E. Abbe, Beitr??ge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Archiv f??r Mikroskopische Anatomie, vol.9, issue.1, p.413, 1873.
DOI : 10.1007/BF02956173

J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori et al., Scanning electron microscopy and X-ray microanalysis. A text for biologists, materials scientists, and geologists, p.pp, 1981.

. Attwood, Soft X-ray microscopy at a spatial resolution better than 15 nm, Nature, vol.435, p.1210, 2005.

A. Senoner, M. Maaßdorf, C. Ritala, and . David, Advanced thin film technology for ultrahigh resolution X-ray microscopy, Ultramicroscopy, vol.109, p.1360, 2009.

. Naulleau, Real space soft x-ray imaging at 10 nm spatial resolution, Optics Express, vol.20, p.9777, 2012.

]. R. Erni, M. D. Rossell, C. Kisielowski, and U. Dahmen, Atomic-Resolution Imaging with a Sub-50-pm Electron Probe, Physical Review Letters, vol.102, issue.9, p.96101, 2009.
DOI : 10.1103/PhysRevLett.102.096101

M. L. Watson, Staining of Tissue Sections for Electron Microscopy with Heavy Metals, The Journal of Cell Biology, vol.4, issue.4, p.475, 1958.
DOI : 10.1083/jcb.4.4.475

G. E. Palade, A STUDY OF FIXATION FOR ELECTRON MICROSCOPY, Journal of Experimental Medicine, vol.95, issue.3, p.285, 1952.
DOI : 10.1084/jem.95.3.285

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi et al., Scanning near-field optical microscopy with aperture probes: Fundamentals and applications, The Journal of Chemical Physics, vol.112, issue.18, p.7761, 2000.
DOI : 10.1063/1.481382

E. Betzig and R. J. Chichester, Single Molecules Observed by Near-Field Scanning Optical Microscopy, Science, vol.262, issue.5138, p.1422, 1993.
DOI : 10.1126/science.262.5138.1422

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, p.930, 1986.
DOI : 10.1103/PhysRevLett.56.930

Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surface Science Letters, vol.290, p.688, 1993.

G. Meyer and N. M. Amer, Novel optical approach to atomic force microscopy, Applied Physics Letters, vol.53, issue.12, p.1045, 1988.
DOI : 10.1063/1.100061

P. K. Hansma and J. Tersoff, Scanning tunneling microscopy, Journal of Applied Physics, vol.61, issue.2, p.1, 1987.
DOI : 10.1063/1.338189

J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope, Physical Review B, vol.31, issue.2, p.805, 1985.
DOI : 10.1103/PhysRevB.31.805

D. M. Eigler and E. K. Schweizer, Positioning single atoms with a scanning tunnelling microscope, Nature, vol.344, issue.6266, p.524, 1990.
DOI : 10.1038/344524a0

F. Ohnesorge and G. Binnig, True Atomic Resolution by Atomic Force Microscopy Through Repulsive and Attractive Forces, Science, vol.260, issue.5113, p.1451, 1993.
DOI : 10.1126/science.260.5113.1451

J. W. Lichtman and J. Conchello, Fluorescence microscopy, Nature Methods, vol.176, issue.12, p.910, 2005.
DOI : 10.1038/nmeth817

M. Orrit and J. Bernard, -terphenyl crystal, Physical Review Letters, vol.65, issue.21, p.2716, 1990.
DOI : 10.1103/PhysRevLett.65.2716

URL : https://hal.archives-ouvertes.fr/jpa-00209976

W. P. Ambrose, T. Basché, and W. E. Moerner, ???terphenyl crystal by means of fluorescence excitation, The Journal of Chemical Physics, vol.95, issue.10, p.7150, 1991.
DOI : 10.1063/1.461392

J. Mertz, Introduction to optical microscopy, 2010.

A. G. Godin, B. Lounis, and L. Cognet, Super-resolution Microscopy Approaches for Live Cell Imaging, Biophysical Journal, vol.107, issue.8, p.1777, 2014.
DOI : 10.1016/j.bpj.2014.08.028

URL : https://hal.archives-ouvertes.fr/hal-01080729

. Hess, Imaging intracellular fluorescent proteins at nanometer resolution, Science, vol.313, p.1642, 2006.

