
�>���G �A�/�, �i�2�H�@�y�R�k�8�3�9�8�R

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�R�k�8�3�9�8�R

�a�m�#�K�B�i�i�2�/ �Q�M �R�N �C���M �k�y�R�e

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�.�v�M���K�B�+ �Q�T�i�B�K�B�x���i�B�Q�M �Q�7 �/���i���@�~�Q�r �i���b�F�@�T���`���H�H�2�H
���T�T�H�B�+���i�B�Q�M�b �7�Q�` �H���`�;�2�@�b�+���H�2 �L�l�J�� �b�v�b�i�2�K�b

���M�/�B �.�`�2�#�2�b

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

���M�/�B �.�`�2�#�2�b�X �.�v�M���K�B�+ �Q�T�i�B�K�B�x���i�B�Q�M �Q�7 �/���i���@�~�Q�r �i���b�F�@�T���`���H�H�2�H ���T�T�H�B�+���i�B�Q�M�b �7�Q�` �H���`�;�2�@�b�+���H�2 �L�l�J��
�b�v�b�i�2�K�b�X �.�B�b�i�`�B�#�m�i�2�/�- �S���`���H�H�2�H�- ���M�/ �*�H�m�b�i�2�` �*�Q�K�T�m�i�B�M�; �(�+�b�X�.�*�)�X �l�M�B�p�2�`�b�B�i�û �S�B�2�`�`�2 �2�i �J���`�B�2 �*�m�`�B�2 �@
�S���`�B�b �o�A�- �k�y�R�8�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�8�S���y�e�e�j�j�y���X ���i�2�H�@�y�R�k�8�3�9�8�R��

THÈSE DE DOCTORAT DE
L'UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

M. Andi DREBES

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse:

Dynamic optimization of data-�ow task-parallel applications for
large-scale NUMA systems

soutenue le 25 juin 2015 devant le jury composé de:

M. Albert C OHEN Examinateur INRIA / École Normale Supérieure
M. Benoît D UPONT DE D INECHIN Examinateur Kalray S.A.
Mme. Nathalie D RACH -TÉMAM Directeur de thèse Université Pierre et Marie Curie
Mme. Karine H EYDEMANN Encadrant de thèse Université Pierre et Marie Curie
M. Jean-François MÉHAUT Rapporteur Université Joseph Fourier / CEA
M. Raymond N AMYST Examinateur Université de Bordeaux
M. Nacho N AVARRO Rapporteur Universitat Politècnica de Catalunya /

Barcelona Supercomputing Center
M. Antoniu P OP Invité The University of Manchester
M. Pierre SENS Examinateur INRIA / Université Pierre et Marie Curie
M. Marc SHAPIRO Invité INRIA / Université Pierre et Marie Curie

In loving memory of Hans and Solange.

Remerciements

Je voudrais tout d'abord remercier mes encadrants de thèse, Nathalie Drach-Témam (professeur,
Université Pierre et Marie Curie) et Karine Heydemann (maître de conférences, Université Pierre
et Marie Curie), pour leur volonté de travailler avec moi et d'encadrer cette thèse. Je suis très recon-
naissant pour la qualité exceptionnelle de l'encadrement qui s'est manifestée dans les nombreuses
discussions scienti�ques riches et constructives, les retours remarquablement détaillées sur mes
productions scienti�ques et mes présentations ainsi qu'une ambiance de travail chaleureuse. Je les
remercie d'avoir partagé mon enthousiasme aux moments forts et pour le soutien et l'encourage-
ment aux moments critiques de cette thèse.

Je tiens également à remercier chaleureusement Albert Cohen (directeur de recherche, INRIA /
École Normale Supérieure) d'avoir proposé de collaborer après un an de thèse et de m'avoir fait
réorienter mes travaux de recherche dans le contexte OpenStream. Les collaborations scienti�ques
suivant cette proposition ont été intenses et très enrichissantes. Je le remercie aussi pour son soutien
scienti�que et technique précieux ainsi que la mise en relation avec des nombreuses personnes
impliquées dans la recherche sur des sujets connexes. Son suivi continu de mes travaux et ses
conseils ont eu une in�uence majeure sur la qualité de mon travail.

Je remercie tout particulièrement Antoniu Pop (lecturer, University of Manchester) d'avoir collaboré
avec moi sur OpenStream et de m'avoir laissé baser ma recherche sur ses travaux. Ses explications,
ses conseils et son aide ont été d'une valeur inestimable pour l'intégration dans le run-time
OpenStream et pour la publication des résultats. Je voudrais également le remercier pour son
accueil chaleureux à Manchester.

Je suis très reconnaissant envers les membres de mon jury de thèse, Benoît Dupont de Dinechin
(CTO, Kalray S.A.), Jean-François Méhaut (professeur, Université Jospeh Fourier), Raymond
Namyst (professeur, Université de Bordeaux), Nacho Navarro (associate professor, Universitat
Politecnica de Catalunya), Pierre Sens (professeur, Université Pierre et Marie Curie) et Marc Shapiro
(directeur de recherche, INRIA / LIP6) d'avoir accepté de participer à mon jury de thèse et pour
l'intérêt qu'ils ont porté à mes travaux.

Je souhaite exprimer toute ma gratitude à Jean-François Méhaut et ses collaborateurs de m'avoir
donné accès à une machine NUMA grande échelle, ce qui m'a permis d'évaluer la scalabilité
des solutions proposées dans cette thèse. Au même titre, je remercie Alain Greiner (professeur,
l'Université Pierre et Marie Curie) de m'avoir donné accès à une machine NUMA acquise pour ses
projets de recherche. Les interventions rapides et ef�caces de Jean-Paul Chaput et Manuel Bouyer
(ingénieurs, Université Pierre et Marie Curie) sur cette machine ont été d'une grande aide pour le
bon déroulement des expérimentations.

Merci aussi à Quentin Bunel (stagiaire en master, Université Pierre et Marie Curie) et Adrien
Guatto (doctorant, École Normale Supérieure) pour leurs contributions à Aftermath. Cet outil a
également pro�té de nombreuses suggestions et du support par Albert Cohen et Antoniu Pop.

Je souhaite remercier l'équipe ALSOC du LIP6 pour ces années de thèse agréables et enrichissantes.
Merci à Lucien Goubet et Youen Lesparre pour l'ambiance agréable au bureau. J'ai également
apprécié les nombreuses discussions avec Olivier Marchetti sur l'informatique et la science en
général.

Tout le travail de cette thèse n'aurait jamais pu être possible sans la richesse, la diversité et
l'incroyable effort de la communauté du logiciel libre. Le nombre de logiciels et de bibliothèques
libres utilisés étant trop grand pour les nommer de manière exhaustive je me limite à remercier
cette communauté en entier. Les logiciels libres ont toujours été une énorme source de motivation
et d'enthousiasme pour moi et la liberté de les utiliser, les comprendre, les modi�er et de les
redistribuer est d'une valeur inestimable.

En�n, je souhaite remercier ma famille pour son soutien et son amour constant et inconditionnel.
Je pense tout particulièrement à ma compagne Amandine qui m'a encouragé et soutenu durant
toutes ces années et qui a accepté des contraintes fortes pour la réussite de cette thèse. Je n'oublierai
jamais non plus le confort et la gentillesse que sa famille m'a apporté, notamment pendant la
�nalisation de cette thèse.

vi

Copyright c Andi Drebes 2015.

Verbatim copying and distribution is permitted in any medium, provided this notice is preserved.

La copie et la distribution de copies exactes de ce document sont autorisées, mais aucune modi�cation n'est
permise.

This page intentionally left blank.

Abstract

Within the last decade, microprocessor development reached a point at which higher clock rates
and more complex micro-architectures became less energy-ef�cient, such that power consumption
and energy density were pushed beyond reasonable limits. As a consequence, the industry
has shifted to more energy ef�cient multi-core designs, integrating multiple processing units
(cores) on a single chip. The number of cores is expected to grow exponentially and future
systems are expected to integrate thousands of processing units. In order to provide suf�cient
memory bandwidth in these systems, main memory is physically distributed over multiple memory
controllers with non-uniform access to memory (NUMA).

Past research has identi�ed programming models based on �ne-grained, dependent tasks as
a key technique to unleash the parallel processing power of massively parallel general-purpose
computing architectures. However, the execution of task-paralel programs on architectures with
non-uniform memory access and the dynamic optimizations to mitigate NUMA effects have
received only little interest. In this thesis, we explore the main factors on performance and data
locality of task-parallel programs and propose a set of transparent, portable and fully automatic
on-line mapping mechanisms for tasks to cores and data to memory controllers in order to improve
data locality and performance. Placement decisions are based on information about point-to-point
data dependences, readily available in the run-time systems of modern task-parallel programming
frameworks. The experimental evaluation of these techniques is conducted on our implementation
in the run-time of the OpenStream language and a set of high-performance scienti�c benchmarks.
Finally, we designed and implemented Aftermath, a tool for performance analysis and debugging
of task-parallel applications and run-times.

Résumé

Au milieu des années deux mille, le développement de microprocesseurs a atteint un point à
partir duquel l'augmentation de la fréquence de fonctionnement et la complexi�cation des micro-
architectures devenaient moins ef�caces en termes de consommation d'énergie, poussant ainsi la
densité d'énergie au delà du raisonnable. Par conséquent, l'industrie a opté pour des architectures
multi-cœurs intégrant plusieurs unités de calcul sur une même puce. Les sytèmes hautes perfor-
mances d'aujourd'hui sont composés de centaines de cœurs et les systèmes futurs intègreront
des milliers d'unités de calcul. A�n de fournir une bande passante mémoire suf�sante dans ces
systèmes, la mémoire vive est distribuée physiquement sur plusieurs contrôleurs mémoire avec un
accès non-uniforme à la mémoire (NUMA).

Des travaux de recherche récents ont identi�é les modèles de programmation à base de tâches
dépendantes à granularité �ne comme une approche clé pour exploiter la puissance de calcul des
architectures généralistes massivement parallèles. Toutefois, peu de recherches ont été conduites
sur l'optimisation dynamique des programmes parallèles à base de tâches a�n de réduire l'impact
négatif sur les performances résultant de la non-uniformité des accès à la mémoire. L'objectif de
cette thèse est de déterminer les enjeux et les opportunités concernant l'exploitation ef�cace de
machines many-core NUMA par des applications à base de tâches et de proposer des mécanismes
ef�caces, portables et entièrement automatiques pour le placement de tâches et de données, amélio-
rant la localité des accès à la mémoire ainsi que les performances. Les décisions de placement
sont basées sur l'exploitation des informations sur les dépendances entre tâches disponibles dans
les run-times de langages de programmation à base de tâches modernes. Les évaluations expéri-
mentales réalisées reposent sur notre implémentation dans le run-time du langage OpenStream et
un ensemble de benchmarks scienti�ques hautes performances. En�n, nous avons développé et
implémenté Aftermath, un outil d'analyse et de débogage de performances pour des applications
à base de tâches et leurs run-times.

Contents

1 Introduction 1
1.1 Objectives and contributions of this thesis . 2
1.2 Outline of this document . 3

2 Context and problem statement 5
2.1 Parallel programming models for many-core architectures 5

2.1.1 Task-based programming models . 6
2.1.2 The run-time system . 6

2.2 High performance parallel hardware architectures 7
2.2.1 The cache hierarchy . 8
2.2.2 Non-uniform memory access . 10
2.2.3 Ef�cient exploitation of many-core architectures and NUMA 11

2.3 Ef�cient mapping of parallelism to the hardware . 12
2.4 Related work . 13

2.4.1 Data placement . 13
2.4.2 Scheduling . 18
2.4.3 Combined scheduling and data placement 20
2.4.4 Summary . 25

2.5 Summary and problem statement . 28

3 OpenStream 31
3.1 Basic concepts . 31

3.1.1 Stream accesses using views . 32
3.1.2 Dynamic task graphs . 32

3.2 The syntax of OpenStream programs . 35
3.2.1 Declaring streams and stream references . 35
3.2.2 Declaring views . 36
3.2.3 Creating tasks . 37
3.2.4 The tick construct . 37
3.2.5 Barriers . 38

3.3 Examples . 38
3.4 Execution model . 42

3.4.1 Scheduling and work-stealing . 43
3.4.2 Data structures . 44
3.4.3 Dependence management . 45
3.4.4 Allocation of data structures . 48
3.4.5 Restrictions from the execution model . 51

3.5 Compilation of an OpenStream program . 52
3.6 Summary . 55

CONTENTS

4 A NUMA-aware run-time and execution model 57
4.1 Memory allocation and data placement by the operating system 57

4.1.1 Logical and physical memory allocation . 58
4.1.2 Page placement . 59
4.1.3 Determining the location of data . 60
4.1.4 Implications of the size of pages . 60

4.2 The in�uence of �rst-touch placement and the page size on memory pooling . . . 61
4.2.1 Page placement during re�lls . 61
4.2.2 Placement at the �rst use of data structures 63
4.2.3 Reuse of data structures . 64

4.3 Separation of frames and input buffers . 65
4.3.1 Avoiding the scattering of input data across multiple nodes 65
4.3.2 Integration into the compiler . 67

4.4 NUMA-aware memory pools . 68
4.4.1 Determining the placement of blocks . 68
4.4.2 Integration into the life cycle and per-node memory pools 72

4.5 Reducing the impact of per-node memory pools on performance 73
4.5.1 Reducing the number of system calls for logical allocation 74

4.6 Placement of persistent run-time structures . 74
4.7 Summary . 75

5 Dynamic single assignment 77
5.1 Concepts of dynamic single assignment . 77

5.1.1 Terminology . 78
5.1.2 Principles of dynamic single assignment . 78
5.1.3 Dynamic single assignment on streams . 79

5.2 Obtaining accurate information on data accesses . 80
5.3 Implementing an algorithm using dynamic single assignment 82

5.3.1 Identi�cation of data elements, versions and appropriate partitioning . . . 82
5.3.2 Mapping of data elements to stream elements and de�nition of the interface

of tasks generating new versions . 83
5.3.3 De�nition of auxiliary tasks needed for initialization and termination . . . 84
5.3.4 Implementation of all tasks . 85
5.3.5 Parallelization of the control program . 87

5.4 Implications of dynamic single assignment on the control program 90
5.4.1 Allocations of a sequential control program 90
5.4.2 Allocations of a parallel control program . 93
5.4.3 Estimation of the memory footprint . 93
5.4.4 The order of task creations in a parallel control program 96

5.5 Parallelizing the control program . 97
5.5.1 Rate of task creation . 98
5.5.2 Order of task creations . 99
5.5.3 Dynamic dependence patterns and termination detection 100
5.5.4 Conditions for the parallelization of the control program 100
5.5.5 Sketching deterministic parallel task creation 101

5.6 Summary . 102

6 Experimental Setup 103
6.1 Benchmarks . 103

6.1.1 Seidel . 104
6.1.2 Jacobi . 106
6.1.3 Blur-roberts . 108
6.1.4 Bitonic . 109
6.1.5 Cholesky . 112

xiv

CONTENTS

6.1.6 K-means . 114
6.2 Baselines and measurement . 116

6.2.1 Synchronization using tokens . 117
6.2.2 Generic optimizations for load balancing across memory controllers 119
6.2.3 Execution phases and measurement interval 120

6.3 Hardware environment . 121
6.3.1 Opteron test platform . 121
6.3.2 SGI test platform . 121
6.3.3 Latency of memory accesses and NUMA factors 122

6.4 Parametrization and tuning of the benchmarks . 123
6.4.1 Parametrization . 123
6.4.2 Compiler �ags and manual optimizations . 125

6.5 Characterization of memory accesses . 125
6.6 Scalability of NUMA-agnostic shared memory benchmarks 127
6.7 Summary . 128

7 Data-aware scheduling 133
7.1 The in�uence of task activation on data locality . 133

7.1.1 The locality of read accesses . 134
7.1.2 The locality of write accesses . 134
7.1.3 The in�uence of the task graph on task ownership 136
7.1.4 Conclusion . 137

7.2 Work-pushing . 137
7.3 Topology-aware work-stealing . 141
7.4 Experimental results . 143

7.4.1 Metrics for evaluation . 143
7.4.2 Results for work-pushing . 145
7.4.3 Results for topology-aware work-stealing . 151

7.5 Summary and conclusion . 153

8 Deferred allocation 157
8.1 In�uence of the allocation mechanism on data locality 157

8.1.1 In�uence of the control program . 158
8.1.2 In�uence of work-stealing . 159
8.1.3 In�uence of the creation of initial tasks . 160

8.2 Deferred allocation . 162
8.2.1 Principles of deferred allocation . 162
8.2.2 Modi�cation of the run-time . 164
8.2.3 Modi�cation of the compiler . 165
8.2.4 Deferred allocation and work-pushing . 167

8.3 In�uence of deferred allocation on data locality . 167
8.3.1 In�uence of the control program . 167
8.3.2 In�uence of work-stealing . 169
8.3.3 Creation of initial tasks . 170
8.3.4 Reduction of the memory foot print . 170

8.4 Experimental results . 173
8.4.1 Memory footprint . 175
8.4.2 Performance . 177

8.5 Ongoing work: reduction of the memory footprint with the inout_reuse clause . . 180
8.6 Summary . 185

xv

CONTENTS

9 Optimizing broadcasts 187
9.1 Memory footprint and execution time of broadcasts 187
9.2 Reducing the memory footprint and execution time 191
9.3 Experimental evaluation . 193

9.3.1 Changes of the data layout improving cache hit rates 193
9.3.2 Impact on the memory footprint and performance 194
9.3.3 Comparison with state-of-the-art implementations of Cholesky Factorization 195
9.3.4 Conclusion . 198

9.4 NUMA-aware broadcasts with on-demand copies 199
9.4.1 Broadcasts with on-demand copies . 200
9.4.2 Experimental evaluation . 202
9.4.3 Conclusion . 205

9.5 Summary . 205

10 Performance analysis of task-parallel programs and run-times 207
10.1 Requirements for trace-based performance analysis 208

10.1.1 Trace exploration and hypothesis testing . 208
10.1.2 Trace visualization . 209
10.1.3 Control over the amount of detail . 209
10.1.4 Recording execution traces of task-parallel applications 210

10.2 Aftermath . 211
10.2.1 Organization of the main user interface . 211
10.2.2 Trace format . 213
10.2.3 Symbol tables and annotations . 214

10.3 Debugging application performance . 214
10.3.1 Seidel: detecting contention on memory controllers 215
10.3.2 K-means clustering: branch mispredictions 216

10.4 Debugging run-time performance . 218
10.4.1 Deferred allocation and work-pushing . 218
10.4.2 Broadcast tables . 222

10.5 A perspective for the automation of performance analysis 223
10.5.1 High-level analysis based on thresholds . 223
10.5.2 Correlating performance indicators with task durations 224
10.5.3 Status of the implementation . 225

10.6 Related Work . 226
10.7 Summary and conclusions . 227

11 Conclusion and perspectives 229
11.1 Summary of the thesis . 229
11.2 Contributions . 231

11.2.1 Key contributions . 231
11.2.2 Contributions that form the theoretical and technical basis for the key contri-

butions . 232
11.2.3 Practical contributions . 233

11.3 Conclusions . 234
11.4 Future work and perspectives . 234

A Personal Publications 249

B About this document 251
B.1 Typesetting and editing . 251
B.2 Figures and graphs . 252

xvi

CONTENTS

C Résumé en français 253
C.1 Introduction (chapitre 1) . 253
C.2 Contexte et dé�nition de la problématique (chapitre 2) 255
C.3 OpenStream (chapitre 3) . 258
C.4 Un run-time pour des machines NUMA (chapitre 4) 261
C.5 Dynamic single assignment (chapitre 5) . 262
C.6 Montage expérimental (chapitre 6) . 263
C.7 Ordonnancement tenant compte de données (chapitre 7) 266
C.8 Allocation différée (chapitre 8) . 268
C.9 Optimisation de broadcasts (chapitre 9) . 269
C.10 Analyse des performances des applications à base de tâches et leurs run-times

(chapitre 10) . 270
C.11 Conclusions et perspectives (chapitre 11) . 273

xvii

CONTENTS

xviii

List of Figures

2.1 Embedding of the run-time system into the execution environment 7
2.2 Example of a hierarchy of caches with three levels L1 to L3 with separate and uni�ed

caches . 8
2.3 Hardware prefetching between DRAM and the last level cache and between caches 8
2.4 Shared and private caches in a multi-core system . 9
2.5 Example of a NUMA system with 16 cores and 4 nodes 10
2.6 Examples of distributions using BLOCK and CYCLIC 23

3.1 Illustration of stream accesses with burst and horizon 33
3.2 Example of a dynamic task graph . 34
3.3 Simple example with a single producer and a single consumer 38
3.4 Two producers and a single consumer . 39
3.5 Six producers and a single consumer operating on the same stream 40
3.6 Six producers and a single consumer operating on six streams of an array of streams 41
3.7 Multiple consumers reading the same elements . 43
3.8 Per-worker data structures and worker placement in OpenStream 43
3.9 Major data structures of the OpenStream run-time 45
3.10 Dependence resolution . 46
3.11 Dependence resolution of broadcasts . 49
3.12 Illustration of the principles of a per-worker memory pool 50
3.13 Invalid program with bursts smaller than the horizons 51
3.14 Invalid program with multiple consumers reading from the same producer 51
3.15 Compilation of an OpenStream program . 53

4.1 Logical and physical allocation . 59
4.2 Example of the distribution of data on three NUMA nodes 60
4.3 Illustration of the terms used for memory regions managed by memory pools . . . 61
4.4 Physical allocation upon a re�ll of a free list . 62
4.5 Different amounts of placed data after a re�ll for blocks larger than a page 63
4.6 Balanced and unbalanced dependences leading to different distributions of the

pages of a frame . 64
4.7 Different relationships between output and input views with different implications

on the order of the scattering of a view . 64
4.8 Separation of input buffers from data-�ow frames 66
4.9 Multiple writers of an input view with input buffers separated from data-�ow frames 67
4.10 Duration of a call to move_pageswith increasing concurrency 70
4.11 Duration of a call to move_pages with maximum concurrency and varying duration

between two calls . 70
4.12 Overhead of a call to move_pages with maximum concurrency as a function of the

duration between two calls for a varying number of pages 70

LIST OF FIGURES

4.13 Duration of a call to move_pages on the 64-core system as a function of the number
of pages whose placement is determined with 1:5Mcycles between two calls 71

4.14 Page sampling with a sampling distance of 16 pages 71
4.15 Huge page spanning two blocks . 72
4.16 Layout in memory of a block and its metadata section 72
4.17 Re�ll and allocation with immediate splitting . 74
4.18 Re�ll and allocation with lazy splitting . 74
4.19 In�uence of the placement of structures representing workers on performance . . . 75

5.1 Dependences in the dynamic single assignment version of seidel-1d 84
5.2 Parallel control program of seidel-1d . 88
5.3 Memory footprint resulting from sequential task creation with small pages 92
5.4 Memory footprint resulting from sequential task creation with huge pages 94
5.5 Memory footprint resulting from parallel task creation 95
5.6 Order of task creations in a parallel control program 95
5.7 Concurrent task creation with different matching of the views 97
5.8 Sequential control program with a different number of workers 98
5.9 Examples of task graphs for which the order of task creation has an in�uence on

performance . 99
5.10 Parallel control program with termination detection 100
5.11 Deadlocking and non-deadlocking parallel task creation 101

6.1 Seidel: two-dimensional �ve-point stencil . 105
6.2 Seidel: progress within the task graph . 105
6.3 Jacobi-2d: two-dimensional �ve-point stencil . 107
6.4 Jacobi-2d: progress within the task graph for a high number of workers 107
6.5 Jacobi-2d: progress within the task graph depending on the timing 107
6.6 Blur-roberts: consecutive applications of two stencils 109
6.7 Bitonic: bitonic sorting network . 110
6.8 Parallel control program of a bitonic sorting network 111
6.9 Available parallelism during execution of a bitonic sorting network 111
6.10 Bitonic: examples of progress within the task graph 111
6.11 Cholesky: Block-wise updates of the matrix . 112
6.12 Cholesky: varying number of readers depending on the operation and the block

position . 113
6.13 Cholesky: parallel control program . 113
6.14 K-means: clustering of multidimensional data . 115
6.15 1d stencil synchronizing with tokens . 117
6.16 Interleaved allocation on n nodes . 120
6.17 Phases during execution of a benchmark . 121
6.18 Architecture of the Opteron test system . 122
6.19 Architecture of the SGI test system . 122
6.20 Cache miss rates of the dynamic single assignment versions 126
6.21 Number of last level cache misses per thousand instructions 127
6.22 Scalability of shared memory benchmarks (Opteron platform with 64 cores) 129
6.23 Scalability of shared memory benchmarks (SGI platform with 192 cores) 130

7.1 A task with n producers and m consumers . 134
7.2 Remote / local memory accesses to input buffers depending on activating worker 135
7.3 Remote / local write accesses depending on the placement of output buffers 135
7.4 Different probabilities among workers for task ownership 136
7.5 In�uence of task creation on the locality of read accesses 136
7.6 Updated structure of the workers with MPSC FIFO 138
7.7 Visual representation of data and task placement . 145

xx

LIST OF FIGURES

7.8 Locality of requests to main memory on the Opteron system for the push heuristics 146
7.9 In�uence of the push heuristic on seideland jacobi 146
7.10 Timing of the determination of data placement in blur-roberts 147
7.11 Effect of the push heuristics on bitonic . 148
7.12 Approximation Rappr

loc of the locality for the push heuristics 149
7.13 Relative error of Rappr

loc over the locality measured with hardware performance counters 150
7.14 Speedup of the push heuristics over default random work-stealing without work-

pushing . 152
7.15 Speedup of the push heuristics over the shared memory implementations 152
7.16 Locality of requests to main memory on the Opteron system for the push heuristics

combined with topology-aware work-stealing . 154
7.17 Relative improvement of the locality of requests to main memory on the Opteron

system for the push heuristics combined with topology-aware work-stealing . . . 154
7.18 Approximation Rappr

loc of the locality for the push heuristics combined with topology-
aware work-stealing for the SGI system . 154

7.19 Relative improvement of the approximation Rappr
loc of the locality of requests to main

memory on the SGI system for the push heuristics combined with topology-aware
work-stealing . 154

7.20 Improvement of the execution time of the push heuristics combined with topology-
aware work-stealing compared to work-pushing only 155

7.21 Speedup of the push heuristics combined with topology-aware work-stealing over
the shared memory implementations . 155

8.1 Immediate allocation of input buffers . 158
8.2 In�uence of the control program on locality using immediate allocation 159
8.3 In�uence of work-stealing in conjunction with immediate allocation on the locality

of write accesses . 159
8.4 Work-pushing after a steal using immediate allocation 160
8.5 In�uence of the creation of initial tasks on data locality 161
8.6 Example of a task graph that requires a less obvious scheme for the creation of initial

tasks to avoid contention . 163
8.7 Example of deferred allocation of the input buffers of a task t with n producers . . 164
8.8 Immediate allocation of input buffers . 166
8.9 Decoupled control program and buffer allocation on a path of heavy dependences 168
8.10 Decoupled control program and buffer allocation on a path of heavy dependences 168
8.11 Deferred allocation on a task-graph with balanced dependences 169
8.12 Work-stealing in conjunction with deferred allocation 170
8.13 Improved data locality and load balancing resulting from the creation of initial tasks

using deferred allocation . 171
8.14 Deferred allocation compared to immediate allocation 172
8.15 Illustration of the reduced memory footprint due to deferred allocation 174
8.16 Locality of requests to main memory on the Opteron system for deferred allocation 175
8.17 Approximation Rwloc

loc (and Rappr
loc for rnd) of the locality for deferred allocation . . . 176

8.18 Relative error of Rwloc
loc (and Rappr

loc for rnd) over the locality measured with hardware
performance counters for the Opteron system . 177

8.19 Comparison of the locality of requests to main memory on the Opteron system for
work-pushing and deferred allocation . 177

8.20 Maximum resident size for dynamic single assignment implementations with and
without deferred allocation and the shared memory implementations 178

8.21 Reduction of the maximum resident size by deferred allocation compared to rnd . 178
8.22 Speedup of deferred allocation over default random work-stealing without work-

pushing . 179
8.23 Speedup of deferred allocation over the shared memory implementations 179

xxi

LIST OF FIGURES

8.24 Examples of a task graphs with tasks using the inout_reuse clause 181
8.25 Steps during execution of an application using the inout_reuse clause 182
8.26 Transfer of ownership resulting in a minimal memory footprint of dependent tasks 184
8.27 Copying the contents of an inout_reuse view when changing nodes 185

9.1 Broadcast ton readers with multiple copies . 188
9.2 Broadcast with deferred allocation . 189
9.3 Timing related to copies during a broadcast . 190
9.4 Sharing of a single input buffer in a broadcast using a broadcast table 191
9.5 Timing of a broadcast when using a broadcast table 192
9.6 Cholesky: improved layout of data in shared memory 193
9.7 Memory footprint of choleskywith and without broadcast tables 194
9.8 The number of broadcasts and readers in choleskyas a function of the size of the matrix 196
9.9 Number of allocations of 512KiB-blocks from memory pools during execution of

cholesky. 196
9.10 Number of re�lls during execution of choleskyfor blocks of 512KiB 197
9.11 Execution time of choleskywith and without broadcast tables 197
9.12 Execution time of choleskycompared to state-of-the-art implementations for many-

core systems . 199
9.13 Performance of choleskycompared to state-of-the-art implementations for many-core

systems . 199
9.14 Footprint of choleskycompared to state-of-the-art implementations for many-core

systems . 200
9.15 Broadcast table with support for multiple copies . 200
9.16 Broadcast table with node-local copies . 203
9.17 Memory footprint of broadcast tables with local copies 204
9.18 Fraction of requests to local memory of broadcast tables with local copies on the

Opteron system . 204
9.19 Number of last level cache misses per thousand instructions of choleskyusing broad-

cast tables with a single copy . 204
9.20 Execution time of choleskyusing broadcast tables with a single copy and local copies 205

10.1 Stages in the development of task-parallel applications and run-times 209
10.2 Capturing events related to the interactions between the application, the run-time

system and the hardware . 209
10.3 Aftermath's main window: timeline (1), �lters (2), statistics (3), information on

selected tasks / events (4) and menu bar for derived metrics (5). 212
10.4 High-latency memory accesses ofseidelusing a shared matrix 215
10.5 Distribution of the duration of the main computation tasks in k-means. 216
10.6 Heatmap view showing the task duration of k-means. 217
10.7 Distribution of the duration of the main computation tasks of the modi�ed k-means

benchmark . 217
10.8 Heatmap view showing the task duration of the modi�ed version of k-meanswith a

lower number of branch mispredictions . 218
10.9 Trace of seidelwith random work-stealing and without work-pushing or deferred

allocation . 219
10.10Example of memory accesses . 221
10.11Different views for a trace of seidelwith topology-aware work-stealing, work-

pushing and deferred allocation . 221
10.12Worker states for each core during execution of choleskywithout and with broadcast

tables . 222
10.13Number of workers in task execution state during execution of choleskywithout and

with broadcast tables . 223

xxii

LIST OF FIGURES

10.14Evolution of the values of hardware counters for branch mispredictions (cmisp) and
cycles (ccyc) on core i . 225

10.15Samples that do not exactly match the beginning and end of a task 225
10.16Task duration as a function of the number of branch mispredictions per thousand

cycles in k-means. 226

C.1 Intégration du run-time dans l'environnement d'exécution 256
C.2 Exemple d'un système NUMA avec 16 cœurs et 4 nœuds 256
C.3 Exemples de graphes de tâches . 259
C.4 Structures de données par worker et placement des workers dans OpenStream . . 260
C.5 Frame représentant une tâche . 260
C.6 Compilation d'un programme OpenStream . 261
C.7 Phases d'exécution d'un benchmark avec intervalle de mesure 265
C.8 Structures de données représentant des workers avec une FIFO MPSC pour le

transferts de tâches par le work-pushing . 267
C.9 Les étapes dans le cycle de développement d'applications à base de tâches et de

run-times . 272
C.10 Enregistrement d'événements liés aux interactions entre l'application, le run-time et

le matériel . 272
C.11 La fenêtre principale d'Aftermath : la timeline (1), les �ltres (2), les vues statistiques

(3), des informations sur la tâche / l'événement sélectionné (4) et la barre de menu
pour des métriques dérivées (5). 273

xxiii

LIST OF FIGURES

xxiv

Listings

3.1 Single producer and single producer operating on a single stream 38
3.2 Two producers and a single consumer operating on a single stream 39
3.3 Creation of producers in a for-loop . 40
3.4 Consumer using a variadic view . 41
3.5 Multiple consumers reading the same elements . 42
3.6 Example code to be translated by the compiler . 53
3.7 General lines of the code generated by the compiler 53
4.1 Multiple producers writing to the same input buffer 65
4.2 Example of a task with multiple input views . 67
4.3 General lines of the code generated by the compiler for input data embedded into a

data-�ow frame . 67
4.4 General lines of the code generated by the compiler for input buffers that are

separated from the data-�ow frame . 68
5.1 Illustration of the terminology for dynamic single assignment 78
5.2 Example of manual dynamic single assignment . 78
5.3 Example of manual dynamic single assignment with an irregular mapping of ver-

sions to data locations . 79
5.4 Stream indexes and addresses in the context of dynamic single assignment 79
5.5 Task-local modi�cations not counted as versions . 80
5.6 Sequential implementation of seidel-1d. 82
5.7 Sequential, blocked implementation of a seidel-1d. 83
5.8 Parallel, dynamic single assignment implementation of seidel-1d. 85
5.9 Sketch ofseidel-1dwith a parallel control program 88
6.1 One-dimensional stencil using tokens for synchronization 117
8.1 Task with output dependences causing the modi�ed compiler to add calls to pre-

pare_data to the task body . 165
8.2 General lines of the code with deferred allocation generated by the compiler 166
8.3 Example of a task with equal-sized input and output views 180
8.4 Example of a task using the inout_reuse clause . 180

LISTINGS

xxvi

List of Algorithms

1 scheduler_loop(w) . 44
2 add_task_locally(t, w) . 44

3 last_dep_satis�ed(w, t) . 139
4 node_with_min_cost(nodew , data) . 140
5 scheduler_loop(w) . 140
6 empty_mpsc_�fo(w) . 140
7 topology_aware_stealing(w) . 143

8 prepare_data(vo) . 165
9 prepare_data_vec(vv , num) . 165

10 prepare_peek_data(vp) . 202

LIST OF ALGORITHMS

xxviii

List of Tables

2.1 Overview of basic characteristics of approaches in related work 25
2.2 Overview of the features of data placement in related work 26
2.3 Overview of the features of scheduling in related work 27

6.1 Average latency of read and write accesses as a function of the distance for the
Opteron system . 123

6.2 Average latency of read and write accesses as a function of the distance for the SGI
system . 123

6.3 Parameters for the benchmarks . 124
6.4 Compiler �ags and manual optimizations for the benchmarks 125

LIST OF TABLES

xxx

1 Introduction

Microprocessor development from the early 1970s until the mid-2000s was characterized
by substantial increases of sequential performance with each new processor generation due to
aggressive scaling of the clock frequency and micro-architectural improvements. Towards the
mid-2000s this development reached a point at which higher clock rates and more complex micro-
architectures became less energy-ef�cient, such that power consumption and energy density were
pushed beyond reasonable limits. As an alternative, the industry has shifted to more energy
ef�cient multi-core designs, integrating multiple processing units on a single chip. [43]

To satisfy the ever-increasing need for computing power, the focus now lies on increasing the
parallel performance by integrating more cores per chip instead of developing more complex cores
with higher sequential performance. Today's high performance computing systems range from
multi-core systems with several cores to many-core systems composed of dozens or hundreds
of general-purpose computing units. The trend to integrate more and more cores is expected to
continue and future systems are expected to integrate thousands of cores [26].

Memory accesses in these architectures are a major concern for performance for two main
reasons. First, the clock frequency of processors and DRAM have evolved at different speeds,
resulting in a drastic performance gap between these components known as the memory wall [64].
From the perspective of a core, each access to main memory potentially stalls the core for many
cycles until data eventually becomes available and can thus reduce performance considerably.
Second, the integration of a large number of cores in a parallel system puts additional stress on
the memory interface due to an increased amount of requests that can be issued per time unit.
This might lead to contention on the memory controller, further increasing the latency of memory
accesses and further decreasing performance.

To improve memory bandwidth and to avoid contention, many-core systems integrate multiple
memory controllers and group cores with memory controllers into nodes that are connected
through large-scale links. The local memory of a node can be accessed by the cores of the node
without using the interconnect and local accesses are thus fast, while accesses to remote nodes
are slow. Access to local and remote memory in such systems with non-uniform access to main
memory (NUMA) is usually managed transparently through the hardware and main memory
is accessible by software through a single, uni�ed address space. However, to keep the latency
of memory access low and to avoid contention on speci�c nodes, data and computations must
be distributed across nodes using appropriate software techniques such that all accesses ideally
target local memory and such that none of the nodes is targeted by a signi�cantly higher amount
of requests than the others.

