. @bullet-context-management-middleware and . Deployment, Denition of concepts that use the dimensionality of a context model to induce decentralized structure of context management units (CMUs) Dierence with stateof-the-art is that we provide a notion of ContextDomain which is tied to a context model. This guides application design and eases application development by making an explicit mapping between a CMU and a ContextDomain

A. Sorici, O. Boissier, G. Picard, and A. Santi, October) Exploiting the jacamo framework for realising an adaptive room governance application, Proceedings of the compilation of the co-located workshops on DSM'11, pp.239-242, 2011.

A. Sorici, G. Picard, O. Boissier, A. Santi, and J. F. Hübner, Multi-Agent Oriented Reorganisation within the JaCaMo infrastructure, Proceedings of The Third International Workshop on Iinfraestructures and tools for multiagent systems: ITMAS, pp.135-148, 2012.
URL : https://hal.archives-ouvertes.fr/emse-00724730

A. Sorici, O. Boissier, G. Picard, and A. Zimmermann, Applying semantic web technologies to context modeling in ambient intelligence, Evolving Ambient Intelligence, pp.217-229, 2013.
URL : https://hal.archives-ouvertes.fr/emse-00868038

A. Sorici, G. Picard, and O. Boissier, Towards an Agent enabled Context Management Middleware, Proceedings of the 2014 International Workshop on Web Intelligence and Smart Sensing, IWWISS '14, pp.1-2, 2014.
DOI : 10.1145/2637064.2637111

URL : https://hal.archives-ouvertes.fr/emse-01059515

A. Sorici, G. Picard, O. Boissier, A. Zimmermann, and F. A. , CONSERT: Applying semantic web technologies to context modeling in ambient intelligence, Computers & Electrical Engineering, vol.44, pp.280-306, 2015.
DOI : 10.1016/j.compeleceng.2015.03.012

URL : https://hal.archives-ouvertes.fr/emse-01139804

A. Sorici, O. Boissier, G. Picard, and A. M. Florea, Policy-Based Adaptation of Context Provisioning in AmI, Ambient Intelligence -Software and Applications of Advances in Intelligent Systems and Computing, pp.33-43, 2015.
DOI : 10.1007/978-3-319-19695-4_4

URL : https://hal.archives-ouvertes.fr/hal-01122038

A. Sorici, O. Boissier, G. Picard, and A. M. Florea, Multi-Agent Based Flexible Deployment of Context Management in Ambient Intelligence Applications, Advances in Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection, pp.225-239, 2015.
DOI : 10.1007/978-3-319-18944-4_19

A. Sorici, G. Picard, and A. M. Florea, Multi-agent Based Context Management in AmI Applications, 2015 20th International Conference on Control Systems and Computer Science, pp.727-734, 2015.
DOI : 10.1109/CSCS.2015.65

URL : https://hal.archives-ouvertes.fr/hal-01132687

A. Sorici, G. Picard, O. Boissier, and A. M. Florea, Gestionnaire multi-agent de contexte pour les applications d'intelligence ambiante, 23es Journées Francophones sur les Systèmes Multi-Agents (JFSMA'15). Cépaduès, p.181, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139792

R. L. Aguiar, A. Sarma, D. Bijwaard, L. Marchetti, and P. Pacyna, Pervasiveness in a competitive multi-operator environment: the daidalos project, Communications Magazine IEEE, issue.10, p.452226, 2007.

E. Alonso, M. D-'inverno, D. Kudenko, M. Luck, N. et al., Learning in multi-agent systems, The Knowledge Engineering Review, vol.16, issue.03, p.16277284, 2001.
DOI : 10.1017/S0269888901000170

D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, EP-SPARQL, Proceedings of the 20th international conference on World wide web, WWW '11, p.635644, 2011.
DOI : 10.1145/1963405.1963495

J. C. Augusto, H. Nakashima, and H. Aghajan, Ambient Intelligence and Smart Environments: A State of the Art, Handbook of ambient intelligence and smart environments, p.331, 2010.
DOI : 10.1007/978-0-387-93808-0_1