S. T. Hess, T. P. Girirajan, and M. D. Mason, Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy, Biophysical Journal, vol.91, issue.11, p.4258, 2006.
DOI : 10.1529/biophysj.106.091116

M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nature Methods, vol.127, issue.10, p.793, 2006.
DOI : 10.1038/nmeth929

M. Heilemann, S. Vandelinde, M. Schüttpelz, R. Kasper, B. Seefeldt et al., Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes, Angewandte Chemie International Edition, vol.2, issue.33, p.6172, 2008.
DOI : 10.1002/anie.200802376

A. Sharonov and R. M. Hochstrasser, Wide-field subdiffraction imaging by accumulated binding of diffusing probes, Proceedings of the National Academy of Sciences, vol.103, issue.50, p.18911, 2006.
DOI : 10.1073/pnas.0609643104

M. P. Sobolevsky, E. Rosconi, R. Gouaux, D. Tampé, L. Choquet et al., Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density, Biophysical Journal, vol.99, p.1303, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00661871

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Optics Letters, vol.19, issue.11, p.780, 1994.
DOI : 10.1364/OL.19.000780

S. W. Hell and M. Kroug, Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit, Applied Physics B Lasers and Optics, vol.37, issue.5, p.495, 1995.
DOI : 10.1007/BF01081333

M. G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION, Journal of Microscopy, vol.198, issue.2, p.82, 2000.
DOI : 10.1046/j.1365-2818.2000.00710.x

R. Heintzmann, T. M. Jovin, and C. Cremer, Saturated patterned excitation microscopy???a concept for optical resolution improvement, Journal of the Optical Society of America A, vol.19, issue.8, p.1599, 2002.
DOI : 10.1364/JOSAA.19.001599

M. G. Gustafsson, Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution, Proceedings of the National Academy of Sciences, vol.102, issue.37, p.13081, 2005.
DOI : 10.1073/pnas.0406877102

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, Faster STORM using compressed sensing, Nature Methods, vol.5, issue.7, p.721, 2012.
DOI : 10.1038/nmeth.1978

S. Hell and . Jakobs, rsEGFP2 enables fast RESOLFT nanoscopy of living cells, 2012.

D. Davidson, J. Toomre, and . Bewersdorf, Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms, Nature Methods, vol.10, p.653, 2013.

H. D. Lee, S. J. Sahl, M. D. Lew, and W. E. Moerner, The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision, Applied Physics Letters, vol.100, issue.15, p.153701, 2012.
DOI : 10.1063/1.3700446

S. A. Jones, S. Shim, J. He, and X. Zhuang, Fast, three-dimensional super-resolution imaging of live cells, Nature Methods, vol.88, issue.6, p.499, 2011.
DOI : 10.1364/OL.29.002611

T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, Adaptive optics enables 3D STED microscopy in aberrating specimens, Optics Express, vol.20, issue.19, p.20998, 2012.
DOI : 10.1364/OE.20.020998

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. , STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices, Biophysical Journal, vol.101, issue.5, p.1277, 2011.
DOI : 10.1016/j.bpj.2011.07.027

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn et al., Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement, Science, vol.320, issue.5873, p.246, 2008.
DOI : 10.1126/science.1154228

U. V. Nagerl, K. I. Willig, B. Hein, S. W. Hell, and T. Bonhoeffer, Live-cell imaging of dendritic spines by STED microscopy, Proceedings of the National Academy of Sciences of the United States of America 105, p.18982, 2008.
DOI : 10.1073/pnas.0810028105

J. Trebbia, P. Tamarat, and B. Lounis, Indistinguishable near-infrared single photons from an individual organic molecule, Physical Review A, vol.82, issue.6, p.63803, 2010.
DOI : 10.1103/PhysRevA.82.063803

URL : https://hal.archives-ouvertes.fr/hal-00540457

V. Götzinger and . Sandoghdar, Quantum interference of tunably indistinguishable photons from remote organic molecules, Physical Review Letters, vol.104, p.123605, 2010.

G. V. Varada and G. S. Agarwal, Two-photon resonance induced by the dipole-dipole interaction, Physical Review A, vol.45, issue.9, p.6721, 1992.
DOI : 10.1103/PhysRevA.45.6721

M. C. Raff, Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence, Immunology, vol.19, p.637, 1970.

W. W. Franke, E. Schmid, M. Osborn, and K. Weber, Different intermediate-sized filaments distinguished by immunofluorescence microscopy., Proceedings of the National Academy of Sciences, p.5034, 1978.
DOI : 10.1073/pnas.75.10.5034

B. A. Griffin, S. R. Adams, and R. Y. Tsien, Specific Covalent Labeling of Recombinant Protein Molecules Inside Live Cells, Science, vol.281, issue.5374, p.269, 1998.
DOI : 10.1126/science.281.5374.269

. Johnsson, A general method for the covalent labeling of fusion proteins with small molecules in vivo, Nature Biotechnology, vol.21, p.86, 2003.

G. V. Los, L. P. Encell, M. G. Mcdougall, D. D. Hartzell, N. Karassina et al., HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis, ACS Chemical Biology, vol.3, issue.6, p.373, 2008.
DOI : 10.1021/cb800025k

J. Lippincott-schwartz and G. H. Patterson, Development and Use of Fluorescent Protein Markers in Living Cells, Science, vol.300, issue.5616, 2003.
DOI : 10.1126/science.1082520

V. V. Verkhusha and K. A. Lukyanov, The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins, Nature Biotechnology, vol.22, issue.3, p.289, 2004.
DOI : 10.1038/nbt943

R. Y. Tsien, THE GREEN FLUORESCENT PROTEIN, Annual Review of Biochemistry, vol.67, issue.1, p.509, 1998.
DOI : 10.1146/annurev.biochem.67.1.509

G. Tu, W. W. Euskirchen, D. C. Ward, and . Prasher, Green fluorescent protein as a marker for gene expression, Science, vol.263, p.802, 1994.

