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Abstract

On Quantization and Sporadic Measurements in Control Systems:
Stability, Stabilization, and Observer Design

by

Francesco Ferrante

In this dissertation, two fundamental aspects arising in modern engineered control systems
will be addressed: On the one hand, the presence of quantization in standard control loops.
On the other hand, the state estimation in the presence of sporadic available measurements.
These two aspects are addressed in two di erent parts. One of the main feature of this
thesis consists of striving to derive computer-aided tools for the solution to the considered
problems. Speci cally, to meet this requirement, we revolve on a linear matrix inequalities

(LMIs) approach.

In the rst part, we propose a set of LMI-based constructive Lyapunov-based tools for
the analysis and the design of quantized control systems involving linear plants and linear
controllers. The entire treatment revolves on the use of di erential inclusions as modeling
tools and on stabilization of compact sets as a stability notion.

In the second part of the thesis, inspired by some of the classical observation schemes
presented in the literature of sampled-data observers, we propose two observers to exponen-
tially estimate the state of a linear system in the presence of sporadic measurements. In
addition, building upon one of the two observers, an observer-based controller architecture
Is proposed to asymptotically stabilize a linear plant in the presence of sporadic sensing and
actuation.
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Resune

Sur la quanti cation et l'intermittence de mesures dans les sysemes
de commande: stabilie, stabilisation, et estimation detat.

par

Francesco Ferrante

Dans cette trese, nous aborderons deux aspects fondamentaux qui se posent dans les sysemes
de commande modernes du fait de l'interaction entre des processus en temps continu et des
dispositifs nunreriques: la synttese de lois de commande en pesence de quanti cateurs et
I'estimation détat en pesence de mesures sporadiques. Une des caraceristiques principales
de cette these consiste egalementa proposer des nethodes constructives pour esoudre les
probemes envisages. Plus peciement, pour epondre a cette exigence, nous allons nous
tourner vers une approche base sur les iregalies matricielles lireaires (LMI).

Dans la premere partie de la trese, nous proposons un ensemble d'outils constructifs bases
sur une approche LMI, pour lI'analyse et la conception de sysemes de commande quanties
impliquant des moctles et des correcteurs lireaires. L'approche est base sur ['utilisation
des inclusions dierentielles qui permet de moceliser nement le comportement de la boucle
fermee et ainsi d'obtenir des esultats ineressants.

Dans la seconde partie de la tlese, inspies par certains schkemas d'observation classiques
pesenes dans la literature, nous proposons deux observateurs pour l'estimation de letat
d'un syseme lireaire en pesence de mesures sporadiques, c'esta-dire prenant en compte la
nature discete des mesures disponibles. De plus, en se basant sur une des deux solutions
pesenkes, une architecture de commande base observateur est propoee a n de stabiliser
asymptotiquement un syseme lireaire en pesencea la fois de mesures sporadiques et d'un
aces intermittenta I'entee de commande du syseme.
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GENERAL INTRODUCTION

In this dissertation, two fundamental aspects arising in modern engineered control systems
will be addressed: On the one hand, the presence of quantization in standard control loops.
On the other hand, the state estimation in the presence of sporadic available measurements.
These two aspects are addressed in two di erent parts.

One of the main feature of this thesis consists of striving to derive computer-aided tools
for the solution to the considered problems. Specically, to meet this requirement, we
revolve on a linear matrix inequalities (LMIs) approach. The spirit of such an approach
consists of formulating the considered problem directly in a form that is convenient from a
numerical standpoint, instead to derive closed form solutions, which can be a cumbersome,
often impossible, challenge. Then, thanks to the availability of e cient algorithms for the
solutions of LMIs, the solution to the considered problem can be derived through e cient
computer-aided tools; seeg.g, [126] for an interesting survey on this aspect.

The contents of the two parts composing this thesis are brie y illustrated below.

Quantization in control system

Most of the modern engineered systems are composed by continuous-time plants interacting
with digital devices and/or data networks. In all these settings, quantization is an always
present phenomenone.g, [17, 21, 32, 35, 51, 84, 116, 117] just to cite a few.

In this rst part of this thesis, we propose a set of LMI-based constructive Lyapunov-
based tools for the analysis and the design of quantized control systems involving linear plants
and linear controllers. The entire treatment revolves on the use of di erential inclusions as
modeling tools, and on stabilization of compact sets as a stability notion.



State estimation and observer-based control in the pres-
ence of sporadic measurements

In real-world engineering applications, assuming to continuously measuring the output of

a given plant is undoubtedly unrealistic. This practical needed has brought to life a new
research area aimed at developing observer schemes accounting the discrete nature of the
available measurements; see,g [1, 4, 6, 74, 92].

In this part of this thesis, inspired by some of the classical observation schemes presented
in the literature of sampled-data observers, we propose two observers to exponentially es-
timate the state of a linear system in the presence of sporadic measurements. In addition,
building upon one of the two observers, an observer-based controller architecture is proposed
to asymptotically stabilize a linear plant in the presence of sporadic measurements and in-
termittent input access. The design of such a controller is streamlined by the derivation of
a separation principle for the considered architecture.

A unique feature of the proposed approach consists of hinging upon the hybrid systems
framework proposed in [56]. On the one hand, by following this approach a completely
novel modeling of the considered observers is provided, as well as the derivation of novel
systematic design strategies is illustrated. On the other hand, the huge exibility provided
by the framework in [56] allows to envision very appealing extensions of the results presented
in this part, giving rise to novel lines of research.
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INTRODUCTION

General Overview and some Historical Aspects

Recently technology enhancements have enabled the conception of a new generation of engi-
neered systems integrating physical interactions, computational and communication abilities.
The rapid spreading of this kind of systems stems from the worthy advantages in scalability,
ease of maintenance and high computational resources entailed by the use of cutting-edge
technology solutions in real-world applications, as transportation systems, automotive, au-
tonomous robotics, energy delivery systems etc. This new trend has been having a strong
impact also in modern control systems that are nowadays built via the adoption of digital
controllers and digital instrumentation [93]. Typically physical systems evolve continuously
as the ordinary time ows and are characterized by variables that take values in uncountable
sets. Instead, digital devices evolve in a discrete fashion and their evolution is characterized
by variables taking values in countable set. When a physical system interacts with a digital
one, side e ects as time-delays, asynchronism, quantization, are unavoidable issues that can
often turn into an overblown performance degradation, like the appearing of limit cycles or
chaotic phenomena or even instability of the closed-loop system.

Concerning the e ect of quantization in control systems, since such a phenomenon is
almost pervasive in modern engineered control systems, its study has extensively attracted
researchers over the last years; seeg, [17, 21, 32, 35, 51, 84, 116, 117] just to cite a few.

The negative impact of quantization on control systems seems to be already known in
the late 50's, an attempt to tackle with this phenomenon can be traced back in the work of
Kalman featured in [70]. In this paper, quantization was essentially addressed via stochastic
tools. In fact, until the late 80's, the common trend considered by researchers in addressing
guantization in control systems consisted to look at quantization as a phenomenon inducing
a non deterministic deviation of the quantized control system from its nominal (quantiza-
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tion free) behavior. Therefore, the standard custom was designing controllers via standard
techniques while overlooking quantization. Then, to somehow to capture the real behavior
of the closed-loop suitable stochastic characterizations of the quantization error were con-
sidered; see [6]. Clearly this approach can be e ective whenever the level of speci cation
is rather modest and the quantization somehow restrained. Therefore, since digital devices
at that time were becoming pervasive in control systems and at the same time the level
of performances required was continuously increasing, new systematical tools to deal with
guantized control systems in their actual nature were necessary. In the late 80's, the works
of Delchamps [34, 35], and to some extent the one of Miller et al. [89], marked a water-
shed in the literature of quantized control systems proposing an alternative approach to deal
with stability and stabilization in quantized control systems. Such an approach consists of
modeling the quantization phenomenon through a static nonlinear function, thguantizer,
mapping a real variable into a variable belonging to a countable s&, i.e., q:R ! Q .
The methodology proposed by Delchamps et al. ([34, 35]) is relevant since it has brought
to life a new research area founded on the tools issued from the nonlinear control theory for
the study of quantized control systems. From then, the rapid development of the control
systems science in the setting of quantized control has rapidly given rise to di erent ap-
proaches and tools to deal with quantization in control systems. Essentially such approaches
share a common fundamental idea that builds on a robust control point of view. Namely,
the closed-loop system is modeled as a nominal system perturbed by a (potentially locally)
bounded perturbation,i.e., the quantization error. First attempts resting on this approach
for the special case of SISO systems can be found in [89]. In particular, in [89] the authors
attack the problem of having quantized measurements in a linear control system by rst
bounding the quantization error and then by pursuing a Lyapunov approach to establish
ultimate boundedness. One of the main important feature of this paper consists of point-
ing out that asymptotic stability of the origin of quantized control systems can be unlikely
achieved due to nite precision information provided by quantizers. Later on, this general
approach has been extended in [17] to general linear systems with quantized measurements,
in [82] to nonlinear systems in the presence of quantized control inputs or quantized mea-
surements, while in [83] an observer-based controller architecture is presented to build an
output feedback controller in the presence of quantized measurements. The key idea adopted
by the authors in all these latter publications consists of addressing quantized control sys-
tem via the input-to-state stability notion due to Sontag; seege.g, [114]. In particular, the
authors shown that input-to-state stable control systems have the needed robustness to tol-
erate quantization. We emphasize that in all these works, the authors besides pointing out
the relevance of input-to-state stability in quantized control systems, by relying on a more
sophisticated type of quantizer allowing the possibility to dynamically scaling the quanti-
zation error (called in general dynamic quantizer), provided novel control policies to ensure
asymptotic stabilization rather than ultimate boundedness. This approach has given rise to
a complete novel line of research more focused on an information point of view, that is aimed
at characterizing the quantity of information actually needed to achieve stabilization of a
given plant depending on its open-loop behavior; see.g, [121] and the references therein.
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Subsequently, in [21] the authors by restricting the attention to logarithmic quantization
and by pursuing a sector bound approach relax the input-to-state stability requirement to
achieve stabilization of nonlinear systems with input quantization, at least for the case of
logarithmic quantization. This fact of encapsulating quantization error into a sector before
being used in [21] was already considered in [51], for the case of discrete-time linear systems.
These latter approaches show that quantization can be e ectively faced by the use of robust
control tools as the sector bound approach. The main e ort made in these latter works is
concerned to achieve asymptotic stability of the origin via a quantizer as coarse as possible.
On the other hand, the asymptotic stabilization of the origin can be achieved in general
only when the considered quantizer is in nitely precise close to the origin, as it is for the
case of the logarithmic quantizer. However, in some real-world settings the availability of
such a kind of quantizers cannot be considered due to technological or optimization con-
straints. This consideration originated a complete analysis in [21, 36] of the case of nite
symbols logarithmic quantizers. Speci cally, in [21] the authors shown that in such a case
under analogous conditions as in the case of the genuine logarithmic quantizer, semi-global
practical stabilization can be easily achieved in the presence of a nite number of symbols,
at least for the case on input quantization.

Another interesting and fundamental aspect linked to quantized control systems regards
the issues related to discontinuous behaviors induced by quantizers in standard control loops.
Indeed, the fact that quantizers map uncountable sets into countable ones implies that
guantizers are essentially discontinuous mappings. This fact has a serious impact when
guantizers interact with dynamical systems. Indeed, it is well known that discontinuities
give rise to serious problems when coupled with di erential or di erence equations [22, 31,
46, 75, 78]. Such problems range from questions related to the existence and the nature
of the solutions to the resulting closed-loop system (in continuous-time dynamical systems)
to robustness issues of the closed-loop system with respect to small perturbation and/or
measurement noise (continuous-time and discrete-time dynamical systems). The serious
questions arising from discontinuities in di erential equations were already known in the
late 60's by the community working on di erential equations, as testi ed by the work of
Hajek in 1979 [59] that o ers an interesting survey on this appealing topic.

Later on, the increasing number of real applications concerning discontinuous di erential
equations has notably boosted the research in this area. Such an intense research has led
to a comprehensive and solid theory to address discontinuous right-hand side di erential
equations, important results and contributions in this eld can be found in [10, 46, 77] just to
cite a few, while an interesting and with a modern avor survey on discontinuous dynamical
systems is contained in [31]. We emphasize that the huge development of the modern theory
of discontinuous dynamical systems have been made possible by the development of the
theory of di erential inclusions; see,e.g, [7, 28], which are the main tool, although not the
unique, to address discontinuous dynamical systems.

Despite the deep knowledge available nowadays about discontinuous dynamical systems,
surprisingly no much work in that setting has been done in the literature to deal with
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guantized control systems. Building on the tools originally proposed in [77], a rst work
0 ering a treatment of quantized continuous-time control systems seems to appear in [21].
Further results have been presented later in [22].

In our opinion, the main reason behind this lack of contributions looking at quantized sys-
tems as discontinuous dynamical systems is mainly due to the fact that the greatest number
of publications within this eld deal with discrete-time systems rather than continuous-time
ones. In the case of discrete-time systems, certainly the concerns related to the existence of
solution are no longer a problem. Nonetheless, discontinuities in discrete-time systems may
jeopardize the robustness of the resulting closed-loop system. Interesting examples about
this aspect are showne.g, in [75, 78]. On the one hand, pursuing a robust control approach,
as the sector bound approach discussed above, generally prevents from running into poorly
robust control systems even if the discontinuity is not directly accounted. On the other
hand, such a discontinuity may give rise to behaviors for which a traditional analysis cannot
provide any precise justi cation.

Nevertheless, in modern engineered systems the classical paradigm of considering quanti-
zation only paired with discrete-time systems needs to be reconsidered. Many examples can
be found in which continuous-time dynamical systems interact with quantized variables; see,
e.g. [22]. Thus, a proper treatment of the situations falling into this context is a real need.

Contribution

The contribution we o er in this rst part of this dissertation aims at bridging the gap left

by the existing literature concerning the (almost) lack of constructive methods for quantized
linear control systems, with a special focus on uniform quantization. Speci cally, we restrict
our interest to the class of continuous-time linear time-invariant systems. The issues related
in having closed-loop systems modeled via discontinuous right-hand side di erential equa-
tions will be faced via the proper tools proposed by literature, likewise to [21]. In particular,
inspired by the literature of saturating systems, we provide constructive LMI-based con-
ditions for the stability analysis and the controller synthesis encompassing several settings
naturally arising in real-world applications. Such conditions enable to couple optimization
aspects with the considered problems, in a similar, although dual, fashion to the case of
saturated closed-loop systems. The use of optimization as a tool for conservatism reduction
and closed-loop behavior improvement are the main aims of this thesis.

The main feature of the methodology we propose in this dissertation consists of merging
together aspects arising from discontinuous-right hand side di erential equations with a
constructive approach.

The remainder of this part is organized as follows.

Chapter 1 illustrates the modeling framework adopted in this dissertation to deal
with quantized control systems, with a special emphasis on linear control systems and
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uniform quantization. Moreover, the technical foundations underlying the pursued
approach are thoroughly illustrated and commented within this chapter.

Chapter 2 deals with static state feedback control for linear systems in the presence of
uniform quantization. In this setting, constructive conditions for the stability analysis
and the controller design are provided. Some of the results presented in this chapter
can be found in [40].

Chapter 3 deals with dynamic output feedback control of linear systems in the presence
of uniform quantization. Even in this case, the proposed approach is constructive and
strives for obtaining tractable conditions from a numerical standpoint. Some of the
results presented in this chapter are included in [37, 38].

Numerical solutions to LMIs throughout this dissertation are obtained via YALMIP [87] and
coded in Matlab.
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QUANTIZED CONTROL SYSTEMS: MODELING AND
TECHNICAL FOUNDATIONS

\What is now proved was once only imagined."

{ William Blake

1.1 Introduction

n this chapter, we present the quantization phenomenon in its general form, and the
I problems arising from the presence of quantizers in standard control loops. Then, the
general aspects of quantization in control systems are sharpened for the case of linear control
systems subject to uniform quantization. In this context, we illustrate some technical results,
that will be used in the sequel of this dissertation.

1.2 Quantized Systems: Modeling

Following the general approach proposed in [35], in this dissertation, geantizer, we mean
a function g that maps the Euclidean spac® into a countable setQ R, that is:

8
2R 1Q

q: . (1.1)
“x 7! q(x):
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In this part of this dissertation, we are interested in analyzing the impact of quantization on
standard control systems. Speci cally, let us consider the following nonlinear plant

(1.2)

wherex 2 R" is the state,u 2 R™ is the control input andy 2 RP is the plant output, that
in some cases can also coincide with the whole state vectorf : R"! R",andh: R"! RP
are two given functions.

Suppose that the system (1.2) is controlled through a feedback controller, whose input
coincides with the measure of the plant outpuly, and generates a control signal; which
feeds (1.2). On the other hand, in real implementations, the plant and the controller are
not directly connected together. Indeed, measurements of the plant output are gathered via
physical sensors. In modern applications, often such sensors have a nite precisiery,
optical encoders, digital sensors, etc. In all these situations, the measured plant output sent
to the controller is represented by means of a discrete set of values., is quantized. In
the sequel, we will denote this case aensor quantization Fully analogous considerations
hold for the input channel. In particular, the adoption of nite-resolution actuators, (as,
e.g, stepper motors), or nite precision realization of the controller entails a quantization
of the control signal. In the sequel, we will denote this case astuator quantization More-
over, actuator and sensor quantization may also occur simultaneously. For instance, this
situation occur in distributed control systems, where the physical interconnection between
the controller and the plant is ensured by a nite-bandwidth communication channel; see
Figure 1.1. Indeed, in such a situation, the communication channel prevents from sending
in nite precision data from one end to the other; see [22, 62]. Thus, in these contexts,
building from (1.2), the open-loop plant model to be considered for the analysis, but even
for the design, of the control system should be as follows

u= qu(uC) (13)

whereyy,, and u. are, respectively, the measured output and the signal sent to the plant.
Remark 1.1. In the proposed model (1.3), the dynamics of sensors and actuators do not
directly appear. On the other hand, such dynamics can either be neglected, whenever they
are much more faster of those of the plant, or be incorporated either in the plant model,
or in the controller model. Thus, the modeling framework given in (1.3) is without loss of
generality.

Concerning the controller structure, depending on the availability of plant state, we con-
sider two classes of controllers.
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Figure 1.1: A networked control system. Both the controller and the plant communicate
with the channel via a nite data rate.

Static State Feedback Controller

Whenever the plant statex is fully accessible, that ish = id, we will adopt a static state
feedback control law. In particular, in this setting, three situations can occur. In the rst
case, the plant state is assumed to be measured directly, thatys = y = x, and only the
control input is subject to quantization. In this case,u =q,( (x)), where :R"! R™isa
given function. In the second case, we assume that only the measured statis quantized,
whichyieldsu = u. = (g,(x)). Finally, in the third case, we assume that both the measured
state and the control input are quantized, that isu = q,( (g,(x))). In this latter case, that
encompasses the two others, the closed-loop system reads

zx =T (xu)
Th qu(uc) (1.4)
U= (a,(x))

Dynamic Output Feedback Controller

Whenever, the plant state is not fully accessible, we adopt a dynamic output feedback control
law de ned as follows 8

<X = (Xc;Ym)

S U= ! (Xe; Ym)
where x; 2 R" is the controller state, and : R RP! R", I :R" RPI R™ are
two given functions. In this case, three di erent scenarios can be considered. In the rst
one, the plant output y is quantized, namely the measured output e ectively accessible is
Ym = dy(y). In the second one, the control inputu is quantized, namelyu = q,(uc), while
in the third one both the plant output, and the control input are quantized. In this latter

(1.5)
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case, that encompasses the two others, the closed-loop system reads
8

! (Xc; Ym) (1.6)
u=q,(uc)
" Ym =0y (h(x))

c
o
1

x = f(x;u)
%& = (Xc;Ym)

1.2.1 Discontinuous Dynamical Systems

From the general representation given by (1.1), it turns out that a quantizer is a function
that maps the Euclidean space into a countable set. This fact implies that, whatever is
the way adopted to realize such a mapping, the resulting map is discontinuous. Recall that
any continuous function maps the Euclidean space, which is connected, into a connected
set, (see,e.g, [107]), then in general uncountabfe Therefore, in any situation of those
presented above, the closed-loop system is described by a discontinuous-right hand side
di erential equation. Therefore, there are no guarantees about the existence of classical
solutions to the closed-loop systemie., everywhere di erentiable functions which satisfy
the dynamics of the closed-loop system at each point in their domain; see [46]. To overcome
this drawback, more general notions of solution are proposed in the literature. In particular,
in this dissertation we will consider the notion of solution due to Caratheodory; sees.g.,
[22, 31], and the notion due to Krasovskii; [77]. In the sequel, such notions are thoroughly
presented and illustrated in some examples. In particular, we introduce them for a dynamical
system in the following form.

x = X(Xx) (1.7)

wherex 2 R",and X : R"! R",
De nition 1.1  (Caratreodory solution, [31]). Let | R o be an interval containing 0. A
function ' : I ! R" is a Caratreodory solution to (1.7) if' is absolutely continuous onl,
and’

()= X( (1) foralmostall t2I:

The above de nition does not insist either on on the di erentiability of ' or on the fact
that (1.7) needs to be satis ed on the whole domain of the solution. This weakening with
respect to the classical notion given by Peano ([98]) allows to deal with a wider class of
situations often occurring in control problems.

To delve into this issue, let us consider the following example.

1The only countable connected sets are the singletons. But this case is not of interest in our setting
’Let J R be agiven interval, andf : J ! R" be a given function, the derivatives off are considered
one-sided derivatives at the end points of].
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Example 1.1. Consider the system (1.7) for which

8
21 Xx=0

X(x)= (1.8)

1 elsewhere

Obviously, the system de ned by (1.7)-(1.8) does not admit any solutioh in the sense given
by Peano with' (0) =0, i.e., a derivable function satisfying (1.7) for each 2 dom' . Indeed,
let us assume that there exists such a solutionde ned over [0 T], for someT 2 R . Then,
since it needs to satisfy (0) = 1, and being' derivable, there would exist a small enough
positive T? such that for everyt 2 [0; T9, ' (t) > 0, giving' (t) > 0 fort 2 (0; T9. However,
this contradicts the fact that ' satis es (1.7)-(1.8) over [QT].

In the above example, the issue preventing from the existence of a classical solutign
with ' (0) = 0, stems from the fact that the discontinuity of the right-hand side imposes
a constraint that does not allow' to ow away from zero. Obviously, this drawback only
occurs whenever a solution comes across to the origin. In particular, completely di erent
conclusions can be drawn by following the notion of solution due to Caratreodory. This fact
is shown in the following example.

Example 1.2. Let us consider the system de ned by (1.7)-(1.8). We want to investigate
the existence of Caratreodory solutions; , with ' (0) = 0, to such a system. According to
De nition 1.1, forevery T > 0,' (t) = tis a Caratheodory solution for (1.7)-(1.8), Indeed,
such a solution is such that (t) = X (" (t)), for everyt 2 (0; T]. Namely,' does not satisfy
the related di erential equation in t =0, i.e., it satis es (1.7)-(1.8) for almost allt 2 [0; T].

The above two examples have the merit to show how via a more general notion of so-
lution, one may overcome drawbacks arising from discontinuous right-hand side di erential
equations. However, in some cases, the notion of solution due to Caratlreodory is not weak
enough to guarantee the existence of solutions. To understand the relevance of this issue, let
us consider the following example, which situates more in the context of this dissertation.
Example 1.3. Consider the following given plant with quantized actuator

8

< u

|><
1

Cu=q(uc)

Specically, q: u. 7! sign(u.), for which we consider sign(0) = 1. That is g maps the
Euclidean space intd  1;1g.

Let us suppose that we want to stabilize the above plant via the following static state
feedback controlleruc = x. Then, the closed-loop system reads

X = sign(x): (1.9

Clearly, the closed-loop system does not admit any Caratleodory solution with * (0) = 0.
Indeed, by contradiction, let' be a Caratteodory solution to (1.9) with ' (0) = 0. For
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everyx 2 R, de ne the function W(x) = %xz. Then, since' is absolutely continuous on its
domain, and W (x) is continuously di erentiable on R, the function W(' (t)) is absolutely
continuous on dom . Hence, its derivative exists for almost alt 2 dom' , and whenever it
exists

WD = wsigne @)= | @i

Thus, sinceW (' (1)) is absolutely continuous, then

Z, . z,
W( (1) = . dW(dS(S))ds= . j' (s)jds 8t 2 dom'

where the above integral needs to be intended as a Lebesgue integral; sag, [107].

Now, asW (x) is nonnegative for everyx 2 R, then for almost allt 2 dom' , it needs to
be' (t) = 0. But, such a function is not a Caratreodory solution to (1.9). Indeed, suppose
that ' is a solution to (1.9), and that it is equal to zero for almost alt 2 dom' . Then, it
follows that, z,
(1) = . sign( (s))ds= t 8t 2 dom’

but this contradicts the fact that ' is equal to zero for almost alt 2 dom' .

The above example shows that unfortunately the notion of solution due to Caratheodory
is still not enough to guarantee the existence of solutions for a given discontinuous right-
hand side di erential equation. To overcome this problem, in the literature several notions of
solution are proposed; see.qg, [8, 46, 77, 111]. In this dissertation, we embrace the notion
of solution due to Krasovskii [77].

De nition 1.2  (Krasovskii solution [59]) For eachx 2 R", let us de ne the following
set-valued mapping

KIX1(x) = ' cox (x+ B) (1.10)
>0

where B is the closed unitary ball inR". A function ' : 1! R", with | R ( an interval
containing 0, is a Krasovskii solution to (1.7) if it is absolutely continuous oh, and

() 2 K[X](C (1) foralmostall t2I:

In this dissertation, for any function X, we will refer to the set-valued mappindK[X ](x)
as Krasovskii regularization ofX (this terminology is proposed in [56]).
Remark 1.2. Notice that, the Krasovskii regularization of a locally bounded function
X:R" I R" has some interesting properties as set-valued mapping. In particular, by
de nition of the Krasovskii regularization, it follows that for each x 2 R", K[X](x) is con-
vex, domK[X] = R", and according to [56, Lemma 5.16([X] is outer semicontinuous. In
addition, local boundedness oK vyields local boundedness df[X]. These properties will
be of interest in the sequel of this dissertation.

Three main reasons encourage to choice this kind of notion in control problems. The rst
one is that Krasovskii solutions exist under very mild requirements, (below a formal result
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concerning existence of Krasovskii solutions is given). The second one is that, whenever
they exist, Caratheodory solutions are Krasovskii solutions. Then, any conclusion drawn on
Krasovskii solutions also holds for Caratheodory solutions. The third one is that, as shown
in [59, Corollary 5.6.], (and also more recently in [56, Theorem 4.3.]), Krasovskii solutions
coincide with Hermes solutions, which are de ned as follows

De nition 1.3  (Hermes solutions [59]) A function '  is a Hermes solution to (1.7) on a
compact intervalJ R, if there exist a sequence of measurable functiofp,g;-, de ned

on J, and a sequence of function§' ygi_, de ned on J, such that' \ is a Caratheodory
solutionto ' , = X ('  + px), the sequencd pcgi-, converges uniformly to the zero function
onJ, and' ¢ converges uniformly to' 4 onJ.

The notion of Hermes solutions allows to capture the e ect of arbitrarily small state
perturbations on the solutions to (1.7). Such perturbations may represent actuation dis-
turbances, measurement noises, or modeling errors. Thus, this fact provides a strong jus-
ti cation fostering the adoption of Krasovskii (Hermes) solutions in control problems. The
reader may consult [56, Example 4.1.] for a interesting example showing connections between
Krasovskii solutions and Hermes solutions, in a case similar to Example 1.2. Concerning the
existence of Krasovskii solutions, let us consider the following result giveag, in [23, 56],
and which is direct consequence of general results on di erential inclusions presented in [7].
Such a result uses the notion of locally bounded function.

De nition 1.4  ([30]). A function f : S is locally bounded if for everys 2 S there exists a
neighborhoodB of s, such that f (B) is bounded.

Theorem 1.1. Let Xg 2 R". If X is locally bounded, then there exists at least a Krasovskii
solution' to (1.7), such that' (0) = Xo:

To exploit the notion of solution due to Krasovskii, one needs to compute the Krasovskii
regularization of the function X, which in general is a nontrivial task. To simplify such a
task, we illustrate below some properties of the Krasovskii regularization for a given function
X. Such properties were originally proposed for the Filippov regularization in [97], and then
extended to the Krasovskii regularization in [23].

Proposition 1.1.

(i) If X:R*! R2is continuous atx 2 R, then K[X](x) = fX (x)g
(i) Given two locally bounded functions1; X,: R ! Rz thenK[X1+X5](x) K [X1](2)+
K[X2](z). Moreover, if either X4 or X, are continuous atx 2 R *, then equality holds.

(i) Given two locally bounded functionsX;: R* ! Rz, and X,: R* ! R:? 2, (X,
is a matrix valued function). If X, is continuous atx 2 R, then K[X,X](x) =
X2(X)K[X1](x); where for everyx 2 R*, X,X1(X) = Xo(X)X1(X).

Moreover, as follows, we propose another result, that will be of interest in the sequel.
Such a result is somehow derived from [97].
Proposition 1.2. Let X1: R*! R be a locally bounded function, anX,: R3*! R a
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continuous function. Then, for eachx 2 R 3,

KIX1 Xo](x) K [X1](X2(x)): (1.11)

Proof. First of all, for eachx 2 R 3, let us de ne the sef
L(x)= flimX; Xo(X)jxk! xg R?2

wherexy is any sequence converging to. SinceX; X, is locally bounded, according to [9,
Lemma 1], it turns out that for every x 2 R3, K[X; X](X) = co L(x). For eachx 2 R3,
de ne the set

P(x) = flim Xy(p)jpk ! X2(X)g R

where p¢ is any sequence converging tX,(x). Pick any | 2 L (x), by de nition, there
exists a sequence, ! X, such that| = lim X; Xy(xx). For any k 2 N, de ne the
sequencg—= X(xx), then | =1lim X1(px). On the other hand, sinceX is continuous, then
P« ! X2(x), which implies that | 2 P (x). Since this property holds for anyl 2 L (x), it
follows that, for eachx 2 R 2,

L(x) P (x)

Therefore, taking the convex-hull of both sides of the above relation and recalling that for
eachx 2 R?
K[X1](X2(x)) = co P(x)

establishes the result.

Remark 1.3. Notice that showing the complementary inclusion to (1.11) requires additional
assumptions on the functionX ,. In particular, the equality can be established requiring that
X is smooth and that for eachx 2 R 2 rankr X,(x) = 1; see [97].

Another result, still derived from [97], is given next. Such a result is useful to address
decentralized discontinuous functions, often occurring in control problems.
Proposition 1.3. For eachi =1;2;:::;7, let X;: R" ! R" be locally bounded functions.

Let, for eachx 2 ., R™,

Y (x) = | Xi(Xi):

i=1

Then, for eachx 2 ;=1 R", the following identify holds

KIYIx) = KXI(xi): (1.12)

i=1

Proof. For notation simplicity, we prove the above result for = 2, the extension to the

3This notation is inherited by the seminal work of Paden and Sastry [97] presenting calculation rules for
the Filippov regularization.
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general case is straightforward. First of all, for eack 2 R"t  R"2, |et us de ne the set
L(x)= flimY(xx)jxx! xg R"™ R™

where X is any sequence converging te. SinceY is locally bounded, according to [9,
Lemma 1], it turns out that for every x = (x1;X2) 2 R"™  R"2,

K[Y](x) = co L(x):
We want to prove that

|flim X1(Yk)iyk ! xlg{zf lim X 2(zk)jz ! X29 L (x)
H(x)

where y, and z, are any sequences converging, respectively, x@ and x,. To this aim,
for eachx 2 R" R"2, pick w 2 H(x). By de nition, there exist two sequencesy; z
converging, respectively, toK; X, such that

w = (lim X1(yk); lim X2(z)):

De ne the sequencexy = (Yx; zk), and notice that x, ! x. Therefore, sincew = lim Y (X),
it follows that w 2 L (x). Thus, since the latter construction holds for everyw 2 H (x), it
follows that for eachx 2 R"t R"2

H(x) L (x):

Now we want to prove the complementary inclusion. To this end, for each2 R"t R",
pick w 2 L (x). Then, by de nition, there exists a sequence converging tox, such that
w = lim Y (xk). Split such a sequence with respect to its componentse., Xx = ( Yk; Z). By
the de nition of Y, if follows that

w = (lim Xq(yi); lim Xo(z))

that is w 2 H (x). Thus, for eachx 2 R R"2, L(x) H (x). The two shown inclusions
yield, for eachx 2 R"t  R"z,
H(x) = L(x):

To conclude the proof, notice that by taking the convex-hull of both sides of the latter
expression gives

coL(x) =co(flim Xy(yi)jyk ! x19 f lim Xa(z)jze ! X20)
=coflimXi(yw)jyk ! X19 coflim Xa(z)jze ! X20= K[X1](x1) K [X2](X2):

4We used the following property. Let, fori = 1;2;:::;s, S R" given sets, then co is:1 S =
is=1 coS;; see [13].
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Remark 1.4. The above result decreases the conservatism of [97, Theorem 1 (3)] for the
special class of functions considered. Notice that, whenever for each 1;2;:::;s n, = 1,
the above theorem specializes to the case of decentralized functions.

By using the rules illustrated in the above result, we reconsider Example 1.3 to investigate
the existence of Krasovskii solutions, with * (0) = 0.
Example 1.4. Consider the quantized closed-loop system given in (1.9). Notice that, since
the function sign() is locally bounded, (in fact bounded), according to Theorem 1.1, at least
for small enoughT, there exists a Krasovskii solution to (1.9) for everyy 2 R. To determine
such a solution, one needs to rst determine the Krasovskii regularization of sign(x). In
particular, as for everyx 6 0, sign(x) is continuous, by the items (i) and (iii) of Proposition
1.1, and via the expression given in (1.10), one gets

8

% 1 x>0
K[ sign](x):§1 x< 0

[ 1,1 x=0:

Di erently from Example 1.3, the zero function is a (the unique) Krasovskii solution to (1.9)
on any interval of R , and obviously' (0) = 0. The main di erence with respect to Example
1.3 consists of having enabled solutions starting from the origin to be constant.

At this stage, it should be clear that di erential inclusions play a key role in this disser-
tation. In particular, let us consider the following di erential inclusion

X 2 F(x) (1.13)

wherex 2 R, and F(x): R R. For such a dierential inclusion, let us consider the
notion of solution given next.

De nition 1.5. Let | R o be an interval containing 0. The function' : 1! R" is a
solution to (1.13) if ' is absolutely continuous on, and

(1) 2 F(' (1)) foralmostall t2 I:

The above de nition allows to consider Krasovskii solutions to a given di erential equation
as the solutions to a certain di erential inclusion. Therefore, in the sequel, for the sake of
generality, results, de nitions and properties will be stated for general di erential inclusions
as (1.13).

Concerning solutions to (1.13), in this dissertation, we consider the following notions.
De nition 1.6  (Maximal solution [56]). Let ' be a solution to (1.13). Then' is said to be
maximal if there does not exist any other solution such that dom is a proper subset of
dom and' (t)= (t)foreveryt2 dom'.

De nition 1.7 (Complete solution [56]) Let ' be a solution to (1.13). Then' is said to
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be complete if supdom = 1 .
Remark 1.5. Clearly, every complete solution is maximal but the converse is in general not
true.

1.2.2 About Numerical Simulations of Krasovskii Solutions

To overcome the issues about the existence of solutions to (1.7), we addressed the study of
such a system, by means of the notion of Krasovskii solution. The adoption of this notion
perfectly ts in control problems. On the other hand, when one is interested in the numerical
simulation of (1.7), the question that naturally arises is how to integrate (1.7) to somehow
recover the behaviors captured by the notion of Krasovskii solution.

For this purpose, we need to introduce the notion of-polygonal approximation and Euler
solution, which are both given in [27].
De nition 1.8 ( -Polygonal approximation) Consider system (1.7). Giverx, 2 R" and
T > 0, consider the following construction

Fix an arbitrary partition of the interval [0 ;T], 0<t; <t,< <tn,Withty =T

and max ftgsr  tkQg
k2f 0;1;:;N  1g

Compute Xg+1 = Xk + (tker )X (Xk), for k=0;:::;N 1 andx(0) = Xp:
Build the piecewise a ne function' (tx) suchthat' (tx) = xx fork=0;1;:::;N 1.

The function' (t) is said to be a -polygonal approximation for (1.7).

De nition 1.9. A function ' g(t) is said to be an Euler solution to (1.7) if it is the uniform
limitfor ! O of a polygonal approximation (t) obtained by some partition of the interval
[0; T], and for somex, 2 R".

The interest in considering Euler solutions stems from the fact that, as proven in [16],
Euler solutions are Krasovskii solutions. In particular, notice that, among all the possible
polygonal approximations one can consider, the simplest and straightforwardly attainable
through a numerical procedure arises from selecting a uniform partitioning of the time in-
terval [0; T]. Namely, let N be an arbitrarily positive integer, x = % setto = 0 and for
k=0;1;2:::;:N 1, selecttyy, = t + % Thus, the sequence of polygonal approximations
fx%gh -,, if converges uniformly, has as a limit a Krasovskii solution to (1.7). Therefore,
for N su ciently large, the function X1 can represent a good approximation of a Krasovskii
solution to the considered system. This aspect is illustrated in the following example.
Example 1.5. Consider again the system analyzed in Example 1.3, and recall that for
such a system, there exists only a maximal Krasovskii solutian, with ' (0), i.e., the null
solution. Then, in this case, for every compact interval [O], whatever is the partition
used to determine -polygonal approximations to (1.3), as approaches zero, if the family of
functions' converges uniformly on the interval [QT], its (uniform) limit is the identically
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zero function on the interval [QT], that is

lim supj (t)j=0:
' 0t2[0;T]
In particular, this fact can be shown numerically in this case by considering a uniform

partitioning. Figure 1.2 shows the value of sup' r (t)j versusN. As N approaches in nity
t2[0;10]

( approaches zero), sup' %(t)j approaches zero, meaning thalt% uniformly approaches
t2[0:10]
the zero function on [010]. Figure 1.3 depicts some-polygonal approximations obtained

Figure 1.2: sUR,(o.1)' (S)j versusN, for a uniform partitioning.

for di erent uniform partitioning of the interval [0 ;5]: Figure 1.3 shows that as\ increases
the resulting -polygonal approximation approaches the null solution.

The above example shows that the notion of Euler solution and the fact that Euler
solutions are Krasovskii solutions provides some insights on how discontinuous systems could
be simulated to capture the peculiar behaviors of Krasovskii solutions. However, following
this approach based on Euler rst order integration entails two main problems. On the

"1(0) = " ,(0) = = ' 4(0) = Xo, and some of them may not be Euler solutions. For
instance, consider [23, Example 1], for whicki (x) = 3x*=, T = 1, and X, = 0. In this case, it
can be shown that ((t) = t32,' ,(t) =t 32, and" 3(t) = 0 are Caratteodory solutions (then
obviously Krasovskii solutions) to the considered system with,(0) = ' ,(0) = ' 3(0) = 0,
while the only Euler solution is' g(t) = 0, despite the continuity of the function X. On the
other hand, establishing if the considered sequence of polygonal approximations uniformly
converges whenevel approaches in nity could be nontrivial. Therefore, this aspect is still
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Figure 1.3: Some -polygonal approximations N = 10 blue, N =100 red, N = 1000 green)

worth of further investigations.

1.3 Uniform Quantized Linear Control Systems

1.3.1 The Class of Systems Under Study

In this dissertation, we focus on plants whose dynamics are linear, that is dynamical systems

in the following form 8
<X = Ax + Bu
: (1.14)
y=Cx
whereA 2 R" ", B 2 R" ™, and C 2 RP ". For such a class of plants, the following
standing assumptions will be considered in the sequel.

Assumption 1.1 (Standing assumption) The matrix A is not Hurwitz. 4
Assumption 1.2 (Standing assumption) The pair (A; B) is stabilizable, and the pair @; C)
is detectable. 4

Assumption 1.1 allows to exclude the trivial case of open-loop stable plants. Whereas,
Assumption 1.2 ensures that a linear stabilizing controller exists for the considered plant,
assumption that will play a fundamental role in our approach.

The interest in considering such a class of systems is twofold. On the one hand, many real
plants can be approximately modeled through a linear model, at least around an equilibrium
point. On the other hand, by considering linear plants, constructive methodologies can be
proposed. Namely, building on theoretical conditions, numerical algorithms for the solution
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to the analyzed problems can be derived.

In this particular case, being the dynamics of the plant linear, we reasonably consider also
linear controllers. Therefore, by specializing the various situations presented earlier to the
case of linear plant and linear controllers, we obtain the following models for the closed-loop
system.

Linear static state feedback controller.

%x_: Ax + Bu
;U= u(Uc) (1.15)
" U = K gy(x)

whereK 2 R™ " is the controller gain.

Linear dynamic output feedback controller.

8
%x_: Ax + Bu

X¢ = AcXc t+ Beym
Uc = CeXc+ Deym (1.16)
u=q,(uc)
" Ym =0,(Cx)
wherex; 2 R" is the controller state, andA. 2 R" "e;:B.2 R"™ P;C.2 R™ "¢;D.,2 R™ P
are the matrices de ning the controller model.

1.3.2 The Uniform Quantizer

In this dissertation, we focus on the uniform quantizer gR ! Z de ned as follows,
$ %
— Ju)
g(u) = sign( u) — (2.17)

where is a positive given real scalar characterizing the quantization error bound,e., for
everyu, jq(u) uj ;see Figure 1.4. Whenever,u 2 R, with ~ > 1, then

q(u) =(q(uy); quz) :::;q(u)):

Remark 1.6. Observe that the quantizer we consider in this dissertation, due to the larger
dead-zone around the origin with respect to a standard quantizer, it is genuinely uniform
only when restricted toR . The choice of this quantizer stems from having for a given
a quantizer as coarse as possible. Indeed, the standard uniform quantizer adop&d, in
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Figure 1.4: The uniform quantizer

[22], for a given > O induces a quantization error bounded by;. A quantizer similar

to (1.17) is considered in [85], although we slightly modi ed such a map to avoid having

a discontinuity at the origin. That said, since the quantizer we consider entails the same
bound on the quantization error as the in the case of the uniform quantizer in [85], with a

slight abuse of notation, we denote (1.17) uniform quantizer. We would like to emphasize
that all the results presented within this dissertation can be easily extended to encompass
the standard uniform quantizer usedg.g, in [22].

Notice that, since g(0) = 0, and the plant and the controller dynamics are homogeneous
(in fact they are linear), both for (1.15) and (1.16), the origin is an equilibrium point for
the closed-loop system. Assume that the origin is also globally asymptotically stable for the
guantization free closed-loop system, one may wonder whether the same property still holds
for systems (1.15) and (1.16). The following examples show that, in general, the answer to
this question is negative.

Example 1.6 (Isolated equilibria). Consider the quantized input version of the balancing

pointer from [69]. 5 3

8 2 3
Ex:4o 15X+405u
§_ 10 1

“u=q(uc)
Supphose tt}at the plant is controlled via a static state feedback controllar, = Kx, with
K = 13 7, and q() is the uniform quantizer with = 2. Notice that, whenever the plant
actuator is not quantized, the origin of the closed-loop system is globally asymptotically
stable, as spe& + BK )= f 3; 4g. In Figure 1.5 some closed-loop trajectories are shown.
Simulations show that the closed-loop system trajectories approach two isolated equilibrium
point. Therefore, the origin is no longer globally asymptotically stable.
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(a) Closed-loop trajectories

(b) A close-up showing the trajectories converging toward the two
equilibria

Figure 1.5: Quantized control system manifesting isolated equilibria.
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Example 1.7 (Limit-cycles). Consider again the balancing pointer plant described in the
above example, and assume that the measured state is quantized via a uniform quantizer
(1.17) with =0 :5. Suppose that the plant is controlled via the same static state feedback
controller given in Example 1.6,.e., uc = K q(x).

8 2 3 2 3
5)(:4 15X+405u
- 10 1

2
U= U

In Figure 1.6, some closed-loop trajectories are shown. Simulations show that the closed-
loop system trajectories approach a limit cycle, implying that the origin is not globally
asymptotically stable.

