A. Bontemps, « Échangeurs de chaleur -Définitions et principes généraux, Techniques de l'Ingénieur, pp.10-2014

M. Smalc, G. Shives, G. Chen, S. Guggari, J. Norley et al., Thermal Performance of Natural Graphite Heat Spreaders, Advances in Electronic Packaging, Parts A, B, and C, pp.79-89, 2005.
DOI : 10.1115/IPACK2005-73073

J. Petroski, J. Norley, J. Schober, B. Reis, and R. , Reynolds, « Conduction cooling of large LED array systems, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp.1-10, 2010.

S. Zhang, M. Vinson, and P. Beshenich, Evaluation and finite element modeling for new type of thermal material annealed pyrolytic graphite (APG), Thermochimica Acta, vol.442, issue.1-2, pp.6-9, 2006.
DOI : 10.1016/j.tca.2005.11.036

T. Kondo, R. Apsimon, G. A. Beck, P. Bell, and R. Brenner, Construction and performance of the ATLAS silicon microstrip barrel modules, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.485, issue.1-2, pp.27-42, 2002.
DOI : 10.1016/S0168-9002(02)00528-4

M. A. Osman and D. Srivastava, « Temperature dependence of the thermal conductivity of single-wall carbon nanotubes, Nanotechnology, vol.12, issue.1, p.21, 2001.
DOI : 10.1088/0957-4484/12/1/305

H. Yu, L. Li, and E. Y. Zhang, Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications, Scripta Materialia, vol.66, issue.11, pp.931-934, 2012.
DOI : 10.1016/j.scriptamat.2012.02.037

N. Wang, M. Murugesan, L. Ye, B. Carlberg, S. Chen et al., Reliability investigation of nano-enhanced thermal conductive adhesives, 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), pp.2012-2013
DOI : 10.1109/NANO.2012.6322137

N. Zheng and R. A. Wirtz, A Hybrid Thermal Energy Storage Device, Part 1: Design Methodology, Journal of Electronic Packaging, vol.126, issue.1, pp.1-7, 2004.
DOI : 10.1115/1.1646419

R. A. Wirtz, N. Zheng, and E. D. Chandra, Thermal management using "dry" phase change material, Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.99CH36306), pp.74-82, 1999.
DOI : 10.1109/STHERM.1999.762432

A. Mills, M. Farid, and J. R. Selman, Thermal conductivity enhancement of phase change materials using a graphite matrix, Applied Thermal Engineering, vol.26, issue.14-15, pp.1652-1661, 2006.
DOI : 10.1016/j.applthermaleng.2005.11.022

J. L. Zeng, L. X. Sun, F. Xu, Z. C. Tan, Z. H. Zhang et al., Study of a PCM based energy storage system containing Ag nanoparticles, Study of a PCM based energy storage system containing Ag nanoparticles, pp.371-375, 2007.
DOI : 10.1007/s10973-006-7783-z

J. M. Khodadadi, L. Fan, and H. Babaei, Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review, Renewable and Sustainable Energy Reviews, vol.24, pp.418-444, 2013.
DOI : 10.1016/j.rser.2013.03.031

C. J. Ho and J. Y. Gao, Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material, International Communications in Heat and Mass Transfer, vol.36, issue.5, pp.467-470, 2009.
DOI : 10.1016/j.icheatmasstransfer.2009.01.015

K. Nawaz, J. Bock, Z. Dai, and A. M. Jacobi, « Experimental studies to evaluate the use of metal foams in highly compact air-cooling heat exchangers, 2010.

