. Thomassin-­?naggara, D. Balvay, C. Cuenod, E. Daraï, C. Marsault et al., Dynamic contrast-enhanced MR imaging to assess physiologic variations of myometrial perfusion, European Radiology, vol.14, issue.3, pp.984-94, 2010.
DOI : 10.1007/s00330-009-1621-1

S. Delorme, M. Krix, and A. T. , Ultrasound contrast media-­?-­?principles and clinical applications]. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl, févr, vol.178, issue.2, pp.155-64, 2006.

M. Krix, F. Kiessling, N. Farhan, K. Schmidt, J. Hoffend et al., A multivessel model describing replenishment kinetics of ultrasound contrast agent for quantification of tissue perfusion, Ultrasound in Medicine & Biology, vol.29, issue.10, pp.1421-1451, 2003.
DOI : 10.1016/S0301-5629(03)01033-0

S. Sourbron, Technical aspects of MR perfusion, European Journal of Radiology, vol.76, issue.3, pp.304-317, 2010.
DOI : 10.1016/j.ejrad.2010.02.017

A. Padhani and M. Neeman, Challenges for imaging angiogenesis, The British Journal of Radiology, vol.74, issue.886, pp.886-90, 2001.
DOI : 10.1259/bjr.74.886.740886

J. Taylor, P. Tofts, R. Port, J. Evelhoch, M. Knopp et al., MR imaging of tumor microcirculation: Promise for the new millenium, Journal of Magnetic Resonance Imaging, vol.10, issue.6, pp.903-910, 1999.
DOI : 10.1002/(SICI)1522-2586(199912)10:6<903::AID-JMRI1>3.0.CO;2-A

S. Breault, T. Heye, M. Bashir, B. Dale, E. Merkle et al., Quantitative Dynamic Contrast-Enhanced MRI of Pelvic and Lumbar Bone Marrow: Effect of Age and Marrow Fat Content on Pharmacokinetic Parameter Values, American Journal of Roentgenology, vol.200, issue.3, pp.297-303, 2013.
DOI : 10.2214/AJR.12.9080

H. Ma, J. Griffith, X. Zhao, H. Lv, D. Yeung et al., Relationship between marrow perfusion and bone mineral density: A pharmacokinetic study of DCE-MRI, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.377-386, 2012.
DOI : 10.1109/EMBC.2012.6345947

J. Montazel, M. Divine, E. Lepage, H. Kobeiter, S. Breil et al., Normal Spinal Bone Marrow in Adults: Dynamic Gadolinium-enhanced MR Imaging, Radiology, vol.229, issue.3, pp.703-712, 2003.
DOI : 10.1148/radiol.2293020747

W. Chen, T. Shih, R. Chen, S. Lo, C. Chou et al., Vertebral Bone Marrow Perfusion Evaluated with Dynamic Contrast-enhanced MR Imaging: Significance of Aging and Sex, Radiology, vol.220, issue.1, pp.213-221, 2001.
DOI : 10.1148/radiology.220.1.r01jl32213

Y. Liu, G. Huang, C. Juan, M. Yao, W. Ho et al., Intervertebral Disk Degeneration Related to Reduced Vertebral Marrow Perfusion at Dynamic Contrast-Enhanced MRI, American Journal of Roentgenology, vol.192, issue.4, pp.974-983, 2009.
DOI : 10.2214/AJR.08.1597

V. Savvopoulou, T. Maris, A. Koureas, A. Gouliamos, and L. Moulopoulos, Degenerative endplate changes of the lumbosacral spine: Dynamic contrast-enhanced MRI profiles related to age, sex, and spinal level, Journal of Magnetic Resonance Imaging, vol.2, issue.2, pp.382-391, 2011.
DOI : 10.1002/jmri.22444

W. Chen, T. Shih, R. Chen, H. Lo, C. Chou et al., Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: In comparison with compression fracture and metastasis, Journal of Magnetic Resonance Imaging, vol.50, issue.3, pp.308-322, 2002.
DOI : 10.1002/jmri.10063