The two above examples show that, in general, the asymptotic stability properties of the
guantization free closed-loop system are destroyed by quantization. This phenomenon is
well established in the literature; seee.g, [22, 84, 117]. In particular, as far as concerns
(1.17), due to nite precision near the origin, such a quantizer induces in both (1.15) and
(1.16) a region of the state space wherein the control system runs in open loop. This implies
that if the origin of the open-loop plant is not asymptotically state, so is the origin of the
closed-loop system. For instance, consider system (1.16), and suppose that the origin of
the open-loop plant is not asymptotically stable. Let g and ¢, de ned as in (1.17), with
respectively , and . Pick x; =0, and Xq such that jCXgj y- Now, let' be a maximal
solution to x = Ax, with ' (0) = Xo. Due to linearity, there exists a strictly positive T, such
that jC' (1)) y for eacht 2 [0; T]. Thus, (' (t);0) is a solution to (1.16) on the interval
[0; T]. Since this construction can be repeated for any, such that jCXoj y,» and the
origin of the open-loop plant is not asymptotically stable by hypothesis, so is the origin of
(1.16). Basically, sensor quantization induces a lack of the feedback action in a polyhedral
region containing the origin, preventing from achieving closed loop asymptotic stability for
the origin. Similar arguments show that actuator quantization induces the same kind of
behaviors, while analogous considerations hold also for the simpler case of the static state
feedback control system (1.15).

1.4 Stability Notion and Preliminaries Results

The facts illustrated above, also via Example 1.6 and Example 1.7, underline that, in general,
requiring the origin of the closed-loop system (1.15) or (1.16) to be asymptotically stable is in
general impossible. In fact, quantized dynamical systems may manifest complex behaviors,
whose precise characterization, unless in particular cases, is far from trivial. On the other
hand, as shown in [84, 117], and qualitatively illustrated in Example 1.6 and Example 1.7,
under suitable conditions, the closed-loop system trajectories are bounded and converge into
a compact and invariant setA containing the origin, (such a set can contain limit cycles,
equilibrium point etc.). Loosely speaking, the seA gives an outer approximation, near the
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(a) Closed-loop trajectories

(b) A close-up showing the trajectories converging toward
two limit-cycles

Figure 1.6: Quantized control system manifesting limit-cycles.

origin, of the real behavior of the closed-loop system. In particular, the determination of
the set A enables to de ne a bounded region having two relevant properties: (1) Closed-
loop solutions starting insideA remain de nitely con ned in such a set, (2) closed-loop

solutions starting outsideA approach such a set. That said, it appears likewise interesting
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to investigate on what happens when the closed-loop system is initialized \near" such a set.
From a technical point of view, this fact prompts to seek for conditions guaranteeing the
asymptotic stability of a compact set containing the origin.

In particular, in this dissertation, for a general di erential inclusion as (1.13), we consider
the following notion of (uniform) global stability for a closed setA R, given in [124].
Such a de nition uses distance to closed set, and claksfunctions, which are given next.
De nition 1.10 (Distance to a closed set [56])Given a vectorx 2 R", and a closed seA,
the distance ofx from A is denotedjxja and is de ned by jxja = inf o4 kx  yk.

Remark 1.7. Notice that, given a closed seA R" and a positive real scalar , the set
of the points x 2 R" with jXja coincides with the setA + B. Such a writing will be
largely used throughout this dissertation.

De nition 1.11 (ClassK; functions [76]) A function :R ¢! R g,isaclasK; if is
zero at zero, continuous, strictly increasing, and unbounded.

The de nition of uniform global asymptotic stability of a closed-set is as follows.
De nition 1.12  (Uniform global asymptotic stability). Let A R" be closed. The seA
IS

uniformly globally stable for (1.13), if there exists a clas&; function , such that
every solution' to (1.13) satis esj' (t)ja (J' (0)ja) for everyt 2 dom'

uniformly globally attractive for (1.13), if every maximal solution to (1.13) is complete,
and for every" > 0 and > O there existsT > 0, such that for any solution’ to
(1.13) with j* (0)ja ,t T impliesj (t)ja "

uniformly globally asymptotically stable (UGAS) for (1.13), if it is uniformly globally
stable and uniformly globally attractive

The uniformity requirement considered in the above notion of stability implies that when-
ever the distance of the initial condition' (0) from the set A approaches zero, so does the
distance of the issuing solution (t) for eacht 2 dom' . The uniformity requirement consid-
ered in the attractivity property implies instead that the convergence rate of the solutions'
distance from the sefA is uniform with respect to the initial condition's distance. Although
the uniformity requirements considered in the above de nition gives rise to stronger no-
tions of stability than the one usually considered, it turns out that for the class of systems
and problems addressed in this dissertation, the uniformity requirement is without loss of
generality. This aspect will be clari ed through the results given in the sequel.

For the special case of compact sets, let us consider the following result which essentially
derives from the combined application of [56, Proposition 7.5.] and [124, Proposition 3]. The
derivation of such a result uses the de nition of strong forward invariance of a closed set
for a di erential inclusion, given e.g, in [26] and reported below, and general de nitions
concerning set-valued mappings that are reported in Appendix D.

De nition 1.13. Let A R" be closed. The seA is strongly forward invariant for (1.13)
if every maximal solution to (1.13) is complete, and (0) 2 A implies rge’ A .
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Now we are in position to state the mentioned result.
Proposition 1.4. Consider the di erential inclusion in (1.13), i.e.,

X 2 F(x) x2R"“F:R" R"™

Let A R be compact, strongly forward invariant and uniformly globally attractive for
(1.13). Let F be outer semicontinuous, locally boundedpmF = R", and such that for each
x 2 R" F(x) is convex. Then, the sef is UGAS for (1.13).

The proof of the above result uses clagél functions.
De nition 1.14 (ClassKL functions [76]) A function :R ¢ R o! R o, is aclasKL
function, if it is nondecreasing in its rst argument, nonincreasing in its second argument,
and
sI!lrQ+ (s;t) = t!lrpl (s;t)=0:

Then, the proof of the above result is as follows.

Proof of Proposition 1.4. Due to the properties required fo= in the statement of the above
result, since A is compact, strongly forward invariant, and uniformly globally attractive
for (1.13), thanks to [56, Proposition 7.5.] it follows thatA is stable for (1.13). Moreover,
due to the properties required forF, by the virtue of [124, Proposition 3] it follows that
there exists a classkL function , such that for every maximal solution' to (1.13), one has
for everyt 2 R o,

I"Mia (" (0)a:1)

which in turn, due to [124, Proposition 1], implies thatA is UGAS for (1.13), and this
nishes the proof.

Notice that the above result plays a fundamental role in establishing su cient conditions
to ensure UGAS of a certain compact set containing the origin. Indeed, as previously il-
lustrated in this chapter, the requirements on the right-hand side set-valued mappirfg(x)
needed for the applicability of Proposition 1.4 are obviously veri ed whenevd¥ (x) arises
from the Krasovskii regularization of a locally bounded function, which is the case in both
(1.15) and (1.16).
Remark 1.8. UGAS of a compact setA for (1.13) ensures that every maximal solution to
(1.13) is bounded. To see this, it su ces to observe that, being compact, for a large enough

> 0, one hasA B. Thus, since for everyx 2 R", jxj g ] Xja, and kxk | xj g+

Finally, boundedness of maximal solutions to (1.13) can be readily established by combining
the latter relations with the bounds issued from UGAS.

Before concluding this chapter, let us consider the following result, which will be exploited
in the sequel.
Proposition 1.5. Consider (1.13) and assume thatF is outer semicontinuous, locally
bounded, convex valued, andomF = R". Assume that there exists a continuously dif-

5See,e.qg. [124, Proposition 3] for a standard de nition of " stability of a compact set.
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ferentiable functionV: R" ! R such that

V(X)>0 8x60 (1.18)

im V(o =1 (1.19)

and two positive real scalars, and such that
hr V(x);fi V (x) 8x2L*(V);f 2 F(x) (1.20)

whereL" (V) = fx 2 R": V(x) g. Then, the setA = R" niIntL" (V) is UGAS for
(1.13).

The proof of the above result rests on the following lemma.
Lemma 1.1. Let A R" be compact. If there exists a continuous function :R"! R
such that for each > 0, every maximal solution' to (1.13) with ' (0) 2 A + B is complete,
andt ( Xo) implies' (t) 2 A. Then, A is globally uniformly attractive for (1.13).

Proof. The proof is straightforward. In particular, let > 0 de ne

- erTAa+XB( X)
and observe that being continuous andA compact, is well de ned. To conclude, notice
that for each maximal solution’ to (1.13) with ' (0) 2 A + B, one has thatt implies
' (t) 2 A and this concludes the proof.
Remark 1.9. The main feature of the above result consists of establishing uniform attractiv-
ity via nite time convergence, assuming continuous dependence of the convergence time on
the initial condition. Speci cally, the continuity requirement allows to establish uniformity
with respect to the initial condition.

Now we are in position to show the proof of Proposition 1.5.

Proof of Proposition 1.5. First observe that sinceV is radially unbounded, A is compact.
To prove that the set A is UGAS, we rstly show that A is strongly forward invariant for
(1.13) and that each maximal solution to (1.13) is complete.

Concerning strongly forward invariance, sincé\ is compact, thanks to the properties
required for F, from [56, Proposition 6.10.], it su ces to show that each maximal solution
starting inside A cannot leave such a set,e., completeness of such solutions automatically
holds. By contradiction, assume that there exists a maximal solution starting from A that
eventually leaves such a set. Then, there exists2 dom' such that' ( ) 2A, that is

V(e () >

Thus, since the functionV ' : dom' ! R is continuous, there exists 2 dom' such that

V( (s)=
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Without loss of generality’, assume that for eacht 2 (s; ], ' (t) 2 A. In other words,
s is the largest exit time of the solution® from the set A. From (1.20) thanks to the
Grenwall-Bellman lemma, it follows that for everyt 2 [s; ]

Ve@) e ©IV( ()

then
V(I () <V((9):

However, this contradicts the fact that' ( ) ZA, i.e.,
Is strongly forward invariant for (1.13).

cannot leave the setA. Hence, A

Concerning completeness of the maximal solutions starting outside, by retracing the
same steps performed above, it can be readily shown that every maximal solutlomo (1.13)
and with * (0) ZA cannot leave the sublevel sett . o, (V) = fx2 R": V(x) V(' (0)g.
Hence, since sublevel sets ®f are compact, it follows that every maximal solution to (1.13)
is bounded. Thus, thanks to [56, Proposition 6.10.], every maximal solution to (1.13) is
complete.

Bearing in mind completeness of maximal solutions to (1.13) and strong forward in-
variance of A, now we conclude the proof of the above result by showing that maximal
solutions to (1.13) converge in nite time into A. Pick any maximal solution' to (1.13),
with * (0) 2 Int. Let T = ft2 R o:' (t) 2 Ag, sinceA is strongly forward invariant,
either T = ; orsupT = 1 . In other words, if' eventually entersA, then by strong forward
invariance, it cannot leave such a set. By contradiction, let us suppose th&t= ;, then for
everyt 2 R o, ' (t) 2A. Therefore, still from (1.20), it follows that

V( () e 'V((©) 8t2R o (1.21)

Pick,
t }In V(' (O))1

from (1.21) one gets

V( (1)
thatis ' (t) 2 A, but this contradicts the fact that T = ;. Now, for everyw 2 R", de ne
8
20 w2A

()= Zln viw)i w2A

notice that is continuous on R", and that for every maximal solution to (1.13),t
( (0)) implies that (t) 2 A. Then, since every maximal solution to (1.13) is complete,
from Lemma 1.1 it follows that A is globally uniformly attractive for system (1.13). Now,

5This assumption, is discussed in [11] and for self completeness simple arguments justifying such an
assumption are given in Appendix A. Notice that, since' (s) may not exist, standard arguments revolving
of the monotonicity of the function t 7! V ' (t) cannot be exploited to conclude.
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A is compact, strongly forward invariant, and globally uniformly attractive for (1.13), from
Proposition 1.4 it follows that A is UGAS for (1.13), and this nishes the proof.

1.5 Conclusion

In this chapter, we illustrated the quantization phenomena in control systems, with a special
attention to uniform quantization and linear control systems. In particular, two main points
were addressed. The rst pertains to the notion of solution to adopt to deal with quantized
control systems. In particular, it was shown that the discontinuity introduced by quantizers
may jeopardize the existence of closed-loop solutions. This issue is completely overcame
by considering, for the closed-loop system, the notion of solution due to Krasovskii. The
other main aspect highlighted in this chapter regards instead the more convenient notion of
stability to adopt in dealing with quantized control systems. Indeed, for a general quantized
control system, requiring the asymptotic stability of the origin is unattainable. In this
setting, it was shown that considering the asymptotic stability of a compact set containing
the origin provides a way to guarantee a proper behavior of the closed-loop system, while
matching with the nature of considered problem.
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QUANTIZED LINEAR STATIC STATE FEEDBACK CONTROL

\Research is what I'm doing when | don't know what I'm doing".

{ Wernher von Braun

2.1 Introduction

his chapter pertains to quantization in linear static state feedback control schemes. In
T particular, two cases are considered. In the rst one, the plant state is assumed to be
fully measurable and the plant actuator uniformly quantized. In the second one, the plant
state is assumed to be fully measured via a uniformly quantized sensor. In such two situ-
ations, we address both stability analysis and stabilization of the closed-loop system. The
approach followed to address the two con gurations is essentially the same. Namely, as a
rst step we provide a general result to characterize the behavior of the closed-loop system,
such a result to some extent uses ideas from [84], though adapted to deal with Krasovskii
solutions and uniform global asymptotic stability of a certain compact set. Then, by the
use of novel sector conditions, a less conservative result, based on the solution to certain
matrix inequalities, is proposed. Building on such a result, a complete apparatus revolving
on convex optimization is presented to solve both the stability analysis and the stabiliza-
tion problems, while taking into account optimization aspects. First results concerning the
actuator quantization case can be found in [40].

33
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Figure 2.1: The function , in the scalar case, representing the quantization error.

2.2 Actuator Quantization

2.2.1 Problem Statement and Preliminary Results

Consider the following continuous-time linear system with actuator quantization
8
<X = AXx + Bu
: (2.1)
“u=(q(Kx)

wherex 2 R", u 2 R™, are respectively the state, and the input of the systemA; B; K
are real matrices of suitable dimensions, and ¢(s the uniform quantizer de ned in (1.17)
having as a quantization error bound > 0. De ne the function,

R™! RT
(2.2)
z7'q(z) z
the closed-loop system can be rewritten as
X=(A+ BK)x+ B ( Kx): (2.3)

The function represents the quantization error, then according to (1.17), is bounded. In
particular, for everyu 2 R™, k ( u)k P m ; see Figure 2.1. Moreover, since the function

is discontinuous, the right-hand side of (2.3) is a discontinuous function of the state.
Thus, for the reasons illustrated in Chapter 1, we focus on Krasovskii solutions to system
(2.3). Notice that, in view of the local boundedness of the right-hand side of (2.3), for every
Xo 2 R", there exists at least a Krasovskii solution to (2.3) with * (0) = Xq; see Chapter 1.
Therefore, by de ning

X:R"! R"

(2.4a)
x 7' (A+ BK)x+ B ( Kx)

we consider the solutions to the following di erential inclusion

x 2 K[X](x) (2.4b)
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whereK[X ](x) represents the Krasovskii regularization of the functiorX ; see De nition 1.2

on page 14. As pointed out earlier, the presence of the uniform quantizer, due to its deadzone
e ect, represents a real obstacle to the asymptotic stabilization of the closed-loop system.
Namely, one should be aware that if the matrixA is not Hurwitz, then the asymptotic
stability of the origin for the closed-loop system (2.4) cannot be achieved via any choice of
the gain K. Indeed, for everyx belonging to the setP = fx 2 R": jKX] g, one has

( Kx) = Kx. Thus, there exists a su ciently small neighborhood of the origin strictly
contained inP, such that for everyx the right-hand side of (2.1) coincides wittAx. Namely,
the behavior of the closed-loop system around the origin is not in uenced by the choice of
the gain K. On the other hand, since the function is bounded, one may expect that,
under opportune hypothesis on the quantization free closed-loop system, the solutions to
(2.4) manifest some stability properties. A positive answer to this question is given by the
following theorem, which uses ideas from [82, Lemma 1].

Theorem 2.1. Let A;B;K be matrices of adequate dimensions, such th& + BK is
Hurwitz. Then, there exists a compact seA  R", containing the origin, which is UGAS
for (2.4).

Proof. SinceA + BK is Hurwitz, there existsP;Q 2 S! such that He(P(A+ BK))= Q.
For everyx 2 R", de ne (x) = Kx. Since the functionx 7! (A + BK )x is continuous, by
Proposition 1.1, for everyx 2 R",

K[X](x) =(A+ BK)x+ BK| 1(x):

Since is locally bounded, (in fact bounded), according to [9, Lemma 1] it follows that, for
everyx 2 R"
K[ J(x) =coflim ( K(xx))jxk! xg:

Then, due to the bound shown earlier on the function , it turns out that for eachx 2 R"
K] 1(x) BIo m
Therefore, for eachx 2 R™, the following inclusion holds:

KIX](x) (A+BK)x+BB m : (2.5)

Now, for everyx 2 R", de ne the function V(x) = x"Px, and notice that for every
x 2 R", and anyf 2 K[X](x)

hr V(x);fi= x Qx+2x'PB min(Q)X X +2x"PB

for some 2 BIo m . Let us recall that for every a;b2 R" and for every positive scalar,
2ab aTa+ ib'h Then, by setting = 1 in(Q), from the latter inequality one gets

hr V(x);fi ; min (Q)XT X + BTP?2B m 2 8x2R"™f 2K[X](X) (2.6)

2
min (Q)
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which in turn gives

min (Q)

hr V(x);fi 2 oo (P)

V(x) + B'TP’B m 2 8x2R";f 2K[X](x): (2.7)

min (Q)

Pick 2 (0;1) and consider the following superlevel set &f

( )
= Xx2R":V(X) WBTPZB ’m

and de ne A = R" nint. Moreover, from (2.7)

min (Q)

hr V(x);fi 2 v (P)

@ )Hv(x 8x2 ;f 2K[X](X): (2.8)

Then, thanks to Proposition 1.5 it follows thatA is UGAS, completing the proof.

Theorem 2.1 shows that if the matrixA + BK is Hurwitz, then there exists a compact
set A containing the origin, which is UGAS for (2.4). Moreover, such a set is a sublevel
set of a certain quadratic function. On the one hand, this fact fosters to consider quadratic
Lyapunov-like functions to investigate the dynamics of (2.4). This fact essentially arises
from the fact that the underlying dynamics of the considered control systems are linear. On
the other hand, the characterization of the sef provided by the above result is quite coarse,
and strongly depends on the choice of the matri®Q. It appears obvious that the matrix Q
should be selected in a way such that the resulting sét ts as much as possible the real
behavior of the closed-loop system. However, the selection strategy of such a matrix appears
unclear. To overcome this problem, we pursue a constructive approach. Namely, rst we
derive computationally tractable conditions aimed at providing a characterization of the set
A. Essentially, through this stage, one obtains a set of conditions whose solution yields the
setA. Then, the search of the sef is done by embedding the obtained conditions into an
optimization scheme aimed at shrinking the size &. The outcome of this approach consists
of a systematic procedure able to perform a search of the most convenient Agtstarting
from the data of the closed-loop system. To operate this approach, we seek for conditions
solving the problem formalized as follows.

Problem 2.1. (Stability analysis) Let A;B;K be matrices of adequate dimensions, such
that A+ BK is Hurwitz. Determine a compact setA  R" containing the origin, such that
A is UGAS for system (2.4).

The solution to the above problem is the object of the remainder of this section.

2.2.2 Stability Analysis

As explained earlier, in solving Problem 2.1, we are interested in deriving a s&t tting
as much as possible the real behavior of the closed-loop system. To this end, we want to
reduce the conservatism introduced in the proof of Theorem 2.1 to bound the set-valued
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mapping K[ ]. Inspired by the general idea pursued in the literature on nonlinear systems
with isolated nonlinearities; seeg.g, [66, 120] and the references therein, we provide some
sector conditions providing tighter bounds for the set-valued mappin&[]. To this aim,
consider this rst result concerned with the function .

Lemma 2.1. [38]Letz2 R, andS;;S, 2 D, . The following relations hold:

(2)'S:1(2) trace(S) 2 0 (2.9)
(2)'Sy((2)+2) O (2.10)

i ( z)j . Now, let s(ll);s(f);:::;s(l\) any strictly positive scalars. One has, for each
i12f1,2:::;°0, s(l')j i(2)j s(l') , then by summing over i =1;2;:::;", and by setting
S, = diag(st”;s?;::1;81))

yields (2.9). To prove (2.10), notice that by de nition, for eachi 2 f 1;2;:::;°g, 2(2) +
i(z2)zq) O (see Figure 2.1). Picks(l);s(zz); il s(z) any strictly positive scalars. Then, by
following the same arguments adopted to show (2.9), and by de ning

S, = diag(sy’;s¥

yields (2.10), and this concludes the proof.

The above Lemma allows to embed the function in a certain sector. However, the
conditions provided by such a result do not directly apply to the set-valued mappini§| ],
and then further work is needed. On the other hand, let us remark that for every 2 R
such that ( z) is continuous, as shown in Proposition 1.1K[]( z) = f ( z)g. Then, for
such z the conditions provided by Lemma 2.1 are certainly ful lled. Therefore, the main
point to address consists in verifying whether the conditions provided by Lemma 2.1 hold
even for the set valued magK[] or not. A positive answer to this question is given by the
following result.

Lemma 2.2. Letz2 R,v2K[]( 2),and S;;S, 2 D, . Then, the following relations hold:

VIS,v trace(S;) 2 0 (2.11)
ViS,(v+z) 0 (2.12)

Proof. First of all, for eachz 2 R, let us de ne the set
L(z) = flim ( z)jz! zg R

where z¢ is any sequence converging te. Since is locally bounded, likewise the proof
of [23, Proposition 11], it turns out that for everyz 2 R, K[]( z) = co L(z). Now, let us
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de ne the following closed set
Vi=fv2R:VvISiv trace(S)) 2 0g R
which, due to S, positive de nite, is also convex'. We want to show that, forz2 R’
coL(z) V i (2.13)

To this end, pick | 2 L (z), then, by de nition, there exists a sequence ! z such that
| =lim ( z). On the other hand, from Lemma 2.1, it turns out that, for everyk 2 N, and
for every diagonal positive de nite matrix S;, one has "(z)S: ( z) trace(S:) ? O,
which, by taking the limit over k yields|™S;l trace(S;) 2 0, thatis| 2 V;. Hence,

L(z) V i

Thus, sinceV; is convex, taking the convex-hull of both sides of the latter relation establishes
(2.13), which in turn gives (2.11).

To show (2.12), we pursue a similar approach. Speci cally, for arg 2 R, de ne the
closed set
Vo(z)= fV2R:V'S,(v+2z) 0Og R

which is convex due toS, positive de nite. We want to show that coL (z) V »(z). To this
end, pick anyl 2 L (z), then there exits a sequence, ! z, such thatl =1lim ( z/). Still,
according to Lemma 2.1, for everk 2 N, one has "T(z)Sz(( z)+ z) O, then by taking
the limit over k, one getsl"S,(1 + z) 0, thatis | 2 V,(z). Hence

L(z) V »(2):

Thus, by taking the convex hull of both sides, beiny>(z) convex, yields cd.(z) V 2(2),
that is (2.11), and this nishes the proof.

Building on the conditions given by the above result and to the fact that, thanks to
Theorem 2.1, the search of the seA can be carried out by focusing on a sublevel set
of a certain quadratic function, the next result gives a rst su cient condition to solve
Problem 2.1.

Proposition 2.1. If there existP 2 S, S;;S, 2D, and a positive scalar such that

2 3
T
_ JHeP(A+BK))+ P PB KTSy _

S, 25,
trace(S;) 2 0 (2.15)

N 0 (2.14)

Lpositive de niteness of S; implies that the function v 7! vI S;v trace(S;) 2 is convex, then its sublevel
sets are convex sets; see,g. [14].
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then,
A = E(P) (2.16)

solves Problem 2.1.

Proof. For everyx 2 R", consider the following quadratic functionV (x) = x"P x. Following
the ideas presented in the proof of Theorem 2.1, we want to prove that under (2.14) and
(2.15) there exists a positive real scalar such that

hr V (x); wi V (X) 8x 2 R" nIntA;w 2 K[X](x): (2.17)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (2.17)
su ces to show that the set A in (2.16) is UGAS for (2.4). By S-procedure arguments,
(2.17) can be veri ed by showing that for everyx 2 R", there exists a positive real scalar
such that

hr V (x); wi (1 x"Px) V (x) 8w 2 K [X](x): (2.18)

On the other hand, via Proposition 1.1 and Proposition 1.2, for everyw 2 K[X](x), there
existsv 2 K[]( Kx), such thatw = (A+ BK )x+ Bv. Then, still by S-procedure arguments
and according to Lemma 2.2, (2.18) is ensured by proving that for eagl2 R", and for each
v2R™

hr V(X);(A+ BK)x+Bvi (1 x'Px) V'Siv

(2.19)
+trace(S;) 2 2vTSy(v+ Kx) V (X):

By straightforward calculations the left-hand side of the above relation can be rewritten as
follows 23 23
4%5 N 4%s +trace(S,)) ? (2.20)
% %
Thus in view of (2.14) and (2.15), it follows that there exists a small enough positive scalar
such that for everyx 2 R" nintA;w 2 K[X](x), one hashr V(x);wi x Tx. Then,
since for everyx 2 R", V(x) max(P)XTX, by setting = —F gives (2.18), and this
nishes the proof.
Remark 2.1. In the proof of the above result, we relied on Proposition 1.2 to build an
overapproximation of K[X], avoiding the derivation of the exact expression ok[X], that
is in general a nontrivial task. However, as argued in Remark 1.3, whenever rdak= m
such an expression could be obtained by following similar arguments to [97, Theorem 1]
and by relying on Proposition 1.3. On the one hand, due to the approach we embrace,
following this approach would not give rise to any change in the derived conditions (the
same sector conditions would be considered also in this case). On the other hand, the
derivation of the actual Krasovskii regularization ofx 7! ( Kx) could allow, in some case,
a deep understanding of the dynamics of (2.4). This aspect will be clari ed in Section 2.2.5
via some numerical examples.
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The above result provides a su cient condition to solve Problem 2.1. A necessary condi-
tion to ensure the feasibility of (2.14) is that the matrixA + BK is Hurwitz. On the other
hand, from Theorem 2.1, it turns out that having A + BK Hurwitz enables to exhibit a
solution to Problem 2.1. Therefore, at a rst sight, the conditions provided by Proposition
2.1 could appear stronger than the mere Hurwitzness of the matrx+ BK . In other words,
one may wonder whether the Hurwitzness of the matriA + BK ensures the feasibility of
conditions (2.14) and (2.15). A positive answer is given by the following result.

Proposition 2.2. Let K 2 R™ " such that A + BK is Hurwitz. Then, there exists
(;P;S1;$2) 2R, ST D! D ! satisfying (2.14) and (2.15).

Proof. Assume there exist{ P;S;) 2 R-o S ! D T such that

2 3
He(P(A+ BK))+ P PB
4HeP( ) Ps5< (2.21)
ST
trace(S;)) 2 — O (2.22)
For every diagonalS, 2 RP P, de ne
2 o . 3
He(P(A+ BK))+ P PB KI'S
S 2S5,

From (2.21) it follows that M (0) < 0. Moreover, sinceM (S;) depends continuously on the
entries of S,, there exists a small enough positive scalar, such that for everyS, 2 DT
with S, | yields? M (S,) < 0.

To conclude the proof, it su ces to show that wheneverA + BK is Hurwitz there exists
(7P;S1) 2 Rsg S D ! such that (2.21) and (2.22) holds. To this end, de neA =
A+ BK,and letR(Aq) = fi< ( )j: 2 specfy)g, notice that sinceA is Hurwitz, then
R(Aq) Rso. Pick 2 (0;2minR(Ay)), and dene, Ay = Aq + ;1. Observe that,
according to the selection considered for, & is Hurwitz. SelectS; 2 D™, such that

trace(S;) 2 ~— 0. By following these choices, the right-hand side of (2.21) reads
2 . 3
4He(/%:lP) PSB 5. (2.23)
1

For any Q; 2 S, pick the solution W 2 S to the following matrix equality
He(®&,W)= BS, BT Q,

notice that such a solution always exists sinc& is Hurwitz, and S; 2 D". Now, set in

2This fact can be justi ed by noticing that the set H = fv2 R™: M (diagfvi;Vv2;:::;vimg) < Ogis open.
Then, since 02 H, there exists a positive scalar' such that "B H. Thus, by picking = xs»lﬁ yields the
result.
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(2.23),P = W . By following this choice, (2.23) becomes
2 . _,.3
JHeELW ) W B

s, (2.24)

We want to show that the latter matrix is negative de nite. By pre-and-post multiplying
(2.24) by diag(W:; 1), it turns out that (2.24) is negative de nite if and only if

2 3
He(&yW B
1

and the latter, due to the selection done fokV turns into
2 S 3
BS, B B
4 ! Q < 5<0 (2.26)
1

Moreover, by Schur complement, a§; is positive de nite, (2.26) is negative de nite if and
only if
BS,'BT Q,+BS,'B= 0Q,<0 (2.27)

which is obviously satis ed beingQ, 2 S!'. Then, (7 W '-3,) establishes the resullt.

Remark 2.2. Notice that, whenever is xed, (2.14) and (2.15) are linear in the decision
variables. Therefore, Proposition 2.1 turns the solution to Problem 2.1 into a \quasi"-LMI
feasibility problem. These aspects will be clari ed in the sequel.

2.2.3 Controller Design

In the previous section of this chapter, we focused on the analysis problem of the quantized
closed-loop system (2.4). Essentially, building on a stabilizing state-feedback controller for
the quantization free closed-loop system, we shown that there exists a compact Aesur-
rounding the origin which is UGAS for the closed-loop system. Such a set may contain
limit-cycles and or parasitic equilibria for the closed-loop system that are undesired behav-
iors in engineered systems. Then, with the aim of limiting the in uence of these phenomena,
one may want to design the controlleiK so as to shrink the size of the seA. To this end,

in this section we propose certain constructive conditions characterizing the solutions to the
problem formalized as follows.

Problem 2.2. (Controller design) LetA; B be matrices of adequate dimensions. Determine
agankK 2 R™ " and a compact setA R" containing the origin, such thatA is UGAS
for system (2.4).

At a rst sight, Problem 2.2 could be solved directly by searching for a feasible solution
to conditions (2.14) and (2.15), with the only caveat to treat alsdK as a variable. On
the other hand, (2.14) and (2.15) are nonlinear in the decision variables. Hence, from a
numerical standpoint, Proposition 2.1 does not provide an e ective solution to Problem 2.2.
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To overcome this problem, let us consider the following result.
Proposition 2.3. If there existW 2 S, S;;S,2DT, Y 2 R™ ", and a positive scalar ,
such that(2.15) is veri ed and,

2 3
He(AW + BY)+ W B YT
4Hel ) 25 < (2.28)
S, 25
then,
A=EW 1Y (2.29)
K=YW! (2.30)

solve Problem 2.2.

Proof. The proof of this result is based on Proposition (2.1). In fact, we prove that condition
(2.28) is obtained from (2.14) by means of a congruence transformation and an invertible
change of variable. Let us assume that (2.28) is veri ed. Then, since from (2.30)W ! =

K, pre-and-post multiplying the right-hand side of (2.28) by diag¢v 1;I), yields

2 3
JHeW A+ W 1BK)+ W 1 W 1B KTSy _

S 25

0:

Finally, by setting in the previous relationW ! = P yields (2.14). Hence, thanks to Propo-
sition 2.1 the assert is proven.

Remark 2.3. Although the above result alleviates one of the nonlinearity a ecting condition
(2.14), (2.28) is still nonlinear in the decision variables. This aspect will be discussed in the
sequel.

Clearly, as shown for Proposition 2.1, also in this case the feasibility of the conditions
given by Proposition 2.5 is always ensured (under Assumption 1.2 on Page 21). In this sense,
let us consider the following result that follows directly from Proposition 2.2.

Proposition 2.4. Let A;B matrices such that Assumption 1.2 is satised. Then, there
exists(;W;S1;$;Y)2R.g S? DT D R™ "satisfying (2.28) and (2.15).

Proof. Since from Assumption 1.2 the pairA; B is stabilizable, there exists a gairK such
that A + BK is Hurwitz. Then, since condition (2.28) is obtained from condition (2.14) via
invertible changes of variables and congruence transformations, by following the same steps
as in the proof of Proposition 2.2, and by setting = KW vyields the result.

2.2.4 Optimization Issues

It appears obvious that in solving Problem 2.1, one looks for an UGAS set which mostly
ts the real behavior of the closed-loop system. On the other hand, in solving Problem 2.2,
the main objective consists of designing the gail to ensure that the closed-loop solutions
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stay su ciently close to the origin. To this end, building on the conditions provided by
Proposition 2.1 and by Proposition 2.3, one can consider the two following optimization
problems:

Problem 2.3 (Stability) . Let A;B;K be matrices of adequate dimensions. Determine
P 2 S, such that E(P) is UGAS for system (2.4), and it is minimized with respect to some
criterion.

Problem 2.4 (Stabilization). Let A;B be matrices of adequate dimensions. Determine a
gainK 2 R™ " andP 2 S}, such that E(P) is UGAS for system (2.4), and it is minimized
with respect to some criterion.

Notice that, although the two above problems are formulated in a similar fashion, they
are in fact quite dierent. Indeed, in solving Problem 2.3, one attempts to reduce the
conservatism in the analysis of the closed-loop system behavior. Instead, solving Problem 2.4
means to actively act on the closed-loop system by designing the controller g&in to
impose a desired behavior. The solution to the two above optimization problems can be
carried out by embedding the conditions provided, respectively, by Proposition 2.1, and
Proposition 2.3 into a suitable optimization scheme. To this end, an adequate measure of
the setsE(P) and E(W 1) needs to be selected. Namely, the objective consists of de ning
a functon M .- R" "I R (Ms: R" " I R), such that M 5(P) (M ¢(W)) provides a
convenient indication on the size oE(P) (E(W 1)). OnceM , (M ) is de ned, Proposition
2.1 (Proposition 2.3) enables to reformulate Problem 2.3 (Problem 2.4) as follows:

minimize M 4(P
P;S1,;S2; a( )

subjectto S;;S,2DM™P2S"; > 0 (2.31)
(2.14),(2.15):.

minimize M (W)
W;S1;S2;Y

subjectto $;$,2DT™:W 2S":; > 0 (2.32)
(2.28); (2.15)

Size Criteria

Being the considered set, in both the above optimization problems, an ellipsoidal set, sev-
eral criteria can be adopted to obtain a measure of such a set; seqy, [15, 66, 120]. A
rst choice is to consider the volume ofE(P) (E(W 1)) as size criterion,i.e., vol (E(P))
(vol (E(W 1))). In particular, it turns out that, given qS 2 S!, and a generic ellipsoidal
setE(S) = fw 2 R": w'Sw 1g, then vol (E(S)) /  det(S 1); see [15]. Thus, adopt-
ing this criterion leads to M4(P) =  det(P) and Mg(W) = det(W). However, as the
two functions M,(P) =  det(P) and Ms(W) = det( W) are in general non-convex, this
would lead to possible N-P hard problems; see [15]. Therefore, with the aim of obtaining a
numerically tractable optimization problem, the above criteria cannot be adapted directly.
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Concerning Problem 2.3, a straightforward strategy to overcome this drawback, see [15]),
consists of considering, as objective function to minimize log det(P). Indeed, the function
log det(P) is convex over the se} and its minimization is equivalent to the minimization
of Ma(P) = det(P); see [15]. On the other hand, the adoption of the latter criterion could
lead to a setE(P) excessively stretched along some direction. This is a well known behavior
in the literature; see [120]. To overcome this problem, instead of minimizing the volume of
E(P), one can minimize the traceP ). Indeed, as traceP 1) = P n, i(P1,P>0,and
each eigenvalue oP ! corresponds to length of one of the axis of the ellipsoE(P), mini-
mizing trace(P 1) tends to homogeneously shrink the sef(P) is each direction. However,
since this criterion is in general non convex in the decision variabR, its exploitation in a
numerical scheme is not straightforward. To overcome this drawback, we introduce a further

variable N 2 S, subject to the following linear constraint
2 3

4N I5 0

P
which, by Schur complement, is equivalent t®® * N. Therefore, the minimization of
trace(P 1)

can be implicitly performed by minimizing trace(N), which is a convex (in fact linear)
function of N. By pursuing this approach, Problem 2.3 reads
minimize trace(N)
P;S1;S2; N
2 3
I

N
i 4 5
subject to P 0 (2.33)

S;;$2DMP;N2SY; >0
(2.14), (2.15):.
Another alternative solution, inspired from [120, 66], and that can be used to state Prob-

lem 2.3, consists of minimizing the se(P) along certain directions of interests, (this method
does not directly requires to specify a measure for the considered sets). In particular, let

Vi, Vo5 it Vp 2 R" be some given vectors, and lety; ,;:::; ,, positive scalars. Consider for
eachi =1;2;:::;p, the following constraints
VPV i=1:2::0s: (2.34)

By maximizing the scalars ;, the set E(P) shrinks along the directionsy;.

Hence,e.g, via a linear scalarization, the above size criterion, can be adopted to state
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Problem 2.3 as single objective optimization problem, as follows

- - . ﬁ
minimize P
PiS1;S2;; 15 20 s i=1
subject to S;;$2DMP2Sh; >0 (2.35)

(2.15); (2.14), (2.34)

where ; > 0 are the weights of the objectives.

Even in Problem 2.4, the above trace criterion can be easily adopted, and its exploitation
is also simpler than in Problem 2.3; indeed it su ces to consider as convex objective in
the decision variables directly tracé{V). In particular, this choice leads to the following
optimization problem

minimize trace
W.S1;S2; Y (\N)

subjectto S$;;S,2D™:W2S"; > 0 (2.36)
(2.28); (2.15):.

However, if one insists in requiring convexity for the measure criterion, adopting the above
illustrated volume criterion is impossible. Indeed, the function log deW) is concave.

Numerical Issues in the Solution to (2.31)

Concerning (2.31), notice that, as long as the considered objective function is convex, when-
ever the scalar is xed, such a problem is a genuine convex optimization problem over LMl
constraints. Then, the solution to this problem can be performed in polynomial time via
interior points methods; see [15]. On the other hand, the positive scalarcan be treated as

a tuning parameter, or being selected via an iterative search. This is a typical scenario in
the literature; see,e.g, [118, 119, 126]. Then (2.31) can be e ciently solved on a computer,
with only caveat to obtain a sub-optimal solution. Based on this idea, consider the following
algorithm that, by performing a grid search for in an interval wherein the feasibility of
(2.14)-(2.15) is ensured, provides a possible solution to (2.31)
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Algorithm 2.1 Stability analysis
Input: Matrices A;B;K , scalars > 0, a convex functionM ,: S} | R.o, and a
tolerance > 0.
Initialization: Let R(A+ BK) = fi< ()j: 2 spec@A + BK)g, select = 2
0:99minR (A + BK),
Iteration
Step 1:
Solve the following convex optimization problem over LMIs

msl?;lsrp;éze M a(P)

He(P(A+ BK )+ P PB KTS, <0
S 25
trace(S;) 2 0

Pick the sub-optimal solution (P;S1;S,). Store the obtained solution:

ME M LP)PH P

k k+1

Step 2:
Decrease of , i.e.,
Until > 0.
(k)

Step 3:kmax Kk, selectk? = argmin fM §7g
k2f 1;2;Kmax 0

Output: P = Pr_ﬁk?).
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Remark 2.4. Notice that, as shown in the proof of Proposition 2.2, the initialization pro-
posed ensures that at each iteration, Step 1 terminates with a sub-optimal solution to Prob-
lem 2.3. Then, Algorithm 2.1 always terminates in a nite number of steps.

Numerical Issues in the Solution to (2.32)

The solution to (2.32) is much more complicated, and for this further work is needed. Indeed,
even when is xed, condition (2.28) is nonlinear due to the product of decision variables
YTS, (and its transpose). This kind of nonlinearity often occurs whenever one attempts to
design, via the solution of an optimization problem, a static state feedback controller for
certain class of nonlinear systems; see.g, [118]. Nevertheless, bein§, diagonal, at least
form 2, even for this variable a grid search can be envisaged to solve (2.32), with still the
only caveat to obtain a suboptimal solution.

Another strategy to ride over this problem consists of adopting a procedure indicated
here below:

As a rst step one selects some stabilizing gain for the pairA{B), this is always
possible due to Assumption 1.2

Once the controller gain is known, by xing as prescribed in the proof of Proposi-
tion 2.2, (2.28) becomes a genuine LMI in the remaining variables, whose feasible set
iIs non-empty. Therefore,S, can be selected to ensure the feasibility of (2.28)-(2.15)

OnceS; is selected as indicated above, by preforming a grid search fgra suboptimal
solution to (2.32) can be determined by solving a nite number of convex optimization
problems over LMls.

These steps are exploited to build the following algorithm.
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Algorithm 2.2  Controller design
Input: MatricesA; B, scalar > 0, atolerance > 0, and a convex functiorM ¢: S} !
R> 0-
Initialization:  SelectK, such thatA+ BK is Hurwitz. Let R(A+BK ) = fi< ( )j: 2
spec@ + BK )g. Set for the next step

=2 099minR(A + BK)

Step 1:
Determine a feasible solution to the following LMI problem

$1;$,2D,P2S?

#
He(P(A+ BK))+ P PB KTS,

s, s =0

trace(S;)) 2 — O

SetS, = S, for the next step. Select a grid of positive value§& such that — = max G
Iteration

Step 2:
Solve the following convex optimization problem over LMIs selecting over G

minimize M (W)
W;S1;Y
$;2D!,P2S!

_#
He(AW + BY)+ W B YTS,

55, g <0

subject to
trace(S;)) 2 — O
Pick the suboptimal solution to the above optimization problem
( W% Y?S)):

and determine the controller gain aK * = Y?(W?) 1.

Determine the closed-loop matrixA + BK ?, and set— =2 0:99 minR (A+ BK ?). Build

a grid of positive valuesG such that —=max G, and ? 2 G, (notice that necessarily
?  ~.Including ?in G ensures the feasibility at the next step).

Until M 4(W) does not decrease below over three consecutive steps.
Output: (K% P =(W?) 1
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Remark 2.5. The above algorithm essentially performs a grid search for keeping the
value of S, unchanged from the initialization stage. However, the grid search proposed is
\greedier" than a standard one. Indeed, the grids is built from scratch at each iteration,

to tentatively explore a wider portion of the feasible set, at least in the-direction.

Remark 2.6. The proposed algorithm has two important properties. The rst one is that,
thanks to the initialization proposed building on the proof of Proposition 2.2, the algorithm
always provides a suboptimal solution to the controller design problem. The second one is
that, since at each iteration the objective is at least non-increasing, the algorithm stops in a
nite number of iterations.

An alternative strategy to solve the controller design problem consists of exploiting the
following su cient condition to (2.28).
Proposition 2.5. If there existW 2 S!, S;;H 2D, Y 2 R™ " and a positive scalar ,

such that 2 3
He(AW + BY)+ W BH YT 0

4H [ é <0 (2.37)
S
thenW; ;Y;S;;S, = H ! satis es (2.28).
Proof. By Schur complement, (2.37) implies
2 . 3
He(AW + BY )+ W BH Y
4Hel ) 5<0: (2.38)
4H + S,

On the other hand, beingS; and H positive de nite, one has
(H Sl 1)Sl(H Sl 1) 0

or equivalently
2H +S,'  SHZ%

Then, it follows

jHe(AW +BY)+ W BH YT z iHe(AW +BY)+ W BH YT :< 0
2H S;H? 4H + St '
(2.39)
Moreover, pre-and-post multiplying the left-hand side of the above relation by diag@H )
yields 2 3
4JHe(AW + BY)+ W B Y'H 15< 0: (2.40)

2H 1 s
Then, since settingS, = H ! yields (2.28), the assert is proven.

Thus, exploiting the above result, performing a grid search for the matris, (at least
form 2), or a two-stage procedure, represent viable solutions to solve Problem 2.4 via a
convex setup. Nevertheless, while the feasibility of the conditions provided by Proposition
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2.3 is ensured by Proposition 2.4, there is no guarantees that Proposition 2.5 provides feasible
conditions. Therefore, establishing which of the two techniques is more convenient is an open
guestion.