M. Minsky, Memoir on inventing the confocal scanning microscope, Scanning, vol.10, issue.4, p.128, 1988.
DOI : 10.1002/sca.4950100403

J. Conchello and J. W. Lichtman, Optical sectioning microscopy, Nature Methods, vol.4, issue.12, p.920, 2005.
DOI : 10.1038/nmeth815

T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, vol.187, issue.4736, p.493, 1960.
DOI : 10.1103/PhysRevLett.4.564

L. Dudás, J. Sinkó, M. Erdélyi, and G. Szabó, Confocal line-scanning microscope with modified illumination, Optics Letters, vol.37, issue.20, p.4293, 2012.
DOI : 10.1364/OL.37.004293

B. Zhang, J. Zerubia, and J. Olivo-marin, Gaussian approximations of fluorescence microscope point-spread function models, Applied Optics, vol.46, issue.10, p.1819, 2007.
DOI : 10.1364/AO.46.001819

URL : https://hal.archives-ouvertes.fr/pasteur-00163734

W. Denk, J. Strickler, and W. Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, issue.4951, p.73, 1990.
DOI : 10.1126/science.2321027

F. Helmchen and W. Denk, Deep tissue two-photon microscopy, Nature Methods, vol.63, issue.12, p.932, 2005.
DOI : 10.1038/nmeth818

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, In vivo dendritic calcium dynamics in neocortical pyramidal neurons, Nature, vol.385, issue.6612, p.161, 1997.
DOI : 10.1038/385161a0

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex, Proceedings of the National Academy of Sciences 95, p.15741, 1998.
DOI : 10.1073/pnas.95.26.15741

F. Helmchen, K. Svoboda, W. Denk, and D. W. Tank, In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons, Nature Neuroscience, vol.2, issue.11, p.989, 1999.
DOI : 10.1038/14788

P. Theer and W. Denk, On the fundamental imaging-depth limit in two-photon microscopy, Journal of the Optical Society of America A, vol.23, issue.12, p.3139, 2006.
DOI : 10.1364/JOSAA.23.003139

W. L. Peticolas, J. P. Goldsborough, and K. E. Rieckhoff, Double Photon Excitation in Organic Crystals, Physical Review Letters, vol.10, issue.2, p.43, 1963.
DOI : 10.1103/PhysRevLett.10.43

O. Svelto, Principles of lasers, 2010.

E. J. Ambrose, A Surface Contact Microscope for the study of Cell Movements, Nature, vol.5, issue.4543, p.1194, 1956.
DOI : 10.1038/1781194a0

D. Axelrod, Cell-substrate contacts illuminated by total internal reflection fluorescence, The Journal of Cell Biology, vol.89, issue.1, p.141, 1981.
DOI : 10.1083/jcb.89.1.141

E. J. Ezratty, M. A. Partridge, and G. G. Gundersen, Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase, Nature Cell Biology, vol.107, issue.6, p.581, 2005.
DOI : 10.1002/(SICI)1097-0169(1998)41:4<325::AID-CM5>3.0.CO;2-D

M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry et al., Stoichiometry and turnover in single, functioning membrane protein complexes, Nature, vol.12, issue.7109, p.355, 2006.
DOI : 10.1073/pnas.0404200101

S. Hell and E. H. Stelzer, Properties of a 4Pi confocal fluorescence microscope, Journal of the Optical Society of America A, vol.9, issue.12, p.2159, 1992.
DOI : 10.1364/JOSAA.9.002159

S. Hell and E. H. Stelzer, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Optics Communications, vol.93, issue.5-6, p.277, 1992.
DOI : 10.1016/0030-4018(92)90185-T

M. G. Gustafsson, D. A. Agard, and J. W. , Sedat, in Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses (PUBLISHER, pp.147-156, 1995.

M. G. Gustafsson, D. A. Agard, and J. W. Sedat, I5M: 3D widefield light microscopy with better than 100 nm axial resolution, Journal of Microscopy, vol.195, issue.1, p.10, 1999.
DOI : 10.1046/j.1365-2818.1999.00576.x

S. W. Hell, Toward fluorescence nanoscopy, Nature Biotechnology, vol.21, issue.11, p.1347, 2003.
DOI : 10.1038/nbt895

S. W. Hell, Far-Field Optical Nanoscopy, Science, vol.316, issue.5828, p.1153, 2007.
DOI : 10.1126/science.1137395

B. Huang, M. Bates, and X. Zhuang, Super-Resolution Fluorescence Microscopy, Annual Review of Biochemistry, vol.78, issue.1, p.993, 2009.
DOI : 10.1146/annurev.biochem.77.061906.092014

N. A. Jensen, J. G. Danzl, K. I. Willig, F. Lavoie-cardinal, T. Brakemann et al., Coordinate-targeted and coordinatestochastic super-resolution microscopy with the reversibly switchable fluorescent rrotein dreiklang, 2014.

