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Abstract

On Quantization and Sporadic Measurements in Control Systems:

Stability, Stabilization, and Observer Design

by

Francesco Ferrante

In this dissertation, two fundamental aspects arising in modern engineered control systems

will be addressed: On the one hand, the presence of quantization in standard control loops.

On the other hand, the state estimation in the presence of sporadic available measurements.

These two aspects are addressed in two di�erent parts. One of the main feature of this

thesis consists of striving to derive computer-aided tools for the solution to the considered

problems. Speci�cally, to meet this requirement, we revolve on a linear matrix inequalities

(LMIs) approach.

In the �rst part, we propose a set of LMI-based constructive Lyapunov-based tools for

the analysis and the design of quantized control systems involving linear plants and linear

controllers. The entire treatment revolves on the use of di�erential inclusions as modeling

tools and on stabilization of compact sets as a stability notion.

In the second part of the thesis, inspired by some of the classical observation schemes

presented in the literature of sampled-data observers, we propose two observers to exponen-

tially estimate the state of a linear system in the presence of sporadic measurements. In

addition, building upon one of the two observers, an observer-based controller architecture

is proposed to asymptotically stabilize a linear plant in the presence of sporadic sensing and

actuation.
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R�esum�e

Sur la quanti�cation et l'intermittence de mesures dans les syst�emes

de commande: stabilit�e, stabilisation, et estimation d'�etat.

par

Francesco Ferrante

Dans cette th�ese, nous aborderons deux aspects fondamentaux qui se posent dans les syst�emes

de commande modernes du fait de l'interaction entre des processus en temps continu et des

dispositifs num�eriques: la synth�ese de lois de commande en pr�esence de quanti�cateurs et

l'estimation d'�etat en pr�esence de mesures sporadiques. Une des caract�eristiques principales

de cette th�ese consiste �egalement �a proposer des m�ethodes constructives pour r�esoudre les

probl�emes envisag�es. Plus pr�ecis�ement, pour r�epondre �a cette exigence, nous allons nous

tourner vers une approche bas�ee sur les in�egalit�es matricielles lin�eaires (LMI).

Dans la premi�ere partie de la th�ese, nous proposons un ensemble d'outils constructifs bas�es

sur une approche LMI, pour l'analyse et la conception de syst�emes de commande quanti��es

impliquant des mod�eles et des correcteurs lin�eaires. L'approche est bas�ee sur l'utilisation

des inclusions di��erentielles qui permet de mod�eliser �nement le comportement de la boucle

ferm�ee et ainsi d'obtenir des r�esultats int�eressants.

Dans la seconde partie de la th�ese, inspir�es par certains sch�emas d'observation classiques

pr�esent�es dans la litt�erature, nous proposons deux observateurs pour l'estimation de l'�etat

d'un syst�eme lin�eaire en pr�esence de mesures sporadiques, c'est-�a-dire prenant en compte la

nature discr�ete des mesures disponibles. De plus, en se basant sur une des deux solutions

pr�esent�ees, une architecture de commande bas�ee observateur est propos�ee a�n de stabiliser

asymptotiquement un syst�eme lin�eaire en pr�esence �a la fois de mesures sporadiques et d'un

acc�es intermittent �a l'entr�ee de commande du syst�eme.
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GENERAL INTRODUCTION

In this dissertation, two fundamental aspects arising in modern engineered control systems

will be addressed: On the one hand, the presence of quantization in standard control loops.

On the other hand, the state estimation in the presence of sporadic available measurements.

These two aspects are addressed in two di�erent parts.

One of the main feature of this thesis consists of striving to derive computer-aided tools

for the solution to the considered problems. Speci�cally, to meet this requirement, we

revolve on a linear matrix inequalities (LMIs) approach. The spirit of such an approach

consists of formulating the considered problem directly in a form that is convenient from a

numerical standpoint, instead to derive closed form solutions, which can be a cumbersome,

often impossible, challenge. Then, thanks to the availability of e�cient algorithms for the

solutions of LMIs, the solution to the considered problem can be derived through e�cient

computer-aided tools; see,e.g., [126] for an interesting survey on this aspect.

The contents of the two parts composing this thesis are brie
y illustrated below.

Quantization in control system

Most of the modern engineered systems are composed by continuous-time plants interacting

with digital devices and/or data networks. In all these settings, quantization is an always

present phenomenon,e.g., [17, 21, 32, 35, 51, 84, 116, 117] just to cite a few.

In this �rst part of this thesis, we propose a set of LMI-based constructive Lyapunov-

based tools for the analysis and the design of quantized control systems involving linear plants

and linear controllers. The entire treatment revolves on the use of di�erential inclusions as

modeling tools, and on stabilization of compact sets as a stability notion.

I



State estimation and observer-based control in the pres-

ence of sporadic measurements

In real-world engineering applications, assuming to continuously measuring the output of

a given plant is undoubtedly unrealistic. This practical needed has brought to life a new

research area aimed at developing observer schemes accounting the discrete nature of the

available measurements; see,e.g, [1, 4, 6, 74, 92].

In this part of this thesis, inspired by some of the classical observation schemes presented

in the literature of sampled-data observers, we propose two observers to exponentially es-

timate the state of a linear system in the presence of sporadic measurements. In addition,

building upon one of the two observers, an observer-based controller architecture is proposed

to asymptotically stabilize a linear plant in the presence of sporadic measurements and in-

termittent input access. The design of such a controller is streamlined by the derivation of

a separation principle for the considered architecture.

A unique feature of the proposed approach consists of hinging upon the hybrid systems

framework proposed in [56]. On the one hand, by following this approach a completely

novel modeling of the considered observers is provided, as well as the derivation of novel

systematic design strategies is illustrated. On the other hand, the huge 
exibility provided

by the framework in [56] allows to envision very appealing extensions of the results presented

in this part, giving rise to novel lines of research.

II



Part I

Quantization in Control Systems
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INTRODUCTION

General Overview and some Historical Aspects

Recently technology enhancements have enabled the conception of a new generation of engi-

neered systems integrating physical interactions, computational and communication abilities.

The rapid spreading of this kind of systems stems from the worthy advantages in scalability,

ease of maintenance and high computational resources entailed by the use of cutting-edge

technology solutions in real-world applications, as transportation systems, automotive, au-

tonomous robotics, energy delivery systems etc. This new trend has been having a strong

impact also in modern control systems that are nowadays built via the adoption of digital

controllers and digital instrumentation [93]. Typically physical systems evolve continuously

as the ordinary time 
ows and are characterized by variables that take values in uncountable

sets. Instead, digital devices evolve in a discrete fashion and their evolution is characterized

by variables taking values in countable set. When a physical system interacts with a digital

one, side e�ects as time-delays, asynchronism, quantization, are unavoidable issues that can

often turn into an overblown performance degradation, like the appearing of limit cycles or

chaotic phenomena or even instability of the closed-loop system.

Concerning the e�ect of quantization in control systems, since such a phenomenon is

almost pervasive in modern engineered control systems, its study has extensively attracted

researchers over the last years; see,e.g., [17, 21, 32, 35, 51, 84, 116, 117] just to cite a few.

The negative impact of quantization on control systems seems to be already known in

the late 50's, an attempt to tackle with this phenomenon can be traced back in the work of

Kalman featured in [70]. In this paper, quantization was essentially addressed via stochastic

tools. In fact, until the late 80's, the common trend considered by researchers in addressing

quantization in control systems consisted to look at quantization as a phenomenon inducing

a non deterministic deviation of the quantized control system from its nominal (quantiza-
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4 Introduction

tion free) behavior. Therefore, the standard custom was designing controllers via standard

techniques while overlooking quantization. Then, to somehow to capture the real behavior

of the closed-loop suitable stochastic characterizations of the quantization error were con-

sidered; see [6]. Clearly this approach can be e�ective whenever the level of speci�cation

is rather modest and the quantization somehow restrained. Therefore, since digital devices

at that time were becoming pervasive in control systems and at the same time the level

of performances required was continuously increasing, new systematical tools to deal with

quantized control systems in their actual nature were necessary. In the late 80's, the works

of Delchamps [34, 35], and to some extent the one of Miller et al. [89], marked a water-

shed in the literature of quantized control systems proposing an alternative approach to deal

with stability and stabilization in quantized control systems. Such an approach consists of

modeling the quantization phenomenon through a static nonlinear function, thequantizer,

mapping a real variable into a variable belonging to a countable setQ, i.e., q : R ! Q .

The methodology proposed by Delchamps et al. ([34, 35]) is relevant since it has brought

to life a new research area founded on the tools issued from the nonlinear control theory for

the study of quantized control systems. From then, the rapid development of the control

systems science in the setting of quantized control has rapidly given rise to di�erent ap-

proaches and tools to deal with quantization in control systems. Essentially such approaches

share a common fundamental idea that builds on a robust control point of view. Namely,

the closed-loop system is modeled as a nominal system perturbed by a (potentially locally)

bounded perturbation, i.e., the quantization error. First attempts resting on this approach

for the special case of SISO systems can be found in [89]. In particular, in [89] the authors

attack the problem of having quantized measurements in a linear control system by �rst

bounding the quantization error and then by pursuing a Lyapunov approach to establish

ultimate boundedness. One of the main important feature of this paper consists of point-

ing out that asymptotic stability of the origin of quantized control systems can be unlikely

achieved due to �nite precision information provided by quantizers. Later on, this general

approach has been extended in [17] to general linear systems with quantized measurements,

in [82] to nonlinear systems in the presence of quantized control inputs or quantized mea-

surements, while in [83] an observer-based controller architecture is presented to build an

output feedback controller in the presence of quantized measurements. The key idea adopted

by the authors in all these latter publications consists of addressing quantized control sys-

tem via the input-to-state stability notion due to Sontag; see,e.g., [114]. In particular, the

authors shown that input-to-state stable control systems have the needed robustness to tol-

erate quantization. We emphasize that in all these works, the authors besides pointing out

the relevance of input-to-state stability in quantized control systems, by relying on a more

sophisticated type of quantizer allowing the possibility to dynamically scaling the quanti-

zation error (called in general dynamic quantizer), provided novel control policies to ensure

asymptotic stabilization rather than ultimate boundedness. This approach has given rise to

a complete novel line of research more focused on an information point of view, that is aimed

at characterizing the quantity of information actually needed to achieve stabilization of a

given plant depending on its open-loop behavior; see,e.g., [121] and the references therein.
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Subsequently, in [21] the authors by restricting the attention to logarithmic quantization

and by pursuing a sector bound approach relax the input-to-state stability requirement to

achieve stabilization of nonlinear systems with input quantization, at least for the case of

logarithmic quantization. This fact of encapsulating quantization error into a sector before

being used in [21] was already considered in [51], for the case of discrete-time linear systems.

These latter approaches show that quantization can be e�ectively faced by the use of robust

control tools as the sector bound approach. The main e�ort made in these latter works is

concerned to achieve asymptotic stability of the origin via a quantizer as coarse as possible.

On the other hand, the asymptotic stabilization of the origin can be achieved in general

only when the considered quantizer is in�nitely precise close to the origin, as it is for the

case of the logarithmic quantizer. However, in some real-world settings the availability of

such a kind of quantizers cannot be considered due to technological or optimization con-

straints. This consideration originated a complete analysis in [21, 36] of the case of �nite

symbols logarithmic quantizers. Speci�cally, in [21] the authors shown that in such a case

under analogous conditions as in the case of the genuine logarithmic quantizer, semi-global

practical stabilization can be easily achieved in the presence of a �nite number of symbols,

at least for the case on input quantization.

Another interesting and fundamental aspect linked to quantized control systems regards

the issues related to discontinuous behaviors induced by quantizers in standard control loops.

Indeed, the fact that quantizers map uncountable sets into countable ones implies that

quantizers are essentially discontinuous mappings. This fact has a serious impact when

quantizers interact with dynamical systems. Indeed, it is well known that discontinuities

give rise to serious problems when coupled with di�erential or di�erence equations [22, 31,

46, 75, 78]. Such problems range from questions related to the existence and the nature

of the solutions to the resulting closed-loop system (in continuous-time dynamical systems)

to robustness issues of the closed-loop system with respect to small perturbation and/or

measurement noise (continuous-time and discrete-time dynamical systems). The serious

questions arising from discontinuities in di�erential equations were already known in the

late 60's by the community working on di�erential equations, as testi�ed by the work of

H�ajek in 1979 [59] that o�ers an interesting survey on this appealing topic.

Later on, the increasing number of real applications concerning discontinuous di�erential

equations has notably boosted the research in this area. Such an intense research has led

to a comprehensive and solid theory to address discontinuous right-hand side di�erential

equations, important results and contributions in this �eld can be found in [10, 46, 77] just to

cite a few, while an interesting and with a modern 
avor survey on discontinuous dynamical

systems is contained in [31]. We emphasize that the huge development of the modern theory

of discontinuous dynamical systems have been made possible by the development of the

theory of di�erential inclusions; see,e.g., [7, 28], which are the main tool, although not the

unique, to address discontinuous dynamical systems.

Despite the deep knowledge available nowadays about discontinuous dynamical systems,

surprisingly no much work in that setting has been done in the literature to deal with
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quantized control systems. Building on the tools originally proposed in [77], a �rst work

o�ering a treatment of quantized continuous-time control systems seems to appear in [21].

Further results have been presented later in [22].

In our opinion, the main reason behind this lack of contributions looking at quantized sys-

tems as discontinuous dynamical systems is mainly due to the fact that the greatest number

of publications within this �eld deal with discrete-time systems rather than continuous-time

ones. In the case of discrete-time systems, certainly the concerns related to the existence of

solution are no longer a problem. Nonetheless, discontinuities in discrete-time systems may

jeopardize the robustness of the resulting closed-loop system. Interesting examples about

this aspect are shown,e.g., in [75, 78]. On the one hand, pursuing a robust control approach,

as the sector bound approach discussed above, generally prevents from running into poorly

robust control systems even if the discontinuity is not directly accounted. On the other

hand, such a discontinuity may give rise to behaviors for which a traditional analysis cannot

provide any precise justi�cation.

Nevertheless, in modern engineered systems the classical paradigm of considering quanti-

zation only paired with discrete-time systems needs to be reconsidered. Many examples can

be found in which continuous-time dynamical systems interact with quantized variables; see,

e.g., [22]. Thus, a proper treatment of the situations falling into this context is a real need.

Contribution

The contribution we o�er in this �rst part of this dissertation aims at bridging the gap left

by the existing literature concerning the (almost) lack of constructive methods for quantized

linear control systems, with a special focus on uniform quantization. Speci�cally, we restrict

our interest to the class of continuous-time linear time-invariant systems. The issues related

in having closed-loop systems modeled via discontinuous right-hand side di�erential equa-

tions will be faced via the proper tools proposed by literature, likewise to [21]. In particular,

inspired by the literature of saturating systems, we provide constructive LMI-based con-

ditions for the stability analysis and the controller synthesis encompassing several settings

naturally arising in real-world applications. Such conditions enable to couple optimization

aspects with the considered problems, in a similar, although dual, fashion to the case of

saturated closed-loop systems. The use of optimization as a tool for conservatism reduction

and closed-loop behavior improvement are the main aims of this thesis.

The main feature of the methodology we propose in this dissertation consists of merging

together aspects arising from discontinuous-right hand side di�erential equations with a

constructive approach.

The remainder of this part is organized as follows.

� Chapter 1 illustrates the modeling framework adopted in this dissertation to deal

with quantized control systems, with a special emphasis on linear control systems and
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uniform quantization. Moreover, the technical foundations underlying the pursued

approach are thoroughly illustrated and commented within this chapter.

� Chapter 2 deals with static state feedback control for linear systems in the presence of

uniform quantization. In this setting, constructive conditions for the stability analysis

and the controller design are provided. Some of the results presented in this chapter

can be found in [40].

� Chapter 3 deals with dynamic output feedback control of linear systems in the presence

of uniform quantization. Even in this case, the proposed approach is constructive and

strives for obtaining tractable conditions from a numerical standpoint. Some of the

results presented in this chapter are included in [37, 38].

Numerical solutions to LMIs throughout this dissertation are obtained via YALMIP [87] and

coded in Matlab.
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1

QUANTIZED CONTROL SYSTEMS: MODELING AND

TECHNICAL FOUNDATIONS

\What is now proved was once only imagined."

{ William Blake

1.1 Introduction

In this chapter, we present the quantization phenomenon in its general form, and the

problems arising from the presence of quantizers in standard control loops. Then, the

general aspects of quantization in control systems are sharpened for the case of linear control

systems subject to uniform quantization. In this context, we illustrate some technical results,

that will be used in the sequel of this dissertation.

1.2 Quantized Systems: Modeling

Following the general approach proposed in [35], in this dissertation, asquantizer, we mean

a function q that maps the Euclidean spaceR` into a countable setQ � R` , that is:

q :

8
><

>:

R` ! Q

x 7! q(x):
(1.1)

9



10 Chapter 1

In this part of this dissertation, we are interested in analyzing the impact of quantization on

standard control systems. Speci�cally, let us consider the following nonlinear plant

8
<

:

_x = f (x; u)

y = h(x)
(1.2)

wherex 2 Rn is the state,u 2 Rm is the control input and y 2 Rp is the plant output, that

in some cases can also coincide with the whole state vectorx. f : Rn ! Rn , and h: Rn ! Rp

are two given functions.

Suppose that the system (1.2) is controlled through a feedback controller, whose input

coincides with the measure of the plant outputy, and generates a control signaluc which

feeds (1.2). On the other hand, in real implementations, the plant and the controller are

not directly connected together. Indeed, measurements of the plant output are gathered via

physical sensors. In modern applications, often such sensors have a �nite precision,e.g.,

optical encoders, digital sensors, etc. In all these situations, the measured plant output sent

to the controller is represented by means of a discrete set of valuesi.e., is quantized. In

the sequel, we will denote this case assensor quantization. Fully analogous considerations

hold for the input channel. In particular, the adoption of �nite-resolution actuators, (as,

e.g., stepper motors), or �nite precision realization of the controller entails a quantization

of the control signal. In the sequel, we will denote this case asactuator quantization. More-

over, actuator and sensor quantization may also occur simultaneously. For instance, this

situation occur in distributed control systems, where the physical interconnection between

the controller and the plant is ensured by a �nite-bandwidth communication channel; see

Figure 1.1. Indeed, in such a situation, the communication channel prevents from sending

in�nite precision data from one end to the other; see [22, 62]. Thus, in these contexts,

building from (1.2), the open-loop plant model to be considered for the analysis, but even

for the design, of the control system should be as follows

8
>>><

>>>:

_x = f (x; u)

u = q u(uc)

ym = q y(h(x))

(1.3)

whereym , and uc are, respectively, the measured output and the signal sent to the plant.

Remark 1.1. In the proposed model (1.3), the dynamics of sensors and actuators do not

directly appear. On the other hand, such dynamics can either be neglected, whenever they

are much more faster of those of the plant, or be incorporated either in the plant model,

or in the controller model. Thus, the modeling framework given in (1.3) is without loss of

generality.

Concerning the controller structure, depending on the availability of plant state, we con-

sider two classes of controllers.
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Figure 1.1: A networked control system. Both the controller and the plant communicate
with the channel via a �nite data rate.

Static State Feedback Controller

Whenever the plant statex is fully accessible, that ish = id, we will adopt a static state

feedback control law. In particular, in this setting, three situations can occur. In the �rst

case, the plant state is assumed to be measured directly, that isym = y = x, and only the

control input is subject to quantization. In this case,u = q u(� (x)), where � : Rn ! Rm is a

given function. In the second case, we assume that only the measured statex is quantized,

which yieldsu = uc = � (qy(x)). Finally, in the third case, we assume that both the measured

state and the control input are quantized, that isu = q u(� (qy(x))). In this latter case, that

encompasses the two others, the closed-loop system reads

8
>>><

>>>:

_x = f (x; u)

u = q u(uc)

uc = � (qy(x))

(1.4)

Dynamic Output Feedback Controller

Whenever, the plant state is not fully accessible, we adopt a dynamic output feedback control

law de�ned as follows 8
<

:

_xc = � (xc; ym )

uc = ! (xc; ym )
(1.5)

where xc 2 Rnc is the controller state, and� : Rnc � Rp ! Rnc , ! : Rnc � Rp ! Rm are

two given functions. In this case, three di�erent scenarios can be considered. In the �rst

one, the plant output y is quantized, namely the measured output e�ectively accessible is

ym = q y(y). In the second one, the control inputu is quantized, namelyu = q u(uc), while

in the third one both the plant output, and the control input are quantized. In this latter
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case, that encompasses the two others, the closed-loop system reads

8
>>>>>>>>>><

>>>>>>>>>>:

_x = f (x; u)

_xc = � (xc; ym )

uc = ! (xc; ym )

u = q u(uc)

ym = q y(h(x))

(1.6)

1.2.1 Discontinuous Dynamical Systems

From the general representation given by (1.1), it turns out that a quantizer is a function

that maps the Euclidean space into a countable set. This fact implies that, whatever is

the way adopted to realize such a mapping, the resulting map is discontinuous. Recall that

any continuous function maps the Euclidean space, which is connected, into a connected

set, (see,e.g., [107]), then in general uncountable1. Therefore, in any situation of those

presented above, the closed-loop system is described by a discontinuous-right hand side

di�erential equation. Therefore, there are no guarantees about the existence of classical

solutions to the closed-loop system,i.e., everywhere di�erentiable functions which satisfy

the dynamics of the closed-loop system at each point in their domain; see [46]. To overcome

this drawback, more general notions of solution are proposed in the literature. In particular,

in this dissertation we will consider the notion of solution due to Carath�eodory; see,e.g.,

[22, 31], and the notion due to Krasovskii; [77]. In the sequel, such notions are thoroughly

presented and illustrated in some examples. In particular, we introduce them for a dynamical

system in the following form.

_x = X (x) (1.7)

wherex 2 Rn , and X : Rn ! Rn .

De�nition 1.1 (Carath�eodory solution, [31]). Let I � R� 0 be an interval containing 0. A

function ' : I ! Rn is a Carath�eodory solution to (1.7) if ' is absolutely continuous onI ,

and2

_' (t) = X (' (t)) for almost all t 2 I :

The above de�nition does not insist either on on the di�erentiability of ' or on the fact

that (1.7) needs to be satis�ed on the whole domain of the solution. This weakening with

respect to the classical notion given by Peano ([98]) allows to deal with a wider class of

situations often occurring in control problems.

To delve into this issue, let us consider the following example.

1The only countable connected sets are the singletons. But this case is not of interest in our setting
2Let J � R be a given interval, and f : J ! Rn be a given function, the derivatives off are considered

one-sided derivatives at the end points ofJ .
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Example 1.1. Consider the system (1.7) for which

X (x) =

8
><

>:

1 x = 0

� 1 elsewhere:
(1.8)

Obviously, the system de�ned by (1.7)-(1.8) does not admit any solution' in the sense given

by Peano with ' (0) = 0, i.e., a derivable function satisfying (1.7) for eacht 2 dom' . Indeed,

let us assume that there exists such a solution' de�ned over [0; T], for someT 2 R� 0. Then,

since it needs to satisfy _' (0) = 1, and being ' derivable, there would exist a small enough

positive T0, such that for everyt 2 [0; T0], _' (t) > 0, giving ' (t) > 0 for t 2 (0; T0]. However,

this contradicts the fact that ' satis�es (1.7)-(1.8) over [0; T].

In the above example, the issue preventing from the existence of a classical solution' ,

with ' (0) = 0, stems from the fact that the discontinuity of the right-hand side imposes

a constraint that does not allow' to 
ow away from zero. Obviously, this drawback only

occurs whenever a solution comes across to the origin. In particular, completely di�erent

conclusions can be drawn by following the notion of solution due to Carath�eodory. This fact

is shown in the following example.

Example 1.2. Let us consider the system de�ned by (1.7)-(1.8). We want to investigate

the existence of Carath�eodory solutions,' , with ' (0) = 0, to such a system. According to

De�nition 1.1, for every T > 0, ' (t) = � t is a Carath�eodory solution for (1.7)-(1.8), Indeed,

such a solution is such that _' (t) = X (' (t)), for every t 2 (0; T]. Namely, ' does not satisfy

the related di�erential equation in t = 0, i.e., it satis�es (1.7)-(1.8) for almost all t 2 [0; T].

The above two examples have the merit to show how via a more general notion of so-

lution, one may overcome drawbacks arising from discontinuous right-hand side di�erential

equations. However, in some cases, the notion of solution due to Carath�eodory is not weak

enough to guarantee the existence of solutions. To understand the relevance of this issue, let

us consider the following example, which situates more in the context of this dissertation.

Example 1.3. Consider the following given plant with quantized actuator

8
<

:

_x = u

u = q( uc)

Speci�cally, q : uc 7! sign(uc), for which we consider sign(0) = 1. That is q maps the

Euclidean space intof� 1; 1g.

Let us suppose that we want to stabilize the above plant via the following static state

feedback controlleruc = � x. Then, the closed-loop system reads

_x = � sign(x): (1.9)

Clearly, the closed-loop system does not admit any Carath�eodory solution' with ' (0) = 0.

Indeed, by contradiction, let ' be a Carath�eodory solution to (1.9) with ' (0) = 0. For
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every x 2 R, de�ne the function W(x) = 1
2x2. Then, since' is absolutely continuous on its

domain, and W(x) is continuously di�erentiable on R, the function W(' (t)) is absolutely

continuous on dom' . Hence, its derivative exists for almost allt 2 dom' , and whenever it

exists
dW(' (t))

dt
= � ' (t) sign(' (t)) = �j ' (t)j:

Thus, sinceW(' (t)) is absolutely continuous, then

W(' (t)) =
Z t

0

dW(' (s))
ds

ds = �
Z t

0
j' (s)jds 8t 2 dom'

where the above integral needs to be intended as a Lebesgue integral; see,e.g., [107].

Now, asW(x) is nonnegative for everyx 2 R, then for almost all t 2 dom' , it needs to

be ' (t) = 0. But, such a function is not a Carath�eodory solution to (1.9). Indeed, suppose

that ' is a solution to (1.9), and that it is equal to zero for almost allt 2 dom' . Then, it

follows that,

' (t) = �
Z t

0
sign(' (s))ds = � t 8t 2 dom'

but this contradicts the fact that ' is equal to zero for almost allt 2 dom' .

The above example shows that unfortunately the notion of solution due to Carath�eodory

is still not enough to guarantee the existence of solutions for a given discontinuous right-

hand side di�erential equation. To overcome this problem, in the literature several notions of

solution are proposed; see,e.g., [8, 46, 77, 111]. In this dissertation, we embrace the notion

of solution due to Krasovskii [77].

De�nition 1.2 (Krasovskii solution [59]). For each x 2 Rn , let us de�ne the following

set-valued mapping

K[X ](x) :=
\

�> 0

coX (x + � B) (1.10)

where B is the closed unitary ball inRn . A function ' : I ! Rn , with I � R� 0 an interval

containing 0, is a Krasovskii solution to (1.7) if it is absolutely continuous onI , and

_' (t) 2 K [X ](' (t)) for almost all t 2 I :

In this dissertation, for any function X , we will refer to the set-valued mappingK[X ](x)

as Krasovskii regularization ofX (this terminology is proposed in [56]).

Remark 1.2. Notice that, the Krasovskii regularization of a locally bounded function

X : Rn ! Rn has some interesting properties as set-valued mapping. In particular, by

de�nition of the Krasovskii regularization, it follows that for each x 2 Rn , K[X ](x) is con-

vex, domK[X ] = Rn , and according to [56, Lemma 5.16]K[X ] is outer semicontinuous. In

addition, local boundedness ofX yields local boundedness ofK[X ]. These properties will

be of interest in the sequel of this dissertation.

Three main reasons encourage to choice this kind of notion in control problems. The �rst

one is that Krasovskii solutions exist under very mild requirements, (below a formal result
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concerning existence of Krasovskii solutions is given). The second one is that, whenever

they exist, Carath�eodory solutions are Krasovskii solutions. Then, any conclusion drawn on

Krasovskii solutions also holds for Carath�eodory solutions. The third one is that, as shown

in [59, Corollary 5.6.], (and also more recently in [56, Theorem 4.3.]), Krasovskii solutions

coincide with Hermes solutions, which are de�ned as follows

De�nition 1.3 (Hermes solutions [59]). A function ' H is a Hermes solution to (1.7) on a

compact interval J � R> 0, if there exist a sequence of measurable functionsf pkg1
k=0 de�ned

on J , and a sequence of functionsf ' kg1
k=1 de�ned on J , such that ' k is a Carath�eodory

solution to _' k = X (' k + pk), the sequencef pkg1
k=1 converges uniformly to the zero function

on J , and ' k converges uniformly to' H on J .

The notion of Hermes solutions allows to capture the e�ect of arbitrarily small state

perturbations on the solutions to (1.7). Such perturbations may represent actuation dis-

turbances, measurement noises, or modeling errors. Thus, this fact provides a strong jus-

ti�cation fostering the adoption of Krasovskii (Hermes) solutions in control problems. The

reader may consult [56, Example 4.1.] for a interesting example showing connections between

Krasovskii solutions and Hermes solutions, in a case similar to Example 1.2. Concerning the

existence of Krasovskii solutions, let us consider the following result given,e.g., in [23, 56],

and which is direct consequence of general results on di�erential inclusions presented in [7].

Such a result uses the notion of locally bounded function.

De�nition 1.4 ([30]). A function f : S is locally bounded if for everys 2 S there exists a

neighborhoodB of s, such that f (B) is bounded.

Theorem 1.1. Let x0 2 Rn . If X is locally bounded, then there exists at least a Krasovskii

solution ' to (1.7), such that ' (0) = x0:

To exploit the notion of solution due to Krasovskii, one needs to compute the Krasovskii

regularization of the function X , which in general is a nontrivial task. To simplify such a

task, we illustrate below some properties of the Krasovskii regularization for a given function

X . Such properties were originally proposed for the Filippov regularization in [97], and then

extended to the Krasovskii regularization in [23].

Proposition 1.1.

(i) If X : R`1 ! R`2 is continuous atx 2 R`1 , then K[X ](x) = f X (x)g

(ii) Given two locally bounded functionsX 1; X 2 : R`1 ! R`2 , then K[X 1+ X 2](x) � K [X 1](z)+

K[X 2](z). Moreover, if either X 1 or X 2 are continuous atx 2 R`1 , then equality holds.

(iii) Given two locally bounded functionsX 1 : R`1 ! R`2 , and X 2 : R`1 ! R`3 � `2 , (X 2

is a matrix valued function). If X 2 is continuous at x 2 R`1 , then K[X 2X 1](x) =

X 2(x)K[X 1](x); where for everyx 2 R`1 , X 2X 1(x) := X 2(x)X 1(x).

Moreover, as follows, we propose another result, that will be of interest in the sequel.

Such a result is somehow derived from [97].

Proposition 1.2. Let X 1 : R`1 ! R`2 be a locally bounded function, andX 2 : R`3 ! R`1 a
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continuous function. Then, for eachx 2 R`3 ,

K[X 1 � X 2](x) � K [X 1](X 2(x)) : (1.11)

Proof. First of all, for each x 2 R`3 , let us de�ne the set3

L (x) = f lim X 1 � X 2(xk)jxk ! xg � R`2

wherexk is any sequence converging tox. SinceX 1 � X 2 is locally bounded, according to [9,

Lemma 1], it turns out that for every x 2 R`3 , K[X 1 � X 2](x) = co L (x). For eachx 2 R`3 ,

de�ne the set

P(x) = f lim X 1(pk)jpk ! X 2(x)g � R`2

where pk is any sequence converging toX 2(x). Pick any l 2 L (x), by de�nition, there

exists a sequencexk ! x, such that l = lim X 1 � X 2(xk). For any k 2 N, de�ne the

sequence ~pk = X 2(xk), then l = lim X 1(~pk). On the other hand, sinceX 2 is continuous, then

~pk ! X 2(x), which implies that l 2 P (x). Since this property holds for anyl 2 L (x), it

follows that, for eachx 2 R`3 ,

L (x) � P (x)

Therefore, taking the convex-hull of both sides of the above relation and recalling that for

eachx 2 R`3

K[X 1](X 2(x)) = co P(x)

establishes the result. �

Remark 1.3. Notice that showing the complementary inclusion to (1.11) requires additional

assumptions on the functionX 2. In particular, the equality can be established requiring that

X 2 is smooth and that for eachx 2 R`3 rank r X 2(x) = `1; see [97].

Another result, still derived from [97], is given next. Such a result is useful to address

decentralized discontinuous functions, often occurring in control problems.

Proposition 1.3. For each i = 1; 2; : : : ; `, let X i : Rn i ! Rn i be locally bounded functions.

Let, for each x 2 � `
i =1 Rn i ,

Y(x) =
`

�
i =1

X i (x i ):

Then, for eachx 2 � `
i =1 Rn i , the following identify holds

K[Y](x) =
`

�
i =1

K[X i ](x i ): (1.12)

Proof. For notation simplicity, we prove the above result for` = 2, the extension to the

3This notation is inherited by the seminal work of Paden and Sastry [97] presenting calculation rules for
the Filippov regularization.
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general case is straightforward. First of all, for eachx 2 Rn1 � Rn2 , let us de�ne the set

L (x) = f lim Y(xk)jxk ! xg � Rn1 � Rn2

where xk is any sequence converging tox. Since Y is locally bounded, according to [9,

Lemma 1], it turns out that for every x = ( x1; x2) 2 Rn1 � Rn2 ,

K[Y](x) = co L (x):

We want to prove that

f lim X 1(yk)jyk ! x1g � f lim X 2(zk)jzk ! x2g
| {z }

H (x)

� L (x)

where yk and zk are any sequences converging, respectively, tox1 and x2. To this aim,

for each x 2 Rn1 � Rn2 , pick w 2 H (x). By de�nition, there exist two sequencesyk ; zk

converging, respectively, tox1; x2, such that

w = (lim X 1(yk); lim X 2(zk)) :

De�ne the sequencexk = ( yx ; zk), and notice that xk ! x. Therefore, sincew = lim Y(xk),

it follows that w 2 L (x). Thus, since the latter construction holds for everyw 2 H (x), it

follows that for eachx 2 Rn1 � Rn2

H(x) � L (x):

Now we want to prove the complementary inclusion. To this end, for eachx 2 Rn1 � Rn2 ,

pick w 2 L (x). Then, by de�nition, there exists a sequencexk converging tox, such that

w = lim Y(xk). Split such a sequence with respect to its components,i.e., xk = ( yk ; zk). By

the de�nition of Y, if follows that

w = (lim X 1(yk); lim X 2(zk))

that is w 2 H (x). Thus, for eachx 2 Rn1 � Rn2 , L (x) � H (x). The two shown inclusions

yield, for eachx 2 Rn1 � Rn2 ,

H (x) = L (x):

To conclude the proof, notice that by taking the convex-hull of both sides of the latter

expression gives4

coL (x) = co ( f lim X 1(yk)jyk ! x1g � f lim X 2(zk)jzk ! x2g)

= co f lim X 1(yk)jyk ! x1g � cof lim X 2(zk)jzk ! x2g = K[X 1](x1) � K [X 2](x2):

4We used the following property. Let, for i = 1 ; 2; : : : ; s, Si � Rn i given sets, then co� s

i =1
Si =

� s

i =1
coSi ; see [13].
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�

Remark 1.4. The above result decreases the conservatism of [97, Theorem 1 (3)] for the

special class of functions considered. Notice that, whenever for eachi = 1; 2; : : : ; s ni = 1,

the above theorem specializes to the case of decentralized functions.

By using the rules illustrated in the above result, we reconsider Example 1.3 to investigate

the existence of Krasovskii solutions' , with ' (0) = 0.

Example 1.4. Consider the quantized closed-loop system given in (1.9). Notice that, since

the function sign(�) is locally bounded, (in fact bounded), according to Theorem 1.1, at least

for small enoughT, there exists a Krasovskii solution to (1.9) for everyx0 2 R. To determine

such a solution, one needs to �rst determine the Krasovskii regularization of� sign(x). In

particular, as for everyx 6= 0, sign(x) is continuous, by the items (i) and (iii) of Proposition

1.1, and via the expression given in (1.10), one gets

K[� sign](x) =

8
>>>><

>>>>:

� 1 x > 0

1 x < 0

[� 1; 1] x = 0:

Di�erently from Example 1.3, the zero function is a (the unique) Krasovskii solution to (1.9)

on any interval ofR� 0, and obviously' (0) = 0. The main di�erence with respect to Example

1.3 consists of having enabled solutions starting from the origin to be constant.

At this stage, it should be clear that di�erential inclusions play a key role in this disser-

tation. In particular, let us consider the following di�erential inclusion

_x 2 F (x) (1.13)

where x 2 R` , and F (x) : R` � R` . For such a di�erential inclusion, let us consider the

notion of solution given next.

De�nition 1.5. Let I � R� 0 be an interval containing 0. The function' : I ! Rn is a

solution to (1.13) if ' is absolutely continuous onI , and

_' (t) 2 F (' (t)) for almost all t 2 I :

The above de�nition allows to consider Krasovskii solutions to a given di�erential equation

as the solutions to a certain di�erential inclusion. Therefore, in the sequel, for the sake of

generality, results, de�nitions and properties will be stated for general di�erential inclusions

as (1.13).

Concerning solutions to (1.13), in this dissertation, we consider the following notions.

De�nition 1.6 (Maximal solution [56]). Let ' be a solution to (1.13). Then' is said to be

maximal if there does not exist any other solution such that dom� is a proper subset of

dom and ' (t) =  (t) for every t 2 dom' .

De�nition 1.7 (Complete solution [56]). Let ' be a solution to (1.13). Then' is said to
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be complete if sup dom' = 1 .

Remark 1.5. Clearly, every complete solution is maximal but the converse is in general not

true.

1.2.2 About Numerical Simulations of Krasovskii Solutions

To overcome the issues about the existence of solutions to (1.7), we addressed the study of

such a system, by means of the notion of Krasovskii solution. The adoption of this notion

perfectly �ts in control problems. On the other hand, when one is interested in the numerical

simulation of (1.7), the question that naturally arises is how to integrate (1.7) to somehow

recover the behaviors captured by the notion of Krasovskii solution.

For this purpose, we need to introduce the notion of� -polygonal approximation and Euler

solution, which are both given in [27].

De�nition 1.8 (� -Polygonal approximation). Consider system (1.7). Givenx0 2 Rn and

T > 0, consider the following construction

� Fix an arbitrary partition of the interval [0 ; T], 0 < t 1 < t 2 < � � � < t N , with tN = T

and max
k2f 0;1;:::;N � 1g

f tk+1 � tkg � �:

� Compute xk+1 = xk + ( tk+1 � tk)X (xk), for k = 0; : : : ; N � 1 and x(0) = x0:

� Build the piecewise a�ne function ' � (tk) such that ' � (tk) = xk for k = 0; 1; : : : ; N � 1.

The function ' � (t) is said to be a� -polygonal approximation for (1.7).

De�nition 1.9. A function ' E(t) is said to be an Euler solution to (1.7) if it is the uniform

limit for � ! 0 of a polygonal approximation' � (t) obtained by some partition of the interval

[0; T], and for somex0 2 Rn .

The interest in considering Euler solutions stems from the fact that, as proven in [16],

Euler solutions are Krasovskii solutions. In particular, notice that, among all the possible

polygonal approximations one can consider, the simplest and straightforwardly attainable

through a numerical procedure arises from selecting a uniform partitioning of the time in-

terval [0; T]. Namely, let N be an arbitrarily positive integer, �x � = T
N , set t0 = 0 and for

k = 0; 1; 2; : : : ; N � 1, selecttk+1 = tk + T
N . Thus, the sequence of polygonal approximations

f x T
N

g1
N =1 , if converges uniformly, has as a limit a Krasovskii solution to (1.7). Therefore,

for N su�ciently large, the function x T
N

can represent a good approximation of a Krasovskii

solution to the considered system. This aspect is illustrated in the following example.

Example 1.5. Consider again the system analyzed in Example 1.3, and recall that for

such a system, there exists only a maximal Krasovskii solution' , with ' (0), i.e., the null

solution. Then, in this case, for every compact interval [0; T], whatever is the partition

used to determine� -polygonal approximations to (1.3), as� approaches zero, if the family of

functions ' � converges uniformly on the interval [0; T], its (uniform) limit is the identically
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zero function on the interval [0; T], that is

lim
� ! 0

sup
t2 [0;T ]

j' � (t)j = 0:

In particular, this fact can be shown numerically in this case by considering a uniform

partitioning. Figure 1.2 shows the value of sup
t2 [0;10]

j' T
N

(t)j versusN . As N approaches in�nity

(� approaches zero), sup
t2 [0;10]

j' T
N

(t)j approaches zero, meaning that' T
N

uniformly approaches

the zero function on [0; 10]. Figure 1.3 depicts some� -polygonal approximations obtained

Figure 1.2: sups2 [0;10] j' (s)j versusN , for a uniform partitioning.

for di�erent uniform partitioning of the interval [0 ; 5]: Figure 1.3 shows that asN increases

the resulting � -polygonal approximation approaches the null solution.

The above example shows that the notion of Euler solution and the fact that Euler

solutions are Krasovskii solutions provides some insights on how discontinuous systems could

be simulated to capture the peculiar behaviors of Krasovskii solutions. However, following

this approach based on Euler �rst order integration entails two main problems. On the

one hand, givenx0 2 Rn , there may exist multiple Krasovskii solutions' 1; ' 2; : : : ; ' s, with

' 1(0) = ' 2(0) = � � � = ' s(0) = x0, and some of them may not be Euler solutions. For

instance, consider [23, Example 1], for whichX (x) = 3
2x1=3, T = 1, and x0 = 0. In this case, it

can be shown that' 1(t) = t3=2, ' 2(t) = t � 3=2, and ' 3(t) = 0 are Carath�eodory solutions (then

obviously Krasovskii solutions) to the considered system with' 1(0) = ' 2(0) = ' 3(0) = 0,

while the only Euler solution is' E(t) = 0, despite the continuity of the function X . On the

other hand, establishing if the considered sequence of polygonal approximations uniformly

converges wheneverN approaches in�nity could be nontrivial. Therefore, this aspect is still
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Figure 1.3: Some� -polygonal approximations (N = 10 blue, N = 100 red, N = 1000 green)

worth of further investigations.

1.3 Uniform Quantized Linear Control Systems

1.3.1 The Class of Systems Under Study

In this dissertation, we focus on plants whose dynamics are linear, that is dynamical systems

in the following form 8
<

:

_x = Ax + Bu

y = Cx
(1.14)

where A 2 Rn� n , B 2 Rn� m , and C 2 Rp� n . For such a class of plants, the following

standing assumptions will be considered in the sequel.

Assumption 1.1 (Standing assumption). The matrix A is not Hurwitz. 4

Assumption 1.2 (Standing assumption). The pair (A; B ) is stabilizable, and the pair (A; C)

is detectable. 4

Assumption 1.1 allows to exclude the trivial case of open-loop stable plants. Whereas,

Assumption 1.2 ensures that a linear stabilizing controller exists for the considered plant,

assumption that will play a fundamental role in our approach.

The interest in considering such a class of systems is twofold. On the one hand, many real

plants can be approximately modeled through a linear model, at least around an equilibrium

point. On the other hand, by considering linear plants, constructive methodologies can be

proposed. Namely, building on theoretical conditions, numerical algorithms for the solution
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to the analyzed problems can be derived.

In this particular case, being the dynamics of the plant linear, we reasonably consider also

linear controllers. Therefore, by specializing the various situations presented earlier to the

case of linear plant and linear controllers, we obtain the following models for the closed-loop

system.

Linear static state feedback controller.

8
>>><

>>>:

_x = Ax + Bu

u = q u(uc)

uc = K qy(x)

(1.15)

whereK 2 Rm� n is the controller gain.

Linear dynamic output feedback controller.

8
>>>>>>>>>><

>>>>>>>>>>:

_x = Ax + Bu

_xc = Acxc + Bcym

uc = Ccxc + Dcym

u = q u(uc)

ym = q y(Cx)

(1.16)

wherexc 2 Rnc is the controller state, andAc 2 Rnc � nc ; Bc 2 Rnc � p; Cc 2 Rm� nc ; Dc 2 Rm� p

are the matrices de�ning the controller model.

1.3.2 The Uniform Quantizer

In this dissertation, we focus on the uniform quantizer q :R ! � Z de�ned as follows,

q(u) := � sign( u)

$
juj
�

%

(1.17)

where � is a positive given real scalar characterizing the quantization error bound,i.e., for

every u, j q(u) � uj � �; see Figure 1.4. Whenever,u 2 R` , with ` > 1, then

q(u) := (q( u1); q(u2) : : : ; q(u` )) :

Remark 1.6. Observe that the quantizer we consider in this dissertation, due to the larger

dead-zone around the origin with respect to a standard quantizer, it is genuinely uniform

only when restricted toR� 0. The choice of this quantizer stems from having for a given �

a quantizer as coarse as possible. Indeed, the standard uniform quantizer adopted,e.g., in
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Figure 1.4: The uniform quantizer

[22], for a given � > 0 induces a quantization error bounded by�2 . A quantizer similar

to (1.17) is considered in [85], although we slightly modi�ed such a map to avoid having

a discontinuity at the origin. That said, since the quantizer we consider entails the same

bound on the quantization error as the in the case of the uniform quantizer in [85], with a

slight abuse of notation, we denote (1.17) uniform quantizer. We would like to emphasize

that all the results presented within this dissertation can be easily extended to encompass

the standard uniform quantizer used,e.g., in [22].

Notice that, since q(0) = 0, and the plant and the controller dynamics are homogeneous

(in fact they are linear), both for (1.15) and (1.16), the origin is an equilibrium point for

the closed-loop system. Assume that the origin is also globally asymptotically stable for the

quantization free closed-loop system, one may wonder whether the same property still holds

for systems (1.15) and (1.16). The following examples show that, in general, the answer to

this question is negative.

Example 1.6 (Isolated equilibria). Consider the quantized input version of the balancing

pointer from [69]. 8
>>><

>>>:

_x =

2

40 1

1 0

3

5 x +

2

4 0

� 1

3

5 u

u = q( uc)

Suppose that the plant is controlled via a static state feedback controlleruc = Kx , with

K =
h
13 7

i
, and q(�) is the uniform quantizer with � = 2. Notice that, whenever the plant

actuator is not quantized, the origin of the closed-loop system is globally asymptotically

stable, as spec(A + BK ) = f� 3; � 4g. In Figure 1.5 some closed-loop trajectories are shown.

Simulations show that the closed-loop system trajectories approach two isolated equilibrium

point. Therefore, the origin is no longer globally asymptotically stable.
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(a) Closed-loop trajectories

(b) A close-up showing the trajectories converging toward the two
equilibria

Figure 1.5: Quantized control system manifesting isolated equilibria.
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Example 1.7 (Limit-cycles). Consider again the balancing pointer plant described in the

above example, and assume that the measured state is quantized via a uniform quantizer

(1.17) with � = 0 :5. Suppose that the plant is controlled via the same static state feedback

controller given in Example 1.6,i.e., uc = K q(x).

8
>>><

>>>:

_x =

2

40 1

1 0

3

5 x +

2

4 0

� 1

3

5 u

u = uc

In Figure 1.6, some closed-loop trajectories are shown. Simulations show that the closed-

loop system trajectories approach a limit cycle, implying that the origin is not globally

asymptotically stable.

The two above examples show that, in general, the asymptotic stability properties of the

quantization free closed-loop system are destroyed by quantization. This phenomenon is

well established in the literature; see,e.g., [22, 84, 117]. In particular, as far as concerns

(1.17), due to �nite precision near the origin, such a quantizer induces in both (1.15) and

(1.16) a region of the state space wherein the control system runs in open loop. This implies

that if the origin of the open-loop plant is not asymptotically state, so is the origin of the

closed-loop system. For instance, consider system (1.16), and suppose that the origin of

the open-loop plant is not asymptotically stable. Let qu and qy de�ned as in (1.17), with

respectively � u and � y. Pick xc = 0, and x0 such that jCx0j � � y. Now, let ' be a maximal

solution to _x = Ax, with ' (0) = x0. Due to linearity, there exists a strictly positiveT, such

that jC' (t)j � � y for eacht 2 [0; T]. Thus, (' (t); 0) is a solution to (1.16) on the interval

[0; T]. Since this construction can be repeated for anyx0 such that jCx0j � � y, and the

origin of the open-loop plant is not asymptotically stable by hypothesis, so is the origin of

(1.16). Basically, sensor quantization induces a lack of the feedback action in a polyhedral

region containing the origin, preventing from achieving closed loop asymptotic stability for

the origin. Similar arguments show that actuator quantization induces the same kind of

behaviors, while analogous considerations hold also for the simpler case of the static state

feedback control system (1.15).

1.4 Stability Notion and Preliminaries Results

The facts illustrated above, also via Example 1.6 and Example 1.7, underline that, in general,

requiring the origin of the closed-loop system (1.15) or (1.16) to be asymptotically stable is in

general impossible. In fact, quantized dynamical systems may manifest complex behaviors,

whose precise characterization, unless in particular cases, is far from trivial. On the other

hand, as shown in [84, 117], and qualitatively illustrated in Example 1.6 and Example 1.7,

under suitable conditions, the closed-loop system trajectories are bounded and converge into

a compact and invariant setA containing the origin, (such a set can contain limit cycles,

equilibrium point etc.). Loosely speaking, the setA gives an outer approximation, near the
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(a) Closed-loop trajectories

(b) A close-up showing the trajectories converging toward
two limit-cycles

Figure 1.6: Quantized control system manifesting limit-cycles.

origin, of the real behavior of the closed-loop system. In particular, the determination of

the set A enables to de�ne a bounded region having two relevant properties: (1) Closed-

loop solutions starting insideA remain de�nitely con�ned in such a set, (2) closed-loop

solutions starting outsideA approach such a set. That said, it appears likewise interesting
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to investigate on what happens when the closed-loop system is initialized \near" such a set.

From a technical point of view, this fact prompts to seek for conditions guaranteeing the

asymptotic stability of a compact set containing the origin.

In particular, in this dissertation, for a general di�erential inclusion as (1.13), we consider

the following notion of (uniform) global stability for a closed setA � R` , given in [124].

Such a de�nition uses distance to closed set, and classK functions, which are given next.

De�nition 1.10 (Distance to a closed set [56]). Given a vectorx 2 Rn , and a closed setA ,

the distance ofx from A is denotedjxjA and is de�ned by jxjA = inf y2A kx � yk.

Remark 1.7. Notice that, given a closed setA � Rn and a positive real scalar� , the set

of the points x 2 Rn with jxjA � � coincides with the setA + � B. Such a writing will be

largely used throughout this dissertation.

De�nition 1.11 (ClassK1 functions [76]). A function � : R� 0 ! R� 0, is a classK1 if � is

zero at zero, continuous, strictly increasing, and unbounded.

The de�nition of uniform global asymptotic stability of a closed-set is as follows.