M. Balazinska, H. Balakrishnan, and D. Karger, INS/Twine: A Scalable Peer-to-Peer Architecture for Intentional Resource Discovery, Pervasive Computing, 2002.
DOI : 10.1007/3-540-45866-2_16

M. Baldauf, S. Dustdar, and F. Rosenberg, A survey on context-aware systems, International Journal of Ad Hoc and Ubiquitous Computing, vol.2, issue.4, p.263, 2007.
DOI : 10.1504/IJAHUC.2007.014070

D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus, C-SPARQL: A CONTINUOUS QUERY LANGUAGE FOR RDF DATA STREAMS, International Journal of Semantic Computing, vol.04, issue.01, p.325, 2010.
DOI : 10.1142/S1793351X10000936

J. Bates, The role of emotion in believable agents, Communications of the ACM, vol.37, issue.7, p.122125, 1994.
DOI : 10.1145/176789.176803

P. Bellavista and A. Corradi, A survey of context data distribution for mobile ubiquitous systems, ACM Computing Surveys, vol.44, issue.4, p.145, 2012.
DOI : 10.1145/2333112.2333119

C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas et al., A survey of context modelling and reasoning techniques, Pervasive and Mobile Computing, vol.6, issue.2, p.161180, 2010.
DOI : 10.1016/j.pmcj.2009.06.002

C. Bettini, D. Maggiorini, R. , and D. , Distributed Context Monitoring for the Adaptation of Continuous Services, World Wide Web, vol.27, issue.1, p.503528, 2007.
DOI : 10.1007/s11280-007-0028-7

N. Bevan, Usability, Encyclopedia of Database Systems, p.32473251, 2009.
DOI : 10.1007/978-1-4899-7993-3_441-2

A. Bikakis and G. Antoniou, Defeasible Contextual Reasoning with Arguments in Ambient Intelligence, IEEE Transactions on Knowledge and Data Engineering, vol.22, issue.11, p.2214921506, 2010.
DOI : 10.1109/TKDE.2010.37

A. Bikakis, G. Antoniou, and P. Hasapis, Strategies for contextual reasoning with conicts in ambient intelligence, Knowledge and Information Systems, vol.27, issue.1, p.4584, 2011.

A. Bikakis and T. Patkos, A survey of semantics-based approaches for context reasoning in ambient intelligence. Constructing Ambient Intelligence, p.1423, 2008.

C. Bolchini, C. Curino, E. Quintarelli, F. Schreiber, and L. Tanca, A data-oriented survey of context models, ACM SIGMOD Record, vol.36, issue.4, p.19, 2007.
DOI : 10.1145/1361348.1361353

C. Bolchini, F. A. Schreiber, and L. Tanca, A methodology for a Very Small Data Base design, Information Systems, vol.32, issue.1, p.6182, 2007.
DOI : 10.1016/j.is.2005.05.004

R. H. Bordini, M. Dastani, J. Dix, and A. E. Seghrouchni, Multi-Agent Programming, 2005.
DOI : 10.1007/b137449

URL : https://hal.archives-ouvertes.fr/hal-01492609

. Muscadel, A Deployment DSL Based on a Multiscale Characterization Framework, 2014 IEEE 38th International Computer Software and Applications Conference Workshops, p.708715

O. Brdiczka, J. L. Crowley, and P. Reignier, Learning Situation Models in a Smart Home, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol.39, issue.1, p.5663, 2009.
DOI : 10.1109/TSMCB.2008.923526

URL : https://hal.archives-ouvertes.fr/hal-01253466

K. Broda, K. Clark, R. Miller, and A. Russo, SAGE: A Logical Agent-Based Environment Monitoring and Control System, Lecture Notes in Computer Science (including subseries Lecture Notes in Articial Intelligence and Lecture Notes in Bioinformatics, pp.5859-112117, 2009.
DOI : 10.1007/978-3-642-05408-2_14

M. L. Brodie, On the Development of Data Models, On conceptual modelling, p.1947, 1984.
DOI : 10.1007/978-1-4612-5196-5_2

P. J. Brown, The stick-e document: a framework for creating context-aware applications, ELECTRONIC PUBLISHING-CHICHESTER, vol.8, p.259272, 1995.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, S. et al., The fractal component model and its support in java. Software: Practice and Experience, pp.11-121257, 2006.

