F. Ferrante, F. Gouaisbaut, and S. Tarbouriech, Observer-based control for linear systems with quantized output
URL : https://hal.archives-ouvertes.fr/hal-00911570

F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, and S. Tarbouriech, An Observer with Measurement-triggered Jumps for Linear Systems with Known Input
URL : https://hal.archives-ouvertes.fr/hal-00911851

F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, and S. Tarbouriech, Observer-based Control Design for Linear Systems in the Presence of Limited Measurement Streams and Intermittent Input Access, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01767333

F. Ferrante, F. Gouaisbaut, and S. Tarbouriech, Dynamic Output-feedback Controller Design for Continuous-time Linear Systems with Actuator and Sensor Quantization
URL : https://hal.archives-ouvertes.fr/hal-01767351

F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, S. Tarbouriech, ;. Ferrante et al., A Hybrid Observer with a Continuous Intersample Injection in the Presence of Sporadic Measurements, of the 54th IEEE Conference on Decision and Control
URL : https://hal.archives-ouvertes.fr/hal-01767312

F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, and S. Tarbouriech, State Estimation of Linear Systems in the Presence of Sporadic Measurements
URL : https://hal.archives-ouvertes.fr/hal-01767295

F. Ferrante, F. Gouaisbaut, and S. Tarbouriech, Stabilization of Nonlinear Systems subject to Input Hysteretic-quantization

F. Ferrante, F. Gouaisbaut, and S. Tarbouriech, Stability and Stabilization of Linear Systems in the Presence of Sensor Quantization: An LMI-based approach" Talks ? "Observer-based Control Design for Linear Systems in the Presence of Limited Measurement Streams and Intermittent Input Access, American Control Conference 2015 (ACC 2015), 2015.

, An Observer with Measurement-Triggered Jumps for Linear Systems with Known Input, 2014.

, Practical stabilization of linear delayed input quantized systems, 2013.

, Technical Reviewer, Institute of Electrical and Electronic Engineers Inc., ? IEEE Transaction on Automatic Control ? IEEE Conference on Decision and Control Technical Reviewer, ? European Control Conference ? Journal Européen des Systèmes Automatisés Teaching Experience Teaching Assistant: Directly selected and enrolled by Université Paul Sabatier, 2012.

, Mentions include: Prepare practicals sessions, grade students, prepare integrative lecture notes

, Automatic control, 2012.

, Automatic control, 2012.

?. Graduate-course-on, Performance and robustness of feedback control systems" (Practical and tutorial sessions) Fall, 2013.

?. Graduate-course-on, State space methods for linear control, 2013.

?. Graduate-course-on, Professional memberships ? Institute of Electrical and Electronics Engineers (IEEE), Student Member ? IEEE Control Systems Society, Student Member ? IEEE Power Electronics Society, Student Member Awards ? French Government, 2014.

. French-government, , pp.2012-2015

. ?-european-commission,

R. Ricardo and G. Sanfelice, PhD E-mail: ricardo@ucsc

S. Tarbouriech, PhD (PhD Supervisor) E-mail: tarbour@laas

F. Toulouse,

F. Gouaisbaut, PhD

E. ,

F. L. Toulouse and . Zaccarian, PhD E-mail: zaccarian@laas.fr Università di Trento and Laboratoire d'analyse et d'architecture des systèmes 7

F. Toulouse,

M. Abbaszadeh and H. J. Marquez, Robust H ? observer design for sampled-data Lipschitz nonlinear systems with exact and Euler approximate models, Automatica, vol.44, pp.799-806, 2008.

F. Amato, C. Cosentino, and A. Merola, Stabilization of bilinear systems via linear state feedback control, Proceedings of the 15th Mediterranean Conference on Control & Automation, pp.1-5, 2007.

V. Andrieu, M. Nadri, U. Serres, and J. Vivalda, Continuous Discrete Observer with Updated Sampling Period, NOLCOS, vol.9, pp.439-444, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00923820

M. Arcak and D. Ne?i´ne?i´c, A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation, Automatica, vol.40, pp.1931-1938, 2004.