A. Bhattacharya and R. L. , Metal Foam and Finned Metal Foam Heat Sinks for Electronics Cooling in Buoyancy-Induced Convection, Journal of Electronic Packaging, vol.128, issue.3, p.259, 2006.
DOI : 10.1115/1.2229225

P. Elayiaraja, S. Harish, L. Wilson, A. Bensely, and D. M. , Experimental Investigation on Pressure Drop and Heat Transfer Characteristics of Copper Metal Foam Heat Sink, Experimental Investigation on Pressure Drop and Heat Transfer Characteristics of Copper Metal Foam Heat Sink, pp.185-195, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2006.02.009

C. L. Chapman, S. Lee, and B. L. Schmidt, Thermal performance of an elliptical pin fin heat sink, Proceedings of 1994 IEEE/CHMT 10th Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), pp.24-31, 1994.
DOI : 10.1109/STHERM.1994.288998

H. Martin, Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, pp.1-60, 1977.
DOI : 10.1016/S0065-2717(08)70221-1

W. Webb and C. Ma, Single-Phase Liquid Jet Impingement Heat Transfer, 1995.
DOI : 10.1016/S0065-2717(08)70296-X

D. J. Womac, S. Ramadhyani, and F. P. Incropera, Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets, Journal of Heat Transfer, vol.115, issue.1, pp.106-115, 1993.
DOI : 10.1115/1.2910635

J. W. Baughn and S. Shimizu, Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet, Journal of Heat Transfer, vol.111, issue.4, pp.1096-1098, 1989.
DOI : 10.1115/1.3250776

J. Lee and S. Lee, The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement, International Journal of Heat and Mass Transfer, vol.43, issue.18, pp.3497-3509, 2000.
DOI : 10.1016/S0017-9310(99)00349-X

M. Legay, B. Simony, P. Boldo, N. Gondrexon, and S. Le-person, Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger, Ultrasonics Sonochemistry, vol.19, issue.6, pp.1194-1200
DOI : 10.1016/j.ultsonch.2012.04.001

S. Das and S. Bhaumik, « Enhancement of Nucleate Pool Boiling Heat Transfer on Titanium Oxide Thin Film Surface », Arab, J. Sci. Eng, vol.39, issue.10, pp.7385-7395

I. C. Bang and S. H. Chang, Boiling heat transfer performance and phenomena of Al2O3???water nano-fluids from a plain surface in a pool, International Journal of Heat and Mass Transfer, vol.48, issue.12, pp.12-2407, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2004.12.047

S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer, vol.50, issue.19-20, pp.4105-4116, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2007.02.002

S. M. You, J. H. Kim, and K. H. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied Physics Letters, vol.83, issue.16, pp.3374-3376, 2003.
DOI : 10.1063/1.1619206

J. C. Maxwell, A treatise on electricity and magnetism, p.1881

S. U. Choi and J. A. Eastman, « Enhancing thermal conductivity of fluids with nanoparticles, pp.99-106, 1995.

H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai et al., Thermal conductivity enhancement of suspensions containing nanosized alumina particles, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, pp.4568-4572, 2002.
DOI : 10.1063/1.1454184

W. Yu, H. Xie, Y. Li, L. Chen, and E. Q. Wang, Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.380, issue.1-3, pp.1-5, 2011.
DOI : 10.1016/j.colsurfa.2010.11.020

J. Buongiorno, D. C. Venerus, N. Prabhat, and E. P. Keblinski, A benchmark study on the thermal conductivity of nanofluids, Journal of Applied Physics, vol.106, issue.9, p.94312, 2009.
DOI : 10.1063/1.3245330

X. Wang, D. Zhu, and E. S. Yang, Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chemical Physics Letters, vol.470, issue.1-3, 2009.
DOI : 10.1016/j.cplett.2009.01.035

C. H. Li and G. P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), Journal of Applied Physics, vol.99, issue.8, p.84314, 2006.
DOI : 10.1063/1.2191571

S. Lee, S. U. Choi, S. Li, and J. A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, p.280, 1999.
DOI : 10.1115/1.2825978

S. Ferrouillat, A. Bontemps, J. Ribeiro, J. Gruss, and E. O. Soriano, Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions, International Journal of Heat and Fluid Flow, vol.32, issue.2, pp.424-439, 2011.
DOI : 10.1016/j.ijheatfluidflow.2011.01.003

J. Li, Z. Li, and E. B. Wang, « Experimental viscosity measurements for copper oxide nanoparticle suspensions, Tsinghua Sci. Technol, vol.7, issue.2, 2002.