S. Buchholz, T. Hamann, and G. Hubsch, Comprehensive structured context proles (cscp): Design and experiences, Pervasive Computing and Communications Workshops Proceedings of the Second IEEE Annual Conference on, p.4347, 2004.
DOI : 10.1109/percomw.2004.1276903

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.3888

A. Buchmann and B. Koldehofe, Complex event processing. it-Information Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik, pp.241-242, 2009.

O. Bucur, P. Beaune, and O. Boissier, Steps towards making contextualized decisions, 2006.
URL : https://hal.archives-ouvertes.fr/emse-00680267

D. Calvanese, M. Lenzerini, and D. Nardi, Description Logics for Conceptual Data Modeling, Logics for databases and information systems, p.229263, 1998.
DOI : 10.1007/978-1-4615-5643-5_8

J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler, Named graphs, Web Semantics: Science, Services and Agents on the World Wide Web, p.247267, 2005.
DOI : 10.1016/j.websem.2005.09.001

K. Chang, M. Y. Chen, and J. Canny, Tracking Free-Weight Exercises, 2007.
DOI : 10.1007/978-3-540-74853-3_2

G. Chen, M. Li, and D. Kotz, Data-centric middleware for context-aware pervasive computing, Pervasive and Mobile Computing, vol.4, issue.2, p.216253, 2008.
DOI : 10.1016/j.pmcj.2007.10.001

H. Chen, T. Finin, and A. Joshi, An intelligent broker for context-aware systems, Adjunct proceedings of Ubicomp, p.183184, 2003.

H. Chen, T. Finin, and A. Joshi, The SOUPA Ontology for Pervasive Computing, Computing Systems, p.233258, 2005.
DOI : 10.1007/3-7643-7361-X_10

H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich et al., Meet the Semantic Web in Smart Spaces, IEEE Internet Computing, vol.8, pp.6979-184, 2004.

H. Chen, F. Perich, T. Finin, and A. Joshi, SOUPA: standard ontology for ubiquitous and pervasive applications, The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004., p.258267, 2004.
DOI : 10.1109/MOBIQ.2004.1331732

L. Chen and C. Nugent, Ontology???based activity recognition in intelligent pervasive environments, International Journal of Web Information Systems, vol.5, issue.4, p.410430, 2009.
DOI : 10.1108/17440080911006199

D. Conan, R. Rouvoy, and L. Seinturier, Scalable Processing of Context Information with COSMOS, Distributed Applications and Interoperable Systems, p.210224, 2007.
DOI : 10.1109/MPRV.2002.1037720

URL : https://hal.archives-ouvertes.fr/inria-00155045

D. J. Cook, J. C. Augusto, and V. R. Jakkula, Ambient intelligence: Technologies, applications, and opportunities, Pervasive and Mobile Computing, vol.5, issue.4, p.277298, 2009.
DOI : 10.1016/j.pmcj.2009.04.001

D. J. Cook, J. C. Augusto, and V. R. Jakkula, Ambient intelligence: Technologies, applications, and opportunities, Pervasive and Mobile Computing, vol.5, issue.4, p.277298, 2009.
DOI : 10.1016/j.pmcj.2009.04.001

A. Corradi, M. Fanelli, and L. Foschini, Adaptive context data distribution with guaranteed quality for mobile environments, IEEE 5th International Symposium on Wireless Pervasive Computing 2010, p.373380, 2010.
DOI : 10.1109/ISWPC.2010.5483712

L. Courtrai, F. Guidec, L. Sommer, N. Mahéo, and Y. , Resource management for parallel adaptive components, Proceedings International Parallel and Distributed Processing Symposium, 2003.
DOI : 10.1109/IPDPS.2003.1213258

URL : https://hal.archives-ouvertes.fr/hal-00342140

D. Rocha, R. C. Endler, and M. , Context management for distributed and dynamic context-aware computing, 2012.
DOI : 10.1007/978-1-4471-4020-7

W. Dargie, The role of probabilistic schemes in multisensor context-awareness. Workshops , 2007. PerCom Workshops' 07. Fifth, p.16, 2007.