D. Arzelier and D. Peaucelle, An iterative method for mixed H 2 /H ? synthesis via static output-feedback, Proceedings of the 41st IEEE Conference on Decision and Control, vol.3, pp.3464-3469, 2002.

K. J. Aström and B. Wittenmark, Computer-controlled systems: Theory and Design. Courier Corporation, 2011.

J. Aubin and A. Cellina, Differential inclusions, 1984.
URL : https://hal.archives-ouvertes.fr/hal-00915425

A. Bacciotti, Some remarks on generalized solutions of discontinuous differential equations, International Journal of Pure and Applied Mathematics, vol.10, pp.257-266, 2004.

A. Bacciotti, Stabilization by means of state space depending switching rules, Systems & Control Letters, vol.53, pp.195-201, 2004.

A. Bacciotti and L. Rosier, Liapunov and Lagrange stability: inverse theorems for discontinuous systems, Mathematics of Control, Signals and Systems, vol.11, pp.101-128, 1998.

I. Benedetti and E. A. Panasenko, Positive invariance and differential inclusions with periodic right-hand side, Nonlinear Dynamics and System Theory, vol.7, pp.339-349, 2007.

G. M. Bergman, An invitation to general algebra and universal constructions, 1998.

D. P. Bertsekas, Convex optimization theory, Athena Scientific Belmont, 2009.

S. Boyd and L. Vandenberghe, Convex optimization, 2004.

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics, 1997.

A. Bressan, Singularities of stabilizing feedbacks, Rend. Sem. Mat. Univ. Pol. Torino, vol.56, pp.87-104, 1998.

R. W. Brockett and D. Liberzon, Quantized feedback stabilization of linear systems, IEEE Transactions on Automatic Control, vol.45, pp.1279-1289, 2000.

C. Cai and A. R. Teel, Characterizations of input-to-state stability for hybrid systems, Systems & Control Letters, vol.58, pp.47-53, 2009.

D. Carnevale and A. R. Teel, A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems, IEEE Transactions on Automatic Control, vol.52, p.892, 2007.

E. B. Castelan, S. Tarbouriech, J. M. Gomes-da-silva, and I. Queinnec, L 2stabilization of continuous-time linear systems with saturating actuators, Int. J. of Robust and Nonlinear Control, vol.16, pp.935-944, 2006.

F. Ceragioli and C. De-persis, Discontinuous stabilization of nonlinear systems: Quantized and switching controls, Systems & control letters, vol.56, pp.461-473, 2007.

F. Ceragioli, C. De-persis, and P. Frasca, Discontinuities and hysteresis in quantized average consensus, Automatica, vol.47, pp.1919-1928, 2011.

F. M. Ceragioli, Discontinuous ordinary differential equations and stabilization, Ulisse Dini, 2000.

G. Chesi, Domain of attraction: analysis and control via SOS programming, 2011.

M. Chilali and P. Gahinet, H ? design with pole placement constraints: an LMI approach, IEEE Transactions on Automatic Control, vol.41, pp.358-367, 1996.

F. H. Clarke, Discontinuous feedback and nonlinear systems, 8th IFAC Symposium on Nonlinear Control Systems, pp.1-29, 2010.

F. H. Clarke, Nonsmooth analysis and control theory, vol.178, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00863298

F. H. Clarke, Y. S. Ledyaev, and R. J. Stern, Asymptotic stability and smooth Lyapunov functions, Journal of differential Equations, vol.149, pp.69-114, 1998.

M. B. Cloosterman, L. Hetel, N. Van-de-wouw, W. P. Heemels, J. Daafouz et al., Controller synthesis for networked control systems, Automatica, vol.46, pp.1584-1594, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00518360

J. B. Conway, Functions of One Complex Variable II, 1995.

J. Cortès, Discontinuous dynamical systems-a tutorial on solutions, IEEE Control Systems Magazine, vol.28, pp.36-73, 2008.

D. F. Coutinho, M. Fu, and C. E. Souza, Input and Output Quantized Feedback Linear Systems, IEEE Transactions on Automatic Control, vol.55, issue.3, pp.761-766, 2010.

J. Daafouz and J. Bernussou, Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties, Systems & control letters, vol.43, pp.355-359, 2001.

