D. Agarwal, B. Chen, and B. Pang, Personalized recommendation of user comments via factor models, Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp.571-582, 2011.

. Ama+96, A. Shun-ichi-amari, H. H. Cichocki, and . Yang, A new learning algorithm for blind signal separation Advances in neural information processing systems, pp.757-763, 1996.

[. Adomavicius and A. Tuzhilin, Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions, Knowledge and Data Engineering, pp.734-749, 2005.
DOI : 10.1109/TKDE.2005.99

[. Amini and N. Usunier, A contextual query expansion approach by term clustering for robust text summarization, p.72, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01335857

F. Bach, Beyond stochastic gradient descent for large-scale machine learning, p.16, 2014.

A. Barron, J. Rissanen, and B. Yu, The minimum description length principle in coding and modeling, IEEE Transactions on Information Theory, vol.44, issue.6, pp.2743-2760, 1998.
DOI : 10.1109/18.720554

R. Battiti, First- and Second-Order Methods for Learning: Between Steepest Descent and Newton's Method, Neural Computation, vol.8, issue.3, pp.141-166, 1992.
DOI : 10.1162/neco.1989.1.4.425

K. Richard, J. Belew, . Mcinerney, N. Nicol, and . Schraudolph, Evolving networks: Using the genetic algorithm with connectionist learning, In: In. Citeseer, 1990.

M. Benetos, C. Kotti, and . Kotropoulos, Musical instrument classification using non-negative matrix factorization algorithms, 2006 IEEE International Symposium on Circuits and Systems, pp.4-42, 2006.
DOI : 10.1109/ISCAS.2006.1692967

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.220.2190

[. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, Greedy layer-wise training of deep networks Advances in neural information processing systems 19, p.153, 2007.

S. Bengio, F. Pereira, Y. Singer, and D. Strelow, Group sparse coding, Advances in Neural Information Processing Systems, pp.82-89, 2009.

S. Serhat, B. Bucak, and . Gunsel, Incremental subspace learning via nonnegative matrix factorization, Pattern Recognition, vol.425, issue.37, pp.788-797, 2009.

M. Christopher and . Bishop, Neural networks for pattern recognition, p.14, 1995.

[. Boulanger-lewandowski, Y. Bengio, and P. Vincent, Discriminative Non-negative Matrix Factorization for Multiple Pitch Estimation, In: ISMIR. Citeseer, vol.2012, issue.37, pp.205-210

J. Bennett and S. Lanning, The netflix prize, Proceedings of KDD cup and workshop, pp.35-53, 2007.

A. John, A. Black, . Paez, A. Putu, and . Suthanaya, Sustainable urban transportation: performance indicators and some analytical approaches, Journal of urban planning and development 128, pp.184-209, 2002.

S. Becker and Y. Le-cun, Improving the convergence of back-propagation learning with second order methods, Proceedings of the 1988 connectionist models summer school, pp.29-37, 1988.

M. David, . Blei, Y. Andrew, . Ng, I. Michael et al., Latent dirichlet allocation, In: the Journal of machine Learning research, vol.3, issue.84, pp.993-1022, 2003.

J. Blitzer, M. Dredze, and F. Pereira, Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification, In: ACL, vol.7, pp.440-447, 2007.

E. Bingham and H. Mannila, Random projection in dimensionality reduction, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '01, pp.245-250, 2001.
DOI : 10.1145/502512.502546

S. John, D. Breese, C. Heckerman, and . Kadie, Empirical analysis of predictive algorithms for collaborative filtering, Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pp.43-52, 1998.

[. Brockmann, L. Hufnagel, and T. Geisel, The scaling laws of human travel, Nature, vol.6, issue.7075, pp.462-465, 2006.
DOI : 10.1038/nature04292

R. Burke, Knowledge-based recommender systems In: Encyclopedia of library and information systems 69, pp.175-186, 2000.

[. Burke, Hybrid recommender systems: Survey and experiments " . In: UMUAI'02 12, pp.331-370, 2002.