Chapter 1: Introduction

While existing sequential applications required no or only few changes to bene�t from im-
provements of sequential performance of systems with uniform memory access (UMA), the shift
to parallel architectures and non-uniform memory access for mainstream computing represents a
major challenge for software development and optimization with fundamental changes throughout
the entire software stack [13, 27]. This involves:

– the parallelization of algorithms to take advantage of the processing power of multiple cores.
– the design of parallel programming models that allow to denote parallelism and whose

execution models de�ne how a parallel program is executed.
– the design of compilers that translate the speci�cation of a parallel program to code that is

executable on a parallel target architecture.
– the development of low-overhead execution environments that implement the execution

models of parallel programming models.
– the development of ef�cient system software providing �ne-grained control over the assign-

ment of computations to cores and of data to nodes.

Due to the wide variety of available parallel hardware architectures and short release cycles of
systems with higher core counts, parallel applications are expected to be portable across multiple
systems and to be able to yield shorter execution times with each additional core. As parallel
software is usually signi�cantly more complex than sequential software, parallel programming
models must provide means to improve the productivity and to reduce the implementation
overhead related to parallelism.

Task-parallel programming models [22, 25, 70, 72, 36, 54, 33, 35, 28] are a recent trend to respond
to these challenges. A key feature of these models is to abstract from details of the underlying
architecture and system software and to reduce the speci�cation of a parallel program to the de�-
nition of �ne-grained tasks and dependences between them. While this concept greatly improves
the productivity of the programmer, it leaves issues related to ef�cient interaction with system
software, ef�cient exploitation of the hardware and performance portability to the implementation
of the execution model. On many-core NUMA systems, this includes the optimization of memory
accesses, i.e., keeping accesses to main memory local and distributing requests equally to all nodes.
Providing ef�cient mechanisms for the placement of tasks on cores and the placement of data on
nodes is indispensable for the implementation of task-parallel programming models of many-core
systems in order to achieve high performance.

1.1 Objectives and contributions of this thesis
Past research has lead to a wide variety of approaches for optimized placement of computations

and data on NUMA systems, ranging from static optimizations by the compiler to dynamic
solutions operating at execution time. However, only little work has been done for task-parallel
applications and run-times managing their execution.

The purpose of this thesis is to explore the challenges and opportunities regarding the ef�cient
exploitation of many-core NUMA systems by task-parallel applications with a focus on accesses
to main memory and to propose mechanisms for ef�cient task and data placement. The �rst
major challenge in the development of such mechanisms is to identify and analyze the interactions
between the application, the run-time, the hardware and the operating system that are relevant
for data locality and performance of task-parallel programs. The second major challenge is to
design mechanisms that are portable, fully-automatic, application-transparent and able to react to
dynamic changes of the application. From this perspective, the thesis focuses on the identi�cation
and detailed analysis of:

1. characteristics of the run-time systems that are needed to support low-overhead implementa-
tions of mechanisms for task and data placement and to prevent the run-time system itself
from becoming a bottleneck for performance.

2. characteristics of task-parallel programs that are relevant for data locality and performance
and that have to be taken into account for the design of mechanisms for data and task

2

Chapter 1: Introduction

placement.

Based on the �ndings of this analysis we developed multiple automatic on-line techniques for
ef�cient and portable data and task placement exploiting information on point-to-point data
dependences readily available in modern task-parallel run-time systems at execution time.

The implementation of these mechanisms and their experimental evaluation led to several
practical contributions. First, we developed a NUMA-aware run-time based on OpenStream, a
state-of-the-art framework for task-parallel applications, that serves as the basis for our mechanisms
for task and data placement. Second, we implemented these mechanisms and integrated them
into the NUMA-aware run-time. To validate that our concepts apply to real-world task-parallel
applications, we have implemented of a set of high performance, scienti�c OpenStream benchmarks
and executed them using our run-time. Finally, we designed and implemented Aftermath, a tool
for performance analysis and debugging of task-parallel applications and run-times. This allowed
us to understand the interactions between the task-parallel application, the run-time system, the
hardware and the operating system and to take these into account for the theoretical concepts for
task and data placement.

1.2 Outline of this document
The outline of this thesis is the following. Chapter 2 presents the context of this thesis. The

chapter provides a motivation for task-parallel languages as a programming model for many-
core systems and de�nes the goals for ef�cient exploitation of the hardware through optimized
mappings of computation to cores and data to memory controllers by a run-time system. A
presentation of related work forms the basis of the problem statement provided at the end of the
chapter.

Chapter 3 presents OpenStream, a data-�ow extension for OpenMP that enables task parallel
programming and that we have chosen for the implementation of the concepts proposed in this
thesis. We present the syntax of OpenStream, its execution model and provide an outline for the
compilation of OpenStream applications.

Chapter 4 focuses on the requirements for run-time systems to support ef�cient task and data
placement on many-core NUMA systems. The chapter shows how memory is typically placed
on nodes by the operating system and investigates the in�uence of this strategy on the locality
of memory accesses in OpenStream programs. Based on these �ndings, we propose methods for
low-overhead, NUMA-aware memory allocation and the determination of memory placement.

Chapter 5 introduces dynamic single assignment, a programming style that allows the run-time
system to reliably and accurately determine the data that is accessed by a task before the task is
executed. We point out the implications of this programming style on the memory footprint related
to task creation and conclude that parallel task creation is bene�cial for the memory footprint as
well as for performance.

The experimental setup for the validation of the concepts presented in this thesis is given
in Chapter 6. This includes a detailed description and characterization of all benchmarks, a
description of baselines to which we compare our optimizations, the de�nition of the methodology
for measurements and a description of the architectures of our test systems.

Chapter 7 presents our solutions for NUMA-aware task placement. We propose work-pushing,
a technique that transfers tasks to cores associated to nodes that contain the memory regions
accessed by the tasks and topology-aware work-stealing, a mechanism that steals tasks from an
incrementally widening neighborhood of a core with respect to the memory hierarchy.

Ef�cient data placement is addressed in Chapter 8 presenting deferred allocation. In this
technique, the allocation of the memory regions that receive the input data of a task is delayed
from task creation to the moment when the set of tasks writing to the memory regions as well as
the nodes on which these tasks execute are known. As in Chapter 7, we analyze the impact of this
strategy on data locality and performance.

Chapter 9 treats our optimizations for broadcasts, passing the data of a single producer is to
multiple consumers. We present broadcast tables and show that this optimization considerably

3

Chapter 1: Introduction

reduces the memory footprint and signi�cantly increases performance of a broadcast-intensive
linear algebra kernel.

Chapter 10 covers Aftermath, a tool for the visualization and analysis of execution traces that we
have originally developed for performance debugging of our optimizations and the benchmarks
presented in Chapter 6, but whose concepts can be applied to performance analysis of task-parallel
applications and run-times in general.

The conclusions on the work presented in this thesis and directions for future research are
given in Chapter 11.

4

2 Context and problem statement

In this chapter, we introduce the scienti�c and technical context of this thesis. In Section 2.1, we
�rst explain why the advent of massively parallel general-purpose architectures in mainstream
computing has raised the need for alternative programming models. We present the expectations on
these models and introduce task-parallel programming as an approach that addresses these issues.
The aspects of task-parallel programs that are critical for performance are covered subsequently.
Section 2.2 provides an overview of the architecture of high performance many-core systems and
emphasizes the prerequisites for their ef�cient exploitation. The focus of this presentation lies
on the ef�cient use of the memory architecture. Section 2.3 discusses how this problem can be
tackled through proper orchestration at execution time. After a presentation of solutions proposed
in related work in Section 2.4, we de�ne the objectives of this thesis and how our solutions differ
from existing approaches in Section 2.5.

2.1 Parallel programming models for many-core architectures

As parallel architectures have become omnipresent from embedded systems through desktop
computers to systems dedicated to high performance computing, development of parallel software
has become an imperative to exploit the processing power of contemporary systems. The wide
variety of available parallel architectures and short periods between releases of new systems with
increased core counts have lead to a shift of the expectations on programming models for parallel
systems. Modern programming models are expected to enable development of applications that are
able exploit the parallel processing power of a machine ef�ciently, that yield similar performance
across machines with similar characteristics and that can take full advantage of an increasing
number of processing units. To compensate the additional complexity of the development of
parallel software compared to sequential implementations, more productive approaches that
abstract from technical aspects of the implementation are needed, such that programmers can
concentrate on the speci�cation of parallelism. These key requirements can be summarized as
scalability1, performance portabilityand productivity.

1. There are many de�nitions for scalability and often the term is only de�ned intuitively [52]. The de�nition used in
this thesis is that an application is scalable if its speedup over sequential execution is approximately linear wrt. the number
of processing units used for execution on the same machine.

Chapter 2: Context and problem statement

2.1.1 Task-based programming models

Task-parallel programming is an increasingly popular approach to address the issues above.
Many different approaches for task-parallel programming have been proposed, ranging from
generic concepts for task-parallel computations (e.g., CONCURRENT COLLECTIONS [33]), through
general-purpose libraries (e.g., THREADING BUILDING BLOCKS [54]), language extensions (e.g.,
CILK [22, 49], OpenMP [23, 25], STARSS [70], OPENSTREAM [72, 74], X10 [36] and H ABANERO [35],
L IBKOMP [28]) to specialized libraries for speci�c domains (PLASMA [60] based on QUARK [85]).
The key aspect of task-parallel programming models is to expose large amounts of parallelism by
creating small units of work, called tasks, and to specify interactions between tasks that constrain
which tasks can run in parallel. How tasks are declared and which methods of synchronization
are available varies between the approaches for task-parallel programming. The complete set
of tasks and the synchronization between tasks representing the parallel computation do not
necessarily have to be constituted statically. New tasks can be created and synchronization be
de�ned dynamically and incrementally at execution time. These requests for task creation and
synchronization are handled by a run-time system, orrun-time for short, whose purpose is to manage
the execution of the task-parallel program.

Productivity in task-based programming is addressed by omitting technical details in the
speci�cation of a program and by focusing on the de�nition of tasks and their interactions. Code
of task-parallel programs speci�es what can execute in parallel, but leaves the choice ofwhere
and whento execute tasks to the run-time. This abstraction lifts the obligation to provide code
for a particular kind of machine or a particular operating system and allows the programmer to
concentrate on issues that are inherent to the algorithm that is being implemented.

Scalability is addressed by encouraging the speci�cation of very �ne-grained tasks with �ne-
grained inter-task synchronization, which increases parallelism and enables exploitation of a large
number of processing units simultaneously. However, �ne-grained parallelism is only a necessary
condition for scalability. To unleash the parallel processing power of a machine, it is also necessary
that hardware resources are exploited ef�ciently and that the interface of the operating system is
used appropriately. This is the responsibility of the run-time system, which maps parallelism to
the machine and which acts as a mediator between the application and the operating system.

Similar to scalability, performance portability is addressed both in the programming model
and the speci�c implementation of the run-time. By leaving out platform-speci�c code in the
speci�cation of a program, the same code can be used to obtain specialized versions for execution
on different platforms. The run-time is responsible to adapt the execution of the application to the
speci�cities of the target platform, which does not only involve preservation of correct execution,
but also ef�cient exploitation. This can be achieved through appropriate parameterization of
the run-time or by providing platform-speci�c implementations with a well-de�ned, platform-
independent interface between the application and the run-time.

2.1.2 The run-time system

The run-time system is the central component of task-parallel programming and is responsible
for correct and ef�cient execution of the task-parallel application. Figure 2.1 shows the embedding
of the run-time system into the execution environment. The services of the run-time system,
e.g., task creation and synchronization, are directly invoked by the application. In many cases,
the run-time is provided as a run-time library that the application is linked against dynamically
and requests consist in ordinary calls to library functions. The infrastructure of the run-time
system satisfying the requests is in turn based on the services provided by the operating system.
This interaction is rarely direct and commonly based on system libraries with more convenient
interfaces for system calls. The operating system forms the bottom of the software stack and �nally
provides access to the hardware.

The functionality provided by the run-time system can be grouped into multiple components.
The exact set of components and the separation of components depend on the speci�c programming

6

Chapter 2: Context and problem statement

Figure 2.1: Embedding of the run-time system into the execution environment

model and its implementation. Generally, the run-time manages the creation and destruction of
tasks, implements task synchronization, detects when a task becomes ready for execution and
contains a schedulerthat distributes ready task to the different cores of the machine. In cases where
the run-time also manages memory of the application, a memory allocator is part of the run-time
as well. The performance of a task-parallel application highly depends on the implementation of
the run-time components:

– First, algorithms and data structures of the run-time itself should not become a bottleneck for
performance. For instance, the computational complexity of algorithms for task management
and dependence tracking should be suf�ciently low to handle large amounts of tasks, the
memory footprint of internal data structures should be small and data exchanges between
concurrent activities of the run-time should be ef�cient. Decentralized algorithms should be
preferred to prevent centralized components from becoming a bottleneck.

– Second, the run-time must interact ef�ciently with its environment. For example, slow system
calls should be avoided or at least not be invoked frequently and the run-time should use
appropriate methods for synchronization provided by the system libraries.

– Third, the execution of tasks should be orchestrated, such that hardware resources are used
ef�ciently, resulting in the lowest possible time for execution of the application. This aspect
is particularly platform-speci�c and requires detailed knowledge of the target architecture.

The next section presents the hardware architecture of contemporary high performance systems
targeted in this thesis. Its purpose is to emphasize which aspects are relevant to performance and
to point out the low-level characteristics of ef�cient executions of applications. Section 2.3 then
discusses how this behavior can be achieved by the run-time.

2.2 High performance parallel hardware architectures
Modern high performance hardware architectures are multi-core and many-core systems,

which integrate multiple processing units on the same chip and combine multiple chips to provide
large amounts of parallel processing power. As energy ef�ciency has become the driving factor
in the development of multi-core and many-core systems, the architecture of individual cores
tends to be less complex than for high performance single-core architectures [43]. However,
sequential performance still plays an important role [53] and, as a consequence, recent general-
purpose parallel architectures inherit many optimizations from single-core architectures. In the
context of this thesis, we focus on systems designed for high performance computing with less
strict constraints on energy consumption and thus less drastic trade-offs between sequential
performance of each individual core and the number of cores. Besides basic micro-architectural
optimizations, e.g., pipelining, the use of caches and basic SIMD instructions, these systems
also employ more aggressive techniques, such as out-of-order and superscalar execution, branch
prediction, speculative execution and hardware prefetching.

Particular attention, both in single-core systems as well as parallel architectures, is paid to

7

Chapter 2: Context and problem statement

Figure 2.2: Example of a hierarchy of caches
with three levels L1 to L3 with separate and uni-
�ed caches

Figure 2.3: Hardware prefetching between
DRAM and the last level cache and between
caches

architectural improvements that reduce the impact of memory accesses on performance. As
this thesis focuses on the analysis and mitigation of bottlenecks related to memory accesses, the
following presentation of the hardware architecture of many-core systems spotlights the memory
subsystem.

2.2.1 The cache hierarchy

During the past decades, technology for processors and DRAM have evolved at different
speeds, leading to a dramatic gap between the computational performance and the main memory
access time referred to as thememory wall[64]. While computations involving only the register
�le of the processor can be carried out fast, accesses to main memory limit performance as the
processor stalls for many cycles waiting for data from DRAM before execution can be resumed.
Hence, the reduction of the impact of memory accesses on performance is a major concern in
computer architecture as well as in the software industry.

Cache hierarchies of single-core systems

To mitigate the impact of high-latency memory accesses, processors have been provided with
small and fast on-chip cache memory, which enables exploitation of temporal and spatial locality of
memory accesses. Temporal locality refers to the reuse of previously requested data and can be
exploited by keeping data in the cache that has already been fetched from main memory. Spatial
locality designates the use of data at addresses close to previously requested data and can be
exploited by bringing data from neighboring addresses to the cache.

Requests to data that is already present in a cache result incache hitsand those to data that
must be fetched from main memory are referred to as cache misses. On the one hand it is desirable
that cache capacity is as high as possible in order to maximize the amount of data that can be held
simultaneously in the cache. On the other hand, the latency of accesses to a cache increases with its
size, such that smaller caches are faster than bigger caches. Dimensioning the cache thus involves
a trade-off between the size and the average latency of accesses to the cache. Modern systems
therefore rely on a hierarchy of cacheswith multiple levels, where caches at the upper levels, placed
near a processing unit (e.g., �rst-level caches), are small and fast and caches at the lower levels
farther away (e.g., third-level caches) are bigger, but also slower. Hence, the cost of a cache miss in
a cache near the CPU is still higher than the cost associated to a hit, but if the request results in a hit
in one of the caches at lower levels the cost is lower than an access to main memory. Typically, high
performance systems employ three levels of caches with �rst-level caches of tens of KiB, accessible
within only a few processor clock cycles and last level caches of a few MiB that can be accessed in
tens of cycles.

As both data and instructions are stored in main memory, the latency of DRAM impacts
both data accesses and the transfer of instructions to the CPU. Hence, the use of caches can not
only improve latency of accesses to data, but can also speed up instruction fetching. Uni�ed
cachesstore instructions and data jointly and serve requests for the two types equally without

8

Chapter 2: Context and problem statement

Figure 2.4: Shared and private caches in a multi-core system

differentiation. In contrast to this, in designs with separate caches, data and instructions are stored
in distinct caches, namely the data cacheand the instruction cache. These separate caches can operate
in parallel and are smaller and thus faster than a uni�ed cache. Hence, requests for data and
instructions can be satis�ed simultaneously, which increases performance for pipelined execution
of instructions. However, the use of separate caches represents a static partitioning and can result
in under-utilization of the cache capacity. Unused capacity of the instruction cache could be needed
by the data cache and vice versa, but remains inaccessible due to the separation of instructions
and data. Hence, most commonly, only the level closest to the CPU uses separate caches while the
remaining levels are composed of uni�ed caches. Figure 2.2 shows an example of a hierarchy of
caches with three levels L1 to L3. The �rst level cache is separated into an instruction cache (L1I)
and a data cache (L1D). The second and the third level cache are both uni�ed caches.

Requests for data elements that have neither been referenced before nor stored at neighboring
addresses of previously requested data result in cache misses, independently from the size of
caches and the depth of the hierarchy. A hardware technique that aims at reducing the number of
thesecompulsory cache missesis hardware prefetching. In this optimization, the history of previously
accessed addresses is analyzed in order to predict which addresses will be accessed in the future.
The data at these addresses is brought from main memory to a cache speculatively in the hope that
the prediction is correct and that the data will actually be referenced. As prefetching can be done
in parallel with the execution of instructions, the delay of the instruction that �rst accesses this
data can be reduced or hidden entirely if prefetching �nishes in time. Prefetching is also employed
between caches to reduce the number of compulsory misses at upper levels of the cache hierarchy.
Figure 2.3 illustrates hardware prefetching between DRAM and the last level cache as well as
between the last level cache and the second level cache of the memory hierarchy from Figure 2.2.

Cache hierarchies for architectures with multiple cores

Cache hierarchies of systems with multiple cores are slightly more complex than those of single-
core architectures. An important decision that must be taken for the design of such a hierarchy
is whether a cache issharedamong multiple cores or whether it is private. The advantage of a
private cache is that its capacity is dedicated to the associated core and cannot bepollutedwith data
from another core. Moreover, the absence of concurrent accesses reduces the complexity of the
interface and reduces contention, increasing cache performance. Shared caches, however, enable
low-overhead communication between cores, as data can directly be exchanged within the cache.
Furthermore, data that is accessed by multiple cores must only be stored once, which reduces
the total amount of required cache memory. As the impact on performance of cache sharing is
application-speci�c [87] and as general-purpose architectures must yield acceptable performance
for a wide variety of applications, they cannot opt for one extreme and thus employ both private
and shared caches. As a rule of thumb, private caches are employed at the upper levels of the
cache hierarchy near the core (e.g., �rst and second level caches) and shared caches are used for
the lower levels of the hierarchy (e.g., the third level cache).

An important issue regarding the cache hierarchy of parallel systems is related to cache coherency.
With private caches, or, more generally speaking, with caches which are not shared by all cores,
data can be present in multiple caches at once. In order to provide a consistent view on memory for
all cores, modi�cation of shared data must result in invalidation or update of its copies. Systems
that provide this coherence transparently are referred to as cache coherent architectures.

9

Chapter 2: Context and problem statement

Figure 2.5: Example of a NUMA system with 16 cores and 4 nodes

Figure 2.4 shows an example of a hierarchy of caches for a multi-core system composed of four
cores. The �rst level caches are private, second level caches are shared by pairs of cores and the
third level cache is shared by all cores.

2.2.2 Non-uniform memory access

Although caches and prefetching greatly improve performance if exploited ef�ciently, not all
accesses to main memory can be eliminated and improvement of DRAM access latency remains a
major concern for performance. Parallel architectures exacerbate this dif�culty, as each additional
core potentially increases the total number of requests to main memory per time unit and thus
increases pressure on the memory controller. Once the bandwidth of the controller is saturated,
latency of accesses to DRAM increases and memory accesses rapidly become a bottleneck for
performance. Therefore, high performance general-purpose parallel architectures contain multiple
memory controllers which are physically distributed over the machine. This allows the hardware
to satisfy memory accesses in parallel and overall bandwidth is increased.

Cores, caches and memory controllers in these systems are grouped into nodesconnected
through large-scale links. The interconnection formed by the links can contain direct connections
as well as indirect connections between nodes. For indirect connections, data cannot be exchanged
directly and must traverse one or more intermediate nodes on the way from the source to the
destination. The distance between a core and the targeted memory for such a transfer is expressed
in hops, representing the number of links on the shortest path between the core and the controller.

Accesses from cores to memory of the same node are referred to aslocal memory accessesand
accesses to the memory of different nodes are calledremote memory accesses. Local memory accesses
can be handled without engaging the interconnect and can thus be carried out rapidly. Accesses to
remote nodes require the use of the interconnect and are thus slower, with an increasing latency for
each additional hop. As the latency of a memory access depends on the location of the requesting
core and the distance to the targeted memory controller, these systems are referred to as systems
with non-uniform memory access(NUMA). Non-uniform memory access in addition with cache
coherence is abbreviated asccNUMA (cache-coherent NUMA systems). As we are targeting only
architectures with cache coherency, we use the terms NUMA and ccNUMA interchangeably in the
rest of this thesis.

Figure 2.5 shows a sample architecture with 16 cores and four memory controllers grouped
into four nodes. For cores P0 to P3 the memory of Node 0 can be reached at a distance of 0 hops
and thus represents the local memory. The direct neighbors, Node 1 and 2, are at a distance of one
hop. Node 3 can only be reached by passing through Node 1 or Node 2 �rst, its distance relative to
Node 0 is thus two hops.

Despite the physical distribution of memory controllers across multiple nodes with non-uniform
access, NUMA systems provide auniform addressing schemethat provides access to the entire
memory of the system using a single address space. The translation from addresses to nodes and
routing within the interconnect is managed by the hardware and the physical distribution remains
essentially hidden to programs executing on the machine. However, modern operating systems
explicitly support NUMA and provide interfaces that allow application to allocate memory on
speci�c nodes or to obtain information on data placement.

10

Chapter 2: Context and problem statement

The ef�cient use of high performance parallel hardware architectures requires that cores, caches
and non-uniform memory access are taken into account. The next section de�nes the goals for
ef�cient exploitation from a software perspective.

2.2.3 Ef�cient exploitation of many-core architectures and NUMA

Ef�cient exploitation of the hardware consists in minimizing execution time through appropri-
ate low-level behavior at the micro-architectural level. Due to the complexity of the architecture of
many-core NUMA systems, this is a dif�cult task involving many aspects of the execution of a
program. The main directions of ef�cient exploitation are the following:

– Maximizing parallelism
Leveraging the parallel processing power of the machine requires that computations are
distributed to as many cores as possible. Ideally, all of the cores can be used simultaneously
throughout the entire execution time with minimal overhead for communication resulting
from the distribution.

– Maximizing sequential performance on each core
Sequential execution on each individual core should be as fast as possible. This involves
maximizing instruction level parallelism for superscalar architectures, the use of SIMD in-
structions to perform computations simultaneously on multiple ALUs and optimizations
for the instruction pipeline. Memory accesses should be avoided through the ef�cient use of
registers.

– Ef�cient use of caches
To keep the impact of memory accesses on performance as low as possible, the cache hit rate
should be as high as possible. Spatial and temporal locality should be maximized through
appropriate layout of data elements in memory and appropriate order of memory accesses.
Data that is accessed frequently should �t into the hierarchy of caches in order to avoid
con�icts and thus eviction of critical data due to limited cache capacity. The pattern of
memory accesses should be suf�ciently regular to be captured by the prefetchers, such that
the number compulsory misses can be kept as low as possible.

– Minimizing the latency of accesses to main memory
The latency of memory accesses depends on the contention of memory controllers as well
as the distance between the requesting cores and the controllers satisfying the requests. To
minimize contention, it is important to distribute memory accesses over all of the nodes
of the machine. To minimize the average distance of memory accesses, the ratio of local
memory accesses to the total number of accesses should be as high as possible.

Depending on the characteristics of the application, the importance of each of the directions for
ef�cient exploitation above varies. For example, the performance of an application with frequent
accesses to memory might be more sensitive to an improvement of the cache hit rate than to an
increase of the number of exploited cores, while the performance of a compute-bound application
is mostly determined by the number of cores and maximization of sequential performance on
each core and may remain insensitive to improvement of the cache hit rate. Each of the directions
represents a major challenge on its own with large con�guration spaces and complex relationships.

In addition, overall performance generally relies on multiple optimizations belonging to
different directions. As improvements in one direction can constrain the con�guration space
in other directions, it is usually impossible to consider each direction separately and to simply
combine the optimizations. Furthermore, optimizations can be applied at different software layers
and different stages. For example, partitioning of data for caches can be done manually by the
programmer, by the compiler or dynamically at execution time. Each of these solutions has its
limitations, advantages and drawbacks. For optimal performance, different aspects must therefore

11

Chapter 2: Context and problem statement

be considered jointly throughout the whole process from the implementation to execution of an
application.

However, each direction for the improvement of application performance represents an entire
�eld of research on its own and exhaustive exploration of all possible combinations is infeasible.
In this thesis, we concentrate on the aspects of non-uniform memory access in the context of the
execution of task-parallel programs. Other directions for improvement are not directly addressed
by our approaches, but were taken into account during development and parametrization of the
applications for experimental evaluation.

One possibility to avoid node contention and to improve the locality of memory accesses of task-
parallel programs is to address NUMA-related issues through ef�cient mapping of parallelism to
the machine, i.e., the ef�cient mapping of computations to cores and of data to memory controllers.
In the next section, we discuss the principles of this approach and motivate which software
components are commonly involved in this process.

2.3 Ef�cient mapping of parallelism to the hardware
The mapping of parallelism to the hardware consists of two parts: the mapping of computations

to cores and the mapping of data to memory controllers. The de�nition for an ef�cient mapping in
this thesis is a mapping that keeps the wall clock execution time of an application as low as possible.
To this end, both the mapping to cores and to memory controllers must exploit the hardware
ef�ciently by inducing the low-level behavior described in the previous section. For the mapping
of computations to cores this means that ideally, all cores of the system are used simultaneously
and that each core is used ef�ciently with maximal sequential performance. The mapping of data
to nodes should minimize the latency of memory accesses by avoiding contention on memory
controllers and by keeping the distance between cores and the targeted nodes low. Ideally, all
memory accesses are local and requests are distributed equally over all memory controllers.

In some cases, these goals can be achieved simultaneously. For example, computations that
do not share any data can execute concurrently on cores of different nodes and the data that is
accessed by each computation can be mapped to the same node as the computation. However, in
many cases, the goals are dif�cult or even impossible to achieve at the same time. As an example,
consider a data buffer that is accessed by multiple concurrent computations. One possible mapping
of the data is to place the buffer on a single node. If all the computations accessing the buffer are
mapped to cores of the same node, all memory accesses target local memory, but the computing
resources of the machine are under-utilized as the cores of the remaining nodes are not used at all.
If the computations are spread on cores of multiple nodes, the parallel processing power of the
machine is well exploited, but a signi�cant part of the accesses to memory target a remote node. In
addition, contention of the node that contains the buffer is high as it has to deal with concurrent
accesses from multiple cores. The last possibility for a mapping is to distribute the buffer over
multiple nodes and to spread computations over the entire machine. This mitigates the contention
problem, but most of the memory accesses still target remote nodes. An ef�cient mapping is thus
often a trade-off between optimizations for data locality, contention and parallel execution.

Whether a trade-off is necessary and which trade-off is required heavily depends on the
behavior of the application. To determine whereto carry out computations and whereto place data,
it is crucial to determine which computationshave to be mapped, which datahas to be placed and,
most importantly, howdata is accessed. For this purpose, program behavior must be detected
and predicted adequately. More detailed information on application behavior and more precise
prediction allow for more ef�cient mapping strategies and better performance.

Two common approaches to implement dynamic mappings of computations to cores and
dynamic mappings of data to nodes consist in providing appropriate algorithms for scheduling
memory allocation. For ef�cient exploitation of the hardware, the scheduler must be modi�ed
to take into account the topology of the hardware, the behavior of the application at execution
time, which data is accessed and the data placement at the moment when a scheduling decision
is taken or a combination of these aspects. Ef�cient memory allocation must take into account

12

Chapter 2: Context and problem statement

the topology of the hardware, the execution locations of threads or tasks, or both characteristics
to place data accordingly. The placement of data can be carried out either synchronously upon
allocation of new memory or dynamically through data migration during execution. By combining
scheduling and memory allocation, the mapping of computations and data can be addressed at
the same time, avoiding that each approach only reacts passively to the other. For example, the
scheduler can advise the memory allocator to place data on certain nodes on which computations
will be scheduled in the future. Similarly, the memory allocator can provide hints about future data
placement and advise the scheduler for future mappings of computation. The range of possible
mappings is thereby extended and bottlenecks that arise from insuf�cient communication between
the scheduler and the memory allocator can be avoided. As the determination of an optimal
solution for a mapping is generally considered to be computationally intensive and thus ill-suited
for on-line techniques, the algorithms used for scheduling and allocation are usually based on
heuristics.

2.4 Related work
Past research has led to a multitude of approaches for ef�cient exploitation of parallel archi-

tectures based on scheduling and data allocation. The main characteristics of these approaches
are:

– The set of heuristics (scheduling only, data placement only or scheduling and data placement).
– The layer of the software stack at which the approach is implemented (e.g., the operating

system, the run-time system, the compiler, the application or a combination of these layers).
– Which information is used by the approach and how this information is obtained (e.g., hints

by the application that on data placement, data af�nities obtained through pro�ling, af�nities
derived from the structure of computations and data accesses in speci�c types of algorithms).

– To which programming model or framework the approach applies (e.g., independent pro-
cesses, OpenMP or Cilk).

– The characteristics of the applications targeted by the approach (e.g., loop-level parallelism
or algorithms that operate on arrays).

To our knowledge, only few approaches are speci�c to task-parallel applications executing on
many-core NUMA systems. In this section, we present a set of related approaches relevant in the
context of this thesis, covering the characteristics above. The presentation groups the approaches
by the type of mapping, i.e., data placement and scheduling.

2.4.1 Data placement

The presentation of approaches for data placement below starts with a simple on-line page
migration technique called A FFINITY-ON -NEXT-TOUCH that can be implemented in user space or by
the operating system. We then introduce C ARREFOUR, a more sophisticated kernel-space approach,
which focuses on the avoidance of node contention through decisions for page migration, page
replication and interleaving based on statistics gathered with hardware performance counters.
An application-level approach for manual improvement is provided by MA I. The approach is
used by the M INAS framework, which instruments the source code of an application to bene�t
from placement strategies from MA I automatically. The presentation �nishes with two trace-based
approaches. The �rst is based on full-system simulation and uses M INAS for data placement. The
second approach performs off-line pro�ling using hardware performance counters and places data
accordingly at execution time.

Af�nity-on-next-touch

Many operating systems use �rst-touch placementas the default placement strategy, in which
a page of physical memory is allocated on the node associated to the core that �rst writes to the
page (a detailed discussion of data placement by the operating system will be given Section 4.1). If
the cores that initialize data structures and those that access them are located on the same node,

13

Chapter 2: Context and problem statement

�rst-touch placementyields high locality of memory accesses. However, if the initializing nodes and
the accessing nodes do not match, this strategy may lead to high contention and a high fraction
of remote memory accesses. A common strategy to circumvent this problem is to migrate pages
dynamically after initialization to the nodes that perform the next write accesses. This strategy,
referred to as A FFINITY-ON -NEXT-TOUCH or M IGRATE-ON -NEXT-TOUCH , can be implemented
entirely in user space using system calls for memory protection and synchronous page migration
or in kernel space for transparent, asynchronous migration. Löf and Holmgren [61] have evaluated
a user space implementation of A FFINITY-ON -NEXT-TOUCH on an isolated domain of 8 nodes of a
Sun Fire 15000 system running an application calculating the scattering of electromagnetic waves
in a three-dimensional space mainly by solving a set of equations using the conjugate gradient
method. Using A FFINITY-ON -NEXT-TOUCH the performance is improved by up to 166%, showing
that data placement can have a huge impact on application performance.

Goglin and Furmento [50] have implemented A FFINITY-ON -NEXT-TOUCH for the Linux kernel
and compared the performance to a user space implementation. The kernel-based implementation
is about 30%faster on a four-node AMD Opteron 8347HE system and displays signi�cantly less
overhead than the user space implementation for small memory regions. However, the authors
conclude that a user space implementation performs better in cases where larger memory areas
known by the application have to be migrated. The kernel-space implementation migrates such
areas page-by-page, whereas a user space implementation can migrate each of these areas in a
single operation with lower overhead.

A FFINITY-ON -NEXT-TOUCH represents a simple and elegant way to migrate data to nodes on
which it is accessed. However, it is up to the programmer or a software component on a higher
level to trigger page migration. A FFINITY-ON -NEXT-TOUCH can be seen as a basic method for data
placement that can be employed in more complex and more speci�c approaches for optimization.

Carrefour

Dashti et. al [44] have proposed CARREFOUR, a NUMA-aware data placement mechanism for
the Linux kernel. Unlike other approaches for NUMA-aware data placement, C ARREFOUR focuses
on the avoidance of congestion on memory controllers and interconnect links and considers the
reduction of the latency of memory accesses by improving data locality only as a secondary goal.
The approach is based on four techniques:

– page co-locationplaces a page on the same node than the accessing core,
– page interleavingplaces pages on nodes in a round-robin fashion,
– page replicationreplicates pages on multiple nodes and
– thread clusteringco-schedules threads according to their intensity of data sharing.

Which combination of these techniques is used and how each technique is applied depends on
the behavior of the applications that execute on the machine. This involves global decisionsthat
enable or disable individual techniques globally and page-local decisionsthat enable or disable
techniques per page. The statistics that serve as a basis to characterize program behavior are
derived from values provided by a measurement component that uses I NSTRUCTION -BASED

SAMPLING [48] (IBS), a sampling mechanism available on recent AMD processors that provides
detailed information on the execution of instructions (e.g., whether an instruction performs a
memory access, whether the access targets local or remote memory, the duration of the access, etc.).

Global decisions are taken in four steps. In the �rst step, the system decides whether data
placement is necessary or not. To this end, CARREFOUR compares the number of memory accesses
per time unit of the entire system to an experimentally determined threshold of 50 accesses per
microsecond. If the actual value for the application is below the threshold, C ARREFOUR is disabled
and no further actions are taken. The second step consists in deciding whether page replication
should be enabled or disabled. To avoid high synchronization overhead due to frequent updates of
the contents of pages, page replication is only used for applications whose fraction of read accesses
to DRAM compared to the total number of accesses to DRAM is above 95%. In addition, there
must be enough free memory before page replication to avoid that the replication causes pages
to be swapped out to disk. In the third step, C ARREFOUR checks whether interleaving should

14

Chapter 2: Context and problem statement

be used to distribute requests to main memory to all memory controllers. This decision is based
on the memory controller imbalance, which is de�ned as the standard deviation of the frequency of
memory accesses among nodes. Interleaving is only applied if the value is higher than a threshold
of 35%. The decision whether page co-location should be used is taken in the fourth and �nal step.
Co-location is enabled for applications whose local access ratiois below 80%, i.e., the fraction of
memory accesses that targets a local node is below80%.

Page-local decisionsare taken individually for each page by analyzing statistics that are derived
from IBS samples that belong to instructions accessing the page. A page ismigratedto a node if
page migration is enabled globally and if the page is accessed only by cores of a single node. Page
replicationtriggers if the mechanism is allowed globally and if the page has only been accessed
by reading instructions. A page that is accessed by cores from multiple nodes in both read and
write mode is placed using the interleavingmechanism that moves the page on the node with the
smallest number of memory accesses per time unit in order to reduce contention.

The experimental evaluation of C ARREFOUR has been conducted on two AMD Opteron systems
machines with 16 and 24 cores, respectively, grouped into four nodes. The applications that
have been used for this evaluation are the PARSECBENCHMARK SUITE [18, 9] (version 2.1), the
FACEREC facial recognition engine [10] (version 5.0), the METIS [5] benchmark suite and the
NAS PARALLEL BENCHMARKS [6]. The performance of CARREFOUR have been compared to the
default �rst-touch page placement strategy of the Linux kernel, interleaving across all nodes as
well as the A UTONUMA patchset [41] for the Linux kernel, which migrates pages to the nodes
of the accessing cores. For single-application runs, CARREFOUR performs signi�cantly better
than default page placement (up to 3:63� faster). Compared to interleaving across all nodes,
CARREFOUR performs signi�cantly better in most cases and limits performance degradation in
cases, where interleaving across all nodes degrades performance signi�cantly compared to the
default placement of the operating system (the maximum performance degradation of C ARREFOUR

is 4%). In comparison with A UTONUMA, C ARREFOUR provides performance comparable results
or performs signi�cantly better. C ARREFOUR fails to improve performance of applications with fast
changes in behavior due to the limited sampling accuracy necessary for low-overhead sampling.