D. F. Delchamps, Extracting state information from a quantized output record, Systems & Control Letters, vol.13, pp.365-372, 1989.

D. F. Delchamps, Stabilizing a linear system with quantized state feedback, IEEE Transactions on Automatic Control, vol.35, pp.916-924, 1990.

N. Elia and S. K. Mitter, Stabilization of linear systems with limited information, IEEE Transactions on Automatic Control, vol.46, pp.1384-1400, 2001.

F. Ferrante, F. Gouaisbaut, and S. Tarbouriech, Dynamic Output-feedback Controller Design for Continuous-time Linear Systems with Actuator and Sensor Quantization, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01767351

F. Ferrante, F. Gouaisbaut, and S. Tarbouriech, Observer-based control for linear systems with quantized output, Proceedings of the 13th European Control Conference
URL : https://hal.archives-ouvertes.fr/hal-00911570

F. Ferrante, F. Gouaisbaut, and S. Tarbouriech, Stabilization by quantized delayed state feedback". Delays in Networked Control Systems
URL : https://hal.archives-ouvertes.fr/hal-01767372

F. Ferrante, F. Gouaisbaut, and S. Tarbouriech, Stabilization of Continuous-Time Linear Systems subject to Input Quantization, Automatica, vol.58, pp.167-172, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01767297

F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, and S. Tarbouriech, A Hybrdid Observer with a Continuous Intersample Injection in the Presence of Sporadic Measurements, of the 54th IEEE Conference on Decision and Control, 2015.

F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, and S. Tarbouriech, An Observer with Measurement-triggered Jumps for Linear Systems with Known Input, Proceedings of the 19th World Congress of the International Federation of Automatic Control, vol.19, pp.140-145, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00911851

F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, and S. Tarbouriech, Observer-based Control Design for Linear Systems in the Presence of Limited Measurement Streams and Intermittent Input Access, Proceedings of the American Control Conference (ACC), pp.4689-4694, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01767333

F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, and S. Tarbouriech, State Estimation of Linear Systems in the Presence of Sporadic Measurements, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01767295

F. Fichera, Lyapunov techniques for a class of hybrid systems and reset controller syntheses for continuous-time plants, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00919930

A. F. Filippov, Differential equations with discontinuous right-hand side, 1988.

F. Forni, S. Galeani, L. Zaccarian, and D. Ne?i´ne?i´c, Event-triggered transmission for linear control over communication channels, automatica, vol.50, pp.490-498, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01851141

B. A. Francis and W. M. Wonham, The internal model principle of control theory, Automatica, vol.12, pp.457-465, 1976.

E. Fridman and M. Dambrine, Control under quantization, saturation and delay: An LMI approach, Automatica, vol.45, pp.2258-2264, 2009.

E. Fridman, U. Shaked, and V. Suplin, Input/output delay approach to robust sampled-data H ? control, Systems & Control Letters, vol.54, pp.271-282, 2005.

M. Fu and L. Xie, The sector bound approach to quantized feedback control, IEEE Transactions on Automatic Control, vol.50, pp.1698-1711, 2005.

P. Gahinet and P. Apkarian, A linear matrix inequality approach to H ? control, International Journal of Robust and Nonlinear Control, vol.4, pp.421-448, 1994.

G. Garcia, S. Tarbouriech, J. M. Gomes-da-silva, and D. Eckhard, Finite L 2 gain and internal stabilisation of linear systems subject to actuator and sensor saturations, IET Control Theory Applications, vol.3, issue.7, pp.799-812, 2009.

J. C. Geromel and M. C. Oliveira, H 2 and H ? robust filtering for convex bounded uncertain systems, IEEE Transactions on Automatic Control, vol.46, pp.100-107, 2001.

R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical systems, Control Systems Magazine, vol.29, pp.28-93, 2009.

R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness, 2012.

R. Goebel and A. R. Teel, Preasymptotic stability and homogeneous approximations of hybrid dynamical systems, SIAM review, vol.52, pp.87-109, 2010.