J. Christopher and . Burges, A tutorial on support vector machines for pattern recognition, Data mining and knowledge discovery 2, pp.121-167, 1998.

D. Cai, X. He, X. Wu, and J. Han, Non-negative Matrix Factorization on Manifold, 2008 Eighth IEEE International Conference on Data Mining, pp.63-72, 2008.
DOI : 10.1109/ICDM.2008.57

D. Cai, X. He, X. Wang, H. Bao, and J. Han, Locality Preserving Nonnegative Matrix Factorization, In: IJCAI, vol.9, issue.46, pp.1010-1015, 2009.

D. Cai, X. He, J. Han, S. Thomas, and . Huang, Graph regularized nonnegative matrix factorization for data representation " . In: Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.338, pp.1548-1560, 2011.

[. Ceapa, C. Smith, and L. Capra, Avoiding the crowds, Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp '12, pp.134-141
DOI : 10.1145/2346496.2346518

B. Olivier-chapelle, A. Schölkopf, and . Zien, Semi-supervised learning, 2006.

T. Chakraborty, E. Even-dar, S. Guha, Y. Mansour, and S. Muthukrishnan, Selective Call Out and Real Time Bidding, pp.145-157, 2010.
DOI : 10.1007/978-3-642-17572-5_12

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, Return of the Devil in the Details: Delving Deep into Convolutional Nets, Proceedings of the British Machine Vision Conference 2014, 2014.
DOI : 10.5244/C.28.6

A. Coates, Y. Andrew, H. Ng, and . Lee, An analysis of single-layer networks in unsupervised feature learning, International Conference on Artificial Intelligence and Statistics. 2011, pp.215-223

A. Coates, B. Huval, and T. Wang, Deep learning with cots hpc systems, Proceedings of The 30th International Conference on Machine Learning. 2013, pp.1337-1345

[. Collobert, J. Weston, and L. Bottou, Natural language processing (almost) from scratch, The Journal of Machine Learning Research, vol.12, issue.33, pp.2493-2537, 2011.

P. Comon, Independent component analysis, A new concept?, Signal Processing, vol.36, issue.3, pp.287-314, 1994.
DOI : 10.1016/0165-1684(94)90029-9

URL : https://hal.archives-ouvertes.fr/hal-00417283

A. Miguel, . Carreira-perpinan, E. Geoffrey, and . Hinton, On contrastive divergence learning, Proceedings of the tenth international workshop on artificial intelligence and statistics. Citeseer. 2005, pp.33-40

Y. Cho, K. Lawrence, and . Saul, Nonnegative Matrix Factorization for Semi-supervised Dimensionality Reduction " . In: arXiv preprint arXiv:1112, 2011.

[. Dean, G. Corrado, and R. Monga, Large scale distributed deep networks, Advances in Neural Information Processing Systems. 2012, pp.1223-1231

M. Das, G. , and J. Xiao, Non-negative matrix factorization as a feature selection tool for maximum margin classifiers, 2011 IEEE Conference on. IEEE. 2011, pp.2841-2848

[. Diaz, D. Metzler, and S. Amer-yahia, Relevance and ranking in online dating systems, Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '10, pp.66-73, 2010.
DOI : 10.1145/1835449.1835463

[. Ding, T. Li, and M. Jordan, Convex and semi-nonnegative matrix factorizations for clustering and low-dimension representation, p.46, 2006.

L. David and . Donoho, Compressed sensing In: Information Theory, IEEE Transactions on, vol.524, pp.1289-1306, 2006.

G. Dorffner, Neural networks for time series processing, Neural Network World. Citeseer, 1996.

K. Rong-en-fan, C. Chang, X. Hsieh, C. Wang, and . Lin, LIBLINEAR: A library for large linear classification, The Journal of Machine Learning Research, vol.9, pp.1871-1874, 2008.