A. K. Dey, Understanding and using context. Personal and ubiquitous computing, p.47, 2001.

C. Doukas, I. Maglogiannis, P. Tragas, D. Liapis, Y. et al., Patient Fall Detection using Support Vector Machines, In Articial Intelligence and Innovations, p.147156, 2007.
DOI : 10.1007/978-0-387-74161-1_16

K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J. Burgelman, Scenarios for ambient intelligence in 2010, 2001.

D. Ejigu, L. Liris-umr-cnrs, I. D. Lyon, M. Scuturici, and L. Brunie, Hybrid Approach to Collaborative Context-Aware Service Platform for Pervasive Computing, Proceedings of the IEEE, p.4050, 2008.
DOI : 10.4304/jcp.3.1.40-50

A. El-fallah-seghrouchni and A. Suna, Claim and Sympa: A Programming Environment for Intelligent and Mobile Agents, Multi-Agent Programming Articial Societies, and Simulated Organizations, p.95122, 2005.
DOI : 10.1007/0-387-26350-0_4

URL : https://hal.archives-ouvertes.fr/hal-01493248

F. Fuchs, I. Hochstatter, M. Krause, and M. Berger, A Metamodel Approach to Context Information, Third IEEE International Conference on Pervasive Computing and Communications Workshops, p.814, 2005.
DOI : 10.1109/PERCOMW.2005.9

F. Giunchiglia and L. Serani, Multilanguage hierarchical logics, or: How we can do without modal logics, Artificial Intelligence, vol.65, issue.1, p.2970, 1994.
DOI : 10.1016/0004-3702(94)90037-X

B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, Description logic programs, Proceedings of the twelfth international conference on World Wide Web , WWW '03, p.4857, 2003.
DOI : 10.1145/775152.775160

T. Gross and M. Specht, Awareness in Context-Aware Information Systems, In Mensch & Computer, p.173182, 2001.
DOI : 10.1007/978-3-322-80108-1_19

T. Gu, H. K. Pung, and D. Q. Zhang, A service???oriented middleware for building context???aware services, Journal of Network and Computer Applications, vol.28, issue.1, p.118, 2005.
DOI : 10.1016/j.jnca.2004.06.002

T. Gu, H. Qian, J. K. Yao, and H. K. Pung, An architecture for exible service discovery in octopus, Computer Communications and Networks, 2003. ICCCN 2003. Proceedings. The 12th International Conference on, p.291296, 2003.

T. Gu, E. Tan, H. Pung, and D. Zhang, A peer-to-peer architecture for context lookup, The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, p.333341, 2005.
DOI : 10.1109/MOBIQUITOUS.2005.5

T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang, An Ontology-based Context Model in Intelligent Environments, Proceedings of Communication Networks and Distributed Systems Modeling and Simulation Conference, p.270275, 2004.

B. Guo and D. Zhang, The architecture design of a cross-domain context management system, 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), p.499504, 2010.
DOI : 10.1109/PERCOMW.2010.5470618

URL : https://hal.archives-ouvertes.fr/hal-01309484

M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf, Support vector machines. Intelligent Systems and their Applications, p.1828, 1998.

K. Henricksen, (Thesis) A framework for context-aware pervasive computing applications, 2003.

K. Henricksen and K. Henricksen, Indulska, J.: Developing context-aware pervasive computing applications: Models and approach, Pervasive and Mobile Computing, issue.2, p.3764, 2005.

K. Henricksen and J. Indulska, A software engineering framework for context-aware pervasive computing, Second IEEE Annual Conference on Pervasive Computing and Communications, 2004. Proceedings of the, p.7786, 2004.
DOI : 10.1109/PERCOM.2004.1276847

K. Henricksen and J. Indulska, Modelling and using imperfect context information, IEEE Annual Conference on Pervasive Computing and Communications Workshops, 2004. Proceedings of the Second, p.3337, 2004.
DOI : 10.1109/PERCOMW.2004.1276901

K. Henricksen, J. Indulska, and T. Mcfadden, Middleware for Distributed Context- Aware Systems. On the Move to Meaningful Internet Systems, pp.846-863, 2005.