M. Green and D. J. Limebeer, Linear robust control, 2012.

O. Hájek, Discontinuous differential equations, I", Journal of Differential Equations, vol.32, pp.149-170, 1979.

W. P. Heemels, N. Van-de-wouw, R. H. Gielen, M. C. Donkers, L. Hetel et al., Comparison of overapproximation methods for stability analysis of networked control systems, Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp.181-190, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00520181

D. Henrion and A. Garulli, Positive polynomials in control, vol.312, 2005.

J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, A survey of recent results in networked control systems, Proceeding of the IEEE 95, vol.1, p.138, 2007.

L. Hetel, J. Daafouz, and C. Iung, Stabilization of Arbitrary Switched Linear Systems With Unknown Time-Varying Delays, IEEE Transactions on Automatic Control, vol.51, issue.10, pp.1668-1674, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00121714

L. Hetel, J. Daafouz, S. Tarbouriech, and C. Prieur, Stabilization of linear impulsive systems through a nearly-periodic reset, Nonlinear Analysis: Hybrid Systems, vol.7, pp.4-15, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00734728

D. Hristu-varsakelis and W. S. Levine, Handbook of networked and embedded control systems, 2005.

T. Hu and Z. Lin, Control systems with actuator saturation: Analysis and design, 2001.

, Quanser Consulting Inc. Rotary Inverted Pendulum ROTPEN, 1998.

A. Isidori and C. I. Byrnes, Output regulation of nonlinear systems, IEEE Transactions on Automatic Control, vol.35, pp.131-140, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00554882

T. Kailath, Linear systems, vol.1, 1980.

R. E. Kalman, Nonlinear aspects of sampled-data control systems, Proceedings of the symposium on nonlinear circuit theory, 1956.

P. Kapasouris, M. Athans, and G. Stein, Design of feedback control systems for stable plants with saturating actuators, Proceedings of the 27th IEEE Conference on Decision and Control, pp.469-479, 1988.

I. Karafyllis and C. Kravaris, From Continuous-Time Design to Sampled-Data Design of Nonlinear Observers, 2008.

I. Karafyllis and C. Kravaris, From continuous-time design to sampled-data design of observers", IEEE Transactions on Automatic Control, vol.54, pp.2169-2174, 2009.

N. Kazantzis and C. Kravaris, Discrete-time nonlinear observer design using functional equations, Systems & Control Letters, vol.42, pp.81-94, 2001.

C. M. Kellett and A. R. Teel, Smooth Lyapunov functions and robustness of stability for difference inclusions, Systems & Control Letters, vol.52, pp.395-405, 2004.

H. K. Khalil, Nonlinear Systems. 3rd, 2002.

N. Krasovskii, Stability of motion: applications of Lyapunov's second method to differential systems and equations with delay, 1963.

M. Lazar, W. P. Heemels, and A. R. Teel, Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems, IEEE Transactions on Automatic Control, vol.54, pp.2421-2425, 2009.

H. Lens and J. Adamy, Observer Based Controller Design for Linear Systems with Input Constraints, IFAC World Congress, vol.17, issue.1, pp.9916-9921, 2008.

J. Leyva-ramos, A new look at partial fraction expansion of transfer function matrices from a computational viewpoint, Computers & Mathematics with Applications, vol.26, pp.27-35, 1993.

Y. Li and R. G. Sanfelice, A Robust Finite-time Convergent Hybrid Observer for Linear Systems, Proceedings of the 52th IEEE Conference on Decision and Control, 2013.

D. Liberzon, Hybrid feedback stabilization of systems with quantized signals, Automatica, vol.39, pp.1543-1554, 2003.

D. Liberzon, Observer-based quantized output feedback control of nonlinear systems, Mediterranean Conference on Control Automation, 2007. MED '07, pp.1-5, 2007.

D. Liberzon, Switching in Systems and Control, 2003.

H. Liu, M. Cao, and C. De-persis, Quantization effects on synchronized motion of teams of mobile agents with second-order dynamics, Systems & Control Letters, vol.61, pp.1157-1167, 2012.

J. Liu and A. R. Teel, Hybrid Systems with Memory: Modelling and Stability Analysis via Generalized Solutions, Proceedings of the 19th World Congress of the International Federation of Automatic Control, vol.19, pp.6019-6024, 2014.