CARREFOUR shows that contention is an important issue on NUMA systems as optimizations
decreasing contention result in signi�cant improvement of the execution time. The approach is also
an example of an optimization that reacts to actual behavior of an application at execution time
and that is thus able to react to dynamic changes. Implementation at the operating system layer
allows a wide variety of applications to bene�t from the optimizations, but limits the granularity
for data placement to entire pages of memory.

MAi

The MEMORY A FFINITY INTERFACE [77] (MA I) is an interface for data placement designed for
high performance computing applications that operate on large arrays. The implementation of
MA I provides seven policies for the distribution of the pages of an array: bind_all,bind_block,cyclic,
cyclic_block,skew_mapp,prime_mappand random:

– The bind_allpolicy places all pages on a single node and switches to other nodes only if all of
the memory of the current node is in use.

– The bind_blockpolicy �rst divides the array into blocks and then places each block on a
different node.

– The cyclicpolicy distributes the pages of an array in a round-robin fashion over all nodes of
the machine, such that the i th page is placed on the node whose identi�er is i mod M , with
M being the number of nodes.

– Similarly, the cyclic_blockpolicy distributes blocks of subsequent pages on nodes in a round-
robin manner, for example, the �rst two pages could be placed on Node 0, the third and
fourth page on Node 1 and so on.

– The skew_mapppolicy places the ith page of an array on node n = (i + b i
M c + 1) mod M .

– Prime_mappcombines two policies: �rst, it associates pages to P virtual blocks of data using
the cyclic policy with P being a prime number and P � M . The second step consists of

15

Chapter 2: Context and problem statement

distributing the virtual blocks to nodes using the cyclicpolicy again.
– The last policy used in the paper is random, which places pages randomly across nodes.

The purpose of the more complex policies skew_mappand prime_mapp, originally proposed in [56],
is to avoid node contention that results from very regular memory accesses and distributions by
the cyclicor cyclic_blockpolicy. For example, this is the case if an array is divided into equal-sized
blocks whose size in pages is a multiple of the number of nodes. The cyclicpolicy would distribute
the pages of the entire array, such that the distribution within each block is identical, which can
lead to contention when the blocks are processed in parallel. The skew_mappand prime_mapp
policies yield different distributions for each block and thus avoid contention due to regular access
patterns.

The evaluation of MA I has been conducted on systems with four and eight NUMA nodes for
the FFT and CG applications from the OpenMP version of the NAS P ARALLEL BENCHMARKS [57]
as well as for an OpenMP implementation of a geophysics application [34]. The policies proposed
by MA I can improve performance by up to 31%compared to the default �rst-touch policy of the
operating system, but must be chosen manually. The authors have concluded that the best strategy
for data placement depends on the target architecture as well as on the structure of memory
accesses. Machines with a high difference between the latency of local and remote accesses bene�t
from data placement that optimizes for locality, such as bind_block, while execution on machines
with a low difference between these latencies can be improved with placement that improves load
balancing, such ascyclic,randomor skew_mapp. Applications with a clear af�nity of computations
and data yield higher performance with bind_blockand applications with irregular accesses bene�t
from distribution of data over nodes.

The results presented in the experimental evaluation of MA I show that the behavior of an
application requires different kinds of distributions of data to nodes and highlights that the
architecture also plays an important role in the selection of a placement strategy.

Minas

The conclusions drawn from the evaluation of MA I form the basis of the M INAS [76] framework,
which combines the data placement capabilities of MA I with a preprocessor called MA PP and
N UMARCH , a module that provides information about the target architecture. MA PP processes
the source code of an application, �nds shared, static arrays and replaces their declarations with
appropriate calls to memory allocation and distribution functions of MA I. The actual policy for the
data distribution chosen by MA PP depends on the characteristics of the NUMA platform reported
by N UMARCH . For systems with a high remote access latency compared to the latency of local
accesses, thebind_blockpolicy is chosen in order to optimize for latency. On systems with lower
remote access latency, the framework optimizes for bandwidth and uses the cyclicpolicy. In the
experimental evaluation, the authors compare the performance of the automatic optimization with
M INAS to the default page placement policy of the operating system as well as to hand-tuned
versions of the applications using combinations of distribution policies that best match the data
access patterns. The applications used for evaluation are the same as for the evaluation of MAI

with an additional benchmark that simulates wave propagation in three dimensions. The automatic
solution improves performance compared to the default page placement strategy of the operating
system, but remains behind the performance of the hand-tuned codes. The difference between the
automatic and the hand-tuned versions ranges from 0%to 25%.

M INAS is an effort to reduce the burden of the programmer to identify relevant data structures
and to choose architecture-speci�c distributions. The results show that although the automatic
approach cannot match the performance of hand-tuned code, automatic optimization can improve
performance signi�cantly.

Data placement with M INAS based on data sharing

In [66], the M INAS framework has been employed to improve data placement of applications
from the C version of the NAS P ARALLEL BENCHMARKS [15]. In a �rst step of this approach, the
application is executed in a full-system simulator and its memory accesses are recorded to a trace

16

Chapter 2: Context and problem statement

�le. The trace �le is then analyzed in order to generate sharing matrices that indicate for each pair
of threads how intensively these threads communicate.

The approach uses two metrics to characterize communication, the �rst is based on the amount
of memory that is accessed by two threads, while the second metric measures the number of
accesses to shared memory blocks. The two metrics are evaluated separately and threads are
grouped into pairs with maximum communication according to the metric. These pairs are then
used to generate a second sharing matrix that captures communication between pairs of threads.
The reason for this grouping is that caches are often shared between pairs of cores. Pairs with
maximum communication can thus take advantage of the shared cache, reducing the mapping to a
mapping of pairs of pairs of threads optimizing off-cache communication. However, the number of
cores per cache can be higher than two and more complex groupings than pairs might be necessary
for an optimal mapping. According to the authors, using pairs is still a reasonable approximation
in these cases.

The experimental evaluation has been conducted on an AMD Opteron 875 system with 8
NUMA nodes and 16 cores in total, as well as on an Intel Xeon X7560 system with 4 NUMA nodes
and 32 cores in total. It showed that for thread and data mappings based on the sharing matrix,
signi�cant improvements on the execution time of up to 75%can be achieved over default thread
and data mapping of the operating system. These performance gains have been achieved for
applications that initialize data sequentially, and for which the default page placement policy of
the operating system allocates all pages on the same node. For applications that initialize data
in parallel, no signi�cant speedup has been achieved. For the different types of applications and
platforms the choice of the metric for the sharing matrix (amount of memory or number of accesses)
did not have a signi�cant impact.

The approach shows that pro�ling can be used to obtain detailed information on data exchanges
between threads, which can be exploited for improved data placement of applications with distinct
patterns for memory accesses.

Feedback-directed page placement for OpenMP

Marathe et al. have proposed trace guided placement of pages for OpenMP programs [62].
The approach is divided into three phases: trace generation,af�nity decisionand trace-guided page
placement. During trace generation, the framework executes a truncated version of the program
whose data placement is to be improved. The framework samples detailed information about
memory accesses and memory allocations by using the processors' performance monitoring units
and by intercepting calls to the memory allocator of the C / FORTRAN run-time library. The
subsequent af�nity decisions after the sampling consist in determining on which node each page
should be placed, based on the accesses from the trace. The framework provides a simple model,
in which the latency of a remote access is assumed to be independent from the distance between
the requesting core and the node that satis�es the request as well as a more sophisticated model
that takes into account varying latencies. In the former model, a page is associated to the node
with the highest number of accesses to the page. The latter model determines the aggregate access
costfor each node and associates a page with the node with the minimal cost. The aggregate access
cost corresponds to the sum of the products of the number of accesses from a node and the cost of
an access.

The actual page placement is carried out at execution of the entire program by intercepting calls
to the memory allocator and by initializing pages on the appropriate node before handing the mem-
ory regions to the application. The authors have shown that for applications of the C version [7]
of the NAS PARALLEL BENCHMARKS [15] and applications from the SPEC OMPM2001 [14]
benchmarks, the number of remote memory accesses and thus the execution time can be decreased
signi�cantly on a NUMA system with four nodes. The authors have also pointed out that simple
round-robin page placement on the available nodes using L IBNUMA [58] yields similar results.

Feedback-directed page placement is another approach that exploits information obtained
through pro�ling for improved data placement. However, in contrast to M INAS with pro�ling, the
feedback-directed page placement does not rely on a full system simulator, but uses mechanisms in
the run-time library as well as hardware support. The results also illustrate that interleaving across

17

Chapter 2: Context and problem statement

NUMA nodes can also be effective and that sophisticated mechanisms are not always needed.

2.4.2 Scheduling

The following approaches rely on scheduling as the main mechanism to improve the perfor-
mance of memory accesses. We �rst present SCHEDULE REUSE, which schedules loop iterations to
cores to match the node associated to the core executing an iteration with the node whose memory
contains the data that is accessed during the iteration. The second approach covers scheduling in
applications that do not impose any speci�c order for task execution.

Schedule reuse

Nikolopoulos et al. [68] have proposed an approach that addresses NUMA-aware scheduling of
loop iterations in OpenMP applications with irregular accesses to main memory. The �rst example
of irregularity handled by the approach results from loop nests, where the iteration space of an
inner, parallel loop depends on the index of an outer loop, such that the assignment of iterations
of the inner loop to processors changes between iterations of the outer loop. For data structures,
such as arrays, that have been distributed to nodes using a regular structure, e.g., in blocks or by
interleaving across nodes, this leads to a mismatch between the nodes to which the loop iterations
are assigned and the nodes that contain data. The other example given in the paper contains
parallel loops that perform array accesses whose array indexes are calculated from the loop indexes
by indexation of an indirection table. In addition, the array itself can be distributed irregularly,
e.g., with blocks of different size resulting from a generalized block distribution.

The main idea of the approach is to �rst distribute the pages of a data structure accessed by a
loop nest over the nodes of the system using an application-speci�c description of the distribution
provided by the programmer through code annotations and to schedule loop iterations accessing
the data on the same nodes. The actual placement of pages is implemented by scheduling the
iterations �rst accessing the data structure to nodes according to the description, such that �rst-
touch allocation places the pages appropriately. Data locality is addressed by assigning subsequent
iterations accessing the data to the processors associated to the containing nodes.

The key aspect for local accesses after the distribution is the construction of a two-dimensional
array that contains one column for each processor, each of which contains the loop indexes that
result in accesses to the local memory of the processor according to the data distribution. Hence,
to determine the set of iterations that should be carried out by a speci�c processor, it is suf�cient
to iterate over the corresponding column in the array. The loop in the original program is then
replaced by an outer loop with indexes from the lowest to the highest node identi�er and an inner
loop that iterates over the elements of the column that is associated to the node. The outer loop is
executed in parallel, with one loop index assigned to every processor.

The authors did not describe any formal method to construct the array and to transform loops,
but suggested that an optimizing compiler could carry out this task.

The approach has been evaluated on an application that performs LU decomposition of dense
matrices and several kernels from a weather forecast system performing transpositions between
grid spaces with irregular densities. All experiments have been conducted on an SGI Origin 2000
system with 64 processors grouped into 32 nodes. For LU decomposition, three versions have been
compared: an unmodi�ed OpenMP version, a modi�ed OpenMP version with data distribution
directives supported by the SGI compiler and the SCHEDULE REUSE approach of the authors.
The kernels from the weather forecast system have been implemented using OpenMP, with the
SCHEDULE REUSEapproach and with explicit data partitioning and message passing using MPI.
The conclusions from the experiments are that the schedule reuseapproach outperforms both
OpenMP versions for LU decomposition (up to two times faster than the unmodi�ed OpenMP
version), that it outperforms the unmodi�ed OpenMP versions of the irregular kernels and that it
provides performance comparable to the MPI versions.

SCHEDULE REUSE illustrates that detailed, static information about data accesses, derived from
the source code of the application can be combined with a description of an architecture-speci�c
data distribution. This aspect is particularly important to address irregular data distributions and

18

Chapter 2: Context and problem statement

irregular accesses to memory.

Scheduling of unstructured parallelism

The optimizations proposed by Yoo et al. in [86] address applications with unstructured
parallelism, i.e. parallel sections with independent tasks that can be scheduled in any order. The
framework for task-parallelism used in the paper is a custom run-time library for task-parallelism
provided by the authors. Although there are no explicit data dependences between tasks in these
applications, two or more tasks can share data if they access a common set of addresses. The
authors did not address NUMA issues directly and focused on cache performance by executing
tasks that share data on cores that are near in the memory hierarchy. However, the approach is
relevant for this discussion of related work as it shows how information on �ne-grained data
sharing can be exploited in the run-time system of a task-parallel language.

The approach consists of three major parts. In the �rst part, the workload is pro�led in order
to derive information on data sharing between tasks. The second part consists in grouping tasks,
ordering groups and assigning the groups to work-queues associated to the components of the
memory hierarchy. The third part addresses dynamic load balancing through locality-aware
task-stealing.

The result of the pro�ling run is a task sharing graphwhose vertexes represent tasks and whose
undirected edges capture data sharing relations between tasks. The weight associated to an edge
indicates how many cache lines are accessed by the two tasks that are connected by the edge. The
graph is then partitioned heuristically and recursively into groups for each level of the memory
hierarchy, starting with the last level cache. Each task group is chosen such that the working set of
the tasks �ts into a cache of the targeted level in the memory hierarchy and such that intra-group
data sharing is maximized. The result is a hierarchy of task groups that can be scheduled over
the work-queues associated to each component of the memory hierarchy, e.g., the result can be a
hierarchy with task groups for the work-queues of �rst level caches that belong to groups for the
work-queues of second level caches that in turn belong to a groups for the work-queues of third
level caches and so on.

At execution time, the tasks are executed by worker threads with one worker thread per core.
When a worker has �nished executing a task, it �rst tries to obtain a task from its local queue
associated to its �rst-level cache. If this queue is empty, the worker attempts to steal tasks from
one of the queues associated to the �rst-level cache of its sibling cores with respect to the next level
in the memory hierarchy (i.e., the cores sharing a second-level cache with the core of the stealing
worker). If these queues are also empty, the worker tries to obtain a task group from the queue
associated to its second level cache.

The authors have evaluated their approach on a set of general-purpose workloads (database, 3d
image reconstruction, collision detection, image processing, matrix multiplication and a solver for
partial differential equations) ported to the author's framework for task parallelism executing on
three simulated systems with core counts ranging from 32 to 1024. Besides performance evaluation
of the entire approach with �xed parameters, the authors have also explored different values (e.g.,
how many tasks are stolen by a single attempt for work-stealing) and different heuristics (e.g.,
group and task ordering, whether to use locality-aware work-stealing or not or the heuristic for
the selection of the victim for a steal). However, we only provide a summary of the results without
reproducing all the details. Task grouping, ordering and assignment to the queues, but without
locality-aware work-stealing can speed up execution by up to 2:39� on 32 cores for memory-
intensive benchmarks and up to 3:57� on 1024 cores. Locality-aware work-stealing on 32 cores
can speed up execution by as much as1:9� compared to random work-stealing with arti�cial load
imbalance created through a number of workers that is smaller than the number of cores.

The approach shows that exploiting data sharing in the scheduler can lead to signi�cant
performance improvements with higher bene�ts for larger systems. It also illustrates that initial
assignment of tasks can be combined with a locality-aware technique for load-balancing that reacts
to the circumstances at execution time. Our approach for topology-aware scheduling presented in
Section 7.3 uses a similar technique.

19

Chapter 2: Context and problem statement

2.4.3 Combined scheduling and data placement

For the presentation of related work combining NUMA-aware scheduling and data placement,
we have selected three approaches. The �rst approach, FORESTGOMP, relies on precise hints on
af�nities between OpenMP threads and data provided by the programmer. The second approach
targets algorithms operating on arrays and relies on the speci�cation of a more general pattern for
the distribution of array elements to nodes provided in the source code. The last approach, LAWS,
is designed for divide-and-conquer algorithmsand does not require any modi�cation of the source
code of the application.

ForestGOMP

Broquedis et al. have proposed FORESTGOMP [29, 31], an OpenMP run-time with a resource-
aware scheduler based on the BUBBLESCHED [83] scheduler and a NUMA-aware allocator based
on the M A MI [32, 4] memory interface. F ORESTGOMP uses three key concepts: grouping of
OpenMP threads into bubbles, scheduling of threads and bubbles using a hierarchy ofrun-queues
and dynamic migration of data upon load balancing.

At the beginning of the execution, F ORESTGOMP extracts information about the memory
hierarchy of the target platform automatically using HWLOC [30] and creates a hierarchy of run-
queues re�ecting this topology. For example, the run-time system might create one run-queue for
the entire machine, one run-queue for each NUMA node, one run-queue for each shared cache
and one run-queue for each core. Each of the run-queues forms a scheduling domain that restricts
the execution of scheduling entitiesin the queue to the part of the memory hierarchy that the queue
is associated to. The scheduling entities used by the BUBBLESCHED scheduler are OpenMP threads
and bubbles. Bubbles are groups of threads or nested groups of bubbles and express data sharing
among threads or access of a group of threads to data on the same node. The threads that form
a bubble are kept together as long as possible to avoid that threads accessing the same data are
scattered across the entire machine.

The creation of bubbles is carried out by the run-time system and takes place every time a
parallel section is encountered. The set of threads that forms a bubble is identical with the team of
threads of a parallel section. Nested parallel sections, i.e., parallel sections encountered within a
parallel section, lead to the creation of nested bubbles aggregating other bubbles.

Resource-aware scheduling in FORESTGOMP is implemented using two scheduling algorithms:
the memory bubble schedulerand the cache bubble scheduler. The NUMA-aware scheduler relies on
so-called memory hintsthat summarize which data regions will be accessed by a single thread or a
team of threads. Memory hints are provided by the programmer by calling appropriate functions
of the run-time system before creating a parallel section or from a thread within a parallel section.
The run-time attaches information derived from these hints to threads and bubbles, which allows
the scheduler to distribute threads accordingly. In a �rst step, each thread is associated to the node
that holds the highest fraction of the thread's data among all nodes. Bubbles that contain threads
which are associated to different nodes explodeand their threads are distributed accordingly. If the
distribution resulting from the �rst step leads to an imbalance between cores, the run-time relaxes
the scheduling constraints for certain threads and associates them to unused cores. To limit the
overhead associated to data migration from one node to another, the run-time chooses the threads
with the least amount of attached data for redistribution. Once the distribution of threads has
�nished, the system migrates the data of relocated threads to the right nodes. The distribution of
threads and data to nodes is thereby completed and the cache bubble schedulercan start distributing
threads within each node.

The goal of the cache bubble scheduleris to maximize data reuse within caches. Three methods
are combined for this purpose. First, the cache bubble schedulerattempts to place the threads of
a bubble on cores that are close in the cache hierarchy, e.g., on cores sharing the same cache, as
threads of the same bubble are likely to access a common set of memory regions. Second, the
scheduler tries to exploit temporal locality by restoring the mapping of threads to locations from
the previous invocation of the scheduler. Finally, a core that becomes idle �rst tries to steal a thread

20

Chapter 2: Context and problem statement

from a nearby core before trying to steal a thread from a remote core.
In order to be able to react to changes in program behavior, the run-time allows the application

to update memory hints during execution of a parallel region. Every time a hint is updated,
the scheduler is invoked to check the current distribution of threads and to redistribute threads
appropriately if necessary. To detect changes of af�nities not indicated by the programmer, F OREST-
GOMP also monitors hardware performance counters and invokes the scheduler automatically if
the fraction of remote memory accesses exceeds a certain threshold.

The evaluation of FORESTGOMP was carried out on a modi�ed version of the STREAM
BENCHMARK [63] named TWISTED-STREAM and an application performing LU decomposition
executing on an AMD Opteron platform with four NUMA nodes.

The TWISTED-STREAM benchmark operates on three vectorsA, B and C, divided into M
blocks A i ; : : : ; AM , B i ; : : : ; BM and Ci ; : : : ; CM , with M being the number of nodes of the machine.
A team of threads is created for each node and each team operates on three blocks, one from each
vector (the �rst team operates on blocks A0, B0 and C0, the second on blocksA1, B1 and C1, etc.).
In the middle of the execution the af�nities between threads and data change. For the con�guration
referred to as TWISTED-66, each team changes the af�nities for two of the three blocks (e.g., the
�rst team operates on A0, B1 and C1, the second onA1, B2 and C2, etc.). In another con�guration,
called TWISTED-100 each team changes the af�nities for all of its blocks (e.g., the �rst team operates
on A1, B1 and C1, the second onA2, B2 and C2, etc.).

The performance of FORESTGOMP on the TWISTED-STREAM benchmark is compared to
the OpenMP run-time of the GNU C compiler named L IBGOMP [40] and to page migration
using A FFINITY-ON -NEXT-TOUCH . For TWISTED-100, FORESTGOMP only needs to adjust the
distribution of threads to nodes without migration of data, resulting in 25%less execution time
compared to L IBGOMP. The gain over page migration depends on the number of iterations that
the benchmark performs after the change of af�nities, as the relative overhead for page migration
decreases with each iteration. The speedup over page migration ranges from 7:9� for a single
iteration to 1:3� for 128 iterations. For TWISTED-66 FORESTGOMP has to migrate one third of the
data. For less than three iterations, FORESTGOMP is thus slower than L IBGOMP, but still faster
than A FFINITY-ON -NEXT-TOUCH . For more than three iterations, FORESTGOMP outperforms both
L IBGOMP and A FFINITY-ON -NEXT-TOUCH .

Data af�nities in the application performing LU decomposition are more complex and change
more frequently than for the STREAM benchmark. Hence, instead of giving precise hints for
af�nities, the authors have con�gured F ORESTGOMP to mark the entire matrix for A FFINITY-
ON -NEXT-TOUCH each time the fraction of remote memory accesses measured with hardware
performance counters exceeds a certain threshold. This results in a30%decrease of execution time
compared to interleaving of the matrix across all nodes of the machine.

In conclusion, FORESTGOMP performs best with clear af�nities between threads and data
and if locality for changing af�nities can be restored through scheduling without migration. The
approach shows that information that is missing in a more abstract software layer, i.e., the run-time,
can be compensated by propagating more detailed information from the application.

Data distribution based on node arrangements

Bircsak et al. have proposed a set of directives for NUMA-aware programming in OpenMP [19].
The approach mainly addresses data placement for arrays, but also provides directives that de�ne
constraints for the placement of computations. The distribution of the elements of an array requires
two parts: a (possibly) multi-dimensional arrangement of the nodes of the system in the form of a
matrix containing the node identi�ers and a set of distribution policies specifying one policy for
each dimension of the array to be distributed. The arrangement does not necessarily represent
any physical relationship of nodes and serves only as an auxiliary data structure to determine the
mapping of array elements to nodes. The role of a distribution policy is to (1) partition the range of
a dimension of the array whose mapping is to be determined and (2) to de�ne the set of nodes that
is available for each partition. The combination of the policies from the outermost to the innermost
dimension and the arrangement of nodes de�nes for each element of the array to which node the
element will be associated. There are three policies to choose from:BLOCK, CYCLICand *. The

21

Chapter 2: Context and problem statement

implications of these policies are the following:

– The BLOCK policy divides the range of an array dimension into equal-sized blocks and
creates equal-sized partitions from the respective dimension of the node arrangement.

– The CYCLIC policy associates to each element of the array dimension an element of the
respective dimension of the node arrangement in a round-robin fashion.

– Finally, the * policy de�nes that the respective dimension should not be partitioned at all.

The following examples are adapted from the examples given in [51] and illustrate the use of
distribution policies and node arrangements. As a �rst example, consider a one-dimensional array
with 1024 elements that is to be mapped to a total of eight nodes N 0 to N 8. Using the BLOCK
policy, the array is divided into 8 blocks of 128 elements. The �rst 128 elements are mapped to the
�rst node, the second 128 elements to the second node and so on, as illustrated in Figure 2.6a. If
the CYCLICpolicy is used, the elements are distributed in a round-robin fashion to the nodes, such
that the i th element is placed on the (i mod 8)th node, as shown in Figure 2.6b.

More complex distributions can be de�ned by combining several policies and by changing
the arrangement of nodes. As an example, consider a two-dimensional array with 128 rows and
256 columns and an arrangement of eight nodes in a 4 � 2 matrix as in Figure 2.6c. By using a
(BLOCK, BLOCK)policy, the array is divided into four rows of 32 elements and each row is divided
into two columns of a width of 128 elements. Hence, the matrix is divided into blocks of size
32� 128, each associated to a different node, as shown in Figure 2.6d. The block in the �rst row
and the �rst column is placed on the node at the �rst row and �rst column of the arrangement,
the block in the �rst row and second column to the node at the �rst row and second column of
the arrangement and so on. For a(BLOCK, CYCLIC)distribution, the matrix is divided into eight
rows and the columns of each row are distributed in a round-robin fashion among the nodes of
the second dimension of the arrangement. Hence, the i th element in the j th row of the matrix is
placed on the node at the i th row and the (j mod 2)th column of the arrangement. Figure 2.6e
illustrates this distribution. As a last example, consider a (CYCLIC, CYCLIC)distribution that
associates both columns and rows of the matrix with columns and rows of the arrangement. In the
resulting distribution the i th element in the j th row of the matrix is placed on the node at the (i
mod 4)th row and the (j mod 2)th column of the arrangement as illustrates by Figure 2.6f.

The approach also allows the programmer to de�ne the granularity of a distribution by specify-
ing if the distribution applies to elements or pages. In the �rst case, the partitioning of the array is
done with element granularity as in the examples above. In the latter case, elements are grouped
into pages and the pages are mapped to nodes according to the distribution.

To turn accesses to an array within a loop nest into accesses to local memory, the iterations must
be distributed to cores of the NUMA nodes according to the distribution. This is achieved with
help from the compiler as well as support by the run-time. In a �rst step, the compiler parametrizes
the loop bounds and loop increments with the node identi�er, such that the cores of a node only
perform the loop iterations that result in accesses to the node's local memory. In the second step,
the compiler partitions the iteration space of the outermost loop among the cores of a NUMA node.
If this loop has only few iterations, the programmer can specify that another loop in the loop nest
should be chosen for the partitioning among cores. The partitioning can be achieved using a cyclic
assignment of loop indexes to cores or by dividing the iteration space into blocks that are each
assigned to a different core. The role of the run-time system is to pin threads on the correct cores
and to make sure that the iterations are assigned correctly to the appropriate threads.

If the assignment of loop iterations to nodes is not optimal, e.g., if multiple arrays are involved
in a computation, the programmer can specify explicitly on which node a computation should
be carried out. This is done by using the ON HOME directive and by passing an reference to an
array element as a parameter. The node to which the element is associated to de�nes where the
computation should take place.

However, which combination of policies yields optimal performance depends on the pattern of
accesses to array elements. In some cases, it is easier to rely on dynamic page migration. This is
supported through two directives, namely MIGRATE_NEXT_TOUCH and MIGRATE_TO_OMP_
THREAD. The former causes the pages that form an array to be migrated to the nodes of the �rst

22

Chapter 2: Context and problem statement

0 127 128 255 256 383 384 511 512 639 640 767 768 895 896 1023...

N0 N1 N2 N3 N4 N5 N6 N7

(a) Simple BLOCK distribution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 10231022102110201019101810171016

N0 N1 N2 N3 N4 N5 N6 N7 N0 N1 N2 N3 N4 N5 N7

1015

N6N5N4N3N2N1N0N7

(b) Simple CYCLIC distribution

0 0

2

4

6

1

3

5

7

0 1

1

2

3

(c) Arrangement

0

...

31

32

0 1 2 126 127 254 255128 129 253...

N0

127

...

63

64

95

96

...
...

...

N1

N2 N3

N4 N5

N6 N7

(d) BLOCK, BLOCK distribution

0

...

31

32

0 1 2 126 127 254 255128 129 253...

127

...

63

64

95

96

...
...

...

N0 N1 N0 N0 N0N1 N1 N1 N0 N1

N0 N1 N0 N0 N0N1 N1 N1 N0 N1

N2 N3 N2 N2 N2N3 N3 N3 N2 N3

N2 N3 N2 N2 N2N3 N3 N3 N2 N3

N4 N5 N4 N4 N4N5 N5 N5 N4 N5

N4 N5 N4 N4 N4N5 N5 N5 N4 N5

N6 N7 N6 N6 N6N7 N7 N7 N6 N7

N6 N7 N6 N6 N6N7 N7 N7 N6 N7

(e) BLOCK, CYCLIC distribution

0

1

2

0 1 2 126 127 254 255128 129 253...

127

3

6

8

126

...

...

N0 N1 N0 N0 N0N1 N1 N1 N0 N1

N2 N3 N2 N2 N2N3 N3 N3 N2 N3

N4 N5 N4 N4 N4N5 N5 N5 N4 N5

N6 N7 N6 N6 N6N7 N7 N7 N6 N7

N6 N7 N6 N6 N6N7 N7 N7 N6 N7

N0 N1 N0 N0 N0N1 N1 N1 N0 N1

N2 N3 N2 N2 N2N3 N3 N3 N2 N3

N4 N5 N4 N4 N4N5 N5 N5 N4 N5

N6 N7 N6 N6 N6N7 N7 N7 N6 N7

N0 N1 N0 N0 N0N1 N1 N1 N0 N1

N4 N5 N4 N4 N4N5 N5 N5 N4 N5

4

5

7

(f) CYCLIC, CYCLIC distribution

Figure 2.6: Examples of distributions usingBLOCK andCYCLIC

cores modifying the pages after the encounter of the directive. The latter directive migrates pages
to the node of the core executing the thread with the thread identi�er that is passed as a parameter
to the directive.

By comparing different versions of an application performing LU decomposition without
pivoting on a 32-core A LPHA SERVER GS320system, the authors have concluded that data layouts
using the DISTRIBUTE directive employing the concepts of distribution policies and node arrange-
ments above perform substantially better than dynamic page migration due to the overhead of the
migration.

The approach shows that explicit data distributions for regular data structures provided by the
programmer can be combined with very �ne-grained scheduling of instructions with appropriate
support by the compiler. However, deciding which distribution policy �ts best and specifying
an appropriate node arrangement can be a dif�cult task that requires detailed knowledge of the
application. In addition, arrangements must be developed for each of the systems on which an
application is intended to execute in order to match the number of nodes of the system.

LAWS

Chen et al. have proposed LAWS [38] that combines NUMA-aware allocation and scheduling
with cache-aware scheduling of C ILK tasks from earlier work [39] of the authors. The approach
targets divide-and-conqueralgorithms with the following characteristics: the recursive steps of
the algorithm are represented by a tree of tasks in which each node represents one step, data
accesses only happen in leaf tasks and data sharing is likely to occur between siblings in the tree.
Furthermore, the program is assumed to perform multiple iterations with identically structured
task trees and equal relationships between tasks and the memory regions accessed during task
execution. LAWS has three main components: a NUMA-aware memory allocator, an adaptive DAG
packerand a NUMA-aware and cache-aware work-stealing mechanism.

NUMA-aware data placement in LAWS is carried out during the �rst iteration of the algorithm
by assigning the data sets of recursively created tasks of the task tree to NUMA nodes using the
following scheme. The root task of the tree for the iteration is assumed to represent the entire
computation performed by all tasks of the iteration and is thus associated to the entire data set

23

Chapter 2: Context and problem statement

of size D. At each recursive task creation below the root, the data set is assumed to be divided
equally among tasks. Hence, if the root task has n child tasks, the children are each assumed to
treat a data set of size D

n , with the �rst task treating the interval [0; D
n), the second task treating the

interval [D
n ; 2D

n) and so on. The same scheme is applied recursively to the resulting intervals and
the tasks located in the sub-trees of the children of the root task. NUMA-aware data placement
for M nodes consists in partitioning of the entire data set into M equal-sized intervals, allocating
each part on a different node, and associating tasks to nodes by analyzing the data intervals
that the task represent. For example, the data set of a task that represents an interval[a; b) with
a � i�D

M and b < (i+1)�D
M should be placed on node i . The actual data placement makes use of

�rst-touch placement, which is the default placement policy of many operating systems. To achieve
the placement of the M intervals as described above, this implies that the tasks associated to the
intervals must be executed by cores of the appropriate nodes during the �rst iteration. That is, a
task whose data interval should be allocated on node i must be executed by a core of nodei.

The role of the adaptive DAG packer is to provide the run-time system with information
for cache-aware task scheduling. In a �rst step, the working set of each task is estimated by
measuring the number of misses in the last level private cache during the execution of the task
and by multiplying this value with the size of a cache line. The measurement of cache misses is
performed at the �rst iteration of the algorithm using hardware performance counters. Based on
this information, the task tree is divided into so-called CF subtrees. ACF subtreeis a tree for which
the sum of the working sets of its tasks �ts into the shared cache of a node. The tasks of a same CF
subtreeare called socket local tasksand will be scheduled to cores of the same node in order to favor
inter-task communication in the shared cache and to limit the number of capacity misses. However,
the estimation of the data set size of a task only approximates the actual size of the data set and
the packing into CF subtreesmight yield suboptimal performance. Therefore, the DAG packer
adapts the packing from one iteration to another. The packing can be shrinked by breaking a CF
subtreeinto smaller trees by declaring the child tasks of the subtree's root as roots of CF subtrees.
Similarly, it can be coarsened by aggregating CF subtreesby declaring their common parent task as
the root of a CF subtree. The adaptive packer compares the execution time of packings and shrinks
or coarsens the packing until a point is reached where a �ner and a coarser packing both yield
longer execution times than the current packing.

The last component of LAWS is a triple-level hierarchical work-stealing scheduler that sched-
ules tasks to their associated nodes and that ensures that thesocket local tasksof a CF subtreeare
executed by cores of the same node. Each node is provided with a CF task poolthat can only contain
CF root tasksand each core has asocket local task poolwhich can only contain socket local tasks. When
a core runs out of tasks, it �rst tries to steal a task from the socket local task poolof the cores of the
same node. If none of these pools contains a task that can be stolen, the core tries to steal a task
from the CF task poolof the local node. If this attempt also fails, the core tries to steal a task from
the CF task poolof another node. To avoid concurrency in the shared cache due to the execution of
tasks from multiple CF subtrees, the scheduler also ensures that all tasks of aCF subtreehave been
executed before execution of a newCF subtreestarts.

The authors have evaluated LAWS on a four-node AMD Opteron 8380 system executing a set
of applications that perform stencil computations and algorithms for Gaussian Elimination as
well as successive over-relaxation. Each benchmark is available in two versions. The �rst version
has a regularly structured execution DAG, while the computations of the second version form an
irregularly structured DAG. The performance of LAWS has been compared to plain C ILK without
any modi�cation and to an algorithm from earlier work [39] named CATS, which does not adapt
the packing after the �rst iteration. The improvement of LAWS over plain C ILK ranges from 23:5%
to 54:2%. LAWS systematically outperforms CATS, which improves performance over C ILK only
by up to 19:6%.

LAWS shows that implicit information on the structure of computations as well as the data
structures involved in the computations can be exploited both for data placement and scheduling
to increase the locality of memory accesses fully automatically by the run-time system.

24

Chapter 2: Context and problem statement

Optimization
for NUMA

Optimization
for caches

Data
placement

Scheduling Implementation layer

A FF.-ON -NEXT-TOUCH [61] X - X - Library
A FF.-ON -NEXT-TOUCH [50] (OS) X - X - OS
CARREFOUR [44] X - X (X) � OS
MA I [77] X - X - Library
M INAS [76] X - X - Preproc. + Library
M INAS + pro�ling [66] X X X (X) Preproc. + Library
Feedback-directed placement [62] X - X - Library
SCHEDULE REUSE [68] X - (X) �� X Comp. + run-time
Unstructured parallelism in [86] - X - X Run-time
FORESTGOMP [29, 31] X X X X Run-time
Node arrangements [19] X - X X Comp. + run-time
LAWS [38] X X X X Run-time
� Part of CARREFOUR, but not evaluated in the paper �� Data is only placed initially and the approach focuses on scheduling

Table 2.1: Overview of basic characteristics of approaches in related work

2.4.4 Summary

The above presentation on related work illustrates that there are many different existing
approaches to improve data locality with respect to NUMA, to reduce contention on memory con-
trollers and interconnects and to improve the exploitation of caches through optimized scheduling
and data placement, resulting in signi�cant improvements on performance. Although the discus-
sion only presents a small part of research in this area, the selected publications cover a certain
range of methods for the placement of data and instructions. The purpose of this section is to
summarize the approaches and to highlight the differences between them. The summary is divided
into three parts. First, we provide a overview of general characteristics. The second part focuses
on features related to optimized data placement and the third part summarizes characteristics of
the approaches for scheduling.

Main characteristics

The general characteristics of the approaches can be summarized as follows:

– the part of the memory hierarchy that the approach optimizes for, i.e, whether it aims at
improving accesses to main memory or accesses to caches.

– the implementation layer of the approach (e.g., a user space library to be used by a program-
mer, the operating system or the compiler).