De�nition 1.12 (Uniform global asymptotic stability) . Let A � Rn be closed. The setA

is

� uniformly globally stable for (1.13), if there exists a classK1 function � , such that

every solution' to (1.13) satis�es j' (t)jA � � (j' (0)jA ) for every t 2 dom'

� uniformly globally attractive for (1.13), if every maximal solution to (1.13) is complete,

and for every " > 0 and � > 0 there existsT > 0, such that for any solution ' to

(1.13) with j' (0)jA � � , t � T implies j' (t)jA � "

� uniformly globally asymptotically stable (UGAS) for (1.13), if it is uniformly globally

stable and uniformly globally attractive

The uniformity requirement considered in the above notion of stability implies that when-

ever the distance of the initial condition' (0) from the set A approaches zero, so does the

distance of the issuing solution' (t) for eacht 2 dom' . The uniformity requirement consid-

ered in the attractivity property implies instead that the convergence rate of the solutions'

distance from the setA is uniform with respect to the initial condition's distance. Although

the uniformity requirements considered in the above de�nition gives rise to stronger no-

tions of stability than the one usually considered, it turns out that for the class of systems

and problems addressed in this dissertation, the uniformity requirement is without loss of

generality. This aspect will be clari�ed through the results given in the sequel.

For the special case of compact sets, let us consider the following result which essentially

derives from the combined application of [56, Proposition 7.5.] and [124, Proposition 3]. The

derivation of such a result uses the de�nition of strong forward invariance of a closed set

for a di�erential inclusion, given e.g., in [26] and reported below, and general de�nitions

concerning set-valued mappings that are reported in Appendix D.

De�nition 1.13. Let A � Rn be closed. The setA is strongly forward invariant for (1.13)

if every maximal solution to (1.13) is complete, and' (0) 2 A implies rge' � A .
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Now we are in position to state the mentioned result.

Proposition 1.4. Consider the di�erential inclusion in (1.13), i.e.,

_x 2 F (x) x 2 Rn ; F : Rn � Rn :

Let A � R` be compact, strongly forward invariant and uniformly globally attractive for

(1.13). Let F be outer semicontinuous, locally bounded,domF = Rn , and such that for each

x 2 Rn F (x) is convex. Then, the setA is UGAS for (1.13). �

The proof of the above result uses classKL functions.

De�nition 1.14 (ClassKL functions [76]). A function � : R� 0 � R� 0 ! R� 0, is a classKL

function, if it is nondecreasing in its �rst argument, nonincreasing in its second argument,

and

lim
s! 0+

� (s; t) = lim
t ! + 1

� (s; t) = 0 :

Then, the proof of the above result is as follows.

Proof of Proposition 1.4. Due to the properties required forF in the statement of the above

result, since A is compact, strongly forward invariant, and uniformly globally attractive

for (1.13), thanks to [56, Proposition 7.5.] it follows thatA is stable5 for (1.13). Moreover,

due to the properties required forF , by the virtue of [124, Proposition 3] it follows that

there exists a class-KL function � , such that for every maximal solution' to (1.13), one has

for every t 2 R� 0,

j' (t)jA � � (j' (0)jA ; t)

which in turn, due to [124, Proposition 1], implies thatA is UGAS for (1.13), and this

�nishes the proof. �

Notice that the above result plays a fundamental role in establishing su�cient conditions

to ensure UGAS of a certain compact set containing the origin. Indeed, as previously il-

lustrated in this chapter, the requirements on the right-hand side set-valued mappingF (x)

needed for the applicability of Proposition 1.4 are obviously veri�ed wheneverF (x) arises

from the Krasovskii regularization of a locally bounded function, which is the case in both

(1.15) and (1.16).

Remark 1.8. UGAS of a compact setA for (1.13) ensures that every maximal solution to

(1.13) is bounded. To see this, it su�ces to observe that, beingA compact, for a large enough

� > 0, one hasA � � B. Thus, since for everyx 2 Rn , jxj � B � j xjA , and kxk � j xj � B + � .

Finally, boundedness of maximal solutions to (1.13) can be readily established by combining

the latter relations with the bounds issued from UGAS.

Before concluding this chapter, let us consider the following result, which will be exploited

in the sequel.

Proposition 1.5. Consider (1.13) and assume thatF is outer semicontinuous, locally

bounded, convex valued, anddomF = Rn . Assume that there exists a continuously dif-

5See,e.g., [124, Proposition 3] for a standard de�nition of " � � stability of a compact set.
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ferentiable functionV : Rn ! R such that

V(x) > 0 8x 6= 0 (1.18)

lim
kxk!1

V(x) = 1 (1.19)

and two positive real scalars� , and � such that

hr V(x); f i � � �V (x) 8x 2 L +
� (V); f 2 F (x) (1.20)

where L +
� (V) := f x 2 Rn : V (x) � � g. Then, the setA := Rn n Int L +

� (V) is UGAS for

(1.13).

The proof of the above result rests on the following lemma.

Lemma 1.1. Let A � Rn be compact. If there exists a continuous function � :Rn ! R� 0

such that for each� > 0, every maximal solution' to (1.13) with ' (0) 2 A + � B is complete,

and t � �( x0) implies ' (t) 2 A . Then, A is globally uniformly attractive for (1.13). �

Proof. The proof is straightforward. In particular, let � > 0 de�ne

� = max
x2A + � B

�( x)

and observe that being � continuous andA compact, � is well de�ned. To conclude, notice

that for each maximal solution' to (1.13) with ' (0) 2 A + � B, one has thatt � � implies

' (t) 2 A and this concludes the proof. �

Remark 1.9. The main feature of the above result consists of establishing uniform attractiv-

ity via �nite time convergence, assuming continuous dependence of the convergence time on

the initial condition. Speci�cally, the continuity requirement allows to establish uniformity

with respect to the initial condition.

Now we are in position to show the proof of Proposition 1.5.

Proof of Proposition 1.5. First observe that sinceV is radially unbounded, A is compact.

To prove that the set A is UGAS, we �rstly show that A is strongly forward invariant for

(1.13) and that each maximal solution to (1.13) is complete.

Concerning strongly forward invariance, sinceA is compact, thanks to the properties

required for F , from [56, Proposition 6.10.], it su�ces to show that each maximal solution

starting inside A cannot leave such a set,i.e., completeness of such solutions automatically

holds. By contradiction, assume that there exists a maximal solution' starting from A that

eventually leaves such a set. Then, there exists� 2 dom' such that ' (� ) =2 A , that is

V(' (� )) > �:

Thus, since the functionV � ' : dom' ! R is continuous, there existss 2 dom' such that

V(' (s)) = �:
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Without loss of generality6, assume that for eacht 2 (s; � ], ' (t) =2 A . In other words,

s is the largest exit time of the solution ' from the set A . From (1.20) thanks to the

Gr•onwall-Bellman lemma, it follows that for every t 2 [s; � ]

V(' (t)) � e� � (t � s)V(' (s))

then

V(' (� )) < V (' (s)) :

However, this contradicts the fact that ' (� ) =2 A , i.e., ' cannot leave the setA . Hence,A

is strongly forward invariant for (1.13).

Concerning completeness of the maximal solutions starting outsideA , by retracing the

same steps performed above, it can be readily shown that every maximal solution' to (1.13)

and with ' (0) =2 A cannot leave the sublevel setL �
V (' (0)) (V) := f x 2 Rn : V (x) � V(' (0))g.

Hence, since sublevel sets ofV are compact, it follows that every maximal solution to (1.13)

is bounded. Thus, thanks to [56, Proposition 6.10.], every maximal solution to (1.13) is

complete.

Bearing in mind completeness of maximal solutions to (1.13) and strong forward in-

variance of A , now we conclude the proof of the above result by showing that maximal

solutions to (1.13) converge in �nite time into A . Pick any maximal solution ' to (1.13),

with ' (0) 2 Int�. Let T = f t 2 R� 0 : ' (t) 2 Ag , sinceA is strongly forward invariant,

either T = ; or supT = 1 . In other words, if ' eventually entersA , then by strong forward

invariance, it cannot leave such a set. By contradiction, let us suppose thatT = ; , then for

every t 2 R� 0, ' (t) =2 A . Therefore, still from (1.20), it follows that

V(' (t)) � e� �t V(' (0)) 8t 2 R� 0: (1.21)

Pick,

t �
1
�

ln
�

V(' (0))
1
�

�

from (1.21) one gets

V(' (t)) � �

that is ' (t) 2 A , but this contradicts the fact that T = ; . Now, for everyw 2 Rn , de�ne

�( w) :=

8
><

>:

0 w 2 A
1
� ln

�
V(w) 1

�

�
w =2 A

notice that � is continuous on Rn , and that for every maximal solution � to (1.13), t �

�( � (0)) implies that � (t) 2 A . Then, since every maximal solution to (1.13) is complete,

from Lemma 1.1 it follows that A is globally uniformly attractive for system (1.13). Now,

6This assumption, is discussed in [11] and for self completeness simple arguments justifying such an
assumption are given in Appendix A. Notice that, since _' (s) may not exist, standard arguments revolving
of the monotonicity of the function t 7! V � ' (t) cannot be exploited to conclude.
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A is compact, strongly forward invariant, and globally uniformly attractive for (1.13), from

Proposition 1.4 it follows that A is UGAS for (1.13), and this �nishes the proof. �

1.5 Conclusion

In this chapter, we illustrated the quantization phenomena in control systems, with a special

attention to uniform quantization and linear control systems. In particular, two main points

were addressed. The �rst pertains to the notion of solution to adopt to deal with quantized

control systems. In particular, it was shown that the discontinuity introduced by quantizers

may jeopardize the existence of closed-loop solutions. This issue is completely overcame

by considering, for the closed-loop system, the notion of solution due to Krasovskii. The

other main aspect highlighted in this chapter regards instead the more convenient notion of

stability to adopt in dealing with quantized control systems. Indeed, for a general quantized

control system, requiring the asymptotic stability of the origin is unattainable. In this

setting, it was shown that considering the asymptotic stability of a compact set containing

the origin provides a way to guarantee a proper behavior of the closed-loop system, while

matching with the nature of considered problem.
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QUANTIZED LINEAR STATIC STATE FEEDBACK CONTROL

\Research is what I'm doing when I don't know what I'm doing".

{ Wernher von Braun

2.1 Introduction

This chapter pertains to quantization in linear static state feedback control schemes. In

particular, two cases are considered. In the �rst one, the plant state is assumed to be

fully measurable and the plant actuator uniformly quantized. In the second one, the plant

state is assumed to be fully measured via a uniformly quantized sensor. In such two situ-

ations, we address both stability analysis and stabilization of the closed-loop system. The

approach followed to address the two con�gurations is essentially the same. Namely, as a

�rst step we provide a general result to characterize the behavior of the closed-loop system,

such a result to some extent uses ideas from [84], though adapted to deal with Krasovskii

solutions and uniform global asymptotic stability of a certain compact set. Then, by the

use of novel sector conditions, a less conservative result, based on the solution to certain

matrix inequalities, is proposed. Building on such a result, a complete apparatus revolving

on convex optimization is presented to solve both the stability analysis and the stabiliza-

tion problems, while taking into account optimization aspects. First results concerning the

actuator quantization case can be found in [40].

33
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Figure 2.1: The function 	, in the scalar case, representing the quantization error.

2.2 Actuator Quantization

2.2.1 Problem Statement and Preliminary Results

Consider the following continuous-time linear system with actuator quantization

8
<

:

_x = Ax + Bu

u = q( Kx )
(2.1)

where x 2 Rn , u 2 Rm , are respectively the state, and the input of the system.A; B; K

are real matrices of suitable dimensions, and q(�) is the uniform quantizer de�ned in (1.17)

having as a quantization error bound � > 0. De�ne the function,

	 : Rm ! Rm

z 7! q(z) � z
(2.2)

the closed-loop system can be rewritten as

_x = ( A + BK )x + B	( Kx ): (2.3)

The function 	 represents the quantization error, then according to (1.17), 	 is bounded. In

particular, for every u 2 Rm , k	( u)k �
p

m�; see Figure 2.1. Moreover, since the function

	 is discontinuous, the right-hand side of (2.3) is a discontinuous function of the state.

Thus, for the reasons illustrated in Chapter 1, we focus on Krasovskii solutions to system

(2.3). Notice that, in view of the local boundedness of the right-hand side of (2.3), for every

x0 2 Rn , there exists at least a Krasovskii solution' to (2.3) with ' (0) = x0; see Chapter 1.

Therefore, by de�ning
X : Rn ! Rn

x 7! (A + BK )x + B	( Kx )
(2.4a)

we consider the solutions to the following di�erential inclusion

_x 2 K [X ](x) (2.4b)



Chapter 2 35

whereK[X ](x) represents the Krasovskii regularization of the functionX ; see De�nition 1.2

on page 14. As pointed out earlier, the presence of the uniform quantizer, due to its deadzone

e�ect, represents a real obstacle to the asymptotic stabilization of the closed-loop system.

Namely, one should be aware that if the matrixA is not Hurwitz, then the asymptotic

stability of the origin for the closed-loop system (2.4) cannot be achieved via any choice of

the gain K . Indeed, for everyx belonging to the setP := f x 2 Rn : jKx j � � g, one has

	( Kx ) = � Kx . Thus, there exists a su�ciently small neighborhood of the origin strictly

contained inP, such that for everyx the right-hand side of (2.1) coincides withAx . Namely,

the behavior of the closed-loop system around the origin is not in
uenced by the choice of

the gain K . On the other hand, since the function 	 is bounded, one may expect that,

under opportune hypothesis on the quantization free closed-loop system, the solutions to

(2.4) manifest some stability properties. A positive answer to this question is given by the

following theorem, which uses ideas from [82, Lemma 1].

Theorem 2.1. Let A; B; K be matrices of adequate dimensions, such thatA + BK is

Hurwitz. Then, there exists a compact setA � Rn , containing the origin, which is UGAS

for (2.4).

Proof. SinceA + BK is Hurwitz, there existsP; Q 2 S n
+ such that He (P(A + BK )) = � Q.

For every x 2 Rn , de�ne � (x) = Kx . Since the functionx 7! (A + BK )x is continuous, by

Proposition 1.1, for everyx 2 Rn ,

K[X ](x) = ( A + BK )x + BK[	 � � ](x):

Since 	 is locally bounded, (in fact bounded), according to [9, Lemma 1] it follows that, for

every x 2 Rn

K[	 � � ](x) = co f lim 	( K (xk)) jxk ! xg:

Then, due to the bound shown earlier on the function 	, it turns out that for each x 2 Rn

K[	 � � ](x) � B
p

m� :

Therefore, for eachx 2 Rm , the following inclusion holds:

K[X ](x) � (A + BK )x + BB
p

m� : (2.5)

Now, for every x 2 Rn , de�ne the function V(x) = xT Px, and notice that for every

x 2 Rn , and any f 2 K [X ](x)

hr V(x); f i = � xT Qx + 2xT PB� � � � min (Q)xT x + 2xT PB�

for some� 2 B
p

m�. Let us recall that for every a; b2 Rn and for every positive scalar� ,

2aT b � �aT a + 1
� bT b. Then, by setting � = 1

2 � min (Q), from the latter inequality one gets

hr V(x); f i � �
1
2

� min (Q)xT x +
2

� min (Q)






 BT P2B






 m� 2 8x 2 Rn ; f 2 K [X ](x) (2.6)
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which in turn gives

hr V(x); f i � �
� min (Q)

2� max (P)
V(x) +

2
� min (Q)






 BT P2B






 m� 2 8x 2 Rn ; f 2 K [X ](x): (2.7)

Pick � 2 (0; 1) and consider the following superlevel set ofV

� =

(

x 2 Rn : V (x) �
4� max (P)
� 2

min (Q)�






 BT P2B






 � 2m

)

and de�ne A = Rn n Int�. Moreover, from (2.7)

hr V(x); f i � �
� min (Q)

2� max (P)
(1 � � )V(x) 8x 2 � ; f 2 K [X ](x): (2.8)

Then, thanks to Proposition 1.5 it follows thatA is UGAS, completing the proof. �

Theorem 2.1 shows that if the matrixA + BK is Hurwitz, then there exists a compact

set A containing the origin, which is UGAS for (2.4). Moreover, such a set is a sublevel

set of a certain quadratic function. On the one hand, this fact fosters to consider quadratic

Lyapunov-like functions to investigate the dynamics of (2.4). This fact essentially arises

from the fact that the underlying dynamics of the considered control systems are linear. On

the other hand, the characterization of the setA provided by the above result is quite coarse,

and strongly depends on the choice of the matrixQ. It appears obvious that the matrix Q

should be selected in a way such that the resulting setA �ts as much as possible the real

behavior of the closed-loop system. However, the selection strategy of such a matrix appears

unclear. To overcome this problem, we pursue a constructive approach. Namely, �rst we

derive computationally tractable conditions aimed at providing a characterization of the set

A . Essentially, through this stage, one obtains a set of conditions whose solution yields the

set A . Then, the search of the setA is done by embedding the obtained conditions into an

optimization scheme aimed at shrinking the size ofA . The outcome of this approach consists

of a systematic procedure able to perform a search of the most convenient setA , starting

from the data of the closed-loop system. To operate this approach, we seek for conditions

solving the problem formalized as follows.

Problem 2.1. (Stability analysis) Let A; B; K be matrices of adequate dimensions, such

that A + BK is Hurwitz. Determine a compact setA � Rn containing the origin, such that

A is UGAS for system (2.4).

The solution to the above problem is the object of the remainder of this section.

2.2.2 Stability Analysis

As explained earlier, in solving Problem 2.1, we are interested in deriving a setA �tting

as much as possible the real behavior of the closed-loop system. To this end, we want to

reduce the conservatism introduced in the proof of Theorem 2.1 to bound the set-valued
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mapping K[	]. Inspired by the general idea pursued in the literature on nonlinear systems

with isolated nonlinearities; see,e.g., [66, 120] and the references therein, we provide some

sector conditions providing tighter bounds for the set-valued mappingK[	]. To this aim,

consider this �rst result concerned with the function 	.

Lemma 2.1. [38] Let z 2 R` , and S1; S2 2 D `
+ . The following relations hold:

	( z)T S1	( z) � trace(S1)� 2 � 0 (2.9)

	( z)T S2(	( z) + z) � 0 (2.10)

Proof. Let z = ( z1; z2; : : : ; z` ). Then, by de�nition, for each i 2 f 1; 2; : : : ; `g, j	 i (z)j =

j	( zi )j � �. Now, let s(1)
1 ; s(2)

1 ; : : : ; s(` )
1 any strictly positive scalars. One has, for each

i 2 f 1; 2; : : : ; `g, s(i )
1 j	 i (z)j � s(i )

1 �, then by summing over i = 1; 2; : : : ; `, and by setting

S1 = diag(s(1)
1 ; s(2)

1 ; : : : ; s(` )
1 )

yields (2.9). To prove (2.10), notice that by de�nition, for eachi 2 f 1; 2; : : : ; `g, 	 2
i (z) +

	 i (z)z(i ) � 0 (see Figure 2.1). Picks(1)
2 ; s(2)

2 ; : : : ; s(` )
2 any strictly positive scalars. Then, by

following the same arguments adopted to show (2.9), and by de�ning

S2 = diag(s(1)
2 ; s(2)

2 ; : : : ; s(` )
2 )

yields (2.10), and this concludes the proof. �

The above Lemma allows to embed the function 	 in a certain sector. However, the

conditions provided by such a result do not directly apply to the set-valued mappingK[	],

and then further work is needed. On the other hand, let us remark that for everyz 2 R`

such that 	( z) is continuous, as shown in Proposition 1.1,K[	]( z) = f 	( z)g. Then, for

such z the conditions provided by Lemma 2.1 are certainly ful�lled. Therefore, the main

point to address consists in verifying whether the conditions provided by Lemma 2.1 hold

even for the set valued mapK[	] or not. A positive answer to this question is given by the

following result.

Lemma 2.2. Let z 2 R` , v 2 K [	]( z), and S1; S2 2 D `
+ . Then, the following relations hold:

vT S1v � trace(S1)� 2 � 0 (2.11)

vT S2 (v + z) � 0 (2.12)

Proof. First of all, for each z 2 R` , let us de�ne the set

L (z) = f lim 	( zk)jzk ! zg � R`

where zk is any sequence converging toz. Since 	 is locally bounded, likewise the proof

of [23, Proposition 11], it turns out that for everyz 2 R` , K[	]( z) = co L (z). Now, let us
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de�ne the following closed set

V1 = f v 2 R` : vT S1v � trace(S1)� 2 � 0g � R`

which, due to S1 positive de�nite, is also convex1. We want to show that, for z 2 R`

coL (z) � V 1: (2.13)

To this end, pick l 2 L (z), then, by de�nition, there exists a sequencezk ! z such that

l = lim 	( zk). On the other hand, from Lemma 2.1, it turns out that, for everyk 2 N, and

for every diagonal positive de�nite matrix S1, one has 	T (zk)S1	( zk) � trace(S1)� 2 � 0,

which, by taking the limit over k yields lT S1l � trace(S1)� 2 � 0, that is l 2 V1. Hence,

L (z) � V 1:

Thus, sinceV1 is convex, taking the convex-hull of both sides of the latter relation establishes

(2.13), which in turn gives (2.11).

To show (2.12), we pursue a similar approach. Speci�cally, for anyz 2 R` , de�ne the

closed set

V2(z) = f v 2 R` : vT S2(v + z) � 0g � R`

which is convex due toS2 positive de�nite. We want to show that coL (z) � V 2(z). To this

end, pick any l 2 L (z), then there exits a sequencezk ! z, such that l = lim 	( zk). Still,

according to Lemma 2.1, for everyk 2 N, one has 	T (zk)S2(	( zk) + zk) � 0, then by taking

the limit over k, one getslT S2(l + z) � 0, that is l 2 V2(z). Hence

L (z) � V 2(z):

Thus, by taking the convex hull of both sides, beingV2(z) convex, yields coL (z) � V 2(z),

that is (2.11), and this �nishes the proof. �

Building on the conditions given by the above result and to the fact that, thanks to

Theorem 2.1, the search of the setA can be carried out by focusing on a sublevel set

of a certain quadratic function, the next result gives a �rst su�cient condition to solve

Problem 2.1.

Proposition 2.1. If there exist P 2 S n
+ , S1; S2 2 D m

+ , and a positive scalar� such that

N =

2

4He(P(A + BK )) + �P PB � K T S2

� � S1 � 2S2

3

5 < 0 (2.14)

trace(S1)� 2 � � � 0 (2.15)

1Positive de�niteness of S1 implies that the function v 7! vT S1v� trace(S1)� 2 is convex, then its sublevel
sets are convex sets; see,e.g., [14].
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then,

A = E(P) (2.16)

solves Problem 2.1.

Proof. For every x 2 Rn , consider the following quadratic functionV(x) = xT Px. Following

the ideas presented in the proof of Theorem 2.1, we want to prove that under (2.14) and

(2.15) there exists a positive real scalar� such that

hr V(x); wi � � �V (x) 8x 2 Rn n Int A ; w 2 K [X ](x): (2.17)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (2.17)

su�ces to show that the set A in (2.16) is UGAS for (2.4). By S-procedure arguments,

(2.17) can be veri�ed by showing that for everyx 2 Rn , there exists a positive real scalar�

such that

hr V(x); wi � � (1 � xT Px) � � �V (x) 8w 2 K [X ](x): (2.18)

On the other hand, via Proposition 1.1 and Proposition 1.2, for everyw 2 K [X ](x), there

existsv 2 K [	]( Kx ), such that w = ( A + BK )x + Bv. Then, still by S-procedure arguments

and according to Lemma 2.2, (2.18) is ensured by proving that for eachx 2 Rn , and for each

v 2 Rm ,

hr V(x); (A + BK )x + Bvi � � (1 � xT Px) � vT S1v

+ trace(S1)� 2 � 2vT S2(v + Kx ) � � �V (x):
(2.19)

By straightforward calculations the left-hand side of the above relation can be rewritten as

follows 2

4x

v

3

5

T

N

2

4x

v

3

5 + trace(S1)� 2 � �: (2.20)

Thus in view of (2.14) and (2.15), it follows that there exists a small enough positive scalar


 such that for every x 2 Rn n Int A ; w 2 K [X ](x), one hashr V(x); wi � � 
x T x. Then,

since for everyx 2 Rn , V (x) � � max (P)xT x, by setting � = 

� max (P ) gives (2.18), and this

�nishes the proof. �

Remark 2.1. In the proof of the above result, we relied on Proposition 1.2 to build an

overapproximation of K[X ], avoiding the derivation of the exact expression ofK[X ], that

is in general a nontrivial task. However, as argued in Remark 1.3, whenever rankK = m

such an expression could be obtained by following similar arguments to [97, Theorem 1]

and by relying on Proposition 1.3. On the one hand, due to the approach we embrace,

following this approach would not give rise to any change in the derived conditions (the

same sector conditions would be considered also in this case). On the other hand, the

derivation of the actual Krasovskii regularization ofx 7! 	( Kx ) could allow, in some case,

a deep understanding of the dynamics of (2.4). This aspect will be clari�ed in Section 2.2.5

via some numerical examples.
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The above result provides a su�cient condition to solve Problem 2.1. A necessary condi-

tion to ensure the feasibility of (2.14) is that the matrixA + BK is Hurwitz. On the other

hand, from Theorem 2.1, it turns out that having A + BK Hurwitz enables to exhibit a

solution to Problem 2.1. Therefore, at a �rst sight, the conditions provided by Proposition

2.1 could appear stronger than the mere Hurwitzness of the matrixA + BK . In other words,

one may wonder whether the Hurwitzness of the matrixA + BK ensures the feasibility of

conditions (2.14) and (2.15). A positive answer is given by the following result.

Proposition 2.2. Let K 2 Rm� n such that A + BK is Hurwitz. Then, there exists

(�; P; S1; S2) 2 R> 0 � S n
+ � D n

+ � D n
+ satisfying (2.14) and (2.15).

Proof. Assume there exist (� ; P ;S1) 2 R> 0 � S n
+ � D m

+ such that

2

4He(P(A + BK )) + � P PB

� � S1

3

5 < 0 (2.21)

trace(S1)� 2 � � � 0: (2.22)

For every diagonalS2 2 Rp� p, de�ne

M (S2) :=

2

4He(P(A + BK )) + � P PB � K T S2

� � S1 � 2S2

3

5 :

From (2.21) it follows that M (0) < 0. Moreover, sinceM (S2) depends continuously on the

entries of S2, there exists a small enough positive scalar� , such that for every S2 2 � Dm
+

with S2 � � I yields2 M (S2) < 0.

To conclude the proof, it su�ces to show that wheneverA + BK is Hurwitz there exists

(� ; P ;S1) 2 R> 0 � S n
+ � D m

+ such that (2.21) and (2.22) holds. To this end, de�neAcl =

A + BK , and let R(Acl) := fj< (� )j : � 2 spec(Acl)g, notice that sinceAcl is Hurwitz, then

R(Acl) � R> 0. Pick �� 2 (0; 2 minR(Acl)), and de�ne, eAcl = Acl + ��
2 I. Observe that,

according to the selection considered for� , eAcl is Hurwitz. Select S1 2 D m
+ , such that

trace(S1)� 2 � � � 0. By following these choices, the right-hand side of (2.21) reads

2

4He( eAT
clP) PB

� � S1

3

5 : (2.23)

For any Q1 2 S n
+ , pick the solution W 2 S n

+ to the following matrix equality

He( eAclW) = � BS
� 1
1 BT � Q1

notice that such a solution always exists sinceeAcl is Hurwitz, and S1 2 D m
+ . Now, set in

2This fact can be justi�ed by noticing that the set H := f v 2 Rm : M (diagf v1; v2; : : : ; vm g) < 0g is open.
Then, since 02 H , there exists a positive scalar" such that "B � H . Thus, by picking � = 1p

m " yields the
result.
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(2.23), P = W
� 1

. By following this choice, (2.23) becomes

2

4He( eAT
clW

� 1
) W

� 1
B

� � S1

3

5 : (2.24)

We want to show that the latter matrix is negative de�nite. By pre-and-post multiplying

(2.24) by diag(W; I), it turns out that (2.24) is negative de�nite if and only if

2

4He( eAclW) B

� � S1

3

5 < 0 (2.25)

and the latter, due to the selection done forW turns into

2

4 � BS
� 1
1 BT � Q1 B

� � S1

3

5 < 0 (2.26)

Moreover, by Schur complement, asS1 is positive de�nite, (2.26) is negative de�nite if and

only if

� BS
� 1
1 BT � Q1 + BS

� 1
1 B = � Q1 < 0 (2.27)

which is obviously satis�ed beingQ1 2 S n
+ . Then, (� ; W

� 1
; S1) establishes the result. �

Remark 2.2. Notice that, whenever� is �xed, (2.14) and (2.15) are linear in the decision

variables. Therefore, Proposition 2.1 turns the solution to Problem 2.1 into a \quasi"-LMI

feasibility problem. These aspects will be clari�ed in the sequel.

2.2.3 Controller Design

In the previous section of this chapter, we focused on the analysis problem of the quantized

closed-loop system (2.4). Essentially, building on a stabilizing state-feedback controller for

the quantization free closed-loop system, we shown that there exists a compact setA sur-

rounding the origin which is UGAS for the closed-loop system. Such a set may contain

limit-cycles and or parasitic equilibria for the closed-loop system that are undesired behav-

iors in engineered systems. Then, with the aim of limiting the in
uence of these phenomena,

one may want to design the controllerK so as to shrink the size of the setA . To this end,

in this section we propose certain constructive conditions characterizing the solutions to the

problem formalized as follows.

Problem 2.2. (Controller design) Let A; B be matrices of adequate dimensions. Determine

a gain K 2 Rm� n , and a compact setA � Rn containing the origin, such that A is UGAS

for system (2.4).

At a �rst sight, Problem 2.2 could be solved directly by searching for a feasible solution

to conditions (2.14) and (2.15), with the only caveat to treat alsoK as a variable. On

the other hand, (2.14) and (2.15) are nonlinear in the decision variables. Hence, from a

numerical standpoint, Proposition 2.1 does not provide an e�ective solution to Problem 2.2.
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To overcome this problem, let us consider the following result.

Proposition 2.3. If there exist W 2 S n
+ , S1; S2 2 D m

+ , Y 2 Rm� n , and a positive scalar� ,

such that (2.15) is veri�ed and,

2

4He(AW + BY ) + �W B � YT S2

� � S1 � 2S2

3

5 < 0 (2.28)

then,

A = E(W � 1) (2.29)

K = Y W� 1 (2.30)

solve Problem 2.2.

Proof. The proof of this result is based on Proposition (2.1). In fact, we prove that condition

(2.28) is obtained from (2.14) by means of a congruence transformation and an invertible

change of variable. Let us assume that (2.28) is veri�ed. Then, since from (2.30),Y W� 1 =

K , pre-and-post multiplying the right-hand side of (2.28) by diag(W � 1; I), yields

2

4He(W � 1A + W � 1BK ) + �W � 1 W � 1B � K T S2

� � S1 � 2S2

3

5 < 0:

Finally, by setting in the previous relation W � 1 = P yields (2.14). Hence, thanks to Propo-

sition 2.1 the assert is proven. �

Remark 2.3. Although the above result alleviates one of the nonlinearity a�ecting condition

(2.14), (2.28) is still nonlinear in the decision variables. This aspect will be discussed in the

sequel.

Clearly, as shown for Proposition 2.1, also in this case the feasibility of the conditions

given by Proposition 2.5 is always ensured (under Assumption 1.2 on Page 21). In this sense,

let us consider the following result that follows directly from Proposition 2.2.

Proposition 2.4. Let A; B matrices such that Assumption 1.2 is satis�ed. Then, there

exists (�; W; S1; S2; Y) 2 R> 0 � S n
+ � D n

+ � D n
+ � Rm� n satisfying (2.28) and (2.15).

Proof. Since from Assumption 1.2 the pairA; B is stabilizable, there exists a gainK such

that A + BK is Hurwitz. Then, since condition (2.28) is obtained from condition (2.14) via

invertible changes of variables and congruence transformations, by following the same steps

as in the proof of Proposition 2.2, and by settingY = KW yields the result. �

2.2.4 Optimization Issues

It appears obvious that in solving Problem 2.1, one looks for an UGAS set which mostly

�ts the real behavior of the closed-loop system. On the other hand, in solving Problem 2.2,

the main objective consists of designing the gainK to ensure that the closed-loop solutions
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stay su�ciently close to the origin. To this end, building on the conditions provided by

Proposition 2.1 and by Proposition 2.3, one can consider the two following optimization

problems:

Problem 2.3 (Stability) . Let A; B; K be matrices of adequate dimensions. Determine

P 2 S n
+ , such that E(P) is UGAS for system (2.4), and it is minimized with respect to some

criterion.

Problem 2.4 (Stabilization). Let A; B be matrices of adequate dimensions. Determine a

gain K 2 Rm� n , and P 2 S n
+ , such that E(P) is UGAS for system (2.4), and it is minimized

with respect to some criterion.

Notice that, although the two above problems are formulated in a similar fashion, they

are in fact quite di�erent. Indeed, in solving Problem 2.3, one attempts to reduce the

conservatism in the analysis of the closed-loop system behavior. Instead, solving Problem 2.4

means to actively act on the closed-loop system by designing the controller gainK , to

impose a desired behavior. The solution to the two above optimization problems can be

carried out by embedding the conditions provided, respectively, by Proposition 2.1, and

Proposition 2.3 into a suitable optimization scheme. To this end, an adequate measure of

the setsE(P) and E(W � 1) needs to be selected. Namely, the objective consists of de�ning

a function M a : Rn� n ! R (M s : Rn� n ! R), such that M a(P) (M s(W)) provides a

convenient indication on the size ofE(P) (E(W � 1)). Once M a (M s) is de�ned, Proposition

2.1 (Proposition 2.3) enables to reformulate Problem 2.3 (Problem 2.4) as follows:

minimize
P;S1 ;S2 ;�

M a(P)

subject to S1; S2 2 D m
+ ; P 2 S n

+ ; � > 0

(2.14); (2.15):

(2.31)

minimize
W;S1 ;S2 ;�;Y

M s(W)

subject to S1; S2 2 D m
+ ; W 2 S n

+ ; � > 0

(2.28); (2.15):

(2.32)

Size Criteria

Being the considered set, in both the above optimization problems, an ellipsoidal set, sev-

eral criteria can be adopted to obtain a measure of such a set; see,e.g., [15, 66, 120]. A

�rst choice is to consider the volume ofE(P) (E(W � 1)) as size criterion, i.e., vol (E(P))

(vol (E(W � 1))). In particular, it turns out that, given S 2 S n
+ , and a generic ellipsoidal

set E(S) := f w 2 Rn : wT Sw � 1g, then vol (E(S)) /
q

det(S� 1); see [15]. Thus, adopt-

ing this criterion leads to M a(P) = � det(P) and M s(W) = det( W). However, as the

two functions M a(P) = � det(P) and M s(W) = det( W) are in general non-convex, this

would lead to possible N-P hard problems; see [15]. Therefore, with the aim of obtaining a

numerically tractable optimization problem, the above criteria cannot be adapted directly.
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Concerning Problem 2.3, a straightforward strategy to overcome this drawback, see [15]),

consists of considering, as objective function to minimize� log det(P). Indeed, the function

� log det(P) is convex over the setSn
+ and its minimization is equivalent to the minimization

of M a(P) = � det(P); see [15]. On the other hand, the adoption of the latter criterion could

lead to a setE(P) excessively stretched along some direction. This is a well known behavior

in the literature; see [120]. To overcome this problem, instead of minimizing the volume of

E(P), one can minimize the trace(P � 1). Indeed, as trace(P � 1) =
P n

i =1 � i (P � 1), P > 0, and

each eigenvalue ofP � 1 corresponds to length of one of the axis of the ellipsoidE(P), mini-

mizing trace(P � 1) tends to homogeneously shrink the setE(P) is each direction. However,

since this criterion is in general non convex in the decision variableP, its exploitation in a

numerical scheme is not straightforward. To overcome this drawback, we introduce a further

variable N 2 S n
+ , subject to the following linear constraint

2

4N I

� P

3

5 � 0

which, by Schur complement, is equivalent toP � 1 � N . Therefore, the minimization of

trace(P � 1)

can be implicitly performed by minimizing trace(N ), which is a convex (in fact linear)

function of N . By pursuing this approach, Problem 2.3 reads

minimize
P;S1 ;S2 ;�;N

trace(N )

subject to

2

4N I

� P

3

5 � 0

S1; S2 2 D m
+ ; P; N 2 S n

+ ; � > 0

(2.14); (2.15):

(2.33)

Another alternative solution, inspired from [120, 66], and that can be used to state Prob-

lem 2.3, consists of minimizing the setE(P) along certain directions of interests, (this method

does not directly requires to specify a measure for the considered sets). In particular, let

v1; v2; : : : ; vp 2 Rn be some given vectors, and let� 1; � 2; : : : ; � p, positive scalars. Consider for

eachi = 1; 2; : : : ; p, the following constraints

vT
i Pvi � � i i = 1; 2; : : : ; s: (2.34)

By maximizing the scalars� i , the set E(P) shrinks along the directionsvi .

Hence,e.g., via a linear scalarization, the above size criterion, can be adopted to state
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Problem 2.3 as single objective optimization problem, as follows

minimize
P;S1 ;S2 ;�;� 1 ;� 2 ;:::;� s

�
sX

i =1

� i 
 i

subject to S1; S2 2 D m
+ ; P 2 S n

+ ; � > 0

(2.15); (2.14); (2.34)

(2.35)

where
 i > 0 are the weights of the objectives.

Even in Problem 2.4, the above trace criterion can be easily adopted, and its exploitation

is also simpler than in Problem 2.3; indeed it su�ces to consider as convex objective in

the decision variables directly trace(W). In particular, this choice leads to the following

optimization problem

minimize
W;S1 ;S2 ;�;Y

trace(W)

subject to S1; S2 2 D m
+ ; W 2 S n

+ ; � > 0

(2.28); (2.15):

(2.36)

However, if one insists in requiring convexity for the measure criterion, adopting the above

illustrated volume criterion is impossible. Indeed, the function log det(W) is concave.

Numerical Issues in the Solution to (2.31)

Concerning (2.31), notice that, as long as the considered objective function is convex, when-

ever the scalar� is �xed, such a problem is a genuine convex optimization problem over LMI

constraints. Then, the solution to this problem can be performed in polynomial time via

interior points methods; see [15]. On the other hand, the positive scalar� can be treated as

a tuning parameter, or being selected via an iterative search. This is a typical scenario in

the literature; see,e.g., [118, 119, 126]. Then (2.31) can be e�ciently solved on a computer,

with only caveat to obtain a sub-optimal solution. Based on this idea, consider the following

algorithm that, by performing a grid search for� in an interval wherein the feasibility of

(2.14)-(2.15) is ensured, provides a possible solution to (2.31)
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Algorithm 2.1 Stability analysis
Input: Matrices A; B; K , scalars � > 0, a convex functionM a : Sn

+ ! R> 0, and a
tolerance� > 0.
Initialization: Let R(A + BK ) := fj< (� )j : � 2 spec(A + BK )g, select � = 2 �
0:99 minR(A + BK ),
Iteration

Step 1:
Solve the following convex optimization problem over LMIs

minimize
S1 ;S2 ;P

M a(P)

s.t. S1; S2 2 D m
+ ; P 2 S n

+
"
He(P(A + BK )) + �P PB � K T S2

� � S1 � 2S2

#

< 0

trace(S1)� 2 � � � 0

Pick the sub-optimal solution (P ;S1; S2). Store the obtained solution:

M (k)
a?  M a(P); P (k)

?  P :

k  k + 1

Step 2:
Decrease� of � , i.e., �  � � �
Until � > 0.

Step 3: kmax  k, selectk? = argmin
k2f 1;2;kmax g

fM (k)
a? g

Output: P = P (k? )
? .
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Remark 2.4. Notice that, as shown in the proof of Proposition 2.2, the initialization pro-

posed ensures that at each iteration, Step 1 terminates with a sub-optimal solution to Prob-

lem 2.3. Then, Algorithm 2.1 always terminates in a �nite number of steps.

Numerical Issues in the Solution to (2.32)

The solution to (2.32) is much more complicated, and for this further work is needed. Indeed,

even when� is �xed, condition (2.28) is nonlinear due to the product of decision variables

YT S2 (and its transpose). This kind of nonlinearity often occurs whenever one attempts to

design, via the solution of an optimization problem, a static state feedback controller for

certain class of nonlinear systems; see,e.g., [118]. Nevertheless, beingS2 diagonal, at least

for m � 2, even for this variable a grid search can be envisaged to solve (2.32), with still the

only caveat to obtain a suboptimal solution.

Another strategy to ride over this problem consists of adopting a procedure indicated

here below:

� As a �rst step one selects some stabilizing gain for the pair (A; B ), this is always

possible due to Assumption 1.2

� Once the controller gain is known, by �xing � as prescribed in the proof of Proposi-

tion 2.2, (2.28) becomes a genuine LMI in the remaining variables, whose feasible set

is non-empty. Therefore,S2 can be selected to ensure the feasibility of (2.28)-(2.15)

� OnceS2 is selected as indicated above, by preforming a grid search for� , a suboptimal

solution to (2.32) can be determined by solving a �nite number of convex optimization

problems over LMIs.

These steps are exploited to build the following algorithm.
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Algorithm 2.2 Controller design
Input: MatricesA; B , scalar � > 0, a tolerance� > 0, and a convex functionM s : Sn

+ !
R> 0:
Initialization: SelectK , such that A+ BK is Hurwitz. Let R(A+ BK ) := fj< (� )j : � 2
spec(A + BK )g. Set for the next step

� = 2 � 0:99 minR(A + BK )

Step 1:
Determine a feasible solution to the following LMI problem

S1; S2 2 D m
+ ; P 2 S n

+
"
He(P(A + BK )) + �P PB � K T S2

� � 2S2 � S1

#

< 0

trace(S1)� 2 � � � 0

Set S2 = S2 for the next step. Select a grid of positive valuesG� such that � = max G�

Iteration
Step 2:
Solve the following convex optimization problem over LMIs selecting� over G�

minimize
W;S1 ;Y

M s(W)

subject to

S1 2 D m
+ ; P 2 S n

+
"
He(AW + BY ) + �W B � YT S2

� � 2S2 � S1

#

< 0

trace(S1)� 2 � � � 0

Pick the suboptimal solution to the above optimization problem

(� ?; W?; Y ?; S?
1):

and determine the controller gain asK ? = Y ?(W ?)� 1.
Determine the closed-loop matrixA + BK ?, and set� = 2 � 0:99 minR(A + BK ?). Build
a grid of positive valuesG� such that � = max G� , and � ? 2 G� , (notice that necessarily
� ? � � . Including � ? in G� ensures the feasibility at the next step).

Until M s(W) does not decrease below� over three consecutive steps.

Output: (K ?; P = ( W ?)� 1)
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Remark 2.5. The above algorithm essentially performs a grid search for� keeping the

value of S2 unchanged from the initialization stage. However, the grid search proposed is

\greedier" than a standard one. Indeed, the gridG is built from scratch at each iteration,

to tentatively explore a wider portion of the feasible set, at least in the� -direction.

Remark 2.6. The proposed algorithm has two important properties. The �rst one is that,

thanks to the initialization proposed building on the proof of Proposition 2.2, the algorithm

always provides a suboptimal solution to the controller design problem. The second one is

that, since at each iteration the objective is at least non-increasing, the algorithm stops in a

�nite number of iterations.

An alternative strategy to solve the controller design problem consists of exploiting the

following su�cient condition to (2.28).

Proposition 2.5. If there exist W 2 S n
+ , S1; H 2 D m

+ , Y 2 Rm� n , and a positive scalar� ,

such that 2

6
6
4

He(AW + BY ) + �W BH � YT 0

� � 4H I

� � � S1

3

7
7
5 < 0 (2.37)

then W; �; Y; S1; S2 = H � 1 satis�es (2.28).

Proof. By Schur complement, (2.37) implies

2

4He(AW + BY ) + �W BH � YT

� � 4H + S� 1
1

3

5 < 0: (2.38)

On the other hand, beingS1 and H positive de�nite, one has

(H � S� 1
1 )S1(H � S� 1

1 ) � 0

or equivalently

� 2H + S� 1
1 � � S1H 2:

Then, it follows

2

4He(AW + BY ) + �W BH � YT

� � 2H � S1H 2

3

5 �

2

4He(AW + BY ) + �W BH � YT

� � 4H + S� 1
1

3

5 < 0:

(2.39)

Moreover, pre-and-post multiplying the left-hand side of the above relation by diag(I; H � 1)

yields 2

4He(AW + BY ) + �W B � YT H � 1

� � 2H � 1 � S1

3

5 < 0: (2.40)

Then, since settingS2 = H � 1 yields (2.28), the assert is proven. �

Thus, exploiting the above result, performing a grid search for the matrixS2 (at least

for m � 2), or a two-stage procedure, represent viable solutions to solve Problem 2.4 via a

convex setup. Nevertheless, while the feasibility of the conditions provided by Proposition
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2.3 is ensured by Proposition 2.4, there is no guarantees that Proposition 2.5 provides feasible

conditions. Therefore, establishing which of the two techniques is more convenient is an open

question.

A less evident aspect to be considered in solving (2.32) consists of avoiding solutions

characterized by an overly large controller gain, situation that needs to be ruled out to

envision the physical realization of the proposed controller. In particular, observe that the

optimal solutions to (2.32) could in some case be approached only via an in�nitely large

controller gain. This phenomenon is thoroughly addressed in [110] for the case of static

state-feedbackH 1 -problem for linear systems. To overcome this problem, a typical solution

consists of adding further constraints in (2.32) to limit the controller gain. This procedure

somehow corresponds to reshape the feasible set of the considered optimization problem in

way such that high-gain control solutions become unfeasible solutions. However, it follows

from Proposition 2.3 that the matrix W is linked to both the set E(W � 1) and to the gain

K . Then, limiting the norm of the gain K by directly operating on the expression given

in Proposition 2.3 leads to add further constrains on the matrixW. This fact may have a

negative e�ect on the solution to (2.32). On the one hand, further constraining the matrix

W may introduce an additional conservatism in the solution of (2.32). On the other hand,

although the feasibility of (2.32) should not be a�ected by additional constraints on the

matrix W, at least when those are not excessively severe, including further constraints on

the matrix W may impact on the achievable suboptimal solutions. Loosely speaking, the

addition of further constraints in the optimization problem can reshape the feasible set of

(2.32) in a unfavorable fashion. To alleviate these issues, following the lines of [20], we

provide a su�cient condition to (2.28) in which the matrices W and K are not directly

coupled. In particular, let us consider the result given next

Corollary 2.1. If there exist J 2 S n
+ , Y 2 Rm� n , F 2 Rn� n , S1; S2 2 D m

+ , and a positive

scalar � such that (2.15) is veri�ed, and

2

6
6
4

� He(F ) J + AF + BY � FT B

� �J + He(AF + BY ) � YT S2 + B

� � � S1 � 2S2

3

7
7
5 < 0 (2.41)

then K = Y F � 1 and A = E(F � T JF � 1) are solution to Problem 2.2.

Proof. The proof is inspired by [99]. From Proposition 2.1, notice thatN = WT QW , where

W =

2

6
6
4

A + BK B

I 0

0 I

3

7
7
5 ; Q =

2

6
6
4

0 P 0

� �P � K T S2

� � � S1 � 2S2

3

7
7
5 :

Thus, (2.14) can be rewritten equivalently asWT QW < 0. Moreover, beingS1 and S2

positive de�nite, UT QU < 0, with UT =
h
0 0 I

i
, is obviously satis�ed. Thus, by the

projection lemma; see [99], the satisfaction of (2.14), wheneverS1 and S2 are required to be
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positive de�nite, is equivalent to �nd a matrix X such that

Q + WT ?
r X U?

r + UT ?
r X T W ?

r < 0 (2.42)

where,U?
r and W ?

r are some matrices having as rows a basis of the row-null space, respec-

tively of U and W. Now, by selectingU?
r =

h
I2n 02n� p

i
and W ?

r =
h
� I A + BK B

i
, and

by partitioning X =
h
X 1 X 2

i
, whereX 1; X 2 2 Rn� n , from (2.42) one gets

2

6
6
4

� He(X 1) P � X 2 + X T
1 (A + BK ) X T

1 B

� He(X T
2 (A + BK )) + �P X T

2 B � K T S2

� � � S1 � 2S2

3

7
7
5 < 0: (2.43)

At this stage, by setting in the above expressionX 1 = X 2 = X , then by pre-and-post multi-

plying the left-hand side of the resulting matrix by diag(X � T ; X � T ; I) and diag(X � 1; X � 1; I)

and �nally by setting X � 1 = F , J = FT PF and Y = KF yields the left-hand side of

(2.41). Then, the satisfaction of (2.41) implies the satisfaction of (2.14). Therefore, thanks

to Proposition 2.3, the assertion is proven. �

Remark 2.7. Notice that, the fact of choosingX 1 = X 2 in the derivation of the previ-

ous result adds some conservatism to the conditions given in Proposition 2.3. Speci�cally,

di�erently from Proposition 2.3, there is no guarantees that the conditions provided by

Proposition 2.7 are feasible.

Building from the previous result, with the objective of limiting the norm of the controller

gain K , consider the result given next

Proposition 2.6. If there exist two matricesF 2 Rn� n , and Y 2 Rm� n , and a positive

scalar � , such that 2

4He(F ) � I YT

� � 2I

3

5 � 0 (2.44)

then kY F � 1k � � .

Proof. First, from [33], He(F ) � I � FT F , then (2.44) gives

2

4FT F YT

� � 2I

3

5 � 0: (2.45)

Then, by pre-and-post multiplying the left-hand side of (2.45), respectively by, diag(F � T ; I)

and diag(F � 1; I), one gets 2

4 I F � T YT

� � 2I

3

5 � 0: (2.46)

Then, by Schur complement (2.46) yieldsF � T YT Y F � 1 � � 2I, which in turn is equivalent to

kY F � 1k � � , concluding the proof. �

Another strategy to, implicitly, limit the norm of the gain K consists of constraining the

eigenvalues of the matrix (A + BK ) to lay in a suitable region contained in the open left-half
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complex plane. This kind of additional constraints can be easily expressed in a linear matrix

inequality form; see [25]. A typical choice is to consider as region the closed circle centered

in (� !; 0) with radius r > 0, where! is a positive real scalar,i.e., f z 2 C: jz + ! j � r g.

Such a condition is guaranteed by considering the following constraint; see [118],

2

4 � rQ !F + AF + BY

� � r (FT + F � Q)

3

5 < 0 (2.47)

whereQ is a symmetric matrix with adequate dimensions.

As mentioned earlier, Corollary 2.1 allows to solve Problem 2.2, by decoupling the matrix

de�ning the set A = E(F � T JF � 1), from the controller gain K . On the other hand, by doing

so, the matrix de�ning the setA does not explicitly appear in (2.41). Then, embedding (2.41)

into an optimization scheme to shrink the size of the setA requires further work. Suppose

that one wants to insist on considering a trace criterion, that is minimizing trace(FJ � 1FT ).