J. Lofberg, YALMIP : a toolbox for modeling and optimization in MATLAB, IEEE International Symposium on Computer Aided Control Systems Design, pp.284-289, 2004.

D. G. Luenberger, An introduction to observers, IEEE Transactions on Automatic Control, vol.16, issue.6, 1971.

R. K. Miller, M. S. Mousa, and A. N. Michel, Quantization and overflow effects in digital implementations of linear dynamic controllers, IEEE Transactions on Automatic Control, vol.33, issue.7, pp.698-704, 1988.

M. Moarref and L. Rodrigues, Observer design for linear multi-rate sampled-data systems, pp.5319-5324, 2014.

M. Moarref and L. Rodrigues, Stability and stabilization of linear sampled-data systems with multi-rate samplers and time driven zero order holds, Automatica, vol.50, pp.2685-2691, 2014.

P. E. Moraal and J. W. Grizzle, Observer design for nonlinear systems with discretetime measurements, IEEE Transactions on Automatic Control, vol.40, pp.395-404, 1995.

R. M. Murray, K. Aström, S. Boyd, R. Brockett, and G. Stein, Control in an information rich world, Report of the Panel on Future Directions in Control Theory, 2002.

M. Nadri and H. Hammouri, Design of a continuous-discrete observer for state affine systems, Applied Mathematics Letters, vol.16, pp.967-974, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00457872

D. Ne?i´ne?i´c, A. R. Teel, G. Valmorbida, and L. Zaccarian, Finite-gain L p stability for hybrid dynamical systems, Automatica, vol.49, pp.2384-2396, 2013.

E. Ostertag, An Improved Path-Following Method for Mixed Controller Design, IEEE Transactions on Automatic Control, vol.53, pp.1967-1971, 2008.

B. Paden and S. Sastry, A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators, IEEE Transactions on Circuits and Systems, vol.34, issue.1, pp.73-82, 1987.

G. Peano, Démonstration de l'intégrabilité deséquationsdeséquations différentielles ordinaires, Mathematische Annalen, vol.37, pp.182-228, 1890.

G. Pipeleers, B. Demeulenaere, J. Swevers, and L. Vandenberghe, Extended LMI characterizations for stability and performance of linear systems, Systems & Control Letters, vol.58, pp.510-518, 2009.

R. Postoyan and D. Ne?i´ne?i´c, A framework for the observer design for networked control systems, IEEE Transactions on Automatic Control, vol.57, pp.1309-1314, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00696574

R. Postoyan, P. Tabuada, D. Ne?i´ne?i´c, and A. Anta, Event-triggered and self-triggered stabilization of distributed networked control systems, Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, pp.2565-2570, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637979

A. S. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers, vol.1, 2008.

T. Raff and F. Allgöwer, Observers with impulsive dynamical behavior for linear and nonlinear continuous-time systems, Proceedings of the 46th IEEE Conference on Decision and Control, pp.4287-4292, 2007.

T. Raff, M. Kogel, and F. Allgöwer, Observer with sample-and-hold updating for Lipschitz nonlinear systems with nonuniformly sampled measurements, Proceedings of the American Control Conference, pp.5254-5257, 2008.

M. Robles and R. G. Sanfelice, Hybrid controllers for tracking of impulsive reference state trajectories: a hybrid exosystem approach, Proceedings of the 14th international conference on Hybrid systems: Computation and Control, 2011.

R. T. Rockafellar, R. , and J. Wets, Variational analysis, vol.317, 2009.

W. Rudin, Principles of mathematical analysis, vol.3, 1964.

R. G. Sanfelice, D. Copp, and P. Nanez, A toolbox for simulation of hybrid systems in Matlab/Simulink: Hybrid Equations (HyEQ) Toolbox, Proceedings of the 16th international conference on Hybrid Systems: Computation and Control, pp.101-106, 2013.

R. G. Sanfelice and L. Praly, Convergence of nonlinear observers on R n with a Riemannian metric (Part I), IEEE Transactions on Automatic Control, vol.57, p.1709, 2012.