A less evident aspect to be considered in solving (2.32) consists of avoiding solutions
characterized by an overly large controller gain, situation that needs to be ruled out to
envision the physical realization of the proposed controller. In particular, observe that the
optimal solutions to (2.32) could in some case be approached only via an in nitely large
controller gain. This phenomenon is thoroughly addressed in [110] for the case of static
state-feedbackH ; -problem for linear systems. To overcome this problem, a typical solution
consists of adding further constraints in (2.32) to limit the controller gain. This procedure
somehow corresponds to reshape the feasible set of the considered optimization problem in
way such that high-gain control solutions become unfeasible solutions. However, it follows
from Proposition 2.3 that the matrix W is linked to both the setE(W 1) and to the gain
K. Then, limiting the norm of the gain K by directly operating on the expression given
in Proposition 2.3 leads to add further constrains on the matri¥V. This fact may have a
negative e ect on the solution to (2.32). On the one hand, further constraining the matrix
W may introduce an additional conservatism in the solution of (2.32). On the other hand,
although the feasibility of (2.32) should not be a ected by additional constraints on the
matrix W, at least when those are not excessively severe, including further constraints on
the matrix W may impact on the achievable suboptimal solutions. Loosely speaking, the
addition of further constraints in the optimization problem can reshape the feasible set of
(2.32) in a unfavorable fashion. To alleviate these issues, following the lines of [20], we
provide a su cient condition to (2.28) in which the matrices W and K are not directly
coupled. In particular, let us consider the result given next
Corollary 2.1. Ifthere existJ 2 S}, Y2 R™ " F 2 R" ", S;;S,2 D", and a positive
scalar such that (2.15) is veri ed, and

He(F) J+ AF +BY FT B
J +He(AF + BY) YTS,+ BZ <0 (2.41)
S, 25

thenK = YF tand A = E(F TJF 1) are solution to Problem 2.2.

Proof. The proof is inspired by [99]. From Proposition 2.1, notice thaN = WTQW, where

2 3 2 3
A+ BK B 0

W=§ I 02;Q=§ P KTS, Z:
0 | Si 25

Thus, (2.14) can be rewritten equivalerklltly asWiTQW < 0. Moreover, beingS; and S;
positive de nite, UTQU < 0, with U" = 0 0 1, is obviously satis ed. Thus, by the
projection lemma; see [99], the satisfaction of (2.14), whene&rand S, are required to be
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positive de nite, is equivalent to nd a matrix X such that
Q+WT XU? + U/ X™W? <0 (2.42)

where,U’ and W’ are some matrices ha\ﬂng as rows a basis of r'][he row-null space, respec-
tively of U and W. Nhow, by sielectingUr? = Il 0z p and W’= |1 A+BK B ,and
by partitioning X = X; X, ,whereX;;X,2 R" ", from (2.42) one gets

He(X;) P X,+ XJ(A+ BK) X{B
HeXJ(A+ BK))+ P XJB KTS < O0: (2.43)
S 25,

At this stage, by setting in the above expressioiX; = X, = X, then by pre-and-post multi-
plying the left-hand side of the resulting matrix by diagk 7;X T;l) and diag(X ;X 1;1)
and nally by setting X ' = F,J = FTPF and Y = KF yields the left-hand side of
(2.41). Then, the satisfaction of (2.41) implies the satisfaction of (2.14). Therefore, thanks
to Proposition 2.3, the assertion is proven.

Remark 2.7. Notice that, the fact of choosingX; = X, in the derivation of the previ-
ous result adds some conservatism to the conditions given in Proposition 2.3. Speci cally,
di erently from Proposition 2.3, there is no guarantees that the conditions provided by
Proposition 2.7 are feasible.

Building from the previous result, with the objective of limiting the norm of the controller
gain K, consider the result given next
Proposition 2.6. If there exist two matricesF 2 R" ", and Y 2 R™ ", and a positive

scalar , such that 2 3
JHe(F) 1 YT

2) 0 (2.44)
thenkY F 'k
Proof. First, from [33], He(F) | FTF, then (2.44) gives
2 . T3
sF R Y s 0: (2.45)

2|

Then, by pre-and-post multiplying the left-hand side of (2.45), respectively by, diag( ™;1)

and diagF 1;1), one gets 5 3

I F TYT5
2

4 0: (2.46)

Then, by Schur complement (2.46) yield& TYTYF 1 2|, which in turn is equivalent to
kYF 'k , concluding the proof.

Another strategy to, implicitly, limit the norm of the gain K consists of constraining the
eigenvalues of the matrix A + BK ) to lay in a suitable region contained in the open left-half
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complex plane. This kind of additional constraints can be easily expressed in a linear matrix
inequality form; see [25]. A typical choice is to consider as region the closed circle centered
in (!; 0) with radius r > 0, where! is a positive real scalarj.e., fz2 C:jz+!'j rg.
Such a condition is guaranteed by considering the following constraint; see [118],

2 3
4 Q F +AF +BY .

(FT+F Q) 0 (2.47)

whereQ is a symmetric matrix with adequate dimensions.

As mentioned earlier, Corollary 2.1 allows to solve Problem 2.2, by decoupling the matrix
de ning the set A = E(F TJF 1), from the controller gainK . On the other hand, by doing
so, the matrix de ning the setA does not explicitly appear in (2.41). Then, embedding (2.41)
into an optimization scheme to shrink the size of the seA requires further work. Suppose
that one wants to insist on considering a trace criterion, that is minimizing tracé{J 1FT).

A strategy that can be adopted to obtain a convex objective function to minimize consists
of considering the following constraint

4% "5 0 (2.48)

whereN 2 S!. Indeed, the latter constraint is equivalent toFJ FT N. Then, the min-
imization of trace(FJ FT) can be performed indirectly via the minimization of tracel).
Therefore, Problem 2.4 can be formalized as follows
minimizs,  wrace)
s.t. S;S,2D™JN 2S" (2.49)
(2.41); (2.15); (2.48); (2.44) (or (2.47)), (2.48)

Remark 2.8. Obviously, with the aim of limiting the norm of the controller gain, similar
techniques as those illustrated above can be developed directly building from the conditions
given by Proposition 2.3 (without the introduction of any slack variables) by adding further
constraints on the matrix W. However, although the feasibility of the conditions given by
Proposition 2.3 is ensured, whenever such conditions are coupled with further constraints,
the feasibility of the resulting optimization problem cannot be ensured priori. On the other
hand, as mentioned earlier, due to the conservatism introduced by Corollary 2.1, even (2.49)
could be unfeasible. Therefore, determining priori which approach is the more convenient
IS an open question.

Similarly to Proposition 2.3, condition (2.41) is nonlinear in the decision variables. As
matter of fact, condition (2.41) is a ected by the same kind nonlinearities of condition (2.28),
then the same techniques illustrated above can be used to alleviate these nonlinearities. In
this sense, the result given next parallels Proposition 2.5.

Proposition 2.7. If there existW 2 S!", S;;H 2D, Y 2 R™ ", and a positive scalar ,
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such that

3
He(F) J+ AF + BY FT B 0
J +He(AF +BY) YT+BH O
e( ) <0 (2.50)
4H |
St

then J;F; ;Y;S:;S, = H ! satises (2.41).

Proof. The proof follows the same steps traced in the proof of Proposition 2.5, then it is
omitted.

Remark 2.9. Notice that, although the solution to Problem 2.4 provides in one shot a solu-
tion to Problem 2.2, hence the controller gain, and the s&k, due to the further constraints
introduced to render Problem 2.4 numerically tractable, the sef\ issued by this stage can
be further tightened to t more the behavior of the closed-loop system. Indeed, once the
controller gain K is known, by performing an analysis stage via Proposition 2.1, further
improvements can be obtained in terms of reduction of the size of s&t

In the next section, the e ectiveness of the proposed methodology is shown in some
examples.

2.2.5 Numerical Examples

Example 2.1 (Furuta pendulum). Consider the Furuta pendulum [67], whose linearized
model around the unstable equilibrium point is given by

2 3 2 3
0 1 0
X = 0 0 0 X + 0 u (2.51)
0 3932 1452 255
0 8178 1398 O 24:59

wherexi; X, represent respectively the base angle and the pendulum angle (ray,and x4
are respectively the two angular speeds (rad¥, and u is input voltage (V) of the motor
driving the base shaft. Assume that the system is controlled via a static state feedback
controller, with

h i
K= 22710 271793 24963 39153

and that the actuator is quantized via uniform quantizer with = 0 :5. By selecting as
convex criterion M ,(P) = logdet(P), the solution of Problem 2.3, via the adoption of
Algorithm 2.1, with a tolerance =0:1, yields

206128 594021 779714  9:06105
_ B 594021 556424 332957 406492
& 7:79714 332957 645171  7:6299

9:06105 406492  7:62996 1@B472
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q —
Figure 2.2: det(P ') versus the number of iterations.

q
Figure 2.2 shows the evolution of det(P) (proportional to vol (E(P))) at each iteration of
Algorithm 2.1.

To give a measure of the tightness of the sét with respect to the actual behavior of the
closed-loop system, in Figure 2.3 we report the time-evolution of the functiod Px along
some solutions to the closed-loop system. The gure reveals that the trajectories once enter
the set A ( nite time convergence) no longer leave it and actually stay su ciently close to
its boundary.
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Figure 2.3: The evolution of the functionV(x) = x"Px. Xo = (0; =8;0;0) (solid-line),
Xo = (0; =18,0;0) (dashed-line),xo = (0; =36;0;0) (dotted-line).
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Example 2.2. This example has the aim to show how the use of slack variables, as suggested
in Corollary 2.1, can, in some cases, provide notable bene ts. Consider the following data,
borrowed from the balancing pointer system in [69], de ning the closed-loop system in (2.4).

2 3 2 3
A:40 ]'5;8:405;:1:
10 1

Assume that, we want to design a static state feedback controller by solving (2.36). Moreover,
to avoid overly large controller gain, we limit the controller gain explicitly via a constraint
like (2.44). In particular, by following the same steps in the proof of Proposition (2.6), it
turns out that given > 0,kKk 2 if

2 T3
42W I Y5 0

I
Therefore, pursuing this approach (2.36) reads

minimizg trace(W)

W;S1;S2;Y;
s.t. S;;$,2DMwW2S!
(22.28); (2.15) ; (2.52)
42W I YT 0
I
h [
For =50; =0:99S, = 0:1 the solution of (2.52) yields,K = 2:93 159 and A =
E(W 1), with 5 3
_ 4 0:8009  0:4087
0:4087 1151

for which one has trace{v) 1:9521.
Instead, solving (2.49), endowed with the additional constraint given by Proposition (2.6),
still for =50; =0:99 S, =0:1 provides
h i
K= 4772 4563

A=EF "JF Y

where 2 3
FETIE L= 43:872 2455
2:45 384

and for which traceFJ F) 0:869. Namely the introduction of slack variables leads to
an improvement of about 5545% in terms of minimization of the size oA, at least for the
considered trace criterion. Figure 2.4 shows the two sets obtained by solving (2.49) and
(2.52). The gures points out that, in this case, solving (2.49) enables to shrink more the
size of the setA.
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Figure 2.4: The two setsA resulting from the solution to the controller design problem.
E(W 1) solid, E(F TJF 1) dashed.
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Example 2.3 (A multi-input system) . For the closed-loop system (2.4), consider the fol-
lowing example derived from [2] for which

3 2 3

05 15 4 07 13
A:§4:3 6 Sé;Bzg 0 4:32
32 68 72 0:8 1.5

and assume = 0:5. We solve (2.49) augmented with (2.47) for which = 10;r =8:5. To
deal with the nonlinearities a ecting (2.49), we select and S, over a three dimensional grid.
In particular, the most convenient values selected are = 1:8;S, = diag(1:4 10 ©;4:3
10 ®), giving 5 3

071 19 275 ]

43 41 43

K:4

As a second step, to tighten more the sef obtained by the solution to (2.49), we
perform an analysis stage via Algorithm 2.1, while considering as a convex criteridn,(P) =
logdet(P). Speci cally, Algorithm 2.1 provides

2 3
2033 1325 1407

P=§1325 65 1367
1407 1367 4048

Figure 2.5 shows the evolution of the closed-loop system in its state space, from di erent
initial conditions. Furthermore, Figure 2.6 reports a particular closed-loop trajectory in its
time-domain.

Simulations show that trajectories converge into the sék = E(P). More precisely, closed-
loop solutions appear to converge towards two equilibria contained E(P) . Notice that also
the origin is an equilibrium point for the closed-loop system, though unstable. It is interesting
to notice that these two equilibrium points appear to belong respectively to the two surfaces
Kx =] ] TandKx =[ ] T wherein the function qKx ) is discontinuous. As matter
of fact, the two mentioned equilibria are actually Krasovskii equilibria, indeed there does
not exist any point x 2 R3, such that

N

2 3
8 &

K x

%Ax: BY 4
_%

The same considerations hold for the other equilibrium point, for whiclkx =[ ] T.
The determination of this kind of equilibria, in general, is far from trivial. However, in this
example, the results provided by the above simulation may be used as a rst guess to exactly
determine the two Krasovskii equilibria. Speci cally, letx be a Krasovskii equilibrium for the
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Figure 2.5: Some closed-loop solutions converging into the &P ) (magenta). The solutions
are obtained by integrating the closed-loop model via an Euler method with time step 10

closed-loop system and such th& x = [ ] 7. Bydening (x)= Kx, the determination
of x needs to be carried out by searching for a point 2 R3, such that

02fAx+ BK[g ](X)g:

On the other hand, for everyx 2 R3, thanks to [97, Theorem 1], since ranK = 2, one has

Klg 1(x) = K[q](Kx):

Moreover, due to the decentralized structure of the function 7! q(u), from Proposition 1.3

it follows )

Kla 1x)= KIql(K)x):

i=1
Therefore, a necessary and su cient condition for a poinik 2 R® to be a Krasovskii equi-
librium for the closed-loop system is that

2

02fAx+ B  KI[g](KHX)g:

i=1
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Figure 2.6: The evolution of the closed-loop system fromy = (0:5;0:5;0:5): Above the
control inputs (gq(u,) (solid-black), q(u,) (solid-blue), and the two quantization-free inputs
(K@x(t) (dashed-black), K 2)x(t) (dashed-blue). Below the closed-loop states; (solid),
X, (dashed),x; (dashed-dotted). The solutions are obtained by integrating the closed-loop
model via an Euler method with time step 10%.

Now, if one restricts the search to the pointx such that Kx = [ 17, in view of the
de nition of the function q( ) given in (1.17), the latter relation turns in
8 2 3 9

< =
02. x2R%Ax+B4 ' (1 ,)2f[01] [ 1,00, :
: , ;

Therefore,x needs to satisfy o 3

8
“ax- B0
%

32

2
KXZQ %
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and this is possible if and only if

02 2 331
02 31 A B415
A
rank@4K5A:rank 2 2
K 4ls
1

for some (1; 2) 2f[0;1] [ 1;0]g. In particular, it turns out that the latter condition is
veriedfor ; 0:48856 , 0:21977, which, in turn yieldsx = ( 0:12,0:018 0:014). No-
tice that, x is the only Krasovskii equilibrium belonging to the surfac&; = fx 2 R3: Kx =

[ ] Tg for the closed-loop system. Analogous considerations allow to compute the other
equilibrium point satisfying Kx, =[ ] T, specically x, = x. A posteriori of these
calculations, let us focus on Figure 2.7, that is essentially a closed-up of Figure 2.5, and in
which the two computed equilibrium points are represented. The gures shows, both the
accuracy of the above arguments in foreseeing the behavior of the closed-loop system, in
terms of Krasovskii solutions, and the accuracy provided by Euler integration, that succeeds
in capturing the peculiar behaviors due to the discontinuity introduced by the quantizer.

Figure 2.7: Closed-loop trajectories approaching the two equilibrium points ('x’). The solu-
tions are obtained by integrating the closed-loop model via an Euler method with time step
10 4
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2.3 Sensor Quantization

2.3.1 Preliminary Results

Consider the following continuous-time linear system with quantized measured state
8
<X = AXx + Bu
_ (2.53)
“u=Kq(x)

wherex 2 R", u2 R™ , are respectively the state, the input of the systemA; B; K are real

matrices of suitable dimensions, and d)is the uniform quantizer de ned in (1.17) having as

a quantization error bound > 0. As in the previous section, by introducing the function
de ned in (2.2), the closed-loop system can be rewritten as

X =(A+ BK)x+ BK ( x): (2.54)

Therefore, with the aim of considering the Krasovskii solutions to (2.54), let us de ne

Z:R"! R"
(2.55a)
x 7' (A+ BK)x+ BK ( x)
we consider the solutions to the following di erential inclusion.
X 2 K[Z](X): (2.55b)

By retracing the steps performed in the actuator quantization case, we provide a rst re-
sult characterizing the behavior of the closed-loop system (2.54) in terms of its Krasovskii
solutions.

Theorem 2.2. Let A;B;K be matrices of adequate dimensions, such th& + BK is
Hurwitz. Then there exists a compact seA R", containing the origin, which is UGAS
for (2.55).

Proof. The proof follows the same steps shown in the proof of Theorem 2.1, and then it is
omitted.

Also in this case, we want to provide constructive tractable conditions for the search of
the setA R", whose existence is ensured by Theorem 2.2. Therefore, in the sequel, the
same apparatus presented for the actuator quantization case is considered for the case of
interest of this section.

2.3.2 Stability Analysis

Problem 2.5. (Stability analysis) Let A;B;K be matrices of adequate dimensions, such
that A + BK is Hurwitz. Determine a compact setA R" containing the origin, such that
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A is UGAS for system (2.55).

The next result, which essentially parallels Proposition 2.1, gives a rst su cient condition
to solve Problem 2.5.
Proposition 2.8. If there existP 2 S, S;;S,2 DY, and a positive scalar such that

2 3
4HeP(A+BK)+ P PBK Sy _ 0 (2.56)
S, 25,
trace(S;) 2 0 (2.57)
then,
A = E(P) (2.58)

solves Problem 2.5.

Proof. The proof retraces the same steps performed in the proof of Proposition 2.1. For
everyx 2 R", consider the following quadratic functionV (x) = x"Px. Following the ideas
presented in the proof of Theorem 2.1, we want to prove that there exists a positive real
scalar such that

hr V (x); wi V (x) 8x 2 R"nIntA;w 2 K[Z](x): (2.59)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (2.59)
su ces to show that the set A in (2.58) is UGAS for (2.55). By S-procedure arguments,
(2.59) can be veri ed by showing that for everyx 2 R", there exists a positive real scalar
such that

hr V(x); wi (1 Xx'Px) V (x) 8w 2 K [Z](x): (2.60)

On the other hand, via Proposition 1.1, for everyw 2 K[Z](x), there existsv 2 K[]( x),
such thatw = (A + BK )x + BKv. Then, still by S-procedure arguments and according to
Lemma 2.2, (2.60) is ensured by proving that for each2 R", and for eachv 2 R",

hr V(x);(A+ BK)x+ BKvi (1 x'Px) V'Sv
+trace(S;) 2 VS, (V+ X) V (x):

By straightforward calculations, the left-hand side of the above relation can be rewritten as
olons : 3T2H P(A + BK P PBK 832 °
X e + + X

#%s 4HeP( ) ’5475 ttrace(S;) 2 (2.61)
Vv Sl 282 \)
Thus in view of (2.56) and (2.57), it follows that there exists a small enough positive scalar

such that for everyx 2 R" niIntA;w 2 K[Z](x), one hashr V(x); wi X Tx. Then,
since for everyx 2 R", V(x) max(P)X"X, by setting = —F gives (2.60), and this
nishes the proof.

Also in this case, the feasibility of the conditions given in Proposition 2.8 is ensured under
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Assumption 1.2. In particular, let us consider the following result, whose proof is essentially
based on the ingredients exploited in the proof of Proposition 2.2.

Proposition 2.9. Let K 2 R™ " such that A + BK is Hurwitz. Then, there exists
(;P;S1;$)2Rs0 ST DY D ! satisfying (2.56) and (2.57).

2.3.3 Controller Design

As already done in the actuator quantization case, also in this case, we want to tackle the
controller design problem for the closed-loop system (2.55). Essentially, assuming that the
gainK has to be designed, we want to derive tractable constructive conditions characterizing
the solutions to the problem formalized as follows

Problem 2.6. (Controller design) LetA; B be matrices of adequate dimensions. Determine
againK 2 R™ " and a compact setA  R" containing the origin, such thatA is UGAS
for system (2.55).

Clearly Proposition 2.8 provides a rst condition to solve Problem 2.6. However, due
to products between unknown variables, a direct exploitation of the conditions given by
Proposition (2.8) to solve the controller design problem appears unlikely, and then further
work is needed. Nevertheless, dierently from (2.14), applying similar strategies as the
ones shown in Proposition 2.3 does not allow to alleviate the bilinear terBK (and its
transpose) appearing in (2.14). In particular, if one attempts to alleviate this term by means
of standard techniques (congruence transformations, and invertible changes of variables), the
resulting condition reveals to be still nonlinear and presenting more involved nonlinearities
as trilinear terms. On the other hand, via the use of the projection lemma, (see.g, [99]),
one can derive a condition equivalent to (2.56), which is linear in the variable de ning the
set A, and bilinear with respect to the controller gain and some additional variables. This
condition is proposed in the result given next.

Proposition 2.10. LetP 2S!;S;;S,2D0;K 2 R™ ", and 2 R.(. The satisfaction of

2 3
He(P(A+ BK))+ P PBK S
4He®( ) %56 < 0 (2.62)

S: 25,
is equivalent to the feasibility of

He(X1) P X,+ XI(A+ BK) X{BK
HeXJ(A+ BK))+ P XIBK S <0 (2.63)
S 25,
with respect toX; X, 2 R" ",

Proof. The proof follows the same lines of the one of Corollary 2.1. In particular, from
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Proposition 2.8, notice that (2.56) can be rewritten a®v ™ QW < 0, where:

2 3 2 3
A+ BK BK 0

0
w:§ I OZ;QZE P S, Z:
0 | S 25
h i
Moreover, beingS; and S, positive de nite, U'TQU < 0, with U" = 0 0 1, is obviously
satis ed. Thus, by the projection lemma; see [99], the satisfaction of (2.56), whenev@r
and S, are required to be positive de nite, is equivalent to nd a matrix X such that

Q+WT XU? + U/ X™TW? <0 (2.64)

where,U’ and W/ are some matrices having as rows a basis of the row-null space, respec-
tively, of U and W. Nowﬁ by selt?ctingur? = lpn O p andW/ = | A+ BK BK
and by partitioning X = X; X, ,whereXy;X,2 R" ", from (2.64) one gets

He(X;) P X,+ XJ(A+BK) XIBK
He(XI(A+ BK))+ P XIBK S<0 (2.65)
S 25

which is (2.63) and this nishes the proof.

As already mentioned, the advantage o ered by the above result is twofold. On the one
hand, there is no trilinear term. On the other hand, the matrixP de ning the set A appears
linearly. This fact enables to build an iterative relaxation procedure that allows to solve the
controller design problem, this aspect is presented in the next subsection.

2.3.4 Optimization Issues

Concerning the optimization aspects in the solution to Problem 2.5 and Problem 2.6, anal-
ogous considerations as the ones presented for the actuator quantization case hold in this
case. In particular, the optimization problems to address in this setting can be formulated
as follows:

Problem 2.7 (Stability) . Let A;B;K be matrices of adequate dimensions. Determine
P 2 S?, such that E(P) is UGAS for system (2.55), and it is minimized with respect to
some criterion.

Problem 2.8 (Stabilization). Let A;B be matrices of adequate dimensions. Determine a
gainK 2 R™ " andP 2 S}, such that E(P) is UGAS for system (2.55), and it is minimized
with respect to some criterion.

Obviously, since the sets whose size needs to be minimized are still ellipsoidal sets, the
size criteria that can be considered in Problem 2.7, and Problem 2.8 are the same illustrated
for the actuator quantization case.
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As far as concerns Problem 2.7, as long asis xed, (2.56) is linear in the decision
variables. Then, a direct generalization of Algorithm 2.1 allows to solve Problem 2.7 in a
convex setting. Such an algorithm is given next
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Algorithm 2.3  Stability analysis

Input: Matrices A;B;K , scalars > 0, a convex objective functiorM ,, and a tolerance
> 0.

Initialization: Let R(A+ BK) = fi<()j: 2 spec@A + BK)g, select = 2

0:99minR (A + BK),

Iteration

Step 1:

Solve the following convex optimization problem over LMIs

minimize M (P
namze a(P)

s.t. gl;SZZDE;PZSE 5
4He(P(A+ BK))+ P PBK 825 <0
S 25
trace(S;) 2 0

Pick the sub-optimal solution P;S:;S,). Store the obtained solution:M ¥ M  A(P),
Pl P,

k k+1

Step 2:

Decrease of |, i.e.,

Until > 0.

Step 3:kmax K, selectk’ = argmin fM g
k2f 1;2;kmax 0

Output: P = Pék?).

Clearly the same considerations pointed in Remark 2.4 holds also for the above algorithm.

As mentioned before, the solution to Problem 2.8, due to nonlinearities a ecting condition
(2.56) is much more involved, and requires a suitable strategy. In particular, inspired by [5],
we propose the following iterative algorithm to derive a suboptimal solution to Problem 2.8.
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Algorithm 2.4 Controller design

Input: Matrices A;B, scalar > 0, a convex objective functionM s, and a desired
tolerance > O.

Initialization:  SelectK such that A, = A+ BK is Hurwitz. Let R(Ay) = fi< ()j: 2
spec@y)g, then select— =2  0:99min; R (A) and build a grid of positive valuesG such
that max G = — (ensures the feasibility of the resulting optimization problems).

lteration Step 1:GivenK from the previous step, solve the following convex optimization

problem over LMIs by selecting overG.

minimize M ¢(P)

$1;92;P: X 1;X2
s.t. S;$,2DY;P2S! .
He(X1) P X,+ XI(A+ BK) XIBK (2.66)
He(XI(A+ BK))+ P XIBK S$<0
S 25
trace(S;) 2 0

Pick the suboptimal solution obtained and seX ; = X ;X , = X, for the next step.

Step 2: Given X 1; X, from the previous step, solve the following convex optimization
problem over LMIs by selecting overG.

minimize M (P
S1:92;PiK s(P)

s.t. gl;SZZDE;P 2S} 2
He(X,) P X,+ YI(A + BK) YIBK (2.67)
§ He(X3(A+ BK))+ P X,BK 522 <0
S 25
trace(S;) 2 o:

SetK = K, for the next step.

Determine the closed-loop matrixA + BK and set— =2 0:99minR (A + BK). Build

a grid of positive valuesG such that =max G, and ? 2 G, (notice that necessarily
?  .lIncluding ?in G ensures the feasibility at the next step).

Until M 4 does not decrease below over three consecutive steps.

Output: K;P.
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Remark 2.10. Proposition 2.10 plays a determinant role in the development of the above
exposed algorithm. In fact, the introduction of the slack variable¥;; X, enables to treat

P as a decision variable at each step of the algorithm, without adding any additional con-
servatism; recall that the feasibility of (2.64) is equivalent to the one of (2.56). Notice that,
by exploiting directly Proposition 2.8, due to the bilinear terms involving the matrixP and
the controller gainK , if one would retrace the strategy proposed in Algorithm 2.4, then one
needs to alternatively x either P or K, preventing from treating P as a decision variable
at each step. This obviously has a dramatic impact on the achievable suboptimal solutions
to Problem 2.8.

The above algorithm presents some interesting properties that render its utilization in
practice quite convenient. In particular, notice that at each iteration, both (2.66) and (2.67)
are always feasible. Indeed, during the rst iteration, sincd\ is Hurwitz, the feasibility of
(2.66) is ensured by Proposition 2.9. To see that also at each other iteration the considered
optimization problem are always feasible, consider the following arguments.

For the j th iteration, denote the value of the matrixP, respectively, at the exit of step
1 and of step 2 as’?j(l) and 51-(2).

[From step 1 to step 2] Obviously step 2 is always feasible, indeed keeping the same gain
K from the previous step yields a feasible solution and moreovms(ﬁj(z)) M s(5](1)).

[From step 2 to step 1] The feasibility of (2.66) is ensured by following same arguments
illustrated for the other case. MoreoverM s(ﬁj(lfl) M S(ﬁj(z)). Notice also that by assum-
ing M s(P) 0 over the feasible set of (2.67) (this assumption is certainly veri ed for the
trace criterion previously illustrated and can be ful lled for the logdet criterion by consid-
ering for the stopping criterion det(P) which is positive onS] and monotonically related
to logdet(P) ), the above mentioned monotonicity property guarantees that the sequence
fM S(ﬁj(z) gjlz1 converges. Therefore, for any positive, the algorithm terminates in a nite
number of iterations.

As for the actuator quantization case, one may add (in step 2) further constraints to limit
the norm of the controller gain. In particular, since in step 2 the controller gairK is a
decision variable, for any positive , considering the following constraint (linear inK)

4 " "5 0 (2.68)

ensures thatkK k
Remark 2.11. Although Algorithm 2.4 provides a numerically tractable solution to Prob-
lem 2.8, one should be aware that the initialization stage plays a relevant role in the nal
result. In particular, from di erent initializations the algorithm may converge to di erent
solutions. On the other hand, determining the most e cient initialization seems a nontrivial
problem.
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As far as concerns the convex criterioM ¢ to adopt in Algorithm 2.4, both the determi-
nant based criterion and the trace criterion as it was presented in (2.33) represent valuable
choices that leads to computationally tractable procedures.

2.3.5 Numerical Examples

Example 2.4. Consider the static state feedback control system with quantized sensor from
[49], that is de ned by the following data:

2 3 23 _
0 1 1 h '
A=4 5;B=45; =1 ;K= 03491 0:7022:
05 G5 1
By selecting as convex criterioM s(P) = logdet(P), by solving Problem 2.7 via Algorithm
2.3, with a tolerance = 0:001, yields
2 3

_ 4 260557@2255 260557217
260557217 260557Q@2332

Figure 2.8 reports the setE(P), along with some closed-loop solutions. Notice that

Figure 2.8: The setE(P) (red), some closed-loop trajectories (black). Solutions are obtained
by integrating the closed-loop model with an Euler method with time step 1d.
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specP) = f0:0011485:211 1(°g

ensuring that P > 0. This huge di erence between such eigenvalues is due to the shape of
the setE(P) represented in Figure 2.8, which is nearly a segment.

Figure 2.8 points out that the solution to the Problem 2.7 via the proposed algorithm
provides a very satisfactory characterization of the actual behavior of the closed-loop system.
In particular, simulations suggest that the closed-loop trajectories converges toward the set
S = f(x1;X2) 2 R%: X1 = X»g\ Z2. Clearly, such a set is not connected, therefore beiny
necessarily connected (in fact convex), it can only provide an overapproximation $f which
seems quite tight in this case.

Fostered by the above arguments, one may wonder whether the points belongingtare
equilibrium points for the closed-loop system. However, such points, except for the origin,
cannot be equilibria in a classical sense. Indeed, let us assume that there exists a classical
equilibrium x 2 S. Then, it has to be

X1 = Xo = k
Ax+ BK 1k=0

for somek 2 Z. That is
(A+ BK)L,k=0

but the latter, being A + BK Hurwitz, is obviously satis ed only for k = 0. That said,
the search of the equilibrium points into the setS needs to be performed by looking at
Krasovskii equilibria. Similarly to Example 2.3, we seek for each point 2 R?, such that

0 2 f Ax + BK K[q](x)g:

On the other hand, for everyx 2 R?, thanks to Proposition 1.3, one has

2
Klalx) = Klal(X))
i=1
Therefore, it follows that a point x 2 R? is a Krasovskii equilibrium for the closed-loop

system if and only if
2

02fAx+ BK K[Q](X(i))g:

i=1
Now, if one restricts the search to the pointx such that x = k1,, for somek 2 N, in

view of the de nition of the function q( ) given in (1.17), the latter relation turns into
8 2 3 9

< =
02 Xx2RLAX+BK4'5: (1 ,)2fk Lk [k LKlg :
: , :

Therefore, by settingx = k1,, x is a Krasovskii equilibrium for the closed-loop system if
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and only if, there exists (1; 2) 2f[k 1;k] [k 1;k], such that
2 3
Al.k + BK 4 '5=0:
2
Since 2 3 23

BK = Ko Kas “Al, = 415
Ko Ke 1

the latter equality imposes that

K(l) 1+ K(z) 2= k:

Concluding, x = k1,, with k 2 N can be a Krasovskii equilibria for the closed-loop system
if and only if the following polyhedral in R? is nonempty

8K(1)1+K(2)2= k

v

L ko1 (2.69)
o

-, kL

Moreover, by de nition of the uniform quantizer (1.17) and Proposition 1.1, if

2
02fAx+ BK  K[ql(X())g;

=1

then
2

02f Ax+BK  K[gl( x))g

i=1

that is the equilibria are symmetric with respect to the origin.

Therefore, in practice, to determine if the points k1, are Krasovskii equilibria for the
closed-loop system for somk 2 N, one can test, via standard linear programming algo-
rithms, whether (2.69) is non-empty. In particular, by pursuing this approach, it turns out
that for the given gain K, (2.69) is non-empty fork up to 20. This means that the only
Krasovskii equilibria belonging toS for the closed-loop system are the points = k1, with
k = 1, 2:::; 20, which exactly matches the results presented in Figure 2.8. Speci -
cally, Figure 2.9 emphasizes that the closed-loop system solutions approach the Krasovskii
equilibria.
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Figure 2.9: The setE(P) (red), some closed-loop trajectories (black), and the Krasovskii
equilibria (blue bullets). Solutions are obtained by integrating the closed-loop model with
an Euler method with time step 104,
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As pointed out above, the shape of the seA intrinsically leads to a matrix P which
tends to be ill-conditioned. On the other hand, whenever having a good conditioning is
a relevant matter, one may add an additional constraint in the considered optimization
problem, so as to ensure a given condition number for the matriR. Such constraint can
easily integrated by means of additional LMI constraints; see [127], at the price of obtaining
more conservative results. Indeed, limiting the condition number re ects on the shape of the
resulting setA. To show this fact in this example, for the considered closed-loop system,
we solve Problem 2.7 via Algorithm 2.3, while considering an additional constraint aimed
at ensuring a condition number forP less or equal than . Figure 2.10 reports the set#\
obtained as above, whenever varies in a grid built upon the interval [1Q 5000]. The gure
shows that, as expected, the larger the condition number, the tighter the resulting sAt.

Figure 2.10: Di erent setsA obtained imposing a condition number foP less or equal than
=10 (black), =5000 (red), 2 (10;5000) (blue), the sets shrink as increases.
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Example 2.5. (A multi-input plant) Consider the again the example from [2] for which

3 2 3
05 15 4 07 1.3
A=§4:3 6 Sé;Bzg 0 4:32;
32 68 72 0:8 1.5

and assume in this case, that the measured state is quantized via the uniform quantizer
(1.17) with =0 :5. We want to solve Problem 2.8 via Algorithm 2.4, by using the trace
criterion as presented in (2.33). In particular, letN 2 S}, by requiring that

we want to minimize traceN ). To initialize the algorithm, we use three di erent stabilizing

gains. The rst one 3

2
_ 400380 01751 0:855L
° 3:8514 38400 95510

is borrowed directly from [2]. The second one

2 3
K =4 071 19 275

43 41 43

comes from Example 2.3, and nally the third one,

2 3
4 0:11527 0:28207 1:24495

2:4835 42519 62107

2:

is the gain issued from the solution of an LQR problem on the pai’{ B ), with Q =1 3, and

R =1,. For all these three initializations, the tolerance for the algorithm is = 10 *. Fig-
ure 2.11 shows the evolution of trac&) over the number of iterations for the three proposed
initializations. Surprisingly, although the algorithm does not ensures convergence toward the
optimal solution, and the initialization are quite di erent of each other, the algorithm pro-
vides three solutions giving nearly the same value of the objective. This shows that, at least
for the matter of this speci c example, the initialization stage is not excessively crucial,
though it may impact the computational burden: the number of iterations might increase
depending on the initialization, e.g, for the third initialization the number of iterations is
almost twice as much as the number of iterations occurring for the second initialization. In
Table 2.1 the di erent outputs of the algorithm are reported for the three considered initial-
izations. As shown in Table 2.1, the rst and the third initialization provides quite similar
results also in terms of controller gain and the matriXP de ning the set A = E(P) solving
the controller design problem.
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Figure 2.11: Objective function versus the number of iterations. First initialization (ma-
genta), second initialization (blue), third initialization (black).

Initialization trace( N) K B Iterations
) # 099 03 053
33894 0:37076 25912
1 12673 , 8 03 037 o06f 71
4:4094 057293 16594 053 06 14
# o2 059 018 0133
8:4812 0:1307 30:799 ' '
2 12653 _ _ 9018 042 o055 52
6:3613 14677 13504 013 055 11
# 2 097 03 0-533
3 12669 4‘?’;72114 8&%%35‘23 i‘rggg 8 03 037 o061 91
' 053 061 14

Table 2.1: The di erent outputs of Algorithm 2.4 for the three di erent initializations.
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2.4 Comments and Conclusion

In this chapter, we addressed the state feedback control problem for linear systems in the
presence of either actuator quantization or sensor quantization, in terms of Krasovskii solu-
tions. In this setting, rst we shown that the asymptotic stability of the quantization-free
closed-loop system (in both the considered schemes) ensures the existence of an ellipsoidal
set A, which UGAS for the closed-loop system (in terms of its Krasovskii solutions). Then,
with the aim of pursuing a constructive approach, thanks to some novel sector conditions
for the uniform quantizer, we turn the search of the seA into the feasibility problem of
certain matrix inequalities. Moreover, we shown that this approach is lossless, in the sense
that under the asymptotic stability of the quantization-free closed-loop system, the derived
matrix inequalities are always feasible.

As a second step, we addressed the stabilization problem for the same class of systems.
In this context, the considered problem consists of deriving some conditions enabling the
simultaneous search of a linear static state feedback controller, and a compact Aeton-
taining the origin, such that the resulting closed-loop system has the sét UGAS. Such a
problem is solved by suitably transforming the matrix inequalities derived for the stability
problem in more advantageous fashions.

Building on the derived conditions, some algorithms based on convex optimization over
LMIs are proposed to e ectively solve the considered problems, while providing (sub)optimal
solutions with respect to convenient objectives. Finally, the e ectiveness of the proposed
methodology is shown in some examples. These examples, not only provide a benchmark to
test the proposed apparatus from a numerical standpoint, but also point out the complexity
hidden behind quantized control systems.

Although, the proposed methodology is tailored to the uniform quantizer de ned in (1.17),
the framework is quite exible to envision extensions to other type of quantizers. For in-
stance, the extension to the uniform quantizer considered in [22] is quite straightforward. In
particular, give > 0, such a quantizer is de ned for eacln 2 R" as
Yy

q(u) =

NI =

where the above operators are considered component-wise. Therefore, analogously to the
case considered in this chapter, de ne for eaan 2 R" the function (u) = q(u) u. As
pointed in Figure 2.12, it can be readily shown that for eacls;;S, 2 D! and for each

u 2 R", the following conditions hold for the function

(WS (u' trace(Sl)42 0

( WS+ u O

Hence, the methodology illustrated in this chapter can be extended to deal with the quantizer
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Figure 2.12: The function , for the scalar case and its sector.

adopted in [22] with few extra work.

In the case of combined sensor and actuator quantization, the stability problem could be
addressed in the same manner, though this case requires a special care in view of the nested
discontinuous nonlinearity issued by the combined e ect of the two quantizers. Concerning
the design problem, due to the di culties encountered even for the simpler case of the mere
sensor quantization, a design procedure in this case appears intricate. Nevertheless, we will
show how to solve this problem later in the next chapter, by employing a dynamical output
feedback controller.

Also, the work presented in this chapter assumes that the quantizer has an unbounded
range. However, if one considers a nite range for the quantizer, using ideas from [82], the
proposed methodology can be still adapted, providing local results. In particular, as far as
concerns the actuator quantization case, let us assume that the uniform quantizer de ned in

8 .
ik
_ 2 sign( U(i)) ) U(i) 2 [ M,M]
iy (U) = M

otherwise

Consider the setA = E(P) obtained from the solution to Problem 1. Building from this
set, pick 2 (0;1), and consider the setAy, = E(P; ) = fx 2 R": X'Px g, then
A A y. DenethesetS(K;M) = fx 2 R":jKxj Mg. If there exists > 1, such
that Ay S (K;M ), then all the arguments presented in the proof of Theorem 2.2 are
still valid inside the set Ay, hence local uniform asymptotic stability of the setA can be
established directly. From this observation, it appears obvious that all the result presented
in this chapter can be extended to derive conditions ensuring that the s& is locally
uniformly asymptotically stable for the closed-loop system in the presence of nite range
uniform quantization, without no much modi cations. Analogous considerations hold for
the sensor quantization case. Clearly, in this setting more involved optimization problems
could be considered. For instance, the minimization of the s& could be coupled with
the maximization of the setA ), still with respect to adequate size criteria. An interesting
point to address in the actuator quantization case, in the presence of nite range quantizers,
regards the design of the gaiiK to simultaneously enlargeA,, and shrink A.
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Although this approach enables to solve the two considered problems in the presence of
nite range quantization, the results obtained by restraining the setA,, to be contained in
the setS(K; M ) may be conservative. Indeed, as for the case of saturating systems, one may
enable the quantizer to saturate while ensuring the well behavior of the closed-loop system.
Clearly, this approach requires a dedicate strategy. For instance, by using ideas from [117],
one may model the nite range quantizer, as the composition of an in nite range quantizer
and a standard saturation operator, say sat]. Pursuing this approach enables to blend the
techniques proposed by the literature of saturated systems, with the techniques presented in
this chapter. On the other hand, one should be aware that handling the closed-loop system
in terms of Krasovskii solutions, in this case requires further work. Just to give an hint
about the di culties encountered in this case, consider that the closed-loop system, in this
case, reads

x = Ax + B sat(q(Kx)):

Therefore, the di erential inclusion issuing from the Krasovskii regularization of the right-
hand side of the above expression gives

x 2 Ax + BK[sat q K](x)

where with an abuse of notation, we denotel{ the linear operator issuing from the matrix
K, i.e., the function x 7! Kx. Obviously, the latter needs to be suitably worked out to
distinguish the e ect of the two nonlinearities’. This is work is currently part of our research
activity.

Concerning the actuator quantization case, another interesting aspect consists of con-
sidering the e ect induced by replacing the actual state with an estimate provided by an
asymptotic observer, whenever the plant state is not fully accessible. In particular, let us
consider the following plant

gx_z Ax + Bu
§u = g(Kx) (2.70)
y = CX

wherey 2 RP is the measured output. In particular, as the plant dynamics are linear, we
consider the following full-order Luenberger state observer; [88]

2= AR+ Bu+ L(y CR) (2.71)

wherex*2 R" is the estimate of the plant statex provided by the observer, and. 2 R" P is
the observer gain to be designed. Building on the estimate provided by (2.71), we consider
the following control law

u=Kg (2.72)

3Notice that, since g K is discontinuous, Proposition 1.2 does not provide any viable strategy to build
an overapproximation for K[sat q K](x).
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whereK 2 R™ " is the controller gain to be designed. By means of the latter control law,
the dynamics of the closed-loop system (2.70)-(2.71) can be written as

8
<x=Ax+ Bq(KR)

_ (2.73)
“R= AR+ Bq(KR)+ LC(x R
Since the statex"can be seen as an estimate ®f by de ning the estimation error” = x %,
the dynamics of (2.73) can be rewritten in a more convenient fashion in the; (') coordinates.
In particular, by de ning the following invertible change of variables
23 2 32 3
45— 4l O54%s
" [

by taking as vector statex~= (x;") 2 R?", and by de ning, for eachu 2 R™, the function
(u=qg(u) u, the closed-loop system (2.73), in the new coordinate turns into

2 3 2.3 .
A+ BK BK B !
x=4 Sx+ 45 K K x: (2.74)
0 A LC 0 | —{z—}
| {z } | {z-} Ce
Ac Be

Therefore, with the aim of considering Krasovskii solutions to (2.74), de ne

X:R™1 R
(2.75)
x 7" Ax+ Bc ( Cox%)
we consider the solutions to the following di erential inclusion
x2 K[X](0%): (2.76)

At this stage, notice that (2.75)-(2.76) inherits some notable properties by the upper trian-
gular structure of (2.74). In particular, it is not di cult to show that whenever A LC is
Hurwitz, the set R" f 0Og is UGAS for (2.75)-(2.76). Moreover, notice that every solution
~=( ; »)to the restriction of (2.76) to the setR" f 0g, i.e.,

x2 X (%) (2.77)

where, for eachx2 R", X = K[X](¥)\ (R" f 0g), is such that  is a solutionto (2.4). From
this analysis, it is straightforward to show that the ful liment of the conditions provided by
Proposition 2.1, along with the Hurwitzness of the matrixA LC ensures that the set
E(P) f 0Og, whereP is de ned in Proposition 2.1, is UGAS for (2.75)-(2.76). A formal
proof of this result arises from the application of [56, Corollary 7.24.], for the simpler case
of di erential inclusions, (an example pertaining to the cascade of two nonlinear systems is
shown in [55]). Beyond the discussed properties arising from Hurwitznessfof LC, and
the upper triangular structure of (2.4), the key ingredients of the proof are that solutions
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to (2.4) are bounded for every initial condition (this is mainly due to the linearity of the
plant dynamics), and that K[X] is convex-valued, outer semicontinuous, locally bounded,
and domK[X]= R?". These arguments show that the apparatus built in this chapter for the
design of a static state feedback stabilizer controller in the presence of actuator quantization
can be considered also when the state is not fully accessible and replaced by an estimate
generated through a Luenberger state observer.