A strategy that can be adopted to obtain a convex objective function to minimize consists

of considering the following constraint

2

4N F

� J

3

5 � 0 (2.48)

whereN 2 S n
+ . Indeed, the latter constraint is equivalent toFJ � 1FT � N . Then, the min-

imization of trace(FJ � 1FT ) can be performed indirectly via the minimization of trace(N ).

Therefore, Problem 2.4 can be formalized as follows

minimize
F;J;S 1 ;S2 ;Y;N

trace(N )

s.t. S1; S2 2 D m
+ ; J; N 2 S n

+

(2.41); (2.15); (2.48); (2.44) (or (2.47)); (2.48)

(2.49)

Remark 2.8. Obviously, with the aim of limiting the norm of the controller gain, similar

techniques as those illustrated above can be developed directly building from the conditions

given by Proposition 2.3 (without the introduction of any slack variables) by adding further

constraints on the matrix W. However, although the feasibility of the conditions given by

Proposition 2.3 is ensured, whenever such conditions are coupled with further constraints,

the feasibility of the resulting optimization problem cannot be ensureda priori . On the other

hand, as mentioned earlier, due to the conservatism introduced by Corollary 2.1, even (2.49)

could be unfeasible. Therefore, determininga priori which approach is the more convenient

is an open question.

Similarly to Proposition 2.3, condition (2.41) is nonlinear in the decision variables. As

matter of fact, condition (2.41) is a�ected by the same kind nonlinearities of condition (2.28),

then the same techniques illustrated above can be used to alleviate these nonlinearities. In

this sense, the result given next parallels Proposition 2.5.

Proposition 2.7. If there exist W 2 S n
+ , S1; H 2 D m

+ , Y 2 Rm� n , and a positive scalar� ,



Chapter 2 53

such that 2

6
6
6
6
6
4

� He(F ) J + AF + BY � FT B 0

� �J + He(AF + BY ) � YT + BH 0

� � � 4H I

� � � � S1

3

7
7
7
7
7
5

< 0 (2.50)

then J; F; �; Y; S1; S2 = H � 1 satis�es (2.41).

Proof. The proof follows the same steps traced in the proof of Proposition 2.5, then it is

omitted. �

Remark 2.9. Notice that, although the solution to Problem 2.4 provides in one shot a solu-

tion to Problem 2.2, hence the controller gain, and the setA , due to the further constraints

introduced to render Problem 2.4 numerically tractable, the setA issued by this stage can

be further tightened to �t more the behavior of the closed-loop system. Indeed, once the

controller gain K is known, by performing an analysis stage via Proposition 2.1, further

improvements can be obtained in terms of reduction of the size of setA .

In the next section, the e�ectiveness of the proposed methodology is shown in some

examples.

2.2.5 Numerical Examples

Example 2.1 (Furuta pendulum). Consider the Furuta pendulum [67], whose linearized

model around the unstable equilibrium point is given by

_x =

2

6
6
6
6
6
4

0 0 1 0

0 0 0 1

0 39:32 � 14:52 0

0 81:78 � 13:98 0

3

7
7
7
7
7
5

x +

2

6
6
6
6
6
4

0

0

25:54

24:59

3

7
7
7
7
7
5

u (2.51)

wherex1; x2 represent respectively the base angle and the pendulum angle (rad),x3 and x4

are respectively the two angular speeds (rad s� 1), and u is input voltage (V) of the motor

driving the base shaft. Assume that the system is controlled via a static state feedback

controller, with

K =
h
2:2710 � 27:1793 2:4963 � 3:9153

i

and that the actuator is quantized via uniform quantizer with � = 0 :5. By selecting as

convex criterion M a(P) = � log det(P), the solution of Problem 2.3, via the adoption of

Algorithm 2.1, with a tolerance � = 0:1, yields

P =

2

6
6
6
6
6
4

20:6128 � 59:4021 7:79714 � 9:06105

� 59:4021 556:424 � 33:2957 40:6492

7:79714 � 33:2957 6:45171 � 7:62996

� 9:06105 40:6492 � 7:62996 10:3472

3

7
7
7
7
7
5
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Figure 2.2:
q

det(P � 1) versus the number of iterations.

Figure 2.2 shows the evolution of
q

det(P) (proportional to vol (E(P))) at each iteration of

Algorithm 2.1.

To give a measure of the tightness of the setA with respect to the actual behavior of the

closed-loop system, in Figure 2.3 we report the time-evolution of the functionxT Px along

some solutions to the closed-loop system. The �gure reveals that the trajectories once enter

the set A (�nite time convergence) no longer leave it and actually stay su�ciently close to

its boundary.
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Figure 2.3: The evolution of the functionV(x) = xT Px. x0 = (0 ; �= 8; 0; 0) (solid-line),
x0 = (0 ; �= 18; 0; 0) (dashed-line),x0 = (0 ; �= 36; 0; 0) (dotted-line).
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Example 2.2. This example has the aim to show how the use of slack variables, as suggested

in Corollary 2.1, can, in some cases, provide notable bene�ts. Consider the following data,

borrowed from the balancing pointer system in [69], de�ning the closed-loop system in (2.4).

A =

2

40 1

1 0

3

5 ; B =

2

4 0

� 1

3

5 ; � = 1 :

Assume that, we want to design a static state feedback controller by solving (2.36). Moreover,

to avoid overly large controller gain, we limit the controller gain explicitly via a constraint

like (2.44). In particular, by following the same steps in the proof of Proposition (2.6), it

turns out that given � > 0, kK k � � 2 if

2

42W � I YT

� � I

3

5 � 0

Therefore, pursuing this approach (2.36) reads

minimize
W;S1 ;S2 ;Y;R

trace(W)

s.t. S1; S2 2 D m
+ ; W 2 S n

+

(2.28); (2.15)
2

42W � I YT

� � I

3

5 � 0:

(2.52)

For � = 50; � = 0:99; S2 = 0:1 the solution of (2.52) yields,K =
h
2:93 1:59

i
and A =

E(W � 1), with

W =

2

4 0:8009 � 0:4087

� 0:4087 1:151

3

5

for which one has trace(W) � 1:9521.

Instead, solving (2.49), endowed with the additional constraint given by Proposition (2.6),

still for � = 50; � = 0:99; S2 = 0:1 provides

K =
h
4:772 4:563

i

A = E(F � T JF � 1)

where

F � T JF � 1 =

2

43:872 2:45

2:45 3:84

3

5

and for which trace(FJ � 1F ) � 0:869. Namely the introduction of slack variables leads to

an improvement of about 55:45% in terms of minimization of the size ofA , at least for the

considered trace criterion. Figure 2.4 shows the two sets obtained by solving (2.49) and

(2.52). The �gures points out that, in this case, solving (2.49) enables to shrink more the

size of the setA .
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Figure 2.4: The two setsA resulting from the solution to the controller design problem.
E(W � 1) solid, E(F � T JF � 1) dashed.
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Example 2.3 (A multi-input system) . For the closed-loop system (2.4), consider the fol-

lowing example derived from [2] for which

A =

2

6
6
4

� 0:5 1:5 4

4:3 6 5

3:2 6:8 7:2

3

7
7
5 ; B =

2

6
6
4

� 0:7 � 1:3

0 � 4:3

0:8 � 1:5

3

7
7
5

and assume � = 0 :5. We solve (2.49) augmented with (2.47) for which! = 10; r = 8:5. To

deal with the nonlinearities a�ecting (2.49), we select� and S2 over a three dimensional grid.

In particular, the most convenient values selected are� = 1:8; S2 = diag(1:4 � 10� 6; 4:3 �

10� 5), giving

K =

2

4 � 0:71 1:9 � 27

4:3 4:1 4:3

3

5 :

As a second step, to tighten more the setA obtained by the solution to (2.49), we

perform an analysis stage via Algorithm 2.1, while considering as a convex criterionM a(P) =

� logdet(P). Speci�cally, Algorithm 2.1 provides

P =

2

6
6
4

29:33 13:25 � 14:07

13:25 65 � 136:7

� 14:07 � 136:7 404:8

3

7
7
5 :

Figure 2.5 shows the evolution of the closed-loop system in its state space, from di�erent

initial conditions. Furthermore, Figure 2.6 reports a particular closed-loop trajectory in its

time-domain.

Simulations show that trajectories converge into the setA = E(P). More precisely, closed-

loop solutions appear to converge towards two equilibria contained inE(P) . Notice that also

the origin is an equilibrium point for the closed-loop system, though unstable. It is interesting

to notice that these two equilibrium points appear to belong respectively to the two surfaces

Kx = [� � �] T and Kx = [ � � �] T wherein the function q(Kx ) is discontinuous. As matter

of fact, the two mentioned equilibria are actually Krasovskii equilibria, indeed there does

not exist any point �x 2 R3, such that

8
>>>>>>>><

>>>>>>>>:

A�x = � B

2

6
4

�

� �

3

7
5

K �x =

2

6
4

�

� �

3

7
5 :

The same considerations hold for the other equilibrium point, for whichKx = [ � � �] T .

The determination of this kind of equilibria, in general, is far from trivial. However, in this

example, the results provided by the above simulation may be used as a �rst guess to exactly

determine the two Krasovskii equilibria. Speci�cally, let �x be a Krasovskii equilibrium for the
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Figure 2.5: Some closed-loop solutions converging into the setE(P) (magenta). The solutions
are obtained by integrating the closed-loop model via an Euler method with time step 10� 4.

closed-loop system and such thatK �x = [� � �] T . By de�ning � (x) = Kx , the determination

of �x needs to be carried out by searching for a point �x 2 R3, such that

0 2 f A �x + BK[q � � ](�x)g:

On the other hand, for every �x 2 R3, thanks to [97, Theorem 1], since rankK = 2, one has

K[q � � ](�x) = K[q](K �x):

Moreover, due to the decentralized structure of the functionu 7! q(u), from Proposition 1.3

it follows

K[q � � ](�x) =
2

�
i =1

K[q](K (i ) �x):

Therefore, a necessary and su�cient condition for a point �x 2 R3 to be a Krasovskii equi-

librium for the closed-loop system is that

0 2 f A �x + B
2

�
i =1

K[q](K (i ) �x)g:
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Figure 2.6: The evolution of the closed-loop system fromx0 = (0 :5; 0:5; 0:5): Above the
control inputs (q(u1) (solid-black), q(u2) (solid-blue), and the two quantization-free inputs
(K (1) x(t) (dashed-black),K (2) x(t) (dashed-blue). Below the closed-loop states:x1 (solid),
x2 (dashed),x3 (dashed-dotted). The solutions are obtained by integrating the closed-loop
model via an Euler method with time step 10� 4.

Now, if one restricts the search to the points �x such that K �x = [� � �] T , in view of the

de�nition of the function q( �) given in (1.17), the latter relation turns in

0 2

8
<

:
�x 2 R2 : A �x + B

2

4 � 1

� 2

3

5 � ; (� 1; � 2) 2 f [0; 1] � [� 1; 0]g

9
=

;
:

Therefore, �x needs to satisfy 8
>>>>>>>><

>>>>>>>>:

A�x = � B

2

6
4
� 1

� 2

3

7
5 �

K �x =

2

6
4

�

� �

3

7
5



Chapter 2 61

and this is possible if and only if

rank

0

@

2

4 A

K

3

5

1

A = rank

0

B
B
B
B
B
B
@

2

6
6
6
6
6
6
4

A � B

2

4 � 1

� 2

3

5

K

2

4 1

� 1

3

5

3

7
7
7
7
7
7
5

1

C
C
C
C
C
C
A

:

for some (� 1; � 2) 2 f [0; 1] � [� 1; 0]g. In particular, it turns out that the latter condition is

veri�ed for � 1 � 0:48856; � 2 � 0:21977, which, in turn yields �x = ( � 0:12; 0:018; � 0:014). No-

tice that, �x is the only Krasovskii equilibrium belonging to the surfaceS1 := f x 2 R3 : Kx =

[� � �] T g for the closed-loop system. Analogous considerations allow to compute the other

equilibrium point satisfying K �x2 = [ � � �] T , speci�cally �x2 = � �x. A posteriori of these

calculations, let us focus on Figure 2.7, that is essentially a closed-up of Figure 2.5, and in

which the two computed equilibrium points are represented. The �gures shows, both the

accuracy of the above arguments in foreseeing the behavior of the closed-loop system, in

terms of Krasovskii solutions, and the accuracy provided by Euler integration, that succeeds

in capturing the peculiar behaviors due to the discontinuity introduced by the quantizer.

Figure 2.7: Closed-loop trajectories approaching the two equilibrium points ('x'). The solu-
tions are obtained by integrating the closed-loop model via an Euler method with time step
10� 4
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2.3 Sensor Quantization

2.3.1 Preliminary Results

Consider the following continuous-time linear system with quantized measured state

8
<

:

_x = Ax + Bu

u = K q(x)
(2.53)

wherex 2 Rn , u 2 Rm , are respectively the state, the input of the system.A; B; K are real

matrices of suitable dimensions, and q(�) is the uniform quantizer de�ned in (1.17) having as

a quantization error bound � > 0. As in the previous section, by introducing the function

	 de�ned in (2.2), the closed-loop system can be rewritten as

_x = ( A + BK )x + BK 	( x): (2.54)

Therefore, with the aim of considering the Krasovskii solutions to (2.54), let us de�ne

Z : Rn ! Rn

x 7! (A + BK )x + BK 	( x)
(2.55a)

we consider the solutions to the following di�erential inclusion.

_x 2 K [Z ](x): (2.55b)

By retracing the steps performed in the actuator quantization case, we provide a �rst re-

sult characterizing the behavior of the closed-loop system (2.54) in terms of its Krasovskii

solutions.

Theorem 2.2. Let A; B; K be matrices of adequate dimensions, such thatA + BK is

Hurwitz. Then there exists a compact setA � Rn , containing the origin, which is UGAS

for (2.55).

Proof. The proof follows the same steps shown in the proof of Theorem 2.1, and then it is

omitted. �

Also in this case, we want to provide constructive tractable conditions for the search of

the set A � Rn , whose existence is ensured by Theorem 2.2. Therefore, in the sequel, the

same apparatus presented for the actuator quantization case is considered for the case of

interest of this section.

2.3.2 Stability Analysis

Problem 2.5. (Stability analysis) Let A; B; K be matrices of adequate dimensions, such

that A + BK is Hurwitz. Determine a compact setA � Rn containing the origin, such that
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A is UGAS for system (2.55).

The next result, which essentially parallels Proposition 2.1, gives a �rst su�cient condition

to solve Problem 2.5.

Proposition 2.8. If there exist P 2 S n
+ , S1; S2 2 D n

+ , and a positive scalar� such that

2

4He(P(A + BK )) + �P PBK � S2

� � S1 � 2S2

3

5 < 0 (2.56)

trace(S1)� 2 � � � 0 (2.57)

then,

A = E(P) (2.58)

solves Problem 2.5.

Proof. The proof retraces the same steps performed in the proof of Proposition 2.1. For

every x 2 Rn , consider the following quadratic functionV(x) = xT Px. Following the ideas

presented in the proof of Theorem 2.1, we want to prove that there exists a positive real

scalar � such that

hr V(x); wi � � �V (x) 8x 2 Rn n Int A ; w 2 K [Z ](x): (2.59)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (2.59)

su�ces to show that the set A in (2.58) is UGAS for (2.55). By S-procedure arguments,

(2.59) can be veri�ed by showing that for everyx 2 Rn , there exists a positive real scalar�

such that

hr V(x); wi � � (1 � xT Px) � � �V (x) 8w 2 K [Z ](x): (2.60)

On the other hand, via Proposition 1.1, for everyw 2 K [Z ](x), there exists v 2 K [	]( x),

such that w = ( A + BK )x + BKv . Then, still by S-procedure arguments and according to

Lemma 2.2, (2.60) is ensured by proving that for eachx 2 Rn , and for eachv 2 Rn ,

hr V(x); (A + BK )x + BKv i � � (1 � xT Px) � vT S1v

+ trace(S1)� 2 � 2vT S2(v + x) � � �V (x):

By straightforward calculations, the left-hand side of the above relation can be rewritten as

follows 2

4x

v

3

5

T 2

4He(P(A + BK )) + �P PBK � S2

� � S1 � 2S2

3

5

2

4x

v

3

5 + trace(S1)� 2 � �: (2.61)

Thus in view of (2.56) and (2.57), it follows that there exists a small enough positive scalar


 such that for every x 2 Rn n Int A ; w 2 K [Z ](x), one hashr V(x); wi � � 
x T x. Then,

since for everyx 2 Rn , V (x) � � max (P)xT x, by setting � = 

� max (P ) gives (2.60), and this

�nishes the proof. �

Also in this case, the feasibility of the conditions given in Proposition 2.8 is ensured under
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Assumption 1.2. In particular, let us consider the following result, whose proof is essentially

based on the ingredients exploited in the proof of Proposition 2.2.

Proposition 2.9. Let K 2 Rm� n such that A + BK is Hurwitz. Then, there exists

(�; P; S1; S2) 2 R> 0 � S n
+ � D n

+ � D n
+ satisfying (2.56) and (2.57). �

2.3.3 Controller Design

As already done in the actuator quantization case, also in this case, we want to tackle the

controller design problem for the closed-loop system (2.55). Essentially, assuming that the

gain K has to be designed, we want to derive tractable constructive conditions characterizing

the solutions to the problem formalized as follows

Problem 2.6. (Controller design) Let A; B be matrices of adequate dimensions. Determine

a gain K 2 Rm� n , and a compact setA � Rn containing the origin, such that A is UGAS

for system (2.55).

Clearly Proposition 2.8 provides a �rst condition to solve Problem 2.6. However, due

to products between unknown variables, a direct exploitation of the conditions given by

Proposition (2.8) to solve the controller design problem appears unlikely, and then further

work is needed. Nevertheless, di�erently from (2.14), applying similar strategies as the

ones shown in Proposition 2.3 does not allow to alleviate the bilinear termPBK (and its

transpose) appearing in (2.14). In particular, if one attempts to alleviate this term by means

of standard techniques (congruence transformations, and invertible changes of variables), the

resulting condition reveals to be still nonlinear and presenting more involved nonlinearities

as trilinear terms. On the other hand, via the use of the projection lemma, (see,e.g., [99]),

one can derive a condition equivalent to (2.56), which is linear in the variableP de�ning the

set A , and bilinear with respect to the controller gain and some additional variables. This

condition is proposed in the result given next.

Proposition 2.10. Let P 2 S n
+ ; S1; S2 2 D n

+ ; K 2 Rm� n ; and � 2 R> 0. The satisfaction of

2

4He(P(A + BK )) + �P PBK � S2

� � S1 � 2S2

3

5 < 0 (2.62)

is equivalent to the feasibility of

2

6
6
4

� He(X 1) P � X 2 + X T
1 (A + BK ) X T

1 BK

� He(X T
2 (A + BK )) + �P X T

2 BK � S2

� � � S1 � 2S2

3

7
7
5 < 0 (2.63)

with respect toX 1; X 2 2 Rn� n .

Proof. The proof follows the same lines of the one of Corollary 2.1. In particular, from
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Proposition 2.8, notice that (2.56) can be rewritten asWT QW < 0, where:

W =

2

6
6
4

A + BK BK

I 0

0 I

3

7
7
5 ; Q =

2

6
6
4

0 P 0

� �P � S2

� � � S1 � 2S2

3

7
7
5 :

Moreover, beingS1 and S2 positive de�nite, UT QU < 0, with UT =
h
0 0 I

i
, is obviously

satis�ed. Thus, by the projection lemma; see [99], the satisfaction of (2.56), wheneverS1

and S2 are required to be positive de�nite, is equivalent to �nd a matrix X such that

Q + WT ?
r X U?

r + UT ?
r X T W ?

r < 0 (2.64)

where,U?
r and W ?

r are some matrices having as rows a basis of the row-null space, respec-

tively, of U and W. Now, by selectingU?
r =

h
I2n 02n� p

i
and W ?

r =
h
� I A + BK BK

i

and by partitioning X =
h
X 1 X 2

i
, whereX 1; X 2 2 Rn� n , from (2.64) one gets

2

6
6
4

� He(X 1) P � X 2 + X T
1 (A + BK ) X T

1 BK

� He(X T
2 (A + BK )) + �P X T

2 BK � S2

� � � S1 � 2S2

3

7
7
5 < 0 (2.65)

which is (2.63) and this �nishes the proof. �

As already mentioned, the advantage o�ered by the above result is twofold. On the one

hand, there is no trilinear term. On the other hand, the matrixP de�ning the set A appears

linearly. This fact enables to build an iterative relaxation procedure that allows to solve the

controller design problem, this aspect is presented in the next subsection.

2.3.4 Optimization Issues

Concerning the optimization aspects in the solution to Problem 2.5 and Problem 2.6, anal-

ogous considerations as the ones presented for the actuator quantization case hold in this

case. In particular, the optimization problems to address in this setting can be formulated

as follows:

Problem 2.7 (Stability) . Let A; B; K be matrices of adequate dimensions. Determine

P 2 S n
+ , such that E(P) is UGAS for system (2.55), and it is minimized with respect to

some criterion.

Problem 2.8 (Stabilization). Let A; B be matrices of adequate dimensions. Determine a

gain K 2 Rm� n , and P 2 S n
+ , such that E(P) is UGAS for system (2.55), and it is minimized

with respect to some criterion.

Obviously, since the sets whose size needs to be minimized are still ellipsoidal sets, the

size criteria that can be considered in Problem 2.7, and Problem 2.8 are the same illustrated

for the actuator quantization case.
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As far as concerns Problem 2.7, as long as� is �xed, (2.56) is linear in the decision

variables. Then, a direct generalization of Algorithm 2.1 allows to solve Problem 2.7 in a

convex setting. Such an algorithm is given next
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Algorithm 2.3 Stability analysis

Input: Matrices A; B; K , scalars � > 0, a convex objective functionM a, and a tolerance

� > 0.

Initialization: Let R(A + BK ) := fj< (� )j : � 2 spec(A + BK )g, select � = 2 �

0:99 minR(A + BK ),

Iteration

Step 1:

Solve the following convex optimization problem over LMIs

minimize
S1 ;S2 ;P

M a(P)

s.t. S1; S2 2 D n
+ ; P 2 S n

+
2

4He(P(A + BK )) + �P PBK � S2

� � S1 � 2S2

3

5 < 0

trace(S1)� 2 � � � 0

Pick the sub-optimal solution (P ;S1; S2). Store the obtained solution:M (k)
a?  M a(P),

P (k)
?  P.

k  k + 1

Step 2:

Decrease� of � , i.e., �  � � �

Until � > 0.

Step 3: kmax  k, selectk? = argmin
k2f 1;2;kmax g

fM (k)
a? g

Output: P = P (k? )
? .

Clearly the same considerations pointed in Remark 2.4 holds also for the above algorithm.

As mentioned before, the solution to Problem 2.8, due to nonlinearities a�ecting condition

(2.56) is much more involved, and requires a suitable strategy. In particular, inspired by [5],

we propose the following iterative algorithm to derive a suboptimal solution to Problem 2.8.
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Algorithm 2.4 Controller design

Input: Matrices A; B , scalar � > 0, a convex objective functionM s, and a desired
tolerance� > 0.
Initialization: SelectK such that Acl = A + BK is Hurwitz. Let R(Acl) := fj< (� )j : � 2
spec(Acl)g, then select� = 2 � 0:99 min; R(Acl) and build a grid of positive valuesG� such
that max G� = � (ensures the feasibility of the resulting optimization problems).
Iteration Step 1:Given K from the previous step, solve the following convex optimization

problem over LMIs by selecting� over G� .

minimize
S1 ;S2 ;P;X 1 ;X 2

M s(P)

s.t. S1; S2 2 D n
+ ; P 2 S n

+
2

6
4

� He(X 1) P � X 2 + X T
1 (A + BK ) X T

1 BK
� He(X T

2 (A + BK )) + �P X T
2 BK � S2

� � � S1 � 2S2

3

7
5 < 0

trace(S1)� 2 � � � 0

(2.66)

Pick the suboptimal solution obtained and setX 1 = X 1; X 2 = X 2 for the next step.

Step 2: Given X 1; X 2 from the previous step, solve the following convex optimization
problem over LMIs by selecting� over G� .

minimize
S1 ;S2 ;P;K

M s(P)

s.t. S1; S2 2 D n
+ ; P 2 S n

+
2

6
6
4

� He(X 1) P � X 2 + X
T
1(A + BK ) X

T
1BK

� He(X
T
2(A + BK )) + �P X

T
2BK � S2

� � � S1 � 2S2

3

7
7
5 < 0

trace(S1)� 2 � � � 0:

(2.67)

Set K = K , for the next step.
Determine the closed-loop matrixA + BK and set � = 2 � 0:99 minR(A + BK ). Build
a grid of positive valuesG� such that �� = max G� , and � ? 2 G� , (notice that necessarily
� ? � �� . Including � ? in G� ensures the feasibility at the next step).
Until M s does not decrease below� over three consecutive steps.
Output: K; P .
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Remark 2.10. Proposition 2.10 plays a determinant role in the development of the above

exposed algorithm. In fact, the introduction of the slack variablesX 1; X 2 enables to treat

P as a decision variable at each step of the algorithm, without adding any additional con-

servatism; recall that the feasibility of (2.64) is equivalent to the one of (2.56). Notice that,

by exploiting directly Proposition 2.8, due to the bilinear terms involving the matrixP and

the controller gain K , if one would retrace the strategy proposed in Algorithm 2.4, then one

needs to alternatively �x either P or K , preventing from treating P as a decision variable

at each step. This obviously has a dramatic impact on the achievable suboptimal solutions

to Problem 2.8.

The above algorithm presents some interesting properties that render its utilization in

practice quite convenient. In particular, notice that at each iteration, both (2.66) and (2.67)

are always feasible. Indeed, during the �rst iteration, sinceAcl is Hurwitz, the feasibility of

(2.66) is ensured by Proposition 2.9. To see that also at each other iteration the considered

optimization problem are always feasible, consider the following arguments.

For the j � th iteration, denote the value of the matrixP, respectively, at the exit of step

1 and of step 2 asP
(1)
j and P

(2)
j .

[From step 1 to step 2] Obviously step 2 is always feasible, indeed keeping the same gain

K from the previous step yields a feasible solution and moreoverM s(P
(2)
j ) � M s(P

(1)
j ).

[From step 2 to step 1] The feasibility of (2.66) is ensured by following same arguments

illustrated for the other case. Moreover,M s(P
(1)
j +1 ) � M s(P

(2)
j ). Notice also that by assum-

ing M s(P) � 0 over the feasible set of (2.67) (this assumption is certainly veri�ed for the

trace criterion previously illustrated and can be ful�lled for the logdet criterion by consid-

ering for the stopping criterion� det(P) which is positive onSn
+ and monotonically related

to � logdet(P) ), the above mentioned monotonicity property guarantees that the sequence

fM s(P
(2)
j g1

j =1 converges. Therefore, for any positive� , the algorithm terminates in a �nite

number of iterations.

As for the actuator quantization case, one may add (in step 2) further constraints to limit

the norm of the controller gain. In particular, since in step 2 the controller gainK is a

decision variable, for any positive� , considering the following constraint (linear inK )

2

4 � 2In K

� Im

3

5 � 0 (2.68)

ensures thatkK k � � .

Remark 2.11. Although Algorithm 2.4 provides a numerically tractable solution to Prob-

lem 2.8, one should be aware that the initialization stage plays a relevant role in the �nal

result. In particular, from di�erent initializations the algorithm may converge to di�erent

solutions. On the other hand, determining the most e�cient initialization seems a nontrivial

problem.
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As far as concerns the convex criterionM s to adopt in Algorithm 2.4, both the determi-

nant based criterion and the trace criterion as it was presented in (2.33) represent valuable

choices that leads to computationally tractable procedures.

2.3.5 Numerical Examples

Example 2.4. Consider the static state feedback control system with quantized sensor from

[49], that is de�ned by the following data:

A =

2

4 0 1

0:5 0:5

3

5 ; B =

2

41

1

3

5 ; � = 1 ; K =
h
� 0:3491 � 0:7022

i
:

By selecting as convex criterionM s(P) = � log det(P), by solving Problem 2.7 via Algorithm

2.3, with a tolerance� = 0:001, yields

P =

2

4 2605570:22255 � 2605570:2217

� 2605570:2217 2605570:22332

3

5

Figure 2.8 reports the setE(P), along with some closed-loop solutions. Notice that

Figure 2.8: The setE(P) (red), some closed-loop trajectories (black). Solutions are obtained
by integrating the closed-loop model with an Euler method with time step 10� 4.
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spec(P) = f 0:001148; 5:211� 106g

ensuring that P > 0. This huge di�erence between such eigenvalues is due to the shape of

the set E(P) represented in Figure 2.8, which is nearly a segment.

Figure 2.8 points out that the solution to the Problem 2.7 via the proposed algorithm

provides a very satisfactory characterization of the actual behavior of the closed-loop system.

In particular, simulations suggest that the closed-loop trajectories converges toward the set

S := f (x1; x2) 2 R2 : x1 = x2g \ Z2. Clearly, such a set is not connected, therefore beingA

necessarily connected (in fact convex), it can only provide an overapproximation ofS, which

seems quite tight in this case.

Fostered by the above arguments, one may wonder whether the points belonging toS are

equilibrium points for the closed-loop system. However, such points, except for the origin,

cannot be equilibria in a classical sense. Indeed, let us assume that there exists a classical

equilibrium �x 2 S. Then, it has to be

�x1 = �x2 = �k

A �x + BK 12
�k = 0

for somek 2 Z. That is

(A + BK )12
�k = 0

but the latter, being A + BK Hurwitz, is obviously satis�ed only for �k = 0. That said,

the search of the equilibrium points into the setS needs to be performed by looking at

Krasovskii equilibria. Similarly to Example 2.3, we seek for each point �x 2 R2, such that

0 2 f A �x + BK K[q](�x)g:

On the other hand, for everyx 2 R2, thanks to Proposition 1.3, one has

K[q](�x) =
2

�
i =1

K[q](�x(i ))

Therefore, it follows that a point �x 2 R2 is a Krasovskii equilibrium for the closed-loop

system if and only if

0 2 f A �x + BK
2

�
i =1

K[q](�x(i ))g:

Now, if one restricts the search to the points �x such that �x = k12, for somek 2 N, in

view of the de�nition of the function q(�) given in (1.17), the latter relation turns into

0 2

8
<

:
�x 2 R2 : A �x + BK

2

4 � 1

� 2

3

5 : (� 1; � 2) 2 f [k � 1; k] � [k � 1; k]g

9
=

;
:

Therefore, by setting �x = k1n , �x is a Krasovskii equilibrium for the closed-loop system if
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and only if, there exists (� 1; � 2) 2 f [k � 1; k] � [k � 1; k], such that

A1nk + BK

2

4 � 1

� 2

3

5 = 0:

Since

BK =

2

4K (1) K (2)

K (1) K (2)

3

5 ; A1n =

2

41

1

3

5

the latter equality imposes that

K (1) � 1 + K (2) � 2 = � k:

Concluding, �x = k12, with k 2 N can be a Krasovskii equilibria for the closed-loop system

if and only if the following polyhedral in R2 is nonempty

8
>>>>>>>>>>><

>>>>>>>>>>>:

K (1) � 1 + K (2) � 2 = � k

� 1 � k

� 1 � k � 1

� 2 � k

� 2 � k � 1:

(2.69)

Moreover, by de�nition of the uniform quantizer (1.17) and Proposition 1.1, if

0 2 f A �x + BK
2

�
i =1

K[q](�x(i ))g;

then

0 2 f� A �x + BK
2

�
i =1

K[q](� �x(i ))g

that is the equilibria are symmetric with respect to the origin.

Therefore, in practice, to determine if the points� k12 are Krasovskii equilibria for the

closed-loop system for somek 2 N, one can test, via standard linear programming algo-

rithms, whether (2.69) is non-empty. In particular, by pursuing this approach, it turns out

that for the given gain K , (2.69) is non-empty fork up to 20. This means that the only

Krasovskii equilibria belonging toS for the closed-loop system are the points �x = k12 with

k = � 1; � 2: : : ; � 20, which exactly matches the results presented in Figure 2.8. Speci�-

cally, Figure 2.9 emphasizes that the closed-loop system solutions approach the Krasovskii

equilibria.
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Figure 2.9: The setE(P) (red), some closed-loop trajectories (black), and the Krasovskii
equilibria (blue bullets). Solutions are obtained by integrating the closed-loop model with
an Euler method with time step 10� 4.
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As pointed out above, the shape of the setA intrinsically leads to a matrix P which

tends to be ill-conditioned. On the other hand, whenever having a good conditioning is

a relevant matter, one may add an additional constraint in the considered optimization

problem, so as to ensure a given condition number for the matrixP. Such constraint can

easily integrated by means of additional LMI constraints; see [127], at the price of obtaining

more conservative results. Indeed, limiting the condition number re
ects on the shape of the

resulting set A . To show this fact in this example, for the considered closed-loop system,

we solve Problem 2.7 via Algorithm 2.3, while considering an additional constraint aimed

at ensuring a condition number forP less or equal than
 . Figure 2.10 reports the setsA

obtained as above, whenever
 varies in a grid built upon the interval [10; 5000]. The �gure

shows that, as expected, the larger the condition number, the tighter the resulting setA .

Figure 2.10: Di�erent setsA obtained imposing a condition number forP less or equal than

 . 
 = 10 (black), 
 = 5000 (red), 
 2 (10; 5000) (blue), the sets shrink as
 increases.
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Example 2.5. (A multi-input plant) Consider the again the example from [2] for which

A =

2

6
6
4

� 0:5 1:5 4

4:3 6 5

3:2 6:8 7:2

3

7
7
5 ; B =

2

6
6
4

� 0:7 � 1:3

0 � 4:3

0:8 � 1:5

3

7
7
5 ;

and assume in this case, that the measured state is quantized via the uniform quantizer

(1.17) with � = 0 :5. We want to solve Problem 2.8 via Algorithm 2.4, by using the trace

criterion as presented in (2.33). In particular, letN 2 S n
+ , by requiring that

2

4N I

� P

3

5 � 0

we want to minimize trace(N ). To initialize the algorithm, we use three di�erent stabilizing

gains. The �rst one

K 0 =

2

40:0380 0:1751 � 0:8551

3:8514 3:8400 9:5510

3

5

is borrowed directly from [2]. The second one

K 1 =

2

4 � 0:71 1:9 � 27

4:3 4:1 4:3

3

5

comes from Example 2.3, and �nally the third one,

K 2 =

2

4 � 0:11527 � 0:28207 � 1:2449

2:4835 4:2519 6:2107

3

5

is the gain issued from the solution of an LQR problem on the pair (A; B ), with Q = I 3, and

R = I 2. For all these three initializations, the tolerance for the algorithm is� = 10� 4. Fig-

ure 2.11 shows the evolution of trace(N ) over the number of iterations for the three proposed

initializations. Surprisingly, although the algorithm does not ensures convergence toward the

optimal solution, and the initialization are quite di�erent of each other, the algorithm pro-

vides three solutions giving nearly the same value of the objective. This shows that, at least

for the matter of this speci�c example, the initialization stage is not excessively crucial,

though it may impact the computational burden: the number of iterations might increase

depending on the initialization, e.g., for the third initialization the number of iterations is

almost twice as much as the number of iterations occurring for the second initialization. In

Table 2.1 the di�erent outputs of the algorithm are reported for the three considered initial-

izations. As shown in Table 2.1, the �rst and the third initialization provides quite similar

results also in terms of controller gain and the matrixP de�ning the set A = E(P) solving

the controller design problem.
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Figure 2.11: Objective function versus the number of iterations. First initialization (ma-
genta), second initialization (blue), third initialization (black).

Initialization trace( N ) K P Iterations

1 12:673

"
� 3:3894 � 0:37076 � 25:912
4:4094 0:57293 16:594

#
2

6
4

0:99 0:3 � 0:53
0:3 0:37 � 0:6

� 0:53 � 0:6 1:4

3

7
5 71

2 12:653

"
� 8:4812 � 0:1307 � 30:799
6:3613 1:4677 13:504

#
2

6
4

0:59 0:18 � 0:13
0:18 0:42 � 0:55

� 0:13 � 0:55 1:1

3

7
5 52

3 12:669

"
� 3:4714 � 0:39353 � 25:839
4:3721 0:60222 16:29

#
2

6
4

0:97 0:3 � 0:53
0:3 0:37 � 0:61

� 0:53 � 0:61 1:4

3

7
5 91

Table 2.1: The di�erent outputs of Algorithm 2.4 for the three di�erent initializations.
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2.4 Comments and Conclusion

In this chapter, we addressed the state feedback control problem for linear systems in the

presence of either actuator quantization or sensor quantization, in terms of Krasovskii solu-

tions. In this setting, �rst we shown that the asymptotic stability of the quantization-free

closed-loop system (in both the considered schemes) ensures the existence of an ellipsoidal

set A , which UGAS for the closed-loop system (in terms of its Krasovskii solutions). Then,

with the aim of pursuing a constructive approach, thanks to some novel sector conditions

for the uniform quantizer, we turn the search of the setA into the feasibility problem of

certain matrix inequalities. Moreover, we shown that this approach is lossless, in the sense

that under the asymptotic stability of the quantization-free closed-loop system, the derived

matrix inequalities are always feasible.

As a second step, we addressed the stabilization problem for the same class of systems.

In this context, the considered problem consists of deriving some conditions enabling the

simultaneous search of a linear static state feedback controller, and a compact setA con-

taining the origin, such that the resulting closed-loop system has the setA UGAS. Such a

problem is solved by suitably transforming the matrix inequalities derived for the stability

problem in more advantageous fashions.

Building on the derived conditions, some algorithms based on convex optimization over

LMIs are proposed to e�ectively solve the considered problems, while providing (sub)optimal

solutions with respect to convenient objectives. Finally, the e�ectiveness of the proposed

methodology is shown in some examples. These examples, not only provide a benchmark to

test the proposed apparatus from a numerical standpoint, but also point out the complexity

hidden behind quantized control systems.

Although, the proposed methodology is tailored to the uniform quantizer de�ned in (1.17),

the framework is quite 
exible to envision extensions to other type of quantizers. For in-

stance, the extension to the uniform quantizer considered in [22] is quite straightforward. In

particular, give � > 0, such a quantizer is de�ned for eachu 2 Rn as

q(u) =
� u

�
+

1
2

�

�

where the above operators are considered component-wise. Therefore, analogously to the

case considered in this chapter, de�ne for eachu 2 Rn the function �( u) = q( u) � u. As

pointed in Figure 2.12, it can be readily shown that for eachS1; S2 2 D n
+ and for each

u 2 Rn , the following conditions hold for the function �

�( u)T S1�( u)T � trace(S1)
� 2

4
� 0

(� � u)T S2(� + u) � 0:

Hence, the methodology illustrated in this chapter can be extended to deal with the quantizer
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Figure 2.12: The function �, for the scalar case and its sector.

adopted in [22] with few extra work.

In the case of combined sensor and actuator quantization, the stability problem could be

addressed in the same manner, though this case requires a special care in view of the nested

discontinuous nonlinearity issued by the combined e�ect of the two quantizers. Concerning

the design problem, due to the di�culties encountered even for the simpler case of the mere

sensor quantization, a design procedure in this case appears intricate. Nevertheless, we will

show how to solve this problem later in the next chapter, by employing a dynamical output

feedback controller.

Also, the work presented in this chapter assumes that the quantizer has an unbounded

range. However, if one considers a �nite range for the quantizer, using ideas from [82], the

proposed methodology can be still adapted, providing local results. In particular, as far as

concerns the actuator quantization case, let us assume that the uniform quantizer de�ned in

(1.17) has a �nite rangeM , that is for eachu 2 Rm , q(u) = ( q(u1); q(u2); : : : ; q(um )), and

q(i )(u) =

8
><

>:

� sign( u(i ))
j

ju( i ) j
�

k
u(i ) 2 [� M; M ]

M otherwise:

Consider the setA = E(P) obtained from the solution to Problem 1. Building from this

set, pick � 2 (0; 1), and consider the setA M = E(P; � ) := f x 2 Rn : xT Px � � g, then

A � A M . De�ne the set S(K; M ) := f x 2 Rm : jKx j � M g. If there exists � > 1, such

that A M � S (K; M ), then all the arguments presented in the proof of Theorem 2.2 are

still valid inside the set A M , hence local uniform asymptotic stability of the setA can be

established directly. From this observation, it appears obvious that all the result presented

in this chapter can be extended to derive conditions ensuring that the setA is locally

uniformly asymptotically stable for the closed-loop system in the presence of �nite range

uniform quantization, without no much modi�cations. Analogous considerations hold for

the sensor quantization case. Clearly, in this setting more involved optimization problems

could be considered. For instance, the minimization of the setA could be coupled with

the maximization of the setA M , still with respect to adequate size criteria. An interesting

point to address in the actuator quantization case, in the presence of �nite range quantizers,

regards the design of the gainK to simultaneously enlargeA M and shrink A .
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Although this approach enables to solve the two considered problems in the presence of

�nite range quantization, the results obtained by restraining the setA M to be contained in

the setS(K; M ) may be conservative. Indeed, as for the case of saturating systems, one may

enable the quantizer to saturate while ensuring the well behavior of the closed-loop system.

Clearly, this approach requires a dedicate strategy. For instance, by using ideas from [117],

one may model the �nite range quantizer, as the composition of an in�nite range quantizer

and a standard saturation operator, say sat(�). Pursuing this approach enables to blend the

techniques proposed by the literature of saturated systems, with the techniques presented in

this chapter. On the other hand, one should be aware that handling the closed-loop system

in terms of Krasovskii solutions, in this case requires further work. Just to give an hint

about the di�culties encountered in this case, consider that the closed-loop system, in this

case, reads

_x = Ax + B sat(q(Kx )):

Therefore, the di�erential inclusion issuing from the Krasovskii regularization of the right-

hand side of the above expression gives

_x 2 Ax + BK[sat� q � K ](x)

where with an abuse of notation, we denotedK the linear operator issuing from the matrix

K , i.e., the function x 7! Kx . Obviously, the latter needs to be suitably worked out to

distinguish the e�ect of the two nonlinearities3. This is work is currently part of our research

activity.

Concerning the actuator quantization case, another interesting aspect consists of con-

sidering the e�ect induced by replacing the actual state with an estimate provided by an

asymptotic observer, whenever the plant state is not fully accessible. In particular, let us

consider the following plant

8
>>><

>>>:

_x = Ax + Bu

u = q( Kx )

y = Cx

(2.70)

where y 2 Rp is the measured output. In particular, as the plant dynamics are linear, we

consider the following full-order Luenberger state observer; [88]

_̂x = Ax̂ + Bu + L(y � Cx̂) (2.71)

wherex̂ 2 Rn is the estimate of the plant statex provided by the observer, andL 2 Rn� p is

the observer gain to be designed. Building on the estimate provided by (2.71), we consider

the following control law

u = K x̂ (2.72)

3Notice that, since q� K is discontinuous, Proposition 1.2 does not provide any viable strategy to build
an overapproximation for K[sat � q � K ](x).
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whereK 2 Rm� n is the controller gain to be designed. By means of the latter control law,

the dynamics of the closed-loop system (2.70)-(2.71) can be written as

8
<

:

_x = Ax + B q(K x̂)
_̂x = Ax̂ + B q(K x̂) + LC (x � x̂)

(2.73)

Since the state ^x can be seen as an estimate ofx, by de�ning the estimation error " = x� x̂,

the dynamics of (2.73) can be rewritten in a more convenient fashion in the (x; " ) coordinates.

In particular, by de�ning the following invertible change of variables

2

4x

"

3

5 =

2

4 I 0

I � I

3

5

2

4x

x̂

3

5

by taking as vector state ~x = ( x; " ) 2 R2n , and by de�ning, for eachu 2 Rm , the function

	( u) = q( u) � u, the closed-loop system (2.73), in the new coordinate turns into

_~x =

2

4A + BK � BK

0 A � LC

3

5

| {z }
A c

~x +

2

4B

0

3

5

| {z }
B c

	
� h

K � K
i

| {z }
Cc

~x
�

: (2.74)

Therefore, with the aim of considering Krasovskii solutions to (2.74), de�ne

X : R2n ! R2n

~x 7! Ac~x + Bc	( Cc~x)
(2.75)

we consider the solutions to the following di�erential inclusion

_~x 2 K [X ](~x): (2.76)

At this stage, notice that (2.75)-(2.76) inherits some notable properties by the upper trian-

gular structure of (2.74). In particular, it is not di�cult to show that whenever A � LC is

Hurwitz, the set Rn � f 0g is UGAS for (2.75)-(2.76). Moreover, notice that every solution
~� = ( � x ; � " ) to the restriction of (2.76) to the setRn � f 0g, i.e.,

_~x 2 X (~x) (2.77)

where, for each ~x 2 Rn , X := K[X ](~x)\ (Rn �f 0g), is such that � x is a solution to (2.4). From

this analysis, it is straightforward to show that the ful�llment of the conditions provided by

Proposition 2.1, along with the Hurwitzness of the matrixA � LC ensures that the set

E(P) � f 0g, where P is de�ned in Proposition 2.1, is UGAS for (2.75)-(2.76). A formal

proof of this result arises from the application of [56, Corollary 7.24.], for the simpler case

of di�erential inclusions, (an example pertaining to the cascade of two nonlinear systems is

shown in [55]). Beyond the discussed properties arising from Hurwitzness ofA � LC , and

the upper triangular structure of (2.4), the key ingredients of the proof are that solutions
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to (2.4) are bounded for every initial condition (this is mainly due to the linearity of the

plant dynamics), and that K[X ] is convex-valued, outer semicontinuous, locally bounded,

and domK[X ] = R2n . These arguments show that the apparatus built in this chapter for the

design of a static state feedback stabilizer controller in the presence of actuator quantization

can be considered also when the state is not fully accessible and replaced by an estimate

generated through a Luenberger state observer.

Although the extension to the case of partial measurements in the presence of actuator

quantization is trivial, the same extension in the case of sensor quantization is nontrivial

and requires further work. This is the object of the subsequent chapter.
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3

QUANTIZED DYNAMIC OUTPUT FEEDBACK

STABILIZATION

\Scienti�c research is one of the most exciting and rewarding of occupations."

{ Frederick Sanger

3.1 Introduction

This chapter pertains to output feedback stabilization of linear plants subject to sensor

and actuator uniform quantization. In particular, we design a dynamic output feedback

controller to achieve closed-loop UGAS of an ellipsoidal set. As a �rst stage, we consider

that only the plant output is gathered by a uniformly quantized sensor. In this setting, we

�rst provide a general result turning the stabilization problem into the feasibility problem to

certain matrix inequalities. Then, we propose a methodology based on convex optimization

over LMIs to design the stabilizing controller. As a second stage, we extend the approach

mentioned above to tackle the same stabilization problem for linear plants subject to simul-

taneous sensor and actuator quantization. Finally, the proposed methodology is shown in

some examples. Some of the results presented in this chapter can be found in [37, 38].

83



84 Chapter 3

3.2 Sensor Quantization

3.2.1 Preliminary Results and Problem Statement

Consider the following continuous-time linear system with quantized sensor

8
<

:

_x = Ax + Bu

ym = q( Cx)
(3.1)

where x 2 Rn , u 2 Rm , ym 2 Rp, are respectively the state, the input, and the measured

output of the plant. While ( A; B; C ) 2 Rn� n � Rn� m � Rp� n , and q(�) is the uniform

quantizer de�ned in (1.17) having as a quantization error bound � > 0. We want to design

the following plant-order dynamic output feedback stabilizing controller for (3.1)

8
<

:

_xc = Acxc + Bcuc

yc = Ccxc + Dcuc

(3.2)

where xc 2 Rn is the controller state, yc 2 Rm is the controller output, uc 2 Rp is the

controller input.

(Ac; Bc; Cc; Dc) 2 Rn� n � Rn� p � Rm� n � Rm� p (3.3)

are real matrices to be designed. Interconnecting plant (3.1) with controller (3.2),i.e., setting

u = yc, uc = ym , yields the following dynamics for the closed-loop system

8
<

:

_x = Ax + BCcxc + BD c q(Cx)

_xc = Acxc + Bc q(Cx):
(3.4)

Therefore, as in Chapter 2, by de�ning the function

	 : Rp ! Rp

z 7! q(z) � z
(3.5)

by taking as vector state ~x = ( x; x c) 2 R2n , and by de�ning the matrices

eA =

2

4A + BD cC BCc

BcC Ac

3

5 ; eB =

2

4BD c

Bc

3

5 ; eC =
h
C 0

i
(3.6)

(3.4) can be rewritten as
_~x = eA~x + eB	

�
eC~x

�
: (3.7)

Since the function 	 is discontinuous, the right-hand side of (3.7) is a discontinuous function

of the state. Therefore, as done in the previous chapter, we want to focus on the Krasovskii

solutions to such a system. Notice that, as for the other considered cases, in view of the

local boundedness of the right-hand side of (3.7), for every ~x0 2 R2n , there exists at least a



Chapter 3 85

Krasovskii solution ' to (3.7) with ' (0) = ~x0; (see Chapter 1). In particular, de�ne

X : R2n ! R2n

~x 7! eA~x + eB	( eC~x)
(3.8a)

we consider the solutions to the following di�erential inclusion

_~x 2 K [X ](~x) (3.8b)

whereK[X ](~x) represents the Krasovskii regularization of the functionX ; see De�nition 1.2

on Page 14.

As pointed out on Page 25, the presence of the uniform quantizer, due to its deadzone

e�ect, represents a real obstacle to the asymptotic stabilization of the origin of the closed-

loop system. Speci�cally, if the matrixA is not Hurwitz, then the asymptotic stability of the

origin for the closed-loop system (3.8) cannot be achieved via any choice of the controller

(3.2). Nevertheless, also in this case, under suitable conditions on the quantization-free

closed-loop system, system (3.8) manifests some interesting properties. In this sense, let us

consider the following result that parallels Theorem 2.1.

Theorem 3.1. Let A; B; C; A c; Bc; Cc; Dc be matrices of adequate dimensions, such thateA

de�ned in (3.7) is Hurwitz. Then, there exists a compact setA � R2n , containing the origin,

which is UGAS for system (3.8).

Proof. The proof of the above result follows the same lines of the proof of Theorem 2.1.

Thus, we provides the main steps of such proof below. In particular, under the considered

hypothesis, we derive for (3.8) a relation like (2.8). Then, the proof directly follows from the

arguments presented in the proof of Theorem 2.1.