T. A. Klar and S. W. Hell, Subdiffraction resolution in far-field fluorescence microscopy, Optics Letters, vol.24, issue.14, p.954, 1999.
DOI : 10.1364/OL.24.000954

D. H. Burns, J. B. Callis, G. D. Christian, and E. R. Davidson, Strategies for attaining superresolution using spectroscopic data as constraints, Applied Optics, vol.24, issue.2, p.154, 1985.
DOI : 10.1364/AO.24.000154

A. M. Van-oijen, J. Köhler, J. Schmidt, M. Müller, and G. J. Brakenhoff, 3-Dimensional super-resolution by spectrally selective imaging, Chemical Physics Letters, vol.292, issue.1-2, p.183, 1998.
DOI : 10.1016/S0009-2614(98)00673-3

K. Chojnacki, B. C. Gehmlich, C. Lagerholm, and . Eggeling, Pathways to optical STED microscopy, NanoBioImaging, vol.1, p.1, 2013.

. Hell, Resolution scaling in STED microscopy, Optics Express, vol.16, issue.4154, 2008.

F. Pampaloni and J. Enderlein, Gaussian, Hermite-Gaussian, and Laguerre- Gaussian beams: a primer, p.410021, 2004.

V. Westphal and S. W. Hell, Nanoscale Resolution in the Focal Plane of an Optical Microscope, Physical Review Letters, vol.94, issue.14, p.143903, 2005.
DOI : 10.1103/PhysRevLett.94.143903

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, STED microscopy reveals crystal colour centres with nanometric resolution, Nature Photonics, vol.442, issue.3, p.144, 2009.
DOI : 10.1038/nphoton.2009.2

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden et al., Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-Ångström emitter localization, Advanced Materials, vol.24, p.309, 2012.

R. Lührmann, C. Jahn, S. W. Eggeling, and . Hell, Macromolecularscale resolution in biological fluorescence microscopy, Proceedings of the National Academy of Sciences, p.11440, 2006.

K. Willig, B. Harke, R. Medda, and S. Hell, STED microscopy with continuous wave beams, Nature Methods, vol.80, issue.11, p.915, 2007.
DOI : 10.1038/nmeth1108

J. R. Moffitt, C. Osseforth, and J. Michaelis, Time-gating improves the spatial resolution of STED microscopy, Optics Express, vol.19, issue.5, p.4242, 2011.
DOI : 10.1364/OE.19.004242

G. Vicidomini, G. Moneron, K. Han, V. Westphal, H. Ta et al., Sharper low-power STED nanoscopy by time gating, Nature Methods, vol.63, issue.7, p.571, 2011.
DOI : 10.1021/jp003813i

G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron et al., STED Nanoscopy with Time-Gated Detection: Theoretical and Experimental Aspects, PLoS ONE, vol.234, issue.1, p.54421, 2013.
DOI : 10.1371/journal.pone.0054421.s007

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, A STED microscope aligned by design, Optics Express, vol.17, issue.18, p.16100, 2009.
DOI : 10.1364/OE.17.016100

R. Schonle, S. Jahn, C. Jakobs, S. W. Eggeling, and . Hell, Two-color far-field fluorescence nanoscopy, Biophysical Journal, vol.92, p.67, 2007.

L. Meyer, D. Wildanger, R. Medda, A. Punge, S. O. Rizzoli et al., Dual-Color STED Microscopy at 30-nm Focal-Plane Resolution, Small, vol.320, issue.8, p.1095, 2008.
DOI : 10.1002/smll.200800055

. Nägerl, Two-color STED microscopy of living synapses using a single laser-beam pair, Biophysical Journal, vol.101, p.2545, 2011.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner et al., Spherical nanosized focal spot unravels the interior of cells, Nature Methods, vol.70, issue.6, p.539, 2008.
DOI : 10.1038/nmeth.1214

J. Corrêa and . Bewersdorf, Two-color STED microscopy in living cells, Biomedical Optics Express, vol.2, p.2364, 2011.

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy, Neuron, vol.63, issue.4, p.429, 2009.
DOI : 10.1016/j.neuron.2009.07.011

G. Moneron and S. W. Hell, Two-photon excitation STED microscopy, Optics Express, vol.17, issue.17, p.14567, 2009.
DOI : 10.1364/OE.17.014567

P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, and U. V. , Two-Photon Excitation STED Microscopy in Two Colors in Acute Brain Slices, Biophysical Journal, vol.104, issue.4, p.778, 2013.
DOI : 10.1016/j.bpj.2012.12.054