[. Fürnkranz and E. Hüllermeier, Preference Learning, 2010.
DOI : 10.1007/978-1-4899-7502-7_667-1

S. Foell, G. Kortuem, and R. Rawassizadeh, Mining temporal patterns of transport behaviour for predicting future transport usage, Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication, UbiComp '13 Adjunct, pp.1239-1248
DOI : 10.1145/2494091.2497354

G. Ganu, N. Elhadad, and A. Marian, Beyond the Stars: Improving Rating Predictions using Review Text Content, pp.53-59, 2009.

X. Glorot, A. Bordes, and Y. Bengio, Domain adaptation for large-scale sentiment classification: A deep learning approach, pp.513-520
URL : https://hal.archives-ouvertes.fr/hal-00752091

C. John and . Golias, Analysis of traffic corridor impacts from the introduction of the new Athens Metro system, In: Journal of Transport Geography, vol.10, issue.2, pp.91-97, 2002.

C. Marta, C. A. Gonzalez, A. Hidalgo, and . Barabasi, Understanding individual human mobility patterns, Nature, vol.4537196, pp.779-782, 2008.

A. Graves, Supervised sequence labelling with recurrent neural networks, pp.29-121, 2012.
DOI : 10.1007/978-3-642-24797-2

F. Edward, Y. Gonzalez, and . Zhang, Accelerating the Lee-Seung algorithm for non-negative matrix factorization, Dept. Comput. & Appl. Math. Rice Univ, 2005.

R. Herring, Real-time traffic modeling and estimation with streaming probe data using machine learning, 2010.

[. Hinton, L. Deng, and D. Yu, Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups, IEEE Signal Processing Magazine, vol.29, issue.6, pp.82-97, 2012.
DOI : 10.1109/MSP.2012.2205597

M. Hu and B. Liu, Mining and summarizing customer reviews, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.168-177, 2004.
DOI : 10.1145/1014052.1014073

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.2378

M. Hu and B. Liu, Opinion extraction and summarization on the web, In: AAAI, vol.7, pp.1621-1624, 2006.

[. Hofmann, J. Puzicha, I. Michael, and . Jordan, Learning from dyadic data, Advances in neural information processing systems, pp.466-472, 1999.

O. Horev, R. Bryt, and . Rubinstein, Adaptive image compression using sparse dictionaries, Systems, Signals and Image Processing (IWSSIP), 2012 19th International Conference on. IEEE. 2012, pp.592-595

H. Hotelling, Analysis of a complex of statistical variables into principal components, In: Journal of educational psychology, vol.246, issue.49, pp.417-452, 1933.

O. Patrik and . Hoyer, Non-negative sparse coding Proceedings of the, Neural Networks for Signal Processing, pp.557-565, 2002.

O. Patrik and . Hoyer, Non-negative matrix factorization with sparseness constraints, The Journal of Machine Learning Research, vol.5, issue.25, pp.1457-1469, 2004.

E. Geoffrey, . Hinton, R. Ruslan, and . Salakhutdinov, Reducing the dimensionality of data with neural networks " . In: Science 313, pp.504-507, 2006.

A. Jammalamadaka, S. Joshi, S. Karthikeyan, and B. Manjunath, Discriminative Basis Selection Using Non-negative Matrix Factorization, 2010 20th International Conference on Pattern Recognition, pp.1533-1536, 2010.
DOI : 10.1109/ICPR.2010.379

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.475.1666

N. Jindal and B. Liu, Opinion spam and analysis, Proceedings of the international conference on Web search and web data mining , WSDM '08, pp.219-230, 2008.
DOI : 10.1145/1341531.1341560

URL : http://184pc128.csie.ntnu.edu.tw/presentation/09-04-06/Opinion Spam and Analysis.pdf

B. Paul, L. Kantor, F. Rokach, B. Ricci, and . Shapira, Recommender systems handbook, 2011.

[. Koren and R. Bell, Advances in collaborative filtering, pp.145-186, 2011.