– the supported framework for parallelism (e.g., OpenMP, POSIX threads or Cilk).
– whether the approach is based on optimized scheduling, optimized data placement or

whether it combines both of the techniques.

Table 2.1 details these points for all approaches presented earlier. Except the approach for unstruc-
tured parallelism, all of the papers we have selected provide NUMA-related optimizations. In
addition, M INAS with pro�ling, LAWS and F ORESTGOMP also implement cache-related opti-
mizations. Optimized data placement is a cornerstone of the optimizations for the majority of
the approaches. The only exceptions are SCHEDULE REUSE, which only places data initially via
the �rst-touch mechanism for deterministic behavior with respect to data locality for subsequent
scheduling and the approach for unstructured parallelism, which does not provide any form of
explicit data placement at all. Optimized scheduling is provided by the last �ve approaches in the
table, namely SCHEDULE REUSE, the approach for unstructured parallelism, F ORESTGOMP, node
arrangements and LAWS.

The principal layers of implementation are user space libraries (A FFINITY-ON -NEXT-TOUCH ,
MA I and feedback-directed page placement), the operating system (the kernel version of A FFINITY-
ON -NEXT-TOUCH and CARREFOUR) and the run-time system (the approach for unstructured
parallelism, F ORESTGOMP and LAWS). Some approaches cover two layers, in particular M INAS ,
which provides a preprocessor and also relies on the user space library of MA I and SCHEDULE

REUSEas well as node arrangements, which combine optimizations in the compiler with a modi�ed
run-time.

25

Chapter 2: Context and problem statement

Determination
of relevant

data by

Supported
data

structures

Granularity Time of
decision

Autom.
and
dyn.

adjust-
ment

Pas-
sive (P)
/ Ac-

tive (A)

A FF.-ON -NEXT-TOUCH [61] Programmer Any Pages Execution - P
A FF.-ON -NEXT-TOUCH [50] (OS) Programmer Any Pages Execution - P
CARREFOUR [44] Pro�ling Any Pages Execution X P
MA I [77] Programmer Arrays Blocks / pages Compil. + Exec. - A
M INAS [76] Preprocessor Static arrays Blocks / pages Compil. + Exec. - A
M INAS + pro�ling [66] Preprocessor Static arrays Blocks / pages Compil. + Exec. - A
Feedback-directed placement [62] Pro�ling Any Pages Before execution - A
SCHEDULE REUSE [68] Programmer Arrays Elements Compile-time - A
Unstructured parallelism in [86] - - - - - -
FORESTGOMP [29, 31] Programmer Not speci�ed Not speci�ed Execution X P+A
Node arrangements [19] Programmer Arrays Elements / Pages Compile-time - A
LAWS [38] Task graph Arrays Blocks Execution - A

Table 2.2: Overview of the features of data placement in related work

Characteristics of data placement

The approaches that support data placement differ in:

– how they determine which data is relevant for improved data placement, in particular
whether this is done automatically or if the programmer needs to specify relevant data
structures.

– which kinds of data structures are supported (e.g., arrays or any contiguous memory region).
– the granularity for data placement (e.g., single data elements, pages or blocks representing

large memory regions).
– the time when the decision for placement is taken (e.g., dynamically at execution time,

statically at compile time or during off-line pro�ling).
– the kind of data placement, i.e., passive placement that reacts to accesses and places data

accordingly or active placement that places data before it is accessed.
– whether data that has once been placed can be migrated dynamically to react to dynamic

changes at execution time.

Table 2.2 indicates that many of the approaches either rely on the programmer to determine which
data regions are relevant for data placement or determine these regions using pro�ling. M INAS

uses a preprocessor for this task, but is limited to statically allocated memory and LAWS derives
this information from the task graph, assuming that data is partitioned equally among leaf tasks.
Low-level approaches, i.e., AFFINITY-ON -NEXT-TOUCH , CARREFOUR and feedback-directed page
placement can handle any data structure, but the granularity for data placement is limited to entire
pages of memory. The other approaches handle arrays with varying granularity for the placement:
while MA I-based solutions distribute blocks of memory to different nodes, SCHEDULE REUSEand
node arrangements can handle individual elements of an array due to support by the compiler.
LAWS always places blocks of memory whose size depends on the number of tasks operating on
the array and the size of the array.

Regarding the moment at which the decision for data placement is taken, the approaches can
be divided into three sets. A FFINITY-ON -NEXT-TOUCH , CARREFOUR, FORESTGOMP and LAWS
take this decision at execution time. In contrast to this, data placement decisions in SCHEDULE

REUSEand node arrangements are the taken at compile time as the placement is speci�ed in the
application's source code. Feedback-directed page placement determines this relationship after
the pro�ling phase and before the start of the execution. The MA I-based approaches represent
an intermediate form in which some decisions are taken at compile time, i.e., the type of data
distribution, and others are taken at execution time, e.g., the exact set of nodes for a distribution.

Another difference between the approaches consists in the duration of the placement. In most
of the approaches data that has once been placed in is never migrated, unless explicitly requested
by the application. However, C ARREFOUR and FORESTGOMP can react to dynamic changes in
application behavior and relocate data from one node to another.

26

Chapter 2: Context and problem statement

Type of
placement

Source for
placement
decision

Scheduling entity Time of
decision

Autom.
and dyn.
adjust-
ment

A FF.-ON -NEXT-TOUCH [61] - - - - -
A FF.-ON -NEXT-TOUCH [50] (OS) - - - - -
CARREFOUR [44] (Thread clustering) � (OS / PMU) � (OS threads)� (Execution)� (X) �

MA I [77] Thread pinning - Pthreads Start of exec. -
M INAS [76] Thread pinning - Pthreads Start of exec. -
M INAS + pro�ling [66] Co-scheduling Data sharing Pthreads Start of exec. -
Feedback-directed placement [62] Thread pinning - Pthreads Start of exec. -
SCHEDULE REUSE [68] Loop scheduling Data distrib. Loop iterations Execution -
Unstructured parallelism in [86] Task placement Data sharing Tasks Start of exec. X
FORESTGOMP [29, 31] Thread placement Data distrib. OpenMP threads Execution X
Node arrangements [19] Loop scheduling Data distrib. Loop iterations Before loop start -
LAWS [38] Task placement Data distrib. Cilk tasks Execution X
� Part of CARREFOUR, but not evaluated in the paper

Table 2.3: Overview of the features of scheduling in related work

Finally, the approaches can be classi�ed according to the type of placement. Passive methods,
such as AFFINITY-ON -NEXT-TOUCH and CARREFOUR react to the events of a given placement and
try to improve the mapping of data to nodes accordingly. The other approaches actively place data
before it is referenced. FORESTGOMP supports both active data placement, e.g., when migrating
threads and attached data, as well as passive placement when using AFFINITY-ON -NEXT-TOUCH .

Characteristics of scheduling mechanisms

To distinguish the approaches for scheduling we have identi�ed the following characteristics:

– the type of placement (e.g., simple thread pinning, loop scheduling).
– the source of information on which placement decisions based (e.g., performance monitoring

units, information on the data distribution established by the approach itself or data sharing
between threads).

– the type of scheduling entities handled by the approach (e.g., operating system threads, loop
iterations, OpenMP threads or tasks).

– the time of placement decisions (e.g., dynamically during execution, at the beginning of
program execution or before a parallel loop).

– support for dynamic adjustments of an initial placement.

Although some of the approaches have been presented as solutions for data placement only,
they still rely on thread pinning, representing a minimal form of scheduling. Thread pinning
is a common technique to virtualize processing units by preventing the operating system from
migrating threads between cores, which guarantees a static mapping of threads to cores for
the entire execution time. Hence, these approaches do not use scheduling as a mean to place
computation close to data, but as a mean for deterministic mappings of threads to cores.

The approaches that use scheduling for improved data locality either rely on co-scheduling,
placing threads or tasks that share data on shared caches or closely in the memory hierarchy
(M INAS with pro�ling and the approach for unstructured parallelism), the distribution of loop
iterations to cores (SCHEDULE REUSE and node arrangements) or placement of threads and tasks
depending on the data that is being accessed (FORESTGOMP and LAWS).

The choice of where a scheduling entity is executed is either based on data sharing to minimize
communication between the entities or based on the distribution of data, limiting the delay of
accesses from cores to main memory. The type of scheduling entities depends on the supported
framework for parallelism and the granularity and can be POSIX threads, individual loop iterations,
OpenMP threads or �ne-grained tasks, such as Cilk tasks or those of the custom framework for
unstructured parallelism.

Most approaches establish an initial placement at the beginning of the execution and only few
of them react to dynamic changes at execution time, e.g., load imbalance, by adjusting the initial
placement during execution.

27

Chapter 2: Context and problem statement

Conclusion

A closer look on the characteristics above reveals that not all of them are independent. A key
role is taken by the implementation layer, which has an in�uence on both data placement and
scheduling. The layer de�nes not only which information is available for placement decisions, but
also limits when decisions are taken, which granularity for data placement and which entities for
scheduling are available. This heavily in�uences the accuracy for capturing program behavior as
well as the accuracy of the prediction of future behavior. The farther away the layer is from the
application, the more it abstracts from the data structures and instructions and the less accurate the
method becomes. For example, compiler-assisted approaches can rely on detailed information on
data structures and instructions, e.g., individual elements of arrays and individual iterations of a
loop, while implementations at the operating system layer only have access to coarse information,
such as accesses to entire pages and threads. At the same time, low-level approaches are more
generic and support a wider variety of programming languages and frameworks for parallelism.
The choice of the implementation layer thus limits the range of solutions that is available for data
placement and scheduling but also determines to which applications an approach applies.

2.5 Summary and problem statement
As motivated in Section 2.1, task-parallel programming is an increasingly popular approach to

address the expectations on scalability, performance portability and productivity for applications
intended to run on many-core systems. The performance of the execution of a task-parallel program
strongly depends on an optimized run-time system that is able to exploit the underlying hardware
ef�ciently. Section 2.2 showed that optimization for the memory hierarchy, i.e., for caches and
non-uniform memory access, is a key factor in this context. The issues related to the ef�cient
exploitation of the memory hierarchy can be addressed through optimized placement of tasks on
cores and optimized placement of data on memory controllers as pointed out in Section 2.3. Ideally,
this placement is fully automatic and thus does not require any intervention by the programmer
to ensure high productivity. Furthermore, the solution should be able to adapt to an increasing
number of cores and memory controllers and be able to react to dynamic changes of application
behavior at execution time for load balancing to allow applications to scale on large machines.
Performance portability can only be ensured if the run-time is able to adapt to a wide variety of
machines and applications.

From the approaches discussed in the previous section, only LAWS and the approach for
irregular parallelism address task-parallel languages or task-parallel frameworks. The other
approaches apply to POSIX threads, OpenMP threads and loop iterations. The difference between
POSIX threads and tasks is that POSIX threads are intended to run persistently and independently
for a longer period of time with occasional synchronization, while tasks are short-lived entities
that are synchronized by a run-time. OpenMP threads are closer to the concept of tasks, but
originate from regularly structured loops 2. Loop iterations represent an extreme case regarding
the granularity, as an iteration can be composed of only a few instructions. However, to be ef�cient,
loop scheduling to different cores must aggregate loop iterations. In addition, these solutions only
apply to regularly structured applications based on loops. Finally, the approaches for task-parallel
frameworks rely on speci�c properties of the program whose execution is to be optimized: the
approach for unstructured parallelism relies on the property that tasks can be executed in any order
while LAWS addresses divide-and-conquer-style computations. Hence, none of the approaches
discussed in the previous section meets the needs with respect to the program structure and the
granularity for scheduling and data placement for task-parallel programs.

As far as transparency is concerned, the approaches can be divided into three groups. The �rst
group is composed of approaches that can be seen as technical solutions that help establish a speci�c
distribution. Both information on relevant data as well as the actual distribution for approaches of
this group must be provided by the programmer (e.g., A FFINITY-ON -NEXT-TOUCH , SCHEDULER

2. OpenMP 4 [25] supports �ne-grained, dependent tasks, but the approaches above apply to earlier versions of
OpenMP that support only parallel loops and independent tasks.

28

Chapter 2: Context and problem statement

REUSEor node arrangements). The second group consists of approaches that automate placement
decisions, but which rely on information provided by the programmer (e.g., F ORESTGOMP).
Approaches that belong to the third group gather information on relevant data automatically and
take placement decisions autonomously (e.g., CARREFOUR, M INAS or LAWS). However, the fully
automatic solutions of the last group are either restricted to speci�c kinds of data structures (e.g.,
M INAS for static arrays), to speci�c kinds of computations (e.g., LAWS to divide-and-conquer
algorithms) or cannot react to dynamic changes at execution time due to the use of off-line pro�ling
(feedback-directed page placement).

None of the solutions is fully transparent to the program, supports irregular applications and
is able to react to dynamic changes at the same time.

Hence, ef�cient placement of data and tasks for many-core NUMA systems motivates revisiting
previous run-time system designs and inventing new optimizations for the memory hierarchy
�tting the needs of task-parallel applications. One of the crucial points for fully automatic data
and task placement is the transparent collection of information on af�nities between tasks and
data. However, recent task-parallel programming models afford new opportunities to the run-time
system to obtain detailed information on data that is accessed by a task as well as inter-task
dependences. Thus, mechanisms for data and task placement operating at execution time can base
placement decisions on this information. For example, point-to-point synchronization between
individual tasks expressed in the programming model and preserved by the compiler indicates
which tasks become ready in the future and which events lead to their activation. Models such as
OPENMP 4 [25], STARSS [70] or O PENSTREAM [72] allow inter-task dependences to be speci�ed
as data dependences and are thus able to provide the run-time system with accurate information
on accesses to data by each task and data sharing among tasks. Our approaches for task and data
placement differ from existing work in the exploitation of this information for fully automatic,
portable on-line placement of tasks and data by the run-time that improves the locality of memory
accesses and thus performance signi�cantly.

The solutions presented in this thesis combine point-to-point data dependences with detailed
knowledge on target architectures. This requires a profound understanding of all software layers
from the application over compilation to the run-time and the operating system. Application
behavior has to be taken into account as it de�nes to which requests and situations the run-
time system must be able to respond. Compilation has to be considered to decide which static
information and how it must be preserved for placement decisions by the run-time at execution
time. The run-time system represents the most important part of the solutions as it is responsible
for all placement decisions. Finally, the run-time must be NUMA-aware and must interact with
the operating system and the hardware ef�ciently in order to carry out requests of the application
with low overhead and to avoid being a bottleneck for performance.

The theoretical part of our work involves the design of data placement and task placement
techniques and elaborates the key aspects of application behavior and of the interaction with the
hardware and operating system that have an in�uence on performance in general and the locality
of memory accesses in particular. The practical side of our work consists in the implementation and
integration of these techniques into a state-of-the-art task-parallel run-time system, their validation
with a set of high performance, scienti�c applications on different hardware architectures and the
development of adequate methods for performance analysis.

Most of the concepts presented in this thesis apply to task-parallel programming in general and
can be adopted in the run-time systems of different task-parallel languages. However, the language
extension for task-parallel applications that we have chosen for our optimizations is OpenStream.
Like other modern task-parallel approaches, such as STARSS and OPENMP 4, dependences in
OpenStream are expressed as point-to-point data dependences between tasks. However, the use of
streams in OpenStream as �rst-class objects for synchronization offers a high degree of �exibility
and enables advanced patterns for parallel programming, such as dynamic pipelining. Our choice
for O PENSTREAM over other approaches has also been motivated by the fact that a widely accepted
standard such as OPENMP 4 had not been published at the beginning of this thesis as well as by a
close collaboration with Antoniu Pop, the author of OpenStream, and Albert Cohen.

29

Chapter 2: Context and problem statement

The next chapter provides an introduction to OpenStream. We present the basic concepts of
OpenStream, the syntax of OpenStream programs and its execution model.

30

3 OpenStream

This chapter provides an overview of OpenStream, a data-�ow extension to OpenMP 3.0, which
we have chosen as a state-of-the-art, task-parallel language for the experimental evaluation of the
concepts presented in this thesis. We �rst introduce the basic concepts of OpenStream, namely
data-�ow streams, dependent data-�ow tasks and synchronization of tasks based on streams.
Producer-consumer relationships of an OpenStream program are captured by a dynamic task
graph, for which we give a lightweight formal de�nition. The syntax of OpenStream programs is
discussed in Section 3.2, followed by a series of examples illustrating this syntax in Section 3.3. The
execution model of OpenStream is presented in Section 3.4. The chapter closes with an outline of
the compilation of an OpenStream program in Section 3.5. All aspects of OpenStream presented in
this chapter refer to the original implementation before any modi�cation for the concepts proposed
in this thesis.

3.1 Basic concepts
OpenStream [72] is a language extension1 to OpenMP 3.0, which supports the speci�cation of

�ne-grained task parallelism, data parallelism, and pipelining in the C programming language.
The three central concepts of the extension are thecontrol program,data-�ow tasksand streams,
presented below. The semantics of OpenStream are underpinned by the Control-Driven Data Flow
(CDDF, [73]) formal computation model. However, in the following de�nitions we do not use the
fully-�edged CDDF model, but a simpli�ed, partial model that focuses on the aspects relevant for
the discussion of the execution model.

Streams Streams are in�nite sequences of elements of the same type that act as unboundedFIFO
queuesfor communication between tasks. Each element of a stream has a unique integer index
and is written using dynamic single assignment, i.e, each stream element is written at most once.
Elements that have not been written are unde�ned and remain inaccessible for read accesses.
Conceptually, a stream has aread positionand a write positionthat de�ne which elements of the
stream are affected by subsequent read and write accesses.

Control program The control program instantiates tasks and speci�es inter-task dependences,
which are expressed as read and write accesses to stream elements. As an element of a stream
cannot be read before it has been written, stream accesses effectively determine the (partial)

1. OpenStream has been proposed by Antoniu Pop and was developed in the context of his thesis [71]. The work
presented in this thesis related to OpenStream is the result of a close collaboration with Antoniu Pop and Albert Cohen.

Chapter 3: OpenStream

execution order of tasks. In order to guarantee deterministic behavior, OpenStream requires that
the control program is sequential. However, under certain conditions the control program can be
parallelized, as shown in Section 5.5. In the sequential case, the control program is executed by the
root task of the OpenStream application, which corresponds to the main function of the program.

Data-�ow tasks Tasks in OpenStream are short-lived, dynamic instances, de�ned by a work-
functionand an a set ofviews. The work-function is generated from the bodyof the task and contains
the instructions to be executed when the task is scheduled. A view is a sliding windowthat allows
the task to access a set of consecutive elements from a single stream or from several streams
at once and is characterized by three attributes: the access type (read or write), the size of the
window called horizonand the burst, which corresponds to the number of elements the read or
write position of the stream is advanced after having determined the exact set of elements that
the window provides access to. The CDDF computation model allows the burst to be smaller
than the horizon for read accesses and restricts the burst to be equal to the horizon for write
accesses. Likewise, the current implementation of OpenStream allows the burst to be smaller than
the horizon only for read accesses, with the additional restriction that the burst must be zero. The
reason for this restriction is explained in Section 3.4.5.

Access to stream elements is only possible indirectly through views, there is no mechanism to
address speci�c elements of the stream directly. In the following parts, we illustrate how the actual
stream indexes of the elements of views are determined.

3.1.1 Stream accesses using views

Figure 3.1 illustrates accesses on a single stream with a reading and a writing view of two
different tasks. The initial state of a stream named a_stream before any access of producers and
consumers is shown in Figure 3.1a. All stream elements are unde�ned and no sliding window
provides access to them. The read position and the write position, indicating at which indexes the
next sliding windows of reading and writing views will start, are represented by R and W, initially
pointing to the same position i . Figure 3.1b shows what happens when the sliding window of the
reading view with a horizon and a burst of six elements is added. The base of the sliding window is
determined according to the current read position, enabling access to elements i; i +1; i +2; i +3; i +4 ,
and i + 5 in read mode as indicated by the dotted rectangle. The read position is shifted by the
burst and now points to element i +6 , causing the �rst element of the window of a subsequent read
view to start at index i + 6 . The write position is not modi�ed and remains at element i . At this
point, the set of elements the consumer view provides access to is determined, but the consumer
cannot execute as the value of the elements is still unde�ned. Figure 3.1c shows the effect on the
stream state of a writing view with the same characteristics as the reading view treated before.
Again, the �rst element of the sliding window is i and access to elementsi; i + 1; i + 2; i + 3; i + 4 ,
and i + 5 is provided. The burst of six elements advances the write position of the stream, which
becomes equal to the read position. The elements of the stream remain unchanged until the task
with the writing view has �nished execution. The state after termination of the writing view is
shown in Figure 3.1d, where the elements at indexes i; i +1; i +2; i +3; i +4 , and i +5 have received
their respective values vi ; vi+1 ; vi+2 ; vi+3 ; vi+4 , and vi+5 .

As shown in the examples above, the �rst element in the horizon of a view is always the element
at the read or write position when the sliding window is de�ned. Hence, it is not possible to access
elements at arbitrary positions without advancing the read or write position to the desired element.
In fact, stream indexes are only a concept of the formal semantics behind OpenStream, but do not
appear in the actual implementation at all.

3.1.2 Dynamic task graphs

Tasks with sliding windows on the same stream elements are able to communicate by changing
the elements' values. Due to the principle of dynamic single assignment, each stream element can
only be written once and communication is unidirectional from a single producer of an element
to one or more consumers. These producer-consumer relationships are captured by a structure

32

Chapter 3: OpenStream

(a) Initial state of the stream (b) Consumer view of six elements

(c) Producer view of six elements (d) After execution of the producer

Figure 3.1: Illustration of stream accesses with burst and horizon

called dynamic task graph. As OpenStream programs can create an arbitrary amount of streams
and tasks dynamically at run-time and as the instructions necessary to create them can be fully
embedded into the control-�ow of the application, this graph can in general not be constructed
statically. Streams, tasks and stream accesses are only known at execution time and to �nd out
which tasks communicate. It is thus necessary to analyze their dynamic relationships obtained
from an execution trace. We say that an output view and an input view have been matched, when it
has been determined that they provide access to a common set of elements of the same stream.
Similarly, we de�ne that two tasks are matched if there is at least one pair of matched views with
one view belonging to one task and the other view belonging to the other task. In the following
section, we de�ne a minimal formal model for the de�nition of the dynamic task graph based on
matched views. The matching itself is neglected in this model and will be described informally in
Section 3.4.3.

De�nition of a dynamic task graph

Each matched view can be formalized as a quadruple (u; s; i s; i e) 2 f R; W g � S � N � N where
u indicates whether the view provides read or write access, s indicates the stream being accessed
from the set of streams S, i s is the index of the �rst element of the sliding window de�ned by the
view and i e is the index of the last element included in the window. The horizon thus corresponds
to i e � i s + 1 . The burst is not modeled, as it is only necessary to determine the stream indexes,
which are already known in this de�nition. Let V denote the set of all possible views. Each view can
be broken down into a set of accesses to individual stream elements vacc : V ! P (fR; W g � S � N)
with:

vacc(u; s; is; i e) = f(u; s; i)ji s � i � i eg

Let T� denote the set of dynamic task instances created from the beginning of the execution of the
OpenStream program until a timestamp � 2 N and let T1 be the (possibly in�nite) set of tasks
created during the whole execution of the program. We further de�ne views(t) of a task t 2 T1 as
the set of views of t with views(t) : T1 ! P (V). The set of stream accessessacc(t) of a task t is the
set of accesses to individual stream elements of all of its views:

sacc(t) =
[

v2views(t)

vacc(v)

The set of read and write accesses, saccR and saccW , can be de�ned as:

saccR (t) = f(R; s; i) 2 sacc(t)g and saccW (t) = f(W; s; i) 2 sacc(t)g

We de�ne the dynamic task graphG = (T1 ; E) as a graph whose vertexes represent dynamic
task instances and its weighted, directed edges E � T1 � T1 � N indicate producer-consumer
relationships between tasks. An edge (t p; tc; w) indicates that tp writes w bytes of data to stream

33

Chapter 3: OpenStream

(a) Tasks and views (b) Resulting dynamic task graph (c) Extended dynamic task graph

Figure 3.2: Example of a dynamic task graph

elements read by tc. Let size : S ! N be a function that speci�es the size in bytes of elements for
each stream. Based on the de�nitions above, E can be formalized as:

(t p; tc; w) 2 E , C = f(W; s p; i p; R; sc; i c) 2 saccW (t p) � saccR (t c)jsp = sc ^ i p = i cg ^

w =
X

(W;s p ;i p ;
R;s c ;i c)2C

size(sp) ^ w 6= 0

Figure 3.2 shows an example of the formal de�nitions above. The tasks, streams and views are
shown in Figure 3.2a and the resulting dynamic task graph is given in Figure 3.2b. Assuming an
element size of one byte, the set of tasks, stream accesses of the tasks and the dynamic task graph
are:

T1 = ft 0; t1; t2; t3g

views(t 0) = f(W; s 0; 2;4); (W; s1; 2;5)g

views(t 1) = f(W; s 0; 5;7)g

views(t 2) = f(R; s 1; 2;5)g

views(t 3) = f(R; s 0; 2;7)g

sacc(t0) = f(W; s 0; 2); (W; s0; 3); (W; s0; 4); (W; s1; 2); (W; s1; 3); (W; s1; 4); (W; s1; 5)g

sacc(t1) = f(W; s 0; 5); (W; s0; 6); (W; s0; 7)g

sacc(t2) = f(R; s 1; 2); (R; s1; 3); (R; s1; 4); (R; s1; 5)g

sacc(t3) = f(R; s 0; 2); (R; s0; 3); (R; s0; 4); (R; s0; 5); (R; s0; 6); (R; s0; 7)g

E = f(t 0; t2; 4); (t 0; t3; 3); (t 1; t3; 3)g

Extended dynamic task graphs

The dynamic task graph as de�ned above contains information about the �ow of data between
tasks, but does not capture information about task creation. We de�ne the extended dynamic task
graphG� of a dynamic task graph G = (T1 ; E) asG� = (T �

1 ; E; E �). The set of tasksT �
1 is the set

of tasks created during execution of the program T1 extended with the root task r : T �
1 = T1 [f r g.

The set of edgesE � � T �
1 � T �

1 de�nes the task creations. As the control program is executed by
the root task, only r can create tasks, such thatE � = fr g � T1 . The extended dynamic task graph
of Figure 3.2b is shown in Figure 3.2c. The sets that were not present in the dynamic task graph are:

T �
1 = ft 0; t1; t2; t3; r g

E � = f(r; t 0); (r; t 1); (r; t 2); (r; t 3)g

More examples of dynamic task graphs are provided in the following section, describing the syntax
of OpenStream programs.

34

Chapter 3: OpenStream

Terminology related to task graphs

Task graphs are a cornerstone of the analysis of OpenStream applications and will be used
frequently throughout the remainder of this document. In order to be able to express certain
properties of the task graph succinctly, we de�ne the following terms: light dependences,heavy
dependences,balanced dependencesand unbalanced dependencesand dependence paths.

The former two terms are de�ned relatively to the highest weight associated to an edge of a
dynamic task graph. In many applications analyzed in the experimental evaluation the weights
can be divided into a set of low weights and a set of high weights, where the high weights are
orders of magnitude higher than the low weights. For example, the task graph of an application
might be composed of edges with a weight of a few hundred bytes and other edges with weights of
a few hundred KiB. Edges whose weights are associated with the set of lower weights are referred
to as light dependences, while the other edges are referred to asheavy dependences.

A task that has both heavy and light input dependences is referred to as a task with unbalanced
input dependences. If a task has only heavy or only light input dependences, we say that the task
has balanced input dependences.

A dependence pathin a dynamic task graph G = (T 1 ; E) or an extended task graph G� =
(T �

1 ; E; E �) is a path that is composed of edges from E. A path of heavy dependences only
contains edges with weights from the set of high weights and a path of light dependences only
contains edges with weights from the set of low weights. An application is said to have short
dependence paths if the number of edges on the longest path between two tasks in the task graph is
below a certain threshold, e.g., two edges. In contrast to this, an application with long dependence
paths has a task graph whose shortest paths are above a certain threshold, e.g., ten edges.

3.2 The syntax of OpenStream programs
After the introduction of the basic concepts of OpenStream, we now explain the textual rep-

resentation of an OpenStream program. Consistently with the syntax of OpenMP programs,
OpenStream usespragmasto embed OpenStream-speci�c statements into a program written in the
C programming language. The OpenStream compiler translates these pragmas into appropriate
data structures and code for interaction with the OpenStream run-time. All pragmas start with
#pragma omp, followed by a more speci�c construct and, depending on the construct, a set of
clauses. Currently, OpenStream uses three constructs:

– the task construct creates a new task; views for stream accesses can be speci�ed using
additional clauses as part of the construct.

– the taskwait construct creates a barrier that blocks execution until all the tasks of the
current context have terminated.

– the tick construct advances the read position of a stream after the creation of tasks with
views on the stream having a burst of zero elements.

All constructs can be embedded anywhere in the control-�ow of the application, enabling the
construction of dynamic task graphs as shown before. Dynamic creation of streams is not done
using pragmas, but relies on a special attribute stream that, added to the de�nition of a variable,
de�nes the variable as a stream. In the following part of this section, we present the elements
necessary for the speci�cation of an entire OpenStream application, starting with the declaration of
streams. The description of the general syntax is followed by a set of examples illustrating its use.

3.2.1 Declaring streams and stream references

Streams in OpenStream can be created anywhere the C99 standard [55] allows the de�nition
of a local variable. The syntax of a stream declaration is straightforward: as the state of a stream
is entirely managed by the run-time system, all the programmer needs to specify is the type of
the stream elements and an identi�er, followed by the attribute stream , which lets the compiler
distinguish a stream declaration from the declaration of an ordinary variable:

35

Chapter 3: OpenStream

1 element_type stream_identifier __attribute__((stream));

OpenStream treats streams as �rst class objects and therefore also supports stream references.
A stream reference can be declared as follows:

1 element_type stream_ref_identifier __attribute__((stream_ref));

As with any other data type, it is also possible to create arrays of streams and arrays of stream
references, in which case the identi�er is followed by an arbitrary expression for the size of the
array in brackets:

1 element_type stream_arr_identifier[size_expr] __attribute__((stream));
2 element_type stream_ref_arr_name[size_expr] __attribute__((stream_ref));

The following example creates a stream of �oating point elements and an array of 100 streams of
characters, as well as a reference to the �rst stream from the array of streams:

1 / * Single stream of floating point elements * /
2 float float_stream __attribute__((stream));
3

4 / * Array of 100 streams of characters * /
5 char char_stream_arr[100] __attribute__((stream));
6

7 / * Reference to a stream of characters * /
8 char char_stream_ref __attribute__((stream_ref));
9

10 / * Assignment of a stream reference * /
11 char_stream_ref = char_stream_arr[0];

3.2.2 Declaring views

The de�nition of a view is syntactically split into two parts: a declaration specifying its type
and horizon and a reference in the clauses of the task construct. The clause speci�es which stream
is to be accessed as well as the access type (read or write access). The syntax of a view declaration
is identical to the declaration of a statically or dynamically sized local array in C99, where the
horizon of the view corresponds to the expression that speci�es the size of the array:

1 element_type view_identifier[size_expr];

For example, a view on a stream of �oating point elements with a statically de�ned horizon of 5
elements and another view on a stream of integers with a dynamic horizon would be declared as
follows:

1 float a_view[5];
2 int another_view[2 * n+3];

If only a single element needs to be accessed, the horizon can be omitted and the declaration can
be abbreviated to:

1 float a_view;

A special form of views are multi-dimensional views, which provide access to multiple streams at
once, using the same horizon. The declaration of such a view is identical to the declaration of a
multi-dimensional array:

1 element_type view_identifier[num_streams][size_expr];

If the expression specifying the number of streams is not constant, the view is called a variadic view.
The following example declares a variadic view with a variable horizon on a stream of double
precision �oating point elements:

1 double view[num_streams][horizon];

36

Chapter 3: OpenStream

3.2.3 Creating tasks

The connection between views and stream elements is realized by the task construct, enabling
the dynamic creation of tasks. The views to be used by a task are speci�ed by adding input, output,
or peek clauses to the construct. Input and output clauses provide read and write access to stream
elements, respectively. The peek clause is semantically equivalent to the input clause, but implies a
burst of zero elements. Thus, a task using the peek clause has access to the elements of the stream
according to the view's horizon, but does not advance the read position of the stream, allowing
subsequent views to access the same elements. Task constructs without any clause create tasks that
do not access any stream and which are therefore neither producer nor consumer. The full syntax
of the task construct is:

1 #pragma omp task hinput(stream_expr >> view_expr, ...) |
2 peek(stream_expr >> view_expr, ...) |
3 output(stream_expr << view_expr, ...) |
4 sharing_clause |
5 ... i
6 task_body

Sharing clauses allow the programmer to de�ne how scalar variables declared outside the task are
accessed within the task body (e.g., a private copy per task or shared use). The stream and view
expressions de�ne whether a single stream or multiple streams are referenced at once and whether
the burst of the view should be identical to or different from the horizon of the view's declaration.
A stream expression can be:

– the name of a stream or a stream reference (e.g.,a_stream), in which case only a single
stream is referenced and the view speci�ed after the stream expression provides access to a
set of consecutive elements of that stream

– an array expression composed of the name of an array of streams or stream references and
an index expression in brackets (e.g.,a_stream_array[num_streams-x]), also giving
access to a set of consecutive elements from a single stream as in the �rst case

– the name of an array of streams or stream references, providing a two-dimensional window
to the elements of a variable number of streams

Depending on the stream expression, a view expression is either:

– the name of a view, which implies a burst of only one element
– a view with an explicit, constant or variable burst (e.g., a_view[10] or a_view[2 * n+3])
– a multi-dimensional or variadic view referencing several streams at once with an explicit

burst for all of the streams (e.g., a_view[num_streams][burst])

The task body can be either a single statement or a compound statement. The instructions
forming the task body are automatically outlined by the compiler into a so-called work-function
that is called when the task is executed. Besides access to stream elements through its views, a
task body is also allowed to access scalar variables from the context surrounding the task construct
using sharing clauses as de�ned by the OpenMP standard [24]. For input and output clauses, the
burst speci�ed in the access clause must be identical to the horizon of the view declaration due to
restrictions from the execution model of OpenStream (cf. Section 3.4.5).

3.2.4 The tick construct

The tick construct modi�es the read position of a stream without creating a task and is used
for broadcasts of stream elements to multiple views. Broadcasts are implemented in two steps.
First, the producer writing the elements to be broadcast as well as all the consumers are created in
any order using the task construct with appropriate stream access clauses. The producer uses an
ordinary output clause to obtain write access to the elements of the stream like any other producer
task not involved in a broadcast. The consumers cannot use ordinary input clauses as these would
automatically advance the stream's read position, such that consumers would not be able to access
the same elements. Therefore, the consumers of a broadcast must use the peek clause, which

37

Chapter 3: OpenStream

(a) Stream accesses / sliding windows (b) Resulting task graph

Figure 3.3: Simple example with a single producer and a single consumer

does not advance the read position of the stream and hence allows multiple consumers to obtain
access to the same stream elements. For practical restrictions of the implementation, explained in
Section 3.4.3, the burst of the producer's output view must match the horizon of the consumers
peeking views. The second step of a broadcast consists of a tick operation that advances the
stream's read position. At this point, all the set of consumers of the broadcast is determined and
no further consumers can be added. The syntax of the tick construct is:

1 #pragma omp tick(stream_expr >> size_expr)

The stream expression must be either the identi�er or an array expression addressing a single
stream or a single stream reference. The expression for the size speci�es by how many elements the
read position is advanced and can be any expression of type size_t that matches the producer's
burst.

3.2.5 Barriers

OpenStream offers built-in support for local barrier synchronization with the taskwait construct,
which causes the task that encounters it to be suspended until all of the tasks of the current context
have terminated. The syntax is conceivably simple:

1 #pragma omp taskwait

Barriers created with the taskwait construct are often employed at the end of the control program
to make sure that all tasks have terminated before shared resources are freed.

3.3 Examples
To illustrate the principles and the syntax above, this section provides some basic examples

with increasing complexity. The presentation starts with programs based only on input and output
views and then shows how to implement broadcasts.

Tasks with ordinary output and input views

Figure 3.3a shows the stream accesses of a very simple program with a single output view and
a single input view. A producer p writes the square roots of 0 to 5 to a stream named a_stream ,
read by a consumer task c. As c is the only consumer on a_stream , the elements can be discarded
when c terminates, which makes a broadcast unnecessary.

To put into effect this behavior, both tasks need a sliding window of six elements to the same
elements of a_stream , with p accessing the elements in write mode and c accessing them in read
mode. Hence, the horizon of the input and output views must be six. As the elements are to
be discarded afterwards, the burst of the input view is also six. The following listing shows the
complete code of the example.