Although the extension to the case of partial measurements in the presence of actuator
guantization is trivial, the same extension in the case of sensor quantization is nontrivial
and requires further work. This is the object of the subsequent chapter.
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QUANTIZED DYNAMIC OUTPUT FEEDBACK
STABILIZATION

\Scienti ¢ research is one of the most exciting and rewarding of occupations.”

{ Frederick Sanger

3.1 Introduction

his chapter pertains to output feedback stabilization of linear plants subject to sensor
T and actuator uniform quantization. In particular, we design a dynamic output feedback
controller to achieve closed-loop UGAS of an ellipsoidal set. As a rst stage, we consider
that only the plant output is gathered by a uniformly quantized sensor. In this setting, we
rst provide a general result turning the stabilization problem into the feasibility problem to
certain matrix inequalities. Then, we propose a methodology based on convex optimization
over LMIs to design the stabilizing controller. As a second stage, we extend the approach
mentioned above to tackle the same stabilization problem for linear plants subject to simul-
taneous sensor and actuator quantization. Finally, the proposed methodology is shown in
some examples. Some of the results presented in this chapter can be found in [37, 38].

83
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3.2 Sensor Quantization

3.2.1 Preliminary Results and Problem Statement

Consider the following continuous-time linear system with quantized sensor
8
<X = AXx + Bu

3.1
" Ym = q(CXx) &4

wherex 2 R", u 2 R™, y, 2 RP, are respectively the state, the input, and the measured
output of the plant. While (A;B;C) 2 R" " R" ™ RP " and q() is the uniform
quantizer de ned in (1.17) having as a quantization error bound > 0. We want to design
the following plant-order dynamic output feedback stabilizing controller for (3.1)

8
<Xc = AcXct+ Bele (32)
: Ye = CeXe + Dele

where x. 2 R" is the controller state,y. 2 R™ is the controller output, u; 2 RP is the
controller input.
(A¢; B¢ C;Dg)2R"" R"P RTMT RMP (3.3)

are real matrices to be designed. Interconnecting plant (3.1) with controller (3.2)g., setting
u=Y. Uc = Ym, Yields the following dynamics for the closed-loop system

8
<x=Ax + BCx.+ BD.q(Cx)

: (3.4)
" Xe = AcXe + Bcq(Cx):
Therefore, as in Chapter 2, by de ning the function
RP1 RP
(3.5)
z7'q(z) z
by taking as vector statex~= ( x;X.) 2 R?", and by de ning the matrices
2 3 2 3 . _
|
e 4A+BDC BCC5;8:4BDC5;G: c 0 (3.6)
B.C A B.
(3.4) can be rewritten as
x= Ax+ B Cx : (3.7)

Since the function is discontinuous, the right-hand side of (3.7) is a discontinuous function
of the state. Therefore, as done in the previous chapter, we want to focus on the Krasovskii
solutions to such a system. Notice that, as for the other considered cases, in view of the
local boundedness of the right-hand side of (3.7), for every 2 R?", there exists at least a
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Krasovskii solution' to (3.7) with ' (0) = %o; (see Chapter 1). In particular, de ne

X:R™M1 R
(3.8a)
x7!" Kx+ B ( Cx)
we consider the solutions to the following di erential inclusion
x 2 K[X](%) (3.8b)

whereK[X ](x) represents the Krasovskii regularization of the functiorX ; see De nition 1.2
on Page 14.

As pointed out on Page 25, the presence of the uniform quantizer, due to its deadzone
e ect, represents a real obstacle to the asymptotic stabilization of the origin of the closed-
loop system. Speci cally, if the matrixA is not Hurwitz, then the asymptotic stability of the
origin for the closed-loop system (3.8) cannot be achieved via any choice of the controller
(3.2). Nevertheless, also in this case, under suitable conditions on the quantization-free
closed-loop system, system (3.8) manifests some interesting properties. In this sense, let us
consider the following result that parallels Theorem 2.1.
Theorem 3.1. Let A;B;C;A(;B.;C.;D. be matrices of adequate dimensions, such th&
de ned in (3.7) is Hurwitz. Then, there exists a compact seA  R?", containing the origin,
which is UGAS for system (3.8).

Proof. The proof of the above result follows the same lines of the proof of Theorem 2.1.
Thus, we provides the main steps of such proof below. In particular, under the considered
hypothesis, we derive for (3.8) a relation like (2.8). Then, the proof directly follows from the
arguments presented in the proof of Theorem 2.1.

For every x 2 R?, dene c(¥) = €x. Since the functionx-7! Ax is continuous, by
Proposition 1.1, for everyx~2 R?", one has

K[X](%) = Ax+ BK[  c]():

Since is locally bounded, (in fact bounded), thanks to [9, Lemma 1] it follows that, for

every x-2 R2" o

K[ c](¥)=co nIim ( Cx)jx ! %

where xx is any sequence converging to. Then, due to the bound shown in Chapter 2 on
the function , it turns out that for each ~x 2 R?"

KI de Bp :

Therefore, for everyx-2 R?", the following inclusion holds

KIX](x) Ax+BB°p : (3.9)
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Since& is Hurwitz, then there existP; Q 2 S2", such that He(P&) = Q. Building on this
relation, for eachx-2 R?", de ne the function V(%) = x"Px. Then, thanks to (3.9), for
everyx2 R?", and anyf 2 K[X](%)

hr V(x);fi = x Qx+2x"PB min(Q)x %+ 2x"PB

for some 2 Bp p. At this stage, by following the same arguments shown in the proof of
Theorem 2.1, pick, 2 (0;1), then the compact set

( )

4 max(P)
A= x2R™M: V() 27 gTp2g °?
) P

is UGAS for (3.8), concluding the proof.

The above result shows that under the asymptotic stability of the quantization-free closed-
loop system, there exists a compact set containing the origin, which is UGAS for the closed-
loop system (3.8). On the one hand, Theorem 3.1 allows to select the more convenient
notion of stability to consider in dealing with (3.8), and points out that if the controller is
selected among the stabilizing controllers for the quantization free dynamics, then the get
is a sublevel set of a certain quadratic function. On the other hand, the above result gives
rise to the same considerations addressed for Theorem 2.1. Indeed, Theorem 3.1 provides
a coarse characterization of the behavior of (3.8), whose tightness dramatically depends on
the choices of the controller and of the matrixP. Therefore, with the aim of designing
the controller (3.2) to mitigate the e ect induced by sensor quantization, the adoption of
Theorem 3.1 is of any help. For this reason, as already done in the previous chapter, we
pursue a constructive approach. Speci cally, we derive computationally tractable conditions
characterizing the solutions to the problem formalized as follows.

Problem 3.1. (Controller design) Let A; B; C be matrices of adequate dimensions. Deter-
mine matrices @¢;B¢;Ce;Dg) 2 R" " R" P RM™ "™ RM™ P and a compact setA R?"
containing the origin, such thatA is UGAS for system (3.8).

The solution to the above problem is the object of the remainder of this chapter. Specif-
ically, in the sequel, by retracing the same approach carried out in the previous chapter, we
present a complete apparatus to turn the solution to Problem 3.1 into the solution to certain
matrix inequalities, while considering optimization aspects.

3.2.2 Su cient Conditions

A rst su cient condition to solve Problem 3.1, and based on the sector conditions illustrated
in Lemma 2.2, is given next.
Proposition 3.1. If there existP 2 S2", S;;S, 2 D?, A.;B¢; C.; D real matrices of ade-
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guate dimensions, and a positive scalar such that
2 3

.
,HePR)+ P PB CTS, (3.10)
2S5, S
trace(S;) 2 0 (3.11)
where &; B; € are de ned in (3.6). Then A¢;B¢; C¢; D, and
A = E(P) (3.12)

solve Problem 3.1.

Proof. For everyx2 R?", consider the following quadratic functionV (x) = %" Px. Following
the ideas presented in the proof of Theorem 2.1, we want to prove that there exists a positive
real scalar such that

hr V (%); wi V (%) 8% 2 R nintA;w 2 K[X](): (3.13)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (3.13)
su ces to show that the set A in (3.12) is UGAS for system (3.8). By S-procedure arguments,
(3.13) can be veri ed by showing that for everyx2 R?", there exists a positive real scalar
such that
hr V (3¢); wi (1 x"Px V (%) 8w 2 K [X](x%): (3.14)

On the other hand, via Proposition 1.1 and Proposition 1.2, for everyw 2 K[X](x%), there

existsv 2 K[]( €x), such that w = &Ax+ Bv. Then, still by S-procedure arguments and
according to Lemma 2.2, (3.14) is ensured by proving that for each2~R?", and for each
V2 RP,

hr V(x); K¢+ Bvi (1 x'Px) VSiv+trace(S;) 2 20'S,(v+ €x) V (%):
(3.15)

By straightforward calculations, the left-hand side of the above relation can be rewritten as

follows 2 372 32 3
2% 4He(P,Q) + P PB GT525 2% +trace(S) ? (3.16)
v 2S, S v
Thus in view of (3.10) and (3.11), it follows that there exists a small enough positive scalar
such that for everyx-2 R?" nintA;w 2 K [X](%), one hashr V(x); wi xT%. Then,
since for everyx-2 R?", V(%) max (P )% %, by setting = 5 gives (3.14), and this
nishes the proof.

The above result provides a su cient condition to solve Problem 3.1. As in Chapter (2),
Assumption 1.2 ensures the feasibility of conditions (3.10) and (3.11). This claim is formal-
ized in the result given next.

Proposition 3.2. Let A;B;C matrices such that Assumption 1.2 is satis ed. Then, there
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exist
(;P;S1;S5A¢Be;C;D)2R. g S DP DY R R*P R™" RMP

satisfying (3.10) and (3.11).

Proof. Notice that, from Assumption 1.2, there always existA¢; B¢; C; D such that & is
Hurwitz. Therefore, since (3.10) and (3.11) match, respectively, (2.14) and (2.15), by follow-
ing the same arguments proposed in the proof of Proposition 2.2, the assert is proven.

The conditions provided by Proposition 3.1 turns the solution to Problem 3.1 into a
feasibility problem to certain matrix inequalities. However, (3.10) is nonlinear in the deci-
sion variables, therefore, in general, solving Problem 3.1 by directly solving the feasibility
problem associated to (3.10) and (3.11) appears unlikely from a numerical standpoint. To
overcome this drawback, in the sequel we show two possible strategies to derive computa-
tionally tractable conditions from Proposition 3.1. The rst strategy consists of performing
a special choice for the controller parameters in (3.3) and for the matri® in (3.10). Such
choices spring from the selection of a linear observer-based controller. The second strategy
instead consists of selecting a general output feedback dynamic controller and then capi-
talizing on existing results presented in the literature for the LMI-based design of output
feedback dynamic controllers.

3.2.3 Controller design: Observer-based like Controller Design

The solution presented in this section builds on the following result.
Proposition 3.3. If there exist P;;P, 2 S!, S;S, 2DP, K2 R™ ", L2 R" P and a
positive scalar such that

2 3
He(Py(A + BK))+ P, P,BK C's,
He(Po(A LC)+ P, P,L £<0 (3.17)
2S5, S
trace(S;) 2 0 (3.18)
then,
A.= A+BK LC (3.19)
B, = (3.20)
C.= K (3.21)
D.= 3.22
02 31 (3.22)
+
A=g@tt P PP25A (3.23)
2

are a solution to Problem 3.1.
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Proof. The proof of the above result is performed by showing that via congruence trans-
formation and invertible change of variables, (3.10) turns into (3.17) for the choice of the
controller given in (3.23) and a particular choice of the matrixP in (3.10) that is shown
later. To this end, let us replace the controller parameters in (3.10) through the correspond-
ing expressions given in (3.23). Via this stepk; B in (3.6) turn into

2 3 2 3
A BK 0
A=4 S;B=4"5: (3.24)
LC A+BK LC L
Now, de ne 2 3
=4 Os

and notice that since is nonsingular (in fact ! = ), the satisfaction of (3.10) is
equivalent to

2 3
H TPR 1 + TP 1 Tpg T@eT
4He( ) €' S5 g (3.25)
2S, S
which can be rewritten equivalently as follows:
2 3
He( TP 1 & H+ TP 1 TP  T€TS
4He( ) % < 0 (3.26)
2S, S
In particular, due to expression of ; A; B; €, by denoting
2 3
X U
P = 4 5 :
X
one has: 2 3
rp 1z 4XF X +He(U) X U
X
2 3
A+ BK BK
K =4 5 (3.27)
0 A LC
2 3
pg = 4(U” )Q)L5:
XL
At this stage, selectU = X, which gives
%3
X
P=4 S (3.28)
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according to this selection, from (3.27) one gets
2 2 3 2 3
X 0
TP 1=4 5, TPB=4 5: 3.29
% %L (3.29)
To conclude, setP; = X X, P, = X. Then, exploiting the latter change of variables and by
plugging the expressions given in (3.29) into (3.27) yields (3.17). Therefore, the satisfaction
of (3.17) and (3.18) implies the one of (3.10) and (3.11), whenewg; B,; C.; D. are chosen
as in (3.23) and 5 3
p = 4Pt P2 P
P,

which is symmetric and positive de nite¢- due to P, > 0 and P, > 0, and this concludes the
proof.

It is not di cult to realize that the choice of the controller, as long as the structure of
the matrix adopted to derive the above result actually build on a linear observer-based
controller paradigm. Speci cally, the considered controller is an observer-based controller,
while is the matrix associated to the classical change of variables leading to the closed-
loop system represented in thex{") coordinates, where" represents the estimation error
introduced by the observer. The selection of this controller stems from a few considerations.
On the one hand, since the plant dynamics are linear, inspired by \certainty equivalence"
principle illustrated in [83], it turns out that selecting an observer-based control revolving
on a Luenberger observer seems the most natural choice to tackle the considered problem.
On the other hand, Proposition 3.3 manifests two important features. The rst one is that
the provided result is lossless with respect to Theorem 3.1, in the sense that if there exist
two gainsK;L suchthatA+ BK andA LC are Hurwtiz, then the conditions provided by
Proposition 3.3 are always feasible. Namely, Proposition 3.3 states a separation principle for
the considered observer-based control architecture and for the stabilization objective pointed
in Problem 3.1. The second one is that the considered result, by structuring the controller
parameters, decreases the number of parameters to be designed and allows, through an
adequate change of variables, to determine the gainvia convex optimization over LMIs,
with the only caveat to make a choice for the gaiiK . The last shortcoming is quite common
in the literature; see,e.g, [79, 120]. These two properties are stated and formally proven as
follows.

Fact 3.1. Let A;B;C;K;L be matrices such thatA + BK and A LC are Hurwitz. Then,
there exists (;P1;P2;S1;S)2R.g S " S " D! D ? satisfying (3.17) and (3.18).

Proof. The proof follows the lines of the proof of Proposition 2.2. Assume that there exists

1This claim can be readily proven by observing that the Schur complement oP is P;.
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(75 P1uP2S)2R.0 ST S D P such that

2
He(Py(A + BK )+ P, P,BK 0
S
trace(S;) 2 o: (3.31)

For each diagonalS, 2 RP P, let us de ne

2 _ _ 3

He(Py(A + BK )+ P, P,BK CTs,

M (Sz) = He(Pz(A LC )) + 7§2 PzL
2S, S

Since from (3.30)M (0) < 0 and M (S;) depends continuously on the entries db,, there
exists a small enough positive scalar, such that everyS, 2 D? with S, | yields
M (S;) < 0.

To conclude the proof, it su ces to show that whenevelA+ BK and A LC are Hurwitz,
there exists (; P1;P,;S1) 2 Rsp S " S I D P satisfying (3.30) and (3.31). De ne
A = A+ BK, A, = A LC, and let R(Ax) = fi< ()j: 2 specPy)g, R(A,) =
fi< ()j: 2 spec@,)g. Notice that sinceAy, and A, are Hurwitz, thenR(Ax); R(A,) Rso.
Pick 2 (0;2minfminR(Ay); minR(A,)g). Dene, Ax = Ac+ I, and &K, = A, + 5l.
Observe that, according to the selection considered for, &, and &, are Hurwitz. Select
S: 2 D?, such that trace(S;) 2 0. By following these choices, the right-hand side of
(3.30) reads 5

He(P.Ax) P.:BK 0
He(P,4,) PZLZ: (3.32)
S

For any Q, 2 S, pick the solution W, 2 S{ to the following matrix equality
He(BoW2) = Q. LS, LT

notice that such a solution always exists sinc&, is Hurwitz and S; 2 D?. ForanyQ, 2 S,
pick the solution W; 2 S to the following matrix equality

He(A&xW;1)= Q; BKW,Q,*W,K™BT

still such a solution always exists since, is Hurwitz and Q,* 2 S". Now, set in (3.30),
P, = W, % and P, = W, %. By following these choices, the right-hand side of (3.30) turns

2
He(W, &) W, 'BK 0
He(W, &) W, 1L§, (3.33)
S

I {z }

M
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We want to show thatM is negative de nite. By pre-and-post multiplyingM by diag(W; W,; 1),
this is equivalent to show that

2 3
He(ﬁkwl) BK W, 0
He(%&,W,) Lz < 0: (3.34)
S

By Schur complement, sinces; 2 D?, the latter relation holds if and only if

2 3

He(&, W BK W

4He(&Wa) 2 5<p (3.35)
He(&,Ws) + LS, ILT

which, due to the selection operated fow;; W, turns in

2 3
4 Qi BKWQ,"WoKTBT  BKWay _

2

0: (3.36)

By Schur complement, sinc&), 2 S, the latter is true if and only if
Q: BKW,Q,'W,KTBT + BK W,Q,"W,K™B" = Q;<0

which is obviously satis ed sinceQ; 2 S. Therefore, (; W, ; W, *; S;) satis es (3.30) and
(3.31), establishing the result.

Now, we illustrate the above mentioned change of variables allowing to partially linearize
(3.17).
Corollary 3.1. If there existP;;P, 2 S",S,;S,2D? , K 2 R™ ", J 2 R" P, and a positive
scalar such that

2 3
He(P.(A+ BK))+ P, P,BK C'S,
He(P, A JC)+ P, J é <0 (3.37)
2S, S,
trace(S;) 2 0 (3.38)
then,
Ac=A+BK P,YJC;B.=P,1J
C.= K
D.=0
and 02 31
A= E@4P1+P2 P25A
P>

solve Problem 3.1.

Proof. The proof of the above result is straightforward. In particular, de ne the invertible
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change of variablel = P,L. Since the latter turns (3.17) into (3.37), the result is proven.

Optimization Issues

As already mentioned, in solving Problem 3.1, roughly speaking the main objective consists
of designing the controller (3.2) to ensure that the solutions to (3.8) converge/stay su ciently
close to the origin. To this end, building on the conditions provided by Proposition 3.3, one
can consider the following optimization problem.
Problem 3.2 (Observer-based stabilization) Let A; B; C be matrices of adequate dimen-
sions. DetermineK 2 R™ ", L 2 R" P, and Py;P, 2 S, such that the set
02 31
g@s 1t P2 Pogp (3.39)

P>
| {z }

P

iIs UGAS for system (3.8), and it is minimized with respect to some criterion.

As already illustrated in Chapter 2, the solution to the above optimization problem can
be carried out by embedding the conditions provided by Proposition 3.3 into a suitable
optimization scheme. To this end, an adequate measure of the 4&tP) de ned in (3.39)
needs to be selected. As in Chapter 2, a rst choice is to consider the volumeE{P) as
a size criterion. In particular, with the aim of obtaining a convex optimization problem
over LMIs, one can consider as a size criterion log det(P). In particular, observe that
det(P) = det( P,P,); see,e.g, [102, Lemma 2.1.]. Therefore,

logdet(P) = logdet(P;) logdet(P,)

which is a convex function onS} S !. Thus, Problem 3.2 can be stated as follows.

lel;gll;rgzlg;e?K log det(P;) logdet(P,)
subjectto  S;;S,2D?;P;;P,2S!; > 0 (3.40)

(3.17); (3.18).

On the other hand, as pointed out earlier, the adoption of the latter criterion could lead to a
set E(P) excessively stretched along some directions. To overcome this problem, as already
done in Chapter 2, instead of minimizing the volume dE(P), one can minimize traceP ?!):
However, since this criterion is in general non-convex in the decision variableg, P,, its
exploitation in a numerical scheme is not straightforward. To overcome this drawback, we
introduce a further variableN 2 S2", subject to the following linear constraint

2 3

4N I5 0

P
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which, by Schur complement, is equivalent t® * N. Therefore, the minimization of
trace(P ) can be implicitly performed by minimizing trace(N ), which is a convex (in fact
linear), function. By pursuing this approach, Problem 3.2 turns in

minimize trace(N)
P1;P2;51:S2,J; ;N;K
subjectto S, 2DPiPuP, 2SN 287 > 0
N | (3.41)
4 5 0
P

(3.17); (3.18);
Another alternative solution, consists of minimizing the seE(P) along certain directions of
positive scalars. Consider the following constraints
VPV i=1:2::0s: (3.42)

By maximizing the scalars ;, the set E(P) shrinks along the directionsy;. In this case,
Problem 3.2 can be stated as follows

minimize i
P1;P2;S1:S2;3; K, 15 251 s -
subject to $;$,2D%:P;;P,2SM; > 0 (3.43)

(3.17);(3.18),(3.42):

where ; > 0 are the weights of the di erent objectives.
Remark 3.1. Notice that the results derived in this chapter aim at characterizing the
whole control system statej.e., (X; X.). However, thex, component of the state is somehow
arti cial, and one may be in general more interested in the behavior of the plant state.
Nonetheless, the application of the presented results allows to draw some conclusions on the
plant state x. Speci cally, notice that UGAS of the setA = E(P) entails global attractivity
of the set

A, =fx2R": x"P;x 1g R":

To see this, observe that

2 3 2 3
_ 4 PitP2 Py PO

P=
P2 0

and the latter implies that A A 4, yielding the attractivity of Ayx. However, uniform
stability of Ay, cannot be established being such a set, in general, not strongly forward
invariant for (3.8)°. Building on this observation, with the aim steering the plant state as

2Since P, > 0, this inequality readily follows from the application of the Schur complement lemma for
nonstrict inequalities; see [15].
3Notice that, by de nition, uniform stability of a given set implies its strongly forward invariance.
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much as possible to the origin, one may suitably modify both the determinant and the trace
criteria illustrated above by only focusing on the matrixP;.

Numerical Issues in the Solution to Problem 3.2

As pointed out earlier, (3.37) is still nonlinear in the decision variables due to the terms
P,BK (and its symmetric), and P ;. While the latter nonlinearity can be easily managed
via a grid search, the rst is hardly tractable. To be best author knowledge, there are no
strategies in the literature to perform the design of a linear observer-based controller through
the solution to linear matrix inequalities. On the other hand, Fact 3.1 ensures the feasibility
of the conditions given by Proposition 3.3 under the Hurwitzness of the matricés+ BK .
Hence, by assuming that the controller gaifk is a given stabilizing gain, (3.17) can be used
in a convex setup to design the observer gain without leading to any drawback in terms of
feasibility of the resulting optimization problems.

Remark 3.2. The selection of the controller gairK somehow constraints the feasibility set
of the above optimization problems. Indeed, oncK is given, to ensure the feasibility of
(3.18), 2 (0;2minR(A + BK)), whereR(A+ BK) =fi< ( )j: 2 specA + BK)g.
Remark 3.3. As pointed out in Chapter 2, approaching the optimal solutions to Problem 3.2
may lead to solutions characterized by a large gain. Such a situation needs to be avoided
to envision the physical construction of the proposed controller. As already discussed in
Chapter 2, a general way to overcome this drawback consists of adding suitable constraints
on the eigenvalues of the matribA LC.

Notice that, as long as the considered objective function is convex, whenever the scalar
is xed and a choice is considered for the gaid , the above proposed optimization problems
are genuine convex optimization problems over LMIs. On the other hand, as for the matter
of the optimization problems presented in Chapter 2, the positive scalar can be treated
as a tuning parameter, or being selected via an grid search. Moreover, Fact 3.1 provides a
valuable tool to characterize the interval of values for ensuring the feasibility of (3.17) and
(3.18). Based on this idea, consider the following algorithm, that by performing a search
on certain interval for (wherein the feasibility of the considered optimization problem is
ensured), provides a possible solution to determine a (sub)optimal solution to Problem 3.2.
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Algorithm 3.1 Observer-based controller design

Input: Matrices A;B;K;C , scalars > 0, a convex criterionM g, and a tolerance > 0.

Initialization: Let R(A+ BK) = fi<()j: 2 spec@A + BK)g, select = 2
0:99minR (A + BK),

Iteration

Step 1:

Solve the following convex optimization problem over LMIs

minimize M (Py; P»)

S1;52;P1;P2;J
s.t. gl;SZZDT;PZSE s
He(Py(A + BK))+ P, P,BK cTs,
He(P,A JC)+ P, J <o
2S, S
trace(S;) 2 0

Pick the sub-optimal solution (P;; P,;J) and store the obtained solution:

MY M (diagf Py;Pog); Pl PP Pid  J:

k k+1

Step 2:
Decrease of |, i.e.,
Until > O.

Step 3:kmax K, selectk? = argmin fM &g
k2f 1;2;Kmax 9

output: P, = P&V p, = PED:L = p, 1340




Chapter 3 97

It is worthwhile to remark that, the above algorithm, due to the proposed initialization
arising from the proof of Fact 3.1, always terminates with a suboptimal solution to Problem
3.2.

Numerical Example

Example 3.1. Consider the system derived from [49], already considered in Example 2.4,
that is de ned by the following data:

2 3 23
0 1

A=4 5;B=415;K=h 0:3491 0:7022':
05 05 1

Assume that the plant state is not fully accessible, and that only tﬁe selzcond component is

measured via a uniform quantized sensor with =1,i.e.,yn=q 0 1 x . We wantto

solve Problem 3.3 via Algorithm 3.1, by using the trace criterion as presented in (3.60). In

particular, let N 2 S2", by requiring that

2
aN ' 5
diag(Py; P2)
as convex objective to minimize, we consider trad€(. By considering = 0:01, Algo-
rithm 3.1 yields
2 3
p. = 4 1:05716438 105651233
! 1:05651233 1D5766293
2 3
P, 4 8:11663119  8:11833684
? 8:11833684 82644359
2 3
L= 4 9:3755
9:3735

trace(diagf P, *; P, 'g) 1422

Now, with the aim of steering the plant state as much as possible to the origin, we want
to solve Problem 3.3 by considering a trace criterion based only é¢h. In particular, as
mentioned earlier, letN 2 S, by requiring that

2 3

4|\I I5 0

Py

as convex objective to minimize, we consider tradg(). Since in this case the matrixP, in
not accounted by the size criteria and its inversion is needed to derive the gdin to avoid
numerical problems, in the solution of the considered optimization problem, we consider
additional constraints on the matrix P, aimed at ensuring a strictly positive lower bound on
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min (P2). That said, by selecting = 0:01, Algorithm 3.1 yields

2 3
_ 4 202467621 2:0237623?

YT 202376235 9252034
3

2
_ 4 62456427 36:246977§
36:2469778 32485599
3

2
_ 420040,
20036

trace(P, ') 84954

2

Figure 3.1 shows the evolution of the plant state obtained by considering the two di erent
design. In both simulations, the closed-loop system is initialized ag«f o) = (  6;0;0; 0):
Simulations show that, although the controller gairK is the same in both cases, the second
design allows to steer the plant state closer to the origin.

Figure 3.1: Plant state evolution: First design X; dashed-black,x, dashed-blue), second
design &, solid-black x, solid-blue). The solutions are obtained by integrating the closed-
loop model via an Euler method with time step 10%.
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3.2.4 Full Dynamic Controller Design

The aim of this subsection is to provide another design strategy for the controller in (3.2),
which avoids the above illustrated issues preventing from designing the whole controller
via the solution to a convex optimization problem. The approach followed in this section
revolves around the congruence transformations and the change of variables presented in
[25]. In particular, as a rst step, we give an equivalent condition to (3.10), which is linear

in the (new) decision variables, whenever and S, are xed. Such a result, whose proof is

a slight variation of the one of [25, Theorem 4.3], is given next.

Proposition 3.4. For each , S;;S, 2 D?, there existX;Y 2S", K 2 R" ", L 2 R" P,
M2R™ " N 2R™ Psuch that

2 3
He(H,)+ H H
gHe)+ Ho 3 5<0 (3.44)
S 2S;
Hz> 0 (3.45)
where
2 3 2 3 2 . 3
H1=4AY+BM A+BNC5;H2:4Y I5;H3:4BN Y C Sy
K XA + LC X L C'S;
if and only if, for any nonsingular matricesU;V 2 R" " such thatUv™ =1 XY, X =

U'(X Y b U, the matrices

Dc= N
Cc=(M NCY)V T
(3.46)
B.=U YL XBN)
Ac=U (K XAY XBM UBLCY)V T
and
2 3
X U
P = 4 5 3.47
% (3.47)

satisfy (3.10).

Proof. (Necessity) We want to prove that (3.10), implies (3.44) and (3.45).
Let P 2 S2" and A; B¢; C¢; D, matrices of adequate dimensions, such that (3.10) is veri ed.

Let us denote

2 3 2 3

X U Y V
p=4 5;Pp t=4" 5 3.48
% 9 (3.48)
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Thus, the following relations hold

XY + UVT =| (3.49)
XV +UY =0 (3.50)
U'v + XY¥ =1 (3.51)
Uy + XvT =0 (3.52)
in particular, UVT =1 XY ,andX = UT(X Y 1) U. Dene
2 3
= 4Y V5
| 0

and observe that, as shown in [25, Lemma 4.3]};V can be assumed, without loss of gen-
erality, nonsingular. This latter assumption assures nonsingularity of (see Lemma A.2).
Pre-and-post multiplying the left-hand side of (3.10) respectively by diag(1) and diag(J"; 1),
from the satisfaction of (3.10) it follows

2 3
He(@PA&J)+ JPJT JPB JE'S
4Hel ) %5 < 0 (3.53)
2S, S
where 2 3
)
Jp=14 5 (3.54)
X U
2 3
Y |
JPJT =4 5 (3.55)
| X
2 3
PRI = 4 (A+ BD.C)Y + BC.VT A+ BD.C .
X(A+ BD.LC)Y + XBC. VT + UB.CY + UAVT X(A+ BD.C)+ UB.C
(3.56)
2 3
BD
JPB =4 ¢ 5 (3.57)
XBD .+ UB,
2 T3
YC
JET =4 - 5 (3.58)

then JPJ" = H, > 0 yielding (3.45). Now, let us consider the following change of variables
given in [25]

2 3 2 3 2 32 32 . 3
4K L 5 _ 4XAY O5 N 4U XBS4AC Bc54V 05: (3.59)
M N 0 0o I C. D CY |



Chapter 3 101

By straightforward calculations, it turns out that

JPAJ = H,
JPJ" = H,
JPB  JE'S, = Hj;

Therefore, it follows that the satisfaction of (3.10) implies the satisfaction of (3.44).

(Suciency) Let X;Y 2S), K2 R""L2R"P M 2R™" N 2 R™ P such that
(3.44) and (3.45) are veri ed. Then, it is always possible to determing; V nonsingular such
that| XY = UVT, and also such that

Is nonsingular (see Lemma A.2). Now, from (3.45), as shown in the necessity part, sidce
IS nonsingular, it follows that
2 3

P =t =4 ;5>o:

To conclude, it su ces to observe that, due toU nonsingular, the change of variables in
(3.59) is invertible. In particular, by inversion of the relation given in (3.59), one gets the
relations in (3.46). Now, recall that (3.44) was derived in the necessity part from (3.10) by
the change of variables in (3.59), and a congruence transformation involving the matiix
Hence, the satisfaction of (3.44) implies the satisfaction of (3.10), witR given in (3.47),
and A¢; B¢; C¢; D¢ given in (3.46), and this concludes the proof.

Optimization Issues

As already mentioned, in solving Problem 3.1, the main objective consists of designing the
controller (3.2) to ensure that the closed-loop solutions converge su ciently close to the
origin. To this end, building on the conditions provided by Proposition 3.1, one can consider
the following optimization problem.

Problem 3.3 (Stabilization). Let A;B;C be matrices of adequate dimensions.

Determine A¢; B¢; C; D¢, and P 2 S2", such that E(P) is UGAS for system (3.8), and it is
minimized with respect to some criterion.

As already illustrated in the previous chapters, the solution to the above optimization
problem can be carried out by embedding the conditions provided by Proposition 3.4 into
a suitable optimization scheme. To this end, an adequate measure of the E€P) needs to
be selected. Dierently from the previous chapters, in this setting, sincB is nondiagonal,
the adoption of a criterion based on the determinant oP would give rise, in general, to a
non-convex criterion. For this reason, as a criterion to be minimized, in this chapter, we
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consider traceP 1). In particular, notice that from Proposition 3.4, it follows that
2 3

Y V
P1:4 5
A4

whereV = (I  XY)TU T, and ¥ = U !XV, which in turn yields ¥ = U 1X(
XY)TU T. At this stage, observe that modulo the nonsingularity requirement can be
arbitrarily chosen without any in uence on the feasibility of the conditions given by Propo-
sition 3.4. Therefore, building on this degree of freedomy can be selected with the aim
of determining a convex criterion in the decision variables. In particular, selectind = X
yields

trace(P 1) =2trace(Y) trace(X 1)

and the latter expression points out that traceP ') can be implicitly minimized by simul-
taneously minimizing tracey), and trace(X !). On the other hand, the minimization
of trace(X 1), being X 2 S, can be indirectly obtained by minimizing tracek). By
pursuing this strategy, Problem 3.3 specializes in

minimize trace(X +Y)
XY;LKMN; S 1552
subject to S1;S$,2DP:X;Y 2SM; >0 (3.60)

(3.44); (3.45); (3.11):

Remark 3.4. Another convex criterion can be worked out by following a similar strategy to
the one in [53]. However, establishing which of the two strategies always provides the best
result is di cult.

Numerical Issues in the Solution to (3.60)

Notice that, due to the terms X , Y, and Y C'S, (and its symmetric) (3.44) is nonlinear
in the decision variables. Therefore, from a numerical standpoint, the solution to (3.60) may
lead to NP-hard problems. Nevertheless, wheneverand S, are xed (3.44) turns into a
genuine LMI. As already discussed throughout this dissertation, the nonlinear termx and

Y can be easily managed by performing a grid search folover a certain interval (O max)-
Instead, the selection of5, could be more complicated. However, notice the&, 2 D¥, hence
at least forp 2, a grid search forS, represents a viable strategy to determine a solution
to (3.60). Dierently from other cases treated in this dissertation, the derivation of linear
su cient conditions to (3.44) appears hard due to the increased complexity of (3.44) with
respect to the simpler conditions presented in Chapter 2. On the other hand, another viable
strategy arises from the combined exploitation of Proposition 3.2 and Proposition 3.4. Such
a strategy is schematized as follows:

as a rst step, select some stabilizing controller for the triplet &; B; C); this is always
possible due to Assumption 1.2.
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once the controller is known, by xing as prescribed in the proof of Proposition 3.2,
(3.44) becomes a genuine LMI in the remaining variables, whose feasible set is non-
empty. Therefore, S, can be selected to ensure the feasibility of (3.44)-(3.45) under
the choices considered in the rst step for and for the controller.

once S, is known, by preforming a grid search for , one can derive a suboptimal
solution to (3.60) by solving a nite numbers of LMI optimization problems.

Remark that, since Proposition 3.4 provides an equivalent condition to (3.44) and the choice
of S;, and ensures the feasibility of (3.44)-(3.45) for the controller chosen to start the
procedure, it follows that throughout the third stage of the above procedure, the feasible set
of (3.60) is nonempty.

The above idea is concretely adopted to develop the following algorithm. Such an algo-
rithm, analogously to Algorithm 2.2, performs an improved search for.
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Algorithm 3.2  Controller design
Input: Matrices A;B;C, scalar > 0, and a tolerance > 0.
Initialization:  SelectA®;B®;C©: DO, such that

" #
g0 = At BDOC BCYO
BOC AQ

is Hurwitz. Let R(&©@) = fi< ()j: 2 spec&®)g. Set for the next step

" #
BD.

—=2 099minR(&?) BO = 8
Cc

Step 1:
Determine a feasible solution to the following LMI problem

$1;$, 2D P 2S2

#
HePA®)+ P PBO €'s, _
25, S,

trace(S;)) 2 — O

SetS, = S, for the next step. Select a grid of positive value§& such that =max G
Iteration
Step 2:
Solve the following LMI optimization problem selecting over G
% YrnLl{gl'\r/lnhllzga ) trace(X +Y)
subject to %1 2 EE;X;Y 2 SE;trace(Sl) 2 A O;H, >.?(’)

i _ i
He AY+BM A +BNC + [y I ] BN YCTS,
4 K XA +LC X L CTS, 5« 0

S; 2S;
Pick the suboptimal solution to the above optimization problem
X7 (%XLYLLLKEM? N SD:

SetU = X7,V =( X?Y?)TU T, and determine the controller parameters fronX?
via (3.46), andP via (3.47).

Determine the closed-loop matrix&, and set™ =2 0:99 minR(X). Build a grid of
positive valuesG such that =max G, and ? 2 G, (notice that necessarily ?
Including ?in G ensures the feasibility at each step).

Until trace(X + Y) does not decrease below over three consecutive steps.

Output:  (A¢; Be; Ce; De; P)
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Obviously the above algorithm may converge to di erent solutions depending on the
controller chosen throughout the initialization stage.
Remark 3.5. The initializing controller required to start the above algorithm can be de-
signed via standard linear techniques as LQG control design. Another solution consists of
selecting as initializing controller, the observer-based controller built through the apparatus
proposed in Section 3.2.3.
Remark 3.6. Notice that the design stage, to be numerically tractable, introduces some
conservatism in the determination of the seA = E(P). Essentially, this additional conser-
vatism depends on the fact that the selection 0§, can dramatically a ect the achievable
suboptimal solutions. Therefore, as a second step, one can envision a further analysis stage
to obtain a tighter estimation of the real behavior of the closed-loop system. Such a stage
can be performed by embedding the conditions provided by Proposition 3.1 in a suitable
optimization problem. In particular, once the controller parameters are known, and some
selection for is considered, relation (3.10) turns into a genuine LMI. Thus, provided that a
convex criterion to measure the seA is chosen, a potentially tighter setA can be determined
by solving a nite number of convex optimization problems over LMIs.

As pointed out earlier in this dissertation, to attain the optimal solutions to Problem 3.3
the controller parameters could even blowup (see [110] for a formal treatment of these issues
in the case ofH, state feedback control). Obviously, such a situation needs to be avoided
to envision the physical construction of the proposed controller. To overcome this problem,
one may consider further constraints aimed at placing the eigenvalues of the matéin
certain sectors of the complex plane. Via the apparatus proposed in [25], such constraints
can be easily integrated in the solution to (3.60) by means of additional LMIs in the decision
variables. Some classical constraints, along with su cient conditions (linear in the decision
variables of (3.60)), are given below.

Disk centered at ( g;0) with radius r

2 3
g M2 GHz* Hig (3.61)
rH 2
Open-half plane<(z) <
2H ,+He(H;) < 0 (3.62)
Open-half<(z) >
2H, HeH)) <O (3.63)

Conic sector with apex at the origin and inner angle 2

02 31
sin( )H1  cos()Hig, _ 0: (3.64)
cos()H; sin( )H; ' .

Remark 3.7. The selection of the more convenient pole placement constraint needs to
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be tailored to the considered case. Also, notice that including the above constraints may
iImpact on the feasibility of the resulting optimization problem, and dramatically a ect the
value of the achievable suboptimal solution. In other words, the addition of pole placement
constraints somehow reshapes the feasible set of the considered optimization problem in a
way that appears unclear. However, in general, one can reasonably assume that, as long
as the pole placement constraint is not excessively severe, at least the feasibility of the
resulting optimization problem should be preserved. This aspect was already discussed in
Chapter 2 for the matter of the actuator quantization case. In that setting, we shown a
possible strategy to limit the e ect induced by pole placement constraints for the considered
optimization problems. On the other hand, pursuing this approach in the case under study
in this section appears nontrivial.

Numerical Examples

Example 3.2. Consider the balancing pointer system derived from [69] that is de ned by

the following data: 2 3 2 3
10 1

Assume that the plant state is not fully accessible, and that only the rst component is
measured via a uniform quantized sensor with =Q5,i.e., yn =q 1 0 x . We want

to solve Problem 3.3 by performing a simultaneous grid search for the positive scalarand
S,. Moreover to avoid the occurrence of fast dynamics or/and high gains in the designed
controller, we consider, for the matrix% the pole placement constraint in (3.63) with = 10.
The latter constraint provides an indication on how to choose the upper bound de ning the
grid of values for inspected throughout the design stage. Indeed, since (3.63) with= 10
implies that for each 2 specf&), <( ) > 10, to ensure the feasibility of the considered
optimization problem, it has to be < 20.

Concerning the choice of the grid of values fd8,, bearing in mind that, as shown in the
proof of Proposition 2.2, selecting, = 0 ensures the feasibility of (3.10) and (3.11) for some
P2sS2, S, 2D, and > 0, (at least when no additional constraints on the eigenvalues
of & are considered), it follows thatS, can be selected small enough and then increased up
to a certain value to meet the desired optimization speci cations. However, the selection
of S, strongly depends on the considered cases, and a systematic algorithm for its selection
appears complicated. Hence, a certain tuning stage for this variable needs to be considered.

In this case, keeping in mind the constraint on, we let vary over a grid of 50 points
from 0:1 up to 20 0:99. For S,, we still consider a grid of 50 points from @01 up to Q1.
Figure 3.2 depicts the evolution of the optimal value of trace{ + Y) obtained by solving
(3.60) over the grid chosen for and S,, versus and S,. The gure empathizes that the
value of the suboptimal solution strongly depends on the values chosen foand S,, and
that due to the further constraint ensuring the desired pole placement, the largest value of

ensuring the feasibility of (3.60) is smaller than the upper bound considered in the related
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grid. Speci cally, the most convenient values selected forand S, are =0:904 S, = 0:0232,
that give 2 3
3232 1379,

-4
¢ 9587 11:56
2 3
4 3:334,
5:174
h i
C.= 7433 1186
D.=8:729

2 1:741 09672 1741 0:96723
0:9672 1082 0:9672 1082 7
1:741 0:9672 2628 1692L
0:9672 1082 1692 1093

For such a solution, one has trace{ + Y) 10:5549.

Figure 3.2: The optimal value of traceX + Y) obtained by solving (3.60) over the grid
chosen for and S,, vs and S,. The red cross indicates the suboptimal solution to (3.60).
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To foster the use of the pole placement constraints mentioned above, we want to show
that the solution to (3.60), whenever no pole placement constraints are considered, can lead
to controllers in practice unattainable. To this end, still consider = 0:904 S, = 0:0232,
the solution to (3.60) gives

2 3
A -4 18788 12100
2:214 10" 1:427 104
2 3
g =4 414G
3:681
h i
Co= 2214 10" 1:427 104
D, = 0:02664

2 1:743 0:9675 1743 0:96753
0:9675 1082 0:9675 1082
1:743 0:9675 10322 664
0:9675 1082 6648 4287

for which specf\.) = f 6:835 1:427 10'g. Due to overly fast dynamics, the resulting
controller is in not suitable either for real implementations or numerical simulations. On
the other hand, the above controller gives trac& + Y) 105569, i.e., the improvement

in terms of suboptimal value is only about @17%. Namely, the addition of the above pole
placement constraint provides a valuable strategy to design an implementable controller,
without penalizing the considered optimization.

Example 3.3. Consider the system derived from [49], already considered in Example 3.1
and that is de ned by the following data:

2 3 2 3 '
490 1g 415 h !
A= 05 05 B = 1 'K = 03491 0:7022:C =

h i
0 1; =1":

We want to solve (3.60) via Algorithm 3.2. In particular, to start such an algorithm, we use
the dynamic output feedback controller issued from the observer-based controller considered
in Example 3.1. Namely, by considering the observer gain obtained in the last part of
Example 3.1 (the more convenient in terms of the considered optimization), one gets the
following data for the initializing controller

3 2 3
2007 02978 2004, h i
c= 4 S>;B.,=4 °;Cc= 0:3491 0:7022
2002 0:2022 2004
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Algorithm 3.2 initialized with the above controller yields

2 3
4 3969 7:2765

9:156 4267
2 3

4 01338
0:1285
h i
C.= 2814 8258
D.= 3734
2 3
1575 1159 1575  1:159
P_g 1:159 1048  1:159 1048%

C=

1,575 1:159 7815 1656 £
1,159 1048 16% 8222

Figure 3.3 shows the evolution of the plant state obtained by considering the two di erent
designs. In both simulations, the closed-loop system is initialized aso(x.) = ( 6;0; 0; 0):
Simulations show that the controller designed via the proposed apparatus allows to steer the
plant state closer to the origin than for the previously considered observer-based controller.