C. W. Scherer, The state-feedback H ?-problem at optimality". Automatica, vol.30, pp.293-305, 1994.

R. Sentis, Equations différentiellesdifférentiellesà second membre mesurable, Boll. Un. Mat. Ital, vol.15, pp.724-742, 1978.

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan et al., Kalman filtering with intermittent observations, IEEE Transactions on Automatic Control, vol.49, issue.9, pp.1453-1464, 2004.

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, and S. S. Sastry, Optimal control with unreliable communication: the TCP case, Proceedings of the American Control Conference, vol.5, pp.3354-3359, 2005.

E. D. Sontag, Input to state stability: basic concepts and results, pp.163-220, 2007.

E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, vol.34, pp.435-443, 1989.

J. Sur and B. Paden, Observers for linear systems with quantized outputs, Proceedings of the American Control Conference, vol.5, pp.3012-3016, 1997.

S. Tarbouriech and F. Gouaisbaut, Control Design for Quantized Linear Systems With Saturations, IEEE Transactions on Automatic Control, vol.57, issue.7, pp.1883-1889, 2012.

S. Tarbouriech, I. Queinnec, and C. Prieur, Stability analysis and stabilization of systems with input backlash, IEEE Transactions on Automatic Control, vol.59, pp.488-494, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00965339

S. Tarbouriech, I. Queinnec, and C. Prieur, Stability analysis for systems with saturation and backlash in the loop, Proceedings of the 52nd IEEE Conference on Decision and Control, pp.6652-6657, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00926128

S. Tarbouriech, G. Garcia, J. M. Gomes-da-silva, and I. Queinnec, Stability and stabilization of linear systems with saturating actuators, 2011.

S. Tatikonda and S. Mitter, Control under communication constraints, IEEE Transactions on Automatic Control, vol.49, issue.7, pp.1056-1068, 2004.

A. R. Teel, Observer-based hybrid feedback: a local separation principle, American Control Conference (ACC), pp.898-903, 2010.

A. R. Teel, F. Forni, and L. Zaccarian, Lyapunov-based sufficient conditions for exponential stability in hybrid systems, IEEE Transactions on Automatic Control, vol.58, pp.1591-1596, 2013.

A. R. Teel and L. Praly, A smooth Lyapunov function from a class-KL estimate involving two positive semidefinite functions, vol.5, pp.313-367, 2000.

M. L. Van-de and . Vel, Theory of convex structures, vol.50, 1993.

J. G. Vanantwerp and R. D. Braatz, A tutorial on linear and bilinear matrix inequalities, Journal of Process Control, vol.10, pp.363-385, 2000.

L. Vandenberghe and S. Boyd, A polynomial-time algorithm for determining quadratic Lyapunov functions for nonlinear systems, pp.1065-1068, 1993.

M. Vidyasagar, On the stabilization of nonlinear systems using state detection, IEEE Transactions on Automatic Control, vol.25, pp.504-509, 1980.

G. C. Walsh, Y. Hong, and L. G. Bushnell, Stability analysis of networked control systems, IEEE Transactions on Control Systems Technology, vol.10, issue.3, pp.438-446, 2002.

. , A networked control system. Both the controller and the plant communicate with the channel via a finite data rate

. , |?(s)| versus N , for a uniform partitioning

. .. The-uniform-quantizer,

. .. , Quantized control system manifesting isolated equilibria, p.24

. , Quantized control system manifesting limit-cycles

, The function ?, in the scalar case, representing the quantization error, p.34

. , ?1 ) versus the number of iterations

, The evolution of the function V (x) = x T P x, p.55

. , The two sets A resulting from the solution to the controller design problem. E(W ?1 ) solid, E(F ?T JF ?1 ) dashed

. , The solutions are obtained by integrating the closed-loop model via an Euler method with time step 10 ?4

. , Below the closedloop states: x 1 (solid), x 2 (dashed), x 3 (dashed-dotted). The solutions are obtained by integrating the closed-loop model via an Euler method with time step 10 ?4, The evolution of the closed-loop system from x 0 = (0.5, 0.5, 0.5)

. , The solutions are obtained by integrating the closed-loop model via an Euler method with time step 10 ?4, Closed-loop trajectories approaching the two equilibrium points, p.61