K. Henricksen, J. Indulska, and T. Mcfadden, Modelling Context Information with ORM, Lecture Notes in Computer Science (including subseries Lecture Notes in Articial Intelligence and Lecture Notes in Bioinformatics, pp.3762-626635, 2005.
DOI : 10.1007/11575863_82

K. Henricksen, R. Wishart, T. Mcfadden, and J. Indulska, Extending Context Models for Privacy in Pervasive Computing Environments, Third IEEE International Conference on Pervasive Computing and Communications Workshops, p.2024, 2005.
DOI : 10.1109/PERCOMW.2005.36

R. Hirschheim, H. K. Klein, and K. Lyytinen, Information systems development and data modeling: conceptual and philosophical foundations, 1995.
DOI : 10.1017/CBO9780511895425

J. Hong, E. Suh, K. , and S. , Context-aware systems: A literature review and classification, Expert Systems with Applications, vol.36, issue.4, p.85098522, 2009.
DOI : 10.1016/j.eswa.2008.10.071

I. Horrocks, P. F. Patel-schneider, V. Harmelen, and F. , From shiq and rdf to owl: The making of a web ontology language. Web semantics: science, services and agents on the World Wide Web, p.726, 2003.

S. Huang, T. Wu, H. Chu, and G. Hwang, A Decision Tree Approach to Conducting Dynamic Assessment in a Context-Aware Ubiquitous Learning Environment, Fifth IEEE International Conference on Wireless, Mobile, and Ubiquitous Technology in Education (wmute 2008), p.8994, 2008.
DOI : 10.1109/WMUTE.2008.10

R. Hull, P. Neaves, and J. Bedford-roberts, Towards situated computing, Digest of Papers. First International Symposium on Wearable Computers, p.146153, 1997.
DOI : 10.1109/ISWC.1997.629931

J. Indulska, R. Robinson, A. Rakotonirainy, and K. Henricksen, Experiences in Using CC/PP in Context-Aware Systems, Mobile Data Management.4th International Conference, MDM 2003 Melbourne, pp.247-261, 2003.
DOI : 10.1007/3-540-36389-0_17

L. Juszczyk, H. Psaier, A. Manzoor, and S. Dustdar, Adaptive Query Routing on Distributed Context - The COSINE Framework, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, p.588593, 2009.
DOI : 10.1109/MDM.2009.101

S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee et al., SeeMon, Proceeding of the 6th international conference on Mobile systems, applications, and services, MobiSys '08, p.267280, 2008.
DOI : 10.1145/1378600.1378630

S. Kang, Y. Lee, C. Min, Y. Ju, T. Park et al., Orchestrator: An active resource orchestration framework for mobile context monitoring in sensor-rich mobile environments, 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom), p.135144, 2010.
DOI : 10.1109/PERCOM.2010.5466982

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman et al., An ecient k-means clustering algorithm: Analysis and implementation. Pattern Analysis and Machine Intelligence, IEEE Transactions, issue.7, p.24881892, 2002.

M. Khedr and A. Karmouch, Negotiating Context Information in Context-Aware Systems, IEEE Intelligent Systems, vol.19, issue.06, p.2129, 2004.
DOI : 10.1109/MIS.2004.70

M. Khedr and A. Karmouch, ACAI: agent-based context-aware infrastructure for spontaneous applications, Journal of Network and Computer Applications, vol.28, issue.1, p.1944, 2005.
DOI : 10.1016/j.jnca.2004.04.002

M. Knappmeyer, S. L. Kiani, C. Frà, B. Moltchanov, and N. Baker, ContextML: A light-weight context representation and context management schema, IEEE 5th International Symposium on Wireless Pervasive Computing 2010, p.367372, 2010.
DOI : 10.1109/ISWPC.2010.5483753

H. Knublauch, J. A. Hendler, and K. Idehen, Spin-overview and motivation. W3C Member Submission, p.3, 2011.

T. Kohonen, Self-organizing maps, 2001.

B. T. Korel and S. G. Koo, A Survey on Context-Aware Sensing for Body Sensor Networks, Wireless Sensor Network, vol.02, issue.08, p.571, 2010.
DOI : 10.4236/wsn.2010.28069