Figure 3.3: Plant state evolution: Proposed designx{ dashed-black,x, dashed-blue),
observer-based control X; solid-black x, solid-blue).) The solutions are obtained by in-
tegrating the closed-loop model via an Euler method with time step 10.
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Example 3.4. Consider the linearized model of the Furuta pendulum [67], examined in
Example 2.1, for which

3
0

2 3 2
0
0 (3.65)
0 3932 1452 255
0

0 8178 1398 2459

where X1; X, represent respectively the base angle and the pendulum angle (rad} and
X, are respectively the two angular speeds (rad¥, and u is input voltage (V) of the
motor driving the base shaft. Assume that the two angleg;; x, are measured through two
identical incremental optical encoders with resolution of 1 This situation can be modeled
in our setting by taking as measured outputy,, = (Cx), where

2
C= 410 %
0 1 0
and q is the uniform quantizer de ned in (1.17), with = =180. Now, we want to design a

dynamic output feedback controller for the given plant by solving (3.60) via Algorithm 3.2.
To this end, to initialize Algorithm 3.2, we consider the following LQG controller for the
triple (A;B;C) 5
1:638 3008 1 0
: g 3008 1449 O 1 é
7 92017 6227 3848 933
1:85 6398 3705 8988

2 3

1:638 3008

_ gs:oos 144

 85:366 257
2274109 |
Ce= 1 2491 2075 3655

D.= 0:
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Algorithm 3.2 initialized with the above controller yields'
3
1022 2631 6119 0:03099
_ 80:1357 2823 0:7419 3407
° §2184 5083 4345 1090
1794 8479 4289 1025
2 3
0:6291 2777
5. = 0:0545 191
¢ 0:6765 1068
. 0:3055 4416 _
|
C.= A 0:5653 9917 1:915 2717
|
D.= 0:05517 9:548
2 3
0:4358 01078 04882 0:3913 0:391
0:1078 2254 2812 1:624 1:624
0:4882 2812 1488 1:185 1:185
P = 0:3913 1.624 1:185 1193 1193
0:4358 01078 04882 0:3913 1248
0:1078 2254 2812 1:624 8022 1044 1 1624
0:4882 2812 1488 1:185 13390
0:3913 1.624 1:185 1193 2610

Notice that max(P)

108199, while i, (P)

0:0209. In particular, it is interesting to

notice that the eigenvector associated t0 yax (P)
(2:346 10 /; 2 10 % 2:243 10 °;1:192 10 °;0.075 0:980:078 0:15)

is \nearly" parallel to the hyperplane spaffies; es; €7; €gg, whereeg, is the generic vector of the
standard basis oR8, that is the subspace of the state space associated to the controller state.
Loosely speaking, the performed optimization, in this case, seems to favor some directions
rather than others.

To compare the improvement produced by Algorithm 3.2 with respect to the LQG con-
troller used to initialize such an algorithm, we perform an analysis stage of the two controllers
directly employing the conditions provided by Proposition 3.1. Since the measure chosen for
the setA = E(P) to design the controller is related to traceP 1), as illustrated in Chapter 2,

4A rst attempt in the solution to the considered optimization problem leads to a controller unsuitable
for physical implementation due to overly fast dynamics. This fact, as already mentioned, can be related to
the unattainability of the optima to the considered optimization problem. Thus, in the e ective controller
design, as already done in the other cases presented in this dissertation, we consider an additional pole
placement constraint as the one in (3.63), where is chosen via a tuning stage aimed at preserving the value
of the suboptimal solution obtained.
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for each of the two controllers we solve the following optimization problem
minimize trace()
1S 1;S2;P;

subjectto S;;S,2DP:P; 2S?: >0
jectto %24, (3.66)

I ) . :
4 P5 0; (3.10); (3.11).

As usually, to overcome the nonlinearity introduced by the productP , we perform a grid

search for . In particular, the solution to the above optimization problem can be performed
via an algorithm totally analogous to Algorithm 2.1. By running such an algorithm for the
two considered controllers, one gets the following values for tra&( !, for the designed

controller (trace(P, %)) and for the LQG controller (trace(P|qgl))

trace(Py ') 2329
trace(P,,) 376

Namely the proposed design produces an improvement of about 38% with respect to a
standard design. Moreover, this improvement in terms of tracB( ') shows the e ectiveness

of the implicit minimization of this latter objective via the minimization of trace(X + Y)
performed throughout the design stage.
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3.3 Simultaneous Sensor-actuator Quantization

3.3.1 Preliminary Results and Problem Statement

Consider the following continuous-time linear system with sensor and actuator quantization

gx_z Ax + Bv
§v: q,(u) (3.67)
" Ym =4,(Cx)

wherex 2 R", u 2 R™, yn, 2 RP, are respectively the state, the input, and the measured
output of the plant. A;B;C are real matrices of suitable dimensions, and,@);q,( ) are
the uniform quantizers de ned in (1.17) having as a quantization error bound, respectively,

u; y > 0. We want to design the following plant-order strictly proper dynamic output
feedback stabilizing controller for (3.67)

8
<Xe = AcXc + Bele (3.68)
: Ye = CeXc

where X, 2 R" is the controller state,y. 2 R™ is the controller output, u. 2 RP is the
controller input.
(A¢;B;Cl)2R"" R'P RMPN

are real matrices to be designed. By interconnecting plant (3.67).e., setting uc = Yym,
u = Y., with controller (3.68) yields the following dynamics for the closed-loop system

8
<x = Ax + B q,(Ccx¢)

. (3.69)
" Xe = AcXc+ Bcqy(Cx):

Remark 3.8. Notice that, the use of a nonstrictly proper controller in this setting induces a
nested discontinuity in the closed-loop system; this approach is considered in [37]. However,
from a technical point of view, addressing such a nested discontinuity requires a special care.
Indeed, in the presence of a nested discontinuity, Proposition 1.2 is of any help. Thus, one
needs to extend the results presented in Lemma 2.2 to the case of a composition of the
function with a discontinuous function. On the one hand, such an extension is technically
tedious and does not provide any substantial novelty to the proposed methodology. On the
other hand, assuming a strictly proper controller does not introduce any severe restriction in
the apparatus presented in the sequel. Therefore, to maintain the presentation simple and
to focus more on the key ideas and results, we will insist in the remainder of this chapter in
considering a strictly proper controller.
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Therefore, by de ning the functions

u: R R™

(3.70a)
z7'q,(2) z
y:RP1TRP
(3.70b)
z7'q,(2) z
by taking as vector statex—= ( x;X.) 2 R?", and by de ning the matrices
2 3 2 3 2 3 A _ A .
A BC 0 B ! !
K=4 5B =4"5:B,=45:€=C 0;C=0 C (3.71)
B.C A Be 0
(3.69) can be rewritten as
x= Ax+B; , Cx +B, , Cx: (3.72)

At this stage, since the functions ,; , are discontinuous, the right-hand side of (3.72) is a
discontinuous function of the state. Thus, we want to focus on Krasovskii solutions to system
(3.72). In view of the local boundedness of the right-hand side of (3.72), for every2R?",
there exists at least a Krasovskii solutiod to (3.72) with ' (0) = %q; (see Chapter 1). In
particular, let us de ne

X:R™1 R
(3.73a)
x 7! Kx+ Bl y(@l)e)+ @2 u(@zx‘)
we consider the solutions to the following di erential inclusion
x 2 K[X](%) (3.73b)

whereK[X ](x) represents the Krasovskii regularization of the functiorX ; see De nition 1.2
on Page 14. The next theorem provides a rst characterization of the behavior of (3.73).
Theorem 3.2. Let A;B;C;A(;B;C. be matrices of adequate dimensions such th# is
Hurwitz. Then, there exists a compact seA  R?", containing the origin, which is UGAS
for (3.73).

Proof. The proof of the above result follows the same lines of the proof of Theorem 2.1. In
particular, under the considered hypothesis, we derive for (3.73) a relation like (2.8). Then,
the proof directly follows from the arguments presented in the proof of Theorem 2.1.

For every x-2 R?", de ne ¢;(x) = Cpx and c(%) = C,x. Since the functionx-7! &x is
continuous, by Proposition 1.1, for everx2 R?",

KIX](%) = Ax+ K[B; y ¢+ B,  Gl(x)
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Therefore, by item ii of Proposition 1.1, for eaclkx 2 R?", it follows that
KIB1 y c+ B2 y CJ(*) BiK[ y a](X)+ BK[ v c](x): (3.74)

Moreover, due to the bound shown earlier on the function , it turns out that for each

x2 R D
K[y cll¥) B py
K[ u CZ](X) Bpm u

therefore, for everyx2 R?", the following inclusion holds
P P— .
KIX](*) Ax+BB p ,+B,B m (3.75)

Since & is Hurwitz there exist P;Q 2 S2", such that He(PA) = Q. Building on this
relation, for eachx-2 R?", de ne the function V(%) = x"Px. Then, thanks to (3.75), for
everyx-2 R?", and anyf 2 K [X](%)

hr V(x);fi= ¥ Qx+2x"P B, ,+ B,
p

for some 2 Bpﬁ ys u2 B
that

m . By standard arguments, it is straightforward to show

kPBl y+ PBZ uk2 2 kPEl yk2+ kPBZ uk2 2 kPBlkz )2/p+ kPBZkZ 5m :

Thus, by following the same arguments shown in the proof of Theorem 2.1, pick (0; 1),
then ( )

A= x2R™M: V(% SZLX(P) kPB1k® Zp+ kPB.k* Zm
min(Q)

is UGAS for (3.73), concluding the proof.

Building on the above result, as already done throughout this dissertation, with the aim
of providing constructive conditions for the design of the controller (3.68) ensuring UGAS
of a certain compact set, we want to derive su cient conditions solving the problem given
next.

Problem 3.4. Let A;B;C be matrices of adequate dimensions. Determind{;B; C.) 2
R*" R"P RM™" andacompact setA R?" containing the origin, such thatA is
UGAS for system (3.73).

3.3.2 Su cient Conditions

A rst su cient condition to solve Problem 3.4, and based on the sector conditions illustrated
in Lemma 2.2, is given next.
Proposition 3.5. If there existP 2 S2", S;;S,2D?, S;;S,2D™M, A¢; Be; C. real matrices
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of adequate dimensions, and a positive scalarsuch that

2 3
He(P/@)'F P PBl GISZ P@z @;SZ

2S, S
trace(S;) Z+trace(S;) 2 0 (3.77)
where
2 3 2 3 2 3 A _ A _
A BC 0 B ! !
K=4 05;8 =4 5;8 =4 5;@: C O’@: 0 C. :
BCC Ac 1 Bc 2 0 1 2 c
then
Ac Be: Ce (3.78)
A = E(P) (3.79)

solve Problem 3.1.

Proof. For every x-2 R?", consider the following quadratic functionV (x) = x"Px, where
P 2 S2". Following the ideas presented in the proof of Theorem 2.1, we want to prove that
there exists a positive real scalar such that

hr V (%); wi V (%) 8% 2 R nintA;w 2 K[X](): (3.80)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (3.80)
su ces to show that the set A in (3.79) is UGAS for (3.73). By S-procedure arguments,
(3.80) can be veri ed by showing that for everyx2 R?", there exists a positive real scalar
such that
hr V (3¢); wi (1 X'Px V (%) 8w 2 K [X](%): (3.81)

On the other hand, as shown in the proof of Theorem 3.2, for evewy 2 K [X](%), there
exist v, 2 K[ (J(€1x) and v, 2 K[ ,](€2%), such that w = Ax+ Byv; + Byv,. Then, still

by S-procedure arguments and according to Lemma 2.2, (3.81) is ensured by proving that
for eachx-2 R?", and for eachv; 2 RP,v, 2 R™

hr V(x); Rx+ Bivi+ Bovoi (1 x'Px)  viSivp+trace(S;) o 2vySy(vi+ Cux)
Vi Sivy +trace(S;) 2 2viSy(va + Cox) V (%):
(3.82)

By straightforward calculations, the left-hand side of the above relation can be rewritten as
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follows

i

312 32 3
x He(P/Q)'F P PB]_ GISZ PBZ G—ZFSZ x

vlé 2S, S 0 gvlé +trace(Sy) | +trace(Sy) ;
Va 2S, S5 v
(3.83)
Thus in view of (3.76) and (3.77), it follows that there exists a small enough positive scalar
such that for everyx2 R?" niIntA;w 2 K[X](x¥), one hashr V(x); wi ' x. Then,
since for everyx~2 R?", V(%) max(P)%T%, by setting = —F gives (3.81), and this
nishes the proof.

Also in this case, the above result is lossless with respect to Theorem 3.2. Precisely, As-
sumption 1.2 ensures the feasibility of conditions (3.76) and (3.77). This claim is formalized
in the result given next.

Proposition 3.6. Let A;B;C matrices such that Assumption 1.2 is satis ed. Then, there
exist

(;P;S1;5: 51,92, A BsC)2Rg S22 DYDY DD R R'P RTT

satisfying (3.76) and (3.77).

Proof. De ne
2 3

h i

B= B, B, ;6= 4gl5 '8, = diagf S;; S19; 8, = diagf S,; S,g
2

then, (3.76) can be equivalently rewritten as

2 3
HePR)+ P PB &78, _
4 28 & 5< 0 (3.84)

Now, observe that for eacl5;, 2D%:S; 2D ™, one has

trace(S;) 2+trace(Sy) 2 trace(8y)max( 2; 2):
Therefore, if there exists
(;P;S1;5:S1;9A6BC)2R g S DY DY DD R*'" R'P R™P

such that (3.84) and
trace(8;) max( 2; 2 0 (3.85)

are satis ed, so are (3.76) and (3.77). On the other hand, since Assumption 1.2 ensures the
existence ofA¢; B.; C. such that & is Hurwitz, and (3.84) and (3.85), respectively, match
(2.14) and (2.15), by following the same arguments proposed in the proof of Proposition 2.2,
the assert is proven.



118 Chapter 3

3.3.3 Controller Design

Also in this case, the conditions issued from Proposition 3.1 cannot be directly employed
to solve Problem 3.4. On the one hand, attempting to design an observer-based control
gives rise to the same drawbacks discussed in the previous section with even an increased
complexity due to the addition of actuator quantization. On the other hand, the similarities
between the conditions in Proposition 3.5 with the ones in Proposition 3.1 foster to reconsider
the same approach pursued in Proposition 3.4. In particular, retracing the steps performed
to derive Proposition 3.4 gives rise to the following result.

Proposition 3.7. For each , S;;S, 2D?%, S;;S, 2D there existKk 2 R" ", L 2 R" P,

X;Y 2SP,andM 2 R™ " such that

2
He(H1)+ H: Hs Hy
S 25, 0 Z <0 (3.86)
S 25,
Hy> 0 (3.87)
where
2 3 2 3 2 . 3 2 . 3
|_|1=4AY+BM A 5;H2=4Y |5;|_|3=4 YC825;H4=4B M"S;,
K XA + LC X L C'S, XB S
if and only if, for any nonsingular matricesU;V 2 R" " such thatUVv™ =1 XY, X =
urx vy b tu,
Cc=MV T
B.=U L (3.88)
Ac=U (K XAY XBM UBLCY)V T
and
2 3
X U
P = 4 5 3.89
@ (3.89)

satisfy (3.76).

Proof. The proof is totally analogous to the proof of Proposition 3.4. In particular, necessity
can be proven as in the proof of Proposition 3.4 by still employing the same change of
variables as in (3.59), with the only caveat to enforc®. = 0, and by noticing that

2 3 2 3

B MT
JPB,=4 "~ 5;)€ =4 5:
XB I

Su ciency can be proven directly by retracing the same steps as in the proof of Proposition
3.4, with the only caveat to enforceN = 0.
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3.3.4 Optimization and Numerical Issues

Also for the matter of Problem 3.4, we want to associate to such a problem the following
optimization problem

Problem 3.5 (Stabilization). Let A;B;C be matrices of adequate dimensions.

Determine A¢;B¢; C., and P 2 S2", such that E(P) is UGAS for system (3.73) and it is
minimized with respect to some criterion.

Pursuing the same approach shown in the rst section of this chapter, which relies on
Proposition 3.7, Problem 3.5 turns into

minimize trace(X +Y)
XY;LKM; S 1:82;81:82
subject to S1;$,2D?;S1;$,2DM;X;Y 2SI, > 0 (3.90)

(3.86); (3.87), (3.77):

Obviously the solution to (3.90) entails the same issues discussed on Page 102, with an
increased complexity due to the further nonlinearity introduced by the bilinear ternM TS,

and its symmetric, appearing in (3.86) due to actuator quantization. Nevertheless, the same
strategies presented in the previous section can be adopted to face this problem. On the one
hand, a grid search in this setting entails a greater number of elements subject to such a
search, namelyp+ m+1. On the other hand, the complexity of an iterative procedure as the
one presented in Algorithm 3.2 is unchanged sin&; S, are selected once at the same time
throughout the rst step. Moreover, in light of Proposition 3.6 feasibility of the optimization
problems considered at each step can be ensured via suitable choice. Thus, the adoption of
an algorithm alike to Algorithm 3.2 is certainly a viable solution to tackle (3.90).

Numerical Example

Example 3.5. Let us consider again the system analyzed in Example 3.4, and assume that,
in addition to sensor quantization as considered in Example 3.4, the plant is subject to
uniform actuator quantization with quantization error bound = 0:25. That situation
can be embedded in the setting illustrated in (3.67), by taking y = =180, , =0:25. To
stabilize the closed-loop system, we want to design the controller in (3.68) by solving (3.90)
via an algorithm totally analogous to Algorithm 3.2. The initialization of such an algorithm

Is performed choosing as initializing controller the LQG controller already considered in
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Example 3.4. In particular, under this choice, the mentioned algorithm yields

705 2415 4431 5722
_E 4029 3487 0169 232
° 8 1891 1536 4006 148

2247 1736 696 1789

2 3
2222 1704
B, = g 4:.091 4034
1116 548
A 2:971 557

[
C.= 5065 8451 7:.082 1184

’ 3:785 6:101 243 1689 3785 6:101 2:43 1689
6:101 594 6:855 6:52 6:101 594 6:855 6:52
243 68855 26 2:394 2:43 6855 26 2:39
1.689 6:52  2:394 2465 1689 6:52 2:394 2465
3:785 6:101 243 1689 6074 2048 0:4997 0:13
6:101 594 6:855 6:52 2048 1635 6:034 6759
243 68855 26 2:394 0:4997 6.034 4296 4:.04
1.689 6:52  2:394 2465 0:133 6759 4:.048 4206

As® in Example 3.4, to compare the improvement arisen by the use of Algorithm 3.2 with
respect to the LQG controller used to initialize such an algorithm, we perform an analy-
sis stage of the two controllers directly employing the conditions provided by Proposition
3.5. Since the measure chosen for the sét= E(P) to design the controller is related to
trace(P 1), as illustrated in Chapter 2, for each of the two controllers we solve the following
optimization problem

minimize trace()
1S 1;S2;P;
H . P.p. - 2n.
subject to 21,82 23D+ Py ;28" >0 (3.91)
I
4 P5 0; (3.76), (3.77).

As usually, to overcome the nonlinearity introduced by the productP , we perform a grid
search for . In particular, the solution to the above optimization problem can be performed

via an algorithm similar to Algorithm 2.1. By running such an algorithm for the two con-
sidered controllers, one gets the following values for trad® !, for the designed controller

SAlso in this case, a rst attempt in the solution to the considered optimization problem leads to a
controller unsuitable for physical implementation due to overly fast dynamics and poorly damped eigenvalues.
Thus, in the e ective controller design, as already done in the other cases presented in this dissertation, we
consider an additional pole placement constraint as those in (3.63) and (3.64) characterized by parameters

and chosen via a tuning stage aimed at preserving the value of the suboptimal solution obtained.
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(trace(P, 1)) and for the LQG controller (trace(P|qgl))

trace(Py *) 57.01
trace(P,y) 85532

That is, the proposed design produces an improvement of about:93% with respect to
the considered standard LQG design used to initialize the proposed algorithm. Figure 3.4
and Figure 3.5 show, respectively, the steady-state evolution of the plant state and of the
controller state obtained by considering the two di erent controllers. In both simulations,
the closed-loop system is initialized asxg; Xc) = (0; =4;0;0;04): Simulations bring out that
the proposed design allows to notably reduce the amplitude of the oscillations induced by
guantization.
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Figure 3.4: Plant state evolution: Proposed design (blue), LQG design (red). The solutions
are obtained by integrating the closed-loop model via an Euler method with time step 10
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Figure 3.5: Controller state evolution: Proposed design (blue), LQG design (red). The
solutions are obtained by integrating the closed-loop model via an Euler method with time
step 10 4.
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3.4 Comments and Conclusion

In this chapter, we tackled the design problem of a dynamic output feedback controller to
stabilize linear plants in the presence of sensor quantization and simultaneous sensor-actuator
guantization. In this setting, we rstly shown that Assumption 1.2 ensures the existence of

a compact setA containing the origin, which is UGAS for the quantized control systems,
with respect to Krasovskii solutions. Such a result also points out that the compact set
A can be chosen as a sublevel set of a certain quadratic function. Thus, building on this
result, by the use of quadratic Lyapunov-like functions coupled via S-procedure to the sector
conditions for the uniform quantizer illustrated in Chapter 2, we turned the stabilization
problem into the feasibility problem to certain matrix inequalities. Such a formulation
based on matrix inequalities is shown to be lossless in the sense that under Assumption 1.2,
the derived matrix inequalities are always feasible. Thus, the proposed formulation not only
structures the design problem, but also decreases the conservatism in the determination of
the setA with respect to the main result without requiring any additional hypothesis beyond
Assumption 1.2.

Afterward, relying on the proposed characterization of the stabilization problem based on
matrix inequalities, we proposed a complete apparatus based on convex optimization over
LMis to allow the controller design while shrinking the size of the se&. The e ectiveness of
the proposed methodology is shown in some examples. As mentioned in the previous chapter
of this dissertation, the methodology proposed is quite exible to envision the extension of
the derived results to nite range quantizers, as well as to other kind of quantizers. In
particular, for the extension to nite range quantizers, the same considerations discussed
in the end of Chapter 2 about nite range quantizers, and other kinds of quantizers apply
mutatis mutandis for the matter of the problem considered in this chapter.

The results presented in this chapter show that employing an observer-based controller
in the presence of sensor quantization does not allow to derive computationally tractable
conditions for the design the complete design of the resulting controller. In particular, as
shown, one needs rst to make a choice for the controller gaik, and then designing the
observer gainL via the solution to convex optimization problem over LMIs. Nonetheless,
we shown that if the choice considered fdK is such that the matrix A + BK is Hurwitz,
then the resulting optimization problem allowing the design of the gaih is always feasible.
Such a shortcoming preventing from fully designing an output feedback controller resting on
an observer-based architecture is completely overcome by considering a general plant-order
dynamic output feedback controller. The adoption of the latter controller scheme also al-
lows, with few extra work, to derive computationally tractable conditions for the design of
an output feedback controller to deal with simultaneous sensor and actuator quantization,
bridging the gap left in Chapter 2. However, it is worthwhile to notice that adopting a
dynamic controller entails an augmentation of the closed-loop system state, whose turns out
to be the aggregation of the controller state and of the plant state. This fact could lead
to unsatisfactory results in terms of the behavior of the plant. Indeed, whenever the stabi-
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lization of the closed-loop system pertains to the whole control system state, the considered
optimization aimed at steering the closed-loop system state as much as possible to the ori-
gin, could favor more the component of the state associated to the controller than the ones
associated to the plant, leading to large deviations of the plant state from the origin. For this
reason, the paradigm of steering the plant state as much as possible close to the origin via the
shrinkage of the setA naturally considered in Chapter 2 needs to be partially reconsidered
in the presence of additional dynamics in the closed-loop system. As shown, this point can
be (partially) addressed by considering an observer-based controller architecture. In fact as
pointed in Remark 3.1, the adoption of this architecture enables to somehow decouple the
optimization to focus more on the side of the plant. However, as underlined, this kind of
architecture is hard to manage from a numerical standpoint. A possible solution to overcome
this problem consists of considering a size criterion based on directions of interest as the ones
considered in Chapter 2 also for the design of the full dynamic controller considered in Sec-
tion 3.2.4, and Section 3.3.2. Such directions can be chosen to belong to the subspace of the
state space associated to the plant state. On the other hand, pursuing this approach would
not suggest any selection for the matriXJ in Proposition 3.4 and Proposition 3.7. Such a
further variable could be considered to shape the issued controller in a way that ensures its
physical construction and/or additional requirements. This aspect provides an interesting
direction for future research.
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Concluding Remarks

In this part, we provided several tools to perform stability analysis and controller design of
linear systems in the presence of actuator and/or sensor quantization. In particular, both
static state feedback control and dynamic output feedback controllers were considered. The
pursued approach strives to always lead to computationally tractable conditions, so as to
provide solid and reliable tools actually exploitable in real-world settings. This latter feature
stems from having founded the whole methodology on convex optimization, in particular we
proposed an LMI-based approach.

Another interesting feature of our approach consists of having adopted the notion of solu-
tions due to Krasovskii. This choice allows to both overcome the technical issues concerning
the existence of solutions for the closed-loop system and to exploit a large class of existing
results presented in the literature. In particular, the exploitation of such results allows to
certify stronger properties for the solutions to the considered closed-loop systems than the
ones usually considered. We emphasize that the analysis we considered takes into account
Caratleodory solutions whenever they exist.

Moreover, we would like to point out that having dealt with Krasovskii solutions, due to
the equivalence between Krasovskii solutions and Hermes solutions mentioned in Chapter 1,
guarantees that the properties established for the closed-loop system are robust with respect
to small perturbations, that inevitably a ect physical control systems.

Another interesting aspect pertains to the fact that having considered Krasovskii solutions
does not lead to any change in the resulting constructive procedures with respect to classical
approach. Notice that this aspect is only due to the fact that the sector conditions we worked
out for the quantizer considered in this dissertation provide su ciently room to include the
set-valued mapping resulting from the Krasovskii regularization of the closed-loop system.

127



128 Conclusion of Part |

Observe that, in general, this may not be the case.

We would like to point out that some preliminary results combining quantization, time-
delays and saturation have been presented in [39].

As pointed out throughout this rst part, the main drawbacks encountered essentially
concern the fact that most of the time the approach we followed does not lead straight
to genuine convex optimization problems. This shortcoming has been addressed by the
introduction of speci c iterative algorithms able to handle the optimization problems issuing
from the considered problems. The most important features o ered by the algorithms we
proposed consists of:

avoiding as much a possible the use of tuning stages and/or heuristics,
always providing a suboptimal solution to the considered optimization problems.

The two above properties are of primary interest to envision solid and systematic tools to be
exploited in real-world applications. On the other hand, such algorithms operate iteratively,
hence they may lead to an increased complexity from a numerical standpoint. Moreover, the
convergence toward the optimum (whenever it exists) cannot be guaranteed.

Perspectives and Future Outlook

The methodology we o ered appears quite robust and promising to envision several exten-
sions. Such extensions, as briey discussed all along this dissertation up to now, mainly
consist of considering nite range quantizers and dealing with other class of quantizers, as
the well established nite precision logarithmic quantizer; see [21]. Another possible line
of research pertains to the extension of the methodology we proposed to a wider class of
plants as for instance polynomial systems. This class of systems has been recently achieving
a resounding interest by researchers due to the emerging of solid numerical tools to address
a large number of problems originating in such a scenario; see [24, 61]. In this context, an
interesting issue lies in generalizing the methodology illustrated in this dissertation via the
use of polynomial Lyapunov-like functions instead of quadratic ones.

Although the discontinuous behaviors induced by quantizers are fully accounted by the
proposed analysis, such a discontinuity may induce behaviors that are undesired in real con-
trol systems. Such behaviors essentially consist of rapid switching experienced by quantized
variables. Such a phenomenon is induced by unattainable sliding-mode and/or by the pres-
ence of process and measurement disturbances, always present in engineered control systems.
On the one hand, these phenomena induce an early wear of physical elements used to the
real implementation of control systems. On the other hand, whenever quantizers are used as
a mean to reduce the quantity of information sent through a nite bandwidth channel, fast
switchings traduce into an overly large number of transmissions per unit of time; [22]. To
overcome this problem, in [22] a hysteretic quantizer has been proposed and analyzed in a
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consensus setting via quantized information. Part of our ongoing work consists of extending
the analysis proposed in [22] to the general case of nonlinear systems as well as proposing
some re nements of the model in [22], so as to ensure some robustness properties for the re-
sulting model. First researches have shown that the general idea proposed in [82], consisting
of capitalizing on input-to-state stability for the quantization free closed-loop system, can be
successfully applied even to tackle this more involved problem. We would like to point out
that such a quantizer is no longer a static nonlinearity but it is a hybrid dynamical systems.
Hence, the tools we have been considering in this setting are the ones introduced in [56].
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APPENDIXA

SOME USEFUL RESULTS

Lemma A.l. Letf:R! R be a continuous function. Suppose that there exidts 2 R
with s <t such thatf(s) =0, and f (t) > 0. Then, there existss® s such thatf(s%) =0
and f (x) > 0 for eachx 2 (s%1]

Proof. By continuity of f and the fact that f (t) > 0, there exists > 0 such thatf (x) > 0
foreachx 2 [t ;t]. De ne the set

=f >0:8x2[t ;t]f(x)> 0g:

Observe that is non-empty, and furthermore [s;t]. Dene =sup . Let fxxgbea
sequence belonging tot( ;t] for eachk 2 N, and such that limx, =t . By continuity

of f and the de nition of the set , it follows that lim f(xx)=f(t ) 0. Now we prove
that necessarilyf (t ) = 0. By contradiction, assume that f (t ) > 0, then still by

continuity of f, there exists , > 0 such that for eachx 2 [t ot ], f(x) > 0. But

this contradicts the fact that = sup . Hence, setting s°=t establishes the result.
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Lemma A.2. Let X;Y 2 R" " be two symmetric positive de nite matrices andU;V 2 R",

such thatUVT =1 XY . The following statements are equivalent
02 31

(a) det@4Y )|<5A 80

(b) det(VU) 60
02 31

(c) det@4T 2)/5A 8 0 and det(U) 6 0

Proof. First notice that (a) can be replaced with det(l XY ) 6 0. Moreover, since by

de nition det( V U) = det(l  XY), (a) and (b) age,equivalgnt. Now, we show that (c) and
Y V

(b) are equivalent. To this end, observe that de@4 | 05A =( 21)"det(V), thus (c) and

(b) are equivalent, concluding the proof.
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INTRODUCTION

General Overview

Recent technological advances have enabled the control of dynamical systems using data
transmitted over communication networks or using digital devices. In these context, data
can get lost or can only be available intermittently [62, 65, 129]. As an example, when
the controller and the system to control are connected through a network, and an estimate
of the plant state is needed, the classical paradigms of accessing the output of the plant
continuously [88] do not apply and new approaches are required. This practical needed has
brought to life a new research area aimed at developing observer schemes accounting the
discrete nature of the available measurements; seeg [1, 4, 6, 74, 92], just to cite a few.

In these works, by assuming a periodical availability of the measured output, the authors
propose a discrete-time approach to the state estimation problem. Such an approach consists
of two stages. First the continuous-time plant is discretized, then a discrete-time observer is
proposed to estimate the state of the discretized version of the plant. However, this approach
entails three main drawbacks. The rst drawback stems from the fact that the intersample is
completely lost only studying the evolution of the estimation error at sampling times. In fact,
with such a discrete-time approach, no explicit bounds on the estimation error in between
consecutive samples are available. The second drawback is that any mismatch between the
actual sampling time and that one used to discretize the plant model induces an error in
the discrete-time description of the state estimation problem. The third drawback is that

in many modern applications, such as networked control systems, the output of the plant
is often accessible only sporadically, making the fundamental assumption of periodically
measuring unrealistic; seeg.g [62, 65, 129].

To address these issues, several strategies are presented in the literature. Such strategies
essentially belong to two main families. The rst one pertains to observers whose state is
entirely reset, according to a suitable law, whenever a new measurement is available, and that
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run in open loop in between such events (continuous-discrete observers). This approach is, for
instance, pursued in [3, 94]. The second family of strategies considers instead continuous-time
observers, for which the output injection error in between consecutive samples is estimated
via a continuous-time processing of the last received measurement. This approach is pursed,
e.g, in [73, 90, 101, 104]. However, we would like to point out that, except for the zero
order sample-and-hold scheme in [90, 104], the design of observers within this family is
essentially performed by an emulation approach. Such an approach consists of rst designing
a continuous-time observer, and then to evaluate the maximum allowable sampling period
(MASP) the designed observer can withstand. On the other hand, in real applications, most
of the time the design of the observer needs to be performed ensuring convergence of the
estimation error for a given maximum sampling time. In other words, an e ective design
strategy should allow to consider the maximum allowable sampling interval as a design
parameter.

The main aspect shared by the two families of observers illustrated here above is that the
resulting observers exhibit both continuous-time and impulsive behaviors. Roughly speaking,
the fact of having intermittent incoming measurements gives rise to observation schemes
that need to instantaneously adapt their working principle according to the data streams.
This fact of relying on observation schemes that experience continuous-time and impulsive
behaviors foster to analyze such a schemes via the tools arising from the literature of hybrid
dynamical systems. In particular, recently a comprehensive and solid framework for the
analysis of hybrid dynamical systems has been presented in [56]. Although the modeling
framework in [56] is solid and allows to deal with general hybrid dynamics, to the best of our
knowledge, the design of observers in the presence of sporadic measurements via the tools
in [56] has not received attention by the existing literature.

Another appealing aspect consists of analyzing the impact of sporadic measurement
streams on observer-based controller architectures. Indeed, often the estimate provided by
asymptotic observers is exploited to replace the actual plant state into static state feedback
controller schemes; [128]. In the context of modern control systems, several settings can be
considered. On the one hand, one can assume that, although the plant output is measur-
able sporadically, the plant input can be accessed at any time. This situation may occur,
e.g., when the output is measured via digital sensors with a low and time-varying sampling
rate, or in distributed control systems, whenever the controller and the plant are co-located
and plant measurements are sent to the controller via a data network; semg, [129]. On
the other hand, in some real applications, temporal limitations can even a ect the access
to the plant input. As an example, in distributed systems, where the controller and the
plant are located in di erent areas, the communication between the two systems happens
via a shared channel handled by a supervisor. Such a supervisor alternatively allocates com-
munication resources to the controller, to send control inputs toward the plant, and to the
plant, to send measurements toward the controller; see [62]. Still within a distributed control
systems framework, intermittent access to the plant input can be entailed also by package
dropouts; seeg.g, [112]. Another interesting case in which technological constraints involve
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intermittent actuation pertains to the case of low-rate actuators considered in [91].

Thus, in all these settings, the classical assumption considered in the literature of sampled-
data systems consisting of assuming the sample and hold operations, of the measured output
and of the control input, occur synchronously is overly restrictive.

An attempt to overcome this assumption is proposec.g, in [50], where the authors, by
pursuing a time-delay approach, propose a design strategy for an output feedback controller,
guaranteeing anH; performance, in the presence of aperiodic and asynchronous sampling
and holding operations. Another work following a similar approach, though for the case of
static state feedback controller is also presented in [91]. However, the proposed approach
therein is to some extent intrinsically conservative due to the coarseness introduced by
modeling the sampling and holding operations as processes introducing time-varying time
delays.

Contribution

The contribution o ered within this part of this dissertation aims at showing how the gen-
eral hybrid systems framework proposed in [56] can be successfully adopted to model and
design asymptotic observers for continuous-time LTI systems in the presence of intermittent
measurements. In particular, we shall consider two observation schemes: The rst one falls
within the family of continuous-discrete observers considered in [3, 94], while the other falls
within the family of observers considered in [73, 101, 104]. In addition, building on the rst
observation scheme, an observer-based controller architecture is proposed with the aim of
stabilizing a continuous-time LTI system in the presence of both sporadic output measure-
ments and input access. For such schemes computationally tractable design procedures will
be illustrated and thoroughly discussed.

The contribution of the work presented in this part is twofold. On the one hand, resting on
the general hybrid systems framework in [56] allows to come up with some completely novel
observation schemes, whose design appear hardly tractable from a numerical standpoint
by following alternative approaches ase.g, the one in [73]. On the other hand, adopting
the general modeling framework in [56] allows to extend the derived results to deal with
more involved problems of practical interest. For instance, the construction of the above
mentioned observer-based controller essentially has the role to emphasize the exibility and
the modularity o ered by the modeling framework in [56]. Other extensions are currently
under preparation and will not presented in this thesis.

The remainder of this dissertation is organized as follows:
Chapter 4 provides some general notions on hybrid systems as presented in [56].

Chapter 5 illustrates the modeling and the design of a measurement triggered-jumps
observer to exponentially estimate the state of a continuous-time LTI systems in the
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presence of sporadic measurements. The results illustrated in this chapter are presented
in [42, 44].

Chapter 6 illustrates the modeling and the design of an observer with continuous
intersample injection, still to exponentially estimate the state of a continuous-time LTI
systems in the presence of sporadic measurements. Preliminaries results concerning the
aspects illustrated in this chapter are presented in [41].

Chapter 7 illustrates how the observer presented in Chapter 5 can be used to asymp-
totically stabilize a continuous-time LTI system in the presence of both sporadic mea-

surements and intermittent input access. First results on this line of research can be
found in [43].

Simulations of the hybrid systems contained in this part have been performed via the
Hybrid Equations (HyEQ) Toolbox [108].



PRELIMINARIES ON HYBRID SYSTEMS

\Beauty is the rst test: there is no permanent place in the world for ugly mathe-
matics."

{ G. H. Hardy

4.1 Introduction

n this part of this dissertation, we rest on the hybrid system framework proposed in
[56]. For this reason, within this chapter, we provide the main ingredients and the main

de nitions concerning hybrid systems. Notice that the list of notions given in this chapter
is not an exhaustive one. In particular, for the sake of clarity, most of the de nitions are
given throughout the remainder of the dissertation. The aim of this chapter is to provide
only the basic concepts and de nitions needed to follow the results presented in the sequel
of this dissertation. Thus, for a complete study of hybrid dynamical systems, the reader is
referred to [56].
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4.2 Hybrid systems: Modeling Framework and Basic
Notions

In this part of this dissertation, we adopt the hybrid system framework proposed in [56]. In
particular, we consider hybrid systems in the following form

8

2x2C x2F(x)

. (4.1)
“x2D x*2G(x)

X is the state of the hybrid system,x stands for its velocity andx* indicates the value of
the state after an instantaneous changeC indicates the set where the continuous evolution
(ow) of the system can take place. Such an evolution is determined by the di erential
inclusionx 2 F(x). D is the set wherein discrete evolution (jumps) can take place. Such an
evolution is determined by the di erence inclusiorx™ 2 G(x). In the sequel, according to
[56], we name the objects de ning the general hybrid system (4.1) as follows

C is the ow set

D is the jump set
F is the ow map
G is the jump map.

In particular, the four data (C; F; D; G) univocally de ne a hybrid system as in (4.1). For this
reason, we refer to the four data@; F; D; G) as data of the hybrid system (4.1). Speci cally,
the shorthand notationH = (C; F; D; G) stands for the hybrid system (4.1) represented by
the data (C; F;D; G).

In this dissertation with focus on hybrid systems with state inR". In that case, the data
of the hybrid system (4.1) are de ned precisely as follows:
De nition 4.1.  The data of the hybrid systemH = ( C; F; D; G) with state in R" are de ned
as follows.

C R"
F:R" R" with C domF
D R"

G:R" R" with D domG

4.3 Hybrid Time Domains and Solution Concept

In continuous-time systems, solutions are parameterized by a real scalar variablehat is
the time. Instead, in discrete-time systems, solutions are parameterized by an integer scalar
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variablej 2 N, that keeps track of the number of jumps or of the elapsed discrete steps. Since
hybrid systems exhibit both continuous-time and discrete-time behaviors, it seems natural
to parametrize solutions by means of two variables. The rst ond,2 R o, representing the
amount of time elapsed. The second ong,2 N, keeps track of the number of the occurred
jumps. However, aseE R o N needs to satisfy some speci c properties to provide the
parametrization of a solution to some hybrid system. Such a properties are captured by the
notion of hybrid time domain given next.
De nition 4.2  (Hybrid time domain). A subsetE R o N is a compact hybrid time
domain if .
(I3t 1)

j=0
for some nite sequences of times 0+ t; t; t;. Itis a hybrid time domain if
forall (T;J)2 E,E\ ([O;T] f 0;1;:::;JQ) is a compact hybrid time domain.

In the sequel, given a hybrid time domairk and (t; ); (s; k) 2 E, thewriting (t;j)  (s;K)
meanst + ] s+ k. Furthermore, we indicate

sup E =supft2 R ¢: 9] 2 Nsuchthat(t;j) 2 Eg
sup E =supfj 2 N: 9t 2 R osuchthat(t;j) 2 Eg:

De nition 4.3  (Hybrid arc). A function :E ! R" is a hybrid arc if E is a hybrid time
domain and if for each] 2 N, the functiont 7! (t;j) is locally absolutely continuous on
the interval 11 = t: (t;j) 2 E.

Notice that from somej, the intervals | can be empty or being singleton. In such cases,
the above requirement on absolutely continuity is not relevant. Here below, we provide a rst
categorization of hybrid arcs based on their properties. In particular, here below we list only
the properties that are relevant within this dissertation, for an exhaustive categorization of
hybrid arcs, the reader is refereed to [56].

De nition 4.4  (Types of hybrid arc). A hybrid arc is called.

nontrivial if dom contains at least two points
complete if dom is unbounded
Zeno if it is complete and supdom < 1

Now we are in position to provide the following de nition proving the concept of solution
to hybrid systems used throughout the sequel of this dissertation.
De nition 4.5 (Solution to a hybrid system) Given a hybrid systemH = (C;F;D;G). A
hybrid arc is a solution toH if (0;0)2 C[ D, and

(S1) for allj 2 Ng such that 1! := ft: (t;j) 2 dom g has nonempty interior.

(t;j)2C 8t 2 Intl};
{tj)2F( (tj)) 8t2Intl;
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(S2) for all (t;j) 2 dom such that (t;j +1) 2 dom ,

(tj) 2 D;
(tj +1) 2G( (t]))

Remark 4.1. Notice that, given a hybrid system, it is inappropriate to rst select a hybrid
time domain and then try nding a solution to the given hybrid system having the selected
domain. In other words, it is the solution itself that determines its own domain.

Now, we provide another de nition that extends the concept of maximal solution from
continuous-time and discrete-time systems to hybrid systems.
De nition 4.6  (Maximal solutions). A solution to H is maximal if there does not exist
another solution to H such that dom dom and (t;j)= (tj)forall(t;j)2 dom .

In the sequel of this dissertation, given a hybrid systerfl, and a setS, Sy (S) denotes
the set of all maximal solution toH such that (0;0) 2 S. If no set S is mentioned, then
Sy stands for the set of all maximal solutions tdH.

4.4 Basic Assumptions on Data

Before ending this chapter, let us consider the following assumption
Assumption 4.1 (Hybrid basic conditions).

(A1) C and D are closed subsets d&R"

(A2) F: R" R"is outer semicontinuous and locally bounded relative t&€, C domF,
and F (x) is convex valued for every 2 C

(A3) G: R" R" is outer semicontinuous and locally bounded relative t®, and D
domG

Such an assumption ensures that the considered hybrid system is well-posed in the sense
speci ed in [56, De nition 6.2]; see [56, Theorem 6.8]. Well-posedness is a key property that
Is required for the applicability of a large number of results presented in [56]. We invite the
reader to see [56] for further details on well-posed hybrid systems.



AN OBSERVER WITH MEASUREMENT-TRIGGERED JUMPS

\Success depends upon previous preparation, and without such preparation there is
sure to be failure.”

{ Confucius

5.1 Introduction

his chapter deals with the state estimation problem for linear time-invariant (LTI)

T systems for which measurements of the output are available sporadically. To solve the
considered problem, we provide an observer with jumps triggered by incoming measurements,
which is studied in a hybrid systems framework. Speci cally, the resulting system is written
in estimation error coordinates and augmented with a timer variable that triggers the event of
new measurements arriving. Then, the observer is performed to achieve global exponential
stability (GES) of a closed set including the points for which the state of the plant and
its estimate coincide. Furthermore, a computationally tractable procedure for the proposed
observer is presented. Finally, the e ectiveness of the proposed methodology is demonstrated
in two numerical examples. The results presented in this chapter can be found in [44, 42].