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

[. Koren, R. Bell, and C. Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, vol.42, issue.8, pp.30-37, 2009.
DOI : 10.1109/MC.2009.263

[. Koren, Factorization meets the neighborhood, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.426-434, 2008.
DOI : 10.1145/1401890.1401944

I. Kotsia, S. Zafeiriou, and I. Pitas, A Novel Discriminant Non-Negative Matrix Factorization Algorithm With Applications to Facial Image Characterization Problems, IEEE Transactions on Information Forensics and Security, vol.2, issue.3, pp.3-5, 2007.
DOI : 10.1109/TIFS.2007.902017

L. Kaufman, J. Peter, and . Rousseeuw, Finding groups in data: an introduction to cluster analysis, 2009.
DOI : 10.1002/9780470316801

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks " . In: Advances in neural information processing systems, pp.1097-1105, 2012.

S. Lawrence, L. Giles, A. C. Tsoi, D. Andrew, and . Back, Face recognition: a convolutional neural-network approach, Neural Networks, pp.98-113, 1997.
DOI : 10.1109/72.554195

[. Le-cun, . Boser, and . Denker, Handwritten digit recognition with a backpropagation network Advances in neural information processing systems, Citeseer, vol.1, issue.3 9, pp.10-18, 1990.

Y. Le-cun and L. Bottou, Large scale online learning Advances in neural information processing systems 16, pp.217-233, 2004.

T. Li and C. Ding, The Relationships Among Various Nonnegative Matrix Factorization Methods for Clustering, Sixth International Conference on Data Mining (ICDM'06), pp.362-371, 2006.
DOI : 10.1109/ICDM.2006.160

[. Le, . Ma-ranzato, and . Monga, Building high-level features using large scale unsupervised learning, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.8595-8598
DOI : 10.1109/ICASSP.2013.6639343

[. Lee, A. Battle, R. Raina, Y. Andrew, and . Ng, Efficient sparse coding algorithms Advances in neural information processing systems, pp.801-808, 2006.

[. Lee, C. Ekanadham, Y. Andrew, and . Ng, Sparse deep belief net model for visual area V2 Advances in neural information processing systems, pp.873-880, 2008.

[. Li, Y. Zhang, and V. Sindhwani, A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge, Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 1, ACL-IJCNLP '09, pp.244-252, 2009.
DOI : 10.3115/1687878.1687914

[. Liang, Y. Li, and T. Zhao, Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications, Signal Processing, vol.90, issue.7, pp.2150-2163, 2010.
DOI : 10.1016/j.sigpro.2010.01.019

[. Liebig, Z. Xu, M. May, and S. Wrobel, Pedestrian Quantity Estimation with Trajectory Patterns, Machine Learning and Knowledge Discovery in Databases, pp.629-643, 2012.
DOI : 10.1007/978-3-642-33486-3_40

[. Lin, Projected Gradient Methods for Nonnegative Matrix Factorization, Neural Computation, vol.5, issue.10, pp.2756-2779, 2007.
DOI : 10.1007/BF01584660

Y. Liu, R. Jin, and L. Yang, Semi-supervised multi-label learning by constrained non-negative matrix factorization, Proceedings of the National Conference on Artificial Intelligence, p.421, 1999.

V. Quoc, T. Le, and . Mikolov, Distributed Representations of Sentences and Documents " . In: arXiv preprint arXiv:1405, pp.32-33, 2014.

[. Louail, M. Lenormand, and O. G. Cantú, From mobile phone data to the spatial structure of cities, Scientific Reports, vol.9, 2014.
DOI : 10.1038/srep05276

URL : https://hal.archives-ouvertes.fr/hal-01086156

[. Low, J. Gonzalez, and A. Kyrola, Graphlab: A new framework for parallel machine learning, 2010.