B. Y. Lim and A. K. Dey, Toolkit to support intelligibility in context-aware applications, Proceedings of the 12th ACM international conference on Ubiquitous computing, Ubicomp '10, p.1322, 2010.
DOI : 10.1145/1864349.1864353

D. Luckham, The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems, 2008.
DOI : 10.1007/978-3-540-88808-6_2

C. H. Lyu, M. S. Choi, Z. Y. Li, Y. , and H. Y. , Reasoning with Imprecise Context Using Improved Dempster-Shafer Theory, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp.475478-187, 2010.
DOI : 10.1109/WI-IAT.2010.190

J. Ma, A. Russo, K. Broda, C. , and K. , DARE: a system for distributed abductive reasoning, Autonomous Agents and Multi-Agent Systems, vol.44, issue.1???3, p.271297, 2008.
DOI : 10.1007/s10458-008-9028-y

P. Marie, T. Desprats, S. Chabridon, S. , and M. , QoCIM: A Meta-model for Quality of Context, 2013.
DOI : 10.1007/978-3-642-40972-1_23

URL : https://hal.archives-ouvertes.fr/hal-01212943

G. Meditskos, S. Dasiopoulou, V. Efstathiou, and I. Kompatsiaris, SP-ACT: A hybrid framework for complex activity recognition combining OWL and SPARQL rules, 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), p.2530, 2013.
DOI : 10.1109/PerComW.2013.6529451

G. Mühl, Large-Scale Content-Based Publish/Subscribe Systems, 2002.

J. P. Müller and K. Fischer, Application Impact of Multi-agent Systems and Technologies: A Survey, Agent-Oriented Software Engineering, p.2753, 2014.
DOI : 10.1007/978-3-642-54432-3_3

A. Olaru, A context-aware multi-agent system for ami environments, 2011.

A. Olaru, A. M. Florea, and A. E. Seghrouchni, Graphs and patterns for contextawareness, Ambient Intelligence-Software and Applications, p.165172, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00662053

A. Olaru, A. M. Florea, and A. E. Seghrouchni, A Context-Aware Multi-Agent System as a Middleware for Ambient Intelligence, Mobile Networks and Applications, p.429443, 2013.
DOI : 10.1007/s11036-012-0408-9

L. Peizhi and Z. Jian, A context-aware application infrastructure with reasoning mechanism based on dempster-shafer evidence theory, Vehicular Technology Conference, p.28342838, 2008.

D. Pereira, E. Oliveira, and N. Moreira, Formal Modelling of Emotions in BDI Agents, Computational Logic in Multi-Agent Systems, p.6281, 2008.
DOI : 10.1007/11533092_8

C. Perera, A. Zaslavsky, P. Christen, G. , and D. , CA4IOT: Context Awareness for Internet of Things, 2012 IEEE International Conference on Green Computing and Communications, p.775782, 2012.
DOI : 10.1109/GreenCom.2012.128

C. Perera, A. Zaslavsky, P. Christen, G. , and D. , Context Aware Computing for The Internet of Things: A Survey, IEEE Communications Surveys & Tutorials, vol.16, issue.1, p.16414454, 2014.
DOI : 10.1109/SURV.2013.042313.00197

C. Perera, A. Zaslavsky, P. Christen, G. , and D. , Sensing as a service model for smart cities supported by Internet of Things, Transactions on Emerging Telecommunications Technologies, vol.15, issue.2, p.8193, 2014.
DOI : 10.1002/ett.2704

S. Pietschmann, A. Mitschick, R. Winkler, and K. Meiÿner, CroCo: Ontology-Based, Cross-Application Context Management, 2008 Third International Workshop on Semantic Media Adaptation and Personalization, p.8893, 2008.
DOI : 10.1109/SMAP.2008.10

D. Preuveneers, J. V. Bergh, D. Wagelaar, A. Georges, P. Rigole et al., Towards an Extensible Context Ontology for Ambient Intelligence, 2004.
DOI : 10.1007/978-3-540-30473-9_15

J. R. Quinlan, Induction of decision trees, Machine Learning, vol.1, issue.1, p.81106, 1986.
DOI : 10.1007/BF00116251

L. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition, Proceedings of the IEEE, p.257286, 1989.