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, Three-Dimensional Nanoscopy of Colloidal Crystals, Nano Letters, vol.8, issue.5, p.1309, 2008.
DOI : 10.1021/nl073164n

S. W. Hell, R. Schmidt, and A. Egner, Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses, Nature Photonics, vol.5, issue.7, p.381, 2009.
DOI : 10.1038/nphoton.2009.112

URL : http://hdl.handle.net/11858/00-001M-0000-0012-D810-4

D. Wildanger, R. Medda, L. Kastrup, and S. Hell, A compact STED microscope providing 3D nanoscale resolution, Journal of Microscopy, vol.4, issue.1, p.35, 2009.
DOI : 10.1111/j.1365-2818.2009.03188.x

M. Dyba and S. W. Hell, Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution, Physical Review Letters, vol.88, issue.16, p.163901, 2002.
DOI : 10.1103/PhysRevLett.88.163901

M. Friedrich, Q. Gan, V. Ermolayev, and G. S. Harms, STED-SPIM: Stimulated Emission Depletion Improves Sheet Illumination Microscopy Resolution, Biophysical Journal, vol.100, issue.8, p.43, 2011.
DOI : 10.1016/j.bpj.2010.12.3748

URL : http://doi.org/10.1016/j.bpj.2010.12.3748

]. M. Dyba, S. Jakobs, and S. W. Hell, Immunofluorescence stimulated emission depletion microscopy, Nature Biotechnology, vol.21, issue.11, p.1303, 2003.
DOI : 10.1038/nbt897

V. Westphal, J. Seeger, T. Salditt, and S. W. Hell, Stimulated emission depletion microscopy on lithographic nanostructures, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.38, issue.9, p.695, 2005.
DOI : 10.1088/0953-4075/38/9/017

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, 120 nm resolution and 55 nm structure size in STED-lithography, Optics Express, vol.21, issue.9, p.10831, 2013.
DOI : 10.1364/OE.21.010831

D. Wildanger, J. R. Maze, and S. W. Hell, Diffraction Unlimited All-Optical Recording of Electron Spin Resonances, Physical Review Letters, vol.107, issue.1, p.17601, 2011.
DOI : 10.1103/PhysRevLett.107.017601

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes, Physical Review Letters, vol.94, issue.17, p.178104, 2005.
DOI : 10.1103/PhysRevLett.94.178104

H. Blom, L. Kastrup, and C. Eggeling, Fluorescence Fluctuation Spectroscopy in Reduced Detection Volumes, Current Pharmaceutical Biotechnology, vol.7, issue.1, p.51, 2006.
DOI : 10.2174/138920106775789629

E. Rittweger, D. Wildanger, and S. W. Hell, Far-field fluorescence nanoscopy of diamond color centers by ground state depletion, EPL (Europhysics Letters), vol.86, issue.1, p.14001, 2009.
DOI : 10.1209/0295-5075/86/14001

K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, Metastable Dark States Enable Ground State Depletion Microscopy of Nitrogen Vacancy Centers in Diamond with Diffraction-Unlimited Resolution, Nano Letters, vol.10, issue.8, p.3199, 2010.
DOI : 10.1021/nl102156m

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins, Proceedings of the National Academy of Sciences of the United States of America, p.17565, 2005.
DOI : 10.1073/pnas.0506010102

S. W. Eggeling and . Hell, Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching, Microscopy Research and Technique, vol.70, p.269, 2007.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto et al., Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy, Science, vol.320, issue.5881, p.1332, 2008.
DOI : 10.1126/science.1156947

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, Super-resolution video microscopy of live cells by structured illumination, Nature Methods, vol.167, issue.5, p.339, 2009.
DOI : 10.1038/nmeth.1324

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. L. Moal et al., Structured illumination microscopy using unknown speckle patterns, Nature Photonics, vol.19, issue.5, p.312, 2012.
DOI : 10.1038/nphoton.2012.83

URL : https://hal.archives-ouvertes.fr/hal-00738270

F. Wei and Z. Liu, Plasmonic Structured Illumination Microscopy, Nano Letters, vol.10, issue.7, p.2531, 2010.
DOI : 10.1021/nl1011068

M. W. Kamps-hughes, M. G. Davidson, and . Gustafsson, Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution, Proceedings of the National Academy of Sciences, vol.109, p.135, 2012.

]. A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman et al., Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization, Science, vol.300, issue.5628, p.2061, 2003.
DOI : 10.1126/science.1084398

X. Qu, D. Wu, L. Mets, and N. F. Scherer, Nanometer-localized multiple single-molecule fluorescence microscopy, Proceedings of the National Academy of Sciences, vol.101, issue.31, p.11298, 2004.
DOI : 10.1073/pnas.0402155101

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC509198

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess et al., High-density mapping of single-molecule trajectories with photoactivated localization microscopy, Nature Methods, vol.70, issue.2, p.155, 2008.
DOI : 10.1083/jcb.200508165

B. Choquet, G. Lounis, and . Giannone, Integrins ?1 and ?3 exhibit distinct dynamic nanoscale organizations inside focal adhesions, Nature Cell Biology, vol.14, p.1057, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00909235

. Hess, Actin mediates the nanoscale membrane organization of the clustered membrane protein influenza hemagglutinin, Biophysical Journal, vol.104, p.2182, 2013.