For every ~x 2 R2n , de�ne c(~x) = eC~x. Since the function ~x 7! eA~x is continuous, by

Proposition 1.1, for every ~x 2 R2n , one has

K[X ](~x) = eA~x + eBK[	 � c](~x):

Since 	 is locally bounded, (in fact bounded), thanks to [9, Lemma 1] it follows that, for

every ~x 2 R2n

K[	 � c](~x) = co
n
lim 	( eC~xk)j~xk ! ~x

o

where ~xk is any sequence converging to ~x. Then, due to the bound shown in Chapter 2 on

the function 	, it turns out that for each ~x 2 R2n

K[	 � c](~x) � B
p

p� :

Therefore, for every ~x 2 R2n , the following inclusion holds

K[X ](~x) � eA~x + eBB
p

p� : (3.9)
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Since eA is Hurwitz, then there exist P; Q 2 S 2n
+ , such that He(P eA) = � Q. Building on this

relation, for each ~x 2 R2n , de�ne the function V(~x) = ~xT P ~x. Then, thanks to (3.9), for

every ~x 2 R2n , and any f 2 K [X ](~x)

hr V(x); f i = � ~xT Q~x + 2~xT P eB� � � � min (Q)~xT ~x + 2~xT P eB�

for some� 2 B
p

p�. At this stage, by following the same arguments shown in the proof of

Theorem 2.1, pick,� 2 (0; 1), then the compact set

A =

(

~x 2 R2n : V (~x) �
4� max (P)
� 2

min (Q)�






 eBT P2 eB






 � 2p

)

is UGAS for (3.8), concluding the proof. �

The above result shows that under the asymptotic stability of the quantization-free closed-

loop system, there exists a compact set containing the origin, which is UGAS for the closed-

loop system (3.8). On the one hand, Theorem 3.1 allows to select the more convenient

notion of stability to consider in dealing with (3.8), and points out that if the controller is

selected among the stabilizing controllers for the quantization free dynamics, then the setA

is a sublevel set of a certain quadratic function. On the other hand, the above result gives

rise to the same considerations addressed for Theorem 2.1. Indeed, Theorem 3.1 provides

a coarse characterization of the behavior of (3.8), whose tightness dramatically depends on

the choices of the controller and of the matrixP. Therefore, with the aim of designing

the controller (3.2) to mitigate the e�ect induced by sensor quantization, the adoption of

Theorem 3.1 is of any help. For this reason, as already done in the previous chapter, we

pursue a constructive approach. Speci�cally, we derive computationally tractable conditions

characterizing the solutions to the problem formalized as follows.

Problem 3.1. (Controller design) Let A; B; C be matrices of adequate dimensions. Deter-

mine matrices (Ac; Bc; Cc; Dc) 2 Rn� n � Rn� p � Rm� n � Rm� p and a compact setA � R2n

containing the origin, such thatA is UGAS for system (3.8).

The solution to the above problem is the object of the remainder of this chapter. Specif-

ically, in the sequel, by retracing the same approach carried out in the previous chapter, we

present a complete apparatus to turn the solution to Problem 3.1 into the solution to certain

matrix inequalities, while considering optimization aspects.

3.2.2 Su�cient Conditions

A �rst su�cient condition to solve Problem 3.1, and based on the sector conditions illustrated

in Lemma 2.2, is given next.

Proposition 3.1. If there exist P 2 S 2n
+ , S1; S2 2 D p

+ , Ac; Bc; Cc; Dc real matrices of ade-
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quate dimensions, and a positive scalar� such that

2

4He(P eA) + �P P eB � eCT S2

� � 2S2 � S1

3

5 < 0 (3.10)

trace(S1)� 2 � � � 0 (3.11)

where eA; eB; eC are de�ned in (3.6). Then Ac; Bc; Cc; Dc and

A = E(P) (3.12)

solve Problem 3.1.

Proof. For every ~x 2 R2n , consider the following quadratic functionV(~x) = ~xT P ~x. Following

the ideas presented in the proof of Theorem 2.1, we want to prove that there exists a positive

real scalar� such that

hr V(~x); wi � � �V (~x) 8~x 2 R2n n Int A ; w 2 K [X ](~x): (3.13)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (3.13)

su�ces to show that the set A in (3.12) is UGAS for system (3.8). By S-procedure arguments,

(3.13) can be veri�ed by showing that for every ~x 2 R2n , there exists a positive real scalar

� such that

hr V(~x); wi � � (1 � ~xT P ~x) � � �V (~x) 8w 2 K [X ](~x): (3.14)

On the other hand, via Proposition 1.1 and Proposition 1.2, for everyw 2 K [X ](~x), there

exists v 2 K [	]( eC~x), such that w = eA~x + eBv. Then, still by S-procedure arguments and

according to Lemma 2.2, (3.14) is ensured by proving that for each ~x 2 R2n , and for each

v 2 Rp,

hr V(~x); eA~x + eBvi � � (1 � ~xT P ~x) � vT S1v + trace(S1)� 2 � 2vT S2(v + eC~x) � � �V (~x):

(3.15)

By straightforward calculations, the left-hand side of the above relation can be rewritten as

follows 2

4 ~x

v

3

5

T 2

4He(P eA) + �P P eB � eCT S2

� � 2S2 � S1

3

5

2

4 ~x

v

3

5 + trace(S1)� 2 � �: (3.16)

Thus in view of (3.10) and (3.11), it follows that there exists a small enough positive scalar


 such that for every ~x 2 R2n n Int A ; w 2 K [X ](~x), one hashr V(x); wi � � 
 ~xT ~x. Then,

since for every ~x 2 R2n , V (~x) � � max (P)~xT ~x, by setting � = 

� max (P ) gives (3.14), and this

�nishes the proof. �

The above result provides a su�cient condition to solve Problem 3.1. As in Chapter (2),

Assumption 1.2 ensures the feasibility of conditions (3.10) and (3.11). This claim is formal-

ized in the result given next.

Proposition 3.2. Let A; B; C matrices such that Assumption 1.2 is satis�ed. Then, there
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exist

(�; P; S1; S2; Ac; Bc; Cc; Dc) 2 R> 0 � S 2n
+ � D p

+ � D p
+ � Rn� n � Rn� p � Rm� n � Rm� p

satisfying (3.10) and (3.11).

Proof. Notice that, from Assumption 1.2, there always existAc; Bc; Cc; Dc such that eA is

Hurwitz. Therefore, since (3.10) and (3.11) match, respectively, (2.14) and (2.15), by follow-

ing the same arguments proposed in the proof of Proposition 2.2, the assert is proven.�

The conditions provided by Proposition 3.1 turns the solution to Problem 3.1 into a

feasibility problem to certain matrix inequalities. However, (3.10) is nonlinear in the deci-

sion variables, therefore, in general, solving Problem 3.1 by directly solving the feasibility

problem associated to (3.10) and (3.11) appears unlikely from a numerical standpoint. To

overcome this drawback, in the sequel we show two possible strategies to derive computa-

tionally tractable conditions from Proposition 3.1. The �rst strategy consists of performing

a special choice for the controller parameters in (3.3) and for the matrixP in (3.10). Such

choices spring from the selection of a linear observer-based controller. The second strategy

instead consists of selecting a general output feedback dynamic controller and then capi-

talizing on existing results presented in the literature for the LMI-based design of output

feedback dynamic controllers.

3.2.3 Controller design: Observer-based like Controller Design

The solution presented in this section builds on the following result.

Proposition 3.3. If there exist P1; P2 2 S n
+ , S1; S2 2 D p

+ , K 2 Rm� n , L 2 Rn� p, and a

positive scalar� such that

2

6
6
4

He(P1(A + BK )) + �P 1 � P1BK � CT S2

� He(P2(A � LC )) + �P 2 � P2L

� � � 2S2 � S1

3

7
7
5 < 0 (3.17)

trace(S1)� 2 � � � 0 (3.18)

then,

Ac = A + BK � LC (3.19)

Bc = L (3.20)

Cc = K (3.21)

Dc = 0 (3.22)

A = E

0

@

2

4P1 + P2 � P2

� P2

3

5

1

A (3.23)

are a solution to Problem 3.1.
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Proof. The proof of the above result is performed by showing that via congruence trans-

formation and invertible change of variables, (3.10) turns into (3.17) for the choice of the

controller given in (3.23) and a particular choice of the matrixP in (3.10) that is shown

later. To this end, let us replace the controller parameters in (3.10) through the correspond-

ing expressions given in (3.23). Via this step,eA; eB in (3.6) turn into

eA =

2

4 A BK

LC A + BK � LC

3

5 ; eB =

2

4 0

L

3

5 : (3.24)

Now, de�ne

� =

2

4 I 0

I � I

3

5

and notice that since � is nonsingular (in fact � � 1 = �), the satisfaction of (3.10) is

equivalent to

2

4He(� � T P eA� � 1) + � � � T P� � 1 � � T P eB � � � T eCT S2

� � 2S2 � S1

3

5 < 0 (3.25)

which can be rewritten equivalently as follows:

2

4He(� � T P� � 1� eA� � 1) + � � � T P� � 1 � � T P eB � � � T eCT S2

� � 2S2 � S1

3

5 < 0 (3.26)

In particular, due to expression of �; eA; eB; eC, by denoting

P =

2

4X U

� X̂

3

5 ;

one has:

� � T P� � 1 =

2

4X + X̂ + He(U) � X̂ � U

� X̂

3

5

� eA� � 1 =

2

4A + BK � BK

0 A � LC

3

5

� � T P eB =

2

4(U + X̂ )L

� X̂L

3

5 :

(3.27)

At this stage, selectU = � X̂ , which gives

P =

2

4X � X̂

� X̂

3

5 (3.28)
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according to this selection, from (3.27) one gets

� � T P� � 1 =

2

4X � X̂ 0

� X̂

3

5 ; � � T P eB =

2

4 0

� X̂L

3

5 : (3.29)

To conclude, setP1 = X � X̂ , P2 = X̂ . Then, exploiting the latter change of variables and by

plugging the expressions given in (3.29) into (3.27) yields (3.17). Therefore, the satisfaction

of (3.17) and (3.18) implies the one of (3.10) and (3.11), wheneverAc; Bc; Cc; Dc are chosen

as in (3.23) and

P =

2

4P1 + P2 � P2

� P2

3

5

which is symmetric and positive de�nite1 due to P1 > 0 and P2 > 0, and this concludes the

proof. �

It is not di�cult to realize that the choice of the controller, as long as the structure of

the matrix � adopted to derive the above result actually build on a linear observer-based

controller paradigm. Speci�cally, the considered controller is an observer-based controller,

while � is the matrix associated to the classical change of variables leading to the closed-

loop system represented in the (x; " ) coordinates, where" represents the estimation error

introduced by the observer. The selection of this controller stems from a few considerations.

On the one hand, since the plant dynamics are linear, inspired by \certainty equivalence"

principle illustrated in [83], it turns out that selecting an observer-based control revolving

on a Luenberger observer seems the most natural choice to tackle the considered problem.

On the other hand, Proposition 3.3 manifests two important features. The �rst one is that

the provided result is lossless with respect to Theorem 3.1, in the sense that if there exist

two gainsK; L such that A + BK and A � LC are Hurwtiz, then the conditions provided by

Proposition 3.3 are always feasible. Namely, Proposition 3.3 states a separation principle for

the considered observer-based control architecture and for the stabilization objective pointed

in Problem 3.1. The second one is that the considered result, by structuring the controller

parameters, decreases the number of parameters to be designed and allows, through an

adequate change of variables, to determine the gainL via convex optimization over LMIs,

with the only caveat to make a choice for the gainK . The last shortcoming is quite common

in the literature; see,e.g., [79, 120]. These two properties are stated and formally proven as

follows.

Fact 3.1. Let A; B; C; K; L be matrices such thatA + BK and A � LC are Hurwitz. Then,

there exists (�; P 1; P2; S1; S2) 2 R> 0 � S n
+ � S n

+ � D p
+ � D p

+ satisfying (3.17) and (3.18).

Proof. The proof follows the lines of the proof of Proposition 2.2. Assume that there exists

1This claim can be readily proven by observing that the Schur complement ofP is P1.
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(� ; P1; P2; S1) 2 R> 0 � S n
+ � S n

+ � D p
+ such that

2

6
6
4

He(P1(A + BK )) + �P 1 � P1BK 0

� He(P2(A � LC )) + �P 2 � P2L

� � � S1

3

7
7
5 < 0 (3.30)

trace(S1)� 2 � � � 0: (3.31)

For each diagonalS2 2 Rp� p, let us de�ne

M (S2) :=

2

6
6
4

He( �P1(A + BK )) + � P1 � P1BK � CT S2

� He( �P2(A � LC )) + � P2 � �P2
�L

� � � 2S2 � �S1

3

7
7
5 :

Since from (3.30)M (0) < 0 and M (S2) depends continuously on the entries ofS2, there

exists a small enough positive scalar� , such that every S2 2 D p
+ with S2 � � I yields

M (S2) < 0.

To conclude the proof, it su�ces to show that wheneverA + BK and A � LC are Hurwitz,

there exists (� ; P1; P2; S1) 2 R> 0 � S n
+ � S n

+ � D p
+ satisfying (3.30) and (3.31). De�ne

Ak = A + BK , Ao = A � LC , and let R(Ak) := fj< (� )j : � 2 spec(Ak)g, R(Ao) :=

fj< (� )j : � 2 spec(Ao)g. Notice that sinceAk andAo are Hurwitz, then R(Ak); R(Ao) � R> 0.

Pick �� 2 (0; 2 minf min R(Ak); min R(Ao)g). De�ne, eAk = Ak + ��
2 I, and eAo = Ao + ��

2 I.

Observe that, according to the selection considered for �� , eAk and eAo are Hurwitz. Select
�S1 2 D p

+ , such that trace(�S1)� 2 � �� � 0. By following these choices, the right-hand side of

(3.30) reads
2

6
6
4

He(P1
eAk) � P1BK 0

� He(P2
eAo) � P2L

� � � �S1

3

7
7
5 : (3.32)

For any �Q2 2 S n
+ , pick the solution �W2 2 S n

+ to the following matrix equality

He( ~Ao
�W2) = � �Q2 � L �S� 1

1 LT

notice that such a solution always exists since~Ao is Hurwitz and �S1 2 D p
+ . For any �Q1 2 S n

+ ,

pick the solution �W1 2 S n
+ to the following matrix equality

He( ~Ak
�W1) = � �Q1 � BK �W2

�Q� 1
2

�W2K T BT

still such a solution always exists since~Ak is Hurwitz and �Q� 1
2 2 S n

+ . Now, set in (3.30),

P1 = �W � 1
1 , and P2 = �W � 1

2 . By following these choices, the right-hand side of (3.30) turns

2

6
6
4

He( �W � 1
1

eAk) � �W � 1
1 BK 0

� He( �W � 1
2

eAo) � �W � 1
2 L

� � � �S1

3

7
7
5

| {z }
M

(3.33)
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We want to show thatM is negative de�nite. By pre-and-post multiplyingM by diag( �W1; �W2; I),

this is equivalent to show that

2

6
6
4

He( eAk
�W1) � BK �W2 0

� He( eAo
�W2) � L

� � � �S1

3

7
7
5 < 0: (3.34)

By Schur complement, since�S1 2 D p
+ , the latter relation holds if and only if

2

4He( eAk
�W1) � BK �W2

� He( eAo
�W2) + L �S� 1

1 LT

3

5 < 0 (3.35)

which, due to the selection operated for�W1; �W2 turns in

2

4 � �Q1 � BK �W2
�Q� 1

2
�W2K T BT � BK �W2

� � �Q2

3

5 < 0: (3.36)

By Schur complement, since�Q2 2 S n
+ , the latter is true if and only if

� �Q1 � BK �W2
�Q� 1

2
�W2K T BT + BK �W2

�Q� 1
2

�W2K T BT = � �Q1 < 0

which is obviously satis�ed since�Q1 2 S n
+ . Therefore, (�� ; �W � 1

1 ; �W � 1
2 ; �S1) satis�es (3.30) and

(3.31), establishing the result. �

Now, we illustrate the above mentioned change of variables allowing to partially linearize

(3.17).

Corollary 3.1. If there exist P1; P2 2 S n
+ , S1; S2 2 D p

+ , K 2 Rm� n , J 2 Rn� p, and a positive

scalar � such that

2

6
6
4

He(P1(A + BK )) + �P 1 � P1BK � CT S2

� He(P2A � JC) + �P 2 � J

� � � 2S2 � S1

3

7
7
5 < 0 (3.37)

trace(S1)� 2 � � � 0 (3.38)

then,
Ac = A + BK � P � 1

2 JC; Bc = P � 1
2 J

Cc = K

Dc = 0

and

A = E

0

@

2

4P1 + P2 � P2

� P2

3

5

1

A

solve Problem 3.1.

Proof. The proof of the above result is straightforward. In particular, de�ne the invertible
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change of variableJ = P2L. Since the latter turns (3.17) into (3.37), the result is proven. �

Optimization Issues

As already mentioned, in solving Problem 3.1, roughly speaking the main objective consists

of designing the controller (3.2) to ensure that the solutions to (3.8) converge/stay su�ciently

close to the origin. To this end, building on the conditions provided by Proposition 3.3, one

can consider the following optimization problem.

Problem 3.2 (Observer-based stabilization). Let A; B; C be matrices of adequate dimen-

sions. DetermineK 2 Rm� n , L 2 Rn� p, and P1; P2 2 S n
+ , such that the set

E

0

@

2

4P1 + P2 � P2

� P2

3

5

| {z }
P

1

A (3.39)

is UGAS for system (3.8), and it is minimized with respect to some criterion.

As already illustrated in Chapter 2, the solution to the above optimization problem can

be carried out by embedding the conditions provided by Proposition 3.3 into a suitable

optimization scheme. To this end, an adequate measure of the setE(P) de�ned in (3.39)

needs to be selected. As in Chapter 2, a �rst choice is to consider the volume ofE(P) as

a size criterion. In particular, with the aim of obtaining a convex optimization problem

over LMIs, one can consider as a size criterion� log det(P). In particular, observe that

det(P) = det( P1P2); see,e.g., [102, Lemma 2.1.]. Therefore,

� log det(P) = � log det(P1) � log det(P2)

which is a convex function onSn
+ � S n

+ . Thus, Problem 3.2 can be stated as follows.

minimize
P1 ;P2 ;S1 ;S2 ;J;�;K

� log det(P1) � log det(P2)

subject to S1; S2 2 D p
+ ; P1; P2 2 S n

+ ; � > 0

(3.17); (3.18):

(3.40)

On the other hand, as pointed out earlier, the adoption of the latter criterion could lead to a

set E(P) excessively stretched along some directions. To overcome this problem, as already

done in Chapter 2, instead of minimizing the volume ofE(P), one can minimize trace(P � 1):

However, since this criterion is in general non-convex in the decision variablesP1; P2, its

exploitation in a numerical scheme is not straightforward. To overcome this drawback, we

introduce a further variable N 2 S 2n
+ , subject to the following linear constraint

2

4N I

� P

3

5 � 0
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which, by Schur complement, is equivalent toP � 1 � N . Therefore, the minimization of

trace(P � 1) can be implicitly performed by minimizing trace(N ), which is a convex (in fact

linear), function. By pursuing this approach, Problem 3.2 turns in

minimize
P1 ;P2 ;S1 ;S2 ;J;�;N;K

trace(N )

subject to S1; S2 2 D p
+ ; P1; P2 2 S n

+ ; N 2 S 2n
+ ; � > 0

2

4N I

� P

3

5 � 0

(3.17); (3.18):

(3.41)

Another alternative solution, consists of minimizing the setE(P) along certain directions of

interest. In particular, let v1; v2; : : : ; vp 2 R2n be some given vectors, and let� 1; � 2; : : : ; � p,

positive scalars. Consider the following constraints

vT
i Pvi � � i i = 1; 2; : : : ; s: (3.42)

By maximizing the scalars� i , the set E(P) shrinks along the directionsvi . In this case,

Problem 3.2 can be stated as follows

minimize
P1 ;P2 ;S1 ;S2 ;J;�;K;� 1 ;� 2 ;:::;� s

�
sX

i =1

� i 
 i

subject to S1; S2 2 D p
+ ; P1; P2 2 S n

+ ; � > 0

(3.17); (3.18); (3.42):

(3.43)

where
 i > 0 are the weights of the di�erent objectives.

Remark 3.1. Notice that the results derived in this chapter aim at characterizing the

whole control system state,i.e., (x; x c). However, thexc component of the state is somehow

arti�cial, and one may be in general more interested in the behavior of the plant state.

Nonetheless, the application of the presented results allows to draw some conclusions on the

plant state x. Speci�cally, notice that UGAS of the setA = E(P) entails global attractivity

of the set

A x := f x 2 Rn : xT P1x � 1g � Rn :

To see this, observe that2

P =

2

4P1 + P2 � P2

� P2

3

5 �

2

4P1 0

� 0

3

5

and the latter implies that A � A x , yielding the attractivity of A x . However, uniform

stability of A x cannot be established being such a set, in general, not strongly forward

invariant for (3.8)3. Building on this observation, with the aim steering the plant state as

2Since P2 > 0, this inequality readily follows from the application of the Schur complement lemma for
nonstrict inequalities; see [15].

3Notice that, by de�nition, uniform stability of a given set implies its strongly forward invariance.
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much as possible to the origin, one may suitably modify both the determinant and the trace

criteria illustrated above by only focusing on the matrixP1.

Numerical Issues in the Solution to Problem 3.2

As pointed out earlier, (3.37) is still nonlinear in the decision variables due to the terms

P1BK (and its symmetric), and �P 1. While the latter nonlinearity can be easily managed

via a grid search, the �rst is hardly tractable. To be best author knowledge, there are no

strategies in the literature to perform the design of a linear observer-based controller through

the solution to linear matrix inequalities. On the other hand, Fact 3.1 ensures the feasibility

of the conditions given by Proposition 3.3 under the Hurwitzness of the matricesA + BK .

Hence, by assuming that the controller gainK is a given stabilizing gain, (3.17) can be used

in a convex setup to design the observer gain without leading to any drawback in terms of

feasibility of the resulting optimization problems.

Remark 3.2. The selection of the controller gainK somehow constraints the feasibility set

of the above optimization problems. Indeed, onceK is given, to ensure the feasibility of

(3.18), � 2 (0; 2 minR(A + BK )), where R(A + BK ) := fj< (� )j : � 2 spec(A + BK )g.

Remark 3.3. As pointed out in Chapter 2, approaching the optimal solutions to Problem 3.2

may lead to solutions characterized by a large gainL. Such a situation needs to be avoided

to envision the physical construction of the proposed controller. As already discussed in

Chapter 2, a general way to overcome this drawback consists of adding suitable constraints

on the eigenvalues of the matrixA � LC .

Notice that, as long as the considered objective function is convex, whenever the scalar�

is �xed and a choice is considered for the gainK , the above proposed optimization problems

are genuine convex optimization problems over LMIs. On the other hand, as for the matter

of the optimization problems presented in Chapter 2, the positive scalar� can be treated

as a tuning parameter, or being selected via an grid search. Moreover, Fact 3.1 provides a

valuable tool to characterize the interval of values for� ensuring the feasibility of (3.17) and

(3.18). Based on this idea, consider the following algorithm, that by performing a search

on certain interval for � (wherein the feasibility of the considered optimization problem is

ensured), provides a possible solution to determine a (sub)optimal solution to Problem 3.2.
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Algorithm 3.1 Observer-based controller design

Input: Matrices A; B; K; C , scalars � > 0, a convex criterionM s, and a tolerance� > 0.

Initialization: Let R(A + BK ) := fj< (� )j : � 2 spec(A + BK )g, select � = 2 �
0:99 minR(A + BK ),
Iteration

Step 1:
Solve the following convex optimization problem over LMIs

minimize
S1 ;S2 ;P1 ;P2 ;J

M s(P1; P2)

s.t. S1; S2 2 D m
+ ; P 2 S n

+
2

6
4

He(P1(A + BK )) + �P 1 � P1BK � CT S2

� He(P2A � JC) + �P 2 � J
� � � 2S2 � S1

3

7
5 < 0

trace(S1)� 2 � � � 0

Pick the sub-optimal solution (�P1; �P2; �J ) and store the obtained solution:

M (k)
s?  M s(diagf �P1; �P2g); P (k)

1?  �P1; P (k)
2?  �P2; J (k)

?  �J:

k  k + 1

Step 2:
Decrease� of � , i.e., �  � � �
Until � > 0.

Step 3: kmax  k, selectk? = argmin
k2f 1;2;kmax g

fM (k)
s? g

Output: P1 = P (k? )
1? ; P2 = P (k? )

2? ; L = P � 1
2 J (k? )

?
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It is worthwhile to remark that, the above algorithm, due to the proposed initialization

arising from the proof of Fact 3.1, always terminates with a suboptimal solution to Problem

3.2.

Numerical Example

Example 3.1. Consider the system derived from [49], already considered in Example 2.4,

that is de�ned by the following data:

A =

2

4 0 1

0:5 0:5

3

5 ; B =

2

41

1

3

5 ; K =
h
� 0:3491 � 0:7022

i
:

Assume that the plant state is not fully accessible, and that only the second component is

measured via a uniform quantized sensor with � = 1, i.e., ym = q
� h

0 1
i

x
�

. We want to

solve Problem 3.3 via Algorithm 3.1, by using the trace criterion as presented in (3.60). In

particular, let N 2 S 2n
+ , by requiring that

2

4N I

� diag(P1; P2)

3

5 � 0

as convex objective to minimize, we consider trace(N ). By considering � = 0:01, Algo-

rithm 3.1 yields

P1 =

2

4 1:05716438 � 1:05651233

� 1:05651233 1:05766293

3

5

P2 =

2

4 8:11663119 � 8:11833684

� 8:11833684 8:12644359

3

5

L =

2

49:3755

9:3735

3

5

trace(diagf P � 1
1 ; P � 1

2 g) � 1422:

Now, with the aim of steering the plant state as much as possible to the origin, we want

to solve Problem 3.3 by considering a trace criterion based only onP1. In particular, as

mentioned earlier, letN 2 S n
+ , by requiring that

2

4N I

� P1

3

5 � 0

as convex objective to minimize, we consider trace(N ). Since in this case the matrixP2 in

not accounted by the size criteria and its inversion is needed to derive the gainL, to avoid

numerical problems, in the solution of the considered optimization problem, we consider

additional constraints on the matrix P2 aimed at ensuring a strictly positive lower bound on
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� min (P2). That said, by selecting� = 0:01, Algorithm 3.1 yields

P1 =

2

4 2:02467621 � 2:02376235

� 2:02376235 2:0252034

3

5

P2 =

2

4 6:2456427 � 36:2469778

� 36:2469778 36:2485599

3

5

L =

2

4200:40

200:36

3

5

trace(P � 1
1 ) � 849:54:

Figure 3.1 shows the evolution of the plant state obtained by considering the two di�erent

design. In both simulations, the closed-loop system is initialized as (x0; x̂0) = ( � 6; 0; 0; 0):

Simulations show that, although the controller gainK is the same in both cases, the second

design allows to steer the plant state closer to the origin.

Figure 3.1: Plant state evolution: First design (x1 dashed-black,x2 dashed-blue), second
design (x1 solid-black x2 solid-blue). The solutions are obtained by integrating the closed-
loop model via an Euler method with time step 10� 4.
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3.2.4 Full Dynamic Controller Design

The aim of this subsection is to provide another design strategy for the controller in (3.2),

which avoids the above illustrated issues preventing from designing the whole controller

via the solution to a convex optimization problem. The approach followed in this section

revolves around the congruence transformations and the change of variables presented in

[25]. In particular, as a �rst step, we give an equivalent condition to (3.10), which is linear

in the (new) decision variables, whenever� and S2 are �xed. Such a result, whose proof is

a slight variation of the one of [25, Theorem 4.3], is given next.

Proposition 3.4. For each � , S1; S2 2 D p
+ , there existX; Y 2 S n

+ , K 2 Rn� n , L 2 Rn� p,

M 2 Rm� n , N 2 Rm� p such that

2

4He(H1) + �H 2 H3

� � S1 � 2S2

3

5 < 0 (3.44)

H2 > 0 (3.45)

where

H1 =

2

4AY + BM A + BNC

K XA + LC

3

5 ; H2 =

2

4Y I

� X

3

5 ; H3 =

2

4BN � Y CT S2

L � CT S2

3

5

if and only if, for any nonsingular matricesU; V 2 Rn� n such that UVT = I � XY , X̂ =

UT (X � Y � 1)� 1U, the matrices

Dc = N

Cc = ( M � NCY )V � T

Bc = U� 1(L � XBN )

Ac = U� 1 (K � XAY � XBM � UBcCY) V � T

(3.46)

and

P =

2

4X U

� X̂

3

5 (3.47)

satisfy (3.10).

Proof. (Necessity) We want to prove that (3.10), implies (3.44) and (3.45).

Let P 2 S 2n
+ , and Ac; Bc; Cc; Dc matrices of adequate dimensions, such that (3.10) is veri�ed.

Let us denote

P =

2

4X U

� X̂

3

5 ; P � 1 =

2

4Y V

� Ŷ

3

5 : (3.48)
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Thus, the following relations hold

XY + UVT = I (3.49)

XV + UŶ = 0 (3.50)

UT V + X̂ Ŷ = I (3.51)

UT Y + X̂V T = 0 (3.52)

in particular, UVT = I � XY , and X̂ = UT (X � Y � 1)� 1U. De�ne

J =

2

4Y V

I 0

3

5

and observe that, as shown in [25, Lemma 4.2],U; V can be assumed, without loss of gen-

erality, nonsingular. This latter assumption assures nonsingularity ofJ (see Lemma A.2).

Pre-and-post multiplying the left-hand side of (3.10) respectively by diag(J; I) and diag(JT ; I),

from the satisfaction of (3.10) it follows

2

4He(JP eAJT ) + � JPJT JP eB � J eCT S2

� � 2S2 � S1

3

5 < 0 (3.53)

where

JP =

2

4 I 0

X U

3

5 (3.54)

JPJT =

2

4Y I

I X

3

5 (3.55)

JP eAJT =

2

4 (A + BD cC)Y + BCcVT A + BD cC

X (A + BD cC)Y + XBC cVT + UBcCY + UAcVT X (A + BD cC) + UBcC

3

5

(3.56)

JP eB =

2

4 BD C

XBD c + UBc

3

5 (3.57)

J eCT =

2

4Y CT

CT

3

5 (3.58)

then JPJT = H2 > 0 yielding (3.45). Now, let us consider the following change of variables

given in [25]

2

4 K L

M N

3

5 =

2

4XAY 0

� 0

3

5 +

2

4U XB

0 I

3

5

2

4Ac Bc

Cc Dc

3

5

2

4 VT 0

CY I

3

5 : (3.59)



Chapter 3 101

By straightforward calculations, it turns out that

JP eAJT = H1

JPJT = H2

JP eB � J eCT S2 = H3

Therefore, it follows that the satisfaction of (3.10) implies the satisfaction of (3.44).

(Su�ciency) Let X; Y 2 S n
+ , K 2 Rn� n , L 2 Rn� p, M 2 Rm� n , N 2 Rm� p such that

(3.44) and (3.45) are veri�ed. Then, it is always possible to determineU; V nonsingular such

that I � XY = UVT , and also such that

J =

2

4Y V

I 0

3

5

is nonsingular (see Lemma A.2). Now, from (3.45), as shown in the necessity part, sinceJ

is nonsingular, it follows that

P = J� 1H2J� T =

2

4X U

� X̂

3

5 > 0:

To conclude, it su�ces to observe that, due toU nonsingular, the change of variables in

(3.59) is invertible. In particular, by inversion of the relation given in (3.59), one gets the

relations in (3.46). Now, recall that (3.44) was derived in the necessity part from (3.10) by

the change of variables in (3.59), and a congruence transformation involving the matrixJ.

Hence, the satisfaction of (3.44) implies the satisfaction of (3.10), withP given in (3.47),

and Ac; Bc; Cc; Dc given in (3.46), and this concludes the proof. �

Optimization Issues

As already mentioned, in solving Problem 3.1, the main objective consists of designing the

controller (3.2) to ensure that the closed-loop solutions converge su�ciently close to the

origin. To this end, building on the conditions provided by Proposition 3.1, one can consider

the following optimization problem.

Problem 3.3 (Stabilization). Let A; B; C be matrices of adequate dimensions.

Determine Ac; Bc; Cc; Dc, and P 2 S 2n
+ , such that E(P) is UGAS for system (3.8), and it is

minimized with respect to some criterion.

As already illustrated in the previous chapters, the solution to the above optimization

problem can be carried out by embedding the conditions provided by Proposition 3.4 into

a suitable optimization scheme. To this end, an adequate measure of the setE(P) needs to

be selected. Di�erently from the previous chapters, in this setting, sinceP is nondiagonal,

the adoption of a criterion based on the determinant ofP would give rise, in general, to a

non-convex criterion. For this reason, as a criterion to be minimized, in this chapter, we
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consider trace(P � 1). In particular, notice that from Proposition 3.4, it follows that

P � 1 =

2

4Y V

� bY

3

5

where V = (I � XY )T U� T , and bY = � U� 1XV , which in turn yields bY = � U� 1X (I �

XY )T U� T . At this stage, observe that modulo the nonsingularity requirement,U can be

arbitrarily chosen without any in
uence on the feasibility of the conditions given by Propo-

sition 3.4. Therefore, building on this degree of freedom,U can be selected with the aim

of determining a convex criterion in the decision variables. In particular, selectingU = X

yields

trace(P � 1) = 2 trace(Y) � trace(X � 1)

and the latter expression points out that trace(P � 1) can be implicitly minimized by simul-

taneously minimizing trace(Y), and � trace(X � 1). On the other hand, the minimization

of � trace(X � 1), being X 2 S n
+ , can be indirectly obtained by minimizing trace(X ). By

pursuing this strategy, Problem 3.3 specializes in

minimize
X;Y;L;K;M;N;�;S 1 ;S2

trace(X + Y)

subject to S1; S2 2 D p
+ ; X; Y 2 S n

+ ; � > 0

(3.44); (3.45); (3.11):

(3.60)

Remark 3.4. Another convex criterion can be worked out by following a similar strategy to

the one in [53]. However, establishing which of the two strategies always provides the best

result is di�cult.

Numerical Issues in the Solution to (3.60)

Notice that, due to the terms �X , �Y , and Y CT S2 (and its symmetric) (3.44) is nonlinear

in the decision variables. Therefore, from a numerical standpoint, the solution to (3.60) may

lead to NP-hard problems. Nevertheless, whenever� and S2 are �xed (3.44) turns into a

genuine LMI. As already discussed throughout this dissertation, the nonlinear terms�X and

�Y can be easily managed by performing a grid search for� over a certain interval (0; � max ).

Instead, the selection ofS2 could be more complicated. However, notice thatS2 2 D p
+ , hence

at least for p � 2, a grid search forS2 represents a viable strategy to determine a solution

to (3.60). Di�erently from other cases treated in this dissertation, the derivation of linear

su�cient conditions to (3.44) appears hard due to the increased complexity of (3.44) with

respect to the simpler conditions presented in Chapter 2. On the other hand, another viable

strategy arises from the combined exploitation of Proposition 3.2 and Proposition 3.4. Such

a strategy is schematized as follows:

� as a �rst step, select some stabilizing controller for the triplet (A; B; C ); this is always

possible due to Assumption 1.2.
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� once the controller is known, by �xing � as prescribed in the proof of Proposition 3.2,

(3.44) becomes a genuine LMI in the remaining variables, whose feasible set is non-

empty. Therefore,S2 can be selected to ensure the feasibility of (3.44)-(3.45) under

the choices considered in the �rst step for� and for the controller.

� once S2 is known, by preforming a grid search for� , one can derive a suboptimal

solution to (3.60) by solving a �nite numbers of LMI optimization problems.

Remark that, since Proposition 3.4 provides an equivalent condition to (3.44) and the choice

of S2, and � ensures the feasibility of (3.44)-(3.45) for the controller chosen to start the

procedure, it follows that throughout the third stage of the above procedure, the feasible set

of (3.60) is nonempty.

The above idea is concretely adopted to develop the following algorithm. Such an algo-

rithm, analogously to Algorithm 2.2, performs an improved search for� .
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Algorithm 3.2 Controller design
Input: Matrices A; B; C , scalar � > 0, and a tolerance� > 0.
Initialization: SelectA (0)

c ; B (0)
c ; C(0)

c ; D (0)
c , such that

eA (0) =

"
A + BD (0)

c C BC (0)
c

B (0)
c C A(0)

c

#

is Hurwitz. Let R( eA (0) ) := fj< (� )j : � 2 spec(eA (0) )g. Set for the next step

� = 2 � 0:99 minR( eA (0) ) eB (0) =

"
BD c

Bc

#

Step 1:
Determine a feasible solution to the following LMI problem

S1; S2 2 D p
+ ; P 2 S 2n

+
"
He(P eA (0) ) + �P P eB (0) � eCT S2

� � 2S2 � S1

#

< 0

trace(S1)� 2 � � � 0

Set S2 = S2 for the next step. Select a grid of positive valuesG� such that �� = max G�

Iteration
Step 2:
Solve the following LMI optimization problem selecting� over G�

minimize
X;Y;L;K;M;N;S 1

trace(X + Y)

subject to S1 2 D p
+ ; X; Y 2 S n

+ ; trace(S1)� 2 � � � 0; H2 > 0
2

4He
�h

AY + BM A + BNC
K XA + LC

i�
+ � [ Y I

� X ]
h

BN � Y CT S2

L � CT S2

i

� � S1 � 2S2

3

5 < 0

Pick the suboptimal solution to the above optimization problem

X ?  (� ?; X ?; Y ?; L?; K ?; M ?; N ?; S?
1):

Set U = X ?, V = (I � X ?Y ?)T U� T , and determine the controller parameters fromX ?

via (3.46), andP via (3.47).
Determine the closed-loop matrix eA, and set � = 2 � 0:99 minR( eA). Build a grid of
positive valuesG� such that �� = max G� , and � ? 2 G� , (notice that necessarily� ? � �� .
Including � ? in G� ensures the feasibility at each step).

Until trace(X + Y) does not decrease below� over three consecutive steps.

Output: (Ac; Bc; Cc; Dc; P)
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Obviously the above algorithm may converge to di�erent solutions depending on the

controller chosen throughout the initialization stage.

Remark 3.5. The initializing controller required to start the above algorithm can be de-

signed via standard linear techniques as LQG control design. Another solution consists of

selecting as initializing controller, the observer-based controller built through the apparatus

proposed in Section 3.2.3.

Remark 3.6. Notice that the design stage, to be numerically tractable, introduces some

conservatism in the determination of the setA = E(P). Essentially, this additional conser-

vatism depends on the fact that the selection ofS2 can dramatically a�ect the achievable

suboptimal solutions. Therefore, as a second step, one can envision a further analysis stage

to obtain a tighter estimation of the real behavior of the closed-loop system. Such a stage

can be performed by embedding the conditions provided by Proposition 3.1 in a suitable

optimization problem. In particular, once the controller parameters are known, and some

selection for� is considered, relation (3.10) turns into a genuine LMI. Thus, provided that a

convex criterion to measure the setA is chosen, a potentially tighter setA can be determined

by solving a �nite number of convex optimization problems over LMIs.

As pointed out earlier in this dissertation, to attain the optimal solutions to Problem 3.3

the controller parameters could even blowup (see [110] for a formal treatment of these issues

in the case ofH 1 state feedback control). Obviously, such a situation needs to be avoided

to envision the physical construction of the proposed controller. To overcome this problem,

one may consider further constraints aimed at placing the eigenvalues of the matrixeA in

certain sectors of the complex plane. Via the apparatus proposed in [25], such constraints

can be easily integrated in the solution to (3.60) by means of additional LMIs in the decision

variables. Some classical constraints, along with su�cient conditions (linear in the decision

variables of (3.60)), are given below.

� Disk centered at (� q;0) with radius r

2

4 � rH 2 qH2 + H1

� � rH 2

3

5 < 0 (3.61)

� Open-half plane< (z) < � �

2�H 2 + He(H1) < 0 (3.62)

� Open-half < (z) > � �

� 2�H 2 � He(H1) < 0 (3.63)

� Conic sector with apex at the origin and inner angle 2�

He

0

@

2

4 sin(� )H1 cos(� )H1

� cos(� )H1 sin(� )H1

3

5

1

A < 0: (3.64)

Remark 3.7. The selection of the more convenient pole placement constraint needs to
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be tailored to the considered case. Also, notice that including the above constraints may

impact on the feasibility of the resulting optimization problem, and dramatically a�ect the

value of the achievable suboptimal solution. In other words, the addition of pole placement

constraints somehow reshapes the feasible set of the considered optimization problem in a

way that appears unclear. However, in general, one can reasonably assume that, as long

as the pole placement constraint is not excessively severe, at least the feasibility of the

resulting optimization problem should be preserved. This aspect was already discussed in

Chapter 2 for the matter of the actuator quantization case. In that setting, we shown a

possible strategy to limit the e�ect induced by pole placement constraints for the considered

optimization problems. On the other hand, pursuing this approach in the case under study

in this section appears nontrivial.

Numerical Examples

Example 3.2. Consider the balancing pointer system derived from [69] that is de�ned by

the following data:

A =

2

40 1

1 0

3

5 ; B =

2

4 0

� 1

3

5 :

Assume that the plant state is not fully accessible, and that only the �rst component is

measured via a uniform quantized sensor with � = 0:5, i.e., ym = q
� h

1 0
i

x
�

. We want

to solve Problem 3.3 by performing a simultaneous grid search for the positive scalars� and

S2. Moreover to avoid the occurrence of fast dynamics or/and high gains in the designed

controller, we consider, for the matrix eA the pole placement constraint in (3.63) with� = 10.

The latter constraint provides an indication on how to choose the upper bound de�ning the

grid of values for� inspected throughout the design stage. Indeed, since (3.63) with� = 10

implies that for each � 2 spec(eA), < (� ) > � 10, to ensure the feasibility of the considered

optimization problem, it has to be� < 20.

Concerning the choice of the grid of values forS2, bearing in mind that, as shown in the

proof of Proposition 2.2, selectingS2 = 0 ensures the feasibility of (3.10) and (3.11) for some

P 2 S 2n
+ , S1 2 D p

+ , and � > 0, (at least when no additional constraints on the eigenvalues

of eA are considered), it follows thatS2 can be selected small enough and then increased up

to a certain value to meet the desired optimization speci�cations. However, the selection

of S2 strongly depends on the considered cases, and a systematic algorithm for its selection

appears complicated. Hence, a certain tuning stage for this variable needs to be considered.

In this case, keeping in mind the constraint on� , we let � vary over a grid of 50 points

from 0:1 up to 20� 0:99. For S2, we still consider a grid of 50 points from 0:001 up to 0:1.

Figure 3.2 depicts the evolution of the optimal value of trace(X + Y) obtained by solving

(3.60) over the grid chosen for� and S2, versus� and S2. The �gure empathizes that the

value of the suboptimal solution strongly depends on the values chosen for� and S2, and

that due to the further constraint ensuring the desired pole placement, the largest value of

� ensuring the feasibility of (3.60) is smaller than the upper bound considered in the related



Chapter 3 107

grid. Speci�cally, the most convenient values selected for� andS2 are� = 0:904; S2 = 0:0232,

that give

Ac =

2

4 � 3:232 1:379

� 9:587 � 11:56

3

5

Bc =

2

4 � 3:334

5:174

3

5

Cc =
h
� 7:433 � 11:86

i

Dc = 8:729

P =

2

6
6
6
6
6
4

1:741 � 0:9672 1:741 � 0:9672

� 0:9672 1:082 � 0:9672 1:082

1:741 � 0:9672 2628 1692

� 0:9672 1:082 1692 1093

3

7
7
7
7
7
5

:

For such a solution, one has trace(X + Y) � 10:5549.

Figure 3.2: The optimal value of trace(X + Y) obtained by solving (3.60) over the grid
chosen for� and S2, vs � and S2. The red cross indicates the suboptimal solution to (3.60).
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To foster the use of the pole placement constraints mentioned above, we want to show

that the solution to (3.60), whenever no pole placement constraints are considered, can lead

to controllers in practice unattainable. To this end, still consider� = 0:904; S2 = 0:0232,

the solution to (3.60) gives

Ac =

2

4 18788 � 12100

� 2:214� 1011 � 1:427� 1011

3

5

Bc =

2

4 � 4:146

� 3:681

3

5

Cc =
h
� 2:214� 1011 � 1:427� 1011

i

Dc = 0:02664

P =

2

6
6
6
6
6
4

1:743 � 0:9675 1:743 � 0:9675

� 0:9675 1:082 � 0:9675 1:082

1:743 � 0:9675 10322 6648

� 0:9675 1:082 6648 4287

3

7
7
7
7
7
5

for which spec(Ac) = f� 6:835; � 1:427� 1011g. Due to overly fast dynamics, the resulting

controller is in not suitable either for real implementations or numerical simulations. On

the other hand, the above controller gives trace(X + Y) � 10:5569, i.e., the improvement

in terms of suboptimal value is only about 0:017%. Namely, the addition of the above pole

placement constraint provides a valuable strategy to design an implementable controller,

without penalizing the considered optimization.

Example 3.3. Consider the system derived from [49], already considered in Example 3.1

and that is de�ned by the following data:

A =

2

4 0 1

0:5 0:5

3

5 ; B =

2

41

1

3

5 ; K =
h
� 0:3491 � 0:7022

i
; C =

h
0 1

i
; � = 1 :

We want to solve (3.60) via Algorithm 3.2. In particular, to start such an algorithm, we use

the dynamic output feedback controller issued from the observer-based controller considered

in Example 3.1. Namely, by considering the observer gain obtained in the last part of

Example 3.1 (the more convenient in terms of the considered optimization), one gets the

following data for the initializing controller

Ac =

2

4 � 200:7 0:2978

� 200:2 � 0:2022

3

5 ; Bc =

2

4200:4

200:4

3

5 ; Cc =
h
� 0:3491 � 0:7022

i

Dc = 0:
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Algorithm 3.2 initialized with the above controller yields

Ac =

2

4 � 39:69 � 7:276

� 9:156 � 42:67

3

5

Bc =

2

4 0:1338

� 0:1285

3

5

Cc =
h
� 28:14 82:58

i

Dc = � 3:734

P =

2

6
6
6
6
6
4

1:575 � 1:159 1:575 � 1:159

� 1:159 1:048 � 1:159 1:048

1:575 � 1:159 781:5 165:6

� 1:159 1:048 165:6 822:2

3

7
7
7
7
7
5

:

Figure 3.3 shows the evolution of the plant state obtained by considering the two di�erent

designs. In both simulations, the closed-loop system is initialized as (x0; xc) = ( � 6; 0; 0; 0):

Simulations show that the controller designed via the proposed apparatus allows to steer the

plant state closer to the origin than for the previously considered observer-based controller.

Figure 3.3: Plant state evolution: Proposed design (x1 dashed-black, x2 dashed-blue),
observer-based control (x1 solid-black x2 solid-blue).) The solutions are obtained by in-
tegrating the closed-loop model via an Euler method with time step 10� 4.
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Example 3.4. Consider the linearized model of the Furuta pendulum [67], examined in

Example 2.1, for which

_x =

2

6
6
6
6
6
4

0 0 1 0

0 0 0 1

0 39:32 � 14:52 0

0 81:78 � 13:98 0

3

7
7
7
7
7
5

x +

2

6
6
6
6
6
4

0

0

25:54

24:59

3

7
7
7
7
7
5

u (3.65)

where x1; x2 represent respectively the base angle and the pendulum angle (rad),x3 and

x4 are respectively the two angular speeds (rad s� 1), and u is input voltage (V) of the

motor driving the base shaft. Assume that the two anglesx1; x2 are measured through two

identical incremental optical encoders with resolution of 1� . This situation can be modeled

in our setting by taking as measured outputym = q( Cx), where

C =

2

41 0 0 0

0 1 0 0

3

5

and q is the uniform quantizer de�ned in (1.17), with � = �= 180. Now, we want to design a

dynamic output feedback controller for the given plant by solving (3.60) via Algorithm 3.2.

To this end, to initialize Algorithm 3.2, we consider the following LQG controller for the

triple ( A; B; C )

Ac =

2

6
6
6
6
6
4

� 1:638 � 3:008 1 0

� 3:008 � 14:49 0 1

20:17 � 622:7 38:48 � 93:35

1:85 � 639:8 37:05 � 89:88

3

7
7
7
7
7
5

Bc =

2

6
6
6
6
6
4

1:638 3:008

3:008 14:49

5:366 25:78

22:74 109

3

7
7
7
7
7
5

Cc =
h
1 � 24:91 2:075 � 3:655

i

Dc = 0:
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Algorithm 3.2 initialized with the above controller yields4

Ac =

2

6
6
6
6
6
4

� 10:22 � 263:1 6:119 � 0:03099

0:1357 � 28:23 � 0:7419 3:407

21:84 50:83 43:45 � 109:0

17:94 � 84:79 42:89 � 102:5

3

7
7
7
7
7
5

Bc =

2

6
6
6
6
6
4

� 0:6291 2:777

� 0:0545 1:916

� 0:6765 106:8

� 0:3055 44:16

3

7
7
7
7
7
5

Cc =
h
� 0:5653 9:917 � 1:915 2:717

i

Dc =
h
� 0:05517 � 9:548

i

P =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0:4358 0:1078 0:4882 � 0:3913 0:4358 0:1078 0:4882 � 0:3913

0:1078 22:54 2:812 � 1:624 0:1078 22:54 2:812 � 1:624

0:4882 2:812 1:488 � 1:185 0:4882 2:812 1:488 � 1:185

� 0:3913 � 1:624 � 1:185 1:193 � 0:3913 � 1:624 � 1:185 1:193

0:4358 0:1078 0:4882 � 0:3913 627:1 � 8022 644:1 � 1248

0:1078 22:54 2:812 � 1:624 � 8022 1:044� 105 � 8382 16244

0:4882 2:812 1:488 � 1:185 644:1 � 8382 688:5 � 1339:0

� 0:3913 � 1:624 � 1:185 1:193 � 1248 16244 � 1339 2610

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Notice that � max (P) � 108199, while� min (P) � 0:0209. In particular, it is interesting to

notice that the eigenvector associated to� max (P)

(2:346� 10� 7; � 2 � 10� 4; � 2:243� 10� 5; 1:192� 10� 5; 0:075; � 0:98; 0:078; � 0:15)

is \nearly" parallel to the hyperplane spanf e5; e6; e7; e8g, whereei is the generic vector of the

standard basis ofR8, that is the subspace of the state space associated to the controller state.

Loosely speaking, the performed optimization, in this case, seems to favor some directions

rather than others.