Listing 3.1: Single producer and single producer operating on a single stream

1 int main(int argc, char ** argv)
2 {

38

Chapter 3: OpenStream

(a) Stream accesses / sliding windows (b) Resulting task graph

Figure 3.4: Two producers and a single consumer

3 float a_stream __attribute__ ((stream));
4

5 int horizon = 6;
6 float out_view[horizon];
7 float in_view[horizon];
8

9 / * Producer p * /
10 #pragma omp task output(a_stream << out_view[horizon])
11 {
12 for(int i = 0; i < horizon; i++)
13 out_view[i] = sqrtf((float)i);
14 }
15

16 / * Consumer c * /
17 #pragma omp task input(a_stream >> in_view[horizon])
18 {
19 for(int i = 0; i < horizon; i++)
20 printf("Read %f\n", in_view[i]);
21 }
22

23 #pragma omp taskwait
24

25 return 0;
26 }

The code starts with the declaration of the stream of �oating point elements in line 3 using the
attribute stream . Lines 6 and 7 declare the views used by p and c, out_view and in_view , both
with a horizon of six elements. The producer and consumer tasks are created in lines 10 and 17,
respectively, using the task construct and appropriate clauses. Note that the task bodies reference
the variable horizon , although it was declared in the surrounding scope and no sharing clause
de�nes how it should be accessed. This is possible because scalar variables declared outside, but
referenced inside a task are declared�rstprivate by default, meaning that the compiler creates
an individual copy of the variable for each task initialized with the value from the surrounding
context at the time of the task creation. The taskwait construct in line 23 blocks the control program
until p and c have �nished. This prevents the application from ending prematurely before the
producer and consumer have executed.

Nothing in the example speci�es the direct producer-consumer relationship between p and c.
The producer and the consumer just happento operate on the same elements of the same stream
and the producer-consumer relationship is the result of the matching of the input view and the
output view on the stream. Figure 3.3b shows the dynamic task graph of this application. The
exact mechanism matching producers and consumers will be explained in section 3.4 describing
the execution model of OpenStream.

The next example adds some complexity to the previous one. Instead of a single producer
that writes all the elements at once, two producing tasks p0 and p1 each produce three of the six
elements, as illustrated in Figure 3.4a. To implement this behavior, the code from the previous
listing needs only a few adaptations:

Listing 3.2: Two producers and a single consumer operating on a single stream

1 int main(int argc, char ** argv)
2 {

39

Chapter 3: OpenStream

(a) Stream accesses / sliding windows (b) Resulting task
graph

Figure 3.5: Six producers and a single consumer operating on the same stream

3 float a_stream __attribute__ ((stream));
4

5 int horizon_out = 3;
6 float out_view[horizon_out];
7

8 int horizon_in = 6;
9 float in_view[horizon_in];

10

11 / * Producer p0 * /
12 #pragma omp task output(a_stream << out_view[horizon_out])
13 {
14 for(int i = 0; i < horizon_out; i++)
15 out_view[i] = sqrtf((float)i);
16 }
17

18 / * Producer p1 * /
19 #pragma omp task output(a_stream << out_view[horizon_out])
20 {
21 for(int i = 0; i < horizon_out; i++)
22 out_view[i] = sqrtf((float)(i+horizon_out));
23 }
24

25 / * Consumer c * /
26 #pragma omp task input(a_stream >> in_view[horizon_in])
27 {
28 for(int i = 0; i < horizon_in; i++)
29 printf("Read %f\n", in_view[i]);
30 }
31

32 #pragma omp taskwait
33

34 return 0;
35 }

Due to the different horizons of the producers and the consumer, the previous view declarations
have been replaced by declarations referencing different variables, horizon_out and horizon_
in (lines 6 and 9). The two producer tasks are created in lines 12 and 19. Although they both use
out_view in their output clauses, they do not access the same elements of the stream. In fact, the
compiler uses the declaration of a view only to determine the element type and the horizon of a
view. Within different task bodies, the same view can refer to completely different data locations.
The code of the consumer task (lines 26–30) and the rest of the code are almost identical to the
previous example. The dynamic task graph resulting from the execution is shown in Figure 3.4b.

As stated earlier, task creation can be fully embedded into the control �ow of the control
program. This concept is put into practice by the next two examples creating tasks dynamically
within a for-loop. Assume that the production of stream elements needs to be parallelized further,
such as illustrated in Figure 3.5a and Figure 3.5b, where each producer task writes only a single
element of to the stream. To this end, the task construct creating a producer can simply be
embedded into the body of a for loop:

Listing 3.3: Creation of producers in a for-loop

1 float out_view;
2

3 for(int i = 0; i < 6; i++) {
4 #pragma omp task output(a_stream << out_view)

40

Chapter 3: OpenStream

Figure 3.6: Six producers and a single consumer operating on six streams of an array of streams

5 {
6 out_view = sqrtf((float)i);
7 }
8 }

As only one element is written per task, the output view is declared as a scalar and the output
clause uses the abbreviated syntax with an implicit burst of one element.

An alternative way to specify the behavior of the previous example is to use multiple streams,
e.g., one stream per element and to let the consumer read from all these streams at once. This is
shown in Figure 3.6: each producer pi writes a single element to a single stream streams[i]
from an array of streams named streams. The program can be written as:

Listing 3.4: Consumer using a variadic view

1 int main(int argc, char ** argv)
2 {
3 float streams[6] __attribute__ ((stream));
4

5 float out_view;
6 float in_view[6][1];
7

8 for(int i = 0; i < 6; i++) {
9 / * Producers p0 ... p5 * /

10 #pragma omp task output(streams[i] << out_view)
11 {
12 out_view = sqrtf((float)i);
13 }
14 }
15

16 / * Consumer c * /
17 #pragma omp task input(streams >> in_view[6][1])
18 {
19 for(int i = 0; i < 6; i++)
20 printf("Read %f\n", in_view[i][0]);
21 }
22

23 #pragma omp taskwait
24

25 return 0;
26 }

Line 3 de�nes the array of streams with six elements. The output view of the producers in line 5
remains unchanged, but the input view, now uses a two-dimensional format. The outer dimension
speci�es the number of streams that will be used by the view and the inner dimension speci�es
horizon, which must be identical for all streams. Within the task body of the consumer, the input
view can be referenced like any two-dimensional array of �oating point elements (line 20).

Broadcasts

Broadcasts can be implemented easily using an output view and peeking views on a stream.
In the example shown in Figure 3.7, the elements written by a single producer are read by three
consumers c0, c1 and c2. Listing 3.5 shows how the different consumers use their input data:
c0 (line 17) calculates the sum of all input elements, c1 (line 28) calculates their product and c2

(line 39) computes the sum of the squares. All consumers use the peek clause, which implies a
burst of 0 elements. The tick construct advances the read position and effectively triggers the

41

Chapter 3: OpenStream

broadcast by activating the producer task, i.e., the producer task becomes ready for execution.
Upon termination of the producer, the data is available and the consumers are ready for execution.
A detailed description of the run-time mechanisms related to broadcasts at execution time is given
in Section 3.4.3.

Listing 3.5: Multiple consumers reading the same elements

1 int main(int argc, char ** argv)
2 {
3 float a_stream __attribute__ ((stream));
4

5 int horizon = 6;
6 float out_view[horizon];
7 float in_view[horizon];
8

9 / * Producer p * /
10 #pragma omp task output(a_stream << out_view[horizon])
11 {
12 for(int i = 0; i < horizon; i++)
13 out_view[i] = sqrtf((float)i);
14 }
15

16 / * Consumer c0 * /
17 #pragma omp task peek(a_stream >> in_view[horizon])
18 {
19 float accu = 0.0f;
20

21 for(int i = 0; i < horizon; i++)
22 accu += in_view[i];
23

24 printf("Sum: %f\n", accu);
25 }
26

27 / * Consumer c1 * /
28 #pragma omp task peek(a_stream >> in_view[horizon])
29 {
30 float accu = 1.0f;
31

32 for(int i = 0; i < horizon; i++)
33 accu * = in_view[i];
34

35 printf("Product: %f\n", accu);
36 }
37

38 / * Consumer c2 * /
39 #pragma omp task peek(a_stream >> in_view[horizon])
40 {
41 float accu = 1.0f;
42

43 for(int i = 0; i < horizon; i++)
44 accu += in_view[i] * in_view[i];
45

46 printf("Sum of squares: %f\n", accu);
47 }
48

49 #pragma omp tick (a_stream >> horizon)
50

51 #pragma omp taskwait
52

53 return 0;
54 }

3.4 Execution model

After the discussion of the central concepts and the syntax of OpenStream programs in the
previous sections, we give an overview of the execution model. We �rst explain how tasks that are
ready for execution are scheduled and executed on the different cores of the machine. We then
discuss how the run-time manages the creation of tasks and how it detects that a task is ready. This
discussion also includes the explanation of how views are associated to stream elements. Finally,
we introduce the memory management layer of the run-time based on memory pooling.

42

Chapter 3: OpenStream

(a) Stream accesses / sliding windows (b) Resulting
task graph

Figure 3.7: Multiple consumers reading the same elements

Figure 3.8: Per-worker data structures and worker placement in OpenStream

3.4.1 Scheduling and work-stealing

One of the central components of the run-time is the scheduler, which manages the execution
of tasks that are ready. As the run-time is intended to run on massively parallel systems, the
approach used for scheduling is distributed and uses lock-free implementations of the most critical
data structures. This avoids high synchronization overhead and thus prevents the scheduler from
becoming a bottleneck for performance. In this approach, each core involved in the execution of
the application has a persistent worker thread, an ordinary POSIX thread running a scheduling
loop, which executes ready tasks on the local core independently from the other processing units.
All worker threads are created at the beginning of the execution of the application and remain
alive until its termination. By default, one persistent worker is placed on each core as shown in
Figure 3.8, but workers can be placed in any order on the cores of the machine as long as no more
than one worker executes on every core. However, the mapping of workers to cores can only be
set at the beginning and remains the same for the entire execution time.

Figure 3.8 also shows the data structures involved in the scheduling process. The �rst structure
is a work-stealing deque, a double ending queue that can contain an arbitrary amount of tasks ready
for execution. The second structure is a single entry software cachethat can only contain up to one
single ready task at a time. When a worker activates a task, it tries to add the task to the single
entry software cache �rst. If the cache is empty, this operation immediately succeeds. However, if
the cache already holds a task, this task is removed from the cache and added to the work-deque in
order to leave the entry of the cache to the newly activated task. Hence, the cache always contains
the latest task activated by the worker.

When the worker �nishes execution of a task, it �rst checks if there is a task in the software
cache and, if so, removes it from the cache and executes it. If the cache is empty, it tries topopa task
from bottom of the work-deque. If both the cache and the deque are empty, the worker chooses
a random victim worker using a uniform distribution and tries to steala task from the top of the
victim's work-deque. Work-stealing is only allowed on the work-deque and the software cache

43

Chapter 3: OpenStream

Algorithm 1: scheduler_loop(w)

1 w:cached_task null
2

3 while true do
4 t w:cached_task
5 w:cached_task null
6

7 if t = null then
8 t pop_bottom(w:work_deque)
9 end

10

11 while t = null do
12 victim random_worker ()

t pop_top(victim:work_deque)
13 end
14

15 execute_task(t)
16 end

Algorithm 2: add_task_locally(t, w)

1 if w:cached_task6=null then
2 push_bottom(w:work_deque;
3 w:cached_task)
4 end
5

6 w:cached_task t
7

8

9

10

11

12

13

14

15

16

17

remains inaccessible to other workers than the owner.
The purpose of the software cache is thus twofold. First, as only the worker itself has access to

the cache, adding or removing a task can be accomplished without any synchronization overhead.
Second, a task in the software cache cannot be stolen by another worker, which avoids the following
situation. Let w be a worker that is currently executing a task t and let t r be the task that was last
activated by w. Assume further, that the work-queue of w was empty before t r was activated. If t r

is stolen by another worker, w runs out of work and has to steal another task after termination of t,
with atomic operations on a remote work-deque.

The work-deque is implemented using the lock-free deque proposed by Chase and Lev [37].
Tasks are put into the deque at the bottom end and can only be stolen by other workers at the top
end. The only worker that is allowed to remove a task from the bottom is the owner of the deque.
From a worker's perspective, tasks are executed in LIFO order, favoring local execution of tasks
whose input elements have been written recently, resulting in better cache usage. In contrast to
this, task stealing occurs in FIFO order, meaning that tasks whose data is less likely to be present
in the cache hierarchy are executed remotely.

Algorithms 1 and 2 summarize the principles of scheduling presented above. Each worker
enters scheduler_loopupon its creation, which contains an in�nite scheduler loop, ensuring constant
execution of tasks obtained from the local software cache, the local work-stealing deque or through
work-stealing from another worker's work-deque. The function add_task_locallyis called whenever
a worker w causes a task to become ready for execution and adds that task to the software cache.

3.4.2 Data structures

Each entity of an OpenStream program (i.e., streams, tasks and views) is associated with a data
structure in the run-time as shown in Figure 3.9. A stream is characterized by the attributes shown
in Figure 3.9a, which are:

– A list of unmatched output views on the stream (prod_queue)
– A list of unmatched or partially matched input views on the stream (cons_queue)
– The size in bytes of its elements (elem_size)
– A reference counter for garbage collection (refcount)
– A list of unmatched peeking views on the stream (peek_chain)

44

Chapter 3: OpenStream

(a) Stream (b) View (c) Frame

Figure 3.9: Major data structures of the OpenStream run-time

The list of producers, consumers and peeking consumers are initially empty when the stream
is created and the element size is initialized according to the size of elements speci�ed in the
declaration of the stream. The initial value of the reference counter is one and is increased by one
at the creation of every stream reference referring to the stream. Views are represented by the data
structure illustrated in Figure 3.9b with the following �elds:

– the horizon expressed in bytes (horizon)
– the burst expressed in bytes (burst)
– a �eld used for chaining of the view in a linked list (next)
– the reached position used for indexing of the data buffer and to check if the view is un-

matched, partially matched or fully matched (rpos)
– a pointer to the elements of the sliding window (data)

Note that there is no �eld indicating whether the view provides read or write access. This
information is kept by the compiler and passed to the run-time as a parameter upon a call to the
function that matches a view with stream elements. Horizon and burst are initialized according to
the horizon and burst of the view. The data structure of a view from a peek clause receives a burst
of zero, allowing the run-time code to recognize it as such. For all other views, burst and horizon
are identical. Upon creation, the data location of the view is unknown and hence initialized to
NULL. The reached position is set to 0, indicating that the view is unmatched, i.e., not associated to
any producer or consumer.

The last data structure presented in Figure 3.9 is the data-�ow frameor framefor short and
represents a task. A frame is composed of:

– A synchronization counter sc , indicating if the task is ready for execution (sc = 0) or if it has
unmet dependences (sc > 0)

– A set of views, each identi�ed by its respective name from the declaration of the view
– A data region buf which has enough space to store all elements of its input views

The synchronization counter of a task is initialized with a value representing the sum of the
horizons of its views, each multiplied with the size of the views' element types.

3.4.3 Dependence management

As shown in the introduction and the examples of this chapter, producers and consumer are
matched dynamically, only based on their stream accesses. In this section, we show how this
matching is implemented by the run-time library based on the data structures presented previously.
We start with the matching of ordinary input and output views and present the same procedure
for broadcasts using peeking views afterwards.

Ordinary input and output views

When a task is created, its frame is allocated and initialized, including all the data structures for
the task's views. Once the initialization is �nished, output views are matched with consumers and
input views are matched with producers by invoking a procedure called resolve_dependences
for each view.

45

Chapter 3: OpenStream

(a) Initial state after creation of the stream (b) Creation of the �rst producer

(c) Creation of the second producer (d) Creation of the consumer, matching with
the �rst producer

(e) Matching between the second producer
and the consumer

(f) Execution of the �rst producer

(g) Update of the consumer's synchronization
counter

(h) Execution of the second producer

Figure 3.10: Resolution of the dependences of the tasks from listing 3.2 on page 39

46

Chapter 3: OpenStream

(i) Update of the consumer's synchronization
counter

(j) After execution of the consumer

Figure 3.10: Resolution of the dependences of the tasks from listing 3.2 on page 39 (continued)

To illustrate how the different data structures are used during dependence management by
resolve_dependences , reconsider the example of listing 3.2 on page 39, in which a single
consumer reads a total of six �oating point elements of four bytes produced by two tasks, each
writing three of the six elements. The entire process from the creation of the stream and the tasks
to the execution of the tasks is illustrated in Figure 3.10.

Figure 3.10a shows the state of the run-time after the creation of the stream a_stream . As
there are neither producers nor consumers yet, the corresponding chains of unmatched views,
prod_queue and cons_queue , are empty. The stream status at the upper right of the �gure does
not represent an actual data structure of the run-time and only serves to illustrate the current read
and write positions as well as the contents of the stream.

Figure 3.10b shows what happens when p0 is created. As there is no consumer reading from
the stream, the output view cannot be matched with an input view yet and the data structure
representing the output view of the task is added to the stream's queue of unmatched producers,
prod_queue . However, even though the matching is not complete, conceptually, the write
position of the stream is advanced by the burst of the view, such that subsequent producers write
the elements at positions following the elements written by p0. Note that the values for horizon
and burst in the �gure are speci�ed using bytes and not the number of elements. The pointer
next , used for chaining of unmatched views, is initialized to NULLas the output view of p0 is
currently the only unmatched view writing to the stream and thus does not have a successor in the
list. The �eld rpos is unused for output views in this example and can be ignored. As the data
location is currently unknown due to the incomplete matching, the �eld data it is initialized to
NULL. The synchronization counter of the task, sc , keeps its initial value of 12 (one unmatched
output dependence with three �oating point elements of four bytes).

The next step in the example program is the creation of the second producer, p1, as shown in
Figure 3.10c. Exactly as was the case at creation of the �rst producer, no consumer reading from the
stream has been created so far. Hence, the output view of p1 is added to the queue of unmatched
producers using the �eld next of the output view of p0. Again, the write position of the stream is
advanced by the burst of the view of three elements. The remaining �elds are initialized with the
same values as for the previous task.

The consumer task c is �nally created in the step illustrated by Figure 3.10d. Burst and horizon
are both set to 24 bytes corresponding to the six elements speci�ed in the declaration of the input
view of c. The buffer for the input elements is embedded into the frame, indicated by the array
of 6 elements below buf . The current write position within this array is the �rst element, thus,
rpos is initialized to 0 (this is not shown in the �gure, since it represents the state after matching
with p0). At execution of resolve_dependences for the input view of c, the list of unmatched
producers is consulted. If this list would be empty, the input view would have been added to
cons_queue as seen for the producers andprod_queue before. However, as the list is not empty,
the �rst output view is removed and matched with the input view of c. This is done in several

47

Chapter 3: OpenStream

steps. First, the data pointer of the output view is set to the current write position of the input
view, which is calculated by indexing buf using the current value of rpos of the input view. The
result of the indexing operation is the base address of buf , i.e., &buf[0] . The value of rpos is
updated according to the horizon of the output view of p0, i.e., a value of 12, as shown in the �gure.
Next, the synchronization counter of the producer task is updated by subtracting the burst of the
output view. The new value of 0 indicates that the task is ready for execution. The matching with
p0 is now complete. However, the reached position of the input view of c still has not reached the
horizon, such that resolve_dependences continues matching with the second output view.

The result of this process is shown in Figure 3.10e. Similar to the previous matching, the output
view of p1 is removed from the list of unmatched producers, the data pointer of the output view
of p1 set to the current write position of the input buffer and the synchronization counter of the
output view is updated accordingly. The �eld rpos of the output view receives the value of the
input view before the second matching, which was 12. However, in this example, this �eld can
be ignored for output views and is only shown in order provide a coherent description of the
matching algorithm. The reached position of the input view now matches its horizon, which
indicates that matching of this view is complete. Note that the synchronization counter of the
consumer is not updated yet, due to the fact that its input data only becomes available when the
producing tasks terminate.

Assume that p0 is executed �rst and �nishes its execution. Figure 3.10f shows the state of the
different data structures right at termination: the input buffer of c now contains the data written by
p0. After termination of the work function of p0, the synchronization counter of c is reduced by the
burst of the output view, resulting in an updated value of 12 (cf. Figure 3.10g). When p1 executes,
the last three elements become available and the synchronization counter of c �nally reaches zero,
which activates c (Figures 3.10h and 3.10i). The task eventually executes and its resources are freed,
as shown in Figure 3.10j.

Broadcasts

For the illustration of broadcasts, we show what happens during execution of the code using
peek clauses and the tick construct presented in listing 3.5 on page 42. At its creation the producer
task is entirely unaware of the broadcast and is treated like any ordinary producer whose con-
sumers have not been created, yet. This is shown in Figure 3.11a: the output view is simply added
to the list of unmatched producers just as in Figure 3.10b of the previous example. The consumers,
however, are treated differently than before. When resolve_dependences is called with an
input view with a burst of 0, i.e., a peeking view, it does not match producers and consumer directly,
but defers this action until execution reaches the tick clause. Peeking views on the same elements,
i.e., peeking views that are matched before the read position of the stream is advanced with a
tick clause, are queued using the �eld peek_chain of the stream, as shown in Figures 3.11b
to 3.11d. Neither the producer, nor the consumers are ready for execution during this period, as
indicated by their synchronization counters keeping their initial values of 24. When the run-time
encounters the tick clause, it resets the chain of peeking views and resolves the dependences of
the �rst consumer view (Figure 3.11e). The producer is removed from the chain of unmatched
output views and its data pointer is set to the �rst element of the buffer of the input view. The
synchronization counter of the producer reaches zero and the producer is ready to execute. At
termination of the producer in Figure 3.11f, all input elements of the �rst consumer have been
written, but the task remains blocked until the data has been copied to the remaining consumers
(Figure 3.11g). Upon completion of this operation, the consumers' synchronization counters are
updated and the producer's data structures can be freed (Figure 3.11h).

3.4.4 Allocation of data structures

There are multiple data structures involved in dependence management and scheduling of
tasks, e.g., streams and data-�ow frames, presented above. Many of them need to be allocated
and freed dynamically throughout the execution of a stream application. Often they are used only
from creation of a task until its termination and can therefore have a very short lifetime, resulting

48

Chapter 3: OpenStream

(a) Creation of the producer task (b) Creation of the �rst consumer

(c) Creation of the second consumer (d) Creation of the third consumer

(e) Matching of the producer and the �rst consumer at the
tick operation

(f) Termination of the producer

(g) Broadcast of the data to the remaining consumers (h) Activation of the consumer tasks

Figure 3.11: Dependence resolution of broadcasts

49

Chapter 3: OpenStream

Figure 3.12: Illustration of the principles of a per-worker memory pool

in frequent invocations of functions allocating and freeing memory resources. In addition, on
many-core systems with a high number of workers executing in parallel, these functions might
be called with a high degree of concurrency. To prevent memory management from becoming a
bottleneck, the run-time system must thus rely on an optimized memory allocator.

Memory pooling

Due to the parallelism within the run-time itself, resulting from the concurrent activity of
workers, a centralized memory allocator satisfying all requests would require a substantial effort
on synchronization of concurrent calls. Instead, the OpenStream run-time uses a decentralized
approach based on per-worker memory pools.

The principles of memory pooling are straightforward. The size of each data structure used by
the run-time system is assumed to be between 2smin and 2smax bytes. For each power of 2i with
i 2 fs min ; smin + 1; smin + 2; : : : ; smax g, a linked list of free blocks of size 2i bytes is maintained, as
illustrated in Figure 3.12. When an allocation of size m takes place, the allocator �rst checks if
m > 2smax holds. If this is the case, the size of the request is too big to be handled by the memory
pool and the request is redirected to the standard C memory allocator (e.g., malloc). For m � 2smax

the allocator checks whether there is a free block in the list of blocks whose size corresponds to the
next greatest power of two at least of size 2smin , i.e., 2j with 2j � m ^ @j0 : smin � j 0 < j . If such
a block exists, the allocator removes it from the list of free blocks and returns it as the result for
the request. If no such block is available, the allocator performs a re�ll operation that allocates a
contiguous chunk of memory of size M = k � sj , splits it into k equal-sized blocks, adds the �rst
k � 1 blocks the free list and returns the last block as the result of the request. Freeing a block
works similarly: the allocator determines the corresponding free list and adds the block at its head.
If the size of the block to free exceeds the maximum size handled by the memory pool, it forwards
the request to the standard memory allocator (e.g., free).

The main advantage of using memory pools for memory management is that almost all requests
can be carried out in constant time. The only exception are re�ll operations, which become less
frequent once the maximum number of blocks used simultaneously is reached. Additionally,
per-worker memory pools guarantee that the free lists are completely private and do not need to
be protected for concurrent accesses, e.g., using locks or atomic operations. Therefore, they do not
induce any synchronization overhead.

Life cycle of objects from a memory pool

The life cycle of blocks that are handled by a memory pool, i.e., objects whose size does not
exceed2smax , resulting from the allocation scheme above has �ve distinct stages:

1. Allocation from the operating system due to a re�ll operation
2. Allocation from the free list of a memory pool
3. Exclusive use of the block by the run-time or use by the run-time and the application
4. De-allocation of the block by putting it back to a free list
5. Return of the memory of the block to the operating system

Due to the reuse of blocks when using memory pooling, stages 3 and 4 can occur an arbitrary
number of times. An important aspect of these allocations and de-allocations is that they do not
necessarily have to involve the same memory pools. For example, a data-�ow frame is allocated

50

Chapter 3: OpenStream

(a) Creation of the �rst consumer (b) Creation of the second consumer

Figure 3.13: Invalid program with bursts smaller than the horizons

(a) Creation of the �rst consumer (b) Creation of the second consumer

Figure 3.14: Invalid program with multiple consumers reading from the same producer

in the memory pool of the worker executing the control program, but the associated task can be
executed by any other worker. The frame could thus be freed to another memory pool than the
pool from which is was allocated.

3.4.5 Restrictions from the execution model

The presentation of the data structures and the algorithm for resolving dependences between
tasks showed that stream data is not stored in data structures directly associated to a stream, but in
input buffers located in the data-�ow frames of tasks. Each structure representing a view has only
a single �eld, data , pointing to the �rst of the elements accessible through the view. An advantage
of this representation is that consecutive elements of a stream are stored at consecutive addresses
and can thus be accessed by simple indexation. However, in order to guarantee this data layout at
execution time, valid OpenStream programs are subject to a few restrictions.

Restriction 3.1 (Bursts and horizons of a view) Burst and horizon of a reading view must either be
identical or the burst must be equal to zero.

This avoids that a subsetof the elements of an output view is copied to multiple input views.
Figure 3.13 shows an example of an invalid OpenStream program with an output view of six
elements and two input views having a horizon of three elements and a burst of two elements.
The result in Figure 3.13b shows that there is an element at index i + 2 , which is accessed both by
c0 and c1 and which would have to be copied to the �rst position of the input view of c0 and the
third position of the input view of c1.

Restriction 3.2 (Horizons of output and input views of producers and consumers) The elements
accessible through a view cannot be scattered across multiple input buffers, i.e., there cannot be any output
view whose elements are not entirely read by consumers:

8t 2 T1 : 8(W; s; i s; i e) 2 views(t) :

8t0 2 T1 : 8(R; s; i 0
s; i 0

e) 2 views(t0) :

([i s; i e] \ [i 0
s; i 0

e] = ; _ [i s; i e] \ [i 0
s; i 0

e] = [i s; i e])

Note that this restriction cannot be veri�ed by the compiler due to the dynamic matching and is
therefore checked at execution time. Figure 3.14 shows an example of an invalid program with

51

Chapter 3: OpenStream

two input views accessing elements from a single output view. As in Figure 3.13, there is one
producer writing 6 elements, but the consumers now have a burst that matches the horizon of 3
elements. However, as the data would have to be distributed onto the input buffers of c0 and c1,
this program is invalid.

Restriction 3.3 (All elements of a stream that are written must also be read) This restriction for-
bids to write any stream element that is never read. As the writer relies on the input buffer of at least one
consumer to stores its produced elements, each element written to the stream needs to be read at least once:

8t 2 T1 : 8(W; s; i) 2 saccW (t) : 9t0 2 T1 : (R; s; i) 2 saccR (t 0)

Restriction 3.4 (Absence of unused elements between two elements that are used) As views are
matched one after another on consecutive elements of a stream, there cannot be any element between two
accessed elements that is never written:

8s 2 S :

(9t; t 0 2 T1 : (W; s; i) 2 saccW (t) ^ (W; s; i 0) 2 saccW (t 0) ^ i 0 > i + 1))

(8i 002 f i + 1; : : : ; i 0 � 1g : 9t002 T1 : (W; s; i00) 2 saccW (t 00))

Note that this restriction does not need any additional veri�cation as it results directly from the
matching algorithm presented earlier.

Restriction 3.5 (Finite number of consumers for broadcasts) As the tick construct advances the stream
at some point and triggers the broadcast operation, additional peeking views on the same stream cannot be
matched to the same producer after the tick. This mechanism effectively limits broadcasts to a �nite number
of receivers.

This restriction also results directly from the matching algorithm and does not require any speci�c
veri�cation.

3.5 Compilation of an OpenStream program
During compilation of an OpenStream program, it is necessary to translate the OpenStream-

speci�c pragmas and attributes to code that links with the OpenStream run-time library. The rest
of the code must be treated as an ordinary program written in the C programming language and
must be translated in accordance with its speci�cation. Due to the complexity of the standard,
writing such a compiler from scratch is a large undertaking. In addition, this work has already
been accomplished in a large variety of existing C compilers, which can be used as a basis for the
development of specialized compilers. Therefore, the OpenStream compiler is implemented on
top of the GNU C Compiler version 4.7.0 [79], reusing existing compilation infrastructure 2.

The different steps involved in the compilation of an OpenStream application, including
translation of the non-speci�c parts are shown in Figure 3.15. The basic structure of this process
is already included in the unmodi�ed version of GCC, but has been adapted to compilation of
OpenStream programs. The order of the steps is not strict, in particular steps 2 to 5 are tightly
coupled and executed repeatedly for each task. However, the steps can be roughly ordered as
follows:

1. During syntax analysisthe parser analyzes the pre-processed input �le and converts the C
statements into a tree representation called GENERIC [65]. OpenStream-speci�c clauses are
represented by nodes with custom types and are processed in later stages.

2. During outlining, the compiler creates a work-function for each task body.
3. In the third step, the compiler determines how much space is needed for the data-�ow frame

containing the tasks metadata and its views.

2. The current version has been updated to version 4.9.0 of the compiler, but the results presented in this thesis were
obtained from an earlier branch based on version 4.7.0.

52

Chapter 3: OpenStream

Figure 3.15: Compilation of an OpenStream program

4. Once the structure of the data-�ow frame is known, the code initializing the �elds and calling
the appropriate run-time functions can be generated. In particular, the space needed for the
data-�ow frame is allocated by calling the allocation function of the memory pool seen in
section 3.4.4, the synchronization counter of the task is set correctly and the views' bursts
and horizons are initialized. For each view, a call to resolve_dependences is added.

5. During gimpli�cation, the generated code is converted into a three-address representation of
the GIMPLE intermediate representation, widely used in GCC.

6. The result of the gimpli�cation is passed to subsequent optimization passes of GCC and the
back end, which �nally generates instructions for the target architecture.

The code of the run-time is kept in a separate, shared library. Hence, to resolve the symbols
used by calls of run-time functions generated in step 4, the executable needs to be linked with the
run-time library. The actual addresses of the symbols are determined when the executable and the
run-time are loaded right before execution.

In the following example, we illustrate steps 2 to 4 on a task with two input views and an
output view. The intermediate code resulting from the translation omits details from the actual
implementation and therefore does not re�ect the generated code by the real compiler. In addition,
the OpenStream compiler does not use a source-to-source approach. Thus, the generated code only
exists as an internal representation and is not exposed to the environment. However, the simpli�ed
code illustrates the concepts of how the compiler translates OpenStream code into generic C code
making use of the run-time library.

Listing 3.6: Example code to be translated by the compiler

1 void stream_function(void)
2 {
3 ...
4 int horizon = 10;
5 int out_view[horizon];
6 float in_view_f[horizon];
7 double in_view_d[horizon];
8

9 #pragma omp task input(fstream >> in_view_f[horizon], \
10 dstream >> in_view_d[horizon]) \
11 output(istream << out_view[horizon])
12 {
13 for(int i = 0; i < horizon; i++)
14 out_view[i] = (int)round(in_view_f[i] * in_view_d[i]);
15 }
16 ...
17 }

The general lines of the code generated from listing 3.6 are represented by the listing below.

Listing 3.7: General lines of the code generated by the compiler

1 struct frame_1 {
2 size_t sc;
3 int horizon;
4 struct view in_view_f;
5 struct view in_view_d;
6 struct view out_view;
7 void (* work_fn)(void *);
8 char buf[];

53

Chapter 3: OpenStream

9 };
10

11 void work_function_1(struct frame_1 * fp)
12 {
13 for(int i = 0; i < fp->horizon; i++)
14 ((int *)fp->out_view.data)[i] = (int)round(((float *)fp->in_view_f.data)[i] *
15 ((double *)fp->in_view_d.data)[i]));
16

17 tdecrease(fp->out_view.owner, fp->out_view.horizon);
18 tend(fp);
19 }
20

21 void stream_function(void)
22 {
23 ...
24

25 int horizon = 10;
26

27 int out_view[horizon];
28 float in_view_f[horizon];
29 double in_view_d[horizon];
30

31 size_t frame_size = sizeof(struct frame_1) +
32 horizon * sizeof(float) +
33 horizon * sizeof(double);
34

35 struct frame_1 * fp = tcreate(frame_size);
36

37 fp->work_fn = work_function_1;
38 fp->sc = horizon * sizeof(float) + horizon * sizeof(double) + horizon * sizeof(int);
39 fp->horizon = horizon;
40

41 fp->in_view_f.horizon = horizon * sizeof(float);
42 fp->in_view_f.burst = horizon * sizeof(float);
43 fp->in_view_f.next = NULL;
44 fp->in_view_f.rpos = 0;
45 fp->in_view_f.owner = fp;
46 fp->in_view_f.data = &fp->buf[0];
47

48 fp->in_view_d.horizon = horizon * sizeof(double);
49 fp->in_view_d.burst = horizon * sizeof(double);
50 fp->in_view_d.next = NULL;
51 fp->in_view_d.rpos = 0;
52 fp->in_view_d.owner = fp;
53 fp->in_view_d.data = &fp->buf[horizon * sizeof(float)];
54

55 fp->out_view.horizon = horizon * sizeof(int);
56 fp->out_view.burst = horizon * sizeof(int);
57 fp->out_view.next = NULL;
58 fp->out_view.rpos = 0;
59 fp->out_view.owner = NULL;
60 fp->out_view.data = NULL;
61

62 resolve_dependences(&fp->in_view_f, true);
63 resolve_dependences(&fp->in_view_d, true);
64 resolve_dependences(&fp->out_view, false);
65

66 ...
67 }

Lines 1 to 9 show the de�nition of the structure of the data-�ow frame of the task. Each task created
dynamically at execution time from the task construct upon a call to stream_function will be
represented by an instance of this data structure. The de�nition of the structure speci�es �elds
that are common to all tasks as well as �elds that are speci�c to the task construct for which the
structure was generated. The common �elds are the synchronization counter sc , a pointer to the
work function containing the instructions of the task body work_fn and a �eld buf that provides
access to the input data of the task. Note that the size of buf is not speci�ed as the size of input
data is known earliest at task creation (cf. line 35). The task-speci�c �elds are the views in_view_
f, in_view_d and out_view and a �eld for the local variable horizon of stream_function.

The outlined task body is represented by the work function de�ned in lines 11 to 19. The data
structure representing the task, i.e., the data-�ow frame is passed as an argument to the function
and the statements inside the function only reference �elds from the data-�ow frame. This also
applies to the local variable horizon of stream_function , whose access has been replaced

54

Chapter 3: OpenStream

with an access to fp->horizon in line 13.
Task creation takes place in the original function at line 35. The function responsible for task

creation is tcreate and takes the size of the frame as an argument. This size is calculated from
the size of the data structure representing the task and the amount of memory that is needed to
store the task's input data in line 33. The allocation of the frame is carried out by the run-time
during execution of tcreate and uses a memory pool. Hence, the code ofstream_function
does not directly call the allocator, but only assigns the return value of tcreate to fp.

The different �elds of the data-�ow frame are affected in lines 37 to 60. These are the �elds
containing metadata of the task itself, as well as the �elds of the task's views. The �elds of the
views named owner point to the data-�ow frame which embeds the elements of their sliding
windows. For input views, the owner is always the frame containing the view and for output
views this is the frame that contains the input view that was matched with the output view. The
pointer is primarily used to �nd the correct data-�ow frame when a synchronization counter needs
to be decremented, such as in line 17 where the synchronization counter of the task's consumer is
updated.

The code �nishes with calls to resolve_dependences for every view in lines 62 to 64. The
second parameter of this function indicates whether the call is issued for an input view (true) or
for an output view (false).

3.6 Summary
In this chapter, we introduced OpenStream, a data-�ow extension to OpenMP with support

from streams and lightweight tasks. We showed the concepts of stream accesses using views and
explained how a dynamic task graph can be derived from these accesses. The syntax of OpenStream
programs was presented and illustrated with multiple examples. Moreover, we introduced the
central data structures and procedures of the run-time in the discussion of the OpenStream
execution model. We gave an overview of the steps of the compilation of an OpenStream program
and outlined the generated code of an example.

OpenStream is a state-of-the-art language extension for task-parallel applications whose imple-
mentation enables the development of high performance applications [72]. Although the speci�c
concepts of stream accesses using views and matching of producers and consumers are unique
to OpenStream, the concept of specifying point-to-point data dependences between tasks is a
trend for task-parallel languages in general [25, 70]. The implementationof our approaches for
optimized scheduling and data placement presented in Chapter 7 and 8 and the implementation of
our optimizations for broadcasts in Chapter 9 are tightly coupled with the OpenStream run-time
and the OpenStream compiler. However, the conceptsonly rely on information on point-to-point
data dependences between tasks and thus apply to other task-parallel languages as well.