G. Fu, T. Huang, J. Buss, C. Coltharp, Z. Hensel et al., In Vivo Structure of the E. coli FtsZ-ring Revealed by Photoactivated Localization Microscopy (PALM), PLoS ONE, vol.12, issue.9, p.12680, 2010.
DOI : 10.1371/journal.pone.0012680.s007

B. Huang, W. Wang, M. Bates, and X. Zhuang, Three-dimensional superresolution imaging by stochastic optical reconstruction microscopy Superresolution imaging of chemical synapses in the brain, Science Neuron, vol.319, issue.68, p.843, 2010.

A. Löschberger, S. Linde, M. Dabauvalle, B. Rieger, M. Heilemann et al., Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution, Journal of Cell Science, vol.125, issue.3, 2012.
DOI : 10.1242/jcs.098822

C. Jakobs, S. W. Eggeling, and . Hell, Fluorescence nanoscopy by groundstate depletion and single-molecule return, Nature Methods, vol.5, p.943, 2008.

B. Lalkens, I. Testa, K. I. Willig, and S. W. Hell, MRT letter: Nanoscopy of protein colocalization in living cells by STED and GSDIM, Microscopy Research and Technique, vol.3, issue.1, 2012.
DOI : 10.1002/jemt.21026

V. Plass, L. Mueller, I. R. Reymond, Z. Corrêa-jr, C. Luo et al., A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins, Nature Chemistry, vol.5, p.132, 2013.

P. Winckler, L. Lartigue, G. Giannone, F. De-giorgi, F. Ichas et al., Identification and super-resolution imaging of ligand-activated receptor dimers in live cells, Scientific Reports, vol.225, issue.3, 2013.
DOI : 10.1038/srep02387

URL : https://hal.archives-ouvertes.fr/hal-00909281

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, The Role of Molecular Dipole Orientation in Single-Molecule Fluorescence Microscopy and Implications for Super-Resolution Imaging, ChemPhysChem, vol.101, issue.4, p.587, 2014.
DOI : 10.1002/cphc.201300880

. Hell, Molecular orientation affects localization accuracy in superresolution farfield fluorescence microscopy, Nano Lett, vol.11, issue.209, 2010.

A. S. Backer, M. P. Backlund, M. D. Lew, and W. E. Moerner, Single-molecule orientation measurements with a quadrated pupil, Optics Letters, vol.38, issue.9, p.1521, 2013.
DOI : 10.1364/OL.38.001521

A. S. Backer, M. P. Backlund, A. R. Diezmann, S. J. Sahl, and W. E. Moerner, A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy, Applied Physics Letters, vol.104, issue.19, 2014.
DOI : 10.1063/1.4876440

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, High-Resolution Confocal Microscopy by Saturated Excitation of Fluorescence, Physical Review Letters, vol.99, issue.22, p.228105, 2007.
DOI : 10.1103/PhysRevLett.99.228105

Y. Yonemaru, M. Yamanaka, N. I. Smith, K. Kawata, and . Fujita, Saturated Excitation Microscopy with Optimized Excitation Modulation, ChemPhysChem, vol.2, issue.4, p.743, 2014.
DOI : 10.1002/cphc.201300879

S. Chu, H. Wu, Y. Huang, T. Su, H. Lee et al., Saturation and Reverse Saturation of Scattering in a Single Plasmonic Nanoparticle, ACS Photonics, vol.1, issue.1, p.32, 2014.
DOI : 10.1021/ph4000218

S. Chu, T. Su, R. Oketani, Y. Huang, H. Wu et al., Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope, Physical Review Letters, vol.112, issue.1, p.17402, 2014.
DOI : 10.1103/PhysRevLett.112.017402

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI), Proceedings of the National Academy of Sciences, p.22287, 2009.
DOI : 10.1073/pnas.0907866106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799731

T. Dertinger, M. Heilemann, R. Vogel, M. Sauer, and S. Weiss, Superresolution Optical Fluctuation Imaging with Organic Dyes, Angewandte Chemie, vol.7185, issue.49, p.9631, 2010.
DOI : 10.1002/ange.201004138

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3007670

S. Geissbuehler, C. Dellagiacoma, and T. Lasser, Comparison between SOFI and STORM, Biomedical Optics Express, vol.2, issue.3, p.408, 2011.
DOI : 10.1364/BOE.2.000408