To compare the improvement produced by Algorithm 3.2 with respect to the LQG con-

troller used to initialize such an algorithm, we perform an analysis stage of the two controllers

directly employing the conditions provided by Proposition 3.1. Since the measure chosen for

the setA = E(P) to design the controller is related to trace(P � 1), as illustrated in Chapter 2,

4A �rst attempt in the solution to the considered optimization problem leads to a controller unsuitable
for physical implementation due to overly fast dynamics. This fact, as already mentioned, can be related to
the unattainability of the optima to the considered optimization problem. Thus, in the e�ective controller
design, as already done in the other cases presented in this dissertation, we consider an additional pole
placement constraint as the one in (3.63), where� is chosen via a tuning stage aimed at preserving the value
of the suboptimal solution obtained.
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for each of the two controllers we solve the following optimization problem

minimize
�;S 1 ;S2 ;P;�

trace(�)

subject to S1; S2 2 D p
+ ; P; � 2 S 2n

+ ; � > 0
2

4 � I

� P

3

5 � 0; (3.10); (3.11):

(3.66)

As usually, to overcome the nonlinearity introduced by the product�P , we perform a grid

search for� . In particular, the solution to the above optimization problem can be performed

via an algorithm totally analogous to Algorithm 2.1. By running such an algorithm for the

two considered controllers, one gets the following values for trace(P)� 1, for the designed

controller (trace(P � 1
d )) and for the LQG controller (trace(P � 1

lqg ))

trace(P � 1
d ) � 23:29

trace(P � 1
lqg ) � 37:6:

Namely the proposed design produces an improvement of about 38% with respect to a

standard design. Moreover, this improvement in terms of trace(P � 1) shows the e�ectiveness

of the implicit minimization of this latter objective via the minimization of trace(X + Y)

performed throughout the design stage.
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3.3 Simultaneous Sensor-actuator Quantization

3.3.1 Preliminary Results and Problem Statement

Consider the following continuous-time linear system with sensor and actuator quantization

8
>>><

>>>:

_x = Ax + Bv

v = q u(u)

ym = q y(Cx)

(3.67)

where x 2 Rn , u 2 Rm , ym 2 Rp, are respectively the state, the input, and the measured

output of the plant. A; B; C are real matrices of suitable dimensions, and qu(�); qy(�) are

the uniform quantizers de�ned in (1.17) having as a quantization error bound, respectively,

� u; � y > 0. We want to design the following plant-order strictly proper dynamic output

feedback stabilizing controller for (3.67)

8
<

:

_xc = Acxc + Bcuc

yc = Ccxc

(3.68)

where xc 2 Rn is the controller state, yc 2 Rm is the controller output, uc 2 Rp is the

controller input.

(Ac; Bc; Cc) 2 Rn� n � Rn� p � Rm� n

are real matrices to be designed. By interconnecting plant (3.67),i.e., setting uc = ym ,

u = yc, with controller (3.68) yields the following dynamics for the closed-loop system

8
<

:

_x = Ax + B qu(Ccxc)

_xc = Acxc + Bc qy(Cx):
(3.69)

Remark 3.8. Notice that, the use of a nonstrictly proper controller in this setting induces a

nested discontinuity in the closed-loop system; this approach is considered in [37]. However,

from a technical point of view, addressing such a nested discontinuity requires a special care.

Indeed, in the presence of a nested discontinuity, Proposition 1.2 is of any help. Thus, one

needs to extend the results presented in Lemma 2.2 to the case of a composition of the

function 	 with a discontinuous function. On the one hand, such an extension is technically

tedious and does not provide any substantial novelty to the proposed methodology. On the

other hand, assuming a strictly proper controller does not introduce any severe restriction in

the apparatus presented in the sequel. Therefore, to maintain the presentation simple and

to focus more on the key ideas and results, we will insist in the remainder of this chapter in

considering a strictly proper controller.
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Therefore, by de�ning the functions

	 u : Rm ! Rm

z 7! qu(z) � z
(3.70a)

	 y : Rp ! Rp

z 7! qy(z) � z
(3.70b)

by taking as vector state ~x = ( x; x c) 2 R2n , and by de�ning the matrices

eA =

2

4 A BC c

BcC Ac

3

5 ; eB1 =

2

4 0

Bc

3

5 ; eB2 =

2

4B

0

3

5 ; eC1 =
h
C 0

i
; eC2 =

h
0 Cc

i
(3.71)

(3.69) can be rewritten as

_~x = eA~x + eB1	 y

�
eC1~x

�
+ eB2	 u

�
eC2~x

�
: (3.72)

At this stage, since the functions 	u; 	 y are discontinuous, the right-hand side of (3.72) is a

discontinuous function of the state. Thus, we want to focus on Krasovskii solutions to system

(3.72). In view of the local boundedness of the right-hand side of (3.72), for every ~x0 2 R2n ,

there exists at least a Krasovskii solution' to (3.72) with ' (0) = ~x0; (see Chapter 1). In

particular, let us de�ne

X : R2n ! R2n

~x 7! eA~x + eB1	 y( eC1~x) + eB2	 u( eC2~x)
(3.73a)

we consider the solutions to the following di�erential inclusion

_~x 2 K [X ](~x) (3.73b)

whereK[X ](~x) represents the Krasovskii regularization of the functionX ; see De�nition 1.2

on Page 14. The next theorem provides a �rst characterization of the behavior of (3.73).

Theorem 3.2. Let A; B; C; A c; Bc; Cc be matrices of adequate dimensions such thateA is

Hurwitz. Then, there exists a compact setA � R2n , containing the origin, which is UGAS

for (3.73).

Proof. The proof of the above result follows the same lines of the proof of Theorem 2.1. In

particular, under the considered hypothesis, we derive for (3.73) a relation like (2.8). Then,

the proof directly follows from the arguments presented in the proof of Theorem 2.1.

For every ~x 2 R2n , de�ne c1(~x) = eC1~x and c2(~x) = eC2~x. Since the function ~x 7! eA~x is

continuous, by Proposition 1.1, for every ~x 2 R2n ,

K[X ](~x) = eA~x + K[ eB1	 y � c1 + eB2	 u � c2](~x)
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Therefore, by item ii of Proposition 1.1, for each ~x 2 R2n , it follows that

K[ eB1	 y � c1 + eB2	 u � c2](~x) � eB1K[	 y � c1](x) + eB2K[	 u � c2](x): (3.74)

Moreover, due to the bound shown earlier on the function 	, it turns out that for each

~x 2 R2n

K[	 y � c1](~x) � B
p

p� y

K[	 u � c2](~x) � B
p

m� u

therefore, for every ~x 2 R2n , the following inclusion holds

K[X ](~x) � eA~x + eB1B
p

p� y + eB2B
p

m� u: (3.75)

Since eA is Hurwitz there exist P; Q 2 S 2n
+ , such that He(P eA) = � Q. Building on this

relation, for each ~x 2 R2n , de�ne the function V(~x) = ~xT P ~x. Then, thanks to (3.75), for

every ~x 2 R2n , and any f 2 K [X ](~x)

hr V(x); f i = � ~xT Q~x + 2~xT P
�

eB1� y + eB2� u

�

for some� y 2 B
p

p� y; � u 2 B
p

m� u. By standard arguments, it is straightforward to show

that

kP eB1� y + P eB2� uk2 � 2
�
kP eB1� yk2 + kP eB2� uk2

�
� 2

�
kP eB1k2� 2

yp + kP eB2k2� 2
um

�
:

Thus, by following the same arguments shown in the proof of Theorem 2.1, pick� 2 (0; 1),

then

A =

(

~x 2 R2n : V (~x) �
8� max (P)
� 2

min (Q)�

�
kP eB1k2� 2

yp + kP eB2k2� 2
um

�
)

is UGAS for (3.73), concluding the proof. �

Building on the above result, as already done throughout this dissertation, with the aim

of providing constructive conditions for the design of the controller (3.68) ensuring UGAS

of a certain compact set, we want to derive su�cient conditions solving the problem given

next.

Problem 3.4. Let A; B; C be matrices of adequate dimensions. Determine (Ac; Bc; Cc) 2

Rn� n � Rn� p � Rm� n , and a compact setA � R2n containing the origin, such that A is

UGAS for system (3.73).

3.3.2 Su�cient Conditions

A �rst su�cient condition to solve Problem 3.4, and based on the sector conditions illustrated

in Lemma 2.2, is given next.

Proposition 3.5. If there exist P 2 S 2n
+ , S1; S2 2 D p

+ , �S1; �S2 2 D m
+ , Ac; Bc; Cc real matrices
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of adequate dimensions, and a positive scalar� such that

2

6
6
4

He(P eA) + �P P eB1 � eCT
1 S2 P eB2 � eCT

2
�S2

� � 2S2 � S1 0

� � � 2�S2 � �S1

3

7
7
5 < 0 (3.76)

trace(S1)� 2
y + trace( �S1)� 2

u � � � 0 (3.77)

where

eA =

2

4 A BC c

BcC Ac

3

5 ; eB1 =

2

4 0

Bc

3

5 ; eB2 =

2

4B

0

3

5 ; eC1 =
h
C 0

i
; eC2 =

h
0 Cc

i
:

then

Ac; Bc; Cc (3.78)

A = E(P) (3.79)

solve Problem 3.1.

Proof. For every ~x 2 R2n , consider the following quadratic functionV(~x) = ~xT P ~x, where

P 2 S 2n
+ . Following the ideas presented in the proof of Theorem 2.1, we want to prove that

there exists a positive real scalar� such that

hr V(~x); wi � � �V (~x) 8~x 2 R2n n Int A ; w 2 K [X ](~x): (3.80)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (3.80)

su�ces to show that the set A in (3.79) is UGAS for (3.73). By S-procedure arguments,

(3.80) can be veri�ed by showing that for every ~x 2 R2n , there exists a positive real scalar

� such that

hr V(~x); wi � � (1 � ~xT P ~x) � � �V (~x) 8w 2 K [X ](~x): (3.81)

On the other hand, as shown in the proof of Theorem 3.2, for everyw 2 K [X ](~x), there

exist v1 2 K [	 y]( eC1~x) and v2 2 K [	 u]( eC2~x), such that w = eA~x + eB1v1 + eB1v2. Then, still

by S-procedure arguments and according to Lemma 2.2, (3.81) is ensured by proving that

for each ~x 2 R2n , and for eachv1 2 Rp,v2 2 Rm

hr V(~x); eA~x + eB1v1 + eB2v2i � � (1 � ~xT P ~x) � vT
1 S1v1 + trace(S1)� 2

y � 2vT
1 S2(v1 + eC1~x)

� vT
2

�S1v2 + trace( �S1)� 2
u � 2vT

2
�S2(v2 + eC2~x) � � �V (~x):

(3.82)

By straightforward calculations, the left-hand side of the above relation can be rewritten as
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follows

2

6
6
4

~x

v1

v2

3

7
7
5

T 2

6
6
4

He(P eA) + �P P eB1 � eCT
1 S2 P eB2 � eCT

2
�S2

� � 2S2 � S1 0

� � � 2�S2 � �S1

3

7
7
5

2

6
6
4

~x

v1

v2

3

7
7
5 + trace(S1)� 2

y + trace( �S1)� 2
u � �:

(3.83)

Thus in view of (3.76) and (3.77), it follows that there exists a small enough positive scalar


 such that for every ~x 2 R2n n Int A ; w 2 K [X ](~x), one hashr V(x); wi � � 
 ~xT ~x. Then,

since for every ~x 2 R2n , V (~x) � � max (P)~xT ~x, by setting � = 

� max (P ) gives (3.81), and this

�nishes the proof. �

Also in this case, the above result is lossless with respect to Theorem 3.2. Precisely, As-

sumption 1.2 ensures the feasibility of conditions (3.76) and (3.77). This claim is formalized

in the result given next.

Proposition 3.6. Let A; B; C matrices such that Assumption 1.2 is satis�ed. Then, there

exist

(�; P; S1; S2; �S1; �S2; Ac; Bc; Cc) 2 R> 0 � S 2n
+ � D p

+ � D p
+ � D m

+ � D m
+ � Rn� n � Rn� p � Rm� n

satisfying (3.76) and (3.77).

Proof. De�ne

bB =
h

eB1
eB2

i
; bC =

2

4
eC1

eC2

3

5 ; bS1 = diagf S1; �S1g; bS2 = diagf S2; �S2g

then, (3.76) can be equivalently rewritten as

2

4He(P eA) + �P P bB � bCT bS2

� � 2bS2 � bS1

3

5 < 0: (3.84)

Now, observe that for eachS1 2 D p
+ ; �S1 2 D m

+ , one has

trace(S1)� 2
y + trace( �S1)� 2

u � trace(bS1) max(� 2
y; � 2

u):

Therefore, if there exists

(�; P; S1; S2; �S1; �S2; Ac; Bc; Cc) 2 R> 0 � S 2n
+ � D p

+ � D p
+ � D m

+ � D m
+ � Rn� n � Rn� p � Rm� n

such that (3.84) and

trace(bS1) max(� 2
y; � 2

u) � � � 0 (3.85)

are satis�ed, so are (3.76) and (3.77). On the other hand, since Assumption 1.2 ensures the

existence ofAc; Bc; Cc such that eA is Hurwitz, and (3.84) and (3.85), respectively, match

(2.14) and (2.15), by following the same arguments proposed in the proof of Proposition 2.2,

the assert is proven. �



118 Chapter 3

3.3.3 Controller Design

Also in this case, the conditions issued from Proposition 3.1 cannot be directly employed

to solve Problem 3.4. On the one hand, attempting to design an observer-based control

gives rise to the same drawbacks discussed in the previous section with even an increased

complexity due to the addition of actuator quantization. On the other hand, the similarities

between the conditions in Proposition 3.5 with the ones in Proposition 3.1 foster to reconsider

the same approach pursued in Proposition 3.4. In particular, retracing the steps performed

to derive Proposition 3.4 gives rise to the following result.

Proposition 3.7. For each � , S1; S2 2 D p
+ , �S1; �S2 2 D m

+ there existK 2 Rn� n , L 2 Rn� p,

X; Y 2 S n
+ , and M 2 Rm� n such that

2

6
6
4

He(H1) + �H 2 H3 H4

� � S1 � 2S2 0

� � � �S1 � 2 �S2

3

7
7
5 < 0 (3.86)

H2 > 0 (3.87)

where

H1 =

2

4AY + BM A

K XA + LC

3

5 ; H2 =

2

4Y I

� X

3

5 ; H3 =

2

4 � Y CT S2

L � CT S2

3

5 ; H4 =

2

4B � M T �S2

XB � �S2

3

5

if and only if, for any nonsingular matricesU; V 2 Rn� n such that UVT = I � XY , X̂ =

UT (X � Y � 1)� 1U,

Cc = MV � T

Bc = U� 1L

Ac = U� 1 (K � XAY � XBM � UBcCY) V � T

(3.88)

and

P =

2

4X U

� X̂

3

5 (3.89)

satisfy (3.76).

Proof. The proof is totally analogous to the proof of Proposition 3.4. In particular, necessity

can be proven as in the proof of Proposition 3.4 by still employing the same change of

variables as in (3.59), with the only caveat to enforceDc = 0, and by noticing that

JPB2 =

2

4 B

XB

3

5 ; J eCT
2 =

2

4 � M T

I

3

5 :

Su�ciency can be proven directly by retracing the same steps as in the proof of Proposition

3.4, with the only caveat to enforceN = 0. �
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3.3.4 Optimization and Numerical Issues

Also for the matter of Problem 3.4, we want to associate to such a problem the following

optimization problem

Problem 3.5 (Stabilization). Let A; B; C be matrices of adequate dimensions.

Determine Ac; Bc; Cc, and P 2 S 2n
+ , such that E(P) is UGAS for system (3.73) and it is

minimized with respect to some criterion.

Pursuing the same approach shown in the �rst section of this chapter, which relies on

Proposition 3.7, Problem 3.5 turns into

minimize
X;Y;L;K;M;�;S 1 ;S2 ; �S1 ; �S2

trace(X + Y)

subject to S1; S2 2 D p
+ ; �S1; �S2 2 D m

+ ; X; Y 2 S n
+ ; � > 0

(3.86); (3.87); (3.77):

(3.90)

Obviously the solution to (3.90) entails the same issues discussed on Page 102, with an

increased complexity due to the further nonlinearity introduced by the bilinear termM T �S2,

and its symmetric, appearing in (3.86) due to actuator quantization. Nevertheless, the same

strategies presented in the previous section can be adopted to face this problem. On the one

hand, a grid search in this setting entails a greater number of elements subject to such a

search, namelyp+ m+1. On the other hand, the complexity of an iterative procedure as the

one presented in Algorithm 3.2 is unchanged sinceS2; �S2 are selected once at the same time

throughout the �rst step. Moreover, in light of Proposition 3.6 feasibility of the optimization

problems considered at each step can be ensured via suitable choice. Thus, the adoption of

an algorithm alike to Algorithm 3.2 is certainly a viable solution to tackle (3.90).

Numerical Example

Example 3.5. Let us consider again the system analyzed in Example 3.4, and assume that,

in addition to sensor quantization as considered in Example 3.4, the plant is subject to

uniform actuator quantization with quantization error bound � u = 0:25. That situation

can be embedded in the setting illustrated in (3.67), by taking �y = �= 180, � u = 0:25. To

stabilize the closed-loop system, we want to design the controller in (3.68) by solving (3.90)

via an algorithm totally analogous to Algorithm 3.2. The initialization of such an algorithm

is performed choosing as initializing controller the LQG controller already considered in
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Example 3.4. In particular, under this choice, the mentioned algorithm yields

Ac =

2

6
6
6
6
6
4

� 70:5 241:5 � 44:31 57:22

� 4:029 � 34:87 � 0:169 2:32

� 18:91 � 1536 40:06 � 148

22:47 � 1736 69:26 � 178:9

3

7
7
7
7
7
5

Bc =

2

6
6
6
6
6
4

22:22 � 170:4

� 4:091 � 40:34

� 11:16 � 548

� 2:971 � 557

3

7
7
7
7
7
5

Cc =
h
� 5:065 84:51 � 7:082 11:84

i

P =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3:785 � 6:101 � 2:43 1:689 3:785 � 6:101 � 2:43 1:689

� 6:101 59:4 6:855 � 6:52 � 6:101 59:4 6:855 � 6:52

� 2:43 6:855 2:6 � 2:394 � 2:43 6:855 2:6 � 2:394

1:689 � 6:52 � 2:394 2:465 1:689 � 6:52 � 2:394 2:465

3:785 � 6:101 � 2:43 1:689 6:074 � 20:48 � 0:4997 � 0:133

� 6:101 59:4 6:855 � 6:52 � 20:48 163:5 � 6:034 6:759

� 2:43 6:855 2:6 � 2:394 � 0:4997 � 6:034 4:296 � 4:048

1:689 � 6:52 � 2:394 2:465 � 0:133 6:759 � 4:048 4:206

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

As5 in Example 3.4, to compare the improvement arisen by the use of Algorithm 3.2 with

respect to the LQG controller used to initialize such an algorithm, we perform an analy-

sis stage of the two controllers directly employing the conditions provided by Proposition

3.5. Since the measure chosen for the setA = E(P) to design the controller is related to

trace(P � 1), as illustrated in Chapter 2, for each of the two controllers we solve the following

optimization problem

minimize
�;S 1 ;S2 ;P;�

trace(�)

subject to S1; S2 2 D p
+ ; P; � ; 2 S 2n

+ ; � > 0
2

4 � I

� P

3

5 � 0; (3.76); (3.77):

(3.91)

As usually, to overcome the nonlinearity introduced by the product�P , we perform a grid

search for� . In particular, the solution to the above optimization problem can be performed

via an algorithm similar to Algorithm 2.1. By running such an algorithm for the two con-

sidered controllers, one gets the following values for trace(P)� 1, for the designed controller

5Also in this case, a �rst attempt in the solution to the considered optimization problem leads to a
controller unsuitable for physical implementation due to overly fast dynamics and poorly damped eigenvalues.
Thus, in the e�ective controller design, as already done in the other cases presented in this dissertation, we
consider an additional pole placement constraint as those in (3.63) and (3.64) characterized by parameters
� and � chosen via a tuning stage aimed at preserving the value of the suboptimal solution obtained.
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(trace(P � 1
d )) and for the LQG controller (trace(P � 1

lqg ))

trace(P � 1
d ) � 57:01

trace(P � 1
lqg ) � 855:32

That is, the proposed design produces an improvement of about 93:33% with respect to

the considered standard LQG design used to initialize the proposed algorithm. Figure 3.4

and Figure 3.5 show, respectively, the steady-state evolution of the plant state and of the

controller state obtained by considering the two di�erent controllers. In both simulations,

the closed-loop system is initialized as (x0; xc) = (0 ; �= 4; 0; 0; 04): Simulations bring out that

the proposed design allows to notably reduce the amplitude of the oscillations induced by

quantization.
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Figure 3.4: Plant state evolution: Proposed design (blue), LQG design (red). The solutions
are obtained by integrating the closed-loop model via an Euler method with time step 10� 4.
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Figure 3.5: Controller state evolution: Proposed design (blue), LQG design (red). The
solutions are obtained by integrating the closed-loop model via an Euler method with time
step 10� 4.
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3.4 Comments and Conclusion

In this chapter, we tackled the design problem of a dynamic output feedback controller to

stabilize linear plants in the presence of sensor quantization and simultaneous sensor-actuator

quantization. In this setting, we �rstly shown that Assumption 1.2 ensures the existence of

a compact setA containing the origin, which is UGAS for the quantized control systems,

with respect to Krasovskii solutions. Such a result also points out that the compact set

A can be chosen as a sublevel set of a certain quadratic function. Thus, building on this

result, by the use of quadratic Lyapunov-like functions coupled via S-procedure to the sector

conditions for the uniform quantizer illustrated in Chapter 2, we turned the stabilization

problem into the feasibility problem to certain matrix inequalities. Such a formulation

based on matrix inequalities is shown to be lossless in the sense that under Assumption 1.2,

the derived matrix inequalities are always feasible. Thus, the proposed formulation not only

structures the design problem, but also decreases the conservatism in the determination of

the setA with respect to the main result without requiring any additional hypothesis beyond

Assumption 1.2.

Afterward, relying on the proposed characterization of the stabilization problem based on

matrix inequalities, we proposed a complete apparatus based on convex optimization over

LMIs to allow the controller design while shrinking the size of the setA . The e�ectiveness of

the proposed methodology is shown in some examples. As mentioned in the previous chapter

of this dissertation, the methodology proposed is quite 
exible to envision the extension of

the derived results to �nite range quantizers, as well as to other kind of quantizers. In

particular, for the extension to �nite range quantizers, the same considerations discussed

in the end of Chapter 2 about �nite range quantizers, and other kinds of quantizers apply

mutatis mutandis for the matter of the problem considered in this chapter.

The results presented in this chapter show that employing an observer-based controller

in the presence of sensor quantization does not allow to derive computationally tractable

conditions for the design the complete design of the resulting controller. In particular, as

shown, one needs �rst to make a choice for the controller gainK , and then designing the

observer gainL via the solution to convex optimization problem over LMIs. Nonetheless,

we shown that if the choice considered forK is such that the matrix A + BK is Hurwitz,

then the resulting optimization problem allowing the design of the gainL is always feasible.

Such a shortcoming preventing from fully designing an output feedback controller resting on

an observer-based architecture is completely overcome by considering a general plant-order

dynamic output feedback controller. The adoption of the latter controller scheme also al-

lows, with few extra work, to derive computationally tractable conditions for the design of

an output feedback controller to deal with simultaneous sensor and actuator quantization,

bridging the gap left in Chapter 2. However, it is worthwhile to notice that adopting a

dynamic controller entails an augmentation of the closed-loop system state, whose turns out

to be the aggregation of the controller state and of the plant state. This fact could lead

to unsatisfactory results in terms of the behavior of the plant. Indeed, whenever the stabi-
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lization of the closed-loop system pertains to the whole control system state, the considered

optimization aimed at steering the closed-loop system state as much as possible to the ori-

gin, could favor more the component of the state associated to the controller than the ones

associated to the plant, leading to large deviations of the plant state from the origin. For this

reason, the paradigm of steering the plant state as much as possible close to the origin via the

shrinkage of the setA naturally considered in Chapter 2 needs to be partially reconsidered

in the presence of additional dynamics in the closed-loop system. As shown, this point can

be (partially) addressed by considering an observer-based controller architecture. In fact as

pointed in Remark 3.1, the adoption of this architecture enables to somehow decouple the

optimization to focus more on the side of the plant. However, as underlined, this kind of

architecture is hard to manage from a numerical standpoint. A possible solution to overcome

this problem consists of considering a size criterion based on directions of interest as the ones

considered in Chapter 2 also for the design of the full dynamic controller considered in Sec-

tion 3.2.4, and Section 3.3.2. Such directions can be chosen to belong to the subspace of the

state space associated to the plant state. On the other hand, pursuing this approach would

not suggest any selection for the matrixU in Proposition 3.4 and Proposition 3.7. Such a

further variable could be considered to shape the issued controller in a way that ensures its

physical construction and/or additional requirements. This aspect provides an interesting

direction for future research.
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Concluding Remarks

In this part, we provided several tools to perform stability analysis and controller design of

linear systems in the presence of actuator and/or sensor quantization. In particular, both

static state feedback control and dynamic output feedback controllers were considered. The

pursued approach strives to always lead to computationally tractable conditions, so as to

provide solid and reliable tools actually exploitable in real-world settings. This latter feature

stems from having founded the whole methodology on convex optimization, in particular we

proposed an LMI-based approach.

Another interesting feature of our approach consists of having adopted the notion of solu-

tions due to Krasovskii. This choice allows to both overcome the technical issues concerning

the existence of solutions for the closed-loop system and to exploit a large class of existing

results presented in the literature. In particular, the exploitation of such results allows to

certify stronger properties for the solutions to the considered closed-loop systems than the

ones usually considered. We emphasize that the analysis we considered takes into account

Carath�eodory solutions whenever they exist.

Moreover, we would like to point out that having dealt with Krasovskii solutions, due to

the equivalence between Krasovskii solutions and Hermes solutions mentioned in Chapter 1,

guarantees that the properties established for the closed-loop system are robust with respect

to small perturbations, that inevitably a�ect physical control systems.

Another interesting aspect pertains to the fact that having considered Krasovskii solutions

does not lead to any change in the resulting constructive procedures with respect to classical

approach. Notice that this aspect is only due to the fact that the sector conditions we worked

out for the quantizer considered in this dissertation provide su�ciently room to include the

set-valued mapping resulting from the Krasovskii regularization of the closed-loop system.
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Observe that, in general, this may not be the case.

We would like to point out that some preliminary results combining quantization, time-

delays and saturation have been presented in [39].

As pointed out throughout this �rst part, the main drawbacks encountered essentially

concern the fact that most of the time the approach we followed does not lead straight

to genuine convex optimization problems. This shortcoming has been addressed by the

introduction of speci�c iterative algorithms able to handle the optimization problems issuing

from the considered problems. The most important features o�ered by the algorithms we

proposed consists of:

� avoiding as much a possible the use of tuning stages and/or heuristics,

� always providing a suboptimal solution to the considered optimization problems.

The two above properties are of primary interest to envision solid and systematic tools to be

exploited in real-world applications. On the other hand, such algorithms operate iteratively,

hence they may lead to an increased complexity from a numerical standpoint. Moreover, the

convergence toward the optimum (whenever it exists) cannot be guaranteed.

Perspectives and Future Outlook

The methodology we o�ered appears quite robust and promising to envision several exten-

sions. Such extensions, as brie
y discussed all along this dissertation up to now, mainly

consist of considering �nite range quantizers and dealing with other class of quantizers, as

the well established �nite precision logarithmic quantizer; see [21]. Another possible line

of research pertains to the extension of the methodology we proposed to a wider class of

plants as for instance polynomial systems. This class of systems has been recently achieving

a resounding interest by researchers due to the emerging of solid numerical tools to address

a large number of problems originating in such a scenario; see [24, 61]. In this context, an

interesting issue lies in generalizing the methodology illustrated in this dissertation via the

use of polynomial Lyapunov-like functions instead of quadratic ones.

Although the discontinuous behaviors induced by quantizers are fully accounted by the

proposed analysis, such a discontinuity may induce behaviors that are undesired in real con-

trol systems. Such behaviors essentially consist of rapid switching experienced by quantized

variables. Such a phenomenon is induced by unattainable sliding-mode and/or by the pres-

ence of process and measurement disturbances, always present in engineered control systems.

On the one hand, these phenomena induce an early wear of physical elements used to the

real implementation of control systems. On the other hand, whenever quantizers are used as

a mean to reduce the quantity of information sent through a �nite bandwidth channel, fast

switchings traduce into an overly large number of transmissions per unit of time; [22]. To

overcome this problem, in [22] a hysteretic quantizer has been proposed and analyzed in a
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consensus setting via quantized information. Part of our ongoing work consists of extending

the analysis proposed in [22] to the general case of nonlinear systems as well as proposing

some re�nements of the model in [22], so as to ensure some robustness properties for the re-

sulting model. First researches have shown that the general idea proposed in [82], consisting

of capitalizing on input-to-state stability for the quantization free closed-loop system, can be

successfully applied even to tackle this more involved problem. We would like to point out

that such a quantizer is no longer a static nonlinearity but it is a hybrid dynamical systems.

Hence, the tools we have been considering in this setting are the ones introduced in [56].
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APPENDIXA

SOME USEFUL RESULTS

Lemma A.1. Let f : R ! R be a continuous function. Suppose that there existt; s 2 R

with s < t such that f (s) = 0, and f (t) > 0. Then, there existss0 � s such that f (s0) = 0

and f (x) > 0 for eachx 2 (s0; t]

Proof. By continuity of f and the fact that f (t) > 0, there exists� > 0 such that f (x) > 0

for eachx 2 [t � �; t ]. De�ne the set


 := f � > 0: 8 x 2 [t � �; t ] f (x) > 0g:

Observe that 
 is non-empty, and furthermore 
 � [s; t]. De�ne 
 = sup 
. Let f xkg be a

sequence belonging to (t � 
; t ] for eachk 2 N, and such that limxk = t � 
 . By continuity

of f and the de�nition of the set 
, it follows that lim f (xk) = f (t � 
 ) � 0. Now we prove

that necessarilyf (t � 
 ) = 0. By contradiction, assume that f (t � 
 ) > 0, then still by

continuity of f , there exists
 2 > 0 such that for eachx 2 [t � 
 � 
 2; t � 
 ], f (x) > 0. But

this contradicts the fact that 
 = sup 
. Hence, setting s0 = t � 
 establishes the result. �
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Lemma A.2. Let X; Y 2 Rn� n be two symmetric positive de�nite matrices andU; V 2 Rn ,

such that UVT = I � XY . The following statements are equivalent

(a) det

0

@

2

4Y I

� X

3

5

1

A 6= 0

(b) det(V U) 6= 0

(c) det

0

@

2

4Y V

I 0

3

5

1

A 6= 0 and det(U) 6= 0

Proof. First notice that (a) can be replaced with det(I � XY ) 6= 0. Moreover, since by

de�nition det( V U) = det(I � XY ), (a) and (b) are equivalent. Now, we show that (c) and

(b) are equivalent. To this end, observe that det

0

@

2

4Y V

I 0

3

5

1

A = ( � 1)n det(V), thus (c) and

(b) are equivalent, concluding the proof. �
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INTRODUCTION

General Overview

Recent technological advances have enabled the control of dynamical systems using data

transmitted over communication networks or using digital devices. In these context, data

can get lost or can only be available intermittently [62, 65, 129]. As an example, when

the controller and the system to control are connected through a network, and an estimate

of the plant state is needed, the classical paradigms of accessing the output of the plant

continuously [88] do not apply and new approaches are required. This practical needed has

brought to life a new research area aimed at developing observer schemes accounting the

discrete nature of the available measurements; see,e.g, [1, 4, 6, 74, 92], just to cite a few.

In these works, by assuming a periodical availability of the measured output, the authors

propose a discrete-time approach to the state estimation problem. Such an approach consists

of two stages. First the continuous-time plant is discretized, then a discrete-time observer is

proposed to estimate the state of the discretized version of the plant. However, this approach

entails three main drawbacks. The �rst drawback stems from the fact that the intersample is

completely lost only studying the evolution of the estimation error at sampling times. In fact,

with such a discrete-time approach, no explicit bounds on the estimation error in between

consecutive samples are available. The second drawback is that any mismatch between the

actual sampling time and that one used to discretize the plant model induces an error in

the discrete-time description of the state estimation problem. The third drawback is that

in many modern applications, such as networked control systems, the output of the plant

is often accessible only sporadically, making the fundamental assumption of periodically

measuring unrealistic; see,e.g, [62, 65, 129].

To address these issues, several strategies are presented in the literature. Such strategies

essentially belong to two main families. The �rst one pertains to observers whose state is

entirely reset, according to a suitable law, whenever a new measurement is available, and that
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run in open loop in between such events (continuous-discrete observers). This approach is, for

instance, pursued in [3, 94]. The second family of strategies considers instead continuous-time

observers, for which the output injection error in between consecutive samples is estimated

via a continuous-time processing of the last received measurement. This approach is pursed,

e.g., in [73, 90, 101, 104]. However, we would like to point out that, except for the zero

order sample-and-hold scheme in [90, 104], the design of observers within this family is

essentially performed by an emulation approach. Such an approach consists of �rst designing

a continuous-time observer, and then to evaluate the maximum allowable sampling period

(MASP) the designed observer can withstand. On the other hand, in real applications, most

of the time the design of the observer needs to be performed ensuring convergence of the

estimation error for a given maximum sampling time. In other words, an e�ective design

strategy should allow to consider the maximum allowable sampling interval as a design

parameter.

The main aspect shared by the two families of observers illustrated here above is that the

resulting observers exhibit both continuous-time and impulsive behaviors. Roughly speaking,

the fact of having intermittent incoming measurements gives rise to observation schemes

that need to instantaneously adapt their working principle according to the data streams.

This fact of relying on observation schemes that experience continuous-time and impulsive

behaviors foster to analyze such a schemes via the tools arising from the literature of hybrid

dynamical systems. In particular, recently a comprehensive and solid framework for the

analysis of hybrid dynamical systems has been presented in [56]. Although the modeling

framework in [56] is solid and allows to deal with general hybrid dynamics, to the best of our

knowledge, the design of observers in the presence of sporadic measurements via the tools

in [56] has not received attention by the existing literature.

Another appealing aspect consists of analyzing the impact of sporadic measurement

streams on observer-based controller architectures. Indeed, often the estimate provided by

asymptotic observers is exploited to replace the actual plant state into static state feedback

controller schemes; [128]. In the context of modern control systems, several settings can be

considered. On the one hand, one can assume that, although the plant output is measur-

able sporadically, the plant input can be accessed at any time. This situation may occur,

e.g., when the output is measured via digital sensors with a low and time-varying sampling

rate, or in distributed control systems, whenever the controller and the plant are co-located

and plant measurements are sent to the controller via a data network; see,e.g., [129]. On

the other hand, in some real applications, temporal limitations can even a�ect the access

to the plant input. As an example, in distributed systems, where the controller and the

plant are located in di�erent areas, the communication between the two systems happens

via a shared channel handled by a supervisor. Such a supervisor alternatively allocates com-

munication resources to the controller, to send control inputs toward the plant, and to the

plant, to send measurements toward the controller; see [62]. Still within a distributed control

systems framework, intermittent access to the plant input can be entailed also by package

dropouts; see,e.g., [112]. Another interesting case in which technological constraints involve
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intermittent actuation pertains to the case of low-rate actuators considered in [91].

Thus, in all these settings, the classical assumption considered in the literature of sampled-

data systems consisting of assuming the sample and hold operations, of the measured output

and of the control input, occur synchronously is overly restrictive.

An attempt to overcome this assumption is proposed,e.g., in [50], where the authors, by

pursuing a time-delay approach, propose a design strategy for an output feedback controller,

guaranteeing anH 1 performance, in the presence of aperiodic and asynchronous sampling

and holding operations. Another work following a similar approach, though for the case of

static state feedback controller is also presented in [91]. However, the proposed approach

therein is to some extent intrinsically conservative due to the coarseness introduced by

modeling the sampling and holding operations as processes introducing time-varying time

delays.

Contribution

The contribution o�ered within this part of this dissertation aims at showing how the gen-

eral hybrid systems framework proposed in [56] can be successfully adopted to model and

design asymptotic observers for continuous-time LTI systems in the presence of intermittent

measurements. In particular, we shall consider two observation schemes: The �rst one falls

within the family of continuous-discrete observers considered in [3, 94], while the other falls

within the family of observers considered in [73, 101, 104]. In addition, building on the �rst

observation scheme, an observer-based controller architecture is proposed with the aim of

stabilizing a continuous-time LTI system in the presence of both sporadic output measure-

ments and input access. For such schemes computationally tractable design procedures will

be illustrated and thoroughly discussed.

The contribution of the work presented in this part is twofold. On the one hand, resting on

the general hybrid systems framework in [56] allows to come up with some completely novel

observation schemes, whose design appear hardly tractable from a numerical standpoint

by following alternative approaches as,e.g., the one in [73]. On the other hand, adopting

the general modeling framework in [56] allows to extend the derived results to deal with

more involved problems of practical interest. For instance, the construction of the above

mentioned observer-based controller essentially has the role to emphasize the 
exibility and

the modularity o�ered by the modeling framework in [56]. Other extensions are currently

under preparation and will not presented in this thesis.

The remainder of this dissertation is organized as follows:

� Chapter 4 provides some general notions on hybrid systems as presented in [56].

� Chapter 5 illustrates the modeling and the design of a measurement triggered-jumps

observer to exponentially estimate the state of a continuous-time LTI systems in the
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presence of sporadic measurements. The results illustrated in this chapter are presented

in [42, 44].

� Chapter 6 illustrates the modeling and the design of an observer with continuous

intersample injection, still to exponentially estimate the state of a continuous-time LTI

systems in the presence of sporadic measurements. Preliminaries results concerning the

aspects illustrated in this chapter are presented in [41].

� Chapter 7 illustrates how the observer presented in Chapter 5 can be used to asymp-

totically stabilize a continuous-time LTI system in the presence of both sporadic mea-

surements and intermittent input access. First results on this line of research can be

found in [43].

Simulations of the hybrid systems contained in this part have been performed via the

Hybrid Equations (HyEq) Toolbox [108].



4

PRELIMINARIES ON HYBRID SYSTEMS

\Beauty is the �rst test: there is no permanent place in the world for ugly mathe-

matics."

{ G. H. Hardy

4.1 Introduction

In this part of this dissertation, we rest on the hybrid system framework proposed in

[56]. For this reason, within this chapter, we provide the main ingredients and the main

de�nitions concerning hybrid systems. Notice that the list of notions given in this chapter

is not an exhaustive one. In particular, for the sake of clarity, most of the de�nitions are

given throughout the remainder of the dissertation. The aim of this chapter is to provide

only the basic concepts and de�nitions needed to follow the results presented in the sequel

of this dissertation. Thus, for a complete study of hybrid dynamical systems, the reader is

referred to [56].
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4.2 Hybrid systems: Modeling Framework and Basic

Notions

In this part of this dissertation, we adopt the hybrid system framework proposed in [56]. In

particular, we consider hybrid systems in the following form

8
><

>:

x 2 C _x 2 F (x)

x 2 D x + 2 G(x)
(4.1)

x is the state of the hybrid system, _x stands for its velocity andx+ indicates the value of

the state after an instantaneous change.C indicates the set where the continuous evolution

(
ow) of the system can take place. Such an evolution is determined by the di�erential

inclusion _x 2 F (x). D is the set wherein discrete evolution (jumps) can take place. Such an

evolution is determined by the di�erence inclusionx+ 2 G(x). In the sequel, according to

[56], we name the objects de�ning the general hybrid system (4.1) as follows

� C is the 
ow set

� D is the jump set

� F is the 
ow map

� G is the jump map.

In particular, the four data (C; F; D; G) univocally de�ne a hybrid system as in (4.1). For this

reason, we refer to the four data (C; F; D; G) as data of the hybrid system (4.1). Speci�cally,

the shorthand notation H = ( C; F; D; G) stands for the hybrid system (4.1) represented by

the data (C; F; D; G).

In this dissertation with focus on hybrid systems with state inRn . In that case, the data

of the hybrid system (4.1) are de�ned precisely as follows:

De�nition 4.1. The data of the hybrid systemH = ( C; F; D; G) with state in Rn are de�ned

as follows.

� C � Rn

� F : Rn � Rn with C � domF

� D � Rn

� G: Rn � Rn with D � domG

4.3 Hybrid Time Domains and Solution Concept

In continuous-time systems, solutions are parameterized by a real scalar variablet, that is

the time. Instead, in discrete-time systems, solutions are parameterized by an integer scalar
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variable j 2 N, that keeps track of the number of jumps or of the elapsed discrete steps. Since

hybrid systems exhibit both continuous-time and discrete-time behaviors, it seems natural

to parametrize solutions by means of two variables. The �rst one,t 2 R� 0, representing the

amount of time elapsed. The second one,j 2 N, keeps track of the number of the occurred

jumps. However, a setE � R� 0 � N needs to satisfy some speci�c properties to provide the

parametrization of a solution to some hybrid system. Such a properties are captured by the

notion of hybrid time domain given next.

De�nition 4.2 (Hybrid time domain). A subset E � R� 0 � N is a compact hybrid time

domain if
J � 1[

j =0

([t j ; t j +1 ]; j )

for some �nite sequences of times 0 =t0 � t1 � t2 � � � � � tJ . It is a hybrid time domain if

for all (T; J) 2 E, E \ ([0; T] � f 0; 1; : : : ; Jg) is a compact hybrid time domain.

In the sequel, given a hybrid time domainE and (t; j ); (s; k) 2 E, the writing ( t; j ) � (s; k)

meanst + j � s + k. Furthermore, we indicate

supt E = supf t 2 R� 0 : 9j 2 N such that (t; j ) 2 Eg

supj E = supf j 2 N: 9t 2 R� 0 such that (t; j ) 2 Eg:

De�nition 4.3 (Hybrid arc) . A function � : E ! Rn is a hybrid arc if E is a hybrid time

domain and if for eachj 2 N, the function t 7! � (t; j ) is locally absolutely continuous on

the interval I j = t : (t; j ) 2 E.

Notice that from somej , the intervals I j can be empty or being singleton. In such cases,

the above requirement on absolutely continuity is not relevant. Here below, we provide a �rst

categorization of hybrid arcs based on their properties. In particular, here below we list only

the properties that are relevant within this dissertation, for an exhaustive categorization of

hybrid arcs, the reader is refereed to [56].

De�nition 4.4 (Types of hybrid arc). A hybrid arc � is called.

� nontrivial if dom � contains at least two points

� complete if dom� is unbounded

� Zeno if it is complete and supt dom� < 1

Now we are in position to provide the following de�nition proving the concept of solution

to hybrid systems used throughout the sequel of this dissertation.

De�nition 4.5 (Solution to a hybrid system). Given a hybrid systemH = ( C; F; D; G). A

hybrid arc � is a solution to H if � (0; 0) 2 C [ D, and

(S1) for all j 2 N0 such that I j := f t : (t; j ) 2 dom� g has nonempty interior.

� (t; j ) 2 C 8t 2 Int I j ;
_� (t; j ) 2 F (� (t; j )) 8t 2 Int I j ;
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(S2) for all (t; j ) 2 dom� such that (t; j + 1) 2 dom� ,

� (t; j ) 2 D;

� (t; j + 1) 2 G(� (t; j ))

Remark 4.1. Notice that, given a hybrid system, it is inappropriate to �rst select a hybrid

time domain and then try �nding a solution to the given hybrid system having the selected

domain. In other words, it is the solution itself that determines its own domain.

Now, we provide another de�nition that extends the concept of maximal solution from

continuous-time and discrete-time systems to hybrid systems.

De�nition 4.6 (Maximal solutions). A solution � to H is maximal if there does not exist

another solution to H such that dom� � dom and � (t; j ) =  (t; j ) for all ( t; j ) 2 dom� .

In the sequel of this dissertation, given a hybrid systemH, and a setS, SH (S) denotes

the set of all maximal solution toH such that � (0; 0) 2 S. If no set S is mentioned, then

SH stands for the set of all maximal solutions toH .

4.4 Basic Assumptions on Data

Before ending this chapter, let us consider the following assumption

Assumption 4.1 (Hybrid basic conditions).

(A1) C and D are closed subsets ofRn

(A2) F : Rn � Rn is outer semicontinuous and locally bounded relative toC, C � domF ,

and F (x) is convex valued for everyx 2 C

(A3) G: Rn � Rn is outer semicontinuous and locally bounded relative toD, and D �

domG

Such an assumption ensures that the considered hybrid system is well-posed in the sense

speci�ed in [56, De�nition 6.2]; see [56, Theorem 6.8]. Well-posedness is a key property that

is required for the applicability of a large number of results presented in [56]. We invite the

reader to see [56] for further details on well-posed hybrid systems.
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AN OBSERVER WITH MEASUREMENT-TRIGGERED JUMPS

\Success depends upon previous preparation, and without such preparation there is

sure to be failure."

{ Confucius

5.1 Introduction

This chapter deals with the state estimation problem for linear time-invariant (LTI)

systems for which measurements of the output are available sporadically. To solve the

considered problem, we provide an observer with jumps triggered by incoming measurements,

which is studied in a hybrid systems framework. Speci�cally, the resulting system is written

in estimation error coordinates and augmented with a timer variable that triggers the event of

new measurements arriving. Then, the observer is performed to achieve global exponential

stability (GES) of a closed set including the points for which the state of the plant and

its estimate coincide. Furthermore, a computationally tractable procedure for the proposed

observer is presented. Finally, the e�ectiveness of the proposed methodology is demonstrated

in two numerical examples. The results presented in this chapter can be found in [44, 42].

145
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5.2 Problem statement

5.2.1 System description

We consider continuous-time linear time-invariant systems of the form

_z = Az + Bu

y = Mz
(5.1)

wherez 2 Rn , y 2 Rq, and u 2 Rp are, respectively, the state, the measured output, and the

input of the system, whileA; B and M are constant matrices of appropriate dimensions. We

assume that the input u belongs to the class of measurable and locally bounded functions

u: [0; 1 ) ! Rp. Our goal is to design an observer providing an estimate ^z of the state z

when the output y is available only at some time instancestk , k 2 N, not known a priori (a

similar setup is considered in [100]).

We assume that the sequencef tkg1
k=1 is strictly increasing and unbounded, and that for

such a sequence there exist two positive real scalarsT1 � T2 such that

0 � t1 � T2

T1 � tk+1 � tk � T2 8k 2 N:
(5.2)

As also pointed out in [64], the lower bound in condition (5.2) prevents the existence of accu-

mulation points in the sequencef tkg1
k=1, and, hence, avoids the existence of Zeno behaviors,

which are typically undesired in practice. In fact,T1 de�nes a strictly positive minimum time

in between two consecutive incoming measurements. Furthermore,T2 de�nes maximum time

in between two consecutive incoming measurements. For this reason, we will refer toT2 in

the sequel as maximum sampling interval.

Since the information on the outputy is available in an impulsive fashion, assuming that

the arrival of a new measurement can be instantaneously detected, motivated by [3, 103],

to solve the considered estimation problem, we consider an observer with jumps in its state

following the law

8
><

>:

_̂z(t) = Aẑ(t) + Bu(t) 8t 6= tk ; k 2 N

ẑ(t+ ) = ẑ(t) + L(y(t) � M ẑ(t)) 8t = tk ; k 2 N
(5.3)

where L is a real matrix of appropriate dimensions to be designed. Note that, in between

events, the observer runs in \open-loop" in the sense that no information of the output is

used.

Remark 5.1. Assuming the knowledge of the input is not overly restrictive. Indeed, in

many practical settings, all of the devices employed to control and supervise the plant may

be embedded into the same system. Notice also that, often, the estimated state is part of a

feedback controller (e.g. in linear observer-based controller architectures), in which case the
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input u is a static function of the estimated state that is perfectly known.

Along the lines of [109], the state estimation problem is formulated as a set stabilization

problem. Namely, our goal is to design the matrixL such that the set wherein the plant state

z and its estimateẑ coincide is globally exponentially stable for the plant (5.1) interconnected

with the observer in (5.3). At this stage, as usual in estimation problems, we de�ne the

estimation error as

" := z � ẑ: (5.4)

Thus, since at timestk the plant state in unchanged, the error dynamics are given by the

following dynamical system with jumps:

8
><

>:

_"(t) = A" (t) 8t 6= tk ; k 2 N

"(t+ ) = (I � LM )"(t) 8t = tk ; k 2 N:
(5.5)

Due to the linearity of system (5.1), the estimation error dynamics and the dynamics ofz

are decoupled. Then, for the purpose of estimation, one can e�ectively only consider system

(5.5).

5.2.2 Hybrid Modeling

The fact that the observer experiences jumps when a new measurement is available and

evolves according to a di�erential equation in between updates suggests that the updating

process of the error dynamics can be described via a hybrid system. Due to this, we represent

the whole system composed by the plant (5.1), the observer (5.3), and the logic triggering

jumps as a hybrid system (see [81] where a similar approach is adopted to model a �nite-time

convergent observer).

The proposed hybrid systems approach requires to model the hidden time-driven mecha-

nism triggering the jumps of the observer. To this end, in this work, and in a similar manner

as in [19], we augment the state of the system with an auxiliary timer variable� that keeps

track of the duration of 
ows and triggers a jump whenever a certain condition is veri�ed.

This additional state allows to describe the time-driven triggering mechanism as a state-

driven triggering mechanism, which leads to a model that can be e�ciently represented by

relying on the framework for hybrid systems proposed in [56]. More precisely, we make� to

decrease as ordinary timet increases and, whenever� = 0, reset it to any point in [T1; T2],

so as to enforce (5.2). After each jump, we require the system to 
ow again. The whole

system composed by the estimation error" and the timer variable � can be represented by
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the following hybrid system, which we denoteH "

H "

8
>>>>>>>>><

>>>>>>>>>:

_" = A"

_� = � 1

9
=

;
("; � ) 2 C

"+ = (I � LM )"

� + 2 [T1; T2]

9
=

;
("; � ) 2 D

(5.6a)

where the 
ow set and the jump set are de�ned as

C = f ("; � ) 2 Rn � R� 0 : � 2 [0; T2]g

D = f ("; � ) 2 Rn � R� 0 : � = 0g:
(5.6b)

The set-valued jump map allows to capture all possible measurement events withinT1 or

T2 units of time. Speci�cally, the hybrid model in (5.6) is able to characterize not only the

behavior of the analyzed system for a given sequencef tkg1
k=1 , but for any sequence satisfying

(5.2). We denote the state ofH " by

x = ( "; � )

and by f and G, respectively, the 
ow map and the jump map,i.e.,

f (x) =

2

4 A"

� 1

3

5 8x 2 C (5.7a)

G(x) =

2

4(I � LM )"

[T1; T2]

3

5 8x 2 D: (5.7b)

Remark 5.2. It is worthwhile to notice that the hybrid system H " satis�es Assumption 4.1.

This assertion can be straightforwardly veri�ed by inspection of the data ofH " . On the

one hand, this property not only guarantees that the stability property exhibited forH " are

somehow robust with respect to perturbations. However, in this dissertation we do not focus

on perturbed hybrid systems and we refer to [56] for a complete treatment of this aspect.

On the other hand, having Assumption 4.1 satis�ed will be a crucial aspect in the sequel of

this dissertation, being required for the derivation of some results.

Remark 5.3. To make the hybrid system (5.6) an accurate description of the real time-

triggered phenomenon, which governs the feedback update process, the variable� needs to

belong to the interval [0; T2], property that is guaranteed by the de�nition of C and D.

In this chapter, we consider the following notion of global exponential stability (GES) of

closed sets for a general hybrid systemH in R` .