A. Biffar, G. Schmidt, S. Sourbron, D. Anastasi, M. Dietrich et al., Quantitative analysis of vertebral bone marrow perfusion using dynamic contrast-enhanced MRI: Initial results in osteoporotic patients with acute vertebral fracture, Journal of Magnetic Resonance Imaging, vol.174, issue.3, pp.676-83, 2011.
DOI : 10.1002/jmri.22497

C. Lin, A. Luciani, K. Belhadj, J. Deux, F. Kuhnowski et al., Multiple Myeloma Treatment Response Assessment with Whole-Body Dynamic Contrast-enhanced MR Imaging, Radiology, vol.254, issue.2, pp.521-552, 2010.
DOI : 10.1148/radiol.09090629

A. Biffar, O. Dietrich, S. Sourbron, H. Duerr, and M. Reiser, Diffusion and perfusion imaging of bone marrow, European Journal of Radiology, vol.76, issue.3, pp.323-331, 2010.
DOI : 10.1016/j.ejrad.2010.03.011

J. Griffith, D. Yeung, G. Antonio, S. Wong, T. Kwok et al., Vertebral Marrow Fat Content and Diffusion and Perfusion Indexes in Women with Varying Bone Density: MR Evaluation, Radiology, vol.241, issue.3, pp.831-839, 2006.
DOI : 10.1148/radiol.2413051858

H. Ma, J. Griffith, D. Yeung, and P. Leung, Modified brix model analysis of bone perfusion in subjects of varying bone mineral density, Journal of Magnetic Resonance Imaging, vol.183, issue.5, pp.1169-75, 2010.
DOI : 10.1002/jmri.22164

A. Biffar, S. Sourbron, G. Schmidt, M. Ingrisch, O. Dietrich et al., Measurement of perfusion and permeability from dynamic contrast-enhanced MRI in normal and pathological vertebral bone marrow, Magnetic Resonance in Medicine, vol.83, issue.1, pp.115-139, 2010.
DOI : 10.1002/mrm.22415

O. Tokuda, N. Hayashi, K. Taguchi, and N. Matsunaga, Dynamic contrast-enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns, Skeletal Radiology, vol.176, issue.10, pp.632-640, 2005.
DOI : 10.1007/s00256-005-0949-0

T. Geith, A. Biffar, G. Schmidt, S. Sourbron, H. Dürr et al., Quantitative Analysis of Acute Benign and Malignant Vertebral Body Fractures Using Dynamic Contrast-Enhanced MRI, American Journal of Roentgenology, vol.200, issue.6, pp.635-678, 2013.
DOI : 10.2214/AJR.12.9351

N. Michoux, P. Simoni, B. Tombal, F. Peeters, J. Machiels et al., Evaluation of DCE-MRI postprocessing techniques to assess metastatic bone marrow in patients with prostate cancer, Clinical Imaging, vol.36, issue.4, pp.308-323, 2012.
DOI : 10.1016/j.clinimag.2011.10.002

M. Libicher, C. Kasperk, M. Daniels-­?wredenhagen, T. Heye, H. Kauczor et al., Dynamic contrast-enhanced MRI for monitoring bisphosphonate therapy in Paget???s disease of bone, Skeletal Radiology, vol.37, issue.2, pp.1-6
DOI : 10.1007/s00256-012-1423-4

Y. Zha, M. Li, and Y. J. , Dynamic Contrast Enhanced Magnetic Resonance Imaging of Diffuse Spinal Bone Marrow Infiltration in Patients with Hematological Malignancies, Korean Journal of Radiology, vol.11, issue.2, p.187, 2010.
DOI : 10.3348/kjr.2010.11.2.187

T. Mosher, Musculoskeletal Imaging at 3T: Current Techniques and Future Applications, Magnetic Resonance Imaging Clinics of North America, vol.14, issue.1, pp.63-76, 2006.
DOI : 10.1016/j.mric.2005.12.002

A. Toms, L. White, R. Kandel, R. Bleakney, M. Noseworthy et al., Limitations of Single Slice Dynamic Contrast Enhanced MR in Pharmacokinetic Modeling of Bone Sarcomas, Acta Radiologica, vol.50, issue.5, pp.512-532, 1987.
DOI : 10.1080/02841850902922761

V. Savvopoulou, T. Maris, L. Vlahos, and L. Moulopoulos, Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI), European Radiology, vol.32, issue.10, pp.1876-83, 2008.
DOI : 10.1007/s00330-008-0943-8