145
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5.2 Problem statement

5.2.1 System description

We consider continuous-time linear time-invariant systems of the form

z= Az + Bu

" (5.1)

<
I

wherez 2 R", y 2 RY9, andu 2 RP are, respectively, the state, the measured output, and the
input of the system, whileA; B and M are constant matrices of appropriate dimensions. We
assume that the inputu belongs to the class of measurable and locally bounded functions
u:[0;1)! RP. Our goal is to design an observer providing an estimate df the state z
when the outputy is available only at some time instanceg, k 2 N, not known a priori (a
similar setup is considered in [100]).

We assume that the sequencitcgi_, is strictly increasing and unbounded, and that for
such a sequence there exist two positive real scaldrs T, such that

0 8] Tz

(5.2)
T T+ [ T, 8k 2 N:

As also pointed out in [64], the lower bound in condition (5.2) prevents the existence of accu-
mulation points in the sequencé t,gi_,, and, hence, avoids the existence of Zeno behaviors,
which are typically undesired in practice. In fact,T; de nes a strictly positive minimum time

in between two consecutive incoming measurements. Furthermofig,de nes maximum time

in between two consecutive incoming measurements. For this reason, we will refefT§oin
the sequel as maximum sampling interval.

Since the information on the outputy is available in an impulsive fashion, assuming that
the arrival of a new measurement can be instantaneously detected, motivated by [3, 103],
to solve the considered estimation problem, we consider an observer with jumps in its state
following the law

8
22(t) = A2(t) + Bu(t) 8t6 t k2N

> (5.3)
TAT)=2(t)+ L(y(t) M2(t) 8t=tg;k2 N

wherelL is a real matrix of appropriate dimensions to be designed. Note that, in between
events, the observer runs in \open-loop" in the sense that no information of the output is
used.

Remark 5.1. Assuming the knowledge of the input is not overly restrictive. Indeed, in
many practical settings, all of the devices employed to control and supervise the plant may
be embedded into the same system. Notice also that, often, the estimated state is part of a
feedback controller €.g. in linear observer-based controller architectures), in which case the
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input u is a static function of the estimated state that is perfectly known.

Along the lines of [109], the state estimation problem is formulated as a set stabilization
problem. Namely, our goal is to design the matrix. such that the set wherein the plant state
z and its estimateZz*coincide is globally exponentially stable for the plant (5.1) interconnected
with the observer in (5.3). At this stage, as usual in estimation problems, we de ne the
estimation error as
"=z 2 (5.4)

Thus, since at timesty the plant state in unchanged, the error dynamics are given by the
following dynamical system with jumps:

8
2 (1) = A" (t) 8t 6t k2 N

. (5.5)
Trt)y=(1  LM)"(t) 8t=tx k2 N:

Due to the linearity of system (5.1), the estimation error dynamics and the dynamics af
are decoupled. Then, for the purpose of estimation, one can e ectively only consider system
(5.5).

5.2.2 Hybrid Modeling

The fact that the observer experiences jumps when a new measurement is available and
evolves according to a di erential equation in between updates suggests that the updating
process of the error dynamics can be described via a hybrid system. Due to this, we represent
the whole system composed by the plant (5.1), the observer (5.3), and the logic triggering
jumps as a hybrid system (see [81] where a similar approach is adopted to model a nite-time
convergent observer).

The proposed hybrid systems approach requires to model the hidden time-driven mecha-
nism triggering the jumps of the observer. To this end, in this work, and in a similar manner
as in [19], we augment the state of the system with an auxiliary timer variable that keeps
track of the duration of ows and triggers a jump whenever a certain condition is veri ed.
This additional state allows to describe the time-driven triggering mechanism as a state-
driven triggering mechanism, which leads to a model that can be e ciently represented by
relying on the framework for hybrid systems proposed in [56]. More precisely, we makto
decrease as ordinary time increases and, whenever = 0, reset it to any point in [Ty; T,],
so as to enforce (5.2). After each jump, we require the system to ow again. The whole
system composed by the estimation errdr and the timer variable can be represented by
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the following hybrid system, which we denoteH -

8 9
n = AII =
—_— ll; 2 C
% -2 ¢ )
H. 9 (5.6&)
% i = (1 M) = (- )2 D
' 2 [T4;T2]
where the ow set and the jump set are de ned as
C=f("; )2R" R o: 2][0O;T
") 0 [0; T2lg (5.6b)

D=1f("; )2R" R o: =0g:

The set-valued jump map allows to capture all possible measurement events withip or
T, units of time. Speci cally, the hybrid model in (5.6) is able to characterize not only the
behavior of the analyzed system for a given sequerfdegdi., , but for any sequence satisfying
(5.2). We denote the state oH- by

x=(")
and by f and G, respectively, the ow map and the jump map,i.e.,
2 3
A"
f(x)=4 15 8x 2 C (5.7a)
2 3
G(x) = 40 M) 8x 2 D: (5.7b)
[T1; T2]

Remark 5.2. It is worthwhile to notice that the hybrid system H- satis es Assumption 4.1.
This assertion can be straightforwardly veri ed by inspection of the data oH.. On the
one hand, this property not only guarantees that the stability property exhibited foH- are
somehow robust with respect to perturbations. However, in this dissertation we do not focus
on perturbed hybrid systems and we refer to [56] for a complete treatment of this aspect.
On the other hand, having Assumption 4.1 satis ed will be a crucial aspect in the sequel of
this dissertation, being required for the derivation of some results.

Remark 5.3. To make the hybrid system (5.6) an accurate description of the real time-
triggered phenomenon, which governs the feedback update process, the variableeds to
belong to the interval [Q T,], property that is guaranteed by the de nition of C and D.

In this chapter, we consider the following notion of global exponential stabilityGES) of
closed sets for a general hybrid systei in R .
De nition 5.1. (GES[123]) Let A R be closed. The sef is said to beglobally expo-
nentially stable(GES) for the hybrid systemH if there exist strictly positive real numbers
;  such that every solution to H satis es for all (t;j ) 2 dom

j Dia e D (0;0)ja: (5.8)
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Then, by introducing the set
A=f(" )2R" R ¢:"=0; 2][0;T,]g: (5.9)

the problem to solve is formulated as follows:

Problem 5.1. Given the matricesA, B, and M of appropriate dimensions and two positive
scalarsT; T,, design a matrixL 2 R" 9 such that the setA de ned in (5.9) is GES for
the hybrid system (5.6).

Remark 5.4. Concerning the existence of solutions to system (5.6), by relying on the
concept of solution proposed in De nition 4.5, it is straightforward to check that for every
initial condition (0;0) 2 C[ D there exists at least a nontrivial solution to (5.6) and
that every maximal solution to (5.6) is complete. Notice that, although De nition 5.1 does
not insist on completeness of maximal solutions, since the completeness requirement stated
in Problem 5.1 is automatically satis ed by (5.6), solving Problem 5.1 ensures that the
estimation error converges exponentially to zero dst | goes to in nity.

In addition, we can characterize the domain of the solutions to (5.6). Indeed, the variable
, acting as a timer, guarantees that for every initial condition (0;0) 2 C[ D, the domain
of every maximal solution to (5.6) can be written as follows:

[ .
dom = ' (il fig (5.109)
j2No

with
T1  tj« t; T, 8 2 NgnfO
1 j+1 j 2 J 0 g (5.10b)
0 ¢y to To:

Furthermore, assumingty = 0, the structure of the above hybrid time domain implies that
for each ¢;j) 2 dom we have
t T +1) (5.11)

the latter relation will play a key role in establishing GES of the sefA for hybrid system
(5.6).

5.3 Main Results

5.3.1 Conditions for GES

The following result provides conditions for GES of the sef de ned in (5.9) for hybrid
ystem (5.6).
Theorem 5.1. |If there existP 2 S, and a matrix L 2 R" 9 such that

(I LM)eVPeN( LM) P<0 8v2[Ti:Tl] (5.12)

1By the de nition of system (5.6) and of the set A, for everyx 2 C[ D [ G(D), jxja = k"k.
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then the setA de ned in (5.9) is GES for the hybrid system (5.6).

The proof of the above theorem relies on the following Lemma.
Lemma 5.1. Let # be a strictly negative real number. Pick
|

I T
o po AT, (5.13)

2 0O ; ;
1+T, 1+ T,

Let be any solution to the hybrid system (5.6). Then, for everyt(j) 2 dom , one has

# R (t+])): (5.14)

Proof. From (5.14), by rearranging the terms, one gets
t+( +#)j R O 8(t;j) 2 dom (5.15)

Now, pick any solution to (5.6). Now recall that from (5.11) for every §;j) 2 dom one

has
t To(j +1) (5.16)

then, for every strictly positive scalar , from the latter expression, one gets
t Ty + To 8(t;j) 2 dom : (5.17)
Thus, by the virtue of the above bound, it turns out that (5.15) holds if
(T,+ +#j R+ T, 0 8 2N (5.18)

which holds due to the selections considered in (5.13) forand R, concluding the proof.

Now we are in position to state the proof of Theorem 5.1

Proof. Consider the following Lyapunov function candidate for the hybrid system (5.6) de-
ned for every x 2 R" R g and everyP 2 S

V()= "Ter pe ™ (5.19)
Note that there exist two positive scalars ;; , such that
XA V(X)) jxj3 8x2 C[ D[ G(D): (5.20)

Speci cally, due to the positive de niteness ofP and the nonsingularity of the matrix e*
for every , by continuity arguments, one can set

1= min e € P (5.21)
2[0;T2]
2= Max ma € Pé (5.22)

2[0;T2]
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where min() and max() denote, respectively, the smallest and the largest eigenvalue of
their matrix argument. By straightforward calculations one gets

rvx)= 28 P "Ter (ATP + PA)EM " :
Moreover, by exploiting the fact that the matricese® and A commute, one has
hr V(x);f (x)i =0 8x 2 C: (5.23)

Now, observe that for everyg 2 G(x), there exists a real scalav belonging to the interval
[T1; T,] such that 5 3

40 M)
\Y

Then, for everyg 2 G(x), one has

V(g V) ="T( LM) VPN LM)"
"TeAT pet

Furthermore, wheneverx2 D, from (5.6b), we have that =0, which in turn implies
V(g VX)="T (I M) VPNl LM) P ™

Hence, by virtue of relation (5.12), it follows that there exists a positive small enough scalar
such that, for everyx 2 D;g 2 G(x)

V(g V(X "= i (5.24)

Without loss of generality, assume that ; in (5.22) and in (5.24) satisfy 1 — > 0, which
is always possible by picking small enough. Dene =In 1 — and observe that < 0.
Then

V(g eV(x) 8x 2 D;g 2 G(x): (5.25)
Pick o # " T !
o 2 | . )
2 0 1T, andR 2 1+ T, 1 (5.26)

Let be a maximal solution to (5.6). As shown in the proof of [56, Proposition 3.29], thanks
to (5.23) and (5.25), direct integration of ¢;j) 7! V( (t;j)) over dom yields

V( (ti) e V((00) 8(tj)2dom: (5.27)

Then, according to Lemma 5.1, due to the selection considered foland R in (5.26), from
(5.27) one gets
i R (t+]) 8(t;j) 2 dom (5.28)
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which, along with (5.20) and (5.27), leads to

s

—ie 2D (0:0)ja  8(t;j) 2 dom : (5.29)

R
2

J(G))ia e

Hence the setA de ned in (5.9) is GES for system (5.6) concluding the proof.

Remark 5.5. Notice that assuming relation (5.12) to hold implies that the eigenvalues
of V(I LM) are strictly contained in the unit circle for everyv belonging to [Ty; T,].
On the other hand, according to Sylvester's determinant theorem, spe&f{((I LM)) =
spec((I LM )e'). Thus, the existence of a pailP; L satisfying condition (5.12) requires the
detectability of the pair (e*V;Me”") for eachv belonging to [T1; T,], which in turn, due to
the nonsingularity of e for any v and for any matrix A, is equivalent to the detectability of
the pair (¢"V;M). Thus, it follows that Theorem 5.1 requires the sampled version of system
(5.1) to be detectable for every belonging to [T4; T>], though this condition, in general, is
only necessary. A similar remark is pointed out in [103].

5.3.2 E ect of Measurement Noise

So far, the measured output was assumed to be perfectly known at sampling timgs

k 2 N. However, in a real-world setting, the measured output is a ected by measurement
noise. To quantify the robustness properties of our observer, denote the measurement noise
as : R ¢! RY Then, the measured output is

y=Mx+ :

This, in view of the de nition of " given in (5.4), suggests considering the following hybrid
system with statex =("; )2 R R gandinput 2 RY

8 9
n - All =
- “)2C
% T ;)
H 9 (5.30)
s LT,
' 2 [T1;To]
For notational simplicity, in the sequel we use
2 3
(1 Lm) L
G(x; )=4 5 5.31
b ) [T1; T2 53D

To study the e ect of the measurement noise, we consider the input-to-state-stability$S)
concept introduced in [115] for continuous-time nonlinear systems and extended to hybrid
systems in [18]. Such a notion is given next for a general hybrid systdty with state in
R, and input d 2 RS. Before, consider the following notions of solution pair tél 4, and the
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supremum norm for hybrid signals
De nition 5.2.  Given an hybrid arcd, its superior norm at (;j ) is

8 9

< =

kdkjy) =max .  esssupjd(s;k)j ; supjd(s;k)j .

" (sik)2domdn ( d);(sik) (6j)  (sk)2 ((d);(sik) ()’
where (d) denotes the set of all {;j ) 2 domd such that (t;j +1) 2 domd; see [18] for
further detalils.
De nition 5.3. A hybrid arc and a hybrid signald is a solution pair (;d) to Hq =
(F;G;C;D) if

(0;002C[ D
dom =domd

for all j 2 N and almost allt such that (t;j ) 2 dom
(tj)2C; Lj)2 F( ()):d(t]))
for all (t;j) 2 dom such that (t;j +1) 2 dom

(tj)2D; () +1) 2G( (t]):d(t]))

Building on these notions, let us consider the following de nition.
De nition 5.4  ([18]). A hybrid system Hy is input-to-state-stable with respect tod and
relatively to A if there exist 2 KL and 2 K such that each solution pair toH 4 satis es

J(6))ia maxt (j (0;0)ja:t+j); (kdkg))g (5.32)

for each ¢;j ) 2 dom .

Remark 5.6. This extension of ISS to hybrid systems deals with hybrid signals as external
perturbations. In our case, due to the continuous-time nature of the plant, the perturbation
t 71 (t) acting on the measured output is a purely continuous-time signal. On the other
hand, such a perturbation can be transformed into a hybrid signal to t in the framework
proposed by [18]. To this end, as shown in [105], given a solutioio H , the signalt 7! (t)
can be represented as a hybrid signal; de ned as

H(tj) = () 8(t;j) 2 dom : (5.33)

In particular ( ; 4) is a solution pair to H . Moreover, due to the form of , the hybrid
sup normk ykj) satisesk nKij) = kK k¢ for every (t;j) 2 dom .

Remark 5.7. Notice that, since the Lyapunov function in (5.19) does not decrease during
ows, the ISS Lyapunov condition for hybrid systems given in [18] cannot be employed in our
setting. Thus, to show ISS of system (5.30) via the Lyapunov function given in Theorem 5.1,
we couple strict decrease at jumps of such a function with the persistence of jumps enforced
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by the variable . This claim is formalized in the result given next.

Theorem 5.2. LetT; T, be two positive real scalars. If there exisP 2 S, and a matrix
L 2 R" 9 satisfying condition (5.12), then the hybrid system (5.30) is ISS with respect to
relatively to the setA.

Proof. Consider the Lyapunov function de ned in (5.19). Since the measurement noise
does not act on the ow map, as in the proof of Theorem 5.1, one gets
hr V(x);f (x)i =0 8x 2 C: (5.34)

Forany (x; )2 R R RYand for eachg2 G(x; ) one gets

V(g V=T 1 M) VPN M) & Pet v 2TLTAVPEV( LM)"
+ TLTeAVPeL

wherev is a real scalar belonging to the intervalT;; T.]. Wheneverx 2 D, from (5.6b), we
have =0. Then, for eachx 2 D, 2 RY% g2 G(x; ), one gets

V(g V)="T (1 LMYVPeN(I M) P " 2TLTAVPEN( LM)"
+ TLTAVPeVL
(5.35)
Moreover, from (5.12), there exists a small enough positive real scalasuch that, for every
v2 [Ty; T,] and every"

T M) VPN M) P nTe (5.36)

Now recall that for everya;b2 R", 2a'b laTa+ ! b'bfor every positive real scalar .
From (5.35) and (5.36), settinga= ", b = TLTeAVPeN(I LM),and! = 5 yields

V(g) V(X) ;"T"+ T TeAvp 12y eI LM)I LM)TAVP VL
(5.37)

Moreover, thanks to (5.12), one hak(l LM)Te*’VPe*(I LM )k < kPk. Thus, from

(5.37), it follows V(g) V(x) 2T+ KkLk® T, where

= kPK 2+ kPk max ket Vk? :

v2[T1;T2]
The above relationship, together with (5.20), yields
V(g) eV(X)+kLk®* T 8x2D; 2R%g2G(x; ) (5.38)

where =1In 1 35 and ; is dened in (5.22). Therefore, from (5.38) and (5.23), by
considering the domain of the solutions to (5.30), which is given in (5.10), it turns out that
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given any maximal solution pair (; ) to (5.30), one gets

V( (£0)=V((00) 8t2][0ty] (5.39a)

| K1
. . 2 0 1 DK (tiqri 2
VO VOO e et T Tk (tai Dk (5.39b)

8(t;j) 2 dom with j 1

Furthermore, with  negative as in the proof of Theorem 5.1, for eaclh; ) 2 dom such
that j 1, we have

2
Vi e v o+ S (5.40)

Since the input dependent term in the right-hand side of (5.40) is nonnegative, by combining
it with (5.39a) and (5.40), we obtain for each;j) 2 dom ,

: - e kLKk?
VOGD) eV ©00)+ ok ky); (5.41)
further using (5.20) one gets
. - . e kLk?
DA el OO + ok Ky’ (5.42)

Now, by following the same arguments in the proof of Theorem 5.1, for some (solution
independent) positive real scalars, R, from (5.42) one gets

o i . . e kLKk?
DR e OV OO0+ gy K (5.43)
or equivalently
gsi M 9
. . R trj). . 2e =
j (61)ia max Zfe?e 000t kakk Kei). (5.44)

Thus, according to De nition 5.4, the hybrid system (5.30) is ISS with respect to (relatively

to the setA).

Remark 5.8. The above result allows to conclude that, in the considered case, condition
(5.12) actually su ces to guarantee the ISS property for hybrid system (5.30), and there is
no need in nding an ISS-Lyapunov function as de ned in [18].
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5.4 Observer Design

In the previous section a condition to guarantee global exponentially stability and input-to-
state-stability, respectively, for systems (5.6) and (5.30) was provided. However, due to its
form, such a condition is not computationally tractable to obtain a solution to Problem 5.1.
Indeed, from a numerical standpoint, condition (5.12) has two drawbacks: it is not linear in
P and L, and it needs to be veri ed for in nitely many values ofv. The relevance of the
second drawback is evident at a rst sight, while the lack of linearity is a severe constraint,
since the solution to nonlinear matrix inequalities often lead to NP-hard problems; seqy,
[15]. Thus, to make the problem numerically tractable, further work is needed. To this
end, the following result provides a rst step toward an LMI-based design procedure for the
proposed observer.

Proposition 5.1. LetP 2S! andL 2 R" 9 Then, (5.12) holds if

3

HeF) F FLM eA™vp
P 0 f<o sv2[mTy (5.45)

=)

is feasible with respect td- 2 R" ".

Proof. The proof carried out here is inspired by [99]. Speci cally, set

3 2 3 23

2
.
:4eAVPeAV O5;Sz4l LM5;Y:4O5:
I

P I

Z

Then, condition (5.12) can be rewritten as
S'z5<0 (5.46)
while the positive de niteness ofP can be expressed equivalently by requiring that
YTZY < 0: (5.47)
Thus, by the projection lemma [52], (5.46) and (5.47) are satis ed if there exists a matrix

such that 2 3
VP He(F) F FLM
4 e) 5 < 0: (5.48)

Moreover, by Schur complement, from (5.48) one gets

3
He(F) F FLM eA"
P 0 <o (5.49)
P 1

and nally, pre-and-post multiplying by diag(l ; I; P) yields the left-hand side matrix in (5.45),
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concluding the proof.

Remark 5.9. Notice that by setting FL = J, condition (5.45) turns into a parametric LMI
in v, with respect to the unknown matricesF; J, and P.

Proposition 5.1, along with the above remark, provides a su cient condition to (5.12),
which is linear in the decision variableF;J and P. Nevertheless, the obtained condition
still has to be veri ed for in nitely many values of v. This situation is rather common
in the literature of sampled data and impulsive systems; see,g, [64] and the references
therein. A general procedure to overcome this issue consists of embedding the tefth with
v in the interval [Ty; T;], into a polytope, (a convex set having a nite number of extreme

polytope as polytopic overapproximation or polytopic embedding of"V on [Ty; T,]. Then,

by exploiting the linearity of condition (5.45) with respect toe*V, one can obtain a nite set

of LMIs, whose satisfaction implies (5.45) to hold. This approach is formalized for our case
in the result given next.

Corollary 5.1. Let X1;X5;:::;X be matrices such thate®™sT2l 2 cof X1; X511 X @

12f21;:::; g, 3
He(F) F JM X[P
P 0 £<O0 (5.50)
P

then the matricesP and L = F 1J satisfy condition (5.12).

Proof. Sincee® 2 cdf X1;X5;:::;X g wheneverv 2 [T;; T,], then there exist non-negative
functions 1; ,;:::; , such that for eachv 2 [Ty; T,]
X X
eV = (VX i(v)=1: (5.51)
i=1 i=1

Then, replacing in left-hand side of (5.45) the terme®V with the expression given in the
left-hand side of (5.51) leads to

P 3
He(F) F JM i=1 i(V)XiTP
P 0 (5.52)
P

which, thanks to the constraint on each ;(v) given in the right-hand side of (5.51), can be
equivalently rewritten as

3
He(F) F JM X]P
(V) P 0 (5.53)
i=1 =
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Hence, by the virtue of (5.50) and Proposition 5.1 matriceB andL = F 1J satisfy condition
(5.12) and this concludes the proof.

The previous result allows, once a polytopic embedding of the teréfl’ is known, to design
the proposed observer via the solution to a nite number of linear matrix inequalities. The
next subsection illustrates a possible technique to build such an embedding.

5.4.1 Polytopic Embedding

The derivation of a polytopic overapproximation of the exponential matrix on a given com-
pact interval is recognized in the literature as a dicult problem; see [29, 60]. In [60] an
exhaustive comparison between several kinds of overapproximations is presented and the
authors suggest that two classes of approaches can be pursued to determine polytopic over-
approximations of the matrix exponential term on a given compact interval. In the sequel,
for any interval I R, we denote

M =fY2R"":9v2I suchthatY = eVg:

belonging to a given comgact intervalg™ = .., (V)F; + ( v) for some positive scalar
functions 4;:::;  with ;_; i(v) = 1. This approach is commonly calledwith uncer-
tainties. On the one hand, the approaches with uncertainties allow, in general, to obtain
tighter overapproximations than those without uncertainties; see [29]. On the other hand,
managing bounded uncertainties to build a design procedure can be hard, although in [63]
a possible two-stage design procedure is proposed to cope with this issue.

In this dissertation, we propose a novel methodology to build a polytopic embedding
without uncertainties. Such a methodology is based on the well known expansion of the
matrix exponential based on residue matrices. By arranging the eigenvalues of the matrix
A in a way such that the rst | are real and distinct, the following . are complex and
distinct, and the remaining . are the conjugates of the previous ones, such an expression is
given by

eAV _ Xr th Rij o v .Vj 1
=1 jo1 i (5.54)
X oc R‘IIC <( . V] ! .
+ 2650 <(Ry)cosE( 1)v) = (Ry)sin(=( i)V)
i= +1j=1 G

The constantsm{ and m{ are, respectively, the multiplicity of the real eigenvalue ; and
of the complex-conjugate eigenvalue pair;; ; in the minimal polynomial of the matrix A.
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The matricesR;; are realn n matrices corresponding to the residues associated to the
partial fraction expansion of the rational matrix (si A) !. The advantage of the proposed
method lies in the fact that there exist several methods to compute the residues matrices.
For instance, in this work, we rely on the procedure proposed in [80].

Remark 5.10. Although the above expansion based on residue matrices concerns the multi-
plicity of each eigenvalues in the minimal polynomial of, the knowledge of such a minimal
polynomial is not required to start with the application of proposed methodology. Indeed,
as a rst step, one can assume without any loss of generality that the minimal polyno-
mial of A coincides with its characteristic polynomial and compute the residues matrices
for each eigenvalues according to its multiplicity in the characteristic polynomial. Then, for
each eigenvalue , if the multiplicity of  in the minimal polynomial of A is less than the
one in the characteristic polynomial, higher order residues are automatically equal to zero.
This feature is ensured in the algorithm proposed in [80]; see [80, Section 4 and Example 1].
Therefore, from a practical view point, as a rst step, one can for each eigenvalue (depending
on its multiplicity in the characteristic polynomial) compute all the related residues. Then,
by neglecting the ones equal to zero (the selection of a certain threshold can be required in
nite-precision implementations), one gets the right residues expansion.

Once the residue matrices are known, to build a polytopic embedding ef¥ one can
proceed in a similar manner as in [29]. In particular, de ne for each=1;2;:::; , and for
eachv 2 [Ty; T,]

h i or oy

i:v7h! i1(v)  i2(v) D mr (V) = eV eiv i ei"(‘r;i,' o
|
Ii?i = Ri1 R ::: Rimi’

and set for eachv 2 [Ty; T,]

h ir
IV7h! 1(v)  2(v) (V)
|
= R, R, ::r R,
De ne foreachi= ,+1; (+2;:::; ;+ .andforeachv 2 [Ty;T,]
h i
tvh (V) (V) it ime(V)
= 2e<CVcosE( )v) 20 Vcose( V)V ::: 2e°0iVcosE( i)v)%
h i
W):v7t GV Hv) s Re(v)
= 20 Vsin(=( ;)v) 20 WVsin(=( Iv)v ;. 2eC)Vsin(=( i)v)%

h i
Q= <(R1) <(Riz) ::: <(Rime)
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and set for eachv 2 [Ty; Ts],
h it

VTl (V) () e (V)
) .

T
VTG0 () e (V)

h
= ®r+1 ®r+2 Lo ®,+1+ c:

The de nition of the above quantities leads to the following equivalent writing for (5.54) for

eachv 2 [Ty; T,] 3

1
)
)é In§ ; (5.55)

02
h i (v
eV = ? %ﬁ (v
“(v)
The above writing allows to make a separation between constant elements and functions of

appearing in (5.54), which is useful to build up a polytopic embedding for such an expression.
To this aim, rstly observe that

rge ( 9 rge rge rge ® (5.56)
Moreover, by de ning the following quantities: for each 21 1;2;:::; g
i = max e' v j 21,2 m{
Y vemita (1) J 4 Mid
L (5.57a)
- . iV . N, TP r
i VerTllr?TZ]e T ] 211,2::,mg
and foreachi 2f +1; (+2;:::; ++ O
_ <( ) vt o ¢
i = Vgr[lﬁ?%ﬂZe cosE ( i)v)W j 211,20, mig
: <( i)V Vj ! H f1:2::::- c
= Vzr?Tllr?mZe cosE ( i)v)W j 211,20, mig
g1 (5.57b)
— = <CVgin(=( W)——— i e c
i vg[]%ﬁz] 2e sin(=( ,)v)(j )i ] 2f12::0,mg
. SN Vit .
o= min 2e5CVsin(=( )v) j2f1,2:::;mg

A v2[TT) (G 1!
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by continuity of the functions involved in (5.55), it turns out that?

Ul Ul ¢ mi
rge rge j = cof j; jg=co fi; jg=co
i=1j=1 i=1j=1 i=1j=1
rt ¢ miC rt ¢ mic rt ¢ m;:
rge rge j = cof ;5 jg=co f=5 jg=co (5.58a)
i= (+1j=1 i= (+1j=1 i= (+1j=1
rt ¢ mic r+ ¢ mf rt ¢ r‘nic
0 0 — 0. 04— “0. 0 — 0
rge rge j = cod §; jg=co f i, jg=co
i= (+1j=1 i= (+1j=1 - i= (+1j=1 T

Thus from (5.55) and (5.56), via the above expressions, one gets

i o

AlTeiTe] nh ? )i 2 C)
( )i 2co( .

0
h | (5.58h)
=cofy T, 9wk

Let us remark that the set is a nite point set, hence each element belonging to its
convex-hull is the convex combination of a nite number of elements in . Speci cally,

P rt+ c c
= card()= card ( 9= card() card() card( & 2 ™2 =™ =20
Therefore, letX 1; X»;:::; X be the matrices such that
= X Xpi0X g (5.58¢)

then for eachv 2 [Ty; T,],

Remark 5.11. The most laborious part of the proposed technique, namely the computation
of the residue matrices, does not depend on the considered interv&l;[T;]. Thus, for a given
matrix A, once the residues are known and stored, the construction of the needed polytopic
embedding only requires the computation of the extrema of a nite number of continuous
scalars functions on a compact interval. Notice that although the proposed embedding
technigue could lead to similar results to the ones proposed in [29], our methodology does
not require either the derivation of the real Jordan form ofA or its minimal polynomial.
Moreover, the proposed methodology is systematic and does not require dedicated strategies
depending on the multiplicity of the eigenvalues.

Remark 5.12. As the tightness of the resulting polytopic embedding is not taken into
account by the procedure itself, the resulting overapproximation can be rather conservative.
However, although this conservatism plays a relevant role in analysis problems (where one
IS interested in obtaining a description of the exponential matrix as tight as possible), in

2Here we used the fact that givenS; R"::S, R"2:::: S, R"m any sets, then co im=1 S =
is=1 coS;; see [13].
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our case, being the nal aim obtaining a design procedure, overapproximation tightness
Is not excessively crucial. Nevertheless, if needed, the overapproximating polytope can be
made tighter by subdividing the interval [Tq;T,] in N subintervals and then by applying
the proposed procedure on each subinterval. Speci cally, the proposed technique operated
on every subinterval leads toN local polytopic embeddings, whose convex-hull yields the
required polytopic overapproximation on the interval T1; T;]. The advantages of this kind

of re ning process, that is inspired by [64], are discussed in details below via the following
claim.

Claim 5.1. Let A 2 R" " be a given matrix, and letT; < T, be given real scalars. Let

=co fXq; X1, X g, where Xq; X5,;:::; X are matrices obtained as in (5.58) on the
interval [Ty; To]. <
Letl4;1,:::;1n beN compact intervals such that length( k) = T2 and [Ty; To] = Ry k.

Fork=1:2::::N, let
« = cof X9, x 0 x (g

be the matrices obtained as in (5.58) on the intervdl,. Then,
( )

eA[Tl;TZ] co [N K
k=1
Proof. First of all notice that
elTuiTel = " el F K
k=1 k=1
Moreover, sincel [T1;T,] for everyk = 1;:::;N, by the constructlgn of the sets ,
it follows that for each k = 1;2;:::;N, , VthCh in turn yields Mk . By

isotonicity of the convex hull operator; see [12], cO -, « cof g. Therefore, being
convex, the claim is proven.

Remark 5.13. The above result shows an underlying monotonicity of the considered re ning
process. Namely, by following the same arguments as in the proof of Clalm 5.1, it is not
di cult to show that for every M >N , e*l™=T2l - co Sﬁ” 1 k Co E 1k . Thus,

the larger the value ofN the tighter the overapproximation. Nonetheless, as in general
the set e’ T2l js not convex, the overapproximation cannot be made arbitrarily tight by
selecting a value oN arbitrarily large (the pursued approach is intrinsically conservative).
To somehow fgrsmalizeothis aspect, one can look at the asymptotic behavior of the sequence
ofsets  =co ~K, ; whenk goes toin nity. Speci cally, consider the sequencé g}, ,
and observe that as argued above, for eaéh2 N, one has g+ k- Moreover, since by
construction ; = , and is trivially bounded, it follows that the every element of the
sequencd gi_, is compact. From these observations, by relying on the general notions of
convergence for sequence of sets; seqy, [106], one can readily show that the considered
sequence converges to a convex set. Thus, since in general thee¥ét 2! is not convex, one
should expect that the overapproximation polytope cannot be made arbitrarily tight.
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5.5 Numerical Examples

Example 5.1. To illustrate the proposed polytopic embedding technique, we consider
2 3
A = 41 1
0 2
and v 2 [0; 1:5]. As in [64], to visualize the resulting embedding, one can consider the real
Jordan form of the matrix A,

2 3
j=utau=4 > %
1
Indeed, since 2 3
2v
eAV = U4e 05 U 1
0 ¢

Figure 5.1 reports the curve €’V (1;1);€V(2;2) :[0;1L5]! R?and dierent polytopic over-

approximations obtained by subdividing the interval [Q1:5] in several subintervals. Fig-
ure 5.2 depicts the polytopic embedding obtained witiN = 5 and the local embedding
polytopes , for k = 1;2;:::;5. As expected, the larger the value oN, the tighter the

overapproximation.
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Figure 5.1: The curve €V(1;1);€’V(2;2) :[0;1:5]! R? (solid-blue) and di erent overap-
proximations, N =1 (light-gray), N =2 (gray), N =10 (black).
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Figure 5.2: The curve €V(1;1);eV(2;2) :[0;1:5]! R? (solid-blue), polytopic embedding
with N =5 (light-gray) and local polytopic overapproximations (dashed-blue).
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Example 5.2. Consider the mass-spring system in [54], de ned as follows

2 3 2 3
O 0 1 O 0
z= 0 0 0 1 z+ 0 u (5.59)
2 1 1 0 1
2 2 0 2 0
| {z } |{z}
A B

where z;; z, are respectively the position of the rst and the second mass, whilg and z,
are respectively the speed of the rst and the second mass, andis the force applied to
the second mass. Suppose that on is measurable through a biased sensor which can be
accessed at most every:Bs and at least every 3. That is, assuming the initial time ty = 0,
the measured output can be expressed as

y(t) = z1(tk) + b 8k 2 N

wheret; 2 [0; 3], ftygi-, is an increasing and unbounded sequence of positive times, such
that for eachk 2 N, 0:2 tw1 t¢ 3, andbis the sensor biasj.e., an unknown real
constant. Notice that, the sequencét,gi_, satises (5.2) with T; =0:2, andT,=3. To t

this problem in the setting addressed by Theorem 5.1, one needs to avoid considering the
bias as an external perturbation. To this end, we follow an exosystem approach, see [48, 68].
Namely, we model the constant bias a ecting the output sensor as an extra statb, such
that b= 0. In this way, y = M z, where

and z = (z;b. Therefore, by settingz as vector state, one can consider the extended system
de ned by 2 3

that matches the class of systems considered in this paper. To build a polytopic embedding
for the matrix A, it su ces to build the one of A. In fact, since for each real scalav
23 2 3

h
gv=alsen | g +40 %
0 01

given an interval | R, if for eachv 2 |

then by de ning
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it follows
82 3 9
< =

00
e"“’2,40 5+cof X1 T; X, ;i X Tg 8v2l:

1
In particular, in this case since spe®&) = f 0:68055 1:6332; 0:6389 1g, = 16. Once
the matrices X; are determined by following the technique proposed in Section 5.4.1, via
Corollary 5.1 one gets

’ 1:883 088796 13892 095109 1:06673
0:88796 12965 10415 10305 0091033
P=2R8 13892 10415 10086 86622 1:0351
0:95109 1@O05 86622 88987 0:01863
1:0667 0091033 1:0351 0:018634 7949

2 3
0:77524
0:18123

L = 0:1212
0:1740
0:22469

Figure 5.3 reports the functionv 7! max (I LM)TeAYPe™ (1 LM) P asv2 [Tq; T,
As expected, the proposed design ensures that (5.12) holds.

Figure 5.3: The functionv 7! nax (I LM)TAVPeN( LM) P versusv.

3Such matrices are reported in Appendix B
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Assumeu(t) = sin(t), b= 1, and denote the estimate provided by the observer ag =
(2;6). Figure 5.4 shows the evolution of the plant state and of its estimate projected onto
ordinary time. Figure 5.5 reports the evolution of the biad projected onto ordinary time.
The gures show that the designed observer reconstructs the plant state despite the presence
of the sensor bias.

Figure 5.4: The evolution of the stateg (red) and 2 (blue) projected onto ordinary timet.
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Figure 5.5: The biash (red) and the evolution of its estimateb (blue) projected onto ordinary
time t.
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5.6 Comments and Conclusion

In this chapter, we proposed a methodology to model and design, through the solution to
certain LMIs, a measurement-triggered observer to estimate the state of a linear plant in
the presence of sporadically available measurements. The considered observer is shown to
be ISS with respect to measurement noise. As shown, the e ective design of the observer
requiresa priori the solution of an in nite number of LMIs, which is in practice undoable.

To overcome this problem, via the introduction of a novel polytopic embedding for the
exponential matrix, we embedded the obtained conditions in a polytope making the design
possible via the solution to a nite number of LMIs. The proposed embedding technique
somehow provides a systematic way to build a polytopic embedding for the exponential
matrix, pursuing an approach analogous to the one in [29]. Hence, such a methodology is a
worthwhile contribution in itself and worth of further investigations. Finally, the e ectiveness

of the proposed methodology is displayed in two numerical examples.

The results presented in this chapter show that the hybrid systems framework proposed
in [56] permits to model and analyze the considered observer. In particular, exponential
state estimation and ISS with respect to measurement noise via Lyapunov arguments were
proved. Alternative frameworks, as the ones based on impulsive dynamical systems; see,
e.g, [103] could be used to come up with similar su cient conditions as the ones proposed
in this chapter. Another alternative approach that could be followed to tackle the problem
in this chapter is the discrete-time approach considered in the literature of networked and
sampled-data control systems; see [29] and the references therein. This approach consists
of three stages. As a rst step, a discrete-time model of the considered system is built by
integration of the continuous time-dynamics in between sampling times. As a second step,
asymptotic stability is established for the discretized model obtained throughout the rst
step. Finally, the proper intersample behavior is guaranteed by relating the continuous-
time behavior with the behavior at the sampling times via the derivation of certain bounds.
Following this approach, in the specic case considered in this chapter, would allow to
recover some of the results presented, and also to exploit tools deriving from the literature
of uncertain discrete-time systems, a%.g, polytopic Lyapunov functions ([33]), which can
potentially lead to less conservative results. On the other hand, the aforementioned strategy
consisting of overlooking the intersample behavior contrasts with the spirit of the hybrid
system framework in [56], which studies hybrid dynamics in their whole. Then, in this
setting, adopting tools from the literature of uncertain discrete-time system does not appear
a viable solution. However, we would like to point out that addressing the considered problem
through the hybrid system framework in [56] has several advantages. The rst one is that the
hybrid systems approach does not require the integration of the estimation error dynamics
in between jumps. Thus, the proposed methodology can be extended to deal with more
complex plants without the need of resorting on di erent models and frameworks. Moreover,
the pursued approach, enabling the search of alternative Lyapunov functions, could be used
to come up with simpler design procedures avoiding the use of the exponential matrix, which
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is undoable following a discrete-time approach.

The second one is that our analysis leads straight to an explicit exponential bound on
the estimation error and not for a discretized version of it. Moreover, such a bound can be
easily determined via the tools presented in this chapter. In this sense, our methodology
allows to derive constructive results to e ectively determine an exponential bound on the
error trajectories in their whole. The derivation of such bounds appears intricate and far
from systematic via the tools in [29].

The third one is that the hybrid system framework in [56] allows to tackle problems
arising from more involved settings, whereg.g, state estimation in the presence of sporadic
measurements is one of the task needed to exhibit a solution to the considered problem
and not the unique. This aspect will be claried and made more concrete later in this
dissertation, when such an observer will be used to build up an observer-based controller in
the presence of both sporadic measurements and actuation.

Another interesting aspect that we would like to emphasize concerns with the possibility of
using another modeling technique of time-triggering phenomenon presented in this chapter.
Speci cally, a modeling strategy similar to the one in [19] could be used to retrace the
same steps illustrated within this chapter. Nevertheless, it is interesting to observe that the
modeling we considered lends itself to an easy implementations in the hybrid simulator [108]
than the one in [19].

Several directions of research still need to be investigated. Among them, an interesting
issue concerns the construction of a measurement-triggered observer to estimate the state of
more general plants, as plants characterized by sector nonlinearities. Going in that direction
would allow to build interesting links with the works in [3] and the references therein. How-
ever, such an extension appears nontrivial due to the choice we considered in this chapter
for the Lyapunov function, which is tailored to the linear dynamics of the plant.

Another interesting future outlook concerns the evaluation of the performances, in terms
of convergence speed, o ered by the proposed observer compared with observer schemes
derived via emulation approach as the ones in [100]. Indeed, the main peculiarity of the
scheme we considered in this chapter is that at every jump the whole state of the observer
is reset. These instantaneous changes in the observer dynamics can potentially lead to an
improvement of the convergence rate, while avoiding the need of a large observer gain, which
Is typically unwanted in practice to limit the e ect of measurement noise.

Furthermore, one may envision to investigate the impact of quantized measurements on
the estimation error dynamics. In particular, according to the general philosophy illustrated
in [82], the ISS property shown for the estimation error dynamics with respect to measure-
ment noise suggests that the considered observer owns the robustness needed to withstand
guantized measurements.
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A HYBRID OBSERVER WITH A CONTINUOUS
INTERSAMPLE INJECTION IN THE PRESENCE OF
SPORADIC MEASUREMENTS

\Experience is simply the name we give our mistakes".

{ Oscar Wilde

6.1 Introduction

n this chapter, we address again the problem of exponentially estimating the state of a
I linear time-invariant system in the presence of sporadically available measurements. Dif-
ferently from Chapter 5, we adopt an observer with a continuous-time intersample injection
term. Such an intersample injection is provided by a linear dynamical system, whose state
Is reset to the measured output estimation error whenever a new measurement is available.
The resulting system is augmented with a timer triggering the arrival of a new measurement
and analyzed in a hybrid system framework. The design of the observer is performed to
achieve global exponential stability of a set wherein the estimation error is equal to zero.
Moreover, four computationally tractable procedures are illustrated to design the observer.
Such procedures lead to four di erent strategies to build the proposed observer. Finally, the
e ectiveness of the proposed methodology is shown in two examples. Some of the results
illustrated in this chapter can be found in [41].

173
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6.2 Problem Statement

6.2.1 System Description

We consider continuous-time linear time-invariant systems of the form

Az
Mz

|N
Il

(6.1)

<
I

wherez 2 R" andy 2 RY are, respectively, the state and the measured output of the system,
while A and M are constant matrices of appropriate dimensions. We want to solve the same
problem considered in Chapter 5 by means of an alternative observation scheme. Here below
we recall the problem we solve. Assuming the initial timé&y = O, our goal is to design an
observer providing an asymptotic estimate df the state z with sporadic measurements of

y. Namely, we assume that the whole outpuy is available only at some time instancet;,

k 2 N, not known a priori.

Remark 6.1. In this chapter we consider unforced plants. Whenever the considered plant
Is forced by an exogenous signal and such a signal is known, the results presented in this
chapter apply mutatis mutandis Such an assumption about the knowledge of the plant input
has been already discussed in Chapter 5; see Remark 5.1.

We assume that the sequencitygi_, is strictly increasing and unbounded, and that for
such a sequence there exist two positive real scaldrs T, such that

0 t; T

(6.2)
Tl T+ [ T2 8k 2 N:

As also pointed out in [64], the lower bound in condition (6.2) prevents the existence of accu-
mulation points in the sequencé t,gi., , and, hence, avoids the existence of Zeno behaviors,
which are typically undesired in practice. In fact,T; de nes a strictly positive minimum
time in between consecutive measurements. Furthermorg, de nes the maximum sampling
interval.