De�nition 5.1. (GES [123]) Let A � R` be closed. The setA is said to beglobally expo-

nentially stable(GES) for the hybrid systemH if there exist strictly positive real numbers

�; � such that every solution� to H satis�es for all (t; j ) 2 dom�

j� (t; j )jA � �e � � (t+ j ) j� (0; 0)jA : (5.8)
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Then, by introducing the set1

A = f ("; � ) 2 Rn � R� 0 : " = 0; � 2 [0; T2]g : (5.9)

the problem to solve is formulated as follows:

Problem 5.1. Given the matricesA, B , and M of appropriate dimensions and two positive

scalarsT1 � T2, design a matrix L 2 Rn� q such that the setA de�ned in (5.9) is GES for

the hybrid system (5.6).

Remark 5.4. Concerning the existence of solutions to system (5.6), by relying on the

concept of solution proposed in De�nition 4.5, it is straightforward to check that for every

initial condition � (0; 0) 2 C [ D there exists at least a nontrivial solution to (5.6) and

that every maximal solution to (5.6) is complete. Notice that, although De�nition 5.1 does

not insist on completeness of maximal solutions, since the completeness requirement stated

in Problem 5.1 is automatically satis�ed by (5.6), solving Problem 5.1 ensures that the

estimation error converges exponentially to zero ast + j goes to in�nity.

In addition, we can characterize the domain of the solutions to (5.6). Indeed, the variable

� , acting as a timer, guarantees that for every initial condition� (0; 0) 2 C [ D, the domain

of every maximal solution� to (5.6) can be written as follows:

dom� =
[

j 2 N0

([t j ; t j +1 ]) � f j g (5.10a)

with
T1 � t j +1 � t j � T2 8j 2 N0 n f 0g

0 � t1 � t0 � T2:
(5.10b)

Furthermore, assumingt0 = 0, the structure of the above hybrid time domain implies that

for each (t; j ) 2 dom� we have

t � T2(j + 1) (5.11)

the latter relation will play a key role in establishing GES of the setA for hybrid system

(5.6).

5.3 Main Results

5.3.1 Conditions for GES

The following result provides conditions for GES of the setA de�ned in (5.9) for hybrid

ystem (5.6).

Theorem 5.1. If there exist P 2 S n
+ , and a matrix L 2 Rn� q such that

(I � LM )T eAT vPeAv (I � LM ) � P < 0 8v 2 [T1; T2] (5.12)

1By the de�nition of system (5.6) and of the set A , for every x 2 C [ D [ G(D), jxjA = k"k.
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then the setA de�ned in (5.9) is GES for the hybrid system (5.6).

The proof of the above theorem relies on the following Lemma.

Lemma 5.1. Let # be a strictly negative real number. Pick


 2

 

0;
j#j

1 + T2

#

; R 2

"
j#jT2

1 + T2
; + 1

!

: (5.13)

Let � be any solution to the hybrid system (5.6). Then, for every (t; j ) 2 dom� , one has

#j � R � 
 (t + j ): (5.14)

Proof. From (5.14), by rearranging the terms, one gets


t + ( 
 + #)j � R � 0 8(t; j ) 2 dom� (5.15)

Now, pick any solution � to (5.6). Now recall that from (5.11) for every (t; j ) 2 dom� one

has

t � T2(j + 1) (5.16)

then, for every strictly positive scalar
 , from the latter expression, one gets


t � 
T 2j + 
T 2 8(t; j ) 2 dom�: (5.17)

Thus, by the virtue of the above bound, it turns out that (5.15) holds if

(
T 2 + 
 + #)j � R + 
T 2 � 0 8j 2 N0 (5.18)

which holds due to the selections considered in (5.13) for
 and R, concluding the proof. �

Now we are in position to state the proof of Theorem 5.1

Proof. Consider the following Lyapunov function candidate for the hybrid system (5.6) de-

�ned for every x 2 Rn � R� 0 and everyP 2 S n
+ :

V (x) = "T eAT � PeA� ": (5.19)

Note that there exist two positive scalars� 1; � 2 such that

� 1jxj2A � V (x) � � 2jxj2A 8x 2 C [ D [ G(D): (5.20)

Speci�cally, due to the positive de�niteness ofP and the nonsingularity of the matrix eA�

for every � , by continuity arguments, one can set

� 1 = min
� 2 [0;T2 ]

� min

�
eAT � PeA�

�
(5.21)

� 2 = max
� 2 [0;T2 ]

� max

�
eAT � PeA�

�
(5.22)
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where � min (�) and � max (�) denote, respectively, the smallest and the largest eigenvalue of

their matrix argument. By straightforward calculations one gets

r V(x) =
�

2eAT � PeA� "; " T eAT � (AT P + PA)eA� "
�

:

Moreover, by exploiting the fact that the matriceseA� and A commute, one has

hr V(x); f (x)i = 0 8x 2 C: (5.23)

Now, observe that for everyg 2 G(x), there exists a real scalarv belonging to the interval

[T1; T2] such that

g =

2

4(I � LM )"

v

3

5 :

Then, for everyg 2 G(x), one has

V(g) � V(x) = "T (I � LM )T eAT vPeAv (I � LM )"

� "T eAT � PeAT � ":

Furthermore, wheneverx 2 D, from (5.6b), we have that� =0, which in turn implies

V(g) � V(x) = "T
�
(I � LM )T eAT vPeAv (I � LM ) � P

�
":

Hence, by virtue of relation (5.12), it follows that there exists a positive small enough scalar

� such that, for everyx 2 D; g 2 G(x)

V(g) � V(x) � � �" T " = � � jxj2A : (5.24)

Without loss of generality, assume that� 2 in (5.22) and � in (5.24) satisfy 1� �
� 2

> 0, which

is always possible by picking� small enough. De�ne� = ln
�
1 � �

� 2

�
and observe that� < 0.

Then

V(g) � e� V(x) 8x 2 D; g 2 G(x): (5.25)

Pick


 2

 

0;
j� j

1 + T2

#

and R 2

"
T2j� j

1 + T2
; 1

!

: (5.26)

Let � be a maximal solution to (5.6). As shown in the proof of [56, Proposition 3.29], thanks

to (5.23) and (5.25), direct integration of (t; j ) 7! V(� (t; j )) over dom� yields

V(� (t; j )) � e�j V(� (0; 0)) 8(t; j ) 2 dom�: (5.27)

Then, according to Lemma 5.1, due to the selection considered for
 and R in (5.26), from

(5.27) one gets

�j � R � 
 (t + j ) 8(t; j ) 2 dom� (5.28)
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which, along with (5.20) and (5.27), leads to

j� (t; j )jA � e
R
2

s
� 2

� 1
e� 


2 (t+ j ) j� (0; 0)jA 8(t; j ) 2 dom�: (5.29)

Hence the setA de�ned in (5.9) is GES for system (5.6) concluding the proof. �

Remark 5.5. Notice that assuming relation (5.12) to hold implies that the eigenvalues

of eAv (I � LM ) are strictly contained in the unit circle for every v belonging to [T1; T2].

On the other hand, according to Sylvester's determinant theorem, spec(eAv (I � LM )) =

spec((I� LM )eAv ). Thus, the existence of a pairP; L satisfying condition (5.12) requires the

detectability of the pair (eAv ; MeAv ) for each v belonging to [T1; T2], which in turn, due to

the nonsingularity of eAv for any v and for any matrix A, is equivalent to the detectability of

the pair (eAv ; M ). Thus, it follows that Theorem 5.1 requires the sampled version of system

(5.1) to be detectable for everyv belonging to [T1; T2], though this condition, in general, is

only necessary. A similar remark is pointed out in [103].

5.3.2 E�ect of Measurement Noise

So far, the measured output was assumed to be perfectly known at sampling timestk ,

k 2 N. However, in a real-world setting, the measured output is a�ected by measurement

noise. To quantify the robustness properties of our observer, denote the measurement noise

as � : R� 0 ! Rq. Then, the measured output is

y = Mx + �:

This, in view of the de�nition of " given in (5.4), suggests considering the following hybrid

system with statex = ( "; � ) 2 R � R� 0 and input � 2 Rq

H �

8
>>>>>>>>><

>>>>>>>>>:

_" = A"

_� = � 1

9
=

;
("; � ) 2 C

"+ = (I � LM )" � L�

� + 2 [T1; T2]

9
=

;
("; � ) 2 D:

(5.30)

For notational simplicity, in the sequel we use

eG(x; � ) =

2

4(I � LM )" � L�

[T1; T2]

3

5 : (5.31)

To study the e�ect of the measurement noise, we consider the input-to-state-stability (ISS)

concept introduced in [115] for continuous-time nonlinear systems and extended to hybrid

systems in [18]. Such a notion is given next for a general hybrid systemH d with state in

R` , and input d 2 Rs. Before, consider the following notions of solution pair toH d, and the
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supremum norm for hybrid signals

De�nition 5.2. Given an hybrid arc d, its superior norm at (t; j ) is

kdk(t;j ) := max

8
<

:
ess: supjd(s; k)j

(s;k)2 dom dn�( d);(s;k)� (t;j )
; supjd(s; k)j

(s;k)2 �( d);(s;k)� (t;j )

9
=

;

where �( d) denotes the set of all (t; j ) 2 domd such that (t; j + 1) 2 domd; see [18] for

further details.

De�nition 5.3. A hybrid arc � and a hybrid signal d is a solution pair (�; d ) to H d =

(F; G; C; D) if

� � (0; 0) 2 C [ D

� dom� = dom d

� for all j 2 N and almost all t such that (t; j ) 2 dom�

� (t; j ) 2 C; _� (t; j ) 2 F (� (t; j ); d(t; j ))

� for all (t; j ) 2 dom� such that (t; j + 1) 2 dom�

� (t; j ) 2 D; � (t; j + 1) 2 G(� (t; j ); d(t; j ))

Building on these notions, let us consider the following de�nition.

De�nition 5.4 ([18]). A hybrid system H d is input-to-state-stable with respect tod and

relatively to A if there exist 
 2 KL and � 2 K such that each solution pair toH d satis�es

j� (t; j )jA � maxf 
 (j� (0; 0)jA ; t + j ); � (kdk(t;j ))g (5.32)

for each (t; j ) 2 dom� .

Remark 5.6. This extension of ISS to hybrid systems deals with hybrid signals as external

perturbations. In our case, due to the continuous-time nature of the plant, the perturbation

t 7! � (t) acting on the measured output is a purely continuous-time signal. On the other

hand, such a perturbation can be transformed into a hybrid signal to �t in the framework

proposed by [18]. To this end, as shown in [105], given a solution� to H � , the signalt 7! � (t)

can be represented as a hybrid signal� H de�ned as

� H (t; j ) := � (t) 8(t; j ) 2 dom�: (5.33)

In particular ( �; � H ) is a solution pair to H � . Moreover, due to the form of� H , the hybrid

sup norm k� H k(t;j ) satis�es k� H k(t;j ) = k� kt for every (t; j ) 2 dom� .

Remark 5.7. Notice that, since the Lyapunov function in (5.19) does not decrease during


ows, the ISS Lyapunov condition for hybrid systems given in [18] cannot be employed in our

setting. Thus, to show ISS of system (5.30) via the Lyapunov function given in Theorem 5.1,

we couple strict decrease at jumps of such a function with the persistence of jumps enforced
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by the variable � . This claim is formalized in the result given next.

Theorem 5.2. Let T1 � T2 be two positive real scalars. If there existP 2 S n
+ , and a matrix

L 2 Rn� q satisfying condition (5.12), then the hybrid system (5.30) is ISS with respect to�

relatively to the set A .

Proof. Consider the Lyapunov function de�ned in (5.19). Since the measurement noise�

does not act on the 
ow map, as in the proof of Theorem 5.1, one gets

hr V(x); f (x)i = 0 8x 2 C: (5.34)

For any (x; � ) 2 R � R� 0 � Rq and for eachg 2 eG(x; � ) one gets

V(g) � V(x) = "T
�

(I � LM )T eAT vPeAv (I � LM )� eAT � PeA�
�

" � 2� T LT eAT vPeAv (I � LM )"

+ � T LT eAT vPeAv L�

wherev is a real scalar belonging to the interval [T1; T2]. Wheneverx 2 D, from (5.6b), we

have � =0. Then, for eachx 2 D, � 2 Rq, g 2 eG(x; � ), one gets

V(g) � V(x) = "T
�
(I � LM )T eAT vPeAv (I � LM ) � P

�
" � 2� T LT eAT vPeAv (I � LM )"

+ � T LT eAT vPeAv L�:
(5.35)

Moreover, from (5.12), there exists a small enough positive real scalar� such that, for every

v2 [T1; T2] and every"

"T
�
(I � LM )T eAT vPeAv (I � LM ) � P

�
" � � �" T ": (5.36)

Now recall that for every a; b 2 Rn , 2aT b � !a T a + ! � 1bT b for every positive real scalar! .

From (5.35) and (5.36), settinga = ", bT = � � T LT eAT vPeAv (I � LM ), and ! = �
2 yields

V(g) � V(x) � �
1
2

�" T " + � T �







 LT eAT vP

�

I
2
�

+ eAv (I � LM )(I � LM )T eAT vP
�

eAv L







 :

(5.37)

Moreover, thanks to (5.12), one hask(I � LM )T eAT vPeAv (I � LM )k < kPk. Thus, from

(5.37), it follows V(g) � V(x) � � 1
2 �" T " + � kLk2� T � , where

� = kPk

 
2
�

+ kPk

!

max
v2 [T1 ;T2 ]

�
keAT vk2

�
:

The above relationship, together with (5.20), yields

V(g) � e� V(x) + kLk2�� T � 8x 2 D; � 2 Rq; g 2 eG(x; � ) (5.38)

where � = ln
�
1 � �

2� 2

�
and � 2 is de�ned in (5.22). Therefore, from (5.38) and (5.23), by

considering the domain of the solutions to (5.30), which is given in (5.10), it turns out that
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given any maximal solution pair (�; � ) to (5.30), one gets

V(� (t; 0)) = V(� (0; 0)) 8t 2 [0; t1] (5.39a)

V(� (t; j )) � e�j V(� (0; 0)) + � kLk2
j � 1X

i =0

e� ( j � 1� i )k� (t i +1 ; i + 1) k2

8(t; j ) 2 dom� with j � 1

(5.39b)

Furthermore, with � negative as in the proof of Theorem 5.1, for each (t; j ) 2 dom� such

that j � 1, we have

V(� (t; j )) � e�j V(� (0; 0)) +
�e � � kLk2

e� � � 1
k� k2

(t;j ) : (5.40)

Since the input dependent term in the right-hand side of (5.40) is nonnegative, by combining

it with (5.39a) and (5.40), we obtain for each (t; j ) 2 dom� ,

V(� (t; j )) � e�j V(� (0; 0)) +
�e � � kLk2

e� � � 1
k� k2

(t;j ) ; (5.41)

further using (5.20) one gets

j� (t; j )j2A �
� 2

� 1
e�j j� (0; 0)j2A +

�e � � kLk2

(e� � � 1)� 1
k� k2

(t;j ) : (5.42)

Now, by following the same arguments in the proof of Theorem 5.1, for some (solution

independent) positive real scalars
 , R, from (5.42) one gets

j� (t; j )j2A � e� 
 (t+ j )eR � 2

� 1
j� (0; 0)j2A +

�e � � kLk2

(e� � � 1)� 1
k� k2

(t;j ) (5.43)

or equivalently

j� (t; j )jA � max

8
<

:

s

2
� 2

� 1
e

R
2 e� 
 ( t + j )

2 j� (0; 0)jA ;

vu
u
t 2�e � �

(e� � � 1)� 1
kLkk� k(t;j )

9
=

;
(5.44)

Thus, according to De�nition 5.4, the hybrid system (5.30) is ISS with respect to� (relatively

to the set A ). �

Remark 5.8. The above result allows to conclude that, in the considered case, condition

(5.12) actually su�ces to guarantee the ISS property for hybrid system (5.30), and there is

no need in �nding an ISS-Lyapunov function as de�ned in [18].
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5.4 Observer Design

In the previous section a condition to guarantee global exponentially stability and input-to-

state-stability, respectively, for systems (5.6) and (5.30) was provided. However, due to its

form, such a condition is not computationally tractable to obtain a solution to Problem 5.1.

Indeed, from a numerical standpoint, condition (5.12) has two drawbacks: it is not linear in

P and L, and it needs to be veri�ed for in�nitely many values of v. The relevance of the

second drawback is evident at a �rst sight, while the lack of linearity is a severe constraint,

since the solution to nonlinear matrix inequalities often lead to NP-hard problems; seee.g.,

[15]. Thus, to make the problem numerically tractable, further work is needed. To this

end, the following result provides a �rst step toward an LMI-based design procedure for the

proposed observer.

Proposition 5.1. Let P 2 S n
+ and L 2 Rn� q. Then, (5.12) holds if

2

6
6
4

� He(F ) F � FLM e AT vP

� � P 0

� � � P

3

7
7
5 < 0 8v 2 [T1; T2] (5.45)

is feasible with respect toF 2 Rn� n .

Proof. The proof carried out here is inspired by [99]. Speci�cally, set

Z =

2

4eAv PeAT v 0

0 � P

3

5 ; S =

2

4 I � LM

I

3

5 ; Y =

2

40

I

3

5 :

Then, condition (5.12) can be rewritten as

ST ZS < 0 (5.46)

while the positive de�niteness ofP can be expressed equivalently by requiring that

YT ZY < 0: (5.47)

Thus, by the projection lemma [52], (5.46) and (5.47) are satis�ed if there exists a matrixF

such that 2

4eAT vPeAv � He(F ) F � FLM

� � P

3

5 < 0: (5.48)

Moreover, by Schur complement, from (5.48) one gets

2

6
6
4

� He(F ) F � FLM e AT v

� � P 0

� � � P � 1

3

7
7
5 < 0 (5.49)

and �nally, pre-and-post multiplying by diag(I ; I; P) yields the left-hand side matrix in (5.45),
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concluding the proof. �

Remark 5.9. Notice that by setting FL = J , condition (5.45) turns into a parametric LMI

in v, with respect to the unknown matricesF; J , and P.

Proposition 5.1, along with the above remark, provides a su�cient condition to (5.12),

which is linear in the decision variableF; J and P. Nevertheless, the obtained condition

still has to be veri�ed for in�nitely many values of v. This situation is rather common

in the literature of sampled data and impulsive systems; see,e.g., [64] and the references

therein. A general procedure to overcome this issue consists of embedding the termeAv , with

v in the interval [T1; T2], into a polytope, (a convex set having a �nite number of extreme

points [125]). Namely, one needs to �nd some matricesX 1; X 2; : : : ; X � 2 Rn� n such that

eAv 2 cof X 1; X 2; : : : ; X � g wheneverv 2 [T1; T2]. Throughout the sequel, we refer to such a

polytope as polytopic overapproximation or polytopic embedding ofeAv on [T1; T2]. Then,

by exploiting the linearity of condition (5.45) with respect toeAv , one can obtain a �nite set

of LMIs, whose satisfaction implies (5.45) to hold. This approach is formalized for our case

in the result given next.

Corollary 5.1. Let X 1; X 2; : : : ; X � be matrices such thateA[T1 ;T2 ] 2 cof X 1; X 2; : : : ; X � g:

If there exist P 2 S n
+ , a matrix J 2 Rn� q, and a matrix F 2 Rn� n such that, for every

i 2 f 1; : : : ; � g,
2

6
6
4

� He(F ) F � JM X T
i P

� � P 0

� � � P

3

7
7
5 < 0 (5.50)

then the matricesP and L = F � 1J satisfy condition (5.12).

Proof. SinceeAv 2 cof X 1; X 2; : : : ; X � g wheneverv 2 [T1; T2], then there exist non-negative

functions � 1; � 2; : : : ; � � , such that for eachv 2 [T1; T2]

eAv =
�X

i =1

� i (v)X i ;
�X

i =1

� i (v) = 1 : (5.51)

Then, replacing in left-hand side of (5.45) the termeAv with the expression given in the

left-hand side of (5.51) leads to

2

6
6
4

� He(F ) F � JM
P �

i =1 � i (v)X T
i P

� � P 0

� � � P

3

7
7
5 (5.52)

which, thanks to the constraint on each� i (v) given in the right-hand side of (5.51), can be

equivalently rewritten as

�X

i =1

� i (v)

2

6
6
4

� He(F ) F � JM X T
i P

� � P 0

� � � P

3

7
7
5 (5.53)
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Hence, by the virtue of (5.50) and Proposition 5.1 matricesP and L = F � 1J satisfy condition

(5.12) and this concludes the proof. �

The previous result allows, once a polytopic embedding of the termeAv is known, to design

the proposed observer via the solution to a �nite number of linear matrix inequalities. The

next subsection illustrates a possible technique to build such an embedding.

5.4.1 Polytopic Embedding

The derivation of a polytopic overapproximation of the exponential matrix on a given com-

pact interval is recognized in the literature as a di�cult problem; see [29, 60]. In [60] an

exhaustive comparison between several kinds of overapproximations is presented and the

authors suggest that two classes of approaches can be pursued to determine polytopic over-

approximations of the matrix exponential term on a given compact interval. In the sequel,

for any interval I � R, we denote

eAI := f Y 2 Rn� n : 9v 2 I such that Y = eAv g:

The �rst approach aims at determining a �nite number of matricesF1; F2; : : : ; F� 2 Rn� n

such that eAI 2 cof F1; F2; : : : ; F� g for a given compact intervalI . This approach is com-

monly calledwithout uncertainties. The other approach leads to a �nite numbers of matrices

F1; F2; : : : ; F� 2 Rn� n and a norm bounded uncertainty �( v) 2 Rn� n such that, for everyv

belonging to a given compact interval,eAv =
P �

i =1 � i (v)Fi + �( v) for some positive scalar

functions � 1; : : : ; � � with
P �

i =1 � i (v) = 1. This approach is commonly calledwith uncer-

tainties. On the one hand, the approaches with uncertainties allow, in general, to obtain

tighter overapproximations than those without uncertainties; see [29]. On the other hand,

managing bounded uncertainties to build a design procedure can be hard, although in [63]

a possible two-stage design procedure is proposed to cope with this issue.

In this dissertation, we propose a novel methodology to build a polytopic embedding

without uncertainties. Such a methodology is based on the well known expansion of the

matrix exponential based on residue matrices. By arranging the eigenvalues of the matrix

A in a way such that the �rst � r are real and distinct, the following� c are complex and

distinct, and the remaining � c are the conjugates of the previous ones, such an expression is

given by

eAv =
� rX

i =1

m r
iX

j =1

Rij e� i v vj � 1

(j � 1)!

+
� r + � cX

i = � r +1

mc
iX

j =1

2e< (� i )v
�

< (Rij ) cos(= (� i )v) � = (Rij ) sin(= (� i )v)
� vj � 1

(j � 1)!

(5.54)

The constantsmr
i and mc

i are, respectively, the multiplicity of the real eigenvalue� i and

of the complex-conjugate eigenvalue pair� i ; � �
i in the minimal polynomial of the matrix A.
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The matrices Rij are real n � n matrices corresponding to the residues associated to the

partial fraction expansion of the rational matrix (sI � A)� 1. The advantage of the proposed

method lies in the fact that there exist several methods to compute the residues matrices.

For instance, in this work, we rely on the procedure proposed in [80].

Remark 5.10. Although the above expansion based on residue matrices concerns the multi-

plicity of each eigenvalues in the minimal polynomial ofA, the knowledge of such a minimal

polynomial is not required to start with the application of proposed methodology. Indeed,

as a �rst step, one can assume without any loss of generality that the minimal polyno-

mial of A coincides with its characteristic polynomial and compute the residues matrices

for each eigenvalues according to its multiplicity in the characteristic polynomial. Then, for

each eigenvalue� , if the multiplicity of � in the minimal polynomial of A is less than the

one in the characteristic polynomial, higher order residues are automatically equal to zero.

This feature is ensured in the algorithm proposed in [80]; see [80, Section 4 and Example 1].

Therefore, from a practical view point, as a �rst step, one can for each eigenvalue (depending

on its multiplicity in the characteristic polynomial) compute all the related residues. Then,

by neglecting the ones equal to zero (the selection of a certain threshold can be required in

�nite-precision implementations), one gets the right residues expansion.

Once the residue matrices are known, to build a polytopic embedding ofeAv one can

proceed in a similar manner as in [29]. In particular, de�ne for eachi = 1; 2; : : : ; � r and for

eachv 2 [T1; T2]

� i : v 7!
h
� i 1(v) � i 2(v) : : : � im r

i
(v)

i
:=

�

e� i v e� i vv : : : e� i v vm r
i � 1

(m r
i � 1)!

�

bRi :=
h
Ri 1 Ri 2 : : : Rim r

i

i

and set for eachv 2 [T1; T2]

� : v 7!
h
� 1(v) � 2(v) : : : � � r (v)

i T

	 :=
h

bR1
bR2 : : : bR� r

i

De�ne for each i = � r + 1; � r + 2; : : : ; � r + � c and for eachv 2 [T1; T2]


 i : v 7!
h

 i 1(v) 
 i 2(v) : : : 
 im c

i
(v)

i

:=
�

2e< (� i )v cos(= (� i )v) 2e< (� i )v cos(= (� i )v)v : : : 2e< (� i )v cos(= (� i )v) vm c
i � 1

(mc
i � 1)!

�


 0
i (v) : v 7!

h

 0

i 1(v) 
 0
i 2(v) : : : 
 0

im c
i
(v)

i

:=
�

� 2e< (� i )v sin(= (� i )v) � 2e< (� i )v sin(= (� i )v)v : : : � 2e< (� i )v sin(= (� i )v) vm c
i � 1

(mc
i � 1)!

�

bQi :=
h
< (Ri 1) < (Ri 2) : : : < (Rim ci )

i
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and set for eachv 2 [T1; T2],


 : v 7!
h

 � r +1 (v) 
 � r +2 (v) : : : 
 � r +1+ � c (v)

i T


 0: v 7!
h

 0

� r +1 (v) 
 0
� r +2 (v) : : : 
 � 0

r +1+ � c (v)
i T

� :=
h

bQ� r +1
bQ� r +2 : : : bQ� r +1+ � c

i
:

The de�nition of the above quantities leads to the following equivalent writing for (5.54) for

eachv 2 [T1; T2]

eAv =
h
	 � � ?

i

0

B
B
@

2

6
6
4

� (v)


 (v)


 ?(v)

3

7
7
5 
 In

1

C
C
A : (5.55)

The above writing allows to make a separation between constant elements and functions ofv

appearing in (5.54), which is useful to build up a polytopic embedding for such an expression.

To this aim, �rstly observe that

rge (� � 
 � 
 0) � rge� � rge
 � rge
 0: (5.56)

Moreover, by de�ning the following quantities: for eachi 2 f 1; 2; : : : ; � r g

� ij = max
v2 [T1 ;T2 ]

e� i v vj � 1

(j � 1)!
j 2 f 1; 2; : : : ; mr

i g

� ij = min
v2 [T1 ;T2 ]

e� i v vj � 1

(j � 1)!
j 2 f 1; 2; : : : ; mr

i g
(5.57a)

and for eachi 2 f � r + 1; � r + 2; : : : ; � r + � cg


 ij = max
v2 [T1 ;T2 ]

2e< (� i )v cos(= (� i )v)
vj � 1

(j � 1)!
j 2 f 1; 2; : : : ; mc

i g


 ij = min
v2 [T1 ;T2 ]

2e< (� i )v cos(= (� i )v)
vj � 1

(j � 1)!
j 2 f 1; 2; : : : ; mc

i g


 �
ij = max

v2 [T1 ;T2 ]
� 2e< (� i )v sin(= (� i )v)

vj � 1

(j � 1)!
j 2 f 1; 2; : : : ; mc

i g


 �
ij = min

v2 [T1 ;T2 ]
� 2e< (� i )v sin(= (� i )v)

vj � 1

(j � 1)!
j 2 f 1; 2; : : : ; mc

i g

(5.57b)
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by continuity of the functions involved in (5.55), it turns out that 2

rge� �
� r

�
i =1

m r
i

�
j =1

rge� ij =
� r

�
i =1

m r
i

�
j =1

cof � ij ; � ij g = co
� r

�
i =1

m r
i

�
j =1

f � ij ; � ij g := co �

rge
 �
� r + � c

�
i = � r +1

mc
i

�
j =1

rge
 ij =
� r + � c

�
i = � r +1

mc
i

�
j =1

cof 
 ij ; 
 ij g = co
� r + � c

�
i = � r +1

mc
i

�
j =1

f 
 ij ; 
 ij g := co �

rge
 0 �
� r + � c

�
i = � r +1

mc
i

�
j =1

rge
 0
ij =

� r + � c

�
i = � r +1

mc
i

�
j =1

cof 
 0
ij ; 
 0

ij g = co
� r + � c

�
i = � r +1

mc
i

�
j =1

f 
 0
ij ; 
 0

ij g := co � 0

(5.58a)

Thus from (5.55) and (5.56), via the above expressions, one gets

eA[T1 ;T2 ] �
nh

	 � � ?
i

(� 
 In ) j � 2 co (� � � � � 0)
o

= co

0

B
B
@

h
	 � � ?

i
((� � � � � 0) 
 In )

| {z }



1

C
C
A :

(5.58b)

Let us remark that the set 
 is a �nite point set, hence each element belonging to its

convex-hull is the convex combination of a �nite number of elements in 
. Speci�cally,

� = card (
) = card (� � � � � 0) = card (�) card (�) card (� 0) � 2
P � r

i =1
m r

i 2
2

P � r + � c
i = � r +1

mc
i = 2n :

Therefore, letX 1; X 2; : : : ; X � be the matrices such that


 = f X 1; X 2; : : : ; X � g (5.58c)

then for eachv 2 [T1; T2],

eAv 2 cof X 1; X 2; : : : ; X � g:

Remark 5.11. The most laborious part of the proposed technique, namely the computation

of the residue matrices, does not depend on the considered interval [T1; T2]. Thus, for a given

matrix A, once the residues are known and stored, the construction of the needed polytopic

embedding only requires the computation of the extrema of a �nite number of continuous

scalars functions on a compact interval. Notice that although the proposed embedding

technique could lead to similar results to the ones proposed in [29], our methodology does

not require either the derivation of the real Jordan form ofA or its minimal polynomial.

Moreover, the proposed methodology is systematic and does not require dedicated strategies

depending on the multiplicity of the eigenvalues.

Remark 5.12. As the tightness of the resulting polytopic embedding is not taken into

account by the procedure itself, the resulting overapproximation can be rather conservative.

However, although this conservatism plays a relevant role in analysis problems (where one

is interested in obtaining a description of the exponential matrix as tight as possible), in

2Here we used the fact that givenS1 � Rn 1 ; S2 � Rn 2 : : : ; Sm � Rn m any sets, then co� m

i =1
Si =

� s

i =1
coSi ; see [13].
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our case, being the �nal aim obtaining a design procedure, overapproximation tightness

is not excessively crucial. Nevertheless, if needed, the overapproximating polytope can be

made tighter by subdividing the interval [T1; T2] in N subintervals and then by applying

the proposed procedure on each subinterval. Speci�cally, the proposed technique operated

on every subinterval leads toN local polytopic embeddings, whose convex-hull yields the

required polytopic overapproximation on the interval [T1; T2]. The advantages of this kind

of re�ning process, that is inspired by [64], are discussed in details below via the following

claim.

Claim 5.1. Let A 2 Rn� n be a given matrix, and letT1 < T 2 be given real scalars. Let


 = co f X 1; X 2; : : : ; X � g, where X 1; X 2; : : : ; X � are matrices obtained as in (5.58) on the

interval [T1; T2].

Let I 1; I 2 : : : ; I N beN compact intervals such that length(I k) = T2 � T1
N and [T1; T2] =

S N
k=1 I k .

For k = 1; 2; : : : ; N , let

� k = cof X (k)
1 ; X (k)

2 ; : : : ; X (k)
� g

be the matrices obtained as in (5.58) on the intervalI k . Then,

eA[T1 ;T2 ] � co

( N[

k=1

� k

)

� 
 :

Proof. First of all notice that

eA[T1 ;T2 ] =
N[

k=1

eAI k �
N[

k=1

� k :

Moreover, sinceI k � [T1; T2] for every k = 1; : : : ; N , by the construction of the sets �k ,

it follows that for each k = 1; 2; : : : ; N , � k � 
, which in turn yields
S N

k=1 � k � 
. By

isotonicity of the convex hull operator; see [12], co
nS N

k=1 � k

o
� cof 
 g. Therefore, being 


convex, the claim is proven. �

Remark 5.13. The above result shows an underlying monotonicity of the considered re�ning

process. Namely, by following the same arguments as in the proof of Claim 5.1, it is not

di�cult to show that for every M > N , eA[T1 ;T2 ] � co
nS M

k=1 � k

o
� co

nS N
k=1 � k

o
� 
. Thus,

the larger the value ofN the tighter the overapproximation. Nonetheless, as in general

the set eA[T1 ;T2 ] is not convex, the overapproximation cannot be made arbitrarily tight by

selecting a value ofN arbitrarily large (the pursued approach is intrinsically conservative).

To somehow formalize this aspect, one can look at the asymptotic behavior of the sequence

of sets �k = co
nS k

i =1 � i

o
whenk goes to in�nity. Speci�cally, consider the sequencef � kg1

k=1 ,

and observe that as argued above, for eachk 2 N, one has �k+1 � � k . Moreover, since by

construction � 1 = 
, and 
 is trivially bounded, it follows that the every element of the

sequencef � kg1
k=1 is compact. From these observations, by relying on the general notions of

convergence for sequence of sets; see,e.g., [106], one can readily show that the considered

sequence converges to a convex set. Thus, since in general the seteA[T1 ;T2 ] is not convex, one

should expect that the overapproximation polytope cannot be made arbitrarily tight.
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5.5 Numerical Examples

Example 5.1. To illustrate the proposed polytopic embedding technique, we consider

A =

2

41 1

0 � 2

3

5

and v 2 [0; 1:5]. As in [64], to visualize the resulting embedding, one can consider the real

Jordan form of the matrix A,

J = U� 1AU =

2

4 � 2 0

0 1

3

5 :

Indeed, since

eAv = U

2

4e� 2v 0

0 ev

3

5 U� 1

if f X 1; X 2; : : : ; X � g are matrices such thateAv 2 cof X 1; X 2; : : : ; X � g, then

eJv 2 cof U� 1X 1U; U� 1X 2U; : : : ; U� 1X � Ug:

Figure 5.1 reports the curve
�
eJv (1; 1); eJv (2; 2)

�
: [0; 1:5] ! R2 and di�erent polytopic over-

approximations obtained by subdividing the interval [0; 1:5] in several subintervals. Fig-

ure 5.2 depicts the polytopic embedding obtained withN = 5 and the local embedding

polytopes � k , for k = 1; 2; : : : ; 5. As expected, the larger the value ofN , the tighter the

overapproximation.
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Figure 5.1: The curve
�
eJv (1; 1); eJv (2; 2)

�
: [0; 1:5] ! R2 (solid-blue) and di�erent overap-

proximations, N = 1 (light-gray), N = 2 (gray), N = 10 (black).
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Figure 5.2: The curve
�
eJv (1; 1); eJv (2; 2)

�
: [0; 1:5] ! R2 (solid-blue), polytopic embedding

with N = 5 (light-gray) and local polytopic overapproximations (dashed-blue).
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Example 5.2. Consider the mass-spring system in [54], de�ned as follows

_z =

2

6
6
6
6
6
4

0 0 1 0

0 0 0 1

� 2 1 � 1 0

2 � 2 0 � 2

3

7
7
7
7
7
5

| {z }
A

z +

2

6
6
6
6
6
4

0

0

1

0

3

7
7
7
7
7
5

| {z }
B

u (5.59)

where z1; z2 are respectively the position of the �rst and the second mass, whilez3 and z4

are respectively the speed of the �rst and the second mass, andu is the force applied to

the second mass. Suppose that onlyz1 is measurable through a biased sensor which can be

accessed at most every 0:2s and at least every 3s. That is, assuming the initial time t0 = 0,

the measured output can be expressed as

y(tk) = z1(tk) + b 8k 2 N

where t1 2 [0; 3], f tkg1
k=1 is an increasing and unbounded sequence of positive times, such

that for each k 2 N, 0:2 � tk+1 � tk � 3, and b is the sensor bias,i.e., an unknown real

constant. Notice that, the sequencef tkg1
k=1 satis�es (5.2) with T1 = 0:2, and T2 = 3. To �t

this problem in the setting addressed by Theorem 5.1, one needs to avoid considering the

bias as an external perturbation. To this end, we follow an exosystem approach, see [48, 68].

Namely, we model the constant bias a�ecting the output sensor as an extra state,b, such

that _b= 0. In this way, y = M �z, where

M :=
h
1 0 0 0 1

i

and �z := ( z; b). Therefore, by setting �z as vector state, one can consider the extended system

de�ned by

�A =

2

4A 0

0 0

3

5 ; �BT =
h
BT 0

i

that matches the class of systems considered in this paper. To build a polytopic embedding

for the matrix �A, it su�ces to build the one of A. In fact, since for each real scalarv

e
�Av =

2

4 I

0

3

5 eAv
h
I 0

i
+

2

40 0

0 1

3

5

given an interval I � R, if for eachv 2 I

eAv 2 cof X 1; X 2; : : : ; X � g

then by de�ning

� =

2

4 I

0

3

5



Chapter 5 167

it follows

e
�Av 2

8
<

:

2

40 0

0 1

3

5 + cof � X 1� T ; � X 2� T ; : : : ; � X � � T g

9
=

;
8v 2 I :

In particular, in this case since spec(A) = f� 0:68055� 1:6332i; � 0:6389; � 1g, � = 16. Once

the matrices X i are determined3 by following the technique proposed in Section 5.4.1, via

Corollary 5.1 one gets

P =

2

6
6
6
6
6
6
6
6
4

1:883 0:88796 1:3892 0:95109 � 1:0667

0:88796 12:965 10:415 10:305 0:091033

1:3892 10:415 10:086 8:6622 � 1:0351

0:95109 10:305 8:6622 8:8987 � 0:018634

� 1:0667 0:091033 � 1:0351 � 0:018634 7:6949

3

7
7
7
7
7
7
7
7
5

L =

2

6
6
6
6
6
6
6
6
4

0:77524

0:18123

� 0:12123

� 0:17406

0:22469

3

7
7
7
7
7
7
7
7
5

:

Figure 5.3 reports the functionv 7! � max

�
(I � LM )T e �AT vPe�Av (I � LM ) � P

�
asv 2 [T1; T2].

As expected, the proposed design ensures that (5.12) holds.

Figure 5.3: The functionv 7! � max

�
(I � LM )T e �AT vPe�Av (I � LM ) � P

�
versusv.

3Such matrices are reported in Appendix B
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Assumeu(t) = sin( t), b = 1, and denote the estimate provided by the observer as ^ze :=

(ẑ; b̂). Figure 5.4 shows the evolution of the plant state and of its estimate projected onto

ordinary time. Figure 5.5 reports the evolution of the biaŝb projected onto ordinary time.

The �gures show that the designed observer reconstructs the plant state despite the presence

of the sensor bias.

Figure 5.4: The evolution of the statesz (red) and ẑ (blue) projected onto ordinary time t.
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Figure 5.5: The biasb(red) and the evolution of its estimatêb(blue) projected onto ordinary
time t.



170 Chapter 5

5.6 Comments and Conclusion

In this chapter, we proposed a methodology to model and design, through the solution to

certain LMIs, a measurement-triggered observer to estimate the state of a linear plant in

the presence of sporadically available measurements. The considered observer is shown to

be ISS with respect to measurement noise. As shown, the e�ective design of the observer

requiresa priori the solution of an in�nite number of LMIs, which is in practice undoable.

To overcome this problem, via the introduction of a novel polytopic embedding for the

exponential matrix, we embedded the obtained conditions in a polytope making the design

possible via the solution to a �nite number of LMIs. The proposed embedding technique

somehow provides a systematic way to build a polytopic embedding for the exponential

matrix, pursuing an approach analogous to the one in [29]. Hence, such a methodology is a

worthwhile contribution in itself and worth of further investigations. Finally, the e�ectiveness

of the proposed methodology is displayed in two numerical examples.

The results presented in this chapter show that the hybrid systems framework proposed

in [56] permits to model and analyze the considered observer. In particular, exponential

state estimation and ISS with respect to measurement noise via Lyapunov arguments were

proved. Alternative frameworks, as the ones based on impulsive dynamical systems; see,

e.g., [103] could be used to come up with similar su�cient conditions as the ones proposed

in this chapter. Another alternative approach that could be followed to tackle the problem

in this chapter is the discrete-time approach considered in the literature of networked and

sampled-data control systems; see [29] and the references therein. This approach consists

of three stages. As a �rst step, a discrete-time model of the considered system is built by

integration of the continuous time-dynamics in between sampling times. As a second step,

asymptotic stability is established for the discretized model obtained throughout the �rst

step. Finally, the proper intersample behavior is guaranteed by relating the continuous-

time behavior with the behavior at the sampling times via the derivation of certain bounds.

Following this approach, in the speci�c case considered in this chapter, would allow to

recover some of the results presented, and also to exploit tools deriving from the literature

of uncertain discrete-time systems, as,e.g., polytopic Lyapunov functions ([33]), which can

potentially lead to less conservative results. On the other hand, the aforementioned strategy

consisting of overlooking the intersample behavior contrasts with the spirit of the hybrid

system framework in [56], which studies hybrid dynamics in their whole. Then, in this

setting, adopting tools from the literature of uncertain discrete-time system does not appear

a viable solution. However, we would like to point out that addressing the considered problem

through the hybrid system framework in [56] has several advantages. The �rst one is that the

hybrid systems approach does not require the integration of the estimation error dynamics

in between jumps. Thus, the proposed methodology can be extended to deal with more

complex plants without the need of resorting on di�erent models and frameworks. Moreover,

the pursued approach, enabling the search of alternative Lyapunov functions, could be used

to come up with simpler design procedures avoiding the use of the exponential matrix, which
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is undoable following a discrete-time approach.

The second one is that our analysis leads straight to an explicit exponential bound on

the estimation error and not for a discretized version of it. Moreover, such a bound can be

easily determined via the tools presented in this chapter. In this sense, our methodology

allows to derive constructive results to e�ectively determine an exponential bound on the

error trajectories in their whole. The derivation of such bounds appears intricate and far

from systematic via the tools in [29].

The third one is that the hybrid system framework in [56] allows to tackle problems

arising from more involved settings, where,e.g., state estimation in the presence of sporadic

measurements is one of the task needed to exhibit a solution to the considered problem

and not the unique. This aspect will be clari�ed and made more concrete later in this

dissertation, when such an observer will be used to build up an observer-based controller in

the presence of both sporadic measurements and actuation.

Another interesting aspect that we would like to emphasize concerns with the possibility of

using another modeling technique of time-triggering phenomenon presented in this chapter.

Speci�cally, a modeling strategy similar to the one in [19] could be used to retrace the

same steps illustrated within this chapter. Nevertheless, it is interesting to observe that the

modeling we considered lends itself to an easy implementations in the hybrid simulator [108]

than the one in [19].

Several directions of research still need to be investigated. Among them, an interesting

issue concerns the construction of a measurement-triggered observer to estimate the state of

more general plants, as plants characterized by sector nonlinearities. Going in that direction

would allow to build interesting links with the works in [3] and the references therein. How-

ever, such an extension appears nontrivial due to the choice we considered in this chapter

for the Lyapunov function, which is tailored to the linear dynamics of the plant.

Another interesting future outlook concerns the evaluation of the performances, in terms

of convergence speed, o�ered by the proposed observer compared with observer schemes

derived via emulation approach as the ones in [100]. Indeed, the main peculiarity of the

scheme we considered in this chapter is that at every jump the whole state of the observer

is reset. These instantaneous changes in the observer dynamics can potentially lead to an

improvement of the convergence rate, while avoiding the need of a large observer gain, which

is typically unwanted in practice to limit the e�ect of measurement noise.

Furthermore, one may envision to investigate the impact of quantized measurements on

the estimation error dynamics. In particular, according to the general philosophy illustrated

in [82], the ISS property shown for the estimation error dynamics with respect to measure-

ment noise suggests that the considered observer owns the robustness needed to withstand

quantized measurements.
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6

A HYBRID OBSERVER WITH A CONTINUOUS

INTERSAMPLE INJECTION IN THE PRESENCE OF

SPORADIC MEASUREMENTS

\Experience is simply the name we give our mistakes".

{ Oscar Wilde

6.1 Introduction

In this chapter, we address again the problem of exponentially estimating the state of a

linear time-invariant system in the presence of sporadically available measurements. Dif-

ferently from Chapter 5, we adopt an observer with a continuous-time intersample injection

term. Such an intersample injection is provided by a linear dynamical system, whose state

is reset to the measured output estimation error whenever a new measurement is available.

The resulting system is augmented with a timer triggering the arrival of a new measurement

and analyzed in a hybrid system framework. The design of the observer is performed to

achieve global exponential stability of a set wherein the estimation error is equal to zero.

Moreover, four computationally tractable procedures are illustrated to design the observer.

Such procedures lead to four di�erent strategies to build the proposed observer. Finally, the

e�ectiveness of the proposed methodology is shown in two examples. Some of the results

illustrated in this chapter can be found in [41].

173
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6.2 Problem Statement

6.2.1 System Description

We consider continuous-time linear time-invariant systems of the form

_z = Az

y = Mz
(6.1)

wherez 2 Rn and y 2 Rq are, respectively, the state and the measured output of the system,

while A and M are constant matrices of appropriate dimensions. We want to solve the same

problem considered in Chapter 5 by means of an alternative observation scheme. Here below

we recall the problem we solve. Assuming the initial timet0 = 0, our goal is to design an

observer providing an asymptotic estimate ^z of the state z with sporadic measurements of

y. Namely, we assume that the whole outputy is available only at some time instancestk ,

k 2 N, not known a priori .

Remark 6.1. In this chapter we consider unforced plants. Whenever the considered plant

is forced by an exogenous signal and such a signal is known, the results presented in this

chapter applymutatis mutandis. Such an assumption about the knowledge of the plant input

has been already discussed in Chapter 5; see Remark 5.1.

We assume that the sequencef tkg1
k=1 is strictly increasing and unbounded, and that for

such a sequence there exist two positive real scalarsT1 � T2 such that

0 � t1 � T2

T1 � tk+1 � tk � T2 8k 2 N:
(6.2)

As also pointed out in [64], the lower bound in condition (6.2) prevents the existence of accu-

mulation points in the sequencef tkg1
k=1 , and, hence, avoids the existence of Zeno behaviors,

which are typically undesired in practice. In fact,T1 de�nes a strictly positive minimum

time in between consecutive measurements. Furthermore,T2 de�nes the maximum sampling

interval.

Since measurements of the outputy are available in an impulsive fashion, assuming that

the arrival of a new measurement can be instantaneously detected, to solve the considered

estimation problem, inspired from [73, 100, 104], we propose the following observer with

jumps 8
>>>>>>>>><

>>>>>>>>>:

_̂z(t) = Aẑ(t) + L� (t)
_� (t) = H� (t)

9
=

;
8t 6= tk ; k 2 N

ẑ(t+ ) = ẑ(t)

� (t+ ) = y(t) � M ẑ(t)

9
=

;
8t = tk ; k 2 N

(6.3)

whereL and H are real matrices of appropriate dimensions to be designed. The operating
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Figure 6.1: The proposed observer scheme. The dashed arrows denote impulsive data
streams, while the solid arrows denote continuous data streams.

principle of the observer in (6.3) is as follows. The arrival of a new measurement triggers an

instantaneous jump in the observer state. Speci�cally, at each jump, the measured output

estimation error, i.e., y � M ẑ, is instantaneously stored in� . Then, in between consecutive

measurements,� is continuously updated according to linear continuous-time dynamics, and

its value is continuously used as an intersample injection to feed a continuous-time observer;

see Figure 6.1. Along the lines of [109], we formulate the state estimation problem as a set

stabilization problem. Namely, our goal is to design the matricesL and H such that the set

wherein the plant statez and its estimateẑ coincide is globally exponentially stable for the

plant (6.1) interconnected with the observer in (6.3). At this stage, we de�ne the following

change of variables

" := z � ẑ
~� := M (z � ẑ) � �

which de�nes, respectively, the estimation error and the di�erence between the output es-

timation error and � . Hence, the two error dynamics are given by the following dynamical

system with jumps:

8
>>>>>>>>><

>>>>>>>>>:

2

4
_"(t)
_~� (t)

3

5 = F

2

4" (t)
~� (t)

3

5

9
=

;
8t 6= tk ; k 2 N

2

4" (t+ )
~� (t+ )

3

5 = G

2

4" (t)
~� (t)

3

5

9
=

;
8t = tk ; k 2 N

(6.4)

where

F :=

2

4 A � LM L

MA � MLM � HM ML + H

3

5

G :=

2

4 I 0

0 0

3

5 :

(6.5)

Notice that, in view of the linearity of the plant (6.1), the error dynamics are decoupled from

the plant dynamics. Then, for the purpose of estimation, one can e�ectively only consider

system (6.4).
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6.2.2 Hybrid Modeling

The fact that the observer experiences jumps when a new measurement is available and

evolves according to a di�erential equation in between updates suggests that the updating

process of the error dynamics can be described via a hybrid system. Due to this, we represent

the whole system composed by the plant (6.1), the observer (6.3), and the logic triggering

jumps as a hybrid system. The proposed hybrid systems approach requires to model the

hidden time-driven mechanism triggering the jumps of the observer. To this end, as already

illustrated in Chapter 5, we augment the state of the system with an auxiliary timer variable

� that keeps track of the duration of 
ows and triggers a jump whenever a certain condition

is veri�ed. This additional state allows to describe the time-driven triggering mechanism as a

state-driven triggering mechanism, which leads to a model that can be e�ciently represented

by relying on the framework for hybrid systems proposed in [56]. More precisely, we make�

to decrease as ordinary timet increases and, whenever� = 0, reset it to any point in [T1; T2],

so as to enforce (6.2). After each jump, we require the system to 
ow again. The whole

system composed by the states" and ~� , and the timer variable � can be represented by the

following hybrid system, which we denoteH:

H

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

2

4
_"
_~�

3

5 = F

2

4"
~�

3

5

_� = � 1

9
>>>=

>>>;

("; ~�; � ) 2 C

2

4"+

~� +

3

5 = G

2

4"
~�

3

5

� + 2 [T1; T2]

9
>>>=

>>>;

("; ~�; � ) 2 D

(6.6a)

where the 
ow set and the jump set are de�ned as

C = Rn+ q � [0; T2]

D = Rn+ q � f 0g:
(6.6b)

The set-valued jump map allows to capture all possible sampling events occurring within

T1 or T2 units of time from each other. Speci�cally, the hybrid model in (6.6) is able to

characterize not only the behavior of the analyzed system for a given sequencef tkg1
k=1 , but

for any sequence satisfying (6.2). We denote the state ofH by

x = ( "; ~�; � )

and by f and G, respectively, the 
ow map and the jump map,i.e.,

f (x) =

2

6
6
6
4

F

2

4"
~�

3

5

� 1

3

7
7
7
5

8x 2 C (6.7a)
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G(x) =

2

6
6
6
4

G

2

4"
~�

3

5

[T1; T2]

3

7
7
7
5

8x 2 D: (6.7b)

Then, by introducing the set1

A = f 0g � f 0g � [0; T2] (6.8)

the problem to solve is formulated as follows:

Problem 6.1. Given the matricesA and M of appropriate dimensions and two positive

scalarsT1 � T2, design the matricesL 2 Rn� q and H 2 Rq� q such that the setA de�ned in

(6.8) is GES for the hybrid system (6.6).