D. Daniel, S. Lee, and . Seung, Algorithms for non-negative matrix factorization Advances in neural information processing systems, pp.556-562, 2001.

D. Daniel, S. Lee, and . Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, vol.4016755, issue.37, pp.788-791, 1999.

H. Liu and Z. Wu, Non-negative matrix factorization with constraints, Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Discriminative learned dictionaries for local image analysis, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.
DOI : 10.1109/CVPR.2008.4587652

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, The Journal of Machine Learning Research, vol.11, issue.107, pp.19-60, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00408716

J. Mcauley, J. Leskovec, and D. Jurafsky, Learning Attitudes and Attributes from Multi-aspect Reviews, 2012 IEEE 12th International Conference on Data Mining, pp.1020-1025
DOI : 10.1109/ICDM.2012.110

R. Matthew, J. L. Mclaughlin, and . Herlocker, A collaborative filtering algorithm and evaluation metric that accurately model the user experience, Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pp.329-336, 2004.

[. Mikolov, I. Sutskever, K. Chen, S. Greg, J. Corrado et al., Distributed representations of words and phrases and their compositionality, Advances in Neural Information Processing Systems. 2013, pp.3111-3119

[. Mitra, S. Sheorey, and R. Chellappa, Large-scale matrix factorization with missing data under additional constraints, Advances in Neural Information Processing Systems, pp.1651-1659, 2010.

B. Mcfee, R. Gert, and . Lanckriet, Metric learning to rank, Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010, pp.775-782

J. Mcauley and J. Leskovec, Hidden factors and hidden topics, Proceedings of the 7th ACM conference on Recommender systems, RecSys '13, pp.165-172
DOI : 10.1145/2507157.2507163

J. J. , M. , and J. Leskovec, From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews, Proceedings of the 22nd international conference on World Wide Web. International World Wide Web Conferences Steering Committee. 2013, pp.897-908

G. Montavon, G. B. Orr, and K. Müller, Neural Networks: Tricks of the Trade, Reloaded, Lecture Notes in Computer ScienceLNCS, vol.7700, issue.19, pp.16-24, 2012.

Y. Andrew and . Ng, Feature selection, L 1 vs. L 2 regularization, and rotational invariance, Proceedings of the twenty-first international conference on Machine learning, p.78, 2004.

[. Pang, L. Lee, and S. Vaithyanathan, Thumbs up?, Proceedings of the ACL-02 conference on Empirical methods in natural language processing , EMNLP '02, pp.79-86, 2002.
DOI : 10.3115/1118693.1118704

K. Papineni, S. Roukos, T. Ward, and W. Zhu, BLEU, Proceedings of the 40th Annual Meeting on Association for Computational Linguistics , ACL '02, pp.311-318, 2002.
DOI : 10.3115/1073083.1073135

[. Park, Personalized Summarization Agent Using Non-negative Matrix Factorization, pp.1034-1038, 2008.
DOI : 10.1007/978-3-540-87442-3_126

J. Michael, D. Pazzani, and . Billsus, Content-based recommendation systems In: The adaptive web, pp.325-341, 2007.

P. Pinheiro and R. Collobert, Recurrent convolutional neural networks for scene labeling, Proceedings of The 31st International Conference on Machine Learning. 2014, pp.82-90

[. Peng, X. Jin, K. Wong, M. Shi, and P. Liò, Collective Human Mobility Pattern from Taxi Trips in Urban Area, PLoS ONE, vol.9, issue.4, p.34487, 2012.
DOI : 10.1371/journal.pone.0034487.s003

B. Pang and L. Lee, Opinion Mining and Sentiment Analysis, Foundations and Trends?? in Information Retrieval, vol.2, issue.1???2, pp.1-2, 2008.
DOI : 10.1561/1500000011

[. Phan and C. Nguyen, GibbsLDA++: A C/C++ implementation of latent Dirichlet allocation (LDA), p.61, 2007.