D. Riboni and C. Bettini, Context-Aware Activity Recognition through a Combination of Ontological and Statistical Reasoning, Ubiquitous Intelligence and Computing, 2009.
DOI : 10.2307/2347628

D. Riboni and C. Bettini, OWL 2 modeling and reasoning with complex human activities, Pervasive and Mobile Computing, vol.7, issue.3, p.379395, 2011.
DOI : 10.1016/j.pmcj.2011.02.001

M. Rinne, S. Törmä, and E. Nuutila, Sparql-based applications for rdf-encoded sensor data, p.8196, 2012.

R. Robinson, K. Henricksen, and J. Indulska, XCML: A Runtime Representation for the Context Modelling Language, Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW'07), p.2026, 2007.
DOI : 10.1109/PERCOMW.2007.140

M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell et al., A middleware infrastructure for active spaces, IEEE Pervasive Computing, vol.1, issue.4, p.7483, 2002.
DOI : 10.1109/MPRV.2002.1158281

B. Schilit, N. Adams, and R. Want, Context-aware computing applications, Mobile Computing Systems and Applications, p.8590, 1994.

A. Schmidt, Ontology-Based User Context Management: The Challenges of Imperfection and Time-Dependence, On the Move to Meaningful Internet Systems, p.9951011, 2006.
DOI : 10.1007/11914853_64

S. Sehic and S. Dustdar, COPAL: An adaptive approach to context provisioning, IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, p.286293, 2010.

G. Sharon and O. Etzion, Event-processing network model and implementation, IBM Systems Journal, vol.47, issue.2, p.321334, 2008.
DOI : 10.1147/sj.472.0321

Y. Shoham, Agent-oriented programming, Artificial Intelligence, vol.60, issue.1, p.5192, 1993.
DOI : 10.1016/0004-3702(93)90034-9

A. Sorici, G. Picard, O. Boissier, and A. M. Florea, Multi-agent based exible deployment of context management in ambient intelligence applications, Practical Applications of Agents and Multi-Agent Systems 13th International Conference on, 2015.

T. Strang, C. Linnho-popien, and K. Frank, CoOL: A Context Ontology Language to Enable Contextual Interoperability, p.236247, 2003.
DOI : 10.1109/JCN.2001.6596960

R. Studer, V. R. Benjamins, and D. Fensel, Knowledge engineering: principles and methods. Data & knowledge engineering, p.161197, 1998.

E. M. Tapia, S. S. Intille, and K. Larson, Activity Recognition in the Home Using Simple and Ubiquitous Sensors, 2004.
DOI : 10.1007/978-3-540-24646-6_10

K. Teymourian, M. Rohde, and A. Paschke, Fusion of background knowledge and streams of events, Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, DEBS '12, p.302313, 2012.
DOI : 10.1145/2335484.2335517

A. Toer, W. Longul, F. , and H. , The third wave. Bantam books, 1981.

A. Toninelli, R. Montanari, L. Kagal, and O. Lassila, A Semantic Context-Aware Access Control Framework for Secure Collaborations in Pervasive Computing Environments, The Semantic Web-ISWC 2006, p.473486, 2006.
DOI : 10.1007/11926078_34

A. Turhan, T. Springer, and M. Berger, Pushing Doors for Modeling Contexts with OWL DL a Case Study, Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW'06), p.5, 2006.
DOI : 10.1109/PERCOMW.2006.114

T. Van-kasteren, A. Noulas, G. Englebienne, and B. Kröse, Accurate activity recognition in a home setting, Proceedings of the 10th international conference on Ubiquitous computing, UbiComp '08, p.19, 2008.
DOI : 10.1145/1409635.1409637

K. Van-laerhoven, Combining the self-organizing map and k-means clustering for online classication of sensor data, Articial Neural Networks-ICANN 2001, p.464469, 2001.