X. Wang, X. Xu, and S. U. Choi, Thermal Conductivity of Nanoparticle - Fluid Mixture, Thermal Conductivity of Nanoparticle -Fluid Mixture, pp.474-480, 1999.
DOI : 10.2514/2.6486

S. K. Das, N. Putra, and E. W. , Pool boiling characteristics of nano-fluids, International Journal of Heat and Mass Transfer, vol.46, issue.5, pp.851-862, 2003.
DOI : 10.1016/S0017-9310(02)00348-4

C. T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré et al., Viscosity data for Al2O3???water nanofluid???hysteresis: is heat transfer enhancement using nanofluids reliable?, International Journal of Thermal Sciences, vol.47, issue.2, pp.103-111, 2008.
DOI : 10.1016/j.ijthermalsci.2007.01.033

H. Chen, Y. Ding, and E. C. Tan, Rheological behaviour of nanofluids, New Journal of Physics, vol.9, issue.10, pp.367-367, 2007.
DOI : 10.1088/1367-2630/9/10/367

B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret et al., Experimental investigations of the viscosity of nanofluids at low temperatures, Experimental investigations of the viscosity of nanofluids at low temperatures, pp.876-880, 2012.
DOI : 10.1016/j.apenergy.2011.12.101

URL : https://hal.archives-ouvertes.fr/hal-00707410

J. Philip, P. D. Shima, and E. B. Raj, Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures, Applied Physics Letters, vol.91, issue.20, pp.20-203108, 2007.
DOI : 10.1063/1.2812699

P. D. Shima and J. Philip, Raj, « Magnetically controllable nanofluid with tunable thermal conductivity and viscosity, Appl. Phys. Lett, vol.95, pp.13-133112, 2009.

K. Parekh and H. S. Lee, Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid, Journal of Applied Physics, vol.107, issue.9, pp.9-310, 2010.
DOI : 10.1063/1.3348387

A. Gavili, F. Zabihi, and T. D. Isfahani, The thermal conductivity of water base ferrofluids under magnetic field, Experimental Thermal and Fluid Science, vol.41, pp.94-98, 2012.
DOI : 10.1016/j.expthermflusci.2012.03.016

R. E. Rosensweig and R. Kaiser, Viscosity of magnetic fluid in a magnetic field, Journal of Colloid and Interface Science, vol.29, issue.4, pp.680-686, 1969.
DOI : 10.1016/0021-9797(69)90220-3

M. I. Shliomis, « Effective Viscosity of Magnetic Suspensions », Sov, J. Exp. Theor. Phys, vol.34, p.1291, 1972.

S. Odenbach, Magnetoviscous Effects in Ferrofluids, 2002.
DOI : 10.1007/3-540-45646-5_10

M. Lajvardi, J. Moghimi-rad, I. Hadi, A. Gavili, T. Dallali-isfahani et al., Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect, Journal of Magnetism and Magnetic Materials, vol.322, issue.21, pp.3508-3513, 2010.
DOI : 10.1016/j.jmmm.2010.06.054

H. Matsuki, K. Yamasawa, and E. K. Murakami, Experimental considerations on a new automatic cooling device using temperature-sensitive magnetic fluid, IEEE Transactions on Magnetics, vol.13, issue.5, pp.1143-1145, 1977.
DOI : 10.1109/TMAG.1977.1059679

H. Sleiman, Systèmes de suspension semi-active à base de fluide magnétorhéologique pour l'automobile, Thèse de Doctorat, Arts et Métiers ParisTech, 2010.