Many of our concepts have been merged into the of�cial distribution of OpenStream. As these
apply to the run-time system, the majority of our contributions to the codebase are modi�cations
of the OpenStream run-time. These are not only modi�cations that implement speci�c algorithms
for scheduling and data placement, but also important changes to the technical infrastructure
of the run-time, such as the interaction with the operating system, the addition of pro�ling
support or NUMA-speci�c modi�cations of the run-time code. Some of the modi�cations also
required changes in the OpenStream compiler or changes at the language level. Furthermore,
the experimental evaluation of this thesis has lead to the development of multiple benchmarking
applications, which have become part of the of�cial distribution.

The next chapter presents changes to the run-time and execution model that enable ef�cient
support for NUMA. In particular, we analyze the major issues of the NUMA-unaware strategy for
memory allocation and propose concepts that solve these problems and support NUMA-aware
scheduling and memory allocation.

55

Chapter 3: OpenStream

56

4 A NUMA-aware run-time and
execution model

The common requirement of techniques for NUMA-aware scheduling for task-parallel applica-
tions is that the placement of data structures involved in the execution of a task can be determined
accurately within the run-time. NUMA-aware allocation is based on the ability of the run-time sys-
tem to place data structures on speci�c nodes. Due to the short execution time of �ne-grained tasks,
this functionality is needed frequently throughout the execution of a task-parallel application and
must thus be provided with low overhead. However, as data placement results from interactions
between the task-parallel application, the operating system and the hardware at execution time,
support for NUMA by the run-time cannot be implemented independently and must be integrated
carefully into the embedding context. This requires a detailed understanding of all events that
determine data placement and demands ef�cient use of the interface to collect information on the
distribution of data provided by the operating system.

The goal of this chapter is to point out how the OpenStream run-time system can provide
ef�cient infrastructure to support NUMA-aware scheduling and NUMA-aware allocation. The �rst
part of the chapter explains which software and hardware components are involved in memory
allocation and data placement from the perspective of the operating system. We show which events
at execution time determine the placement on the different NUMA nodes of the machine and at
which moment the placement takes place. We then discuss the in�uence of these mechanisms on
the placement of data structures managed by an allocation mechanism based on memory pools,
such as the allocator presented in the previous chapter. From this detailed understanding of the
interactions, we conclude which changes must be applied to the OpenStream run-time system
and which restrictions must be imposed on streaming applications in order to implement ef�cient
and accurate NUMA-aware memory pooling. The resulting mechanisms allow the run-time to
determine the location of structures and enable per-structure data placement with low overhead as
a result of reduced interaction between the run-time and the operating system. The techniques
form the basis of the solutions for NUMA-aware scheduling and NUMA-aware memory allocation
presented in Chapter 7 and 8.

4.1 Memory allocation and data placement by the operating sys-
tem

Modern general-purpose computing systems implement the concepts of virtual memoryand
paging. In this model, each user space process has its own, private space of virtual addresses,
which is mapped to physical addresses by the memory management unit(MMU) using a translation

Chapter 4: A NUMA-aware run-time and execution model

table managed by the operating system. Both virtual and physical memory are organized in
pages, representing �xed-size intervals of the address space. The mapping from virtual to physical
addresses is implemented with page granularity, i.e., the set of subsequent addresses of a page in
virtual memory is mapped to a set of subsequent addresses of a physical page. The table de�ning
the mapping between virtual and physical addresses is therefore referred to as the page table.
Memory protectionde�nes which types of accesses to memory are authorized (e.g., read-only mode
that disallows write accesses, read and write mode without execution protection to prevent data
from being interpreted as instructions, etc.). The protection can be con�gured individually for
each page by setting �ags for the corresponding entry of the page table. Illegal access to a page is
detected by the hardware and results in an exception that is handled by the operating system.

4.1.1 Logical and physical memory allocation

Additional memory can be allocated by a user space process through a system call, usually
wrapped by a function of a user space system library, such as malloc from the standard C library.
The return value of the function call is a virtual address that points to a new region of memory
that can be used by the process immediately. From the perspective of a process, memory allocation
is thus an atomic operation and only involves a single system call. From the perspective of the
operating system, however, additional memory is attributed to a process in two steps which we
refer to as logical allocationand physical allocation.

Logical allocation is initiated by the system call issued by the process and causes the operating
system to modify the page table, such that additional pages of virtual memory become accessible.
The corresponding entries are set to point to the so-called zero-pageand memory protection is
con�gured to forbid write accesses to addresses associated to these pages. Although only the page
table is modi�ed and no additional physical memory is allocated, it appearsto the process that
additional memory becomes accessible upon return from the system call. Read access to the new
virtual pages result in read accesses to the zero page and thus yield zero values as expected from a
newly allocated memory region. However, as write accesses alter values in memory, they cannot
be redirected to the zero page and require new pages of physical memory to be assigned to the
process. This is done upon physical allocation and without noti�cation of the process as explained
below.

Due to the write protection con�gured during logical allocation, the �rst write access to a newly
allocated page generates an exception. During exception handling by the operating system, an
unused page of physical memory is selected and initialized with zeros. Afterwards, the entry in
the page table is modi�ed to point to the new physical page and the �ags are changed to authorize
write access. At the end of exception handling, control is transferred back to the application and
the write access is repeated. As write access has been authorized during physical allocation, the
repeated write access as well as subsequent accesses to the same page succeed without generating
an exception.

Memory regions can be composed of multiple pages and it might thus be required that physical
allocation is carried out multiple times. Hence, memory allocation from the perspective of the
operating system is not an atomic operation, but can be distributed over a longer period of time
depending on the timing of write accesses.

Figure 4.1 illustrates logical and physical allocation on a simple example in which a process
requests three additional pages of memory. Note that in practice, the page table is not a �at table
like the page table shown in the �gure, but a hierarchical structure with multiple levels. However,
for simplicity we illustrate memory allocation with a page table that has only a single level. The
initial mapping is shown in Figure 4.1a, where a set of valid entries in the page table points to
pages that are accessible both in read and write mode, while another set of unused entries shown
at the bottom indicates that a part of the virtual address space cannot be accessed. At logical
allocation, the entries of the page table corresponding to the unused region of virtual memory are
modi�ed, such that they point to the zero page and write protection is activated by setting the
appropriate �ags (Figure 4.1b). The �rst write to a page of the newly assigned region causes an
exception (Figure 4.1c) and initiates triggers reservation of a previously unused physical page by

58

Chapter 4: A NUMA-aware run-time and execution model

(a) Mapping before logical
allocation

(b) Logical allocation of three
additional pages

(c) Write access generating an
exception

(d) Initialization of an unused page in
physical memory

(e) Update of the page table

Figure 4.1: Logical and physical allocation

the operating system. This page is then initialized with zeros by copying the contents of the zero
page to it (Figure 4.1d). Finally, the corresponding entry in the page table is updated and the �ags
of the entry are modi�ed to allow read and write accesses (Figure 4.1e).

The main advantage of the separation of physical and logical allocation is a reduced memory
footprint for processes that demand large amounts of memory, but which use memory only
sparsely. Furthermore, the initialization of newly allocated memory can be distributed over time,
which avoids that the execution of the allocating process is interrupted for a long duration at
allocation time.

4.1.2 Page placement

On systems with non-uniform memory access, physical pages can be selected from multiple
memory controllers at physical allocation. Which of the controllers is chosen depends on the
placement strategy employed by the operating system. A common default placement strategy is
�rst-touch placementthat selects a page from the local memory of the core that executed the write
instruction triggering physical allocation. Pages from remote nodes are only selected if all pages of
the local node are already in use.

The placement resulting from �rst-touch allocation leads to a high fraction of local memory
accesses if memory regions are initialized and accessed by cores from the same node. Sequential,
independent processes, for example, display this behavior and thus bene�t from this placement
strategy. Also, if logical allocation is carried out on one node and write accesses are performed on
a different node, �rst-touch placement increases data locality as it delays placement to the moment
where the location of data accesses is known. However, for parallel applications with dynamic
access patterns, �rst-touch placement does not necessarily provide adequate results for locality.
An extreme case are applications that initialize data structures sequentially at the beginning of the
execution and then process data in parallel. In this scenario, �rst-touch placement causes all data
to be stored on the memory controller of the initializing node, which results in high contention
and remote memory accesses in the parallel phase.

To give a process accurate control over page placement, operating systems usually provide
system calls that allow processes to specify from which node the physical pages should be selected
for a region of virtual memory (e.g., mbind provided by LIBNUMA [58] on Linux systems). These
system calls are employed for two patterns of page placement: allocation on a single node and

59

Chapter 4: A NUMA-aware run-time and execution model

Figure 4.2: Example of the distribution of data on three NUMA nodes

interleaved allocationon multiple nodes. The former places all physical pages of a memory region
on a single node and is particularly useful if the cores and thus the nodes accessing the memory
region are known in advance. The latter uses a list of nodes on which physical pages are allocated
in a round-robin fashion. Data is thus distributed evenly over multiple nodes, which enables
exploitation of the overall bandwidth of multiple memory controllers and avoids contention on
a single node. However, the distribution may increase the average latency of accesses as the
likelihood of remote accesses increases with every additional node included in the interleaving.

4.1.3 Determining the location of data

Due to the �rst-touch allocation scheme, an application does not have a-priori knowledge
about data placement, unless it speci�es the distribution of data before physical allocation or
unless it schedules the instructions initializing a memory region for execution on speci�c cores. To
determine where the data of a memory region is located after physical allocation without speci�c
placement and without detailed tracking of write accesses, the application must thus query the
operating system explicitly through a system call, such as the move_pages system call of the
Linux kernel 1. This system call takes a list of virtual addresses and returns for each address on
which node the page covering the address is located. For addresses whose associated pages have
not been allocated physically prior to the call, the system call returns values indicating that the
placement could not be determined.

Figure 4.2 shows an example for the distribution of data on three NUMA nodes. To determine
the placement of the pagesp0 to p4, the process passes pointers to two tables tomove_pages . The
�rst table has one entry for each page and contains the virtual addresses of the pages. The second
table receives the results for the placement and is �lled in by the system call. As p0, p1 and p3 have
been allocated physically, the table for the results contains the identi�ers of the respective NUMA
nodes at positions 0, 1 and 3. For the pages that have not been placed, i.e.,p2 and p4, the table
contains negative values. The contents of the table are thus1;, 2, �1, 0 and �1.

4.1.4 Implications of the size of pages

Modern hardware platforms provide large amounts of main memory ranging from a few MiB
on embedded systems to several hundred GiB on high performance servers. Traditionally, many
hardware platforms and operating systems only provided support for a single page size of a few
KiB, e.g.,4KiB on older x86 platforms. The gap between the small page size and the large size
of contiguous chunks of memory that can be allocated by an application leads to a high number
of entries in the page table. The translation lookaside buffer(TLB), which caches these entries, has
only a limited capacity. A translation from a virtual to a physical address that misses the TLB
causes the hardware to fetch the entry of the page table that is needed for the translation from
main memory. This additional access to memory takes a certain amount of time to complete and
slows down execution. Large page tables may result in frequent misses of the TLB and can thus
decrease performance signi�cantly.

1. Linux uses the same system call to obtain information about page placement and to migrate pages between nodes,
hence the namemove_pages.

60

Chapter 4: A NUMA-aware run-time and execution model

Figure 4.3: Illustration of the terms used for memory regions managed by memory pools

In order to reduce the number of entries in the page table and thus to decrease the likelihood of
misses, modern platforms are able to handle larger pages. For example, on x86_64 platforms, the
Linux kernel is able to handle pages of 4KiB, 2MiB and 1GiB. Recent versions of the kernel inte-
grate so-called transparent huge page support[42], where the kernel tries to allocate huge pages upon
physical allocation transparently, without explicit requests for huge pages from the application.

However, while huge pages can reduce the number of TLB misses, they increase the granularity
of physical allocations and data placement. With small pages, physical allocation occurs frequently,
but each time only a small portion of memory is allocated physically. Huge pages reduce the
frequency, but increase the amount of memory that is allocated. Even a small modi�cation can thus
cause a large amount of memory to be allocated physically and to be placed on a NUMA node.

In the following section, we discuss the consequences of �rst-touch placement and the page
size on memory pooling.

4.2 The in�uence of �rst-touch placement and the page size on
memory pooling

In this section, we show how the mechanisms for �rst-touch placement presented in the
previous section in�uence how and when blocks managed by memory pools are placed on NUMA
nodes. We start by examining the in�uence on re�ll operations and consider placement during
the use of a block afterwards. Implications on the reuse of blocks are pointed out at the end of
the section. For a clear distinction between memory regions obtained from the operating system,
memory regions managed by memory pools and memory regions actually used by the run-time
system and the application we use the following terminology:

– a chunkof memory refers to a memory region that has been allocated from the operating
system (e.g., by calling malloc). Chunks are allocated and are divided into smaller regions
during re�ll operations (as explained in Section 3.4.4).

– a blockis a memory region resulting from a split operation on a chunk during a re�ll. As
mentioned in Section 3.4.4, the size of a block is always a power of two. Blocks are chained
in free lists of memory pools and are handed to the run-time upon allocation from a memory
pool.

– a data structurerefers to a memory region that is used to store an entity of the run-time or the
application (e.g., a data-�ow frame or a stream). The memory region of a data structure is a
subset of the block that was allocated for the data structure, starting at the �rst address of the
block.

The relationship between these terms is illustrated in Figure 4.3.

4.2.1 Page placement during re�lls

At allocation of a data structure from a memory pool, the allocation function �rst checks if the
list of free blocks corresponding to the size of the structure is empty. If the list is not empty, the
�rst block is removed from the list and returned as the result of the allocation. However, if the
list is empty, the memory pool performs a re�ll operation in order to populate the list with new

61

Chapter 4: A NUMA-aware run-time and execution model

1. Refill

2. Split

3. First chaining

4. Second chaining

(a) � � � � � (b) � � � � � (c) � � � � �

Figure 4.4: Physical allocation upon a re�ll of a free list

blocks. During a re�ll, a memory chunk of a con�gurable size (e.g., � MiB) is allocated logically
from the operating system and is split into blocks that correspond to the block size of the free list
that is to be re�lled. The chain of blocks is realized by using a small portion of memory at the
beginning of each block to store the address of the next block in the chain. Hence, the �rst write
access to a block takes place immediately during the re�ll, but only affects a very small amount of
the block's memory. However, depending on the page size used by the system and the size of the
block, this determines either the placement of a portion of the block, the placement of the entire
block or placement of the block as well as following blocks at subsequent addresses.

Figure 4.4 illustrates these three cases. The bar at the top of each �gure (step 1, labeledRe�ll)
represents the chunk of memory allocated from the operating system, which is split into blocks
afterwards. The individual blocks resulting from the split are shown below the chunk (step 2,
labeled Split). The last two lines (step 1, labeled First chainingand Second chaining) show the
placement of pages after the chaining of the �rst block and the second block, respectively. Question
marks in the �gure indicate that the respective page has not been allocated physically and that its
placement is thus unknown.

In Figure 4.4a the block size � � is greater than the page size� � . The chaining of each block
only causes physical allocation and thus placement of the �rst page of each block. Hence, the
resulting chain for the free list consists of blocks for which the placement of the majority of the
pages still remains to be determined. Figure 4.4b shows the same steps for an equal size of pages
and blocks. At each chaining, the entire block is allocated physically and the resulting chain only
contains blocks that have been placed entirely. The last case is presented in Figure 4.4b, where a
single page contains multiple blocks. The chaining of a block thus causes the current block as well
as following blocks to be allocated physically. As in the previous scenario, this leads to a chain of
placed blocks.

In summary, allocation from a free list after a re�ll operation either yields a block that has
already been allocated physically or a block whose �rst page has been placed, but whose remaining
pages have only been allocated logically. Which percentage of a block the unplaced pages represent
in the latter case depends on the block size and the size of pages. Figure 4.5 illustrates three
different cases. In the �rst case shown in Figure 4.5a, the block is composed of only two pages, such
that ��� of the block are placed after a re�ll. In the second case (Figure 4.5b) the block composed
of four pages, such that ��� are placed and in the last case (Figure 4.5c) a block of consists of eight
pages with ��� �� of placed data.

The typical sizes of data structures present in the run-time when running the applications used
for experimental evaluation presented in Section 6.1 can be divided into two classes. The �rst class
consists of small structures of a few bytes up to a few KiB. These are mainly small data-�ow frames
and other small entities, such as the instances of structures representing streams. The second
class represents large structures of several hundredKiB and is composed exclusively of data-�ow
frames. The size of pages on our test systems described in Section 6.3 is selected transparently by
the operating system through transparent huge page support and is either � KiB or � MiB . The
size of small structures is thus close to the minimal page size and the blocks used for the small
structures are almost always allocated physically entirely after a re�ll, independently from the

62

Chapter 4: A NUMA-aware run-time and execution model

(a) 50% placed (b) 25% placed (c) 12:5% placed

Figure 4.5: Different amounts of placed data after a re�ll for blocks larger than a page

actual page size. In contrast to this, the status of the placement of a large structure after a re�ll
depends on the size of a page. For small pages only a very small portion of a structure is allocated
physically and new structures can be considered as entirely unplaced. When using huge pages,
however, the size of a large structure is below or equal to the size of a page and new structures are
placed entirely.

Hence, intermediate cases with the same amount of placed and unplaced data as in Figure 4.5a
do not appear in practice and all structures can be considered as either entirely placed or entirely
unplaced. In addition, as only large structures can be unplaced after a re�ll and as all large
structures are frames, unplaced structures are always data-�ow-frames. In the following part, we
examine the different possible scenarios for page placement of unplaced data-�ow frames during
their �rst use. This applies only to frames whose size is signi�cantly higher than the size of a page
as this is the only scenario in which a frame can be unplaced right after a re�ll.

4.2.2 Placement at the �rst use of data structures

The �rst write accesses to a data-�ow frame occur when the producers of the task associated to
the frame write data to the task's input views. Depending on the number of producers, the amount
of input data they provide and where they execute, two scenarios for the placement of the frame's
pages are possible.

In the �rst scenario, all pages of the data-�ow frame are placed on a single node. This happens
if all producers are executed by workers of the same node. The lower the number of producers of
a task, the higher the probability that all of them are executed on the same node. For tasks with
only a single producer, the data-�ow frame is guaranteed to be placed on a single node. Also,
for highly unbalanced dependences, the outcome for data placement is similar as the majority of
the pages is written by one worker and the frame can be considered as being placed on a single
node. Figure 4.6a shows such a task graph, in which one producer pa writes a single page of input
data, while another producer pb writes 15 pages of the input data of a task c. Assuming that pa is
executed by a worker wa that operates on node na and pb is executed by a worker on node nb, the
resulting distribution corresponds to the placement shown in Figure 4.6b.

In the second scenario, pages of the data-�ow frame are scattered across multiple nodes. This
is the case if the task associated to the frame depends on several producers which are executed on
different nodes. The number of nodes is that contain the frame's pages is limited by the number
nodes of the system and the number of producers. The reason for the limitation by the number
of producers is that task execute from beginning to end on a single core and thus on a single
node 2. Figure 4.6c shows a task graph with balanced dependences between three producerspa , pb

and pc and a consumer c. The producers are executed by workers wa , wb and wc and, similar to
the previous example, these workers operate on different nodes na , nb and nc. A possible page
placement resulting from this situation is given in Figure 4.6d. The actual order of the regions
belonging to na , nb and nc within the frame can depend on the number of input views of c, the
order of the matching of the views of c, pa , pb and pc and the number of streams that are involved
in the matching. If c has only a single input view, as in Figure 4.7a, and if the views provide
access to elements of the same stream, the order of the memory regions depends on the order of
calls to resolve_dependences for the output views of pa , pb and pc. For example, if the call to
resolve_dependences for pb is issued before the call for pa and if the call for pc is issued after
the call for pa , then the order of the regions on different nodes is nb, na , nc instead of the order

2. The only exception to this rule are tasks whose execution is interrupted by a taskwait and which are resumed on a
different core. However, OpenStream applications use barriers only rarely, e.g., towards the end of the execution of the
application, such that task migration can be neglected.

63

Chapter 4: A NUMA-aware run-time and execution model

(a) Task graph with unbalanced dependences (b) Placement of the majority of the frame's pages on a
single node

(c) Task graph with balanced dependences (d) Even distribution of the frame

Figure 4.6: Balanced and unbalanced dependences leading to different distributions of the pages of a frame

(a) One input view and three
output views

(b) Three output views and three
input views on the same
stream

(c) Three output views and
three input views on
different stream

Figure 4.7: Different relationships between output and input views with different implications on the order
of the scattering of a view

na , nb, nc given in Figure 4.6d. In Figure 4.7a, c has three input views which provide access to
elements on the same stream. In this case, the order of the memory region depends on the order of
calls to resolve_dependences of the output views as well as the order of the calls for the input
views. However, the latter is de�ned statically during translation by the OpenStream compiler as
described in Section 3.5 and depends on the order of the input clauses in the source code. Finally,
it is also possible that c has three input views that provide access to elements of three different
streams as shown in Figure 4.7c. In this scenario the order of the memory regions only depends on
the order of the input clauses.

4.2.3 Reuse of data structures

At the end of the execution of a task, its data-�ow frame is freed by the worker that executed
it. This consists of handing the frame back to the memory pool of the worker and adding the
embedding block to the appropriate free list. Depending on the placement of the pages of frames
that have already been freed by the worker before and the blocks resulting from earlier re�lls, the
memory pool can thus contain a composition of (a) blocks whose pages are placed on the same
node as the worker associated to the memory pool (b) blocks whose pages are placed on a remote
node (c) blocks whose pages are scattered across multiple nodes and (d) blocks whose pages are
not allocated physically. Subsequent allocations reuse these blocks, e.g., allocations of data-�ow
frames for new tasks. As the allocator always returns the block that was added last to a free list
and as the blocks within the list are not sorted by their placement, the pages of the block that is
returned for an allocation can be placed in any of the aforementioned ways.

Hence, by using �rst-touch placement in conjunction with memory pooling, the run-time does
not have any direct control over the placement of data. However, NUMA-aware allocation and
NUMA-aware scheduling rely on �ne-grained control over the placement of data and are thus

64

Chapter 4: A NUMA-aware run-time and execution model

dif�cult to implement with the mechanisms for memory management above. In the following
part, we propose two techniques that address this problem. The �rst technique avoids scattering
of blocks on multiple nodes by separating buffers for input data from frames and by imposing
a restriction on the use of streams by an application. The second technique combines per-node
memory pools with an ef�cient mechanism to detect the placement of blocks and avoids the
presence of remotely placed blocks in memory pools.

4.3 Separation of frames and input buffers
The main circumstance that leads to scattered frames is that the input data written by multiple

producers is combined in a contiguous region of virtual memory embedded into a single data
structure, namely the data-�ow frame. Figure 4.8a provides a detailed view of the run-time
structures after the matching of views for the task graph with balanced dependences of Figure 4.6c.
The data pointers of the producers' output views point to the data region of the input view of c,
which is embedded into the data-�ow frame of c. Hence, the actual scattering affects the pages of
this data region.

4.3.1 Avoiding the scattering of input data across multiple nodes

If each producer targeted a different data structure, there would be only one writer per structure
and every structure could only be placed on a single node. Hence, to avoid scattered data-
�ow frames, the buffers for input data of a task should be separated from the data-�ow frame.
Figure 4.8b shows the same matching of views as before, but with separate memory regions for
each of the input views of c. Each data pointer of the output views now points to the base of
a distinct data structure and thus prevents that more than one producer writes to a contiguous
memory region. In the remainder of the thesis, we refer to these structures as input buffers. The
different input buffers of a task can potentially be located on a different node, but if employed
correctly as described below, each input buffer is entirely placed on a single node, i.e. none of the
input buffers can be scattered across multiple nodes.

However, even if each input view of a task has its own input buffer, it is still possible that the
data of an input view is provided by multiple producers. This happens if multiple output views
with a smaller burst are matched with a single input view with a larger horizon as in the code
example below:

Listing 4.1: Multiple producers writing to the same input buffer

1 float a_stream __attribute__ ((stream));
2

3 int horizon_in = 6 * DELTA;
4 int horizon_out = 2 * DELTA;
5 float out_view[horizon_out];
6 float in_view[horizon_in];
7

8 for(int i = 0; i < 3; i++) {
9 / * Producer * /

10 #pragma omp task output(a_stream << out_view[horizon_out])
11 {
12 for(int i = 0; i < horizon_out; i++)
13 out_view[i] = some_function(i);
14 }
15 }
16

17 / * Consumer * /
18 #pragma omp task input(a_stream >> in_view[horizon_in])
19 {
20 for(int i = 0; i < horizon_in; i++)
21 printf("Read %f\n", in_view[i]);
22 }
23

24 #pragma omp taskwait

Figure 4.9 shows the run-time structures after matching of views in that situation. Due to the
addressing scheme for data of input views, which is identical to indexation of an array, input

65

Chapter 4: A NUMA-aware run-time and execution model

(a) Buffers integrated into a frame

(b) Separate data structures for frames and input buffers

Figure 4.8: Separation of input buffers from data-�ow frames

data of a single view must be stored in a contiguous region of memory and cannot be split across
multiple objects. The only way to avoid situations in which multiple producers write to a single
input view is to impose a restriction on programs that forces the burst and the horizon of matched
views to be identical.

Restriction 4.1 (One-to-one matching of input and output views) To avoid that multiple output views
provide write access to elements to which a single input view provides read access, the burst of each output
view must be identical to the horizon of the matched input view:

8t 2 T1 : 8(W; s; i s; i e) 2 views(t) :

8t0 2 T1 : 8(R; s; i 0
s; i 0

e) 2 views(t0) :

([i s; i e] \ [i 0
s; i 0

e] = ; _ [i s; i e] = [i 0
s; i 0

e])

This ensures that each input buffer has a unique writer and thus makes it impossible that an input
buffer is scattered across multiple nodes due to write accesses to output views.

66

Chapter 4: A NUMA-aware run-time and execution model

Figure 4.9: Multiple writers of an input view with input buffers separated from data-�ow frames

4.3.2 Integration into the compiler

The separation of input buffers from data-�ow frames does not only imply changes to the
run-time, but also requires a modi�cation of the compiler. In the default scheme for code generation
for input data embedded into data-�ow frames, the OpenStream compiler generates a single call
for the allocation of the entire data-�ow frame. For input buffers that are separated from the frame,
the compiler must generate a call to the allocator function for each input buffers.

Consider the example below, in which a single task with three input views is de�ned.

Listing 4.2: Example of a task with multiple input views

1 void stream_function(void)
2 {
3 ...
4 int horizon = 10;
5

6 float in_view_f[horizon];
7 int in_view_i[horizon];
8 double in_view_d[horizon];
9

10 #pragma omp task input(fstream >> in_view_f[horizon], \
11 istream >> in_view_i[horizon], \
12 dstream >> in_view_d[horizon]) \
13 {
14 ...
15 }
16

17 ...
18 }

In the default scheme for code generation the program above is translated into the code of the next
listing. As explained in the previous chapter in Section 3.5, the code generated by the compiler
only exists in an intermediate representation and the code below only serves as an illustration.

Listing 4.3: General lines of the code generated by the compiler for input data embedded into a data-�ow frame

1 struct frame_1 {
2 size_t sc;
3 int horizon;
4 struct view in_view_f;
5 struct view in_view_i;
6 struct view in_view_d;
7 void (* work_fn)(void *);
8 char buf[];
9 };

10

11 ...
12

13 void stream_function(void)
14 {
15 ...
16

17 size_t frame_size = sizeof(struct frame_1) +
18 horizon * sizeof(float) +
19 horizon * sizeof(int) +

67

Chapter 4: A NUMA-aware run-time and execution model

20 horizon * sizeof(double);
21

22 struct frame_1 * fp = tcreate(frame_size);
23 ...
24 fp->in_view_f.data = &fp->buf[0];
25 fp->in_view_i.data = &fp->buf[horizon * sizeof(float)];
26 fp->in_view_d.data = &fp->buf[horizon * sizeof(float)+horizon * sizeof(int)];
27 ...
28 }

The data-�ow frame embedding the input data is allocated by a call to tcreate in Line 22. The
assignment of addresses within the data region of the frame to the data pointers of the input views
takes place in Lines 24 to 26. The code generated for separate input buffers is presented in the next
Listing.

Listing 4.4: General lines of the code generated by the compiler for input buffers that are separated from the data-�ow frame

1 ...
2

3 void stream_function(void)
4 {
5 ...
6

7 size_t frame_size = sizeof(struct frame_1);
8 struct frame_1 * fp = tcreate(frame_size);
9 ...

10 alloc_view_data(&fp->in_view_f, horizon * sizeof(float));
11 alloc_view_data(&fp->in_view_i, horizon * sizeof(int));
12 alloc_view_data(&fp->in_view_d, horizon * sizeof(double));
13 ...
14 }

A �rst difference is the calculation of the size of the data-�ow frame in Line 7. As the frame does
not contain input data any more the size of the allocation is equal to the size of the structure
representing the frame. Furthermore, the initialization of the data pointers has been replaced with
calls to alloc_view_data in Lines 10 to 12. This function allocates a buffer of the size speci�ed
by the second argument from a memory pool and assigns the result to the data pointer of the view
that was passed as the �rst argument.

4.4 NUMA-aware memory pools
With input buffers separated from data-�ow frames and the additional restriction on the

horizon and burst of matched input and output views, each data structure that is allocated from
a memory pool is placed entirely on a single node. However, it is still possible that, due to the
liberation of buffers of tasks executed earlier, the free list of a worker's memory pool contains
blocks that have been placed on remote nodes. In this section, we introduce NUMA-aware memory
pools, where each pool is associated to a NUMA node and only contains blocks that have been
placed on the node. When a data structure is freed, the run-time determines on which node the
embedding block has been placed, looks up the corresponding memory pool and adds the block to
the appropriate free list of the pool. This requires the run-time system to be able to determine the
placement of a block accurately and ef�ciently, i.e., the identi�cation of the placement of a block
must be correct and its overhead on execution time should be as low as possible. We �rst describe
how the placement of blocks can be determined ef�ciently and accurately and then show how
these mechanisms can be integrated into the life cycle of blocks in order to enable NUMA-aware
memory pooling.

4.4.1 Determining the placement of blocks

A naive solution to determine on which node a block has been placed is to query the operating
system for the placement of each of the block's pages every time information on its placement is
needed. This requires that the addresses that correspond to page boundaries within the address
range of the block are determined and passed to the operating system using the move_pages
system call. As the operating system must traverse the data structure representing the address

68

Chapter 4: A NUMA-aware run-time and execution model

space of the requesting process for each of the block's pages, each such call takes a certain amount
of time to complete. In addition, the time of each call depends on the number of concurrent calls
from multiple threads, as shown below.

Figure 4.10 shows the duration of one call to move_pages with increasing concurrency for our
two test platforms (described in Section 6.3) with 64 and 192 cores, respectively. The block size used
for each call corresponds to a typical size of 512KiB for an input buffer in the applications used in
the experimental evaluation of this thesis. As the minimal page size on the test systems is 4KiB,
the addresses passed tomove_pages correspond to the page boundaries of small pages. Each
data point in the graphs represents the mean value for a total of 50 runs of a synthetic benchmark
that measures the average duration of one call to move_pages for a set of threads, where each
thread performs 10,000 calls tomove_pages . The error bars indicate the standard deviation. For a
low number of concurrent requests, the duration of a single call remains between 10kcycles and
20kcycles on both platforms, but becomes orders of magnitude higher when all the cores of the
machine are used.

However, in a real-world scenario cores execute other instructions between two calls and thus
do not constantly query the operating system. Figure 4.11 shows the mean duration of one call to
move_pages as a function of the number of idle cycles between two calls when using all cores
of the machines. For the 64-core machine the duration drops rapidly and reaches the minimal
duration at about 4Mcycles of idle time between two calls. In contrast to this, the duration on
the 192-core machine drops slower and remains high even if several million cycles lie between
two calls to move_pages , as shown in Figure 4.11b. The minimal duration is reached between
8Mcycles and 10Mcycles.

For NUMA-aware data placement and NUMA-aware scheduling, information on the placement
of a block is needed before the execution of a task. Hence, the duration between two calls
corresponds to the duration of a task. Figure 4.12 interprets the duration between two calls as
the task duration and shows the relative overhead in percent of the calls to move_pages on
execution time. The stippled lines indicate a limit of �ve percent, which we consider as the
highest acceptable overhead. The graph shows four different curves, each for a different amount
of addresses passed tomove_pages , ranging from a single address (1 page) to all addresses that
represent page boundaries of small pages of the block (all pages).

Interestingly, the determination of the placement of all pages is faster than determining the
placement of a single page on the 64-core system, although the overhead increases from a single
page to ten pages. Figure 4.13, showing the duration of one call as a function of the number of
pages included in each query, provides more detailed information on this issue. The number of
cycles between two calls was set to1:5Mcycles, which corresponds to the duration with the largest
gap between the overhead for determination of the placement of a single page and determination
of the placement of all pages. As can be seen in the graph, the duration of one call increases with
the number of pages included in the query, until it reaches a maximum at about 90 pages. For a
higher number of pages, the duration decreases and reaches its minimum for the total number of
128 pages of a512KiB block. However, as Figure 4.12a shows that the duration of a task must be
higher than 2:5Mcycles to stay below the limit of �ve percent independently from the number of
pages included in each query, we do not have investigated the origins of the unexpected behavior
above.

For the 192-core system the correlation between the number of pages per query and the
overhead is much clearer, as the overhead increases with the number of pages with a minimum for
a single page and a maximum for the entire set of pages of a buffer. The minimal duration of a
task in order to stay below the limit for the overhead depends on the number of pages that are
included in a query. If all pages of the block are included, tasks should take more than 8Mcycles,
while for a single page, the overhead drops below �ve percent at about 5Mcycles.

In conclusion, the duration of a task should be at least higher than 5Mcycles in order to stay
below the threshold for the overhead on execution time on both systems. However, the typical
duration of tasks in the applications that we have used for experimental evaluation can be below
1:5Mcycles and is below 5Mcycles for most of the applications. Hence, systematic redirection of

69

Chapter 4: A NUMA-aware run-time and execution model

(a) 64-core system (b) 192-core system

Figure 4.10: Duration of a call tomove_pages with increasing concurrency

(a) 64-core system (b) 192-core system

Figure 4.11: Duration of a call tomove_pages with maximum concurrency and varying duration
between two calls

requests to obtain the placement of the pages of blocks is not a viable option for the run-time.

As we have shown above, the overhead on execution time related to the determination of data
placement is conditioned by three parameters: the number of concurrent system calls, the total
number of calls and the number of pages whose placement is to be determined with each system
call. In the following part, we introduce two techniques to reduce the number of system calls and
one technique to decrease the number of pages per call.

Determination of the placement only for large blocks

The overhead for the determination of the placement of the input data of a task increases
with the number of the input buffers associated to the task as for each input buffer at least one
call to move_pages is necessary. Hence, for tasks with a large number of input dependences,

(a) 64-core system (b) 192-core system

Figure 4.12: Overhead of a call tomove_pages with maximum concurrency as a function of the duration
between two calls for a varying number of pages

70

Chapter 4: A NUMA-aware run-time and execution model

Figure 4.13: Duration of a call tomove_pages on the 64-core system as a function of the number of pages
whose placement is determined with1:5Mcycles between two calls

Figure 4.14: Page sampling with a sampling distance of 16 pages

the overhead can compensate the possible improvements of the execution time resulting from
NUMA-aware scheduling and NUMA-aware allocation. Reduction of this overhead requires more
elaborated techniques to determine the placement as simple calls to move_pages for each of the
input buffers. However, in the applications studied in this thesis, such tasks only represent a small
fraction of the total number of tasks.

The placement of small input buffers is only crucial for the execution time of a task if the
task only reads from and writes to small buffers. The vast majority of tasks has either strongly
unbalanced dependences, e.g., one input buffer of512KiB and a few input buffers of less than 4KiB,
or balanced dependences with relatively large input buffers, e.g., two input buffers of 512KiB. The
buffers whose placement is crucial for performance thus all exceed a threshold of a few KiB, such
that the run-time does not need to determine the placement of small buffers.

As a �rst measure to reduce the number of system calls, the run-time can thus neglect buffers
whose size does not exceed the threshold. A value of 10kB enables discrimination between small
and large buffers, we have thus con�gured the run-time to determine only the placement of input
buffers that are larger than 10kB.

Page sampling

As shown in the previous section, one can assume that every input buffer is placed entirely on
a single node. However, in order to determine on which of the nodes contains the buffer, it is not
suf�cient to determine only the placement of a single page. For example, for large input buffers
composed of small pages, the �rst page might be allocated on the node that performed the re�ll
operation and the rest of the pages might be allocated on the node that �rst wrote input data to the
buffer. Sampling only the second small page or a page somewhere in the middle of a block is not
suf�cient either, since for huge pages it is possible that a page spans two or more blocks occupying
neighboring memory region. Figure 4.15 illustrates this situation. As the blocks are not aligned to
boundaries of huge pages, the page in the center of the �gure contains data of two blocks. From a
block's perspective, this means its data might be located on two different nodes as is the case for
the second block whose data is located onnb and nc.