Concerning the existence of solutions to system (6.6), by relying on the concept of solution

proposed in De�nition 4.5, it is straightforward to check that for every initial condition

� (0; 0) 2 C [ D every maximal solution to (6.6) is complete ensuring that the estimation

error approaches zero whent+ j goes to in�nity. Thus, completeness of the maximal solutions

to (6.6), as required in the statement of Problem 6.1, is guaranteed for any choice of the

gainsL and H . In addition, we can characterize the domain of these solutions. Indeed, as in

Chapter 5, for every initial condition � (0; 0) 2 C [ D, the domain of every maximal solution

� to (6.6) can be written as follows:

dom� =
[

j 2 N0

([t j ; t j +1 ]) � f j g (6.9)

with t0 = 0 and
T1 � t j +1 � t j � T2 8j 2 N

0 � t1 � T2

(6.10)

where dom� is the domain of the solution� , which is a hybrid time domain. Therefore, the

structure of the above hybrid time domain implies that for each (t; j ) 2 dom� we have

t � T1j � T1 (6.11)

the latter relation will play a fundamental role in establishing GES ofA for hybrid system

(6.6).

6.3 Preliminary Results

6.3.1 Conditions for GES

In this section we provide a �rst su�cient condition to solve Problem 6.1. Such a condition

is obtained by the adoption of a Lyapunov-like function, that is inspired by [47, 55]. To

1By the de�nition of system (6.6) and of the set A , for every x 2 C [ D [ G(D), jxjA = k("; ~� )k.
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pursue this approach, let us consider the following assumption, whose role will be clari�ed

right after via Theorem 6.1.

Assumption 6.1. Consider (6.7a) and set

F =

2

4F11 F12

F21 F22

3

5 :

There exist two continuously di�erentiable functionsV1 : Rn ! R, V2 : Rq ! R, positive real

scalars� 1; � 2; ! 1; ! 2; �; � c such that for each ("; ~�; � ) 2 C

(A1) � 1k"k2 � V1(" ) � � 2k"k2

(A2) ! 1k~� k2 � V2(~� ) � ! 2k~� k2

(A3) hr V1(" ); F11" + F12
~� i + e�� hr V2(~� ); F22

~� + F21" i � �e �� V2(~� ) � � � c(k"k2 + k~� k2)

4

Su�cient conditions to let Assumption 6.1 hold will be given in the sequel of this chapter.

Theorem 6.1. Let Assumption 6.1 hold. Then the setA de�ned in (6.8) is GES for hybrid

system (6.6).

The proof of the above theorem requires the following lemma, whose proof is given later.

Lemma 6.1. Let � c be any strictly positive real number. Pick

� 2

 

0;
� cT1

1 + T1

#

; ! � �:

Let � be a solution to the hybrid system (6.6). Then, for every (t; j ) 2 dom� , one has

� � ct � ! � � (t + j ): (6.12)

Now we are in position to prove Theorem 6.1

Proof of Theorem 6.1. Inspired by [55, Example 27], consider the following Lyapunov func-

tion candidate for the hybrid system (6.6) de�ned for everyx 2 Rn+ q � R� 0:

V (x) = V1(" ) + e�� V2(~� ): (6.13)

To prove the claim, we rely on the proof of the stability result provided in [56, Proposition

3.29]. To this end, notice that by setting� 1 = min f � 1; ! 1g and � 2 = max f � 2; ! 2e�T 2 g, in

view of the de�nition of the set A in (6.8), one gets

� 1jxj2A � V (x) � � 2jxj2A 8x 2 C [ D [ G(D): (6.14)

By straightforward calculations, and from the de�nition of the 
ow map f in (6.7a), for each
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x 2 C, one has

hr V(x); f (x)i = hr V1(" ); F11" + F12
~� i + e�� hr V2(~� ); F22

~� + F21" i � �e �� V2(~� ):

Thus from Assumption 6.1, the above relation yields

hr V(x); f (x)i � � � c(k"k2 + k~� k2) = � � cjxj2A 8x 2 C (6.15)

which in turn thanks to (6.14) gives

hr V(x); f (x)i � �
� c

� 2
V(x) 8x 2 C: (6.16)

Now, notice that for every g 2 G(x), there exists a real scalarv belonging to the interval

[T1; T2] such that g = ( "; 0; v): Then, for everyg 2 G(x) and for everyx 2 D, one has

V(g) � V(x) = � V2(~� ) � 0: (6.17)

Pick

! = � =
� cT1

� 2� 2(1 + T1)

and let � be a maximal solution to (6.6). As shown in the proof of [56, Proposition 3.29],

thanks to (6.16) and (6.17), direct integration of (t; j ) 7! V(� (t; j )) over dom� yields

V(� (t; j )) � e� � c
� 2

tV(� (0; 0)): (6.18)

Then, due to the choice operated for� according to Lemma 6.1, from (6.18), it follows that

V(� (t; j )) � e� � (t+ j )e� V(� (0; 0)) 8(t; j ) 2 dom�: (6.19)

Still, in view of (6.14), one has

j� (t; j )jA � e� � ( t + j )
2 e

!
2

 
� 2

� 1

! 1
2

j� (0; 0)jA 8(t; j ) 2 dom� (6.20)

which implies that the setA de�ned in (6.8) is GES for system (6.6). �

Now, the proof of Lemma 6.1 is given

Proof of Lemma 6.1. From (6.12), by rearranging the terms, one gets

(� � t + � )t + �j � ! � 0: (6.21)

Now, pick any solution � to hybrid system (6.6). From (6.11), it follows that for every

(t; j ) 2 dom�

j �
t

T1
+ 1 (6.22)
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then, for every strictly positive scalar� , from the latter expression and for every (t; j ) 2

dom� , one gets

(� � t + � )t + �j � ! �

 

� � t + � +
�
T1

!

t + � � !: (6.23)

Thus, beingT1 strictly positive, by selecting

� 2

 

0;
� tT1

1 + T1

#

; ! � �

yields (6.21), which concludes the proof. �

Theorem 6.1 shows that if there exist matricesL 2 Rn� q and H 2 Rq� q such that

Assumption 6.1 holds, then such matrices are a solution to Problem 6.1. Next, we provide

two alternative su�cient conditions ensuring the satisfaction of Assumption 6.1.

Proposition 6.1. Consider (6.7a) and set

F =

2

4F11 F12

F21 F22

3

5 :

If there exist two continuously di�erentiable functionsV1 : Rn ! R and V2 : Rq ! R, positive

real scalars� 1; � 2; �; 
; ! 1; ! 2; �; �; � such that

(i) � 1k"k2 � V1(" ) � � 2k"k2 8" 2 Rn

(ii) hr V1(" ); F11" + F12
~� i � � � k"k2 + 
 k~� k2 8("; ~� ) 2 Rn � Rq

(iii) ! 1k~� k2 � V2(~� ) � ! 2k~� k2 8~� 2 Rq

(iv) hr V2(~� ); F22
~� + F21" i � � k"k2 + � k~� k2 8("; ~� ) 2 Rn � Rq

such that

�! 1 � 
 > 0 (6.24a)

T2 <
1
�

ln

 

min

(
�
�

;
�! 1 � 


�

)!

: (6.24b)

Then Assumption 6.1 holds, with

� c = min
n
j � � + e�T 2 � j; j
 + e�T 2 � � �! 1j

o
: (6.25)

Proof. From (ii) and (iv), it follows that for each ( "; ~�; � ) 2 Rn � Rq � [0; T2]

hr V1(" ); F11" + F12
~� i + e�� hr V2(~� ); F22

~� + F21" i � �e �� V2(~� ) �

� � k"k2 + 
 k~� k2 + e�� (� k"k2 + � k~� k2) � �e �� V2(~� ):
(6.26)
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By using (iii) and by rearranging the terms, from the above inequality one gets

hr V1(" ); F11" + F12
~� i + e�� hr V2(~� ); F22

~� + F21" i � �e �� V2(~� ) �

(� � + e�T 2 � )
| {z }

� 1

k"k2 + ( 
 + e�T 2 � � �! 1)
| {z }

� 2

k~� k2: (6.27)

Notice that � 1 and � 2 are strictly negative due to (6.24b). Thus, by setting� c = min fj � 1j; j� 2jg,

the above result is proven. �

Conditions (i)-(iv) in Proposition 6.1 are rather mild to satisfy. In particular, by selecting

L such that A � LM is Hurwitz, (i)-(ii) can be always satis�ed by selectingV1(" ) = "T P1" ,

with P1 2 S n
+ and such that He(P1(A � LM )) < 0. (iii)-(iv) can be always satis�ed, e.g., by

selecting forV2 any positive de�nite quadratic function. The most challenging issue consists

of ful�lling (6.24). In particular, due to T2 > 0 a necessary condition for the applicability of

Proposition 6.1 is that
� > �

�! 1 � 
 � � > 0:

Moreover, given positive scalars� 1; � 2; �; 
; ! 1; ! 2 satisfying (i), (ii), (iii), (iv), the satisfac-

tion of (6.24a) can be ensured by selecting� large enough. However, notice that

lim
� !1

1
�

ln

 

min

(
�
�

;
�! 1 � 


�

)!

= 0

therefore, enlarging the value of� may prevent from ful�lling (6.24b).

To somehow overcome this problem, as follows we provide an alternative su�cient condi-

tion to let Assumption 6.1 hold.

Proposition 6.2. Consider (6.7a) and set

F =

2

4F11 F12

F21 F22

3

5 :

If there exist two continuously di�erentiable functionsV1 : Rn ! R, and V2 : Rq ! R, positive

real scalars� 1; � 2; �; 
; ! 1; ! 2; �; �; � such that

(a) � 1k"k2 � V1(" ) � � 2k"k2 8" 2 Rn

(b) hr V1(" ); F11" + F12
~� i � � � k"k2 + 
 k~� k2 8("; ~� ) 2 Rn � Rq

(c) ! 1k~� k2 � V2(~� ) � ! 2k~� k2 8~� 2 Rq

(d) hr V2(~� ); F22
~� + F21" i � � � k~� k2 + � k"k2 8("; ~� ) 2 Rn � Rq

and

�! 1 � 
 + � > 0 (6.28a)

T2 <
1
�

ln

 
�
�

!

: (6.28b)
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Then Assumption 6.1 holds, with

� c = min
n
j � � + e�T 2 � j; j
 � � � �! 1j

o
: (6.29)

Proof. From (b) and (d), it follows that for each ("; ~�; � ) 2 Rn � Rq � [0; T2]

hr V1(" ); F11" + F12
~� i + e�� hr V2(~� ); F22

~� + F21" i � �e �� V2(~� ) �

� � k"k2 + 
 k~� k2 + e�� (� k"k2 � � k~� k2) � �e �� V2(~� ):
(6.30)

By using (c) and by rearranging the terms, from the above inequality one gets

hr V1(" ); F11" + F12
~� i + e�� hr V2(~� ); F22

~� + F21" i � �e �� V2(~� ) �

(� � + e�T 2 � )
| {z }

� 1

k"k2 + ( 
 � � � �! 1)
| {z }

� 2

k~� k2: (6.31)

Notice that � 1 and � 2 are strictly negative due to (6.28). Thus, by setting� c = min fj � 1j; j� 2jg,

the above result is proven. �

Also in this case, due toT2 > 0 a necessary condition for the applicability of Proposi-

tion 6.2 is that � > �: Nonetheless, di�erently from Proposition 6.1, due to� > 0, (6.28a)

appears less stringent than (6.24a). In particular, (6.28a) can bea priori satis�ed by select-

ing a smaller value for� with respect to (6.24a). Such a bene�t arises from having required

in Proposition 6.2 a stronger assumption than in Proposition 6.1, namely (d). Nevertheless,

such an assumption can be always satis�ed. Indeed, due to the linearity of the~� 
ow dy-

namics, (d) turns out to be equivalent to the Hurwitzness of the matrixF22, property that

can be always ensured via a suitable choice forH . Even more, due to the expression ofF22,

� in (d) can be selected arbitrarily large via the selection of the matrixH . However, it is

worthwhile to observe that, in general, picking for� an overly large value may lead to a large

value of � in (d), which in turn may render (6.28b) unful�lled.

Proposition 6.1 and Proposition 6.2 provide �rst indications on how a solution to Prob-

lem 6.1 could be determined and also on the main challenges in determining such a solution.

The approach presented, though leading to di�erent conclusion, is similar to some extent to

the one considered in [73, 100]. However, the use of Proposition 6.1 and Proposition 6.2 to

solve Problem 6.1 entails several drawbacks. The �rst one concerns the fact that the results

given in Proposition 6.1 and Proposition 6.2 dramatically depend on the choice performed

for the two functions V1 and V2, and on the way the bounds given in (a)-(b)-(c)-(d) in Propo-

sition 6.1 or in Proposition 6.2 are obtained. The second one is that Proposition 6.1 and

Proposition 6.2 do not provide a clear strategy to select the two gainsL and H so as to

solve the considered problem for given data (A; M; T 2). In particular, as it is in [73], the

proposed approach is rather cumbersome whenever one attempts to design the considered

observer. Roughly speaking, Proposition 6.1 and Proposition 6.2 are essentially analysis

results. Therefore, to build up an e�ective design strategy further work is needed.
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Speci�cally, to overcome all the drawbacks illustrated above, we pursue a constructive

approach. In particular, by restricting the search of the two functionsV1 and V2 in Assump-

tion 6.1 to the class of quadratic functions, as follows we provide a su�cient condition to let

Assumption 6.1 hold that is based on the solution to certain matrix inequalities. Via this

step, essentially we reduce the solution to Problem 6.1 to the solution to a feasibility prob-

lem of certain matrix inequalities. The solution of such a problem provides in one shot the

solution to Problem 6.1. As argued in the above discussions, by selecting the two functions

V1 and V2 in Assumption 6.1 as quadratic functions allows to ful�ll (a)-(b)-(c)-(d) either

in Proposition 6.1 or in Proposition 6.2. Hence although conservative, this choice appears

promising to solve the considered problem.

6.4 Observer Design via Matrix Inequalities

The following result is one of the key results within this section. It turns the solution to

Problem 6.1 into the solution to the feasibility problem to certain matrix inequalities.

Theorem 6.2. If there exist P1 2 S n
+ ; P2 2 S q

+ , a positive real scalar� , and two matrices

L 2 Rn� q, and H 2 Rq� q such that

M 1 =

2

4He(P1(A � LM )) P1L + ( MA � MLM � HM )T P2

� He(P2(ML + H )) � �P 2

3

5 < 0

M 2 =

2

4He(P1(A � LM )) P1L + e�T 2 (MA � MLM � HM )T P2

� e�T 2 (He(P2(ML + H )) � �P 2)

3

5 < 0

(6.32)

then Assumption 6.1 holds.

Proof. De�ne for each ("; ~� ) 2 Rn � Rq

V1(" ) = "T P1"

V2(~� ) = ~� T P2
~�:

(6.33)

Set
� 1 = � min (P1)

� 2 = � max (P1)

! 1 = � min (P2)

! 2 = e�T 2 � max (P2):

By straightforward calculations, it follows that for each ("; ~�; � ) 2 C, and each positive real

scalar � ,

hr V1(" ); F11" + F12
~� i + hr V2(~� ); F22 + F21" i � �e �� V2(~� ) =

"T He(P1(A � LM ))" + 2"T P1L ~� + e�� ~� T He(P2(ML + H )) ~�

+ 2e�� ~� T P2(MA � MLM � HM )" � �e �� ~� T P2
~�:

(6.34)
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By de�ning the vector � = ( "; ~� ), the above expression can be equivalently rewritten as

follows

� T

2

4He(P1(A � LM )) P1L + e�� (MA � MLM � HM )TP2

� e�� (He(P2(ML + H )) � �P 2)

3

5

| {z }
M (� )

�: (6.35)

Now, notice that, for any positive � , there exists a scalar function� � : [0; T2] ! [0; 1], such

that for every � 2 [0; T2], e�� = � � (� ) + (1 � � � (� ))e�T 2 . Thus, for eachx 2 C, (6.35) can be

rewritten as

� T

0

@� � (� )M 1 + (1 � � � (� ))M 2

1

A � (6.36)

whereM 1 and M 2 are de�ned in (6.32). Thus, in view of (6.32), for each� 2 [0; T2],

M (� ) < 0: (6.37)

Moreover, sinceM (� ) depends continuously on� , and � belongs to a compact interval, the

following bound holds

M (� ) � max
� 2 [0;T2 ]

� max (M (� ))I 8� 2 [0; T2]:

Thus, by selecting

� c = � max
� 2 [0;T2 ]

� max (M (� ))

which is positive due to (6.37), for eachx 2 C, from (6.34) one has

hr V1(" ); F11" + F12
~� i + hr V2(~� ); F22 + F21" i � �e �� V2(~� ) � � � c(k"k2 + k~� k2): (6.38)

Hence Assumption 6.1 holds, concluding the proof. �

Remark 6.2. The feasibility of the conditions given in Theorem 6.2 requires a detectable

pair (A; M ), (though this condition is in general only necessary). It is worthwhile to remark

that, di�erently from the observer considered in Chapter 5,a priori , we do not require the

detectability of the pair (eAv ; MeAv ) for eachv belonging to [T1; T2], which would be a more

restrictive condition.

6.5 Numerical Issues in the Solution to Problem 6.1

In the previous section a condition to guarantee GES of the setA for system and based

on the feasibility of some matrix inequalities was provided. However, due to its form, such

a condition is not computationally tractable to obtain a solution to Problem 6.1. Indeed,

condition (6.32) is nonlinear in the design variablesP1; P2; �; H and L, so further work

is needed to derive a numerically tractable design procedure for the proposed observer.

Speci�cally, the nonlinearities present in (6.32) are due to both the bilinear terms involving

the matrices P1; P2; L; H , and the scalar � , as well as the fact that � also appears in a
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nonlinear fashion via the exponential function. Nevertheless, from a numerical standpoint,

the nonlinearities involving the scalar� are easily manageable. Indeed,� can be treated

as a tuning parameter or being selected via a grid search. Thus, the main issue to tackle

pertains to the other nonlinearities present in (6.32). To this aim, in the sequel we provide

four constructive su�cient conditions to solve Problem 6.1 via the solution of the feasibility

problem to certain linear matrix inequalities.

6.5.1 Two First Design Results

Proposition 6.3. If there exist P1 2 S n
+ ; P2 2 S q

+ , a positive real scalar� , J 2 Rn� q, and

Y 2 Rq� q such that
2

4He(P1A � JM ) J + AT M T P2 � M T Y

� He(Y) � �P 2

3

5 < 0

2

4He(P1A � JM ) J + e�T 2 (AT M T P2 � M T Y)

� (He(Y) � �P 2)e�T 2

3

5 < 0

(6.39)

then L = P � 1
1 J; H = P � 1

2 YT � ML is a solution to Problem 6.1.

Proof. By setting H = P � 1
2 YT � ML and J = P1L in (6.32) yields (6.39), thus by virtue of

Theorem 6.2, this concludes the proof. �

The main idea behind the above result consists of selecting the design variableH so as

to cancel out the termMLM , which would unlikely lead to tractable conditions. Obviously

other approaches can be pursued to cope with this issue.

Building on the previous result, another strategy to design the proposed observer is given

next. Such a strategy leads to the well known observer scheme in [73].

Corollary 6.1. If there exist P1 2 S n
+ ; P2 2 S q

+ , a positive real scalar� , and J 2 Rn� q such

that 2

4He(P1A � JM ) J + AT M T P2

� � �P 2

3

5 < 0

2

4He(P1A � JM ) J + e�T 2 AT M T P2

� � e�T 2 �P 2

3

5 < 0

(6.40)

then L = P � 1
1 J; H = � ML is a solution to Problem 6.1.

Proof. The proof follows directly from Proposition 6.3 by selectingY = 0: �

As mentioned above, the proposed choice for the gainH leads to the predictor-based

observer scheme proposed in [72, 73], though written in di�erent coordinates. Indeed,

wheneverH = � ML , by rewriting (6.3) via the following invertible change of variables

(ẑ; w) = ( ẑ; � + M ẑ), yields the same observer in [72, 73].

In the next sections, we present two other design procedures. The derivation of such pro-
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cedures is based on an equivalent condition to Theorem 6.2, which is formulated introducing

some slack variables via the use of the projection lemma; see [99].

6.5.2 Slack Variables-based Design

Before stating the main result, let us consider the following fact.

Fact 6.1. The matrix F in (6.5) can be factorized as follows

F =

2

4 I 0

M I

3

5

| {z }
F l

2

4A � LM L

� HM H

3

5

| {z }
F r

(6.41)

whereF l is nonsingular.

Building on this fact, the following result provides an equivalent condition to condition

(6.32) in Theorem 6.2, in which the termMLM no longer appears.

Corollary 6.2. Let P1 2 S n
+ , P2 2 S q

+ , L 2 Rn� q; H 2 Rq� q, and � 2 R> 0. The satisfaction

of (6.32) is equivalent to the feasibility of

2

4He(SX
1 ) SX

2 + P̂

� N1 + He(SX
3 )

3

5 < 0;

2

4He(SY
1 ) SY

2 + P̂T2

� N2 + He(SY
3 )

3

5 < 0 (6.42a)

with respect to X 1; Y1; X 3; Y3 2 Rn� n ; X 2; Y2 2 Rn� q; X 4; Y4; X 6; Y6 2 Rq� n ; X 5; Y5 2 Rq� q,

where:
P̂ = diagf P1; P2g

P̂T2 = diagf P1; P2e�T 2 g

N1 = diagf 0; � �P 2g

N2 = diagf 0; � �e �T 2 P2g

(6.42b)

SX
1 =

2

4 � X 1 + M T X 4 � X 2 + M T X 5

� X 4 � X 5

3

5 SY
1 =

2

4 � Y1 + M T Y4 � Y2 + M T Y5

� Y4 � Y5

3

5 (6.42c)

SX
3 =

2

4(A � LM )T X 3 � M T HT X 6 0

LT X 3 + HT X 6 0

3

5 SY
3 =

2

4(A � LM )T Y3 � M T HT Y6 0

LT Y3 + HT Y6 0

3

5 (6.42d)

SY
2 =

2

4YT
1 (A � LM ) � YT

4 HM � Y3 + M T Y6 YT
1 L + YT

4 H

YT
2 (A � LM ) � YT

5 HM � Y6 YT
2 L + YT

5 H

3

5

SX
2 =

2

4X T
1 (A � LM ) � X T

4 HM � X 3 + M T X 6 X T
1 L + X T

4 H

X T
2 (A � LM ) � X T

5 HM � X 6 X T
2 L + X T

5 H

3

5

(6.42e)

Proof. First of all, notice that by de�ning the matrices

B =

2

4F

I

3

5 ; N1 =

2

40 P̂

� N1

3

5 ; N2 =

2

40 P̂T2

� N2

3

5
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matrices M 1 and M 2 in (6.32) can be equivalently rewritten respectively as follows

M 1 = BT N1B; M 2 = BT N2B: (6.43)

Moreover, by de�ning

U =

2

40(2n+ q)� q

Iq

3

5

the positive de�niteness ofP2 is equivalent to the satisfaction of the following relations

UT N1U < 0

UT N2U < 0:
(6.44)

Then by the projection lemma; see [99], (6.32) is veri�ed if and only if there exist two

matrices X; Y such that
N1 + BT ?

r XU ?
r + UT ?

r X T B?
r < 0

N2 + BT ?
r Y U?

r + UT ?
r YT B?

r < 0
(6.45)

whereB?
r and U?

r are some matrices having as rows a basis of the row-null space respectively

of B and U. Speci�cally, notice that in view of Fact 6.1, one can consider the following choice

B?
r =

h
�F � 1

l F r

i
=

2

4 � I 0 A � LM L

M � I � HM H

3

5

while U?
r =

h
I2n+ q 0(2n+ q)� q

i
. Thus, according to the following partitioning

X =

2

4X 1 X 2 X 3

X 4 X 5 X 6

3

5 ; Y =

2

4Y1 Y2 Y3

Y4 Y5 Y6

3

5

relations (6.45) turn in (6.42a) and this concludes the proof. �

The above result yields an equivalent condition to (6.32), that can be exploited to derive an

e�cient design procedure for the proposed observer, though introducing some conservatism.

To this end, one needs to suitably manipulate (6.42a) in order to obtain conditions that are

linear in the decision variables. Speci�cally, the two results given in the next sections provide

two possible approaches to derive convex design procedures for the proposed observer.

Zero-order Sample-and-hold Intersample Scheme

Proposition 6.4. If there exist P1 2 S n
+ ; P2 2 S q

+ , a positive real scalar� , a nonsingular

matrix X 2 Rn� n , and matricesX 4; Y4; X 6; Y6 2 Rq� n ; X 5; Y5 2 Rq� q; J 2 Rn� q such that

2

4He(Q1) Q2 + P̂

� He(Q3) + N1

3

5 < 0

2

4He(R1) R2 + P̂T2

� He(Q3) + N2

3

5 < 0 (6.46)
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whereP̂ ; P̂T2 ; N1; N2 are de�ned in (6.42b) and

Q1 =

2

4 � X + M T X 4 M T X 5

� X 4 � X 5

3

5 R1 =

2

4 � X + M T Y4 M T Y5

� Y4 � Y5

3

5

Q2 =

2

4 � X + M T X 6 + X T A � JM J

� X 6 0

3

5 R2 =

2

4 � X + M T Y6 + X T A � JM J

� Y6 0

3

5

Q3 =

2

4AT X � M T JT 0

JT 0

3

5

then L = X � T J and H = 0 are a solution to Problem 6.1.

Proof. By selecting in (6.42a)H = 0; X 1 = X 3 = Y1 = Y3 = X; X 2 = Y2 = 0; X T L = J gives

(6.46). Thus, thanks to Corollary 6.2 the result is proven. �

It should be noticed that the above design procedure leads to the well known zero-order

sample-and-hold scheme; see Figure 6.2.

Figure 6.2: Zero-order sample-and-hold scheme

A Novel Observer Scheme

Proposition 6.5. If there exist P1 2 S n
+ ; P2 2 S q

+ , a positive real scalar� , matrices X 2

Rn� n ; U; W 2 Rq� q; J 2 Rn� q such that

2

4He(Z1) Z2 + P̂

� Z3 + N1

3

5 < 0

2

4He(Z1) Z2 + P̂T2

� He(Z3) + N2

3

5 < 0 (6.47)

whereP̂ ; P̂T2 ; N1; N2 are de�ned in (6.42b) and

Z1 =

2

4 � X U

0 � U

3

5 Z2 =

2

4 � X + X T A � JM J

� WM W

3

5

Z3 =

2

4AT X � M T JT 0

JT 0

3

5
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then L = X � T J and H = U� T W are a solution to Problem 6.1.

Proof. By selecting in (6.42a)X 1 = X 3 = Y1 = Y3 = X; X 2 = Y2 = 0; X 4 = Y4 = 0; X 6 =

Y6 = 0; X 5 = Y5 = U; XT L = J; UT H = W gives (6.47). Thus, thanks to Corollary 6.2 the

result is proven. �

Remark 6.3. The above result gives rise to a novel observer scheme. Indeed, as a di�erence

to Proposition 6.3 and Proposition 6.4, Proposition 6.5 does not impose any structural

constraint on the gain H . This is a worthwhile novelty introduced by our approach with

respect to classical approaches as [73, 104] and alike, where the choice of the gainH is a

priori constrained. Thus, in general, the use of Proposition 6.5 may lead to observation

schemes that are not encompassed either by Proposition 6.3 and Proposition 6.4 or by

existing approaches.

Remark 6.4. The derivations of the design presented in Proposition 6.4 Proposition 6.5

consist in some particular choices of the slack variablesX and Y introduced in Corollary 6.2.

Therefore, when one is interested in solving Problem 6.1 for the largest achievable value of

T2, the design procedures arising from Proposition 6.4 and Proposition 6.5 may lead to

conservative results. To overcome this problem, one can envision a two-stage procedure.

Indeed, wheneverL, H , � and T2 are �xed, condition (6.32) is linear in the decision variables.

Thus, once the observer has been designed via one of the proposed methodologies, by testing

the feasibility of (6.32) with respect toP1; P2 over a selected grid for� , one may enable to

enlarge the maximum allowable sampling intervalT2 for the considered design.

6.6 Numerical Examples

Example 6.1. In this �rst example, we want to show the improvement provided by our

methodology with respect to existing results. Speci�cally, consider the example in [72],

which is de�ned by the following data:

A =

2

4 0 1

� 4 0

3

5 ; M =
h
1 0

i
:

As pointed out earlier, by settingH = � ML in (6.3), the observer proposed in this chapter

corresponds to the one in [72, 73]. Therefore, for a given gainL, by following the above

selection forH , Theorem 6.2 can be used to provide an estimate of the maximum allowable

sampling interval T2. Hence to compare with [72], we consider

L =

2

44

0

3

5 :

In this case, it turns out that the conditions of Theorem 6.2 are feasible forT2 up to 0:42.

This bound is about 5:18 times less conservative than the one in [72] (T2 = 0:081). That

is our methodology leads to an improvement on the estimation of the maximum allowable
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sampling interval of about 418%. On the other hand, Corollary 6.1 can also be used to

design a new gainL s to tentatively enlarge the maximum allowable sampling interval, still

for the scheme proposed in [72]. Speci�cally, it turns out that, whenever the observer gain

is designed via Corollary 6.1, conditions in (6.40) are feasible forT2 up to 0:496, that is an

improvement of about 18% with respect to the design in [72] . The observer gains obtained

for T2 = 0:496 are

L s =

2

4 0:351

� 2:29

3

5 ; Hs = � ML s = � 0:351:

Figure 6.3 and Figure 6.4 report, respectively, the evolution of the estimation error and of� ,

Figure 6.3: The evolution of the plant statez (blue) and of its estimateẑ (black) provided
by the observer projected onto ordinary time. Abovez1; ẑ1, below z2; ẑ2

both projected onto ordinary time. In this simulation T1 = 0:1, and the sampling instances

are chosen randomly according to a uniform distribution. Simulations show that the observer

successfully reconstructs the plant state. Moreover, Figure 6.5 reports the evolution of the

function V used in the proof of Theorem 6.2 projected onto ordinary time. Simulations show

that the function V decreases during 
ows, and at jumps it is nonincreasing (in fact in this

simulation it appears even decreasing).
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Figure 6.4: The evolution of� projected onto ordinary time.

Figure 6.5: The evolution of the functionV projected onto ordinary time.
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Example 6.2. Consider the model of the longitudinal dynamics of the F8 aircraft in [71],

whose state-space model is given by

_x =

2

6
6
6
6
6
4

� 0:8 � 0:006 � 12 0

0 � 0:014 � 16:6 � 32:2

1 � 10� 4 � 1:5 0

1 0 0 0

3

7
7
7
7
7
5

x

y =

2

40 0 0 1

0 0 � 1 1

3

5 x:

The two outputs are respectively the pitch angle and the 
ight path angle. We want to

design an observer for the considered plant while enlarging as much as possible the maximum

transfer time T2 allowable.

In Table 6.1, we report, for each design methodology, the values of the maximumT2 for

which conditions (6.32) are feasible along with the corresponding value of� , and the two

designed gainsL and H . In each of these designs, the value of� is selected so as to enlarge

the value ofT2 ensuring the feasibility of the considered conditions. Concerning the design

procedure derived by Proposition 6.4 and Proposition 6.5, as mentioned in Remark 6.4,

to reduce as much as possible the conservatism in the estimate of the largest value ofT2

allowable, after a �rst design step, we performed a further analysis stage via Theorem 6.2.

About the design procedure issued from Proposition 6.4, it is worthwhile to notice that, the

Design � T 2 L H

Proposition 6.3 0:6 4:7

2

6
6
6
4

� 0:712 0:872
1744 � 2133
2:69 � 3:28

� 8:13 9:95

3

7
7
7
5

"
4:62 � 5:73
12:3 � 14:7

#

Corollary 6.1 0:71 4:1

2

6
6
6
4

0:15702 0:42578
� 34:118 � 84:26
0:10341 0:24557
0:22093 0:53946

3

7
7
7
5

"
� 0:221 � 0:539
� 0:118 � 0:294

#

Proposition 6.4 0:97 3:54

2

6
6
6
4

� 0:216 0:216
� 21:6 � 36:1

� 0:00971 � 0:00372
0:1 0:134

3

7
7
7
5

02� 2

Proposition 6.5 0:59 5:73

2

6
6
6
4

� 0:044 0:102
� 31:8 � 47:0
0:0184 0:0143
0:15 0:199

3

7
7
7
5

"
� 0:258 � 0:0121
� 0:0172 � 0:236

#

Table 6.1: Values ofT2 and � and the designed observer gainsL and H for the considered
design procedures.
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design conditions for the same observer scheme given in [104], (when they are specialized

to the linear systems case), are feasible forT2 up to 0:4. Namely, the proposed design,

in this speci�c case, enables to enlarge the maximum allowable sampling interval of 8:85

times with respect to [104]. Moreover, it turns out that the design procedure issued from

Proposition 6.5, in this speci�c case, provides the largest allowable value forT2.

6.7 Comments and Conclusion

Building from the general ideas in [73], in this chapter we proposed a novel methodology

to design, via linear matrix inequalities, an observer with intersample injection to exponen-

tially estimate the state of a continuous-time linear system in the presence of sporadically

available measurements. Speci�cally, pursuing a uni�ed approach, we provided four design

methodologies to design the observer, which are computationally e�cient,i.e., the design

algorithm entails a time of computation which is polynomial with respect to the dimension

of the data. Two of them lead back respectively to the observer scheme proposed in [73]

and to the zero-order sample-and-hold proposed in [104], while the remaining lead to two

completely novel schemes. Notice that, although we recover some existing schemes, the

design procedures we propose are novel and, in some cases, outperform the corresponding

existing design techniques, whenever they exist. To the best author knowledge, a uni�ed

approach for the systematic design of the class of observer presented in this chapter, which

encompasses the observer in [73], ensuring exponential state estimation for a given value of

the maximum sampling interval, has been presented for the �rst time in [41]. Furthermore,

we would like to emphasize that, although this chapter is devoted to LTI plants, di�erently

from Chapter 5, the extension to a wider class of plants, as the one considered in [104], is

almost direct.

Concerning the possibility of adopting alternative frameworks to address the problem

illustrated in this chapter, we would like to emphasize that employing a discrete-time ap-

proach, as the one in [29], would hardily lead to a tractable design for the proposed observer.

In particular, notice that by discretizing the ("; ~� ) dynamics in between jumps would give

rise to a discrete-time model for which the two gainsL and H appear via a matrix exponen-

tial term, preventing from deriving a tractable design procedure via polytopic embedding

strategies, as done in Chapter 5.

The proposed observer allows to provide an alternative solution to the state estimation

problem in the presence of sporadic measurements with respect to the one proposed in

Chapter 5. Moreover, the design of the observer proposed in this chapter appears simpler

than the one in Chapter 5. In particular, we recall that in the design presented in Chapter 5,

the total number of lines in the considered matrix inequalities is proportional to 2n . Then,

the complexity of the resulting design increases exponentially with the size of the plant.

Instead, for the designs presented in this chapter, the number of lines and the number of

scalar variables entailed by the resulting LMI feasibility problem increase polynomially inn;
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Table 6.2 reports precisely these data for the mentioned designs. Hence, whenever the plant

size increases, such designs are expected to be less complex from a numerical standpoint than

the design in Chapter 5. However, the two considered approaches are deeply di�erent and

Design Number of scalar variables Number of lines

Corollary 5.1 (n + 1) =2n + n2 + nq 3n2n

Proposition 6.3 (n + 1) =2n + nq + q2 + q(q + 1) =2 2(n + q)
Corollary 6.1 (n + 1) =2n + nq + q(q + 1) =2 2(n + q)
Proposition 6.4 (n + 1) =2n + q(q + 1) =2 + n2 + 4qn + 2q2 + nq 2(n + q)
Proposition 6.5 (n + 1) =2n + q(q + 1) =2 + n2 + 2q2 + nq 2(n + q)

Table 6.2: Number of lines and number of scalar variables entailed by the di�erent designs.

both manifest advantages and disadvantages that prevent from overlooking one of the two

solutions. In particular, the observer in Chapter 5 has been shown to be ISS with respect to

measurement noise. So far, we did not succeed in showing such a property for the observer

considered in this chapter. First investigations allowed to show that the observer considered

in this chapter is �nite-gain L 2;1 stable from the measurement noise to the estimation error

" (see [95, De�nition 3] for more details on this notion of stability for general hybrid systems

with inputs and outputs). Obviously this latter property is weaker than the ISS proven for

the observer in Chapter 5.

Another interesting point concerns the fact that the conditions worked out in this chapter

to design the considered observer do not depend on the value ofT1, which is not the case

for the design in Chapter 5. This observation gives rise to some important considerations.

Among them, let us remark that in the case of periodic sampling,i.e., T1 = T2 = T the

observer in Chapter 5 can be always designed via the proposed apparatus, provided that the

pair (eAT ; M ) is detectable, the same is not true for the observer with 
ow injection presented

in this chapter. Speci�cally, observe that periodic sampling does not originate any change

in the conditions considered within this chapter. The reason behind this matter stems from

the fact that the observer presented in this chapter is designed by ensuring the decrease of a

certain Lyapunov-like function within the 
ow set, whereas the behavior within the jump set,

whereinT1 comes into play, is rigidly prescribed by the structure of the considered observer.

This remark fosters to consider more general jump maps for the observer presented in this

chapter.

Still concerning the observer in Chapter 5, numerical experiments show that in general

such an observer, thanks to the recommended design, allows to ensure larger values of the

maximum allowable sampling interval, with respect to the schemes considered in this chap-

ter. This gap between the two proposed observation schemes originates from the innate

nature of such schemes. Indeed, the approach pursued in this chapter basically relies on the

intrinsic robustness of the continuous-time observer used as a core to build up the considered

observation scheme. Such a robustness explicitly appears in Proposition 6.1 and Proposi-

tion 6.2, respectively, in (ii) and in (b) in the form of certain bounds that can be ful�lled

provided that T2 is small enough. This discussion naturally establishes connections between
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our approach and the one in [73], which we recall is one of the inspiring approach leading to

the ideas presented in this chapter. Completely di�erent considerations hold for the scheme

presented in Chapter 5. Indeed, such a scheme does not rely on any continuous-time ob-

server. On the one hand, this fact does not suggest any strategy to derive �rst guidelines,

as Proposition 6.1 and Proposition 6.2, for the design of such an observer. On the other

hand, the fact of operating a reset of the whole estimate seems to better address the state

estimation problem in the presence of sporadic measurements, at least in terms of maximum

allowable sampling intervalT2. However, the use of such an observer barely allows to envision

extensions to more involved settings of practical interest as the one considered for instance

in [90] dealing with multi-outputs plants with asynchronous sporadic measurements. To give

an hint of the di�culties encountered in this situation, here below we brie
y illustrate the

problem to solve in such a case and �rst attempts towards its solution.

Let us considers continuous-time linear time-invariant system in the form

_z = Az

yi = M i z 8i = 1; 2; : : : ; p
(6.48)

where z 2 Rn and y = ( y1; y2; : : : ; yp) 2 Rq are, respectively, the state and the measured

output of the system, whileA and M i are constant matrices of appropriate dimensions. The

goal is to design an observer providing an asymptotic estimate ^z of the statez whenever each

of the componentyi of the vector y is available only at some time instancest (i )
k , k 2 N, not

known a priori . Obviously, whenever for eachk 2 N, t (1)
k = t (2)

k = � � � = t (p)
k , one falls inside

the focus of this chapter. However, whether this assumption does not hold, a modi�cation

of the scheme in (6.3) is needed. In particular, inspired by [100], we consider the following

observer
8
>>>>>>>>><

>>>>>>>>>:

_̂z(t) = Aẑ(t) + L� (t)
_� (t) = H� (t)

9
=

;
when t =2 f t (i )

k : i = 1; 2; : : : ; pg; k 2 N

ẑ(t+ ) = ẑ(t)

� i (t+ ) = yi (t) � M i ẑ(t)

9
=

;
when t = t (i )

k ; i 2 f 1; 2; : : : ; pg; k 2 N

(6.49)

In particular, in between measurements the above observer behaves as the one presented in

this chapter. Instead, whenever a new measurement is received, only the corresponding com-

ponents of the vector� get updated via the received measurement. This proposed observer is

currently part of our research activity. Speci�cally, a hybrid model of the considered observer

have been constructed. First researches have shown how a generalization of the methodology

presented in this chapter provides the right answer to tackle with the considered problem.

In particular, the main point we addressed consists of reshaping Assumption 6.1 to match

the asynchronous nature of the incoming measurements. Such a reshaping is inspired by the

construction presented in [47]. Notice that, while the construction of such an observer is the

natural extension of the one illustrated in this chapter, the design of an observer to tackle
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this problem within the framework considered in Chapter 5 does not appear clear.

The state estimation problem in the presence of asynchronous sporadic measurement is in

part encompassed by the work in [100] dealing with state estimation of networked systems,

though in [100] the authors focus on an emulation approach. However, di�erently from

[100], we do not assume any scheduling behind the arrival of measurements. This enables

to address a certain number of situations of practical interest, that are uncovered by the

approaches building on protocols ; see,e.g., [90] and the references therein.

The observers presented in this chapter and in the previous one can be used to build up

controller architectures to asymptotically stabilize a linear plant in the presence of sporadic

measurements. For this reason, to conclude this part of this dissertation, in the next chapter

we present an observer-based controller, whose core is centered on the observer presented

in Chapter 5. For brevity, we limit the analysis to a scheme built upon the observer in

Chapter 5. Nevertheless, observe that the construction of a similar scheme building on the

observer presented in this chapter can be considered without too much work.



7

OBSERVER-BASED CONTROL IN THE PRESENCE OF

SPORADIC SENSING AND ACTUATION

\C'est par la logique qu'on d�emontre, c'est par l'intuition qu'on invente".

{ Henri Poincar�e

7.1 Introduction

In this chapter, we consider the problem of stabilizing a linear time-invariant system in

the presence of sporadic output measurements and sporadic access to the plant input.

The plant is equipped with a zero-order hold device which stores the value of the input

in between control input updates. We propose an observer-based controller consisting of

a measurement-triggered observer, which experiences jumps in its state whenever a new

measure is available, a state-feedback control law computed from the estimated state, and a

copy of the zero-order hold device feeding the plant, which jumps whenever the control input

is sent to the plant. The closed-loop system is modeled as a hybrid system that includes

two timers triggering the two di�erent events. The resulting hybrid system is analyzed as

the cascade of hybrid systems and its asymptotic stability properties are established through

a separation principle. In addition, a computationally design procedure based on LMIs is

presented and illustrated in an example. First results pertaining to the problem presented

in this chapter can be found in [43].

197
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7.2 Problem Statement

7.2.1 System Description

Consider the following continuous-time linear system:

P :

8
<

:

_z = Az + Bu

y = Mz
(7.1)

where z 2 Rn , y 2 Rq and u 2 Rp are, respectively, the state, the measured output, and

the input of the system, whileA; B and M are constant matrices of appropriate dimensions.

Now, let us suppose that both the input channel and the output channel of system (7.1)

are accessible in an intermittent fashion. Especially, assume the initial timet0 = 0, let us

assume that the output of system (7.1) is gathered only at time instancestk , k 2 N, not

known a priori and that the input channel grants its access only at time instancessk , k 2 N,

not known a priori . Analogously to the previous chapters, suppose thatf tkg+ 1
k=1 and f skg+ 1

k=1

are two strictly increasing unbounded real sequences of times and assume that there exist

four positive real scalarsTO
1 � TO

2 ; TU
1 � TU

2 , such that

TO
1 � t1 � TO

2

TO
1 � tk+1 � tk � TO

2 8k 2 N

TU
1 � s1 � TU

2

TU
1 � sk+1 � sk � TU

2 8k 2 N:

(7.2)

The problem studied in this chapter consists of designing an observer-based controller that

P

y(tk)

y

ZOH

K

u

yK

sk tk

Figure 7.1: Continuous-time plantP controlled by the controller K, which has intermittent
access to the input channel and sporadic available measurements of the outputy.

asymptotically stabilizes the resulting closed-loop system for any given sequences satisfying

(7.2) providing measurements of the plant output and input access respectively.

Assuming that the arrival of a new measurement can be instantaneously detected by the

controller, and that the controller is aware when a new sample is sent to the plant (such
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assumptions are not much severe and they can be ful�lled in real engineered systems; see,

e.g., [62, 113]) motivated by Chapter 5, we design an observer-based controller with jumps

in its state (ẑ; û), given by

K

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

_̂z(t) = Aẑ(t) + B û(t)
_̂u(t) = 0

9
=

;
when t =2 f skg+ 1

k=1 [ f tkg+ 1
k=1

û(t+ ) = K ẑ(t) when t 2 f skg+ 1
k=1

ẑ(t+ ) = ẑ(t) + LM (z(t) � ẑ(t)) when t 2 f tkg+ 1
k=1

yK (t) = K ẑ(t)

(7.3)

where L and K are two matrices of appropriate dimensions to be designed. The variable

ẑ represents the estimated state of the plant generated by the observer by means of the

measured plant outputy, while û stores the last value of the control input sent to the plant.

Indeed, whenever a new sample of the control value is sent to the plant, the controller

accordingly updates its internal variable ^u so as to memorize the signal applied to the

plant input u. Furthermore, the plant is equipped with an event-based zero-order hold

device, whose driving events are generated by new control input arriving. In particular,

such a device stores the value of the last received input between two updates and it gets

updated whenever a new control input is sent by the controller, see Figure 7.1. Thus, the

input injected into the plant is piecewise constant, and speci�cally, for every integerk 2 N,

u(t) = K ẑ(sk) for t 2 [sk ; sk+1 ), while u(t) = u(0) for t 2 [0; s1), where u(0) denotes the

initial condition of the zero-order hold device, which can be chosen arbitrarily. Moreover,

notice that if t 2 f skg1
k=1 \ f tkg1

k=1 then both ẑ and û are updated.

7.2.2 Hybrid Modeling

The fact that the closed-loop system experiences jumps when a new measurement is available

or when the input channel grants access to the controller suggests that the dynamics of the

closed-loop system can be described via a hybrid system. We provide a hybrid model that

captures not only the behavior due to a single pair of sequencesf tkg1
k=1 , f skg1

k=1 , but each

possible evolution generated by any sequence satisfying (7.2) respectively. This is a unique

approach that, while leads to nonunique solutions, allows to establish a strong result for a

family of sequencestk and sk .

The proposed modeling approach requires to model the time-driven mechanism governing

the availability of measurements or of access to the plant input. To this end, as in Chapter 5,

we add two auxiliary timer variables� 1 and � 2 to keep track of the duration of 
ows and to

trigger jumps according to the mechanism in (7.3). In particular, this modeling procedure

leads to a model that can be e�ciently represented by the framework for hybrid systems
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proposed in [56]. To accomplish that, we make� 1 and � 2 decrease as ordinary timet increases

and, whenever� 1 = 0 or � 2 = 0, reset it to any point in [TU
1 ; TU

2 ] or [TO
1 ; TO

2 ] respectively,

so as to enforce (7.2). Then, after a jump occurs, the two timers are reset according to the

following jump rule1:

2

4 � +
1

� +
2

3

5 2

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

2

6
4
[TU

1 ; TU
2 ]

� 2

3

7
5 if � 1 = 0; � 2 6= 0

2

6
4

� 1

[TO
1 ; TO

2 ]

3

7
5 if � 1 6= 0; � 2 = 0

8
><

>:

2

6
4
[TU

1 ; TU
2 ]

� 2

3

7
5 ;

2

6
4

� 1

[TO
1 ; TO

2 ]

3

7
5

9
>=

>;
if � 1 = � 2 = 0:

(7.4)

To capture this mechanism, we de�ne a hybrid systemH c within the framework in [56]. In

particular, take as a vector state ~x = ( z; u; � 1; ẑ; û; � 2), and for eachx 2 C = Rn � Rp �

[0; TU
2 ] � Rn � Rp � [0; TO

2 ] de�ne the 
ow map as

F (x) :=

2

6
6
6
6
6
6
6
6
6
6
6
4

Az + Bu

0

� 1

Aẑ + Bû

0

� 1

3

7
7
7
7
7
7
7
7
7
7
7
5

:

For eachx 2 D, de�ne the jump map as

G(x) :=

8
>>>><

>>>>:

G1(x) if x 2 D1 n D2

G2(x) if x 2 D2 n D1

f G1(x); G2(x)g if x 2 D1 \ D2

where for eachx 2 D = D1 [ D2,

G1(x) =

2

6
6
6
6
6
6
6
6
6
6
6
4

z

K ẑ

[TU
1 ; TU

2 ]

ẑ

K ẑ

� 2

3

7
7
7
7
7
7
7
7
7
7
7
5

; G2(x) =

2

6
6
6
6
6
6
6
6
6
6
6
4

z

u

� 1

ẑ + LM (z � ẑ)

û

[TO
1 ; TO

2 ]

3

7
7
7
7
7
7
7
7
7
7
7
5

(7.5)

1The reason behind the choice considered to update the two timers in the case� 1 = � 2 = 0 will appear
clear later.
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D1 = Rn � Rp � f 0g � Rn � Rp � [0; TO
2 ]

D2 = Rn � Rp � [0; TU
2 ] � Rn � Rp � f 0g:

(7.6)

These objects de�ne a hybrid systemH c = ( C; F; D; G) that represents the dynamics of the

closed-loop system. Now, for the purpose of stabilization, consider the following invertible

change of coordinates:

(z; u; � 1; "; ~u; � 2) = ( z; u; � 1; z � ẑ; u � û; � 2) = xe

which leads to the following model of the closed-loop system

H e

8
><

>:

_xe = Fe(xe) xe 2 Ce

x+
e 2 Ge(xe) xe 2 De

(7.7a)

whereCe = C; De = D1e [ D2e; D1e = D1; D2e = D2 and

Fe(xe) =

2

6
6
6
6
6
6
6
6
6
6
6
4

Az + Bu

0

� 1

A" + B ~u

0

� 1

3

7
7
7
7
7
7
7
7
7
7
7
5

; G1e(xe) =

2

6
6
6
6
6
6
6
6
6
6
6
4

z

K (z � ")

[TU
1 ; TU

2 ]

"

0

� 2

3

7
7
7
7
7
7
7
7
7
7
7
5

; G2e(xe) =

2

6
6
6
6
6
6
6
6
6
6
6
4

z

u

� 1

(I � LM )"

~u

[TO
1 ; TO

2 ]

3

7
7
7
7
7
7
7
7
7
7
7
5

(7.7b)

Ge(xe) =

8
>>>><

>>>>:

G1e(xe) if xe 2 D1e n D2e

G2e(xe) if xe 2 D2e n D1e

f G1e(xe); G2e(xe)g if xe 2 D1e \ D2e:

(7.7c)

Remark 7.1. Taking the union of the two reset laws whenever� 1 = � 2 = 0 in (7.4) ensures

that the resulting jump map Ge is outer semicontinuous relatively toD. This fact can be

proven by directly resorting to the de�nition of outer semicontinuity for set-valued mappings

given in Appendix D. This fact, along with the continuity of the 
ow map, De � domGe,

Ce � domFe, and the closedness of the setsCe and De ensures that hybrid system (7.7)

satis�es Assumption 4.1. This is a key property that will be used in the sequel. Observe that

having a hybrid system satisfying Assumption 4.1 may not be trivial and it actually derives

from suitable choices done throughout the modeling stage. Several cases of hybrid systems

not matching Assumption 4.1 can be encountered in the literature; see,e.g., the hysteretic

quantizer in [22].