M. Weiser, The computer for the 21st century, Scientic american, vol.265, issue.3, p.94104, 1991.

M. Wooldridge and N. R. Jennings, Intelligent agents: Theory and practice. The knowledge engineering review, p.115152, 1995.
DOI : 10.1007/3-540-58855-8

R. Yager, M. Fedrizzi, and J. Kacprzyk, Advances in the dempster-shafer theory of evidence, 1994.

M. A. Youssef, A. Agrawala, U. Shankar, and A. , WLAN location determination via clustering and probability distributions, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)., pp.143-150, 2003.
DOI : 10.1109/PERCOM.2003.1192736

N. Zahid, O. Abouelala, M. Limouri, and A. Essaid, Fuzzy clustering based on k-nearest-neighbours rule. Fuzzy Sets and Systems, p.239247, 2001.

D. Zhang, J. Cao, J. Zhou, and M. Guo, Extended Dempster-Shafer Theory in Context Reasoning for Ubiquitous Computing Environments, 2009 International Conference on Computational Science and Engineering, p.205212, 2009.
DOI : 10.1109/CSE.2009.201

A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia, A general framework for representing, reasoning and querying with annotated Semantic Web data, Web Semantics: Science, Services and Agents on the World Wide Web, p.7295, 2012.
DOI : 10.1016/j.websem.2011.08.006

URL : https://hal.archives-ouvertes.fr/hal-01240838

A. Zimmermann, A. Lorenz, and R. Oppermann, An operational denition of context, Modeling and using context, p.558571, 2007.

S. Alexandru, . Multi-agent, . Based, . Management, . In et al., Semantic Web Abstract : The complexity and magnitude of Ambient Intelligence scenarios imply that attributes such as modeling expressiveness, flexibility of representation and deployment, as well as ease of configuration and development become central features for context management systems. However, existing works in the literature seem to explore these development-oriented attributes at a low degree Our goal is to create a flexible and well configurable context management middleware, able to respond to different scenarios. To this end, our solution is built on the basis of principles and techniques of the Semantic Web and Multi-Agent Systems. We use the Semantic Web to provide a new context meta-model, allowing for an expressive and extensible modeling of content, meta-properties (e.g. temporal validity, quality parameters) and dependencies (e.g. integrity constraints) In addition, we develop a middleware architecture that relies on Multi-Agent Systems and a service component based design. Each agent of the system encapsulates a functional aspect of the context provisioning processes (acquisition, coordination, distribution, use) We introduce a new way to structure the deployment of agents depending on the multi-dimensionality aspects of the application's context model. Furthermore, we develop declarative policies governing the adaptation behavior of the agents managing the provisioning of context information, Simulations of an intelligent university scenario show that appropriate tooling built around our middleware can provide significant advantages in the engineering of contextaware applications

S. Alexandru and . Spécialité, Informatique Mots clefs : Intelligence Ambiante, Gestion du Contexte, Systèmes Multi-Agent, Web Semantique Résumé : La complexité et l'ampleur des scénarios de l'Intelligence Ambiante impliquent que des attributs tels que l'expressivité de modelisation, la flexibilité de representation et de deploiement et la facilité de configuration et de developpement deviennent des caracteristiques centrales pour les systèmes de gestion de contexte. Cependant, les ouvrages existants semblent explorer ces attributs orientés-developpement a un faible degré, Notre objectif est de créer un intergiciel de gestion de contexte flexible et bien configurable, capable de répondre aux différents scenarios. A cette fin, notre solution est construite a base de techniques et principes du Web Semantique (WS) et des systèmes multiagents (SMA)

W. Nous-utilisons-le and . Pour-proposer-un-noveau-meta-modèle-de-contexte, permettant une modelisation expressive et extensible du contenu, des meta-proprietés (e.g. validité temporelle, parametres de qualité) et des dépendances (e.g. les contraintes d'integrité) du contexte. De plus, une architecture a base de SMA et des composants logiciels, ou chaque agent encapsule un aspect fonctionnel du processus de gestion de contexte (acquisition, coordination, diffusion, utilisation) est developpée. Nous introduisons un nouveau moyen de structurer le deploiement d'agents selon les dimensions du modèle de contexte de l'application et nous elaborons des politiques déclaratives gouvernant le comportement d'adaptation du provisionnement contextuel des agents, Des simulations d'un scenario d'université intelligente montrent que un bon outillage construit autour de notre intergiciel peut apporter des avantages significatifs dans la génie des applications sensibles au contexte