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047347

N. Hafi, M. Grunwald, L. S. Van-den-heuvel, T. Aspelmeier, J. Chen et al., Fluorescence nanoscopy by polarization modulation and polarization angle narrowing, Nature Methods, vol.92, issue.5, p.579, 2014.
DOI : 10.1016/0165-0270(91)90128-M

URL : http://hdl.handle.net/11858/00-001M-0000-0019-B811-0

S. W. Hell, Microscopy and its focal switch, Nature Methods, vol.5, issue.1, 2009.
DOI : 10.1038/nmeth.1291

URL : http://hdl.handle.net/11858/00-001M-0000-0012-D935-4

C. Shannon, Communication in the presence of noise, Proceedings of the IRE, p.10, 1949.

S. J. Holden, S. Uphoff, and A. N. Kapanidis, DAOSTORM: an algorithm for high- density super-resolution microscopy, Nature Methods, vol.8, issue.4, p.279, 2011.
DOI : 10.1038/nbt.1551

F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, Simultaneous multiple-emitter fitting for single molecule super-resolution imaging, Biomedical Optics Express, vol.2, issue.5, p.1377, 2011.
DOI : 10.1364/BOE.2.001377

G. Grynberg, B. Lounis, P. Verkerk, J. Courtois, and C. Salomon, Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials, Physical Review Letters, vol.70, issue.15, p.2249, 1993.
DOI : 10.1103/PhysRevLett.70.2249

A. Hemmerich and T. W. Hänsch, Two-dimesional atomic crystal bound by light, Physical Review Letters, vol.70, issue.4, p.410, 1993.
DOI : 10.1103/PhysRevLett.70.410

. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature, vol.404, issue.6773, p.53, 2000.
DOI : 10.1038/35003523

M. P. Macdonald, G. C. Spalding, and K. Dholakia, Microfluidic sorting in an optical lattice, Nature, vol.426, issue.6965, p.421, 2003.
DOI : 10.1038/nature02144

L. Novotny, R. D. Grober, and K. Karrai, Reflected image of a strongly focused spot, Optics Letters, vol.26, issue.11, p.789, 2001.
DOI : 10.1364/OL.26.000789

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy, Physical Review Letters, vol.93, issue.3, p.37401, 2004.
DOI : 10.1103/PhysRevLett.93.037401

M. Dyba and S. Hell, Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission, Applied Optics, vol.42, issue.25, p.42, 2003.
DOI : 10.1364/AO.42.005123

]. C. Eggeling, A. Volkmer, and C. A. Seidel, Molecular Photobleaching Kinetics of Rhodamine 6G by One- and Two-Photon Induced Confocal Fluorescence Microscopy, ChemPhysChem, vol.80, issue.5, p.791, 2005.
DOI : 10.1002/cphc.200400509

L. P. Chew, Constrained Delaunay triangulations, Proceedings of the third annual symposium on Computational geometry , SCG '87, p.97, 1989.
DOI : 10.1145/41958.41981

. Hell, Fast STED microscopy with continuous wave fiber lasers, Optics Express, vol.18, p.1302, 2010.

G. Donnert, C. Eggeling, and S. Hell, Major signal increase in fluorescence microscopy through dark-state relaxation, Nature Methods, vol.77, issue.1, p.81, 2007.
DOI : 10.1038/nbt0102-87

P. Sauer and . Tinnefeld, A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes, Angewandte Chemie International Edition, vol.47, p.5465, 2008.

J. O. Carnali and M. S. Naser, The use of dilute solution viscometry to characterize the network properties of carbopol microgels, Colloid & Polymer Science, vol.15, issue.7, p.183, 1992.
DOI : 10.1007/BF00652185

P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Ten years of singlemolecule spectroscopy, J. Phys. Chem. A, vol.104, issue.1, 1999.

R. Kaufmann, C. Hagen, and K. Grünewald, Fluorescence cryo-microscopy: current challenges and prospects, Current Opinion in Chemical Biology, vol.20, p.86, 2014.
DOI : 10.1016/j.cbpa.2014.05.007

URL : http://doi.org/10.1016/j.cbpa.2014.05.007

C. Bleck, A. Merz, M. Gutierrez, P. Walther, J. Dubochet et al., Comparison of different methods for thin section EM analysis of Mycobacterium smegmatis, Journal of Microscopy, vol.190, issue.1, 2010.
DOI : 10.1111/j.1365-2818.2009.03299.x

G. Schneider, P. Guttmann, S. Rehbein, S. Werner, and R. Follath, Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging, Journal of Structural Biology, vol.177, issue.2, p.212, 2012.
DOI : 10.1016/j.jsb.2011.12.023

I. Hurbain and M. Sachse, The future is cold: cryo-preparation methods for transmission electron microscopy of cells, Biology of the Cell, vol.102, issue.Suppl, p.405, 2011.
DOI : 10.1042/BC20110015