However, determining the placement of all pages that form a buffer is not required either, since
the number of small pages for large buffers is much higher than the maximal number of nodes that
could contain the pages. A simple sampling technique that determines the placement of every nth
small page is suf�cient to determine where the majority of the pages of the buffer are placed. Using
this technique, the containing node is de�ned as the node with the highest number of samples.

71

Chapter 4: A NUMA-aware run-time and execution model

Figure 4.15: Huge page spanning two blocks Figure 4.16: Layout in memory of a
block and its metadata section

Figure 4.14 illustrates sampling of every 16th small page. The size of a small page is indicated
by SP and only pages with an offset which can be represented as an integer multiple of 16SP are
sampled. For the experiments we have used a sampling distance of 64KiB, i.e., every 16th small
page.

However, situations in which substantial parts of a buffer are placed on more than one node
occur only very rarely, for less than one percent of the buffers. Thus, sampling less pages per
buffer might be suf�cient in most cases. As the overhead of the sampling of every 16th small page
is already suf�ciently small, we did not investigate if the sampling distance can be increased or
whether sampling at speci�c positions of the buffer is suf�cient.

Caching of information about data placement

Last and most important, querying the operating system multiple times for the placement of
the same block is expensive in terms of execution time and is not necessary. As pages are never
migrated between nodes unless explicitly requested by the application, it is suf�cient to determine
the initial placement of a block and to reuse this information each time information about the
block's placement is needed afterwards. This information about the placement can be cached
in a small metadata section in front of a block, as shown in Figure 4.16. This layout in memory
enables rapid determination of information on placement simply by calculating the address of
the metadata section from the block's base address and by accessing the appropriate �eld of the
metadata structure. Storing metadata sections in front of the actual data is a common technique in
memory management [84].

4.4.2 Integration into the life cycle and per-node memory pools

The methods presented above aim at reducing the overhead associated to the determination of
the placement of blocks, but we did not discuss at which moment the procedure to determine the
initial placement of a block should be triggered. In order to obtain correct results for the placement,
it must be ensured that the sampling takes place after physical allocation of all of the block's
pages. As explained in Section 4.1.1, this is the case after the pages have been written for the �rst
time. For input buffers, which are the only data structures whose size exceeds the threshold, this
means that the sampling can only take place when the producer task writing its output data to the
buffer has terminated. As all the producers of a task that becomes ready are guaranteed to have
terminated, the run-time can thus safely determine the placement of the input buffers of a task
when the synchronization counter of the task reaches zero.

Upon termination of a task, its input buffers are not used anymore and must be freed. To avoid
that a memory pool contains blocks from different nodes it is necessary to free an input buffer to
a memory pool of a worker that executes on a core of the node that contains the block's pages.
As there are as many workers as cores per node, the run-time would have to choose a target pool
among the pools of the same node. In addition, a worker that needs to allocate a buffer on its local
node, but whose free list of the appropriate size is empty would either have to search through all
pools associated to the same node or it would have to initiate a re�ll operation. By grouping blocks
of the same node in a single memory pool and by sharing this pool among the workers that execute
on the procedure for allocation and liberation of buffers can be simpli�ed. Allocation of a buffer
can be carried by checking a single memory pool and liberation of a buffer can be implemented
simply by handing the buffer to the unique memory pool of the node containing the block in which

72

Chapter 4: A NUMA-aware run-time and execution model

the buffer was embedded. We refer to this approach as per-node memory pools.
Allocation of a data structure in a memory pool of a node yields either (a) a data structure of

small or huge pages that has already been placed entirely on the node that the memory pool is
associated to or (b) a structure composed of small pages that have not been allocated physically
except the �rst page, which is allocated on the node of the worker that initiated the re�ll operation
from which the structure originates or (c) a data structure that consists of a huge page that is placed
entirely on the node that triggered the re�ll operation from which the structure originates. It is
worth noting that the last situation only occurs when a worker of a remote node triggered the
re�ll operation and when the structure is used for the �rst time. As each structure is freed to the
correct memory pool after use, cases (b) and (c) become less likely over time, such that in most
cases an allocation from a memory pool yields a structure that is entirely placed on the node to
which the pool is associated. This provides the run-time system with �ne-grained control over
data placement through allocation from an appropriate memory pool.

4.5 Reducing the impact of per-node memory pools on performance
A drawback of per-node memory pools compared to worker-private pools is that multiple

workers compete for the resources provided by a pool. Hence, the free lists of a pool need to be
protected against concurrent accesses, e.g., using locks, which can introduce huge overheads for
high concurrency. However, the number of workers per pool depends on the number of cores per
node, which is typically relatively low in order to avoid congestion on the resources shared by the
cores of a node. For example, on both of our test systems only eight cores share a node. Thus, the
most important sources of overhead are the critical sections protected by the locks rather than the
operations to acquire and release a lock. Freeing a structure to or unchaining a block from a free
list are fast, since they only entail an update of pointers. The most time-consuming operations on
free lists are re�lls, as these operations issue system calls for logical allocation and trigger physical
allocation upon the chaining of new blocks. In this section, we propose a set of techniques that
aim at reducing the duration of critical sections and which thus reduce the impact on performance
resulting from the use of per-node memory pools.

Allowing concurrent operations during re�lls

During a re�ll operation on a list other workers might try to free data structures to or allocate
data structures from the same list. Keeping the list locked during the re�ll blocks these operations
and prevents the run-time system from reusing existing blocks rapidly. Hence, when a worker
detects that a re�ll is necessary it should release the lock on the free list immediately after detection.
During the system call other workers can free and allocate blocks without waiting for the re�ll
operation to �nish. When the system call for memory allocation returns, the lock can be re-acquired
and the resulting new data blocks can be added safely to the list. When the re�ll is complete, the
lock is released and the new blocks become available.

Avoiding eager physical allocation at a re�ll through lazy splitting

Another time-consuming operation is the physical allocation of pages during a re�ll caused by
the chaining of blocks. The amount of data that is allocated physically and thus the duration of the
chaining depends on the page size, the size of blocks and the size of the chunk that is allocated
from the operating system and split into individual blocks. For example, for a �xed chunk size of
2MiB and a page size of4KiB the chaining of blocks of 512KiB causes four pages or16KiB to be
allocated physically, while for blocks of 32KiB using the same page and chunk size a total of 64
pages or256KiB must be allocated physically.

By default, the blocks resulting from a split of a chunk are all chained in the free list at the end
of the re�ll operation as shown Figure 4.17a. We refer to this technique as immediate splittingof
the chunk. At each allocation afterwards, one block is removed from the list and the chain of the
remaining blocks forms the new free list (Figure 4.17b to 4.17d).

The number of physical allocations at the re�ll can be reduced by employing a mechanism
which we refer to as lazy splitting. Figure 4.18 illustrates how this mechanism works. Instead of

73

Chapter 4: A NUMA-aware run-time and execution model

(a) Re�ll (b) Allocation of the �rst
block

(c) Allocation of the
second block

(d) Allocation of
the third
block

Figure 4.17: Re�ll and allocation with immediate splitting

(a) Re�ll (b) Allocation of the �rst
object / �rst split

(c) Allocation of the
second object /
second split

(d) Allocation of
the third
object / last
split

Figure 4.18: Re�ll and allocation with lazy splitting

splitting the entire chunk obtained from the operating system into smaller blocks, the whole chunk
is added to the free list as if the chunk was a an ordinary block, but with an indication for the
number of blocks that can be obtained from the chunk (Figure 4.18a). At the �rst allocation after
the re�ll, a �rst block is separated from the chunk and the remaining part with a reduced number
of block forms the new free list (Figure 4.18b). This process continues, until the remaining part is
reduced to a single block (Figure 4.18c and 4.18d). The re�ll operation only touches a single page to
store the number of blocks in the chunk, just like each allocation afterwards. Lazy splitting thereby
avoids eager physical allocation, such that the overhead for physical allocation and initialization
of memory is distributed over time and thus reduces the duration of a re�ll.

4.5.1 Reducing the number of system calls for logical allocation

Finally, the last time-consuming operation during a re�ll is related to interaction with the
operating system. At each re�ll, the run-time must issue a call to the operating system in order to
trigger logical allocation of a new memory region that will be used as the chunk for the re�ll. In
order to reduce the number of system calls, a technique similar to lazy splitting can be employed.
Instead of allocating a chunk from the operating system at each re�ll, a larger chunk of memory is
allocated for each memory pool at initialization. The allocation of smaller chunks needed for re�lls
can be carried out entirely in user space, simply by using a memory region from the large chunk.
When the large chunk has been consumed entirely, a new large chunk must be allocated to satisfy
further re�lls.

4.6 Placement of persistent run-time structures
An ef�cient NUMA-aware run-time does not only need to care about placement of dynamic

objects for the task-parallel application, but must also place its own data structures ef�ciently in
order to prevent itself from becoming bottleneck for performance. A data structure that is used
exclusively within the run-time and whose placement is critical for performance is the structure
representing a worker. The size of this structure is low, but each instance is accessed frequently as
it contains a work-stealing deque and a single entry software cache for the scheduling of tasks. As

74

Chapter 4: A NUMA-aware run-time and execution model

Figure 4.19: In�uence of the placement of structures representing workers on performance

each of the instances is primarily accessed by the worker associated to it, each instance should be
placed on the node of the worker in order to increase the locality of memory accesses.

However, workers are allocated and initialized during set-up of the run-time, which is done
sequentially. Hence, �rst-touch placement would cause all of the structures to be allocated on a
single node. Therefore, it is necessary to use explicit placement on the respective nodes, e.g., by
using the mbind function mentioned in Section 4.1.2. Another issue is the layout of these instances
in memory. As they are very small, using an ordinary array to store them would cause several
instances to be located in the same page, which leads to multiple structures being placed on the
same node. To avoid this, the structure must be padded to the size of a page and each instance
must be placed individually.

Figure 4.19 shows the wall clock execution time in seconds for the dynamic single assignment
versions of the benchmarks presented in Section 6.1 on the 192-core machine with 24 NUMA
domains. The �rst bar for each benchmark represents the median execution time of 50 executions
for the version of the run-time which places all worker structures on the �rst node of the system.
Error bars indicate the standard deviation. The second bar shows the same value for the version of
the run-time which places each structure representing a worker on the local node of the worker.

For most of the benchmarks (seidel,jacobi-1d,jacobi-3d,bitonic) the median execution time can be
reduced signi�cantly when placing the structures on appropriate nodes. In addition, the variation
is often lower (seidel, jacobi-1dand bitonic). For the other benchmarks the performance of both
versions is approximately the same. Hence, placing the worker structures on the local nodes of the
workers can be considered as bene�cial.

4.7 Summary
The solutions presented in this chapter allow the run-time to determine the placement of

data ef�ciently and accurately and to place data structures on speci�c nodes. We presented the
mechanisms behind the placement of data on the different NUMA nodes of the machine from the
perspective of the operating system and discussed the in�uence of the default page placement
policy, �rst-touch placement, and the size of pages on memory allocation using memory pools. We
identi�ed the scattering of data as a �rst problem for accurate data placement and proposed the
separation of input data and data-�ow frames as well as a restriction on the programming model
as a solution. In the second part, we introduced an ef�cient run-time mechanism to determine
the placement of blocks and showed how this mechanism can be integrated into the life cycle
of data managed by memory pools. Finally, we introduced per-node memory pools that allow
the run-time system to allocate data structures on speci�c NUMA nodes. In the last section, we
focused on the placement of data structures of the run-time that are allocated at the beginning of
the execution and remain in use until termination and concluded that explicit placement of these

75

Chapter 4: A NUMA-aware run-time and execution model

structures using the operating system interface is suf�cient.
The methods presented in this chapter are based on �rst-touch placement, which is the default

mechanism for placement employed by the Linux operating system kernel. This strategy makes it
necessary to determine explicitly on which node data has been placed after the �rst write accesses
to the respective pages. For future work it would be interesting to investigate the behavior of
other placement strategies as well. For example, a per-node memory pool could force physical
allocation of a chunk on the local node during a re�ll operation and store the information about
the placement directly in the metadata section without querying the operating system. However,
the run-time would have to take into account that such a prede�ned placement might fail if the
targeted node cannot provide unused physical pages.

Also, the thresholds presented in the chapter allow the run-time to discriminate between large
and small buffers for the benchmarks studied in this thesis. For a more generic approach that
supports tasks with input buffers of different sizes, the actual values for the thresholds have to be
determined more accurately or even the concept of using thresholds has to be revised in future
work.

76

5 Dynamic single assignment

In the previous chapter, we introduced per-node memory pools that provide the run-time
system with the ability to place input buffers accurately on NUMA nodes and that allow the run-
time to determine the placement of an input buffer ef�ciently. These capabilities are a necessary
condition for NUMA-aware scheduling and NUMA-aware data placement presented in Chapter 7
and Chapter 8. However, to bene�t from these optimizations, the run-time must be able to
determine which data is accessed by a task and to control its placement.

In this chapter, we introduce programming based on dynamic single assignment(DSA) on stream
elements, which puts management of memory accessed by tasks under the responsibility of the
run-time. This programming style fully exploits the concepts of data-�ow tasks and is naturally
supported by the OpenStream programming model. We show how programs based on dynamic
single assignment meet the requirement above and illustrate the required implementation steps
starting from a sequential program. We then discuss the in�uence of the control program on data
locality and contention in these applications and show that sequential task creation can have a
negative impact on these aspects. As a result of this analysis, we conclude that task creation by a
parallel control program is often bene�cial. The conditions for the parallelization of the control
program are sketched at the end of the chapter.

The chapter is organized as follows. Section 5.1 introduces the basic concepts of dynamic single
assignment and provides de�nitions for dynamic single assignment with respect to addresses
and dynamic single assignment with respect to stream indexes. Section 5.2 provides a more
formal view on deriving the working set of a task from the information made available to the
run-time by using dynamic single assignment. Section 5.3 introduces an informal methodology for
the implementation of dynamic single assignment using OpenStream, starting from a sequential
implementation of an algorithm. The in�uence of sequential task creation on the memory footprint
and data locality of an application is discussed in Section 5.4. The chapter �nishes by sketching the
conditions for the parallelization of the control program in Section 5.5.

5.1 Concepts of dynamic single assignment

Before we explain the principles and go into the details of dynamic single assignment, we �rst
set the terminology that is used in the rest of the chapter.

Chapter 5: Dynamic single assignment

5.1.1 Terminology

We de�ne a data elementas an entity of data that can be read and modi�ed and refer to the
range of addresses that is occupied by a data element as itsdata location. Whenever a data element
is modi�ed, a new versionof the element is generated. The values of two versions of a data element
do not necessarily have to be different. For example, a new version with the same value could
be generated by assigning the return value of a function, which in a particular case yields the
same value as the previous version of the data element. We illustrate the terms de�ned above on a
simple example with a set of local integer variables i , j and k that are declared, initialized and
manipulated by a function as in the following listing.

Listing 5.1: Illustration of the terminology for dynamic single assignment

1 void foo(void)
2 {
3 int i = 0;
4 int j = 0;
5 int k = 0;
6

7 while(some_condition) {
8 i = bar(i);
9

10 if(some_predicate(i)) {
11 j = baz(i, j);
12 k = doz(i, k);
13 }
14 }
15

16 return i + j + k;
17 }

As all variables are declared locally within the scope of the function their addresses belong to the
program stack and are de�ned when foo is called. Their data locations are thus only de�ned
during execution of the function. As i receives a new value at each iteration, a new version of i is
also generated at each iteration. The updates of the other variables depend on some predicate ofi ,
which might not be true for each value of i . Hence, there are not necessarily new versions ofj
and k at each iteration and the total number of generated versions of i , j and k might be different
upon return from foo.

The example also shows that there is a tight coupling between data elements and data locations.
The data location of an element is de�ned before its �rst reference when foo is entered and remains
valid until the data element is discarded at the end of the function. Different versions of the data
element are thus stored at the same data location.

5.1.2 Principles of dynamic single assignment

The main concept of dynamic single assignment is to use a different data location for each new
version of a data element and thus to update each data location at most only once. This implies
that a data element cannot be updated without changing its location and that in-place updates are
not allowed. This decouples data elements from locations and allows the system to choose a new
location at every update. In contrast to static single assignment(SSA), the number of versions is not
necessarily known statically and might depend on values that are only known at execution time.
The following manual example, which declares an array of integers with one array element per
version of a data element i, illustrates this concept.

Listing 5.2: Example of manual dynamic single assignment

1 int i[n];
2 i[0] = 0;
3 i[1] = i[0] * 5 + 3;
4 i[2] = i[1] * i[1];
5 i[3] = i[2]/3;
6 ...

At each update of i a new array index and thus a new data location is chosen to store the newly
generated version. Note that dynamic single assignment in general does not require a speci�c

78

Chapter 5: Dynamic single assignment

mapping of versions to data locations as in the example above, where versions are stored at
locations of subsequent array indexes. As long as a location is only used at most for a single
version, the mapping is correct. The following listing uses different indexes of the array to store the
same versions as in the previous listing and is also a valid example for dynamic single assignment.

Listing 5.3: Example of manual dynamic single assignment with an irregular mapping of versions to data locations

1 int i[n];
2 i[0] = 0;
3 i[2] = i[0] * 5 + 3;
4 i[715] = i[2] * i[2];
5 i[1] = i[715]/3;
6 ...

The formal restrictions for the mapping of versions to data locations can be de�ned as follows.
Let E be the set of all possible data elements and let versions of an element be identi�ed by a
unique integer with zero identifying the initial version of an element. Let further A � N0 be the set
of all addresses of a �at address space and let loc : E � N0 ! P (A) be the function that maps each
version of a data element to a data location. A data location is de�ned by a �nite set of addresses at
which the data of an element can be stored. For dynamic single assignment loc is restricted, such
that:

8e; e0 2 E : 8v; v0 2 N0 : (e 6=e0_ v 6=v0)) loc(e; v) \ loc(e0; v0) = ;

Hence, an address is either not used at all or it belongs to a speci�c version of a speci�c data
element.

5.1.3 Dynamic single assignment on streams

The set of streams and stream indexes of an OpenStream program can be seen as an unbounded,
two-dimensional address space that allows to implement dynamic single assignment based on
stream accesses, where each version of a data element is stored at a different set of stream indexes.
Let locs : E � N0 ! P (S � N0) be a function that maps each version of a data element to a set of
stream indexes. For dynamic single assignment, this function must thus ful�ll the same restriction
as loc de�ned above:

8e; e0 2 E : 8v; v0 2 N0 : (e 6=e0_ v 6=v0)) locs(e; v) \ locs(e0; v0) = ;

Hence, every OpenStream program that passes all data elements through streams, i.e., each
OpenStream program that does not use global variables or pointers to memory regions that are
shared by multiple tasks, ful�lls the restrictions for dynamic single assignment by construction.
However, due to the execution model of OpenStream, the mapping of stream elements to addresses
is not necessarily unique. Stream data is stored in input buffers and due to memory pooling these
buffers can be reused. It is thus possible that the same address is used multiple times to store
different stream elements. Thus, a program based on dynamic single assignment with respect
to the address space formed by streams and stream indexes is not necessarily a program with
dynamic single assignment with respect to the address space formed by memory addresses of the
machine. We illustrate this aspect on a short example, given in the listing below.

Listing 5.4: Stream indexes and addresses in the context of dynamic single assignment

1 int istream[4] __attribute__((stream));
2

3 int i_in;
4 int i_out;
5 int i3;
6

7 / * Initialization task * /
8 #pragma omp task output(istream[0] << i_out)
9 {

10 i_out = 5;
11 }
12

13 / * Task: t0 * /
14 #pragma omp task input(istream[0] >> i_in) \

79

Chapter 5: Dynamic single assignment

15 output(istream[1] << i_out)
16 {
17 i_out = i_in * i_in;
18 }
19

20 / * Task: t1 * /
21 #pragma omp task input(istream[1] >> i_in) \
22 output(istream[2] << i_out)
23 {
24 i_out = i_in+3;
25 }
26

27 / * Task: t2 * /
28 #pragma omp task input(istream[2] >> i_in) \
29 output(istream[3] << i_out)
30 {
31 i_out = i_in/3;
32 }
33

34 / * Termination task * /
35 #pragma omp task input(istream[3] >> i_in)
36 {
37 }

As can be veri�ed easily, all versions of i are associated to different streams and stream indexes:
the �rst version of i is stored at the �rst index of istream[0] , the second version at the �rst
index of istream[1] and so on. However, the input data of a task is stored within the input
buffers associated to the task and the address of a stream element is de�ned by the input buffer
that contains this element. The memory pooling mechanism of Section 3.4.4 and Section 4.4.2
allows an input buffer to be freed if it is not used any longer and, more importantly, to be reused
by another task afterwards. Hence, in the example, the data-�ow buffer of t0 might be reused for
t2 and version 0 and version 2 might be stored at the same addresses, although they are associated
to different stream elements.

In the remainder of this document, we use the term dynamic single assignment to refer to
dynamic single assignment on streams. Furthermore, a version of an element is de�ned as the
value of the stream elements that represent the data element. Intermediate versions that may be
generated during execution of a task, but which do not correspond to the �nal values written to
the stream, are not considered as versions. For example, if a task reads a stream element and copies
its value to a task-local variable, modi�es this variable multiple times and writes the result back
to an element of an output stream, only the value of the element at the beginning and at the end
of the task are considered as versions with respect to dynamic single assignment. The following
listing provides an example of such a behavior.

Listing 5.5: Task-local modi�cations not counted as versions

1 int a_stream __attribute__((stream));
2 int another_stream __attribute__((stream));
3 int i_in, i_out;
4

5 #pragma omp task input(a_stream >> i_in) \
6 output(another_stream << i_out)
7 {
8 int i = i_in;
9

10 for(int j = 0; j < N; j++)
11 i += some_function(i);
12

13 i_out = i;
14 }

The intermediate versions generated in the loop body do not count as versions, while the initial
value read from a_stream and the �nal value written to another_stream do.

5.2 Obtaining accurate information on data accesses
As stated at the beginning of this chapter, the main reason for the introduction of dynamic

single assignment is to be able to determine the working set of a task accurately in order to optimize

80

Chapter 5: Dynamic single assignment

the locality of memory accesses by scheduling the task near its data or by placing the data actively
near the core that executes a task. In this section, we show how the working set of a task can be
determined by the run-time system before execution of the task, based on the information provided
by dynamic single assignment.

Let M � N0 �A�f R; W g be the set of all possible memory accesses, where a triple(�; a; u) 2 M
represents a memory access at time� to address a in mode u. Let � S (t) and � E (t) be the start
and end of a t task with � S ; � E : T1 ! N0. The set of memory accesses of a taskt is de�ned
as acc : T1 ! P (M) with 8(�; a; u) 2 acc(t) : � S (t) < � < � E (t) ^ jf (�; a; u)gj = 1 . The former
condition speci�es that all memory accesses of a task take place after start and before end of the
task, while the latter speci�es that only one memory access can take place at a time. We de�ne the
working setws : T ! P (A) of a task as the set of distinct data locations accessed during execution
of the task, i.e., ws(t) = faj9(�; a; u) 2 acc(t)g.

Determining the working set of a task before task execution implies that ws(t) is known at a
time � < � S (t) . In Section 5.1.3 we de�ned that the values of each version of all data elements
in dynamic single assignment are stored exclusively in streams, which implies that all relevant
data is stored in input buffers. The only exception to this rule are the �rst and the �nal version,
which are usually handled by initialization and termination tasks and which are stored in shared
memory as explained below. However, in the benchmarks presented in Section 6.1, the number of
versions generated by the main computation tasks is far higher than the two versions handled by
the auxiliary tasks. Hence, for most of the tasks, the rules de�ned for dynamic single assignment
apply: all data handled by the task is stored in streams. In practice, a small portion of data is
still read from shared memory for convenience, especially parameters of the application or the
parameters for the granularity are often accessed from shared memory. However, these accesses
only represent a small fraction of the total number of memory accesses carried out by a task, such
that access to shared memory can be neglected and the task can be considered as conforming to the
restrictions of dynamic single assignment. The advantage of using dynamic single assignment on
stream elements is that acc(t) is restricted to accesses to input buffers and output buffers managed
by the run-time and whose addresses and sizes are known when a task becomes ready.

Let addr : T1 � S � N ! A be a partially de�ned function that maps a stream element to its
address from the perspective of a task. Note that there is no globally unique mapping of stream
elements to addresses, as the same element can be available at multiple addresses when copied
by a broadcast. Thus, the mapping is only unique from the perspective of each task. Using this
de�nition, the working set of a task t is simply the union of all the addresses of all stream accesses
sacc(t) (de�ned in Section 3.1.2) of the task:

ws(t) =
[

(u;s;i)
2sacc(t)

faddr(t; s; i)g

Furthermore, it can be derived from the execution model that the elements which are made
accessible by a view are mapped to consecutive addresses:

8t 2 T1 : 8(u; s; i s; i e) 2 views(t) : 8i 2 f i s +1; :::; i eg : addr(t; s; i) = addr(t; s; i s)+(i � i s) �size(s)

Hence, the working set of a task can be represented by a set of consecutive address regions
wsC (t) � A � A , where each region is de�ned by its �rst and its last address:

wsC (t) =
[

(u;s;i s ;i e)
2views(t)

f(addr(t; s; i s); addr(t; s; i e))g

This set can easily be determined from dependence resolution of each view, since the starting
address of each of the pairs in wsC (t) is the data pointer of the associated view and the end address
can be determined by multiplying the horizon with the element size and by adding the result to
the start address.

81

Chapter 5: Dynamic single assignment

This makes pro�ling of the working set or deriving the working set from speci�c properties
of the program structure (e.g., memory accesses in leaf tasks of divide-and-conquer algorithms)
unnecessary and provides a reliable method for the prediction of a signi�cant subset of a task's
memory accesses before its execution.

5.3 Implementing an algorithm using dynamic single assignment
In this section, we illustrate the implementation of an algorithm using dynamic single as-

signment on the one-dimensional version of the seidelbenchmark named seidel-1d, calculating
the average of three neighboring elements at each iteration of the algorithm. We start from a
sequential version and develop a task-parallel version that can be used as a drop-in replacement of
the original implementation. The process can be summarized as follows:

1. Identi�cation of the data elements and versions
2. Partitioning of the data elements
3. Mapping to stream elements and de�nition of the interface of tasks generating new versions
4. De�nition of auxiliary tasks needed for initialization and termination
5. Implementation of all tasks
6. Parallelization of the control program

Parallel control programs have not been introduced earlier and require some explanation. In this
section, we provide only an example of a parallel control program as a motivation and discuss
the implications of a parallel control program and restrictions of the parallelization in Section 5.4
and 5.5.

5.3.1 Identi�cation of data elements, versions and appropriate partitioning

The sequential implementation of seidel-1dis straightforward: at each iteration, each element
of an array of double precision �oating point values is updated according to its own value and
the values of the its left and right neighbors. The elements at the �rst position and at the last
position are treated as if their left and right neighbors, respectively had a constant value of zero.
The following listing shows an implementation of the complete algorithm.

Listing 5.6: Sequential implementation of seidel-1d

1 void seidel_1d_seq(double * data, size_t N, int num_iter)
2 {
3 for(int iter = 0; iter < num_iter; iter++) {
4 / * Leftmost element * /
5 data[0] = (0 + data[0] + data[1]) / 3.0;
6

7 / * Elements in the center * /
8 for(size_t i = 1; i < N-1; i++)
9 data[i] = (data[i-1] + data[i] + data[i+1]) / 3.0;

10

11 / * Rightmost element * /
12 data[N-1] = (data[N-2] + data[N-1] + 0) / 3.0;
13 }
14 }

Obviously, the data elements in this application are the elements of the array, for which each
iteration yields a new version. The partitioning of the data determines the amount of data treated
by each task and therefore indirectly determines how much work must be carried out per task.
Parallelism is also conditioned by the partitioning, as it determines how many tasks can execute
in parallel. In addition, the size of the data treated by a task can have an in�uence on how well
caches are exploited. If the block size is bigger than the capacity of a cache and if data is referenced
frequently within the task, the cache miss rate might be high. Hence, the size of a data block is
often constrained by the cache size. As the characteristics of the hardware can differ from one
machine to another it is possible that a partitioning that yields good performance on one system
performs poorly on another system. Hence, using a static partitioning scheme might not yield the
same performance across multiple machines.

82

Chapter 5: Dynamic single assignment

A solution to this problem is to implement the application with variable granularity, whose
actual value is de�ned at execution time. The granularity which yields minimal execution time
among the possible values can then be determined experimentally on each machine without
modi�cation of the implementation. For the example of the one-dimensional stencil, the array can
be partitioned into blocks whose size is speci�ed at execution time. The sequential version with
variable granularity is shown in the listing below.

Listing 5.7: Sequential, blocked implementation of a seidel-1d

1 void seidel_1d_seq_blocked(double * data, size_t N, size_t B, int num_iter)
2 {
3 for(int iter = 0; iter < num_iter; iter++) {
4 / * Leftmost element * /
5 data[0] = (0 + data[0] + data[1]) / 3.0;
6

7 / * Leftmost block * /
8 for(int i = 1; i < B; i++)
9 data[i] = (data[i-1] + data[i] + data[i+1]) / 3.0;

10

11 / * Blocks in the center * /
12 for(size_t i = B; i < N-B; i += B)
13 for(size_t j = 0; j < B; j++)
14 data[i+j] = (data[i+j-1] + data[i+j] + data[i+j+1]) / 3.0;
15

16 / * Rightmost block * /
17 for(int i = N-B; i < N-1; i++)
18 data[i] = (data[i-1] + data[i] + data[i+1]) / 3.0;
19

20 / * Rightmost element * /
21 data[N-1] = (data[N-2] + data[N-1] + 0) / 3.0;
22 }
23 }

The new function seidel_1d_seq_blocked implicitly divides the array in blocks of B elements
and treats each block individually during each iteration of the algorithm. The leftmost and
the rightmost block must be treated differently from the others due to the missing neighboring
elements on the left and the right, respectively. This separated treatment is done in lines 5 to 9 and
17 to 21. The remaining blocks are processed by the loop nest in lines 12 to 14.

5.3.2 Mapping of data elements to stream elements and de�nition of the interface of tasks
generating new versions

The next step towards an implementation using dynamic single assignment is to develop a
mapping between the versions of the data elements and stream elements based on the partitioning
established before. If possible, this mapping should take advantage of the layout of stream data
at execution time, e.g., using subsequent stream indexes for data elements that are processed
sequentially. For our example this means that the elements of a block should be mapped to a set of
contiguous stream indexes of the same stream. To avoid complex synchronization patterns in the
parallelized control program regarding the matching of views on a stream, each stream is used
only once, i.e., by a single producer and a single consumer (cf. Section 5.5).

After the determination of the mapping, the interface of the tasks can be de�ned according to
the data dependences. A task that processes a block of data does not only depend on the values
of the block itself from the previous iteration, but also on elements of the neighboring blocks. In
addition, the number of neighbors of a block depends on the position of the block within the
array. For example, a block in the center of the array, i.e., not at the rightmost or leftmost position,
depends on the values of its left neighbor from the current iteration, its own values from the
previous iteration and on the values of the right neighbor also from the previous iteration. For the
blocks on the left or right of the array, there is one dependence less due to the missing neighbor
either at the left or the right. Figure 5.1a illustrates these inter-block and inter-version dependences
for an array with three blocks.

From a block's perspective, the data of a version of the block is read by up to two tasks. The
striped elements in Figure 5.1b indicate elements that are read by two tasks, while the other
elements are only read by the task of the same block at the next iteration. Hence, for one version

83

Chapter 5: Dynamic single assignment

(a) Block dependences (b) Elements read by multiple
tasks

(c) Copying of shared stream elements (d) Dynamic task graph

Figure 5.1: Dependences in the dynamic single assignment version ofseidel-1d

of a block, there are multiple readers and multiple views on the same stream indexes would be
required to provide the readers with access to the shared data. This pattern of communication
can be implemented either through a broadcast, as described in Section 3.3, or by emitting shared
data manually on multiple streams. As the number of readers is �xed for each data element and
known at compile time and as optimizations of broadcasts are described after the optimizations for
ordinary input and output views, we chose to emit data manually on multiple streams. In addition,
each stream is only used to synchronize exactly two tasks in order to facilitate the creation of a
parallel control program as explained in Section 5.5.5.

Figure 5.1c shows this principle for the �rst two iterations and three blocks. Each arrow from a
task to a rectangle represents a write access to the elements of a unique stream and each arrow
starting at a rectangle and ending in a task represents a read access on the same stream. Data that
is read by more than one task is simply written twice to different streams, indicated by the dotted
line labeled copy.

In summary, for each iteration, there is a set of N
B streams used for dependences between

tasks processing the same block, N
SB

� 1 streams for inter-block dependences within the same
iteration and N

SB
� 1 streams for inter-block, inter-version dependences with N being the number

of elements in the data array and SB being the size of a block.

5.3.3 De�nition of auxiliary tasks needed for initialization and termination

To replace the sequential algorithm of Listing 5.6, the implementation using dynamic single
assignment must use exactly the same interface. However, as the initial version of the data elements
is provided in a shared array and not within streams, there must be a set of initial tasks that copy
data from shared memory to the streams. Likewise, the values of the �nal versions must be copied
from streams to the shared array. The set of auxiliary tasks is thus composed of initialization tasks
that copy data to the streams and termination tasks that write the results back to shared memory.

84

Chapter 5: Dynamic single assignment

5.3.4 Implementation of all tasks

The following listing shows the dynamic single assignment implementation with a sequential
control program., including main computation tasks and auxiliary tasks copying data from shared
memory to streams and from streams to shared memory.

Listing 5.8: Parallel, dynamic single assignment implementation of seidel-1d

1 enum block_position {
2 POS_CENTER,
3 POS_LEFT,
4 POS_RIGHT
5 };
6

7 / * Update the values of one block according to the block's
8 position in the array. * /
9 void process_block(enum block_position pos, size_t B,

10 double * center_in, double * center_out,
11 double * left_in, double * left_out,
12 double * right_in, double * right_out)
13 {
14 double vleft_in = 0.0;
15 double vright_in = 0.0;
16

17 / * Left neighbor? * /
18 if(pos != POS_LEFT)
19 vleft_in = * left_in;
20

21 / * Right neighbor? * /
22 if(pos != POS_RIGHT)
23 vright_in = * right_in;
24

25 / * Update first element of the block * /
26 center_out[0] = (vleft_in + center_in[0] + center_in[1]) / 3.0;
27

28 / * Update elements in the middle of the block that
29 only depend on the block's own elements * /
30 for(int i = 1; i < B-1; i++)
31 center_out[i] = (center_out[i-1] + center_in[i] + center_in[i+1]) / 3.0;
32

33 / * Update last element of the block * /
34 center_out[B-1] = (center_in[B-2] + center_in[B-1] + vright_in) / 3.0;
35

36 / * Communicate the first value of the block to the left * /
37 if(pos != POS_LEFT)
38 * left_out = center_out[0];
39

40 / * Communicate the last value of the block to the right * /
41 if(pos != POS_RIGHT)
42 * right_out = center_out[B-1];
43 }
44

45 void seidel_1d_dsa(double * data, size_t N, size_t B, int num_iter)
46 {
47 size_t num_blocks = N/B;
48

49 / * Streams storing the values generated for each version * /
50 double scenter[(num_iter+2) * num_blocks] __attribute__((stream));
51 double sleft[(num_iter+2) * num_blocks] __attribute__((stream));
52 double sright[(num_iter+2) * num_blocks] __attribute__((stream));
53

54 / * Indexes in the array of streams for input dependences * /
55 #define LEFT_IN_IDX ((iter+1) * num_blocks+block-1)
56 #define RIGHT_IN_IDX (iter * num_blocks+block+1)
57 #define CENTER_IN_IDX (iter * num_blocks+block)
58

59 / * Indexes in the array of streams for output dependences * /
60 #define LEFT_OUT_IDX ((iter+1) * num_blocks+block)
61 #define RIGHT_OUT_IDX ((iter+1) * num_blocks+block)
62 #define CENTER_OUT_IDX ((iter+1) * num_blocks+block)
63

64 / * Views on the stream elements * /
65 double left_in, right_in, center_in[B];
66 double left_out, right_out, center_out[B];
67

68 / * Create tasks copying the initial version to the streams * /
69 for(size_t block = 0; block < num_blocks; block++) {
70 / * Leftmost block * /

85

Chapter 5: Dynamic single assignment

71 if(block == 0) {
72 #pragma omp task output(scenter[block] << center_out[B])
73 {
74 memcpy(center_out, &data[B * block], B * sizeof(double));
75 }
76 }
77 / * Other blocks * /
78 else {
79 #pragma omp task output(scenter[block] << center_out[B], \
80 sleft[block] << left_out)
81 {
82 memcpy(center_out, &data[B * block], B * sizeof(double));
83 left_out = data[B * block];
84 }
85 }
86 }
87

88 / * Create one task for each block and each iteration * /
89 for(size_t iter = 0; iter < num_iter; iter++) {
90 for(size_t block = 0; block < num_blocks; block++) {
91 / * Leftmost block * /
92 if(block == 0) {
93 #pragma omp task \
94 input(scenter[CENTER_IN_IDX] >> center_in[B], \
95 sleft[RIGHT_IN_IDX] >> right_in) \
96 output(sright[RIGHT_OUT_IDX] << right_out, \
97 scenter[CENTER_OUT_IDX] << center_out[B])
98 {
99 process_block(POS_LEFT, B,

100 center_in, center_out,
101 NULL, NULL,
102 &right_in, &right_out);
103 }
104 }
105 / * Rightmost block * /
106 else if(block == num_blocks-1) {
107 #pragma omp task \
108 input(scenter[CENTER_IN_IDX] >> center_in[B], \
109 sright[LEFT_IN_IDX] >> left_in) \
110 output(sleft[LEFT_OUT_IDX] << left_out, \
111 scenter[CENTER_OUT_IDX] << center_out[B])
112 {
113 process_block(POS_RIGHT, B,
114 center_in, center_out,
115 &left_in, &left_out,
116 NULL, NULL);
117 }
118 }
119 / * Block in the center * /
120 else {
121 #pragma omp task \
122 input(scenter[CENTER_IN_IDX] >> center_in[B], \
123 sright[LEFT_IN_IDX] >> left_in, \
124 sleft[RIGHT_IN_IDX] >> right_in) \
125 output(sright[RIGHT_OUT_IDX] << right_out, \
126 sleft[LEFT_OUT_IDX] << left_out, \
127 scenter[CENTER_OUT_IDX] << center_out[B])
128 {
129 process_block(POS_CENTER, B,
130 center_in, center_out,
131 &left_in, &left_out,
132 &right_in, &right_out);
133 }
134 }
135 }
136 }
137

138 / * Create tasks copying the final version back to shared memory * /
139 for(size_t block = 0; block < num_blocks; block++) {
140 / * Leftmost block * /
141 if(block == 0) {
142 #pragma omp task input(scenter[num_iter * num_blocks+block] >> center_in[B])
143 {
144 memcpy(&data[B * block], center_in, B * sizeof(double));
145 }
146 }
147 / * Other blocks * /
148 else {
149 #pragma omp task \
150 input(sleft[num_iter * num_blocks+block] >> left_in, \

86

Chapter 5: Dynamic single assignment

151 scenter[num_iter * num_blocks+block] >> center_in[B])
152 {
153 memcpy(&data[B * block], center_in, B * sizeof(double));
154 }
155 }
156 }
157

158 #pragma omp taskwait
159 }

The listing starts with the de�nition of process_block in lines 9 to 43, which performs one
iteration of the stencil on a single block. Values from the previous iteration as well as values
received from neighbors are passed as pointers to the respective data regions. The position of the
block is indicated by a value from an enumeration, such that process_block can carry out the
necessary steps depending on the block's position.