A. Padhani and J. Husband, Dynamic Contrast-enhanced MRI Studies in Oncology with an Emphasis on Quantification, Validation and Human Studies, Clinical Radiology, vol.56, issue.8, pp.607-627, 2001.
DOI : 10.1053/crad.2001.0762

R. Price, A. L. Morgan, T. Newman, R. Perman, W. Schneiders et al., Quality assurance methods and phantoms for magnetic resonance imaging: Report of AAPM nuclear magnetic resonance Task Group No. 1, Medical Physics, vol.17, issue.2, pp.287-95, 1990.
DOI : 10.1118/1.596566

N. Lang, M. Su, H. Yu, M. Lin, M. Hamamura et al., Differentiation of myeloma and metastatic cancer in the spine using dynamic contrast-enhanced MRI, Magnetic Resonance Imaging, vol.31, issue.8, pp.1285-91, 2013.
DOI : 10.1016/j.mri.2012.10.006

Y. Zha, M. Li, and Y. J. , Dynamic Contrast Enhanced Magnetic Resonance Imaging of Diffuse Spinal Bone Marrow Infiltration in Patients with Hematological Malignancies, Korean Journal of Radiology, vol.11, issue.2
DOI : 10.3348/kjr.2010.11.2.187

M. Ingrisch and S. Sourbron, Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer, Journal of Pharmacokinetics and Pharmacodynamics, vol.13, issue.2, pp.281-300, 2013.
DOI : 10.1007/s10928-013-9315-3

B. Soher, B. Dale, and E. Merkle, A Review of MR Physics: 3T versus 1.5T, Magnetic Resonance Imaging Clinics of North America, vol.15, issue.3, pp.277-90, 2007.
DOI : 10.1016/j.mric.2007.06.002

L. Tanenbaum, Clinical 3T MR Imaging: Mastering the Challenges, Magnetic Resonance Imaging Clinics of North America, vol.14, issue.1, pp.1-15, 2006.
DOI : 10.1016/j.mric.2005.12.004

K. Sung, B. Daniel, and B. Hargreaves, estimation errors in breast DCE-MRI at 3 tesla, Journal of Magnetic Resonance Imaging, vol.63, issue.2, pp.454-463, 2013.
DOI : 10.1002/jmri.23996

F. Zöllner, G. Weisser, M. Reich, S. Kaiser, S. Schoenberg et al., UMMPerfusion: an Open Source Software Tool Towards Quantitative MRI Perfusion Analysis in Clinical Routine, Journal of Digital Imaging, vol.35, issue.Suppl 1, pp.344-52, 2013.
DOI : 10.1007/s10278-012-9510-6

T. Koh, S. Bisdas, D. Koh, and C. Thng, Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI, Journal of Magnetic Resonance Imaging, vol.63, issue.6, pp.1262-76, 2011.
DOI : 10.1002/jmri.22795

S. Sourbron and D. Buckley, Classic models for dynamic contrast-enhanced MRI, NMR in Biomedicine, vol.43, issue.5, pp.1004-1031, 2013.
DOI : 10.1002/nbm.2940

T. Heye, M. Davenport, J. Horvath, S. Feuerlein, S. Breault et al., Reproducibility of Dynamic Contrast-enhanced MR Imaging. Part I. Perfusion Characteristics in the Female Pelvis by Using Multiple Computer-aided Diagnosis Perfusion Analysis Solutions, Radiology, vol.266, issue.3, pp.801-812, 2013.
DOI : 10.1148/radiol.12120278

S. Galbraith, M. Lodge, N. Taylor, G. Rustin, S. Bentzen et al., Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis, NMR in Biomedicine, vol.72, issue.2, pp.132-174, 2002.
DOI : 10.1002/nbm.731

J. Budzik, V. Balbi, S. Verclytte, V. Pansini, L. Thuc et al., Radiographics Diffusion Tensor Imaging in Musculoskeletal Disorders, 2014.

J. Budzik, E. Dehecq, N. Baclet, and E. Houvenagel, Médecine et Maladies Infectieuses Cardiobacterium hominis septic arthritis Ducoulombier V