URL : https://hal.archives-ouvertes.fr/pasteur-01131341

J. Trebbia, H. Ruf, P. Tamarat, and B. Lounis, Efficient generation of near infra-red single photons from the zero-phonon line of a single molecule, Optics Express, vol.17, issue.26, p.23986, 2009.
DOI : 10.1364/OE.17.023986

URL : https://hal.archives-ouvertes.fr/hal-00540465

J. Trebbia, P. Tamarat, and B. Lounis, Indistinguishable near-infrared single photons from an individual organic molecule, Physical Review A, vol.82, issue.6, p.63803, 2010.
DOI : 10.1103/PhysRevA.82.063803

URL : https://hal.archives-ouvertes.fr/hal-00540457

G. J. Søgaard-andersen and . Jensen, Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography, Nature Methods, vol.11, p.737, 2014.

I. Jones, C. Davis, K. Hagen, and . Grünewald, Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions, Nano Letters, vol.14, p.4171, 2014.

S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler et al., Cryogenic Colocalization Microscopy for Nanometer-Distance Measurements, ChemPhysChem, vol.17, issue.4, p.763, 2014.
DOI : 10.1002/cphc.201301080

B. Lounis and M. Orrit, Single-photon sources, Reports on Progress in Physics, vol.68, issue.5, p.1129, 2005.
DOI : 10.1088/0034-4885/68/5/R04

]. B. Lounis and W. Moerner, Single photons on demand from a single molecule at room temperature, Nature, vol.407, issue.6803, p.491, 2000.
DOI : 10.1038/35035032

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, Photon antibunching in single CdSe/ZnS quantum dot fluorescence, Chemical Physics Letters, vol.329, issue.5-6, p.399, 2000.
DOI : 10.1016/S0009-2614(00)01042-3

P. R. Twamley, J. Hemmer, and . Wrachtrup, Room-temperature coherent coupling of single spins in diamond, Nature Physics, vol.2, p.408, 2006.

. Sandoghdar, Nanometer resolution and coherent optical dipole coupling of two individual molecules, Science, vol.298, p.385, 2002.

M. Celebrano, R. Lettow, P. Kukura, M. Agio, A. Renn et al., Efficient coupling of single photons to single plasmons, Optics Express, vol.18, p.13829, 2010.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, A single-photon transistor using nanoscale surface plasmons, Nature Physics, vol.12, issue.11, p.807, 2007.
DOI : 10.1038/nphys708

G. V. Varada and G. S. Agarwal, Two-photon resonance induced by the dipole-dipole interaction, Physical Review A, vol.45, issue.9, p.6721, 1992.
DOI : 10.1103/PhysRevA.45.6721

W. Moerner and L. Kador, Optical detection and spectroscopy of single molecules in a solid, Physical Review Letters, vol.62, issue.21, p.2535, 1989.
DOI : 10.1103/PhysRevLett.62.2535

W. E. Moerner and M. Orrit, Illuminating Single Molecules in Condensed Matter, Science, vol.283, issue.5408, p.1670, 1999.
DOI : 10.1126/science.283.5408.1670

J. Wiedmann and A. Penzkofer, ???????????????????? ?????????????? ???????????????????? ???? ???????????????????????? ???????????????????? ?? ???????????????????? ????????????????, ???????????????????????? ?? ?????????????? ???????????????????????????? ??????????????, Il Nuovo Cimento B Series 11, vol.9, issue.1, pp.63-459, 1981.
DOI : 10.1007/BF02721453

E. Rittweger, B. Rankin, V. Westphal, and S. Hell, Fluorescence depletion mechanisms in super-resolving STED microscopy, Chemical Physics Letters, vol.442, issue.4-6, p.483, 2007.
DOI : 10.1016/j.cplett.2007.06.017

W. E. Moerner, Single-Molecule Optical Detection, Imaging and Spectroscopy, pp.1-30, 1996.

T. Plakhotnik, W. E. Moerner, V. Palm, and U. P. Wild, Single molecule spectroscopy: maximum emission rate and saturation intensity, Optics Communications, vol.114, issue.1-2, p.83, 1995.
DOI : 10.1016/0030-4018(94)00594-K

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation , interference and diffraction of light (CUP Archive, 1999.
DOI : 10.1017/CBO9781139644181

P. A. Santi, Light Sheet Fluorescence Microscopy, Journal of Histochemistry & Cytochemistry, vol.19, issue.2, p.129, 2011.
DOI : 10.1126/science.1162493

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201139

P. J. Keller and H. Dodt, Light sheet microscopy of living or cleared specimens, Current Opinion in Neurobiology, vol.22, issue.1, p.138, 2012.
DOI : 10.1016/j.conb.2011.08.003

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, STED microscopy with a supercontinuum laser source, Optics Express, vol.16, issue.13, p.9614, 2008.
DOI : 10.1364/OE.16.009614

. Maier, Nanoparticle-assisted stimulated-emission-depletion nanoscopy, ACS Nano, 2012.