J. Lozada, M. Hafez, and E. X. Boutillon, Les fluides magn??to-rh??ologiques en tant que frein haptique??: application au rendu de toucher de piano, Mat??riaux & Techniques, vol.97, issue.1, pp.75-80, 2009.
DOI : 10.1051/mattech/2009015

S. W. Charles, The Preparation of Magnetic Fluids, pp.3-18, 2002.
DOI : 10.1007/3-540-45646-5_1

S. Odenbach and . Éd, Ferrofluids -Magnetically Controllable Fluids and Their Applications, 2002.
DOI : 10.1002/1617-7061(200203)1:1<28::aid-pamm28>3.0.co;2-8

S. Odenbach, Magnetoviscous Effects in Ferrofluids, 2002.
DOI : 10.1007/3-540-45646-5_10

D. Dufeu, E. Eyraud, and E. P. Lethuillier, An efficient 8 T extraction vector magnetometer with sample rotation for routine operation, Review of Scientific Instruments, vol.71, issue.2, pp.458-461, 2000.
DOI : 10.1063/1.1150223

R. E. Rosensweig, Magnetic Fluids, Magnetic Fluids, pp.437-461, 1987.
DOI : 10.1146/annurev.fl.19.010187.002253

M. Petit, Y. Avenas, A. Kedous-lebouc, W. Cherief, and E. E. Rullière, Experimental study of a static system based on a magneto-thermal coupling in ferrofluids, International Journal of Refrigeration, vol.37, pp.201-208
DOI : 10.1016/j.ijrefrig.2013.09.011

URL : https://hal.archives-ouvertes.fr/hal-00989595

W. F. Brown, Thermal Fluctuations of a Single???Domain Particle, Journal of Applied Physics, vol.34, issue.4, pp.1319-1320, 1963.
DOI : 10.1063/1.1729489

A. Aharoni, Relaxation Time of Superparamagnetic Particles with Cubic Anisotropy, Physical Review B, vol.7, issue.3, pp.1103-1107, 1973.
DOI : 10.1103/PhysRevB.7.1103

L. M. Pop and S. Odenbach, Investigation of the microscopic reason for the magnetoviscous effect in ferrofluids studied by small angle neutron scattering, Journal of Physics: Condensed Matter, vol.18, issue.38, pp.38-2785, 2006.
DOI : 10.1088/0953-8984/18/38/S17

Z. Wang and C. Holm, Structure and magnetic properties of polydisperse ferrofluids: A molecular dynamics study, Physical Review E, vol.68, issue.4, p.41401, 2003.
DOI : 10.1103/PhysRevE.68.041401

R. Rosman, J. J. Janssen, and M. T. Rekveldt, ferrofluids, studied by the small???angle neutron scattering technique, Journal of Applied Physics, vol.67, issue.6, pp.3072-3080, 1990.
DOI : 10.1063/1.345407

P. C. Jordan, Association phenomena in a ferromagnetic colloid, Molecular Physics, vol.25, issue.4, pp.961-973, 1973.
DOI : 10.1103/PhysRev.70.954

C. F. Hayes, Observation of association in a ferromagnetic colloid, Journal of Colloid and Interface Science, vol.52, issue.2, pp.239-243, 1975.
DOI : 10.1016/0021-9797(75)90194-0

E. V. Timofeeva, J. L. Routbort, and E. D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, Journal of Applied Physics, vol.106, issue.1, p.14304, 2009.
DOI : 10.1063/1.3155999

R. Prasher, D. Song, J. Wang, and E. P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Applied Physics Letters, vol.89, issue.13, p.133108, 2006.
DOI : 10.1063/1.2356113

J. Chevalier, O. Tillement, and E. F. Ayela, nanoparticle suspensions under very high shear rates, Physical Review E, vol.80, issue.5, p.51403, 2009.
DOI : 10.1103/PhysRevE.80.051403

P. Garg, J. L. Alvarado, C. Marsh, T. A. Carlson, and D. A. Kessler, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, International Journal of Heat and Mass Transfer, vol.52, issue.21-22, pp.5090-5101, 2009.
DOI : 10.1016/j.ijheatmasstransfer.2009.04.029

S. K. Das, N. Putra, and E. W. , Pool boiling characteristics of nano-fluids, International Journal of Heat and Mass Transfer, vol.46, issue.5, pp.851-862, 2003.
DOI : 10.1016/S0017-9310(02)00348-4

K. Kwak and C. Kim, Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol, Korea-Aust. Rheol. J, vol.17, issue.2, pp.35-40, 2005.

Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang et al., Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, International Journal of Heat and Mass Transfer, vol.50, issue.11-12, pp.2272-2281, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2006.10.024

M. Petit, Contribution à l'étude des systèmes de refroidissement basés sur le couplage magnétothermique dans les ferrofluides à faible température de Curie : mise en place d'outils de caractérisation et de modélisation, Thèse de Doctorat, 2012.

E. Ghasemi, A. Mirhabibi, and E. M. Edrissi, Synthesis and rheological properties of an iron oxide ferrofluid, Journal of Magnetism and Magnetic Materials, vol.320, issue.21, pp.2635-2639, 2008.
DOI : 10.1016/j.jmmm.2008.05.036

L. Vékás, D. Bica, D. Gheorghe, and I. Potencz, Ra?a, « Concentration and composition dependence of the rheological behaviour of some magnetic fluids

C. C. Ekwebelam and H. See, « Determining the flow curves for an inverse ferrofluid, Korea-Aust. Rheol. J, vol.20, issue.1, pp.35-42, 2008.

M. I. Shliomis, « Effective Viscosity of Magnetic Suspensions », Sov, J. Exp. Theor. Phys, vol.34, p.1291, 1972.

R. E. Rosensweig and R. Kaiser, Viscosity of magnetic fluid in a magnetic field, Journal of Colloid and Interface Science, vol.29, issue.4, pp.680-686, 1969.
DOI : 10.1016/0021-9797(69)90220-3

S. Odenbach and H. Störk, Shear dependence of field-induced contributions to the viscosity of magnetic fluids at low shear rates, Journal of Magnetism and Magnetic Materials, vol.183, issue.1-2, pp.188-194, 1998.
DOI : 10.1016/S0304-8853(97)01051-2

P. D. Shima, « Synthesis, characterization, thermal and rheological studies in Nanofluids, Thesis, Homi Bhabha National Institue, 2012.

J. P. Mctague, Magnetoviscosity of Magnetic Colloids, Magnetoviscosity of Magnetic Colloids, pp.133-136, 1969.
DOI : 10.1063/1.1671697

M. I. Shliomis and K. I. Morozov, Negative viscosity of ferrofluid under alternating magnetic field, Physics of Fluids, vol.6, issue.8, p.2855, 1994.
DOI : 10.1063/1.868108

J. Bacri, R. Perzynski, M. I. Shliomis, and G. I. Burde, ???Negative-Viscosity??? Effect in a Magnetic Fluid, Physical Review Letters, vol.75, issue.11, p.2128, 1995.
DOI : 10.1103/PhysRevLett.75.2128

A. Zeuner, R. Richter, and E. I. Rehberg, Experiments on negative and positive magnetoviscosity in an alternating magnetic field, Physical Review E, vol.58, issue.5, pp.6287-6293, 1998.
DOI : 10.1103/PhysRevE.58.6287

I. Nkurikiyimfura and Y. Wang, Heat transfer enhancement by magnetic nanofluids???A review, Renewable and Sustainable Energy Reviews, vol.21, pp.548-561, 2013.
DOI : 10.1016/j.rser.2012.12.039

S. P. Jang and S. U. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Applied Physics Letters, vol.84, issue.21, pp.4316-4318, 2004.
DOI : 10.1063/1.1756684

R. Prasher, P. Bhattacharya, and P. E. Phelan, Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids), Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids), p.25901, 2005.
DOI : 10.1103/PhysRevLett.94.025901

J. Eapen, W. C. Williams, J. Buongiorno, L. Hu, S. Yip et al., Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction, Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction, p.95901, 2007.
DOI : 10.1103/PhysRevLett.99.095901

P. D. Shima and J. Philip, Raj, « Magnetically controllable nanofluid with tunable thermal conductivity and viscosity, Appl. Phys. Lett, vol.95, pp.13-133112, 2009.