Since measurements of the output are available in an impulsive fashion, assuming that
the arrival of a new measurement can be instantaneously detected, to solve the considered
estimation problem, inspired from [73, 100, 104], we propose the following observer with
jumps

8 9
% o) = AL (M) T g on
{t) = H (1) ’
° (6.3)
% 2(t+ = 20 _ 8t=1t,;k2N
(t') = y(t) M2({):

whereL and H are real matrices of appropriate dimensions to be designed. The operating
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Figure 6.1. The proposed observer scheme. The dashed arrows denote impulsive data
streams, while the solid arrows denote continuous data streams.

principle of the observer in (6.3) is as follows. The arrival of a new measurement triggers an
instantaneous jump in the observer state. Speci cally, at each jump, the measured output
estimation error,i.e., y M 2, is instantaneously stored in . Then, in between consecutive
measurements, is continuously updated according to linear continuous-time dynamics, and
its value is continuously used as an intersample injection to feed a continuous-time observer;
see Figure 6.1. Along the lines of [109], we formulate the state estimation problem as a set
stabilization problem. Namely, our goal is to design the matricels and H such that the set
wherein the plant statez and its estimate Z*coincide is globally exponentially stable for the
plant (6.1) interconnected with the observer in (6.3). At this stage, we de ne the following
change of variables

"=z 2
“=M(z 2
which de nes, respectively, the estimation error and the di erence between the output es-

timation error and . Hence, the two error dynamics are given by the following dynamical
system with jumps:

8 2 2 3 9
% F4(t)5 - 8t6 t k2N
Z(t) )
5 39 (6.4)
% 4 (t+)5 = G4 (t)5 - 8t=t k2N
) )
where 2 3
_ 4 A LM L 5
MA MLM HM ML +H
2 3 (6.5)
G= 4I 05
00

Notice that, in view of the linearity of the plant (6.1), the error dynamics are decoupled from
the plant dynamics. Then, for the purpose of estimation, one can e ectively only consider
system (6.4).
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6.2.2 Hybrid Modeling

The fact that the observer experiences jumps when a new measurement is available and
evolves according to a di erential equation in between updates suggests that the updating
process of the error dynamics can be described via a hybrid system. Due to this, we represent
the whole system composed by the plant (6.1), the observer (6.3), and the logic triggering
jumps as a hybrid system. The proposed hybrid systems approach requires to model the
hidden time-driven mechanism triggering the jumps of the observer. To this end, as already
illustrated in Chapter 5, we augment the state of the system with an auxiliary timer variable
that keeps track of the duration of ows and triggers a jump whenever a certain condition
Is veri ed. This additional state allows to describe the time-driven triggering mechanism as a
state-driven triggering mechanism, which leads to a model that can be e ciently represented
by relying on the framework for hybrid systems proposed in [56]. More precisely, we make
to decrease as ordinary time increases and, whenever = 0, reset it to any point in [Ty; T,],
so as to enforce (6.2). After each jump, we require the system to ow again. The whole
system composed by the statesand ~, and the timer variable can be represented by the
following hybrid system, which we denoteH:

8 23 2 3 9
45 = F4°5 2

= - 5 (7)2¢C
= 1 )

Hy 2 3 23 9 (6.6a)

n+ n §
4 5 = G4 5 =

- - 5 ("7 )2D
T2 [Ty T

where the ow set and the jump set are de ned as

C=R"™% [0;T]

(6.6b)
D=R"9 f Og

The set-valued jump map allows to capture all possible sampling events occurring within
T, or T, units of time from each other. Speci cally, the hybrid model in (6.6) is able to
characterize not only the behavior of the analyzed system for a given sequefita;., , but
for any sequence satisfying (6.2). We denote the state ldf by

x=("7

and by f and G, respectively, the ow map and the jump map,i.e.,
2 233

f(x)= §F 4~52 8x2C (6.7a)
1
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2 233
G4 5
G(x) = § - z 8x 2 D: (6.7b)
[T1; T2]
Then, by introducing the set
A=fog f Og [0;Ts] (6.8)

the problem to solve is formulated as follows:

Problem 6.1. Given the matricesA and M of appropriate dimensions and two positive
scalarsT; T, design the matriced. 2 R" 9andH 2 RY 9 such that the setA de ned in
(6.8) is GES for the hybrid system (6.6).

Concerning the existence of solutions to system (6.6), by relying on the concept of solution
proposed in De nition 4.5, it is straightforward to check that for every initial condition
(0;0) 2 C[ D every maximal solution to (6.6) is complete ensuring that the estimation
error approaches zero whett j goes to in nity. Thus, completeness of the maximal solutions
to (6.6), as required in the statement of Problem 6.1, is guaranteed for any choice of the
gainsL and H. In addition, we can characterize the domain of these solutions. Indeed, as in
Chapter 5, for every initial condition (0;0) 2 C[ D, the domain of every maximal solution
to (6.6) can be written as follows:

dom = ' (it f g (6.9)

i2No

with to =0 and
Ti ta t T 8 2N

6.10
0 t; T» ( )

where dom is the domain of the solution , which is a hybrid time domain. Therefore, the
structure of the above hybrid time domain implies that for eacht(j ) 2 dom we have

t T T (6.11)
the latter relation will play a fundamental role in establishing GES ofA for hybrid system

(6.6).

6.3 Preliminary Results

6.3.1 Conditions for GES

In this section we provide a rst su cient condition to solve Problem 6.1. Such a condition
is obtained by the adoption of a Lyapunov-like function, that is inspired by [47, 55]. To

1By the de nition of system (6.6) and of the set A, for everyx 2 C[ D[ G(D), jxja = k("; k.
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pursue this approach, let us consider the following assumption, whose role will be clari ed
right after via Theorem 6.1.
Assumption 6.1. Consider (6.7a) and set

2 3
F = 4F11 F125_
FZl F22

There exist two continuously di erentiable functionsV;: R"! R, V,: R9! R, positive real
scalars 1; 2;!1;12;; csuchthatforeach(;7 )2 C
(A1) 1k"k* Vi(") k'K
(A2) ' 1kk2 Vo(D)  1.k7K?
(A3) hrVi(");Fu"+ Fo+e hr\Vo(T);F™+ Foi"i e Va()) o(k"k? + kk?)
4

Su cient conditions to let Assumption 6.1 hold will be given in the sequel of this chapter.
Theorem 6.1. Let Assumption 6.1 hold. Then the setA de ned in (6.8) is GES for hybrid
system (6.6).

The proof of the above theorem requires the following lemma, whose proof is given later.
Lemma 6.1. Let . be any strictly positive real number. Pick

#
ch 1

1+ T

Let be a solution to the hybrid system (6.6). Then, for everyt(j ) 2 dom , one has
ot ! (t+]): (6.12)

Now we are in position to prove Theorem 6.1

Proof of Theorem 6.1. Inspired by [55, Example 27], consider the following Lyapunov func-
tion candidate for the hybrid system (6.6) de ned for everyx 2 R"*% R :

V(x)= Vi(") + e Vo(7): (6.13)

To prove the claim, we rely on the proof of the stability result provided in [56, Proposition
3.29]. To this end, notice that by setting ; = minf ;! ;g and , = maxf ,;!,eTz2g, in
view of the de nition of the set A in (6.8), one gets

1JXja V(X) JjXja 8x2C[ D[ G(D): (6.14)

By straightforward calculations, and from the de nition of the ow map f in (6.7a), for each
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x 2 C, one has
hr V(x);f (x)i = hr Vi(");Fui" + Foli+ e hrVo(7);Fx™+ Fi"i e Vy(0):
Thus from Assumption 6.1, the above relation yields
hr V (x); f (X)i (K'K2+ kK= (jxja 8x2C (6.15)
which in turn thanks to (6.14) gives
hr V (x); f (x)i —;V(x) 8x 2 C: (6.16)

Now, notice that for everyg 2 G(x), there exists a real scalav belonging to the interval
[T1; T2] such thatg = ("; 0;Vv): Then, for everyg 2 G(x) and for everyx 2 D, one has

V(g Vx)= V() O (6.17)

Pick
- el
2 2(1+ Ty)

and let be a maximal solution to (6.6). As shown in the proof of [56, Proposition 3.29],
thanks to (6.16) and (6.17), direct integration of {;j ) 7! V( (t;j)) over dom vyields

V(i) e ='V( (00): (6.18)
Then, due to the choice operated for according to Lemma 6.1, from (6.18), it follows that
V( (tj) e ®Dev( (0;0)  8(tj) 2 dom: (6.19)

Still, in view of (6.14), one has

I
(t+i)

\ 2
j (6D)ia e "7 er = j(0;0)a 8(])2dom (6.20)
1

which implies that the setA de ned in (6.8) is GES for system (6.6).

Now, the proof of Lemma 6.1 is given

Proof of Lemma 6.1. From (6.12), by rearranging the terms, one gets

( «+ )+ O (6.21)

Now, pick any solution to hybrid system (6.6). From (6.11), it follows that for every

(t;j) 2 dom
j Ttl f1 (6.22)
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then, for every strictly positive scalar , from the latter expression and for everyt(j) 2
dom , one gets |

( ¢+ )t+ ! ¢+ +_|_—l t+ I (6.23)
Thus, being T, strictly positive, by selecting

#
T

2 : o
1+ T,

yields (6.21), which concludes the proof.

Theorem 6.1 shows that if there exist matriced 2 R" 9 and H 2 RY 9 such that
Assumption 6.1 holds, then such matrices are a solution to Problem 6.1. Next, we provide
two alternative su cient conditions ensuring the satisfaction of Assumption 6.1.

Proposition 6.1. Consider (6.7a) and set
2 3

If there exist two continuously di erentiable functionsV;: R"! R andV,: R9! R, positive
real scalars 1; 5 ;! 1:!5::: such that

() k'K Vi(") kK2 8" 2R
(i) hrVi(");Foa" + Fap kK'k2+ kk2 8(";)2R" R
(i) !1.kK2 Vo() kK 8 2R
(V) hrVo():Fa™+ Fau'i  K'K2+ kk2 8(:)2R" R

such that
'y >0 (6.24a)
( )!
1 . Iy

T, < =In min —; : (6.24b)

Then Assumption 6.1 holds, with

n [0}

c=min j +e’2jj +e'? T (6.25)

Proof. From (ii) and (iv), it follows that for each ("; 7 )2 R" RY [0;T,]

hr Vi(");Fu" + Fio T+ e hrVa(7)F™+ For"i e V(7))

6.26
K'k2+ kke+e (KK+ kKD e V(D) (6.26)
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By using (iii)) and by rearranging the terms, from the above inequality one gets

hr Vi(");Fi" + Foi+ e hrVo(7);F™+ Fori"i e Vo())
+elz Yk'k2+( +e'2 | kK% (6.27)
f Jierf_re 1Y

1 2

Notice that ; and , are strictly negative due to (6.24b). Thus, by setting . = minfj 4j;j 2jg,
the above result is proven.

Conditions (i)-(iv) in Proposition 6.1 are rather mild to satisfy. In particular, by selecting
L such that A LM is Hurwitz, (i)-(ii) can be always satis ed by selectingVy(") = "TP;",
with P, 2 S! and such that HeP;(A LM )) < 0. (iii))-(iv) can be always satis ed, e.g, by
selecting forV, any positive de nite quadratic function. The most challenging issue consists
of ful lling (6.24). In particular, due to T, > 0 a necessary condition for the applicability of

Proposition 6.1 is that
>

I 4 > 0

Moreover, given positive scalars1; »; ; ;! 1;!, satisfying (i), (i), (iii), (iv), the satisfac-
tion of (6.24a) can be ensured by selecting large enough. However, notice that

«C

1 . !
||I1m —In min —; ! =0

therefore, enlarging the value of may prevent from ful lling (6.24b).

To somehow overcome this problem, as follows we provide an alternative su cient condi-
tion to let Assumption 6.1 hold.
Proposition 6.2. Consider (6.7a) and set

2 3
E = 4Fll F125_
FZl F22

If there exist two continuously di erentiable functionsv;: R"! R, andV,: R%! R, positive
real scalars 1; o ;v 1315 such that

(@ k"k?  Vi(") 2k'k? 8" 2 R"

(b) hr Vo("); F1" + Fop k'k?+ k%k® 8(;)2R" R
() '1kk? Vo(?) !',kk2 872 R

(d) hr Vo(7); Foo™+ For"i kk?+ k'k? 8(";)2R" Rd
and

1, + >0 (6.28a)

T, < 1In — (6.28b)
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Then Assumption 6.1 holds, with

n [0}
c=min | +e'zjij T (6.29)

Proof. From (b) and (d), it follows that for each (*; 7 )2 R" RY [0; T,]

hr Vi(");Fu" + Fr2Ti + e hrVa(7);Fa™+ For"i e Vo(7)

K'k2+ k*P+e (k'K k¥ e V(O (6.30)
By using (c) and by rearranging the terms, from the above inequality one gets
hr Vi("):Fy"+ Foi+e hrVo(D):F™+ Foi"i e Vu()
f +{ZeT2 }k"k2+ﬁ o ! l}m@: (6.31)

1 2

Notice that ; and , are strictly negative due to (6.28). Thus, by setting . = minfj 4j;] 2jg,
the above result is proven.

Also in this case, due toT, > 0 a necessary condition for the applicability of Proposi-
tion 6.2 is that > : Nonetheless, di erently from Proposition 6.1, due to > 0, (6.28a)
appears less stringent than (6.24a). In particular, (6.28a) can keepriori satis ed by select-
ing a smaller value for with respect to (6.24a). Such a bene t arises from having required
in Proposition 6.2 a stronger assumption than in Proposition 6.1, namely (d). Nevertheless,
such an assumption can be always satis ed. Indeed, due to the linearity of the ow dy-
namics, (d) turns out to be equivalent to the Hurwitzness of the matrix+,,, property that
can be always ensured via a suitable choice fr. Even more, due to the expression ¢ »,,

in (d) can be selected arbitrarily large via the selection of the matrid. However, it is
worthwhile to observe that, in general, picking for an overly large value may lead to a large
value of in (d), which in turn may render (6.28b) unful lled.

Proposition 6.1 and Proposition 6.2 provide rst indications on how a solution to Prob-
lem 6.1 could be determined and also on the main challenges in determining such a solution.
The approach presented, though leading to di erent conclusion, is similar to some extent to
the one considered in [73, 100]. However, the use of Proposition 6.1 and Proposition 6.2 to
solve Problem 6.1 entails several drawbacks. The rst one concerns the fact that the results
given in Proposition 6.1 and Proposition 6.2 dramatically depend on the choice performed
for the two functions V; and V,, and on the way the bounds given in (a)-(b)-(c)-(d) in Propo-
sition 6.1 or in Proposition 6.2 are obtained. The second one is that Proposition 6.1 and
Proposition 6.2 do not provide a clear strategy to select the two gaiis and H so as to
solve the considered problem for given dataA(M; T,). In particular, as it is in [73], the
proposed approach is rather cumbersome whenever one attempts to design the considered
observer. Roughly speaking, Proposition 6.1 and Proposition 6.2 are essentially analysis
results. Therefore, to build up an e ective design strategy further work is needed.
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Speci cally, to overcome all the drawbacks illustrated above, we pursue a constructive
approach. In particular, by restricting the search of the two functions/; and V, in Assump-
tion 6.1 to the class of quadratic functions, as follows we provide a su cient condition to let
Assumption 6.1 hold that is based on the solution to certain matrix inequalities. Via this
step, essentially we reduce the solution to Problem 6.1 to the solution to a feasibility prob-
lem of certain matrix inequalities. The solution of such a problem provides in one shot the
solution to Problem 6.1. As argued in the above discussions, by selecting the two functions
V; and V, in Assumption 6.1 as quadratic functions allows to ful ll (a)-(b)-(c)-(d) either
in Proposition 6.1 or in Proposition 6.2. Hence although conservative, this choice appears
promising to solve the considered problem.

6.4 Observer Design via Matrix Inequalities

The following result is one of the key results within this section. It turns the solution to
Problem 6.1 into the solution to the feasibility problem to certain matrix inequalities.
Theorem 6.2. If there exist P, 2 S!';P, 2 S, a positive real scalar , and two matrices
L2 R" 9 andH 2 RY 9 such that

2 3
_ 4 HePi(A M) PiL+(MA  MLM H|\/|)Tp25<

M . 0
He(P(ML + H)) P,
2 ) 3 (6.32)
M, = aHEPiA LM)) PiL+eT2(MA  MLM  HM)TPyg

eTz (He(Py(ML + H)) P))

then Assumption 6.1 holds.
Proof. De ne foreach (; ) 2 R" R4

Vi(") = "TP,"

6.33
Vo(T) = TP (639

Set
1= min (Pl)

2= max(Pl)
1= min(P2)
eT2 max(PZ):

By straightforward calculations, it follows that for each (; 7 ) 2 C, and each positive real
scalar ,

hr Vl(");Flln + F12~i + hr V2(~);F22+ F21"i e Vz(“) =
"THe(Py(A LM))"+2"TPiL~+ e T He(Py(ML + H))~ (6.34)
+2e TPy(MA MLM HM)" e TP,T
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By de ning the vector = ("; "), the above expression can be equivalently rewritten as

follows 2 3
T4He(P1(A LM) P.L+e (MA MLM HM )TP25 .

(6.35)
e ({HE(Pz(ML + H)) P 2)

M ()
Now, notice that, for any positive , there exists a scalar function : [0;T,] ! [0;1], such

that forevery 2 [0;T,],e = ()+(@1 ( ))eTz. Thus, for eachx 2 C, (6.35) can be
rewritten as 0 1
T@ ()M,+(1 ( WM A (6.36)

whereM ; and M , are de ned in (6.32). Thus, in view of (6.32), for each 2 [0; T,],
M()<O: (6.37)

Moreover, sinceM () depends continuously on, and belongs to a compact interval, the
following bound holds

M ( ) g[](?_é] max('vI ( ))I 8 2 [O; TZ]:
Thus, by selecting

= Max max(M (1))

which is positive due to (6.37), for eaclx 2 C, from (6.34) one has
hr Vi(");Fu" + Fi+ hr Vo(0);F2+ F"i & V() o(K"K*+ kK?):  (6.38)

Hence Assumption 6.1 holds, concluding the proof.

Remark 6.2. The feasibility of the conditions given in Theorem 6.2 requires a detectable
pair (A; M), (though this condition is in general only necessary). It is worthwhile to remark
that, di erently from the observer considered in Chapter 5,a priori, we do not require the
detectability of the pair (¢*; Me”V) for eachv belonging to [T;; T»], which would be a more
restrictive condition.

6.5 Numerical Issues in the Solution to Problem 6.1

In the previous section a condition to guarantee GES of the sét for system and based
on the feasibility of some matrix inequalities was provided. However, due to its form, such
a condition is not computationally tractable to obtain a solution to Problem 6.1. Indeed,
condition (6.32) is nonlinear in the design variable®,;P,; ;H and L, so further work

is needed to derive a numerically tractable design procedure for the proposed observer.
Speci cally, the nonlinearities present in (6.32) are due to both the bilinear terms involving
the matrices Py;P,;L;H, and the scalar , as well as the fact that also appears in a
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nonlinear fashion via the exponential function. Nevertheless, from a numerical standpoint,
the nonlinearities involving the scalar are easily manageable. Indeed, can be treated
as a tuning parameter or being selected via a grid search. Thus, the main issue to tackle
pertains to the other nonlinearities present in (6.32). To this aim, in the sequel we provide
four constructive su cient conditions to solve Problem 6.1 via the solution of the feasibility
problem to certain linear matrix inequalities.

6.5.1 Two First Design Results

Proposition 6.3. If there existP, 2 S";P, 2 S}, a positive real scalar , J 2 R" 9, and

Y 2 RY 9 such that

2 3
JHePIA M) J+ATMTP, MTYg _

He(Y) P>
2 3 (6.39)
JHePA  IM) J+eT:(ATMTP, MTY), _ 0

(He(Y) PpeTz

thenL = P, 1J;H = P, 'YT ML is a solution to Problem 6.1.

Proof. By setting H = P, 'YT ML andJ = P,L in (6.32) yields (6.39), thus by virtue of
Theorem 6.2, this concludes the proof.

The main idea behind the above result consists of selecting the design variableso as
to cancel out the termMLM , which would unlikely lead to tractable conditions. Obviously
other approaches can be pursued to cope with this issue.

Building on the previous result, another strategy to design the proposed observer is given
next. Such a strategy leads to the well known observer scheme in [73].
Corollary 6.1. If there exist P, 2 S!'; P, 2 S{, a positive real scalar , andJ 2 R" 9 such

that 2 3
4He(P1A JM) J+ ATMTP25 <0
P
2 3 (6.40)
4He(P1A JM) J+ eTZATMTPz5 <0
eT2 P2

thenL = P, 1J;H = ML is a solution to Problem 6.1.

Proof. The proof follows directly from Proposition 6.3 by selectingy = 0O:

As mentioned above, the proposed choice for the gakh leads to the predictor-based
observer scheme proposed in [72, 73], though written in di erent coordinates. Indeed,
wheneverH = ML, by rewriting (6.3) via the following invertible change of variables
(2;w) = (Z; + M2), yields the same observer in [72, 73].

In the next sections, we present two other design procedures. The derivation of such pro-
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cedures is based on an equivalent condition to Theorem 6.2, which is formulated introducing
some slack variables via the use of the projection lemma; see [99].

6.5.2 Slack Variables-based Design

Before stating the main result, let us consider the following fact.
Fact 6.1. The matrix F in (6.5) can be factorized as follows

2 32 3
Il 0. , A LM L
F = 4M I54 IV 5 (6.41)
| —{z—1} | {z }
Fi Fr

whereF, is nonsingular.

Building on this fact, the following result provides an equivalent condition to condition
(6.32) in Theorem 6.2, in which the termMLM no longer appears.
Corollary 6.2. LetP;2SM, P,2S!,L2R" 99H 2 R% 9, and 2 R.q. The satisfaction
of (6.32) is equivalent to the feasibility of

2 3 2 3
X X Y Y
JHeSl)  SI+P g < 0; JHel)  SI+Pr g <0 (6.42a)
N+ He(S%) N, +He(SY)
with respect to X1;Y1; X3;Y3 2 R" " X5 Y2 2 R™ 9 X4, Vs X6 Yo 2 R ™ Xs; Y5 2 RY 9,
where:
P = diagf P;; P»g

IﬁTZ = dlagf Pi; PzeT zg

_ (6.42b)
N, =diagf0; P g
N, =diagf0; e T2P,g
T T 3 2 T T 3
SX = X1+ M'X, X+ M X5581Y:4 Yi+t MY, Yo+ MTYs, (6.420)
X4 Xs 7 Ys
2 T THT 3 2 T THT 3
S§<:4(A LM)'Xs M'H'Xe O S§:4(A LM)"Ys M'H'Ys O (6.424)
L™ 3+ H X4 0 LTY;+ HTYg 0
2 3
82Y:4Y1T(A LM) Y/HM Y3+ MTYg YlTL+Y4TH5
YJ(A LM) YJHM Y YL+ Y H
3 (6.42e)
X :4XI(A LM) XJHM X3+ MTXs XIL+XIH5
2 XI(A LM) XIHM Xg XTL + X{H
Proof. First of all, notice that by de ning the matrices
2 3 2 3 2 3
B=4F5;N1:40 'ﬁs;NZ:4O If}T25
I

N1 N2
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matricesM ; and M , in (6.32) can be equivalently rewritten respectively as follows
M,=B'N;B; M,=B'N,B: (6.43)

Moreover, by de ning 2 3
U = 49%en+a as
lq

the positive de niteness ofP, is equivalent to the satisfaction of the following relations

U'N,U<D0

(6.44)
U'N,U < 0:

Then by the projection lemma; see [99], (6.32) is veried if and only if there exist two
matrices X; Y such that
Ni+ BT XU? + U/ X"B? < 0

P 2 s (6.45)
N,+BT, YU +U", Y'B’ <0

whereB’ and U’ are some matrices having as rows a basis of the row-null space respectively
of B andU. Speci cally, notice that in view of Fact 6.1, one can consider the following choice

2 3

) .
7 ="F 1 p'oa | O[A LM Ly
M 1| HM H

h i
while U7 = loniq O@n+q g - Thus, according to the following partitioning

2 3 2 3

X = 4xl XZ X35, Y = 4Yl Y2 Y35
Xs X5 Xg Ys Y5 Ys

relations (6.45) turn in (6.42a) and this concludes the proof.

The above result yields an equivalent condition to (6.32), that can be exploited to derive an
e cient design procedure for the proposed observer, though introducing some conservatism.
To this end, one needs to suitably manipulate (6.42a) in order to obtain conditions that are
linear in the decision variables. Speci cally, the two results given in the next sections provide
two possible approaches to derive convex design procedures for the proposed observer.

Zero-order Sample-and-hold Intersample Scheme

Proposition 6.4. If there exist P, 2 S!';P, 2 S{, a positive real scalar , a nonsingular
matrix X 2 R™ ", and matrices X 4; Y4; X6: Ys 2 R9 ": X5:Y5 2 RY9 9:J 2 R" 9 such that
2 3 2 3
JHe@Q) Q@+ P <o aMeRy) R+ Pr, & <0 (6.46)
He(Qs) + N3 He(Qs) + N»
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whereP;Pr,;N1; N, are de ned in (6.42b) and

2 3 2 3
X+ MTX, MTX55 X+ MTY, MTY55

=4 R =4

Q X, Xs ! Y, Ye

3 2 3

0, - X +MXe+ XTA IM J_ mo = 4 X+MTYg+XTA UM J,

2 X o Ye 0
2 3
ATX MTIT 0
Q3:4 5

JT 0

thenL = X TJ andH = 0 are a solution to Problem 6.1.

Proof. By selecting in (6.42a)H = 0;X1= X3=Y;=Ys=X;X,=Y,= 0;X'L = J gives
(6.46). Thus, thanks to Corollary 6.2 the result is proven.

It should be noticed that the above design procedure leads to the well known zero-order
sample-and-hold scheme; see Figure 6.2.

Figure 6.2: Zero-order sample-and-hold scheme

A Novel Observer Scheme

Proposition 6.5. If there existP, 2 S!';P, 2 SY, a positive real scalar , matrices X 2
R" " U;W 2 RY %J 2 R" 9such that
2 3 2 3
JHey) Za+ Py <o aHe@)  Zo+ Pr, & <o (6.47)
Z3z+ N He(Zs) + N2

whereP;Pr,;N1; N, are de ned in (6.42b) and

2 3 2 3

T
Zl:4X U Zz:4X+XA M J ¢
0 U WM w

2 3
- AATX MTIT 0
3 J7 0
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thenL = X TJ andH = U TW are a solution to Problem 6.1.

Proof. By selecting in (6.42a)X; = X3= VY1 = Yz3= X;X2=Y=0;X43=Ys=0;Xg =

Ys = 0;X5=Ys= U; XL = J;U'H = W gives (6.47). Thus, thanks to Corollary 6.2 the
result is proven.

Remark 6.3. The above result gives rise to a novel observer scheme. Indeed, as a di erence
to Proposition 6.3 and Proposition 6.4, Proposition 6.5 does not impose any structural
constraint on the gainH. This is a worthwhile novelty introduced by our approach with
respect to classical approaches as [73, 104] and alike, where the choice of the ldais a
priori constrained. Thus, in general, the use of Proposition 6.5 may lead to observation
schemes that are not encompassed either by Proposition 6.3 and Proposition 6.4 or by
existing approaches.

Remark 6.4. The derivations of the design presented in Proposition 6.4 Proposition 6.5
consist in some particular choices of the slack variablsand Y introduced in Corollary 6.2.
Therefore, when one is interested in solving Problem 6.1 for the largest achievable value of
T,, the design procedures arising from Proposition 6.4 and Proposition 6.5 may lead to
conservative results. To overcome this problem, one can envision a two-stage procedure.
Indeed, whenevet., H, andT, are xed, condition (6.32) is linear in the decision variables.
Thus, once the observer has been designed via one of the proposed methodologies, by testing
the feasibility of (6.32) with respect toP;; P, over a selected grid for , one may enable to
enlarge the maximum allowable sampling interval, for the considered design.

6.6 Numerical Examples

Example 6.1. In this rst example, we want to show the improvement provided by our
methodology with respect to existing results. Speci cally, consider the example in [72],
which is de ned by the following data:

2 3
0

A=4 5 M = h1 0I :
4 0
As pointed out earlier, by settingH = ML in (6.3), the observer proposed in this chapter
corresponds to the one in [72, 73]. Therefore, for a given gdin by following the above
selection forH, Theorem 6.2 can be used to provide an estimate of the maximum allowable
sampling interval T,. Hence to compare with [72], we consider
23

|_:445:
0

In this case, it turns out that the conditions of Theorem 6.2 are feasible far, up to 0:42.
This bound is about 518 times less conservative than the one in [72]A = 0:081). That
is our methodology leads to an improvement on the estimation of the maximum allowable
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sampling interval of about 418%. On the other hand, Corollary 6.1 can also be used to
design a new gair_g to tentatively enlarge the maximum allowable sampling interval, still
for the scheme proposed in [72]. Speci cally, it turns out that, whenever the observer gain
is designed via Corollary 6.1, conditions in (6.40) are feasible fd up to 0:496, that is an
improvement of about 18% with respect to the design in [72] . The observer gains obtained

for T, = 0:496 are 2 3

Ls=40:§_2;5;Hs: ML.= 035&

Figure 6.3 and Figure 6.4 report, respectively, the evolution of the estimation error and qf

Figure 6.3: The evolution of the plant statez (blue) and of its estimatez*(black) provided
by the observer projected onto ordinary time. Above,; 2, below z,; 2,

both projected onto ordinary time. In this simulation T; = 0:1, and the sampling instances
are chosen randomly according to a uniform distribution. Simulations show that the observer
successfully reconstructs the plant state. Moreover, Figure 6.5 reports the evolution of the
function V used in the proof of Theorem 6.2 projected onto ordinary time. Simulations show
that the function V decreases during ows, and at jumps it is nonincreasing (in fact in this
simulation it appears even decreasing).



Chapter 6 191

Figure 6.4: The evolution of projected onto ordinary time.

Figure 6.5: The evolution of the functionV projected onto ordinary time.
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Example 6.2. Consider the model of the longitudinal dynamics of the F8 aircraft in [71],
whose state-space model is given by

0:8 0:006 12 0
« = E 0 0:014 166 322
- 1 10 4 1:5 0

1 0 0 0

2 3
0 ]5x:
11

00

=4
Y 00
The two outputs are respectively the pitch angle and the ight path angle. We want to

design an observer for the considered plant while enlarging as much as possible the maximum
transfer time T, allowable.

In Table 6.1, we report, for each design methodology, the values of the maximum for
which conditions (6.32) are feasible along with the corresponding value of and the two
designed gaind. and H. In each of these designs, the value ofis selected so as to enlarge
the value of T, ensuring the feasibility of the considered conditions. Concerning the design
procedure derived by Proposition 6.4 and Proposition 6.5, as mentioned in Remark 6.4,
to reduce as much as possible the conservatism in the estimate of the largest valud of
allowable, after a rst design step, we performed a further analysis stage via Theorem 6.2.
About the design procedure issued from Proposition 6.4, it is worthwhile to notice that, the

Design To L H
2 3
0:712 Q872 . 4
” _ 1744 21332 462 573
Proposition 6.3 06 47 §2:69 398 123 147
813 995
2 3
0:15702 042578 "
_ _ 34118 8426 0221  0:539
Corollary 6.1 071 41 §0:10341 02455 0118  0:294
0:22093 053946
2 3
0216 0216
” 21:6 36:12
Proposition 6.4 (097 354 g 0:00971  0:0037 02 2
0:1 0:134
3
0:044 Q102 4
” , 318 47:03% 0:258  0:0121
Proposition 6.5 059 573 §0:0184 0014 0:0172  0:236
0:15 0199

Table 6.1: Values ofT, and and the designed observer gairls and H for the considered
design procedures.
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design conditions for the same observer scheme given in [104], (when they are specialized
to the linear systems case), are feasible fdn up to 0:4. Namely, the proposed design,

In this speci c case, enables to enlarge the maximum allowable sampling interval aB3
times with respect to [104]. Moreover, it turns out that the design procedure issued from
Proposition 6.5, in this speci ¢ case, provides the largest allowable value fbj.

6.7 Comments and Conclusion

Building from the general ideas in [73], in this chapter we proposed a novel methodology
to design, via linear matrix inequalities, an observer with intersample injection to exponen-
tially estimate the state of a continuous-time linear system in the presence of sporadically
available measurements. Speci cally, pursuing a uni ed approach, we provided four design
methodologies to design the observer, which are computationally e cient,e., the design
algorithm entails a time of computation which is polynomial with respect to the dimension

of the data. Two of them lead back respectively to the observer scheme proposed in [73]
and to the zero-order sample-and-hold proposed in [104], while the remaining lead to two
completely novel schemes. Notice that, although we recover some existing schemes, the
design procedures we propose are novel and, in some cases, outperform the corresponding
existing design techniques, whenever they exist. To the best author knowledge, a uni ed
approach for the systematic design of the class of observer presented in this chapter, which
encompasses the observer in [73], ensuring exponential state estimation for a given value of
the maximum sampling interval, has been presented for the rst time in [41]. Furthermore,
we would like to emphasize that, although this chapter is devoted to LTI plants, di erently
from Chapter 5, the extension to a wider class of plants, as the one considered in [104], is
almost direct.

Concerning the possibility of adopting alternative frameworks to address the problem
illustrated in this chapter, we would like to emphasize that employing a discrete-time ap-
proach, as the one in [29], would hardily lead to a tractable design for the proposed observer.
In particular, notice that by discretizing the (*; ©) dynamics in between jumps would give
rise to a discrete-time model for which the two gaink and H appear via a matrix exponen-
tial term, preventing from deriving a tractable design procedure via polytopic embedding
strategies, as done in Chapter 5.

The proposed observer allows to provide an alternative solution to the state estimation
problem in the presence of sporadic measurements with respect to the one proposed in
Chapter 5. Moreover, the design of the observer proposed in this chapter appears simpler
than the one in Chapter 5. In particular, we recall that in the design presented in Chapter 5,
the total number of lines in the considered matrix inequalities is proportional to™2 Then,
the complexity of the resulting design increases exponentially with the size of the plant.
Instead, for the designs presented in this chapter, the number of lines and the number of
scalar variables entailed by the resulting LMI feasibility problem increase polynomially im;
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Table 6.2 reports precisely these data for the mentioned designs. Hence, whenever the plant
size increases, such designs are expected to be less complex from a numerical standpoint than
the design in Chapter 5. However, the two considered approaches are deeply di erent and

Design Number of scalar variables Number of lines
Corollary 5.1  (n+1)=2n+ n?+ nq 3n2"

Proposition 6.3 (n+1)=2n+ nq+ ¢?+ q(q+1)=2 2(n+ Q)
Corollary 6.1 (n+1)=2n+ nq+ g(g+1)=2 2n+ Qg
Proposition 6.4 (n+1)=2n+ q(q+1)=2+ n?+4qgn+2¢®+ nq 2(n+ q)
Proposition 6.5 (n+1)=2n+ q(q+1)=2+ n?+2¢%+ nq 2(n+ Q)

Table 6.2: Number of lines and number of scalar variables entailed by the di erent designs.

both manifest advantages and disadvantages that prevent from overlooking one of the two
solutions. In particular, the observer in Chapter 5 has been shown to be ISS with respect to
measurement noise. So far, we did not succeed in showing such a property for the observer
considered in this chapter. First investigations allowed to show that the observer considered
in this chapter is nite-gain L,.; stable from the measurement noise to the estimation error

" (see [95, De nition 3] for more details on this notion of stability for general hybrid systems
with inputs and outputs). Obviously this latter property is weaker than the ISS proven for

the observer in Chapter 5.

Another interesting point concerns the fact that the conditions worked out in this chapter
to design the considered observer do not depend on the valueTef which is not the case
for the design in Chapter 5. This observation gives rise to some important considerations.
Among them, let us remark that in the case of periodic sampling,e., T, = T, = T the
observer in Chapter 5 can be always designed via the proposed apparatus, provided that the
pair (e*T ;M) is detectable, the same is not true for the observer with ow injection presented
in this chapter. Speci cally, observe that periodic sampling does not originate any change
in the conditions considered within this chapter. The reason behind this matter stems from
the fact that the observer presented in this chapter is designed by ensuring the decrease of a
certain Lyapunov-like function within the ow set, whereas the behavior within the jump set,
whereinT; comes into play, is rigidly prescribed by the structure of the considered observer.
This remark fosters to consider more general jump maps for the observer presented in this
chapter.

Still concerning the observer in Chapter 5, numerical experiments show that in general
such an observer, thanks to the recommended design, allows to ensure larger values of the
maximum allowable sampling interval, with respect to the schemes considered in this chap-
ter. This gap between the two proposed observation schemes originates from the innate
nature of such schemes. Indeed, the approach pursued in this chapter basically relies on the
intrinsic robustness of the continuous-time observer used as a core to build up the considered
observation scheme. Such a robustness explicitly appears in Proposition 6.1 and Proposi-
tion 6.2, respectively, in (i) and in (b) in the form of certain bounds that can be ful lled
provided that T, is small enough. This discussion naturally establishes connections between
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our approach and the one in [73], which we recall is one of the inspiring approach leading to
the ideas presented in this chapter. Completely di erent considerations hold for the scheme
presented in Chapter 5. Indeed, such a scheme does not rely on any continuous-time ob-
server. On the one hand, this fact does not suggest any strategy to derive rst guidelines,
as Proposition 6.1 and Proposition 6.2, for the design of such an observer. On the other
hand, the fact of operating a reset of the whole estimate seems to better address the state
estimation problem in the presence of sporadic measurements, at least in terms of maximum
allowable sampling intervalT,. However, the use of such an observer barely allows to envision
extensions to more involved settings of practical interest as the one considered for instance
in [90] dealing with multi-outputs plants with asynchronous sporadic measurements. To give
an hint of the di culties encountered in this situation, here below we brie y illustrate the
problem to solve in such a case and rst attempts towards its solution.

Let us considers continuous-time linear time-invariant system in the form

(6.48)

output of the system, whileA and M; are constant matrices of appropriate dimensions. The
goal is to design an observer providing an asymptotic estimareof the statez whenever each
of the componenty; of the vectory is available only at some time instanceé(i), k 2 N, not
known a priori. Obviously, whenever for eacltk 2 N, t(kl) = t(kz) = = t(kp), one falls inside
the focus of this chapter. However, whether this assumption does not hold, a modi cation
of the scheme in (6.3) is needed. In particular, inspired by [100], we consider the following
observer

8 9
% 2t) = A2(t)+L(t).— whentzft(ki):i=1;2;:::;pg;k2N
) = H ()
9 (6.49)
% 2) = 2(0) : whent = t;i 2f1;2;::1;pg k 2 N
i(t") = wi(t) Miz(t) -

In particular, in between measurements the above observer behaves as the one presented in
this chapter. Instead, whenever a new measurement is received, only the corresponding com-
ponents of the vector get updated via the received measurement. This proposed observer is
currently part of our research activity. Speci cally, a hybrid model of the considered observer
have been constructed. First researches have shown how a generalization of the methodology
presented in this chapter provides the right answer to tackle with the considered problem.
In particular, the main point we addressed consists of reshaping Assumption 6.1 to match
the asynchronous nature of the incoming measurements. Such a reshaping is inspired by the
construction presented in [47]. Notice that, while the construction of such an observer is the
natural extension of the one illustrated in this chapter, the design of an observer to tackle
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this problem within the framework considered in Chapter 5 does not appear clear.

The state estimation problem in the presence of asynchronous sporadic measurement is in
part encompassed by the work in [100] dealing with state estimation of networked systems,
though in [100] the authors focus on an emulation approach. However, dierently from
[100], we do not assume any scheduling behind the arrival of measurements. This enables
to address a certain number of situations of practical interest, that are uncovered by the
approaches building on protocols ; see,g, [90] and the references therein.

The observers presented in this chapter and in the previous one can be used to build up
controller architectures to asymptotically stabilize a linear plant in the presence of sporadic
measurements. For this reason, to conclude this part of this dissertation, in the next chapter
we present an observer-based controller, whose core is centered on the observer presented
in Chapter 5. For brevity, we limit the analysis to a scheme built upon the observer in
Chapter 5. Nevertheless, observe that the construction of a similar scheme building on the
observer presented in this chapter can be considered without too much work.



OBSERVER-BASED CONTROL IN THE PRESENCE OF
SPORADIC SENSING AND ACTUATION

\C'est par la logique qu'on cemontre, c'est par l'intuition qu'on invente".

{ Henri Poincae

7.1 Introduction

n this chapter, we consider the problem of stabilizing a linear time-invariant system in

the presence of sporadic output measurements and sporadic access to the plant input.
The plant is equipped with a zero-order hold device which stores the value of the input
in between control input updates. We propose an observer-based controller consisting of
a measurement-triggered observer, which experiences jumps in its state whenever a new
measure is available, a state-feedback control law computed from the estimated state, and a
copy of the zero-order hold device feeding the plant, which jumps whenever the control input
is sent to the plant. The closed-loop system is modeled as a hybrid system that includes
two timers triggering the two di erent events. The resulting hybrid system is analyzed as
the cascade of hybrid systems and its asymptotic stability properties are established through
a separation principle. In addition, a computationally design procedure based on LMIs is
presented and illustrated in an example. First results pertaining to the problem presented
in this chapter can be found in [43].

197
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7.2 Problem Statement

7.2.1 System Description

Consider the following continuous-time linear system:

N 0o

z= Az + Bu
P: - (7.2)
“y= Mz

wherez 2 R", y 2 R%and u 2 RP are, respectively, the state, the measured output, and
the input of the system, whileA; B and M are constant matrices of appropriate dimensions.
Now, let us suppose that both the input channel and the output channel of system (7.1)
are accessible in an intermittent fashion. Especially, assume the initial tintg = O, let us
assume that the output of system (7.1) is gathered only at time instancdg, k 2 N, not
known a priori and that the input channel grants its access only at time instances, k 2 N,

not known a priori. Analogously to the previous chapters, suppose thét, gy and f s gy

are two strictly increasing unbounded real sequences of times and assume that there exist
four positive real scalarsT? T2; T T, such that

T2ty TP
TO  tywr e T2 8k 2 N

1U k+1 Uk 2 (7.2)
TJl_J Sk+1 Sk T2U 8k 2 N:

The problem studied in this chapter consists of designing an observer-based controller that
u y

ZOH

Sk tk

Yk y(te)

Figure 7.1: Continuous-time plantP controlled by the controller K, which has intermittent
access to the input channel and sporadic available measurements of the outgut

asymptotically stabilizes the resulting closed-loop system for any given sequences satisfying
(7.2) providing measurements of the plant output and input access respectively.

Assuming that the arrival of a new measurement can be instantaneously detected by the
controller, and that the controller is aware when a new sample is sent to the plant (such
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assumptions are not much severe and they can be ful lled in real engineered systems; see,
e.g, [62, 113]) motivated by Chapter 5, we design an observer-based controller with jumps
in its state (2;0), given by

8 9
2(t) = A2(t)+ Bo(t) ~ . )
oty = 0 ; whent 2 f s,gil, [ tegid
+ — 1
K a(t") = Kz2(t) whent 2 f s,gr Y 73)
2(tY) = %(t)+ LM (z(t) 2(t)) whent2ft gl

ye(t) = K2(t)

whereL and K are two matrices of appropriate dimensions to be designed. The variable
2 represents the estimated state of the plant generated by the observer by means of the
measured plant outputy, while & stores the last value of the control input sent to the plant.
Indeed, whenever a new sample of the control value is sent to the plant, the controller
accordingly updates its internal variableu*so as to memorize the signal applied to the
plant input u. Furthermore, the plant is equipped with an event-based zero-order hold
device, whose driving events are generated by new control input arriving. In particular,
such a device stores the value of the last received input between two updates and it gets
updated whenever a new control input is sent by the controller, see Figure 7.1. Thus, the
input injected into the plant is piecewise constant, and speci cally, for every integet 2 N,
u(t) = K2(sk) for t 2 [sk; Sk+1), While u(t) = u(0) for t 2 [0;s;), where u(0) denotes the
initial condition of the zero-order hold device, which can be chosen arbitrarily. Moreover,
notice that if t 2 f sygi-; \f tkgi_, then both 2 and & are updated.

7.2.2 Hybrid Modeling

The fact that the closed-loop system experiences jumps when a new measurement is available
or when the input channel grants access to the controller suggests that the dynamics of the
closed-loop system can be described via a hybrid system. We provide a hybrid model that
captures not only the behavior due to a single pair of sequendesg;., , f skgi-; , but each
possible evolution generated by any sequence satisfying (7.2) respectively. This is a unique
approach that, while leads to nonunique solutions, allows to establish a strong result for a
family of sequences, and s.