Concerning the existence of solutions to systemH e, by relying on the concept of solution

given in De�nition 4.5, it is straightforward to check that every � 2 SH e(Ce[ De) is complete.

Moreover, the following properties hold:

� For every (t; j ) 2 dom� such that (t; j + 1) 2 dom� and � (t; j ) 2 D2e n D1e, one has

(t; j + 2) =2 dom� ,
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� For every (t; j ) 2 dom� such that (t; j + 1) 2 dom� and � (t; j ) 2 D1e n D2e, one has

(t; j + 2) =2 dom� ,

� For every (t; j ) 2 dom� such that (t; j + 1) 2 dom� and � (t; j ) 2 D1e \ D2e, we have

either � (t; j + 1) 2 D1e n D2e or � (t; j + 1) 2 D2e n D1e:

In other words, at most two jumps can occur consecutively without 
owing. Furthermore, for

every maximal solution� to H e, due to (7.2), every (t; j ) 2 dom� such that (t; s) 2 dom� ,

for somes 2 f j + 1; j + 2g, implies that
n
[t; t + min f TO

1 ; TU
1 g] � f sg

o
� dom� . Essentially,

the domain of the solutions toH e manifests an average dwell-time property, with dwell time

� D = min f TO
1 ; TU

1 g and o�set N0 = 2; see,e.g., [56, Example 2.15]. Such a property imposes

a strictly positive uniform lower bound on the length of every 
ow interval, preventing from

the existence of Zeno solutions.

Remark 7.2. A notable property enforced by timer� 1 is that, for every maximal solution

to (7.7), there exists (T; J) 2 dom� satisfying T + J � TU
2 + 1, such that � (T; J) 2 D1e,

which implies that ~u(T; J + 1) = 0. Then, since solutions to (7.7) cannot leave the set

Rn � Rp� [0; TU
2 ]� Rn �f 0g� [0; TO

2 ], it follows that for every initial condition � (0; 0) 2 Ce[ De,

~u converges to zero in �nite hybrid time. Moreover, notice that to make the hybrid system

(7.7) an accurate description of the real time-triggered phenomenon, which governs the

update process,� 1 and � 2 have to belong to the intervals [0; TU
2 ] and [0; TO

2 ] respectively,

which is a property that is guaranteed by the de�nition ofCe and De.

In this chapter, we consider the following notions for a general hybrid systemH with

state in R` .

De�nition 7.1. ([56, De�nition 7.1.]) Let A � R` be a compact set. The setA is

� stable for H if for every � > 0 there exists� > 0 such that every solution toH with

j� (0; 0)jA � � satis�es j� (t; j )jA � � for all (t; j ) 2 dom� ;

� locally pre-attractive for H if there exists � > 0 such that every solution� to H with

j� (0; 0)jA � � is bounded and, if� is complete, then also limt+ j ! + 1 j� (t; j )jA = 0;

� locally pre-asymptotically stable (LpAS) for H , if it is both stable and locally pre-

attractive for H ;

� globally pre-asymptotically stable (GpAS) forH , if it is both stable and locally pre-

attractive for H for every � > 0.

De�nition 7.2. ([56]) A set A � R` is strongly forward pre-invariant for H , if for every

maximal solution � to H , rge� � A .

Remark 7.3. In referring to complete solutions, we will drop the term \pre" from the

above de�nitions, which leads respectively to locally asymptotically stable (LAS), globally

asymptotically stable (GAS), and strongly forward invariant.

Then, by introducing the set

A = f 0g � f 0g � [0; TU
2 ] � f 0g � f 0g � [0; TO

2 ] (7.8)
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for which, for everyxe 2 Ce [ De [ Ge(De), jxejA = k(z; u; "; ~u)k, the problem we solve is

as follows:

Problem 7.1. Given the matricesA, B , and M of appropriate dimensions and four positive

scalarsTU
1 � TU

2 , TO
1 � TO

2 , design matricesL 2 Rn� q and K 2 Rp� n such that the setA in

(7.8) is globally asymptotically stable for the hybrid system (7.7).

To cope with this problem, we treat (7.7) as the cascade of two hybrid systems (modulo

the coupling e�ect, yet vanishing in �nite hybrid-time, as shown in Remark 7.2, induced by

~u on the " dynamics). Namely, this cascade is composed by the" dynamics along with its

timer � 2, which enters into the (z; u; � 1) dynamics. By pursuing this approach, we are able

to solve Problem 7.1 without the need of �nding a Lyapunov function for the whole hybrid

system (7.7), which appears as a nontrivial problem.

7.3 Main results

7.3.1 A solution via a Separation Principle

In this section, we provide a solution to Problem 7.1 that relies on the properties inherited

from the components of the closed-loop system, namely, the observer and the controller

subsystems. Speci�cally, let us consider the following assumptions.

Assumption 7.1 (Observer subsystem). The hybrid system

8
>>>>>><

>>>>>>:

_" = A"

_� 2 = � 1

9
=

;
("; � 2) 2 Co

"+ = ( I � LM )"

� +
2 2 [TO

1 ; TO
2 ]

9
=

;
("; � 2) 2 Do

(7.9a)

where

Co = Rn � [0; TO
2 ]; Do = Rn � f 0g (7.9b)

has the setA o = f 0g � [0; TO
2 ] GAS. 4

Assumption 7.2 (Controller subsystem). The hybrid system

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

_z = Az + Bu

_u = 0

_� 1 = � 1

9
>>=

>>;
(z; u; � 1) 2 CK

z+ = z

u+ = Kz

� +
1 2 [TU

1 ; TU
2 ]

9
>>=

>>;
(z; u; � 1) 2 DK

(7.10a)

where

CK = Rn � Rp � [0; TU
2 ]; DK = Rn � Rp � f 0g (7.10b)
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has the setA K = f 0g � f 0g � [0; TU
2 ] GAS. 4

A su�cient condition guaranteeing that Assumption 7.1 holds is given in Chapter 5,

while a su�cient condition for Assumption 7.2 to hold will be given in Proposition 7.1. The

following result establishes GAS of the setA for the closed-loop system (7.7) under the

two aforementioned assumptions. Before state such results, let us consider the following

de�nition.

De�nition 7.3. Given a hybrid systemsH = ( C; F; D; G) with state in Rn , and let O � Rn .

We denote,Hj O = ( C \ O; F; D \ O; G):

Remark 7.4. Namely, Hj O is the restriction of the dynamics ofH to the set O. Notice that

in the above de�nition, any property is required forO. In particular, O \ (C [ D) could be

empty leading to a restriction having no solutions.

Theorem 7.1. Let Assumption 7.1 and Assumption 7.2 hold. Then, the setA de�ned in

(7.8) is GAS for system (7.7). �

The proof of this theorem is inspired by the idea in [122, Theorem 1]. Speci�cally, we base

our proof on [56, Corollary 7.24], which requires the satisfaction of Assumption 4.1 (hybrid

basic assumption on data), that is satis�ed by (7.7). Since the proof is rather involved, for

the sake of clarity, we �rstly provide a list of the main steps carried out.

As a �rst step, to situate the analysis within the focus of [56, Corollary 7.24], which works

with compact sets, we select an arbitrarily compact setJ having A in its interior and we

build the following auxiliary system H eJ := H ejJ : For such a system, we prove that the set

A is GpAS, by performing the following steps:

(a) Prove that there exist two compact setsJ ~u � J " and J " � A such that:

(a.1) J ~u is GpAS for H eJ

(a.2) J " is GpAS for H eJ jJ ~u

(b) SinceJ " � J ~u, applying [56, Corollary 7.24] allows to conclude thatJ " is GpAS for H eJ

(c) Prove that H eJ jJ "
hasA GpAS

(d) Since J " � A , thanks to (c) applying [56, Corollary 7.24] allows to conclude thatA is

GpAS for H eJ .

Step (a) is performed by selecting a compact setJ ~u such that for everyx = ( z; u; � 1; "; ~u; � 2) 2

J ~u ~u = 0, and compact setJ " � J ~u such that for everyx = ( z; u; � 1; "; ~u; � 2) 2 J " is such

that " = 0. In particular, ( a:1) is established by using �nite hybrid-time convergence of ~u to

zero. While, (a:2) follows from Assumption 7.1. Finally, (c) follows from Assumption 7.2.

From GpAS of A for H eJ and the fact that A � Int J , we prove LpAS ofA for H e, which

turns out to be LAS, due to completeness of the maximal solution toH e. Finally, from LAS

and the fact that the compact setJ can be selected arbitrarily large, GAS is established via

homogeneity arguments.

The following two results basically establish the point (a) here above.
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Claim 7.1. De�ne the closed setA ~u = Rn � Rp � [0; TU
2 ] � Rn � f 0g � [0; TO

2 ]. Let Assump-

tion 7.1 hold. Then, H ejA ~u
has the closed setA " = Rn � Rp � [0; TU

2 ] � f 0g � f 0g � [0; TO
2 ]

GAS. �

The proof of the above claim is given in Appendix C.

Lemma 7.1. Pick any positive real scalarsM z; Mu; M " ; M ~u; M � 1 ; M � 2 , and de�ne the com-

pact set J = M zB � M ~u � M � 1 B � M ~uB � BM � 2 . Let A " be the set de�ned in Claim 7.1.

Assumption 7.1 implies that hybrid systemH eJ := H ejJ has the compact setJ " = ( J [

Ge(J )) \ A " GpAS. �

The proof of the above lemma is given later.

Now we are in position to provide the proof of Theorem 7.1.

Proof of Theorem 7.1. We �rst show that under Assumption 7.1 and Assumption 7.2 the

set A de�ned in (7.8) is LAS for system (7.7) and that its basin of attraction contains every

initial condition such that the resulting trajectory is bounded. Then we prove that LAS of

A ensures that every maximal solution to (7.7) is bounded, allowing to extend the basin of

attraction of A to include Ce [ De, yielding GAS for A .

Pick six arbitrarily large positive scalarsM z; Mu; M " ; M ~u; M � 1 ; M � 2 such that the compact

set J = M zB � M uB � M � 1 B � M " B � M ~uB � M � 2 B contains A in its interior. De�ne the

closed set

A " = Rn � Rp � [0; TU
2 ] � f 0g � f 0g � [0; TO

2 ]:

According to Lemma 7.1, which uses Assumption 7.1, the setJ " = ( J [ G(J )) \ A " is

GpAS for systemH eJ := H ejJ . Moreover, thanks to Assumption 7.2 and by following the

same steps as in the proof of Lemma 7.1, it turns out that the setA is GpAS for system

H eJ jA "
, and sinceJ " � A " , similarly to [56, Proposition 3.32], it follows that A is GpAS

for system H eJ jJ "
. Thus, since systemH eJ satis�es Assumption 4.1,A and J " are compact,

and A � J " , thanks to [56, Corollary 7.24], the setA is LpAS for systemH eJ and its basin

of attraction correspond to the one ofJ " , which is equal toJ establishing GpAS ofA for

H eJ .

Building on GpAS of A for H eJ , we establish LAS of the same set forH e. First we show

that GpAS of A for H eJ implies stability of A for H e.

To this end, pick � > 0 and suppose without loss of generality thatA + � B � Int J , such

a choice is always possible due toA � Int J by selecting� small enough. From GpAS ofA

for system H eJ , it is always possible to pick� > 0 such that for every solution� to H eJ ,

j� (0; 0)jA � � implies j� (t; j )jA � � for all (t; j ) 2 dom� . Now, from Lemma C.1, it follows

that SH e(A + � B) � S H eJ (A + � B). Pick any  2 SH e(A + � B). Then thanks to the selection

considered for� one has for all (t; j ) 2 dom that j (t; j )jA � � . Hence, since the above

arguments can be performed for any selection of� > 0, it follows that A is stable forH J .

Now we prove local attractivity of A for H e. The proof follows similar steps to the proof

of stability here above. In particular, pick the same pair (�; � ) from above. Since for such
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a pair we shown that � 2 SH e(A + � B) implies that � is a maximal solution to H Je and

maximal solutions to H e are complete. Hence, from GpAS ofA for H eJ , it follows that

every � 2 SH e(A + � B) converges toA . Then, A is locally attractive for H e. This latter

property along with the stability proven above establish thatA is LAS for H e. Furthermore,

sinceM z; Mu; M " ; M ~u; M � 1 ; M � 2 can be selected arbitrarily large, for every maximal bounded

solution � to H e, there exists a suitable choice forM z; Mu; M " ; M ~u; M � 1 ; M � 2 such that rge� �

Int J . Hence, such a� is a complete solution toH eJ and it converges toA being A GpAS

for H e. Thus, the basin of attraction ofA contains each point from which maximal solutions

to H e are bounded. Thus to establish GAS, we show that every maximal solution to (7.7)

is bounded, that is the basin of attraction ofA includesCe [ De.

For each positive� , de�ne M � = diag( � I; � I; 1; � I; � I; 1), and notice that for each2 x 2

Ce [ De [ Ge(De), one hasjM � xjA = � k(z; u; "; ~u)k. Pick any maximal solution  to (7.7)

and denote

(t; j ) 7!  (t; j ) = ( z(t; j ); u(t; j ); � 1(t; j ); "(t; j ); ~u(t; j ); � 2(t; j )) :

From LAS of A for (7.7), there exists� > 0 such that every� 2 SH e(A + � B) is bounded.

Select a small enough� ? > 0 such that � ?k(z(0; 0); u(0; 0); "(0; 0); ~u(0; 0))k � � , then

jM ?
�  (0; 0)jA � �:

For each (t; j ) 2 dom , consider the function (t; j ) 7! M ?
�  (t; j ), and notice that according

to Lemma C.2 M ?
�  is a maximal solution to (7.7). In particular, due to the selection

considered for� , one hasM ?
�  2 SH e(A + � B), therefore M ?

�  is bounded. Since the above

arguments hold for any maximal solutions, boundedness of maximal solutions to (7.7) is

established and this �nishes the proof. �

Now, the proof of Lemma 7.1 is given. Such a proof uses the de�nition of uniform pre-

attractivity of a closed set for a general hybrid systemH with state in R` .

De�nition 7.4. ([56, De�nition 6.24]) A compact set A � R` is said to be uniformly pre-

attractive from a set S � R` for H if every � 2 SH (S) is bounded and for every� > 0 there

exists T > 0 such that j� (t; j )jA � � for every � 2 SH (S) and (t; j ) 2 dom� with t + j � T.

Proof of Lemma 7.1. Let A ~u be the set de�ned in Claim 7.1. The setJ ~u = ( J [ Ge(J )) \A ~u

is compact, and uniformly pre-attractive for systemH eJ from any neighborhood ofJ ~u. In

particular, notice that each solution toH eJ is bounded and that for each complete solution

� to H eJ , as pointed out in Remark 7.2, there exist a (solution independent) strictly positive

scalar T, such that t + j � T, with ( t; j ) dom� , implies � (t; j ) 2 A ~u. This is enough to

show uniform pre-attractivity of J ~u for H eJ from any neighborhood ofJ ~u. Then, sinceH eJ

satis�es Assumption 4.1, thanks to [56, Proposition 7.5], along with global (uniform) pre-

attractivity of the set J ~u for H eJ shown right above, it follows that J ~u is GpAS for H eJ .

2Notice that M � amounts to the nonproper standard dilation de�ned in [57, De�nition 3.7]. In particular,
H e is homogeneous of degree zero with respect to the nonstandard dilation; see [123].



Chapter 7 207

Now, consider the systemH eJ jJ ~u
= H ejJ \J ~u

. SinceJ \J ~u � A ~u, by containment arguments

(see; [56, Proposition 3.32]), it follows that every solution toH eJ jJ ~u
is a solution to H eJ jA ~u

.

Thus, from Claim 7.1, the setJ " is GpAS for H eJ jJ ~u
. Furthermore, asJ " � J ~u, from [56,

Corollary 7.24], it follows that J " is LpAS for H eJ and its basin of pre-attraction coincides

with the one of J ~u, which in turn coincides with J . ThereforeJ " is GpAS for H eJ . �

7.3.2 Su�cient Conditions

Now, we provide su�cient conditions guaranteeing that the stated assumptions hold.

The observer gainL can be already designed to satisfy Assumption 7.1 via Corollary 5.1

on Page 157. To design the controllerK ensuring that Assumption 7.2 is veri�ed, as follows

a constructive methodology is o�ered. Such a methodology basically uses ideas from [56,

Example 3.21].

Proposition 7.1. If there exist P 2 S n+ p
+ , and a matrix K 2 Rn� p such that

GT eFT vPeFvG � P < 0 8v 2 [TU
1 ; TU

2 ]; (7.11)

where

F =

2

4A B

0 0

3

5 ; G =

2

4 I 0

K 0

3

5 (7.12)

then Assumption 7.2 is veri�ed.

Proof. Consider system (7.10) and set

f K (xK ) =

2

6
6
6
4

F

2

4z

u

3

5

� 1

3

7
7
7
5

; GK (xK ) =

2

6
6
6
4

G

2

4z

u

3

5

[TU
1 ; TU

2 ]

3

7
7
7
5

:

Pick the following Lyapunov function candidate for the hybrid system (7.10) de�ned for

every xK = ( z; u; � 1) 2 Rn+ p+1 :

V (xK ) =

2

4z

u

3

5

T

eFT � 1 PeF� 1

2

4z

u

3

5 : (7.13)

To prove the claim, we pursue a similar approach as the one in the proof of Theorem 5.1.

To this end, notice that there exist two positive scalars� 1; � 2 such that

� 1jxK j2A K
� V (xK ) � � 2jxK j2A K

8xK 2 CK [ DK [ GK (DK ) (7.14)

whereA K is de�ned in Assumption 7.2. Specially, due to the positive de�niteness ofP and

the non-singularity of the matrix eF� 1 for every � 1, by continuity arguments, one can set

� 1 = min
� 12 [0;T U

2 ]
� min

�
eFT � 1 PeF� 1

�
(7.15)
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� 2 = max
� 12 [0;T U

2 ]
� max

�
eFT � 1 PeF� 1

�
(7.16)

where � min (�) and � max (�) denote, respectively, the smallest and the largest eigenvalue of

their matrix argument. By straightforward calculations one gets

r V(xK ) =

0

@2eFT � 1 PeF� 1

2

4z

u

3

5 ; [z u]eFT � 1 (FT P + PF)eF� 1

2

4z

u

3

5

1

A

Since the matriceseF� 1 and F commute, one has

hr V(x); f K (xK )i = 0 8xK 2 CK : (7.17)

Notice that, for every gK 2 GK (xK ), there exists a real scalarv belonging to the interval

[TU
1 ; TU

2 ] such that

gK =

2

6
6
6
4

G

2

4z

u

3

5

v

3

7
7
7
5

:

Then, for everygK 2 GK (xK ), one has

V(gK ) � V(xK ) =

2

4z

u

3

5

T
�
GT eFT vPeFvG � eFT vPeFv

�
2

4z

u

3

5

Moreover, wheneverxK 2 DK , from (7.10b), we have that� 1 = 0. Then, we have

2

4z

u

3

5

T
�
GT eFT vPeFvG � P

�
2

4z

u

3

5

Hence, by virtue of relation (7.11), it follows that there exists a positive small enough scalar

� such that, for everyv 2 [TU
1 ; TU

2 ], and 8xK 2 DK ; 8gK 2 GK (xK )

V(gK ) � V(xK ) � � � jxK j2A K
(7.18)

Now, let � be a solution to (7.10). Notice that, for each (t; j ) 2 dom� , one hast �

TU
2 (j + 1). Hence, by following the same arguments presented in the proof of Theorem 5.1,

thanks to (7.17) and (7.18) it follows that the setA K is GES, hence GAS, for system (7.10).

Hence, Assumption 7.2 is veri�ed, concluding the proof. �

7.3.3 Design Procedure

Direct computation of the gain K via Proposition 7.1 is not straightforward. In particular,

from a numerical standpoint, (7.11) has two issues: it is not linear inP and K , and it

needs to be veri�ed for in�nitely many values ofv. Thus, to make the problem numerically
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tractable, inspired by the results presented in Chapter 5, some manipulations are needed.

To this end, the following results allow to derive an LMI-based design procedure for the

proposed controller.

Proposition 7.2. If there exist a matrix K 2 Rp� n , and P1 2 S n
+ , such that for each

v 2 [TU
1 ; TU

2 ],

�

eAv +
Z v

0
eAs dsBK

� T

P1

�

eAv +
Z v

0
eAs dsBK

�

� P1 < 0 (7.19)

then, there existsP 2 S n+ p
+ such that the pair(K; P) satis�es (7.11).

Proof. First of all notice that, for every real scalarv, the following identity holds

e

0

@

2

4A B

0 0

3

5v

1

A

=

2

4eAv Rv
0 eAs dsB

0 I

3

5 (7.20)

and consequently

eFvG =

2

4eAv +
Rv

0 eAs dsBK 0

K 0

3

5 : (7.21)

Hence, since the (2; 2)-block of the aforementioned matrix is zero, thanks to Lemma C.3, it

turns out that from (7.19) there existsP 2 S n+ p
+ such that (7.11) holds and this concludes

the proof. �

Now, we proceed to provide a condition linear in the decision variables which implies

(7.19).

Proposition 7.3. The feasibility of (7.19) follows from the feasibility of

2

4W + S + ST � eAv S �
Rv

0 eAs dsBY

� � W

3

5 < 0 v 2 [TU
1 ; TU

2 ] (7.22)

with respect toW 2 S n
+ , S 2 Rn� n , and Y 2 Rp� n . In particular, given any feasible solution

to (7.22), K = Y S� 1 and P1 = S� T WS� 1 satisfy (7.19).

Proof. Notice that the feasibility of (7.19), by Projection Lemma [99], follows from the

feasibility of

2

4P1 + He(X ) � X T eAv � X T Rv
0 eAs dsBK

� � P1

3

5 < 0 v 2 [TU
1 ; TU

2 ] (7.23)

whereX 2 Rn� n . Now, by settingX � 1 = S, ST P1S = W, and KS = Y and by pre-and-post

multiplying the left-hand side of (7.23) by diag(ST ; ST ) and diag(S; S) provides the left-hand

side of (7.22) and since the above transformations are invertible, the result is established.�

Proposition 7.3 provides a su�cient condition to (7.19), which is linear in the decision

variablesW; Y, and S. In particular, the above result ensures that given (W; Y; S) such that
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(7.22) holds, thenK = Y S� 1 lets Assumption (7.2) hold.

Nevertheless, (7.22) still has to be veri�ed for in�nitely many values ofv. To overcome

such a drawback, we proceed in a similar way as in Chapter 5. Namely, by building a suitable

polytopic embedding, we derive a �nite number of conditions whose satisfaction yields the

satisfaction of (7.23). To this end, consider the following preliminary result, whose proof is

given in Appendix C.

Lemma 7.2. Let v be a real scalar belonging to a given compact intervalI , and let 
 1 and


 2 be two real constant matrices. Let

X 1 =

2

4R1 Q1

U1 L1

3

5 ; X 2 =

2

4R2 Q2

U2 L2

3

5 ; : : : ; X � =

2

4R� Q�

U� L �

3

5

be matrices such that for eachv 2 I ,

exp

0

@

2

4 
 1 
 2

0 0

3

5 v

1

A 2 cof X 1; X 2; : : : ; X � g: (7.24)

Then, for eachv 2 I , the following identities hold:

h
e
 1v Rv

0 e
 1sds
 2

i
2 co

nh
R1 Q1

i
;
h
R2 Q2

i
; : : : ;

h
R� Q�

io
(7.25)

�

The above result is rather general, since it is not based on a speci�c polytopic embedding

of the exponential matrix in (7.24). Thus, to achieve the desired task, any of the technique

proposed in the literature can be adopted. In this dissertation, we rely on technique exposed

in Chapter 5.

Now we are in position to state the following design result.

Proposition 7.4. Let

X 1 =

2

4R1 Q1

U1 L1

3

5 ; X 2 =

2

4R2 Q2

U2 L2

3

5 ; : : : ; X � =

2

4R� Q�

U� L �

3

5 (7.26)

be matrices such that for eachv 2 [TU
1 ; TU

2 ],

exp

0

@

2

4A B

0 0

3

5 v

1

A 2 cof X 1; X 2; : : : ; X � g: (7.27)

If there exist W 2 S n
+ , S 2 Rn� n , and Y 2 Rp� n such that for everyi = 1; : : : ; �

2

4W + S + ST � Ri S � Qi Y

� � W

3

5 < 0; (7.28)

then K = Y S� 1 ensures Assumption 7.1.
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Proof. First of all, according to Lemma 7.2, there exist positive functions� 1(v); : : : ; � � (v),

such that for eachv 2 [TU
1 ; TU

2 ]

eAv =
�X

i =1

� i (v)Ri ;
Z v

0
eAs dsB =

�X

i =1

� i (v)Qi (7.29)

with
P �

i =1 � i (v) = 1. Thus, the left-hand side of (7.22) turns in

�X

i =1

� i (v)

2

4W + S + ST � Ri S � Qi Y

� � W

3

5 : (7.30)

Hence by the virtue of Proposition 7.3 the result is proven. �
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7.4 Numerical example

Example 7.1. Consider the linearized model for the unstable batch reactor in [58], which

is described by the following data:

A =

2

6
6
6
6
6
4

1:38 � 0:208 6:71 � 5:68

� 0:581 � 4:29 0 0:675

1:07 4:27 � 6:65 5:89

0:048 4:27 1:34 � 2:1

3

7
7
7
7
7
5

; B =

2

6
6
6
6
6
4

0 0

5:68 0

1:14 � 3:15

1:14 0

3

7
7
7
7
7
5

M =

2

41 0 1 � 1

0 1 0 0

3

5

(7.31)

and assumeTO
1 = TU

1 = T1 = 0:1 and TO
2 = TU

2 = T2 = 0:9. As a �rst step, by relying on

the apparatus illustrated in Section 5.4, we design the observer gainL to let Assumption 7.1

hold. In particular, we obtain

L =

2

6
6
6
6
6
4

0:8618 � 0:1012

0:0001516 1

0:131 0:277

� 0:006379 0:1765

3

7
7
7
7
7
5

Then, as a second step, to let Assumption 7.2 hold we design the controller gainK via Propo-

sition 7.4. In particular, by building on the polytopic embedding proposed in Section 5.4.1,

one gets

K =

2

40:19355 � 0:17442 0:094692 � 0:23368

1:2263 0:087818 0:85837 � 0:53913

3

5 :

Figure 7.2 shows the evolution of the plant statez and Figure 7.3 shows the evolution of

the observer state ^z projected onto ordinary time. While Figure 7.4 and Figure 7.5 show,

respectively, the evolution of the inputu feeding the plant and the evolution two timers� 1

and � 2, still projected onto ordinary time. In this simulation, z(0; 0) = (1 ; 1; 1; 1); ẑ(0; 0) =

(0; 0; 0; 0); u(0; 0) = (0 ; 0); û(0; 0) = (0 ; 0); � 1(0; 0) = � 2(0; 0) = T2, and the sampling instants

are chosen randomly according to a uniform distribution. Simulations show the e�ectiveness

of the proposed approach, by stressing that the stabilization is achieved despite the lack

of synchronism between the output sampling and input updating, as Figure 7.5 suggests.

Moreover, it is interesting to notice that, according to the initialization operated for� 1 and

� 2, the control system runs in open-loop for the �rstT2 units of time, as underlined by

Figure 7.3 and Figure 7.4.
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Figure 7.2: The evolution of the plant statez.
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Figure 7.3: The evolution of observer state ^z projected onto ordinary time.
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Figure 7.4: The evolution ofu projected onto ordinary time.
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Figure 7.5: The evolution of� 1 (above) and� 2 (below) projected onto ordinary time.
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7.5 Comments and Conclusion

In this chapter, we shown how the measurement-triggered observer proposed in Chapter 5 can

be used to asymptotically stabilize a linear plant in the presence of sporadic measurements

even when the plant input is not accessible at any time, provided that the controller is aware

whenever a new sample is sent to the plant. The proposed approach builds on a separation

principle, which due to the homogeneity of the resulting hybrid system leads to a global

result. Moreover, a numerically tractable design, based on the solution to certain LMIs was

provided. Finally, the e�ectiveness of the described methodology is shown in an example.

One of the main advantages of the proposed approach consists in avoiding the need of

seeking for a Lyapunov function for the whole closed-loop system to certify asymptotic sta-

bility, which is a nontrivial problem. This is a worthwhile feature, which is enabled by the use

of the general and powerful framework proposed in [56] to study hybrid dynamical systems.

In particular, building on [56] allows to mimic the standard arguments adopted to establish

stability properties for upper triangular continuous-time or discrete-time nonlinear systems.

The pursued approach also brings outs that, in the considered setting, using an observer-

based controller enables to achieve closed-loop asymptotic stability without assuming any

correlation between the output sampling events and the control input updating events.

One should be aware that the same approach could be considered to stabilize nonlinear

plants, as long as one is able to build, for the considered case, an observer to reconstruct

the plant state in the presence of sporadic measurement and a state feedback controller to

stabilize the plant in the presence of sporadic input access. However, in this setting, the

considered separation principle could allow to establish only local results, as in the more

general case considered in [122], unless the plant to stabilize gives rise to an homogeneous

closed-loop system. Whenever homogeneity does not hold, as suggested in the proof of The-

orem 7.1, an estimate of the basin of attraction of the closed-loop system can be determined

by seeking for a set from which the initialization of the closed-loop system leads to bounded

solutions. This is certainly a di�cult problem in general. In addition, often estimates of

basin of attraction are built via the construction of a Lyapunov function for the closed-loop

system. On the other hand, the knowledge of a (strict) Lyapunov function enables itself to

conclude on asymptotic stability of the closed-loop system, making the use of a separation

principle worthless, unless only a weak Lyapunov function is available.

As in Chapter 5, an interesting direction of research consists in the search of other Lya-

punov functions to ensure the satisfaction of Assumption 7.2, with the aim of reducing

the conservatism and the computational burden of the proposed polytopic embedding-based

design procedure.

Concerning comparisons between the approach we illustrated and the other approaches

usually considered in the literature to deal with stability and stabilization in the presence of

asynchronous sampling, it is worthwhile to observe that adopting a discrete-time approach,

as the one often considered in the literature of sampled-data and networked control systems;
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see,e.g., [29] and the references there in, does not seem suitable in this setting due to the

asynchronicity of the output sampling events and the control input updating events. Indeed,

such an approach rests on the construction of a discrete-time model of the closed-loop system,

process that does not appear doable in our setting due to multiple asynchronous jumps.
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Concluding Remarks

In this part of this thesis, we provided two observer schemes to exponentially estimate the

state of a continuous-time LTI system in the presence of sporadic measurements. In addition,

building on the �rst considered observer scheme, an observer-based controller scheme is

proposed to asymptotically stabilize a continuous-time LTI system in the presence of both

sporadic measurements and input access. For such a scheme, a separation principle was

shown. The pursued approach hinges upon the hybrid system framework in [56] and leads to

computationally tractable conditions for the design of the resulting observation/controller

schemes.

Perspectives and Future Outlook

The work presented within this part has the role to prepare the stage for several interesting

extensions. In this sense, the results included in this part do not represent an ended work.

In particular, as previously mentioned, the extension of the observer in Chapter 6 to multi-

output linear plants with asynchronous channels in the presence of sporadic measurements

is currently under investigation. A likewise interesting extension consists of the construction

of an observer-based controller, as in Chapter 7, to account event for asynchronous input

channels in multi-inputs plants. This latter lines of research suggests that a possible exten-

sion of the work presented in this dissertation concerns the construction of an observer-based

controller in the case of networked control systems; see [129]. Indeed, in this setting actu-

ators and sensors are grouped in di�erent nodes that, respectively, grant their access and

transmit data sporadically. Thus, such a situation can be addressed, with some extra work,

merging the ideas in Chapter 7 and the observer presented in Chapter 6, though adapted

219
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for the case of asynchronous multi-outputs sampling. However, observe that to rest on the

controller architecture proposed in Chapter 7, as assumed therein, one would need to en-

sure that whenever a new control sample is sent to the plant, the controller instantaneously

updates its internal variables to keep track on the plant input, so as to build a correct esti-

mation of the plant state. This assumption should not entail a severe constraint in practical

implementations and usually considered in the literature of networked control systems; see,

e.g., [62]. For instance, a packet acknowledgment mechanism, as the one implemented in the

TCP protocol, would enable to e�ectively ensure such an assumption; see [113].

In the framework of networked control systems, an aspect that deserves investigations

pertains to the presence of time-delays in the considered input and output channels, which

is a well acknowledged in the literature of networked control systems; see [62]. Also such a

problematic could be addressed in a hybrid systems setting via the notion of hybrid system

with memory illustrated in [86], although the extension does not appear straightforward.

Concerning genuine observer design in the presence of sporadic measurements, an inter-

esting aspect consists of coupling some performance requirements to the synthesis procedures

proposed within this dissertation. For instance, as already done,e.g., in [45], one can envi-

sion the derivation of design strategies guaranteeing a given exponential decay-rate for the

estimation error, and/or ensuring some performance in terms of attenuation of exogenous

signals.
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B.1 Extreme matrices of Example 5.2

X 1 =

2

6
6
6
6
6
4

0:12242 0:14812 0:39226 � 0:011693

0:31962 0:09904 � 0:023385 0:22076

� 0:8079 0:41564 � 0:26983 0:1715

0:48828 � 0:4649 0:34301 � 0:34247

3

7
7
7
7
7
5

X 2 =

2

6
6
6
6
6
4

0:12242 � 0:70693 � 0:46279 � 0:86674

0:31962 � 1:6111 � 1:7335 � 1:4893

� 0:8079 1:2707 0:58522 1:0266

0:48828 1:2452 2:0531 1:3676

3

7
7
7
7
7
5

X 3 =

2

6
6
6
6
6
4

0:45744 1:2652 1:32 0:80905

0:91237 2:0755 1:6181 1:6729

� 1:0219 � 0:29808 � 0:86258 � 0:35287

0:10958 � 1:7277 � 0:70574 � 1:2702

3

7
7
7
7
7
5

X 4 =

2

6
6
6
6
6
4

0:45744 0:41019 0:46498 � 0:045998

0:91237 0:36545 � 0:091995 � 0:037207

� 1:0219 0:55697 � 0:0075306 0:50218

0:10958 � 0:017582 1:0044 0:43986

3

7
7
7
7
7
5
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X 5 =

2

6
6
6
6
6
4

� 0:16909 0:31446 0:11447 0:14779

0:33335 0:12649 0:29558 0:095588

0:066639 � 0:18111 � 0:28356 0:018883

� 0:39999 0:1044 0:037766 � 0:064684

3

7
7
7
7
7
5

X 6 =

2

6
6
6
6
6
4

� 0:16909 � 0:54059 � 0:74058 � 0:70726

0:33335 � 1:5836 � 1:4145 � 1:6145

0:066639 0:67394 0:57149 0:87393

� 0:39999 1:8145 1:7479 1:6454

3

7
7
7
7
7
5

X 7 =

2

6
6
6
6
6
4

0:16593 1:4316 1:0422 0:96854

0:92609 2:103 1:9371 1:5477

� 0:1474 � 0:89483 � 0:87631 � 0:50549

� 0:77869 � 1:1584 � 1:011 � 0:99245

3

7
7
7
7
7
5

X 8 =

2

6
6
6
6
6
4

0:16593 0:57653 0:18719 0:11349

0:92609 0:3929 0:22697 � 0:16237

� 0:1474 � 0:039783 � 0:021257 0:34956

� 0:77869 0:55172 0:69912 0:71765

3

7
7
7
7
7
5

X 9 =

2

6
6
6
6
6
4

0:8232 � 0:35304 0:1821 � 0:057382

� 0:59132 0:70844 � 0:11476 0:42038

� 0:47896 0:29686 0:6411 � 0:23828

1:0703 � 0:95551 � 0:47655 � 0:13231

3

7
7
7
7
7
5

X 10 =

2

6
6
6
6
6
4

0:8232 � 1:2081 � 0:67295 � 0:91243

� 0:59132 � 1:0017 � 1:8249 � 1:2897

� 0:47896 1:1519 1:4962 0:61677

1:0703 0:75459 1:2335 1:5778

3

7
7
7
7
7
5

X 11 =

2

6
6
6
6
6
4

1:1582 0:76408 1:1099 0:76336

0:0014298 2:6849 1:5267 1:8725

� 0:693 � 0:41686 0:048357 � 0:76265

0:69157 � 2:2183 � 1:5253 � 1:0601

3

7
7
7
7
7
5

X 12 =

2

6
6
6
6
6
4

1:1582 � 0:090972 0:25481 � 0:091687

0:0014298 0:97485 � 0:18337 0:16241

� 0:693 0:43819 0:90341 0:092402

0:69157 � 0:5082 0:1848 0:65002

3

7
7
7
7
7
5



X 13 =

2

6
6
6
6
6
4

0:53169 � 0:18669 � 0:095689 0:1021

� 0:57759 0:73589 0:2042 0:29521

0:39558 � 0:29989 0:62738 � 0:3909

0:18201 � 0:38621 � 0:78179 0:14548

3

7
7
7
7
7
5

X 14 =

2

6
6
6
6
6
4

0:53169 � 1:0417 � 0:95074 � 0:75295

� 0:57759 � 0:97421 � 1:5059 � 1:4149

0:39558 0:55516 1:4824 0:46415

0:18201 1:3239 0:92831 1:8556

3

7
7
7
7
7
5

X 15 =

2

6
6
6
6
6
4

0:86671 0:93042 0:83208 0:92285

0:015156 2:7124 1:8457 1:7473

0:18154 � 1:0136 0:034631 � 0:91527

� 0:19669 � 1:649 � 1:8305 � 0:78229

3

7
7
7
7
7
5

X 16 =

2

6
6
6
6
6
4

0:86671 0:075374 � 0:022973 0:067796

0:015156 1:0023 0:13559 0:037246

0:18154 � 0:15857 0:88968 � 0:060218

� 0:19669 0:061102 � 0:12044 0:92781

3

7
7
7
7
7
5
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APPENDIXC

Proof of Claim 7.1. Pick any maximal solution � = ( � 1; � 2) to system H A ~u , where

(t; j ) 7! � 1(t; j ) = ( z(t; j ); u(t; j ); � 1(t; j ))

(t; j ) 7! � 2(t; j ) = ( "(t; j ); 0; � 2(t; j )) :

According to the properties of the domain of the solutions to (7.7) shown in Section 7.2.2, it

is straightforward to show that there exists a solution' to system (7.9), with supt dom' =

supt dom� , and such that for every (t; j ) 2 dom' there existss 2 N; s � j : (t; s) 2 dom�

and ' (t; j ) = [ "(t; s); � 2(t; s)]. Loosely speaking,' 
ows whenever � 
ows and only jumps

whenever� jumps due to � (t; s) 2 D2e. Moreover, notice that for every (z; u; � 1; "; ~u; � 2) 2

(Ce \ A ~u) [ (De \ A ~u) [ Ge(De \ A ~u), one hasj(z; u; � 1; "; ~u; � 2)jA " = j("; � 2)jA o : Now, from

stability of A o for system (7.9), one has for every (t; j ) 2 dom' , j' (t; j )jA o � j ' (0; 0)jA o , and

by construction for all (t; s) 2 dom� there existsj 2 N with j � s, such that (t; j ) 2 dom'

and

j� (t; s)jA " = j� 2(t; s)jA o = j' (t; j )jA o :

Then, stability of A " is proven. Concerning global attractivity, pick any maximal solution

� to H A ~u , which is complete, and suppose that the setA " is not attractive for � . Then,

there existsh > 0 such that for every positive scalarT, t + s � T and (t; s) 2 dom� implies

j� (t; s)jA " � h. Now, pick (t; j ) 2 dom' and such that t + j � T. Then, there existss� � j

such that j' (t; j )jA o = j� (t; s� )jA " , but since t + s� � t + j � T one hasj' (t; j )jA o � h,

which contradicts the fact that A o is globally attractive for the hybrid system (7.9), and this

concludes the proof. �

Lemma C.1. Given a hybrid systemH = ( C; F; D; G) and a compact setJ . Let H J be the

restriction of H to J . Assume that, for some setS � Int J , each� 2 SH J (S) is such that

rge� � Int J . Then, SH (S) � S H J (S):

Proof. To establish the result, it su�ces to show that each 2 SH (S) is a solution to H J .
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Indeed, since each solution toH J is a solution to H , maximality of such solutions forH J

directly follows from the fact that they are maximal forH .

By contradiction, let us assume that there exists 2 SH (S), which is not a solution

to H J . Then, by de�nition of solution, since H and H J have the same dynamics, and

 (0; 0) 2 S \ (C [ D) � Int J the only possibility for  not being a solution to H J is

that  eventually leavesJ . Let us assume that leavesJ via a jump. Then, there exist

(t; j ) 2 dom such that (t; j + 1) 2 dom ,  (t; j ) 2 Int J ,  (t; j + 1) 2 G( (t; j )) =2 J .

Thus, this implies that there exists a solution� to H J starting in Int J that leaves J , and

this is not possible by assumption.

Let us assume that leavesJ by 
owing. Then, there exists (s; j ) 2 dom such that

 (s; j ) =2 J . By continuity of the function t 7!  (t; j ) over [t j ; t j +1 ], there existss? 2 [t j ; t j +1 ]

such that  (s?; j ) =2 Int J . This implies that there exists a solution toH J that leaves IntJ ,

and this contradicts the hypothesis. Then each 2 SH (S) is a solution to H J , concluding

the proof. �

Lemma C.2. Let � be a solution to (7.7). For each� > 0, let M � = diag( � I; � I; 1; � I; � I; 1).

For each (t; j ) 2 dom� consider the function (t; j ) = M � � (t; j ). Then,  is a solution to

(7.7).

Proof. The proof follows the lines of [56, Lemma 9.3.]. In particular, we show that the hybrid

system (7.7) is homogeneous of degree zero with respect to the standard nonproper dilation

M � de�ned above. For each� > 0 and for eachxe 2 Ce [ De, one gets

Fe(M � xe) = M � Fe(xe); Ge(M � xe) = M � Ge(xe)

moreover, M � Ce = Ce; M � De = De. Now, pick any solution � to (7.7), and notice that

obviously M � � is a hybrid arc, in particular one has dom� = dom M � � . To conclude, pick

(t; j ) 2 dom� . Hence, if � (t; j ) 2 Ce then M � � (t; j ) 2 Ce, while if _� (t; j ) = Fe(� (t; j ))

then M �
_� (t; j ) = Fe(M � � (t; j )). Furtheremore, If � (t; j ) 2 De then M � � (t; j ) 2 De, and

if � (t; j + 1) 2 Ge(� (t; j )) then M � � (t; j + 1) 2 Ge(M � � (t; j )). Thus M � � is a solution to

(7.7). �

Proof of Lemma 7.2. First notice that, according to (7.20), it follows

e

2

4 
 1 
 2

0 0

3

5v

=
�X

i =1

� i (v)X i =

2

4e
 1v Rv
0 e
 1sds
 2

0 I

3

5 (C.1)

whereX i are some suitable matrices. Thus, by partitioning everyX i as follows

X i =

2

4Ri Qi

Ui L i

3

5



one has 2

4e
 1v Rv
0 e
 1sds
 2

0 I

3

5 =

2

4
P �

i =1 � i (v)Ri
P �

i =1 � i (v)Qi
P �

i =1 � i (v)Ui
P �

i =1 � i (v)L i

3

5 (C.2)

and this �nishes the proof. �

Lemma C.3. Let v be a real scalar belonging to a given compact intervalI . Let 
 1(v) 2

Rn1 � n1 , 
 2(v) 2 Rn1 � n2 , and 
 3(v) 2 Rn2 � n2 be given real matrices of suitable dimensions

whose entries depend continuously onv. If there exist P1 2 S n1
+ ; P2 2 S n2

+ such that


 T
1(v)P1
 1(v) � P1 < 0 (C.3)


 T
3(v)P2
 3(v) � P2 < 0 (C.4)

then there exist two constant symmetric positive de�nite matricesF1; F2 such that for every

v 2 I 2

4 
 1(v) 
 2(v)

0 
 3(v)

3

5

T 2

4F1 0

0 F2

3

5

2

4 
 1(v) 
 2(v)

0 
 3(v)

3

5 �

2

4F1 0

0 F2

3

5 < 0:

Proof. First of all denote

� Q1(v) = 
 T
1(v)P1
 1(v) � P1

� Q2(v) = 
 T
3(v)P2
 3(v) � P2:

Now, let 
 a positive scalar to be selected later and consider the following expression

2

4 
 1(v) 
 2(v)

0 
 3(v)

3

5

T 2

4P1 0

0 
P 2

3

5

2

4 
 1(v) 
 2(v)

0 
 3(v)

3

5 �

2

4P1 0

0 
P 2

3

5 =

2

4 � Q1(v) 
 T
1(v)P1
 2(v)

� 
 T
2(v)P1
 2(v) � 
Q 2(v)

3

5 :

(C.5)

Then by Schur complement the above right-hand side matrix is negative de�nite if and only

if


 T
2(v)P1
 2(v) � 
Q 2(v) + (
 T

1(v)P1
 2(v))T Q1(v)� 1(
 T
1(v)P1
 2(v)) < 0 (C.6)

that is


Q 2(v) > 
 T
2(v)

�
P1 + P1
 1(v)Q1(v)� 1
 T

1(v)P1

�

 2(v):

which is equivalent to


 I > Q
� 1

2
2 (v)
 T

2(v)
�
P1 + P1
 1(v)Q1(v)� 1
 T

1(v)P1

�

 2(v)Q

� 1
2

2 (v):

The latter is satis�ed if for each v 2 I


 > � max

�

Q
� 1

2
2 (v)
 T

2(v)
�
P1 + P1
 1(v)Q1(v)� 1
 T

1(v)P1

�

 2(v)Q

� 1
2

2 (v)
�

:



Thus, by continuity arguments, picking


 > max
v2I

� max

�

Q
� 1

2
2 (v)
 T

2(v)
�
P1 + P1
 1(v)Q1(v)� 1
 T

1(v)P1

�

 2(v)Q

� 1
2

2 (v)
�

brings the desired result, withF1 = P1 and F2 = 
P 2. �



APPENDIXD

SET-VALUED MAPPINGS

De�nition D.1 (Domain). Given a set-valued mappingF : Rn � Rm

domF = f x 2 Rn : F (x) 6= ;g

De�nition D.2 (Local boundedness). A set-valued mappingF : Rn � Rm is locally bounded

at x if there exists a neighborhoodUx of x such that F (Ux ) is bounded. F is locally bounded

if it is locally bounded at eachx. Given a setS � Rn , F is locally bounded relatively toS

if the set-valued mapping bF : Rn � Rm

bF (x) : x 7!

8
><

>:

F (x) x 2 S

; x =2 S

is locally bounded at eachx 2 S.

De�nition D.3 (Outer semicontinuity). A set-valued mappingF : Rn � Rm is outer semi-

continuous at x 2 Rn if for every sequence of pointsxk convergent tox and any convergent

sequence of pointsyk 2 F (xk), one has limyk = y 2 F (x). The mapping F is outer semi-

continuous if it is outer semicontinuous at eachx 2 Rn . Given a setS � Rn , F is outer

semicontinuous relatively toS if the set-valued mapping cM : Rn � Rm

bF (x) : x 7!

8
><

>:

F (x) x 2 S

; x =2 S

outer semicontinuous at eachx 2 S.

231



This page is intentionally left blank.



GENERAL CONCLUSION AND RECOMMENDATIONS FOR

FUTURE RESEARCH

In this dissertation, two speci�c problems arising in modern control systems were addressed.

On the one hand, stability analysis and stabilization for quantized LTI continuous-time

control systems. On the other hand, state estimation and observer-based control in the

presence of both sporadic sensing and actuation for the case of LTI continuous-time systems.

Although the two considered problems are tackled separately, the applicability of the results

issued from our research situates in the context of control systems with limited information.

Such a class of systems encompasses control systems built in the presence of communication

constraints and/or in the presence of limited sensing and actuation capabilities.

The methodology o�ered within the �rst part of this thesis leads to constructive computer-

aided tools for the analysis and the design of stabilizing controllers in the presence of actuator

and sensor quantization. Both static state feedback controllers and dynamic output feedback

controllers were considered, providing tools having a wide range of applications in real-world

settings. Basically, given a LTI continuous-time plant subject to (uniform) quantization,

either in the actuation channel or in the sensor channel or in both, the methodology we pro-

vided allows to design a LTI continuous-time controller ensuring uniform global asymptotic

stability of a compact set containing the origin, while enabling the shrinkage of such a set

via convex optimization.

The methodology o�ered within the second part of this thesis leads to constructive

computer-aided tools for the design of asymptotic observers that exponentially reconstruct

the state of a given LTI continuous-time plant, whenever the output is measured sporadically

and only a lower and an upper bound on the sampling interval is known. Moreover, such

observers can be used to stabilize a given LTI continuous-time plant in the presence of both

sporadic sensing and actuation. Concerning, it was shown that the design of the resulting

output feedback controller can be performed in two stages thanks to a separation principle.
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234 General Conclusion

Perspectives and Future Directions

As pointed throughout the conclusive chapters of this thesis, the work presented lets sev-

eral questions open. In particular, within the scope of the �rst part, the extension of the

o�ered methodology to other class of quantizers such as saturating quantizers is undoubt-

edly interesting and currently under investigation. Another interesting aspect, that is part

of our current research, concerns the chattering suppression achieved by mean of hysteretic

quantizers (see page 129 for further details). A likewise interesting aspect pertains to the

development of alternative algorithms to handle the bilinear terms a�ecting the derived con-

ditions. A worth improvement along that direction could be the derivation of more advanced

strategies to improve the search of the optima, like in [96].

As far as concerns the second part, the main aspects to investigate pertain to the extension

of the illustrated methodology to more general plant dynamics and to multi-ouput plants with

asynchronous sampled channels; see page 219 for further details. In this setting, considering

MIMO plants, another aspect to address is the construction of an observer-based controller

to account both sporadic sensing and actuation, in the presence of asynchronous channels

both in the input and in the output. This extension is worthwhile since it would help the

design of output feedback controllers for networked control systems ([62]) via the use of a

separation principle.
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