A. Gavili, F. Zabihi, and T. D. Isfahani, The thermal conductivity of water base ferrofluids under magnetic field, Experimental Thermal and Fluid Science, vol.41, pp.94-98, 2012.
DOI : 10.1016/j.expthermflusci.2012.03.016

P. D. Shima and J. Philip, Tuning of Thermal Conductivity and Rheology of Nanofluids Using an External Stimulus, The Journal of Physical Chemistry C, vol.115, issue.41, p.41, 2011.
DOI : 10.1021/jp204827q

J. Philip and P. D. Shima, Raj, « Evidence for enhanced thermal conduction through percolating structures in nanofluids, Nanotechnology, vol.19, pp.30-305706, 2008.

J. Philip, P. D. Shima, and E. B. Raj, Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures, Applied Physics Letters, vol.91, issue.20, pp.20-203108, 2007.
DOI : 10.1063/1.2812699

Q. Li, Y. Xuan, and E. J. Wang, Experimental investigations on transport properties of magnetic fluids, Experimental Thermal and Fluid Science, vol.30, issue.2, pp.109-116, 2005.
DOI : 10.1016/j.expthermflusci.2005.03.021

M. Petit, Contribution à l'étude des systèmes de refroidissement basés sur le couplage magnétothermique dans les ferrofluides à faible température de Curie : mise en place d'outils de caractérisation et de modélisation, Thèse de Doctorat, 2012.

C. W. Macosko, Rheology: principles, measurements, and applications, 1994.

R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts, Journal of Fluids Engineering, vol.102, issue.2, 1978.
DOI : 10.1115/1.3240677

. Idel-'cik, Mémento des pertes de charges, 3ème édition, 1986.

. Idel-'cik, Mémento des pertes de charges, 3ème édition, 1986.

M. Motozawa, T. Sekine, T. Sawada, and E. Y. Kawaguchi, Variation of forced convective heat transfer in rectangular duct flow of a magnetic fluid under magnetic field, Journal of Physics: Conference Series, vol.412, issue.1, pp.12025-2013
DOI : 10.1088/1742-6596/412/1/012025

R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts, Journal of Fluids Engineering, vol.102, issue.2, 1978.
DOI : 10.1115/1.3240677

R. J. Moffat, Describing the uncertainties in experimental results, Describing the uncertainties in experimental results, pp.3-17, 1988.
DOI : 10.1016/0894-1777(88)90043-X

M. Lajvardi, J. Moghimi-rad, I. Hadi, A. Gavili, T. Dallali-isfahani et al., Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect, Journal of Magnetism and Magnetic Materials, vol.322, issue.21, pp.3508-3513, 2010.
DOI : 10.1016/j.jmmm.2010.06.054

S. Ferrouillat, A. Bontemps, J. Ribeiro, J. Gruss, and E. O. Soriano, Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions, International Journal of Heat and Fluid Flow, vol.32, issue.2, pp.424-439, 2011.
DOI : 10.1016/j.ijheatfluidflow.2011.01.003

. Dans-le-domaine-des-turbomachines, le contrôle des épaisseurs des aubes ainsi que le diamètre des canaux de refroidissement se fait par introduction des ferrofluides. La précision de ces systèmes de mesure utilisant des ferrofluides peut atteindre les 0, pp.254-255

K. Raj and R. J. Boulton, Ferrofluids ??? Properties and applications, Ferrofluids?Properties and applications, pp.233-236, 1987.
DOI : 10.1016/0261-3069(87)90139-7

C. Scherer, A. M. Neto, and «. Ferrofluids, Ferrofluids: properties and applications, Brazilian Journal of Physics, vol.35, issue.3a, pp.718-727, 2005.
DOI : 10.1590/S0103-97332005000400018

M. W. Cong and «. Etude, Prospective de la Topologie MMC et du packaging 3D pour la réalisation d'un variateur de vitesse en moyenne tension, Thèse de Doctorat, 2015.

Y. Avenas and L. Dupont, Evaluation of IGBT thermo-sensitive electrical parameters under different dissipation conditions ??? Comparison with infrared measurements, Microelectronics Reliability, vol.52, issue.11, pp.2617-2626
DOI : 10.1016/j.microrel.2012.03.032

URL : https://hal.archives-ouvertes.fr/hal-01059453