The proposed modeling approach requires to model the time-driven mechanism governing
the availability of measurements or of access to the plant input. To this end, as in Chapter 5,
we add two auxiliary timer variables ; and , to keep track of the duration of ows and to
trigger jJumps according to the mechanism in (7.3). In particular, this modeling procedure
leads to a model that can be e ciently represented by the framework for hybrid systems
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proposed in [56]. To accomplish that, we makg and , decrease as ordinary time increases
and, whenever ; =0 or , = 0, reset it to any point in [T; TY] or [T2; TS] respectively,
so as to enforce (7.2). Then, after a jump occurs, the two timers are reset according to the

following jump rule':

82 3
TY: TV
glTri T2l if ,=0:,60
2
2 3 2 3
415y § ' 1§ if 160; ,=0 (7.4)
2 [T2;T2]
82 3 2 39
2 [TU-TU] =
1112 i 1 . _ A,
>2 g,g o. Og> if 1= »,=0:
e 2 [T T27] ¢

To capture this mechanism, we de ne a hybrid systeni . within the framework in [56]. In
particular, take as a vector statex~—= (z;u; 1;2;0; ,), and for eachx 2 C = R" RP
[0;TY] R" RP [0;T] de ne the ow map as

2 3
Az + Bu
0
1
PO =82t Ba
0
1
For eachx 2 D, de ne the jump map as
8
%Gl(x) ifx2 D;nD,
G(X) = _ Gy(x) ifx2 D,nD;

2

- fG1(x); Ga(x)gifx 2 D\ D,

where for eachx 2 D = D, [ Dy,

2 3 2 3
z

K2 u

[TU;TZU] 1
Gi(x) = 1Gy(X) = 7.5
1(x) A TC O TV (7.5)

K2 O

2 [T2;T21]

1The reason behind the choice considered to update the two timers in the casq = » = 0 will appear
clear later.
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D;=R" RP f Og R" RP [0;T9] 7.6)
D,=R" R’ [0;T] R" R" f Og '

These objects de ne a hybrid systenH. = ( C; F; D; G) that represents the dynamics of the
closed-loop system. Now, for the purpose of stabilization, consider the following invertible
change of coordinates:

(Zyu; e 2)=(zZu; 152 25U 05 2) = Xe
which leads to the following model of the closed-loop system

8
2 Xe = Fe(Xe) Xe2 Ce

es . (7.7a)
“Xg 2 Ge(Xe) Xe2 De
whereCe = C;Deg= Die[ Dye;D1e= Dy;Doe = D, and
2 3 2 3 2
Az + Bu
0 K(z ") u
1 [TU;TZU] 1
Fe(Xe) = 1 Gre(Xe) = 1 Goe(Xe) = 7.7b
e( e) A" + By 1e( e) " 2e( e) (| LM ),, ( )
0 0 b
1 2 [T2; 721
8
% Gle(xe) if Xe 2 Dle n D2e
Ge(xe) = E GZe(Xe) |f Xe 2 Dze n Dle (77C)

" T Gre(Xe); Gae(Xe) if Xe 2 D1e\ Do

Remark 7.1. Taking the union of the two reset laws whenever, = , =0 in (7.4) ensures
that the resulting jump map G is outer semicontinuous relatively toD. This fact can be
proven by directly resorting to the de nition of outer semicontinuity for set-valued mappings
given in Appendix D. This fact, along with the continuity of the ow map, D, domGe,

C. domkF,, and the closedness of the setS, and D, ensures that hybrid system (7.7)
satis es Assumption 4.1. This is a key property that will be used in the sequel. Observe that
having a hybrid system satisfying Assumption 4.1 may not be trivial and it actually derives
from suitable choices done throughout the modeling stage. Several cases of hybrid systems
not matching Assumption 4.1 can be encountered in the literature; see.g, the hysteretic
guantizer in [22].

Concerning the existence of solutions to systeh,, by relying on the concept of solution
given in De nition 4.5, it is straightforward to check that every 2 Sy (Ce[ D¢) is complete.
Moreover, the following properties hold:

For every (t;j) 2 dom such that (t;j +1) 2 dom and (t;j) 2 Dy Dy, One has
(t;j +2) Z2dom
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For every (t;j) 2 dom such that (t;j +1) 2 dom and (t;j) 2 Die N Dy, One has
(t;j +2) Z2dom

For every (t;j) 2 dom such that (t;j +1) 2 dom and (t;j) 2 D1\ Dy, We have
either (t;j +1) 2 DienDgeor (t;j +1) 2 DoeNDye:

In other words, at most two jumps can occur consecutively without owing. Furthermore, for
every maximal solution to He, due to Ig7.2), every (j) 2 dom sgch that (t;s) 2 dom
for somes2fj +1;j +2g, implies that [t;t + minfT2;T/g] f sy dom . Essentially,
the domain of the solutions toH, manifests an average dwell-time property, with dwell time
o =minfT2; TYgand o set Ny = 2; see,e.g, [56, Example 2.15]. Such a property imposes
a strictly positive uniform lower bound on the length of every ow interval, preventing from
the existence of Zeno solutions.

Remark 7.2. A notable property enforced by timer ; is that, for every maximal solution
to (7.7), there exists T;J) 2 dom satisfyingT+J T+ 1, such that (T;J) 2 Dy,
which implies that &(T;J + 1) = 0. Then, since solutions to (7.7) cannot leave the set
R" RP [0;TY] R"f Og [O;TL], itfollows that for every initial condition (0;0) 2 C¢[ Db,

t converges to zero in nite hybrid time. Moreover, notice that to make the hybrid system
(7.7) an accurate description of the real time-triggered phenomenon, which governs the
update process, ; and , have to belong to the intervals [OT] and [G TS] respectively,
which is a property that is guaranteed by the de nition of C, and De.

In this chapter, we consider the following notions for a general hybrid syste with
state inR .
De nition 7.1.  ([56, De nition 7.1.]) Let A R be a compact set. The seA is

stable for H if for every > 0 there exists > 0 such that every solution toH with
] (0;0)ja satisesj (t;])ja for all (t;j) 2 dom ;

locally pre-attractive for H if there exists > 0 such that every solution to H with
J (0;0)a is bounded and, if is complete, then also lim.ji +1 | (t;])ja =0;

locally pre-asymptotically stable (LpAS) for H, if it is both stable and locally pre-
attractive for H;

globally pre-asymptotically stable (GpAS) forH, if it is both stable and locally pre-
attractive for H for every > 0.
De nition 7.2. ([56]) A set A R is strongly forward pre-invariant for H, if for every
maximal solution to H,rge A .
Remark 7.3. In referring to complete solutions, we will drop the term \pre" from the
above de nitions, which leads respectively to locally asymptotically stable (LAS), globally
asymptotically stable (GAS), and strongly forward invariant.

Then, by introducing the set

A=f0g f 0g [0;T)] f Og f Og [O;TS] (7.8)
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for which, for everyxe 2 Co[ De[ Ge(De), jXeja = k(z; u; "; &)k, the problem we solve is
as follows:

Problem 7.1. Given the matricesA, B, and M of appropriate dimensions and four positive
scalarsT TJ, TP TZ, design matrices. 2 R" 9and K 2 RP " such that the setA in
(7.8) is globally asymptotically stable for the hybrid system (7.7).

To cope with this problem, we treat (7.7) as the cascade of two hybrid systems (modulo
the coupling e ect, yet vanishing in nite hybrid-time, as shown in Remark 7.2, induced by
t on the " dynamics). Namely, this cascade is composed by thedynamics along with its
timer ,, which enters into the ¢;u; ;) dynamics. By pursuing this approach, we are able
to solve Problem 7.1 without the need of nding a Lyapunov function for the whole hybrid
system (7.7), which appears as a nontrivial problem.

7.3 Main results

7.3.1 A solution via a Separation Principle

In this section, we provide a solution to Problem 7.1 that relies on the properties inherited
from the components of the closed-loop system, namely, the observer and the controller
subsystems. Speci cally, let us consider the following assumptions.

Assumption 7.1 (Observer subsystem) The hybrid system

8 9
n — All =
% - — 1 : ("; 2) 2 Co
2 0y 9 (7.9a)
g + 0.TO (", 2) 2D,
T2 2 [T T
where
Co=R" [0;TP]; Do=R" f Og (7.9b)
has the setA, = fOg [0; TS] GAS. 4

Assumption 7.2 (Controller subsystem) The hybrid system

8 9
z = Az+ Bu 3
u=2~20 5 (z;u; 1) 2 Ck
1= 1 ’
° (7.10a)
+ = Z E
ut = Kz 5 (z;u; 1) 2 Dk
T2 [T

where
Ck=R" RP [0;T/];Dk=R" RP f Og (7.10b)
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has the setAx = fOg f Og [0; T)] GAS. 4

A su cient condition guaranteeing that Assumption 7.1 holds is given in Chapter 5,
while a su cient condition for Assumption 7.2 to hold will be given in Proposition 7.1. The
following result establishes GAS of the sef for the closed-loop system (7.7) under the
two aforementioned assumptions. Before state such results, let us consider the following
de nition.

De nition 7.3.  Given a hybrid systemsH = (C; F; D; G) with state in R", and letO R".
We denote,Hj, =(C\ O;F;D\ O;G):

Remark 7.4. Namely, Hj 4 is the restriction of the dynamics oH to the setO. Notice that
in the above de nition, any property is required forO. In particular, O\ (C[ D) could be
empty leading to a restriction having no solutions.

Theorem 7.1. Let Assumption 7.1 and Assumption 7.2 hold. Then, the seA de ned in
(7.8) is GAS for system (7.7).

The proof of this theorem is inspired by the idea in [122, Theorem 1]. Speci cally, we base
our proof on [56, Corollary 7.24], which requires the satisfaction of Assumption 4.1 (hybrid
basic assumption on data), that is satis ed by (7.7). Since the proof is rather involved, for
the sake of clarity, we rstly provide a list of the main steps carried out.

As a rst step, to situate the analysis within the focus of [56, Corollary 7.24], which works
with compact sets, we select an arbitrarily compact sel having A in its interior and we
build the following auxiliary systemH¢; == Hgj; : For such a system, we prove that the set
A is GpAS, by performing the following steps:

(a) Prove that there exist two compact setsly, J - andJ- A such that:

(@a.1) Jy is GpAS forHeg;

(@.2) J- is GPAS for Heyj;
(b) Sinced- J , applying [56, Corollary 7.24] allows to conclude thal - is GpAS forHe;
(c) Prove that Heyj;, hasA GpAS

(d) Sinced- A , thanks to (c) applying [56, Corollary 7.24] allows to conclude thaA is
GPpAS for He;.

Step (@) is performed by selecting a compact sét, such that for everyx = (z;u; 1;"; ¢ ») 2
Jy & =0, and compact setJ- J 4 such that for everyx = (z;u; 1;"; & ) 2 J~ is such
that " = 0. In particular, ( a:1) is established by using nite hybrid-time convergence af to
zero. While, @:2) follows from Assumption 7.1. Finally, €) follows from Assumption 7.2.

From GpAS of A for He; and the factthat A IntJ, we prove LpAS ofA for He, which
turns out to be LAS, due to completeness of the maximal solution td . Finally, from LAS
and the fact that the compact set] can be selected arbitrarily large, GAS is established via
homogeneity arguments.

The following two results basically establish the pointd) here above.
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Claim 7.1. Dene the closed setA, = R" RP [0;TY] R" f Og [0;TS]. Let Assump-
tion 7.1 hold. Then, H¢j,  has the closed sef- = R" RP [0 TJ] f 0g f Og [0;T2]
GAS.

The proof of the above claim is given in Appendix C.
Lemma 7.1. Pick any positive real scalardM,; M,; M-;My; M ;M ,, and de ne the com-
pact setJ = M,B My, M B My B BM,. Let A.- be the set de ned in Claim 7.1.
Assumption 7.1 implies that hybrid systemH¢; = Hgj; has the compact set)- = (J [
Ge(J)) VA - GpAS.

The proof of the above lemma is given later.
Now we are in position to provide the proof of Theorem 7.1.

Proof of Theorem 7.1. We rst show that under Assumption 7.1 and Assumption 7.2 the
setA de ned in (7.8) is LAS for system (7.7) and that its basin of attraction contains every
initial condition such that the resulting trajectory is bounded. Then we prove that LAS of
A ensures that every maximal solution to (7.7) is bounded, allowing to extend the basin of
attraction of A to include C.[ D, yielding GAS for A.

Pick six arbitrarily large positive scalarsM,; M; M-; My; M ;M , such that the compact
setJ=M,B MyB M,B M-B MyB M ,BcontainsA in its interior. De ne the
closed set

A.=R" RP [0;TJ] f Og f Og [O;TL]:

According to Lemma 7.1, which uses Assumption 7.1, the st = (J [ G(J)) \A - is

GpAS for systemH¢; = H¢j;. Moreover, thanks to Assumption 7.2 and by following the
same steps as in the proof of Lemma 7.1, it turns out that the s&t is GpAS for system
Hesjs., and sinced- A -, similarly to [56, Proposition 3.32], it follows thatA is GpAS

for systemH;j;.. Thus, since systenH; satis es Assumption 4.1,A and J- are compact,

and A J -, thanks to [56, Corollary 7.24], the seA is LpAS for systemH¢; and its basin

of attraction correspond to the one ofl -, which is equal toJ establishing GpAS ofA for

Hej.

Building on GpAS of A for He;, we establish LAS of the same set fdfl.. First we show
that GpAS of A for He; implies stability of A for He.

To this end, pick > 0 and suppose without loss of generality thaf + B  IntJ, such
a choice is always possible due & IntJ by selecting small enough. From GpAS ofA
for systemHgj, it is always possible to pick > 0 such that for every solution to Hej,

j (0;0)ja impliesj (t;])ja for all (t;j) 2 dom . Now, from Lemma C.1, it follows
that S4,(A+ B) S 4_,(A+ B). Pickany 2Sy, (A+ B). Then thanks to the selection
considered for one has for all ¢j) 2 dom that j (t;])ja . Hence, since the above

arguments can be performed for any selection of 0, it follows that A is stable forH ;.

Now we prove local attractivity of A for H.. The proof follows similar steps to the proof
of stability here above. In particular, pick the same pair ¢ ) from above. Since for such



206 Chapter 7

a pair we shown that 2 Sy (A + B) implies that is a maximal solution toH ;. and
maximal solutions to H, are complete. Hence, from GpAS oA for Hj, it follows that
every 2 Sy, (A + B) converges toA. Then, A is locally attractive for He. This latter
property along with the stability proven above establish thatA is LAS for H.. Furthermore,
sinceM,;M,;M-;My; M ;M , can be selected arbitrarily large, for every maximal bounded
solution to He, there exists a suitable choice favl,; My; M-; My; M ;M , such that rge

IntJ. Hence, such a is a complete solution toHe; and it converges toA being A GpAS
for He. Thus, the basin of attraction of A contains each point from which maximal solutions
to H. are bounded. Thus to establish GAS, we show that every maximal solution to (7.7)
is bounded, that is the basin of attraction ofA includesC.[ De.

For each positive , dene M =diag( I; I;1; I; I;1), and notice that for each x 2
Ce[ De[ Ge(De), one hasjM xja = k(z;u;"; w)k. Pick any maximal solution to (7.7)
and denote

(G 70 (i) =(ztj)uty); o)) ")t j), 2(tj)):

From LAS of A for (7.7), there exists > 0 such that every 2 Sy (A + B) is bounded.
Select a small enough? > 0 such that *k(z(0; 0); u(0; 0); " (0; 0); &(0; 0))k , then

jM? (0;0)ja

For each ¢;j) 2 dom , consider the function ¢;j) 7! M? (t;j), and notice that according

to Lemma C.2M? is a maximal solution to (7.7). In particular, due to the selection
considered for , one hasM?® 2 Sy (A + B), thereforeM? is bounded. Since the above
arguments hold for any maximal solutions, boundedness of maximal solutions to (7.7) is
established and this nishes the proof.

Now, the proof of Lemma 7.1 is given. Such a proof uses the de nition of uniform pre-
attractivity of a closed set for a general hybrid systentH with state in R .
De nition 7.4.  ([56, De nition 6.24]) A compact setA R is said to be uniformly pre-
attractive from a setS R for H if every 2 Sy (S) is bounded and for every > 0 there
exists T > 0 such thatj (t;])ja forevery 2Sy(S)and (t;j) 2 dom witht+) T.

Proof of Lemma 7.1. Let Ay be the set de ned in Claim 7.1. The sely = (J[ Ge(J))\A
is compact, and uniformly pre-attractive for systemH.; from any neighborhood ofl 4. In
particular, notice that each solution toH; is bounded and that for each complete solution
to Hej, as pointed out in Remark 7.2, there exist a (solution independent) strictly positive
scalarT, such thatt + | T, with (t;j)dom , implies (t;j) 2 Ay. This is enough to
show uniform pre-attractivity of J for He; from any neighborhood of] ;. Then, sinceHg;
satis es Assumption 4.1, thanks to [56, Proposition 7.5], along with global (uniform) pre-
attractivity of the set J for He; shown right above, it follows thatJ, is GpAS for He;.

2Notice that M amounts to the nonproper standard dilation de ned in [57, De nition 3.7]. In particular,
H. is homogeneous of degree zero with respect to the nonstandard dilation; see [123].
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Now, consider the systenHe;j; = Hej;y - SinceJ\J A 4, by containment arguments
(see; [56, Proposition 3.32]), it follows that every solution tdde;j,  is a solution to Heyj, -
Thus, from Claim 7.1, the setd- is GpAS for He;j, . Furthermore, asJ- J , from [56,
Corollary 7.24], it follows that J- is LpAS for He; and its basin of pre-attraction coincides
with the one of J 4, which in turn coincides with J. ThereforeJ- is GpAS for He;.

7.3.2 Su cient Conditions

Now, we provide su cient conditions guaranteeing that the stated assumptions hold.

The observer gainL can be already designed to satisfy Assumption 7.1 via Corollary 5.1
on Page 157. To design the controllek ensuring that Assumption 7.2 is veri ed, as follows
a constructive methodology is o ered. Such a methodology basically uses ideas from [56,
Example 3.21].
Proposition 7.1. If there existP 2 S;*P, and a matrix K 2 R" P such that

G'eVPe'G P<0  8v2 [TV T (7.11)
where 2 3 2 3
A B )

F=4 5:G=4 ) (7.12)
0 0 K 0

then Assumption 7.2 is veri ed.

Proof. Consider system (7.10) and set

2 2 33 2 2 33
z
F475 G4 5
fK(XK): E u z;GK(XK § z
1 [leT ]

Pick the following Lyapunov function candidate for the hybrid system (7.10) de ned for
everyxg = (z;u; 1) 2 R"P*L:
2 3¢ 2 3
— 4%5 F ipgFi4%s.
V(xg)= 45 € Pe 14 5;: (7.13)
u u

To prove the claim, we pursue a similar approach as the one in the proof of Theorem 5.1.
To this end, notice that there exist two positive scalars ;; , such that

1iXkja,  V(Xk)  2jXkja, 8Xk 2 Ck [ Dk [ Gk(D«k) (7.14)

whereAg is de ned in Assumption 7.2. Specially, due to the positive de niteness ¢ and
the non-singularity of the matrix € * for every i, by continuity arguments, one can set

1= omin g € tPef (7.15)
12[0;TY]
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2= MaX  max € 'PE? (7.16)

where min() and nax() denote, respectively, the smallest and the largest eigenvalue of
their matrix argument. By straightforward calculations one gets
0 2 3 2 31

z y4
rV(xk)= @€ 1P 1475z ule” *(FTP+ PR)e 1 475A
u u

Since the matricese™ * and F commute, one has
hr V(x);fx(xk)i =0 8xk 2 Ck: (7.17)

Notice that, for every gx 2 Gk (xk), there exists a real scalav belonging to the interval
[T; T,)] such that 5 2 33

G475
gK:§ u z:

\Y

Then, for everygk 2 Gk (Xk), one has
2 31 2 3
z z
V(g) V(xk)=45 Ge&'pe'G €& VP 475
u u
Moreover, whenevek 2 Dy, from (7.10b), we have that ; = 0. Then, we have
2 3¢ 2 3
z T z
475 G'évVPe'G P 475
u u

Hence, by virtue of relation (7.11), it follows that there exists a positive small enough scalar
such that, for everyv 2 [T; T}], and 8xx 2 D; 80k 2 Gk (Xk)

V() V(xk) jXKjiK (7.18)

Now, let be a solution to (7.10). Notice that, for eacht{j) 2 dom , one hast
TJ(j +1). Hence, by following the same arguments presented in the proof of Theorem 5.1,
thanks to (7.17) and (7.18) it follows that the setA is GES, hence GAS, for system (7.10).
Hence, Assumption 7.2 is veri ed, concluding the proof.

7.3.3 Design Procedure

Direct computation of the gainK via Proposition 7.1 is not straightforward. In particular,
from a numerical standpoint, (7.11) has two issues: it is not linear i and K, and it
needs to be veri ed for in nitely many values ofv. Thus, to make the problem numerically
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tractable, inspired by the results presented in Chapter 5, some manipulations are needed.
To this end, the following results allow to derive an LMI-based design procedure for the
proposed controller.
Proposition 7.2. If there exist a matrix K 2 RP ", and P; 2 S}, such that for each
v2 [T T,

z z

v T v
eV+ €SdsBK P, e+ €SdsBK P, <0 (7.19)
0 0

then, there existsP 2 S}* such that the pair(K; P) satis es (7.11).

Proof. First of all notice that, for every real scalarv, the following identity holds

02 31
A B
@4 5\A 2 R 3
eV Y ePsdsB
e 00 _4& o0€70SEg (7.20)
0 I
and consequently 2 R 3
eV + YeMSdsBK 0
FiG = 4 0 €70S 5. (7.21)

K 0
Hence, since the (2)-block of the aforementioned matrix is zero, thanks to Lemma C.3, it

turns out that from (7.19) there existsP 2 S}"? such that (7.11) holds and this concludes
the proof.

Now, we proceed to provide a condition linear in the decision variables which implies
(7.19).
Proposition 7.3. The feasibility of (7.19) follows from the feasibility of
3

2 R
+ + T \"} \4 S
WSS @S TeNdsBY, o iy 722)

w

with respect toW 2 S, S2 R" ",andY 2 RP ". In particular, given any feasible solution
to (7.22), K =YS *andP; = S TWS 1 satisfy (7.19).

Proof. Notice that the feasibility of (7.19), by Projection Lemma [99], follows from the
feasibility of

2 R
,PitHe(X) XTeh XTyerdsBK
Py

3
5<0 v2[TT,] (7.23)

whereX 2 R" ". Now, by settingX =S, STP;S= W, andKS = Y and by pre-and-post
multiplying the left-hand side of (7.23) by diagE'"; S") and diag(S; S) provides the left-hand
side of (7.22) and since the above transformations are invertible, the result is established.

Proposition 7.3 provides a su cient condition to (7.19), which is linear in the decision
variablesW; Y, and S. In particular, the above result ensures that given\{/; Y; S) such that
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(7.22) holds, thenK = Y S ! lets Assumption (7.2) hold.

Nevertheless, (7.22) still has to be veri ed for in nitely many values ofv. To overcome
such a drawback, we proceed in a similar way as in Chapter 5. Namely, by building a suitable
polytopic embedding, we derive a nite number of conditions whose satisfaction yields the
satisfaction of (7.23). To this end, consider the following preliminary result, whose proof is
given in Appendix C.

Lemma 7.2. Let v be a real scalar belonging to a given compact interval, and let ; and
> be two real constant matrices. Let

2 3 2 3 2 3

R R R
Xl:4 1 Q15;X2:4 2 Q25--::;X =4 Q5

U L, U, L, Uu L

be matrices such that for eactv 2 |
02 31

exp@ 01 025 VA 2 cof X1; X501 X g: (7.24)

Then, for eachv 2 | , the following identities hold:

h R i nh i h i h io
et Jeds , 2co R; Q1 ; Ry Q;::i; R Q (7.25)

The above result is rather general, since it is not based on a speci ¢ polytopic embedding
of the exponential matrix in (7.24). Thus, to achieve the desired task, any of the technique
proposed in the literature can be adopted. In this dissertation, we rely on technique exposed
in Chapter 5.

Now we are in position to state the following design result.
Proposition 7.4. Let
2 3 2 3 2 3

X1:4R1 Ql5;X2:4RZ QZS':::;X - 4R Q5 (7.26)
U]_ L]_ U2 L2 U L

be matrices such that for eack 2 [T/; TY],
02 31

A B
exp@4O O5vA 2 cof X ;XX g (7.27)

2 3
W+S+ST RS QY
4 S QY5 _ . (7.28)

thenK = Y S ! ensures Assumption 7.1.
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such that for eachv 2 [TY; TY]

X Zy X
e = i(V)Ri; . e°dsB = i(V)Qi (7.29)
i=1 i=1
with i iz1 i(v) = 1. Thus, the left-hand side of (7.22) turns in

2 3
T . .
i(V)4W+S+S RS Q'Ys;

7.30
B W (7.30)

Hence by the virtue of Proposition 7.3 the result is proven.
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7.4 Numerical example

Example 7.1. Consider the linearized model for the unstable batch reactor in [58], which
is described by the following data:

2 3 2 3
138 0208 871 568 0 0
_f oS8l 420 0 0675{ . _£568 O
1:07 427 665 5897 114 31
0048 427 134 21 114 0 (7.31)
yoal 01 1
010 0

and assumelP = T/ =T; =0:1and TP = T/ = T, = 0:9. As a rst step, by relying on
the apparatus illustrated in Section 5.4, we design the observer gdinto let Assumption 7.1
hold. In particular, we obtain

2 3
0:8618 0:1012
L = 5010001516 1
0:131 Q277
0:006379 @L765

Then, as a second step, to let Assumption 7.2 hold we design the controller giirvia Propo-
sition 7.4. In particular, by building on the polytopic embedding proposed in Section 5.4.1,
one gets > 3
_ 4019355  0:17442 (0094692 0:2336§
1:2263 0087818 5837 0:53913

Figure 7.2 shows the evolution of the plant state and Figure 7.3 shows the evolution of
the observer statez’projected onto ordinary time. While Figure 7.4 and Figure 7.5 show,
respectively, the evolution of the inputu feeding the plant and the evolution two timers ;
and »,, still projected onto ordinary time. In this simulation, z(0;0) = (1;1; 1;1);2(0;0) =
(0;0;0;0); u(0;0) =(0;0);0(0;0) =(0;0); 1(0;0) = ,(0;0) = T, and the sampling instants
are chosen randomly according to a uniform distribution. Simulations show the e ectiveness
of the proposed approach, by stressing that the stabilization is achieved despite the lack
of synchronism between the output sampling and input updating, as Figure 7.5 suggests.
Moreover, it is interesting to notice that, according to the initialization operated for ; and

2, the control system runs in open-loop for the rstT, units of time, as underlined by
Figure 7.3 and Figure 7.4.
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Figure 7.2: The evolution of the plant statez.
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Figure 7.3: The evolution of observer state projected onto ordinary time.
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Figure 7.4. The evolution ofu projected onto ordinary time.
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Figure 7.5: The evolution of ; (above) and , (below) projected onto ordinary time.
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7.5 Comments and Conclusion

In this chapter, we shown how the measurement-triggered observer proposed in Chapter 5 can
be used to asymptotically stabilize a linear plant in the presence of sporadic measurements
even when the plant input is not accessible at any time, provided that the controller is aware
whenever a new sample is sent to the plant. The proposed approach builds on a separation
principle, which due to the homogeneity of the resulting hybrid system leads to a global
result. Moreover, a numerically tractable design, based on the solution to certain LMIs was
provided. Finally, the e ectiveness of the described methodology is shown in an example.

One of the main advantages of the proposed approach consists in avoiding the need of
seeking for a Lyapunov function for the whole closed-loop system to certify asymptotic sta-
bility, which is a nontrivial problem. This is a worthwhile feature, which is enabled by the use
of the general and powerful framework proposed in [56] to study hybrid dynamical systems.
In particular, building on [56] allows to mimic the standard arguments adopted to establish
stability properties for upper triangular continuous-time or discrete-time nonlinear systems.
The pursued approach also brings outs that, in the considered setting, using an observer-
based controller enables to achieve closed-loop asymptotic stability without assuming any
correlation between the output sampling events and the control input updating events.

One should be aware that the same approach could be considered to stabilize nonlinear
plants, as long as one is able to build, for the considered case, an observer to reconstruct
the plant state in the presence of sporadic measurement and a state feedback controller to
stabilize the plant in the presence of sporadic input access. However, in this setting, the
considered separation principle could allow to establish only local results, as in the more
general case considered in [122], unless the plant to stabilize gives rise to an homogeneous
closed-loop system. Whenever homogeneity does not hold, as suggested in the proof of The-
orem 7.1, an estimate of the basin of attraction of the closed-loop system can be determined
by seeking for a set from which the initialization of the closed-loop system leads to bounded
solutions. This is certainly a di cult problem in general. In addition, often estimates of
basin of attraction are built via the construction of a Lyapunov function for the closed-loop
system. On the other hand, the knowledge of a (strict) Lyapunov function enables itself to
conclude on asymptotic stability of the closed-loop system, making the use of a separation
principle worthless, unless only a weak Lyapunov function is available.

As in Chapter 5, an interesting direction of research consists in the search of other Lya-
punov functions to ensure the satisfaction of Assumption 7.2, with the aim of reducing
the conservatism and the computational burden of the proposed polytopic embedding-based
design procedure.

Concerning comparisons between the approach we illustrated and the other approaches
usually considered in the literature to deal with stability and stabilization in the presence of
asynchronous sampling, it is worthwhile to observe that adopting a discrete-time approach,
as the one often considered in the literature of sampled-data and networked control systems;
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see,e.g, [29] and the references there in, does not seem suitable in this setting due to the
asynchronicity of the output sampling events and the control input updating events. Indeed,
such an approach rests on the construction of a discrete-time model of the closed-loop system,
process that does not appear doable in our setting due to multiple asynchronous jumps.
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Concluding Remarks

In this part of this thesis, we provided two observer schemes to exponentially estimate the
state of a continuous-time LTI system in the presence of sporadic measurements. In addition,
building on the rst considered observer scheme, an observer-based controller scheme is
proposed to asymptotically stabilize a continuous-time LTI system in the presence of both
sporadic measurements and input access. For such a scheme, a separation principle was
shown. The pursued approach hinges upon the hybrid system framework in [56] and leads to
computationally tractable conditions for the design of the resulting observation/controller
schemes.

Perspectives and Future Outlook

The work presented within this part has the role to prepare the stage for several interesting
extensions. In this sense, the results included in this part do not represent an ended work.
In particular, as previously mentioned, the extension of the observer in Chapter 6 to multi-
output linear plants with asynchronous channels in the presence of sporadic measurements
Is currently under investigation. A likewise interesting extension consists of the construction
of an observer-based controller, as in Chapter 7, to account event for asynchronous input
channels in multi-inputs plants. This latter lines of research suggests that a possible exten-
sion of the work presented in this dissertation concerns the construction of an observer-based
controller in the case of networked control systems; see [129]. Indeed, in this setting actu-
ators and sensors are grouped in di erent nodes that, respectively, grant their access and
transmit data sporadically. Thus, such a situation can be addressed, with some extra work,
merging the ideas in Chapter 7 and the observer presented in Chapter 6, though adapted

219
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for the case of asynchronous multi-outputs sampling. However, observe that to rest on the
controller architecture proposed in Chapter 7, as assumed therein, one would need to en-
sure that whenever a new control sample is sent to the plant, the controller instantaneously
updates its internal variables to keep track on the plant input, so as to build a correct esti-
mation of the plant state. This assumption should not entail a severe constraint in practical
implementations and usually considered in the literature of networked control systems; see,
e.g, [62]. For instance, a packet acknowledgment mechanism, as the one implemented in the
TCP protocol, would enable to e ectively ensure such an assumption; see [113].

In the framework of networked control systems, an aspect that deserves investigations
pertains to the presence of time-delays in the considered input and output channels, which
is a well acknowledged in the literature of networked control systems; see [62]. Also such a
problematic could be addressed in a hybrid systems setting via the notion of hybrid system
with memory illustrated in [86], although the extension does not appear straightforward.

Concerning genuine observer design in the presence of sporadic measurements, an inter-
esting aspect consists of coupling some performance requirements to the synthesis procedures
proposed within this dissertation. For instance, as already done,g, in [45], one can envi-
sion the derivation of design strategies guaranteeing a given exponential decay-rate for the
estimation error, and/or ensuring some performance in terms of attenuation of exogenous
signals.
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APPENDIXB

B.1 Extreme matrices of Example 5.2

2
0:12242
0:31962

X 1=

g 0:8079

0:48828

2
0:12242
0:31962
X 2 =
0:8079
0:48828

2
0:45744
0:91237
X3 =
1:0219
0:10958

2
0:45744
0:91237
X4 =
g 1:0219
0:10958

014812
009904
041564

0:4649

0:70693
1:6111
12707
12452

12652
20755
0:29808
1:7277

%41019
036545
055697
0:017582

0839226 0:01169§
0:023385 (@®2076
0:26983 01715
034301 0:34247
0:46279 0:866743
1:7335 1:4893
058522 10266
20531 13676
132 0809053
16181 16729
0:86258 0:3528
0:70574  1:2702
046498 O:O4599§
0:091995 0:03720
0:0075306 0218
10044 043986
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0:16909
0:33335
0:066639

0:39999

0:16909
0:33335
0:066639

0:39999

0:16593

0:92609

0:1474
0:77869

0:16593

0:92609

0:1474
0:77869

2
o]
2
o]
2
o]
2
o]

2
ngg
1:0703

2
Xlozg
1:1582

2
0:0014298
0:693
0:69157

2
1:1582
0:0014298
X1z = _
0:693
0.69157

0:8232
0:59132
0:47896
1:0703

0:8232
0:59132
0:47896

Xll

031446 011447
012649 29558 0095588
0:18111 0:28356 0018883
01044 0037766 0:064684
0:54059 074058 (0:70726
15836 14145  1:6145
67394 067149 087393
18145 17479 16454
14316 10422 096854
2103 19371 15477
0:89483 0:87631 0:5054
11584 1011  0:99245
0657653 018719 011349
03929 022697  0:1623
0:039783 0:021257 @B4956
65172 069912  O71765
0:35304 01821  0:057382
070844  0:11476 042038
29686 6411  0:23828
0:95551 0:47655  0:13231
12081 067295 0:91243
1.0017 1:8249  1:2897
11519 14962 061677
075459 12335 15778
076408 11099 076336
H849 15267 18725
0:41686 0048357 0:7626
2:2183  1:5253  1:0601
0:090972 25481  0:091687
B7485  0:18337 016241
043819 090341 0092402
0:5082 01848 065002

3
014779



2 0:53169 0:18669 0:095689 010213

X 15 = é 0:57759 073589 02042 029521
0:39558 0:29989 (62738 0:390
0:18201 0:38621 0:78179 (014548

2 0:53169 1:0417 0:95074 0:752953

X 1 = g 0:57759 0:97421  1:5059 1:4149
0:39558 (65516 14824 046415
0:18201 13239 092831 18556

2 0:86671 (093042 083208 (3922853
X 1o = 50:015156 21124 18457 17473
0:18154  1:0136 0034631 0:9152
0:19669 1:649 18305 0:78229

? 0:86671 0075374 0:022973 61)677963
X 1s = g 0:015156 10023 013559 0037246
0:18154  0:15857 (88968 0:06021
0:19669 0061102 0:12044 092781
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Proof of Claim 7.1. Pick any maximal solution =( 1; ) to systemHa,, where

(Gj) 70 o)) =(z(t])utj); o(t]))
(€))7t o)) =("(6):0 2(t))):

According to the properties of the domain of the solutions to (7.7) shown in Section 7.2.2, it
is straightforward to show that there exists a solutiorl to system (7.9), with sup dom' =
sup dom , and such that for every {;j) 2 dom' there existss 2 N;s | : (t;s) 2 dom
and' (t;)) =["(t;s); 2(t;s)]. Loosely speaking, ows whenever ows and only jumps
whenever jumps due to (t;s) 2 D,.. Moreover, notice that for every g;u; 1;"; ¢ 5) 2
(Ce\A W) [ (De\A ) [ Ge(De\A 4), one hasj(z;u; 1;"; 85 2)ja. = j("; 2)ia,: Now, from
stability of A, for system (7.9), one has for everyt;(j ) 2 dom’' , ' (t;j )ja, | ' (0;0)ja,, and
by construction for all (t;s) 2 dom there existsj 2 N with j s, such that (t;j ) 2 dom'
and

J(6S)ia. =] 2tS)ia, = 1" (L] )ia:

Then, stability of A- is proven. Concerning global attractivity, pick any maximal solution

to Ha,, which is complete, and suppose that the seA- is not attractive for . Then,
there existsh > 0 such that for every positive scalaf,t+s T and (t;s) 2 dom implies
j (t;8)ja. h. Now, pick (t;j) 2 dom' and such thatt+j T. Then, there existss j
such that ' (t;j)ja, = ] (t;S )ja., but sincet + s t+ ] T one hasj' (t;j)ja, h,
which contradicts the fact that A, is globally attractive for the hybrid system (7.9), and this
concludes the proof.

Lemma C.1. Given a hybrid systemH = (C;F;D; G) and a compact setl. Let H; be the
restriction of H to J. Assume that, for some se6 IntJ, each 2 Sy, (S) is such that
rge Intd. Then, Sy(S) S u, (S):

Proof. To establish the result, it su ces to show that each 2 S, (S) is a solution toH ;.
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Indeed, since each solution td1; is a solution to H, maximality of such solutions forH;
directly follows from the fact that they are maximal forH.

By contradiction, let us assume that there exists 2 Sy (S), which is not a solution
to H;. Then, by de nition of solution, since H and H; have the same dynamics, and
(0;0) 2 S\ (C[ D) IntJ the only possibility for not being a solution toH; is
that eventually leaves). Let us assume that leavesJ via a jump. Then, there exist
(t;j) 2 dom such that (t;j +1) 2 dom , (t;j) 2 IntJ, (tj +1) 2 G( (t;))) 2 J.
Thus, this implies that there exists a solution to H; starting in IntJ that leavesJ, and

this is not possible by assumption.

Let us assume that leavesJ by owing. Then, there exists (S;j) 2 dom such that
(s;j) 2 J. By continuity of the function t 7! (t;j ) over [t;;tj+1], there existss’ 2 [t;; tj1]
such that (s?;j) 2 IntJ. This implies that there exists a solution toH ; that leaves IntJ,
and this contradicts the hypothesis. Then each 2 Sy (S) is a solution to H;, concluding
the proof.
Lemma C.2. Let be asolutionto (7.7). Foreach> O,letM =diag( I; I;1;, I; I;1).
For each ¢;j) 2 dom consider the function (t;j)= M (t;j). Then, is a solution to
(7.7).

Proof. The proof follows the lines of [56, Lemma 9.3.]. In particular, we show that the hybrid
system (7.7) is homogeneous of degree zero with respect to the standard nonproper dilation
M de ned above. For each > 0 and for eachxe 2 C¢[ De, One gets

Fe(M Xe) = M Fe(Xe); Ge(M Xe) = M Ge(Xe)

moreover,M Ce = C¢;M D = De. Now, pick any solution to (7.7), and notice that
obviously M is a hybrid arc, in particular one has dom =dom M . To conclude, pick
(t;j) 2 dom . Hence, if (t;j) 2 Cc then M (t;j) 2 Ceg, while if (t;j) = Fe( (t;]))
then M _(t;j) = Fe(M (t;j)). Furtheremore, If (t;j) 2 De then M (t;j) 2 De, and
if (] +1) 2 Ge( (t;j)) then M (t;j +1) 2 Ge¢(M (t;j)). Thus M is a solution to
(7.7).

Proof of Lemma 7.2. First notice that, according to (7.20), it follows

2 3
4 1 25V 2 RV 3
X e e 15ds
e 0 -7 wyx =4 0 25 (C.1)

i=1 0 |

where X; are some suitable matrices. Thus, by partitioning ever¥; as follows

2 3
4Ri QI5

Xi =
U L



one has 2 R 3 2p P 3
48 o€ ¥ds oy _ 4pi=1 i(VIR p i=1 i(V)Qig (C.2)

0 | iz (VUi iz (VL

and this nishes the proof.

Lemma C.3. Let v be a real scalar belonging to a given compact interval. Let 4(v) 2
R™ M ,(v) 2 R™ "2 and 3(v) 2 R" "2 pe given real matrices of suitable dimensions
whose entries depend continuously on If there exist P; 2 S{*; P, 2 S{? such that

TPy 1(v) P1<0 (C.3)
3(VP2 3(v) P2<0 (C.4)

then there exist two constant symmetric positive de nite matriced; F, such that for every

vzl 2 32 32 3 2 3
4 l(v) 2(V)5 4F1 O 54 1(V) Z(V)S 4F1 O 5 < O
0 3(V) 0 R 0 3(V) 0 F .

Proof. First of all denote

Qi(v)= [(VP1 1(v) Py
Qx(v) = I(V)P2 3(v) Py

Now, let a positive scalar to be selected later and consider the following expression

2 372 32 3 2 3
g V) 2Mg 4P 05, a(v)  2(V)g 4P 05
0 3(V) 0 P, 0 3 3(V) 0 P,

Q1(v) T(VP1 2(v) 5.
TP 2(v)  Qa(v)

(C.5)

N

Then by Schur complement the above right-hand side matrix is negative de nite if and only
if
2(VP1 2(v) Q2+ ( T(VP1 2(v))TQi(v) ( T(V)P1 2(V)) < 0 (C.6)

that is
Q2(v) > J(v) Pi+ Py 1(V)Quv) * T(VP1  2(V):

which is equivalent to

1>Q,°(v) (V) Pi+ Pr iMQuv) * TPy 2(V)Q, 2 (v):

The latter is satis ed if for eachv 2 |

> ma Q2(V) T(V) Pit Py s(V)QiW) T TP 2(V)Q, 7 (V)



Thus, by continuity arguments, picking
> Max  max Q2(V) 3(v) Pi+ Py 1(V)Quv) ' T(MP1  2(V)Qz2(V)

brings the desired result, withF; = P, and F, = P ,.



APPENDIXD

SET-VALUED MAPPINGS

De nition D.1  (Domain). Given a set-valued mapping=: R" R™
domF = fx 2 R": F(x) 6 ;g

De nition D.2  (Local boundedness)A set-valued mappingF : R"  R™ islocally bounded
at x if there exists a neighborhoodl, of x such that F (Uy) is bounded. F is locally bounded
if it is locally bounded at eachx. Given a setS R", F is locally bounded relatively toS
if the set-valued mapping®: R" R™

8
bog: x71 PO x2S
' '->; x2S

is locally bounded at eachx 2 S.

De nition D.3  (Outer semicontinuity). A set-valued mappingF : R R™ is outer semi-
continuous atx 2 R" if for every sequence of pointg, convergent tox and any convergent
sequence of pointy, 2 F(xx), one has limyy = y 2 F(x). The mapping F is outer semi-
continuous if it is outer semicontinuous at eactkx 2 R". Given a setS R", F is outer
semicontinuous relatively toS if the set-valued mapping¥ : R" R™

8
bog: x 71 FO) x2S
S x2S

outer semicontinuous at eackx 2 S.
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GENERAL CONCLUSION AND RECOMMENDATIONS FOR
FUTURE RESEARCH

In this dissertation, two speci ¢ problems arising in modern control systems were addressed.
On the one hand, stability analysis and stabilization for quantized LTI continuous-time
control systems. On the other hand, state estimation and observer-based control in the
presence of both sporadic sensing and actuation for the case of LTI continuous-time systems.
Although the two considered problems are tackled separately, the applicability of the results
issued from our research situates in the context of control systems with limited information.
Such a class of systems encompasses control systems built in the presence of communication
constraints and/or in the presence of limited sensing and actuation capabilities.

The methodology o ered within the rst part of this thesis leads to constructive computer-
aided tools for the analysis and the design of stabilizing controllers in the presence of actuator
and sensor quantization. Both static state feedback controllers and dynamic output feedback
controllers were considered, providing tools having a wide range of applications in real-world
settings. Basically, given a LTI continuous-time plant subject to (uniform) quantization,
either in the actuation channel or in the sensor channel or in both, the methodology we pro-
vided allows to design a LTI continuous-time controller ensuring uniform global asymptotic
stability of a compact set containing the origin, while enabling the shrinkage of such a set
via convex optimization.

The methodology o ered within the second part of this thesis leads to constructive
computer-aided tools for the design of asymptotic observers that exponentially reconstruct
the state of a given LTI continuous-time plant, whenever the output is measured sporadically
and only a lower and an upper bound on the sampling interval is known. Moreover, such
observers can be used to stabilize a given LTI continuous-time plant in the presence of both
sporadic sensing and actuation. Concerning, it was shown that the design of the resulting
output feedback controller can be performed in two stages thanks to a separation principle.
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234 General Conclusion

Perspectives and Future Directions

As pointed throughout the conclusive chapters of this thesis, the work presented lets sev-
eral questions open. In particular, within the scope of the rst part, the extension of the

o ered methodology to other class of quantizers such as saturating quantizers is undoubt-
edly interesting and currently under investigation. Another interesting aspect, that is part

of our current research, concerns the chattering suppression achieved by mean of hysteretic
quantizers (see page 129 for further details). A likewise interesting aspect pertains to the
development of alternative algorithms to handle the bilinear terms a ecting the derived con-
ditions. A worth improvement along that direction could be the derivation of more advanced
strategies to improve the search of the optima, like in [96].

As far as concerns the second part, the main aspects to investigate pertain to the extension
of the illustrated methodology to more general plant dynamics and to multi-ouput plants with
asynchronous sampled channels; see page 219 for further details. In this setting, considering
MIMO plants, another aspect to address is the construction of an observer-based controller
to account both sporadic sensing and actuation, in the presence of asynchronous channels
both in the input and in the output. This extension is worthwhile since it would help the
design of output feedback controllers for networked control systems ([62]) via the use of a
separation principle.
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