K. Vamsi and . Potluru, Understanding and Exploiting the Connections between NMF and SVM, In: ICDM Workshops, pp.1207-1210, 2011.

N. Pou+-]-mickaël-poussevin, V. Baskiotis, P. Guigue, and . Gallinari, Mining ticketing logs for usage characterization with nonnegative matrix factorization, SenseML 2014?ECML Workshop

V. Poussevin, P. Guigue, and . Gallinari, Extended Recommendation Framework: Generating the Text of a User Review as a Personalized Summary, pp.76-97, 2014.

E. Poussevin, V. Guardia-sebaoun, P. Guigue, and . Gallinari, Recommandation par combinaison de filtrage collaboratif et d'analyse de sentiments, Actes de la onzi eme COnf erence en Recherche d'Information et Applications. 2014 (cit, pp.76-97
URL : https://hal.archives-ouvertes.fr/hal-00965405

J. Pan and J. Zhang, Large margin based nonnegative matrix factorization and partial least squares regression for face recognition, Pattern Recognition Letters, vol.32, issue.14, pp.1822-1835, 2011.
DOI : 10.1016/j.patrec.2011.07.015

[. Rafrafi, V. Guigue, and P. Gallinari, Coping with the Document Frequency Bias in Sentiment Classification, In: ICWSM, vol.2012, issue.25, p.89

M. Ranzato, . Fu-jie, Y. Huang, Y. Boureau, and . Lecun, Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383157

A. Randriamanamihaga, E. Côme, L. Oukhellou, and G. Govaert, Clustering the Vélib origin-destinations flows by means of Poisson mixture models

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, GroupLens, Proceedings of the 1994 ACM conference on Computer supported cooperative work , CSCW '94, pp.175-186, 1994.
DOI : 10.1145/192844.192905

[. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction, Proceedings of the 28th International Conference on Machine Learning, pp.833-840, 2011.

[. Rifai, G. Mesnil, and P. Vincent, Higher Order Contractive Auto-Encoder, Proceedings of the 2011 European conference on Machine learning and knowledge discovery in databases-Volume Part II, pp.645-660, 2011.
DOI : 10.1016/S0042-6989(97)00169-7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.225.5458

J. Tyler, R. , and Y. Lecun, Discriminative recurrent sparse auto-encoders, 2013.

D. Russell, R. J. Reed, and . Marks, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, 1998.

[. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain In: Psychological review 65, pp.386-419, 1958.

A. Marc, M. Ranzato, and . Szummer, Semi-supervised learning of compact document representations with deep networks, Proceedings of the 25th international conference on Machine learning, pp.792-799, 2008.

E. David, . Rumelhart, E. Geoffrey, R. J. Hinton, and . Williams, Learning representations by back-propagating errors, Cognitive modeling, 1988.

[. Russakovsky, J. Deng, and H. Su, ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol.1010, issue.1
DOI : 10.1007/s11263-015-0816-y

URL : http://arxiv.org/abs/1409.0575

[. Schölkopf, A. Smola, and K. Müller, Kernel principal component analysis, Artificial Neural Networks?ICANN'97, pp.583-588, 1997.
DOI : 10.1007/BFb0020217

J. Schafer, J. Konstan, and J. Riedl, Recommender systems in ecommerce, Proceedings of the 1st ACM conference on Electronic commerce, pp.158-166, 1999.

P. Ajit, G. J. Singh, and . Gordon, Relational learning via collective matrix factorization, Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.650-658, 2008.

[. Socher, J. Pennington, H. Eric, . Huang, Y. Andrew et al., Semi-supervised recursive autoencoders for predicting sentiment distributions, Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp.151-161, 2011.

[. Song, Z. Qu, N. Blumm, and A. Barabási, Limits of Predictability in Human Mobility, Science, vol.327, issue.5968, pp.1018-1021, 2010.
DOI : 10.1126/science.1177170

. Sou+87-]-f-fogelman-soulie, S. Gallinari, and . Thiria, Learning and associative memory " . In: Pattern Recognition Theory and Applications, pp.249-268, 1987.

[. Schölkopf and A. J. Smola, Learning with kernels: support vector machines, regularization, optimization, and beyond, p.88, 2002.

[. Szegedy, W. Zaremba, and I. Sutskever, Intriguing properties of neural networks " . In: arXiv preprint arXiv:1312, pp.6199-121, 2013.

A. Nikolaevich and T. Vasiliy-yakovlevich-arsenin, Solutions of illposed problems, 1977.

[. Tan, L. Lee, and J. Tang, User-level sentiment analysis incorporating social networks, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '11, pp.1397-1405, 2011.
DOI : 10.1145/2020408.2020614

[. Tan, E. Gabrilovich, and B. Pang, To each his own, Proceedings of the fifth ACM international conference on Web search and data mining, WSDM '12, pp.233-242
DOI : 10.1145/2124295.2124325

E. Michael, . Tipping, M. Christopher, and . Bishop, Probabilistic principal component analysis, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.613, pp.611-622, 1999.

J. Teevan, T. Susan, E. Dumais, and . Horvitz, Personalizing search via automated analysis of interests and activities, Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '05, pp.449-456, 2005.
DOI : 10.1145/1076034.1076111

G. Christopher, . Thomas, A. Richard, . Harshman, S. Ravi et al., Noise reduction in BOLD-based fMRI using component analysis, Neuroimage, vol.173, pp.1521-1537, 2002.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.

[. Bibliography, C. Van-der-walt, G. Colbert, and . Varoquaux, The NumPy array: a structure for efficient numerical computation, In: Computing in Science & Engineering, vol.132, pp.22-30, 2011.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.1096-1103, 2008.
DOI : 10.1145/1390156.1390294

[. Wang, S. Yan, L. Zhang, and H. Zhang, Non-negative semi-supervised learning, International Conference on Artificial Intelligence and Statistics, pp.575-582, 2009.

D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A. Barabási, Human mobility, social ties, and link prediction, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '11, pp.1100-1108, 2011.
DOI : 10.1145/2020408.2020581

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.476.547

Q. Wang, Z. C. Xu, and H. Li, Group matrix factorization for scalable topic modeling, Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval, SIGIR '12, pp.375-384
DOI : 10.1145/2348283.2348335

[. Wang, B. Wang, X. Bai, W. Liu, and Z. Tu, Maxmargin multiple-instance dictionary learning, Proceedings of The 30th International Conference on Machine Learning. 2013, pp.846-854

J. Paul and . Werbos, Backpropagation through time: what it does and how to do it, Proceedings of the IEEE 78, pp.1550-1560, 1990.

W. Xu, X. Liu, and Y. Gong, Document clustering based on non-negative matrix factorization, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval , SIGIR '03, pp.267-273, 2003.
DOI : 10.1145/860435.860485

M. Xu, J. Zhu, and B. Zhang, Fast max-margin matrix factorization with data augmentation, Proceedings of the 30th International Conference on Machine Learning (ICML-13). 2013, pp.978-986

L. Yin, Z. M. Gao, and . Zhang, Scalable Nonnegative Matrix Factorization with Block-wise Updates, Machine Learning and Knowledge Discovery in Databases, pp.337-352, 2014.
DOI : 10.1007/978-3-662-44845-8_22

Z. Yang and E. Oja, Linear and nonlinear projective nonnegative matrix factorization, Neural Networks IEEE Transactions on, vol.215, pp.734-749, 2010.

[. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification, Neural Networks, pp.683-695, 2006.
DOI : 10.1109/TNN.2006.873291

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998

[. Zhang, G. Lai, and M. Zhang, Explicit factor models for explainable recommendation based on phrase-level sentiment analysis, Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, SIGIR '14, 2014.
DOI : 10.1145/2600428.2609579