Lines 50, 51 and 52 de�ne arrays of streams with one stream for each dependence of a block,
each block and each iteration. The stream that is used to exchange data between two tasks is
determined through proper indexation of these arrays. For example, two tasks processing the
j th block at iterations k and k + 1 , the data generated by the �rst task is passed through the
((k + 1) � B + j)th stream of scenter . Indexation of the other arrays of streams is done in a similar
way. The preprocessor de�nitions of lines 55 to 62 serve as macros that facilitate the indexation
of the arrays of streams in the input and output clauses of the main tasks, based on the iteration
(iter) and the block identi�er (block).

The initial tasks that copy data from shared memory to streams are created by the loop in
lines 69 to 86. Depending on the position of a block, the initial data only needs to be copied to one
stream or to two streams by the same task. The actual copying is carried out by a simple call to
memcpywith the target address corresponding to the base address of the appropriate view. All
main computation tasks are created by the loops in lines 89 to 136. Again, depending on the
position of the block, the interface of the associated task varies. Also, the task body is adapted to
the position and passes appropriate values to process_block . The terminal tasks are created by
the loop in lines 139 to 156.

The resulting task graph is shown in Figure 5.1d. The weights of edges between tasks pro-
cessing the same block at two different interations is 8SB and corresponds to the size of a double
precision �oating point value multiplied with the number of elements per block. All other weights
correspond to dependences of a single double precision �oating point value and have a weight of
only eight.

5.3.5 Parallelization of the control program

In the last step, the control program is parallelized. This step is necessary since it reduces
the memory footprint of the application and increases parallelism, as discussed in Section 5.4.
Depending on the complexity of the structure of the task graph, this step can be more or less
complicated. For algorithms with regularly structured task graphs, e.g., with a same set of tasks
that is instantiated at multiple iterations as in the example, the principles for parallelization are
simple: each task creates its indirect successor generating the version after next of the same data
elements, as illustrated in Figure 5.2. The initial tasks (i 0 to i 2), as well as the tasks treating the
blocks for the �rst iteration (b0;0 to b2;0), are created directly by the root task. Afterwards, each
task creates its indirect successor on the same block, i.e., a taski j createsbj;1 , bj;k createsbj;k +2

and so on, until bj;n �2 createst j , with n being the number of iterations. The end of task creation is
reached before the last iteration and neither bj;n �1 nor t j create follow-up tasks.

As the root task does not create all of the tasks, the taskwait construct at the end of seidel_1d_
dsa in Line 158 of Listing 5.8 does not synchronize the root task with all tasks anymore. Therefore,
the task graph contains an additional task d that is created by the root task and that reads a single
integer from each of the terminal tasks. When d is ready for execution, all other tasks besides the
root task have terminated. By synchronizing with d using a taskwait construct, the root task can
thus synchronize indirectly with all tasks of the task graph.

Due to the size of the code, we do not show the entire listing of the implementation with a

87

Chapter 5: Dynamic single assignment

Figure 5.2: Parallel control program ofseidel-1d

parallel control program and only sketch the actual code. In a �rst step, each task creation in
Listing 5.8 is moved to a separate function. Next, a function named create_followup_task
is de�ned and called from the body of each task. The parameters of create_followup_task
describe the exact instance of the task from which the function was called, i.e., the task type
(initialization or computation task), the block number and the iteration. Depending on the values
of these parameters, the function determines whether a follow-up task needs to be created and, if
this is the case, calls the appropriate function for task creation with the correct parameters. The
following listing shows illustrates this principle for the tasks processing blocks in the center of the
array:

Listing 5.9: Sketch of seidel-1dwith a parallel control program

1 ...
2 enum task_type {
3 INIT_TASK,
4 MAIN_TASK
5 };
6

7 ...
8

9 void create_followup_task(enum task_type caller_type, int iter, int block,
10 double * data, size_t N, size_t B, int num_iter)
11 {
12 if(caller_type == MAIN_TASK) {
13 / * Does this task have an indirect succesor of the same type? * /
14 if(iter+2 < num_iter)
15 create_main_task(data, N, B, num_iter, iter+2, block);
16 / * If not, does it have an indirect successor that is a terminal task? * /
17 else if(iter == num_iter-2)
18 create_terminal_task(data, N, B, block);
19

20 / * Otherwise: Nothing to do, task creation stopped * /
21 } else if(caller_type == INIT_TASK) {
22 / * Regular case: the indirect successor is a main task * /
23 if(num_iter > 1)
24 create_main_task(data, N, B, num_iter, 1, block);
25 / * For a single iteration the indirect successor is a terminal task * /
26 else
27 create_terminal_task(data, N, B, block);
28 }
29 }
30

31 void create_init_task(double * data, size_t N, size_t B, int num_iter, int block)
32 {
33 ...
34 }
35

36 void create_terminal_task(double * data, size_t N, size_t B, int num_iter, int block)
37 {
38 ...
39 }
40

41 void create_main_task(double * data, size_t N, size_t B, int num_iter,

88

Chapter 5: Dynamic single assignment

42 int iter, int block)
43 {
44 int num_blocks = N/B;
45 ...
46

47 / * Leftmost block * /
48 if(block == 0) {
49 ...
50 }/ * Rightmost block * /
51 else if(block == num_blocks-1) {
52 ...
53 }
54 / * Block in the center * /
55 else {
56 #pragma omp task \
57 input(scenter_ref[CENTER_IN_IDX] >> center_in[B], \
58 sright_ref[LEFT_IN_IDX] >> left_in, \
59 sleft_ref[RIGHT_IN_IDX] >> right_in) \
60 output(sright_ref[RIGHT_OUT_IDX] << right_out, \
61 sleft_ref[LEFT_OUT_IDX] << left_out, \
62 scenter_ref[CENTER_OUT_IDX] << center_out[B])
63 {
64 process_block(POS_CENTER, B,
65 center_in, center_out,
66 &left_in, &left_out,
67 &right_in, &right_out);
68 create_followup_task(ITER_TASK, iter, block, data, N, B, num_iter);
69 }
70 }
71 }
72

73 void seidel_1d_dsa_parctrl(double * data, size_t N, size_t B, int num_iter)
74 {
75 ...
76 int dfbarrier_tokens[blocks];
77 int sdfbarrier __atribute__((stream));
78 ...
79

80 / * Create tasks copying the initial version to the streams * /
81 for(size_t block = 0; block < num_blocks; block++) {
82 create_init_task(data, N, B, num_iter, block);
83 create_main_task(data, N, B, num_iter, iter, block);
84 }
85

86 / * Task synchronizing with all terminal tasks * /
87 #pragma omp task input(sdfbarrier >> dfbarrier_tokens[blocks])
88 {
89 }
90

91 #pragma omp taskwait
92 }

The enumeration de�ned in Lines 2 to 5 associates one constant for each type of tasks in the
task graph that potentially creates another task: INIT_TASK refers to an initialization task and
MAIN_TASKstands for a task that processes a block of data. These constants are referenced in
create_followup_task , starting at Line 5 of the listing. The function contains several tests
that help determine whether a follow-up task needs to be created and which kind of task this is.
A main task can either create another main task for the iteration after the next iteration (Line 15)
or a terminal task (Line 18). Which of these tasks must be created depends on the iteration of the
calling task, tested in Lines 14 and 17. In most cases, the task created by an initial task is a main
task of the second iteration, as in Line 24. However, if there is only a single iteration, the indirect
successor of an initial task in the task graph is a terminal task (Line 27).

The functions create_init_task , create_terminal_task and create_main_task
are responsible for the creation of initial tasks, terminal tasks and main tasks, respectively. As in
the previous listing, there are three types of main tasks with different sets of input and output
views: one for the leftmost block, one for blocks in the center and one for the block at the rightmost
position. Listing 5.9 omits the code for the creation of main tasks processing blocks at the left or
the right of the array and only details the task for blocks in the center in Lines 56 to 69. The �rst
difference to the previous listing is the use of stream references rather than streams in the input
and output clauses. Instead of indexing the arrays of streams scenter , sright and sleft , the
clauses refer to arrays of stream references namedscenter_ref , sright_ref and sleft_ref .

89

Chapter 5: Dynamic single assignment

This is necessary due to the technical restriction that streams can only be declared in the local scope
of a function and thus cannot be referenced directly from multiple functions. In the part not shown
in the listing, references to the locally created streams are stored within global arrays of stream
references that can be accessed from any function. The second difference with the previous listing
consists in the additional function call to create_followup_task after the call to process_
block in Line 68, which effectively implements the parallel control program. Note that this call
must be issued from within the task body, otherwise the creation of subsequent tasks would still
be carried out by the root task.

5.4 Implications of dynamic single assignment on the control pro-
gram

As all data of dynamic single assignment tasks is stored in input buffers and as these buffers
are managed by the run-time, memory allocation for most of the data used by an application based
on dynamic single assignment is under the responsibility of the run-time system. While this has
the advantage that the run-time can use optimized algorithms and data structures to manage these
allocations, dynamic single assignment can have a signi�cant impact on the application's memory
footprint as well as on the locality of data accesses. If input buffers cannot be reused, e.g., if tasks
are created rapidly, such that none of the tasks has terminated before an allocation takes place,
multiple buffers with different versions of the same data elements are kept at the same time, even
though not all of them might be referenced simultaneously. However, even for extensive reuse
of buffers there is a minimal number of versions that must exist at the same time. For each data
element for which multiple versions are produced throughout the execution of the application and
for which each version depends on the previous version, there are at least two versions present
in data-�ow frames when a new version is being generated: one is the current version, whose
values are written and the second one corresponds to the previous version that serves as a base to
calculate the new values.

The memory footprint of an application depends on the maximum number of input buffers that
co-exist and is in�uenced by different factors. In particular, these are (1) the structure of the control
program (sequential or parallel) and (2) dependences between tasks and their order of creation. In
this section, we examine both points by unrolling the steps involved in task creation, allocation
and de-allocation according to the execution model of OpenStream for simple examples. We also
emphasize how the reuse of input buffers in�uences the locality of accesses to main memory with
respect to NUMA.

5.4.1 Allocations of a sequential control program

The input buffers of a task are allocated when the task is created and remain in use until it
terminates. Whether these allocations increase the memory footprint of the application or not
depends on the state of the free list of the memory pool from which the buffers are allocated. If an
allocation requires a re�ll operation caused by an empty free list, the footprint increases, while the
footprint remains the same if a buffer from an earlier re�ll operation can be reused. However, in
order to be reused by a subsequent allocation, an input buffer must be freed to the same memory
pool as the pool used for the subsequent allocation. In the following part, we illustrate that a
sequential control program either inhibits reuse or leads to poor data locality due to the allocation
and de-allocation mechanism used for NUMA-aware memory pooling.

A sequential control program causes all allocations of input buffers to be carried out by a single
task, namely the root task. As this task is executed by a single worker, all allocations are made
within the same memory pool. Let w0 be the worker that executes the control program. The tasks
created by w0 eventually become ready and, if w0 has not �nished executing the root task, these
tasks are stolen or activated and executed by other workers. Upon termination of a task, the worker
that executed the task frees the task's input buffers to the memory pools associated to the nodes
on which the input buffers are located. There are two main scenarios for the placement and thus

90

Chapter 5: Dynamic single assignment

for the de-allocation and reuse of an input buffer. First, if the size of a page is smaller than the
size of a buffer, buffer placement is determined by the initial writer of the buffer as explained in
Section 4.2.2. Reuse of such an input buffer can only take place if the writer is located on the same
node asw0, since only in this case the buffer is freed to the memory pool used by w0. However,
due to the small number of cores per node compared to the total number of cores of a many-core
system, it is more likely that the writer executes on a core of a different node and the buffer is never
used again. Second, if the size of a page of memory is larger than or equal to the size of the input
buffer, the buffer is allocated on the node of w0 as physical allocation and thus data placement have
already been triggered during the re�ll operation (cf. Section 4.2.1). In this case, the buffer is freed
to the memory pool used by w0 and can rapidly be reused by subsequent allocations. However,
this leads to the use of buffers that are all placed on the node of w0, which results in poor data
locality and high contention on the respective memory controller.

The following examples illustrates the two cases for the reuse of buffers when using a sequential
control program.

Large memory footprint resulting from sequential task creation

Figure 5.3 illustrates the �rst scenario on the task graph, shown in Figure 5.3a. Every single
task t0; : : : ; t7 as well as t i

0; : : : ; t i
7 is created by the root task r . For simplicity, we assume that t i

0 to
t i
7 are all created before any of the taskst0 to t7 is created, such that a steal of a taskt i

j results in the
execution of t j by the same worker, since every task t j only has a single dependence and is thus
activated right after the execution of t i

j . We also assume thatw0, w1 and w2 execute on different
NUMA nodes and thus use different memory pools. Furthermore, the size of all input buffers in
the example is identical. Note that t i

0 to t i
7 do not have predecessors in the task graph and thus do

not have input buffers. The Figures 5.3b to 5.3r show the state of the free list associated to the size
of the input buffers of the memory pool of each worker after each step explained below.

Initially, all lists are empty, as shown in Figure 5.3b. Let w0 be the worker that executes the
control program. Upon the creation of t0, the memory pool needs to be re�lled and new buffers are
allocated. In the example, each re�ll operation allocates only two frames at once (cf. Figure 5.3c).
The creation of t0 activates the previously created task t i

0 due to the restriction that all consumers
of a task must have been created before the task can execute. Letw1 be the worker that steals t i

0
and which thus becomes the owner of t0 after its execution, as shown in Figure 5.3d. Similarly, w2

becomes the owner of t1 after its creation and a steal of t i
1 (Figure 5.3e). Whent0 and t1 terminate,

their input buffers are freed to the memory pools of w1 and w2, respectively, as shown in Figure 5.3f.
These buffers cannot be reused byw0 for the creation of t2 and another re�ll operation in the
memory pool of w0 becomes necessary (Figure 5.3g). The newly created tasks unblockt i

2 and
t i
3 and causew1 and w2 to execute t2 and t3 after the steals of t i

2 and t i
3 (Figures 5.3h and 5.3i).

The input buffers are freed to the memory pools of w1 and w2 (Figure 5.3j), which makes them
unavailable to w0. This process repeats until the last two tasks terminate (Figure 5.3k to 5.3r).

In summary, w0 cannot reuse any of the buffers as all tasks were stolen by workers from remote
nodes. This results in the allocation of a total of eight input buffers by four re�ll operations.

Extensive reuse with poor data locality and high contention resulting from sequential task
creation

Figure 5.4 illustrates the events related to buffer allocation for the same application with huge
pages causing input buffers to be placed on the allocating node. The �rst four steps, shown in
Figure 5.4a to Figure 5.4d, are identical to the previous case using small pages. The �rst difference
appears when the input buffers if t0 and t1 are freed, shown in Figure 5.4e. Instead of freeing them
to the memory pools of w1 and w2, they are handed back to the memory pool of w0. Hence, when
t2 is created, the free list of the memory pool of w0 contains unused buffers and a re�ll operation is
not necessary1. Figure 5.4f shows the state of the memory pools when t2 is executed by w1 after
the steal of t i

2 by the same worker. Similarly, the buffer formerly used for t0 can be reused for t3 as

1. In practice, task creation is often faster than task execution, such that t2 would likely be created before the input
buffers of t0 and t1 are freed. However, the reuse of input buffers would take place for later task creations starting at the
�rst de-allocation of an input buffer. To keep this example simple, we assume that buffers are reused immediately.

91

Chapter 5: Dynamic single assignment

(a) Task graph with sequential task creation

(b) Initial state (c) Re�ll operation (d) t0 is executed by w1 (e) t1 is executed by w2

(f) De-allocation of t0 and t1 (g) Re�ll for creation of t2 (h) t2 is executed by w1 (i) t3 is executed by w2

(j) De-allocation of t2 and t3 (k) Re�ll for creation of t4 (l) t4 is executed by w1 (m) t5 is executed by w2

(n) De-allocation of t4 and t5 (o) Re�ll for creation of t6 (p) t6 is executed by w1 (q) t7 is executed by w2

(r) De-allocation of t6 and t7

Figure 5.3: Memory footprint resulting from sequential task creation with small pages

92

Chapter 5: Dynamic single assignment

shown in Figure 5.4g. Upon de-allocation of t2 and t3, the free list of the memory pool of w0 again
contains two buffers which can be reused for future tasks (Figure 5.4h). This pattern of allocations
and de-allocations repeats as shown in Figure 5.4i to Figure 5.4n until all tasks of the task graph
have been executed. In total, only two buffers have been allocated resulting in a smaller memory
footprint compared to the previous example. However, as all buffers are placed on the node of w0,
data locality is poor, resulting in high contention on a single memory controller.

5.4.2 Allocations of a parallel control program

We now show that using a parallel control program leads to a different pattern of allocations
and can both signi�cantly reduce the memory footprint of the application and provide improved
locality of accesses to main memory. To illustrate this, we use the same tasks as in the previous
example, but replace the sequential control program with a parallel control program, in which each
task t j creates a follow-up task t j +2 and each taskt i

j createst i
j +2 for j 2 f0; : : : ; 5g. Only t i

0; t i
1; t0

and t1 are still created by the root task r , as illustrated by the task graph of Figure 5.5a. To keep
the example simple, we assume that small pages are used, which causes all input buffers to be
placed on the node of the workers that perform the �rst write access. The behavior using huge
pages would be similar to the steps below, as only the placement of the input buffers of t0 and t1 is
affected by the page size.

The steps presented in Figure 5.5b to 5.5d are identical to the steps with a sequential control
program, since the root task still creates t0 and t1. The �rst difference appears at the execution
of t0 by w1, when the follow-up task t2 is allocated using the memory pool of w1 instead of the
pool of w0. This triggers a re�ll operation and results in the addition of two input buffers to the
free list of the memory pool used by w1 (Figure 5.5e). The �rst element from the free list is used
for t2 and upon termination of t0 the input buffer of t0 is added at the front of the list, resulting
in the state shown in Figure 5.5f. Similarly, w2 performs a re�ll operation during execution of
t1 (Figure 5.5g), removes an input buffer for t3 and pushes the old buffer of t1 onto the free list
(Figure 5.5h). Figure 5.5i shows how previously allocated buffers are reused: the old buffers of t0

and t1 are used as the input buffers for t4 and t5. Similarly, the old buffers of t2 and t3 are used for
t6 and t7 in Figure 5.5j and the old buffers of t4 and t5 are added to the free list. When all tasks
terminate, only 6 buffers have been allocated in total (Figure 5.5k).

Note that in contrast to the sequential control program with huge pages, the footprint increases,
but data locality is similar to the sequential control program with small pages as w1 and w2 mostly
operate on input buffers allocated from their own memory pools.

This example shows that work-stealing is an essential mechanism that spreads the execution of
the parallelized control program over the machine and leads to task creations by other workers
than the one executing the root task. This causes re�ll operations to be carried out on multiple
memory pools and thus results in better distribution of the data across memory controllers and
increases data locality. However, where an input buffer is allocated and whether an existing buffer
can be reused varies with the total number of tasks and workers as well as on the timing of events
at execution time as these have a strong in�uence on work-stealing. Hence, it is dif�cult to predict
the exact memory footprint of an application only based on information about the task graph, the
control program and the machine.

5.4.3 Estimation of the memory footprint

Although the exact memory footprint is dif�cult to predict, it is possible to provide upper and
lower bounds for the number of buffers that are allocated throughout the execution for a given
task graph. We illustrates this on the task graphs of Figure 5.3a and Figure 5.5a.

Let nr be the number of buffers allocated by a single re�ll operation and let nt be the number
of tasks in a program with the same characteristics as the program of the previous examples. For a
sequential control program and small pages, the total number of buffers N small

seq allocated by re�lls

93

Chapter 5: Dynamic single assignment

(a) Initial state (b) Re�ll operation (c) t0 is executed by w1 (d) t1 is executed by w2

(e) De-allocation of t0 and t1 (f) t2 is executed by w1 (g) t3 is executed by w2 (h) De-allocation of t2 and t3

(i) t4 is executed by w1 (j) t5 is executed by w2 (k) De-allocation of t4 and t5 (l) t6 is executed by w1

(m) t7 is executed by w2 (n) De-allocation of t6 and t7

Figure 5.4: Memory footprint resulting from sequential task creation with huge pages

94

Chapter 5: Dynamic single assignment

(a) Task graph with parallel task creation

(b) Initial state (c) Re�ll operation (d) t0 is executed by w1 (e) Re�ll by w1

(f) De-allocation of t0 ,
execution of t2

(g) Re�ll by w2 (h) De-allocation of t1 ,
execution of t3

(i) De-allocation of t2 , t3 ,
execution of t4 , t5

(j) De-allocation of t4 , t5 , execution of t6 , t7 (k) De-allocation of t6 , t7

Figure 5.5: Memory footprint resulting from parallel task creation

(a) Tasks of the same type, between iterations

(b) Between indirect successors

Figure 5.6: Order of task creations in a parallel control program

95

Chapter 5: Dynamic single assignment

is constrained as follows:

nr � N small
seq �

�
nt

nr

�
� nr

The minimal number of allocations is achieved when all tasks created by the root task are stolen by
workers operating on the same node as the worker executing the root task and if all buffers are
freed in time right before an allocation, resulting in maximal reuse. The upper bound corresponds
to a scenario where all tasks are stolen by workers that use a different memory pool, preventing
any buffer from being reused at task creation. Note that it is more likely that the footprint reaches
the upper bound, since the number of workers per node is generally much lower than the total
number of workers. For sequential control programs and huge pages the bounds are identical, but
can result from different situations:

nr � N huge
seq �

�
nt

nr

�
� nr

For the minimal footprint, it is no longer required that only workers of the same node steal tasks
and it is suf�cient that buffers are handed back to the memory pool of the creating worker in time.
The maximal footprint occurs for the worst possible timing, where none of the buffers is freed
before creation of the last task. In general, it is unlikely that the footprint reaches the maximum,
since the duration of the root task is usually higher than the duration of a task, which makes it
likely that buffers are reused.

For a parallel control program, the number of buffers allocated by re�lls varies with the number
of parallel chains of task creation nchains. To avoid limiting the parallelism of the application, this
number should be equal or greater than the number of workers nw . For nchains = nw and small
pages the number of buffers is:

nr � N small
par �

�
nchains

nr

�
� nr

| {z }
Sequential creation

of the heads of
each chain

+ (nw � 1) � nr

| {z }
One re�ll for

each remaining
worker

=
��

nchains

nr

�
+ nw � 1

�
� nr =

��
nw

nr

�
+ nw � 1

�
� nr

The minimal number of allocations is reached if (1) every chain is stolen by a worker of the same
node as the worker executing the root task, (2) nr � 2 and thus suf�cient buffers for the stolen
chain and the next task in the chain exist and (3) all tasks of the chain terminate before the head of
the second chain started by the root task. The maximum number of buffers is allocated if every
chain is stolen by a different worker and if all workers operate on different nodes. The upper and
lower bounds for huge pages are identical:

nr � N huge
par �

��
nw

nr

�
+ nw � 1

�
� nr

Similar to the sequential control program with huge pages, the minimal number does not require
that steals are carried out by workers of the same node as the worker executing the root task. This
is due to the circumstance that every worker hands the buffers allocated by the root task back to
the same memory pool. As far as the upper bound is concerned, it is reached whenever the last
chain is created before any of the previous chains has terminated.

While the upper bounds for N small
seq and N huge

seq are constrained by the number of tasks, the upper

bounds of N small
par and N huge

par are constrained by the number of workers. As the number of tasks is
generally much higher than the number of workers, a parallel control program thus yields a lower
memory footprint.

5.4.4 The order of task creations in a parallel control program

In the previous examples, we have neglected inter-task dependences and assumed that all tasks
besides pairs of tasks formed by t j and t i

j for 0 � j � 7 are independent. However, the dependence

96

Chapter 5: Dynamic single assignment

(a) (b)

Figure 5.7: Concurrent task creation with different matching of the views

pattern in conjunction with the order of task creation determines how many tasks remain blocked.
For example, in Figure 5.6, there are four task types a, b, c and d, which are instantiated for three
iterations. In the task creation pattern of Figure 5.6a, each task creates its successor for the next
iteration, skipping three tasks in between. The task of the next iteration can only become ready
when all tasks in between have terminated. For example, a2 can only start execution when b1, c1

and d1 have terminated. During that time, the input buffers of b2, c2 and d2 are allocated by b1, c1

and d1, respectively. As the created tasks remain blocked, their input buffers are not available for
reuse and the number of input buffers that coexist depends on the distance between two iterations.

In Figure 5.6b the creation scheme is different. Instead of instantiating a task of the same
type for the next iteration, each task allocates its indirect successor. As the distance between the
creating task and the task that is being created is smaller than in the example before, the number of
data-�ow frames that coexist is lower, leading to a smaller memory footprint. Due to the restriction
that the consumers of a task must be created before the task can start execution this distance cannot
be reduced further.

Implementing a parallel control program in which all tasks create their indirect successors is
often a lot more complicated than developing a pattern with creations between iterations. However,
depending on the actual task graph the creation of tasks with the minimal distance can reduce the
memory footprint signi�cantly. A good example for such a program is the bitonicsorting network
presented in Section 6.1.4, where the number of tasks per iteration increases with each iteration.

5.5 Parallelizing the control program

After the examples of parallel control programs and the discussion of the implications on data
locality and the memory footprint we now discuss the restrictions that a parallel control program
is subject to. In Section 3.1, we assumed that the control program creates all tasks sequentially. This
limitation guarantees reproducible results for the mapping of views to stream elements, which
ensures that the same producers are matched with the same consumers for each execution with
deterministic results. If task creations and matchings of views would take place concurrently
without any restriction, the set of stream elements a view provides access to could vary between
two executions, depending on the exact timing. As a result, the order of values in a stream
could vary from one run to another. For example, if the producers of Figure 3.5a on page 39 are
created concurrently, the elements in the input buffer of the consumer are not necessarily stored in
ascending order as speci�ed for the sequential control program and can be shuf�ed, such as in
Figure 5.7a and 5.7b.

In this section, we �rst point out the performance drawbacks not related to data locality or
the memory footprint resulting from sequential task creation and sketch how a parallel control
program increases performance. We then de�ne the conditions under which parallel task creation
preserves deterministic mappings of views to stream elements and sketch how a parallel control
program can be derived from a sequential one.

97

Chapter 5: Dynamic single assignment

(a) Four workers (b) Five workers

Figure 5.8: Sequential control program with a different number of workers

5.5.1 Rate of task creation

In the execution model of OpenStream all workers are created at the very beginning of program
execution. When all workers are ready, one of them starts execution of the root task. In case of
a sequential control program the control program is part of the root task and is thus executed
by the same worker. The remaining workers are initially idle and try to obtain tasks through
work-stealing. Thus, it is very likely that a newly created task that has become ready is immediately
stolen and executed by a worker in parallel with the execution of the control program. Ideally,
ready tasks are provided as fast as possible after the start of the control program, such that idle time
of the remaining workers on startup is minimized and the arrival rate of these tasks is suf�ciently
high to provide enough tasks for execution afterwards.

Let tc be average time that is necessary to create a new task, i.e., the duration that it takes the
run-time to set up its data structures and to perform calls to resolve_dependences for each of
its views. Let te be the average time for the execution of a task and let t r be the time on average
between the moment when a task has been created and the moment when it becomes ready. If a
task has neither input dependences nor output dependences, t r is zero and the task becomes ready
immediately after its creation. Let N denote the number of workers and, as a matter of simplicity,
assume that all tasks are entirely independent. As long as the control program creates tasks at
a higher rate than the remaining N � 1 workers execute them, the fact that the control program
is sequential does not have an impact on the performance of the application. However, if tasks
are executed faster than the rate of creation, workers become idle after the execution of a task,
resulting in under-utilization of the hardware resources.

In the initial and terminal phase of an application at the beginning and at the end of the control
program, only a subset of workers are busy. If these phases are neglected, the creation rate can be
considered suf�ciently high if the inequation t e

t c
> N � 1 holds. If the inequation does not hold,

there are idle phases between task executions and the creation rate is too low. Figure 5.8 illustrates
these situations. In Figure 5.8a, the control program creates tasks fast enough, such that none of
the four workers becomes idle. However, as can be seen in Figure 5.8b with the same values for tc

and te, the rate of creation is too low to keep an additional worker busy and idle phases occur.
For a huge number of workers, sequential task creation can even dominate the execution time.

Let M be the number of tasks. The time tseq needed for sequential execution of the entire program
is:

tseq = M � tc + M � te = M � (t c + te)

For parallel execution, the longest sequential part is either the control program or the duration to
execute the tasks on the critical path. Let tmax be the duration of the slowest task. For independent
tasks and a suf�ciently high number of processors, the minimal execution time is maxfM � tc; tmaxg
according to Amdahl's Law. For a large number of workers and a large number of tasks, it is thus
likely that sequential task creation dominates the execution time of the parallel program.

98

Chapter 5: Dynamic single assignment

(a) Multiple chains (b) Tree-like structure (c) Different durations

Figure 5.9: Examples of task graphs for which the order of task creation has an in�uence on performance

5.5.2 Order of task creations

In the discussion above, we assumed that tasks are completely independent and can therefore
start execution immediately after creation. While this assumption is suited to illustrate the relation-
ship between the task creation rate and performance, it is unrealistic for real-world applications as
these usually have more complicated task graphs. Besides a few initialization tasks copying data
from shared memory to streams at the beginning of the execution, the tasks of all the benchmarks
presented in the next chapter have at least one input dependence. The order in which these tasks
are created de�nes how fast they can become ready and is therefore crucial for performance. There
are two major issues that should be taken into consideration when the order of task creation by the
control program is determined.

First, the structure of the task graph is important and should be taken into account. Tasks with
shorter paths from a task whose dependences have already been satis�ed are good candidates
for creation, as they are likely to become ready sooner than others. For example, the taskst j

i with
i 2 f0; : : : ; n g and j 2 f0; : : : ; m g in Figure 5.9a with chain-like dependences should be created
column-wise from left to right and not from right to left or row-wise. However, it must be taken
into account that output dependences also have an effect on the readiness of a task. As output data
is written to the consumers' input buffers, a producer cannot start execution before the creation of
its dependent tasks. Hence, strict column-wise creation of the tasks in the example, i.e., creating t0

i
to tm

i before t0
i+1 to tm

i+1 , delays the execution at the beginning, since t0
0 is only ready upon creation

of t0
1 with m � 1 task creations in between. To unblock tasks more rapidly, it would be preferable

to start by �rst creating pairs of tasks t j
0 and t j +1

0 and to proceed strictly column-wise afterwards.
Figure 5.9b shows an example of a task graph in which the creation of a consumer is required to
unblock multiple producer tasks. None of the producers p0 to pm can execute beforec has been
created. Hence, instead of creatingp0 to pm before c, the control program should create c �rst, such
that an additional producer becomes ready at each subsequent task creation.

The second issue we would like to discuss is related to the duration of each individual task.
The length of a path in the task graph to a task that is ready for execution does not necessarily
re�ect the duration until activation. For example, in Figure 5.9c, the task labeled f executes faster
than the task labeled s, indicated by the size of the tasks in the �gure. Thus, creating b0, b1 and b2

before t0, t1 and t2 unblocks tasks faster than the other way around.

Creating a sequential control program with optimal order with respect to the task graph that is
to be constructed is often a non-trivial task. In addition, how fast an application executes tasks
and how fast it makes progress within the task graph can be dif�cult or even impossible to predict.
Parallelizing the control program, such that tasks are able to create their indirect successors in the
task graph can thus be advantageous, as task creation and task execution progress together.

99

Chapter 5: Dynamic single assignment

(a) Start of the execution with an
unknown number of tasks

(b) Termination

Figure 5.10: Parallel control program with termination detection

5.5.3 Dynamic dependence patterns and termination detection

In some cases, it is even impossible to implement an application with a strictly sequential
control program that does not synchronize with the tasks it creates using a taskwait barrier. For
example, if the number of tasks of the program is �nite, but unknown at the beginning of the
execution, the control program cannot determine when task creation should stop. An example of
such an application is the k-meansbenchmark presented in Section 6.1.6, whose control program
must create a certain number of tasks for each iteration of the algorithm. The number of iterations,
however, depends on the actual input data and is only known upon termination detection that
takes place in the course of the execution. To stop the creation of tasks for future iterations, the
task that detects the termination of the algorithm must synchronize with the control program.
However, this cannot be done by passing data to the root task through a stream, since input data
of a task can only be provided before a task is executed.

A parallel control program, in which tasks create their indirect successors is able to stop task
creation based on the information that is available during execution. Figure 5.10 illustrates this
concept on a simple task graph composed by a chain of tasks. In addition to a producer-consumer
relationship between t i and t i+1 for the actual data the graph also contains control dependences
whose data indicates whether task creation should be stopped or if it should continue. At the
beginning of the execution shown in Figure 5.10a the total number of tasks of the chain is unknown,
but each task is capable of detecting whether another task is needed. Initially, the root task creates
t0 and t1 and t0 becomes ready for execution. Each task that does not detect that the application
should terminate indicates to its successor that task creation should continue, as indicated by the
edges labeledyes. Eventually, one of the tasks detects that the algorithm has �nished. Let this task
be tn shown in Figure 5.10b. As the successor oftn , tn+1 , was created before the execution oftn ,
the chain of tasks cannot end with tn . In addition, tn cannot stop task creation neither, since tn+1

can only execute when its successor has been created due to the task's output dependence. Hence,
an additional task tn+2 must be created whose input view matches the output view of tn+1 . If this
task was not created, the application would deadlock and the program would not terminate. The
task tn+2 forms the end of the chain and therefore does not have an output dependence. When
tn+1 is executed, it �rst checks the value received through the control dependence and detects that
task creation has stopped. This prevents an additional task tn+3 from being created and leads to
proper termination.

5.5.4 Conditions for the parallelization of the control program

As discussed above, using a parallel control program can have a positive impact on performance
as well as on the memory footprint of the application. However, as shown at the beginning of
this section, parallelization of the control program can lead to indeterministic behavior. In the
following part, we show that determinism can be preserved if the parallelization veri�es certain
restrictions.

The condition for deterministic behavior of a parallel control program is that for all possible
executions, the views of each task provide access to the same streams and the same elements.
Starting from a sequential control program, this means that the parallel control program must
yield the exact same matchings as the sequential control program for each possible execution.

100

Chapter 5: Dynamic single assignment

(a) Creation of a consumer (b) Creation of indirect consumers

(c) Crossed creation (d) Non-crossed creation

Figure 5.11: Deadlocking and non-deadlocking parallel task creation

Let � C ; � M ; � R : T1 ! N0 be functions that indicate when a task is created (� C), when all
of a task's views have been matched to a set of stream indexes (� M) and when a task becomes
ready (� R). Due to the order of these events in the life cycle of a task, the inequation t 2 T1 :
� C (t) < � M (t) < � R (t) holds for all tasks t 2 T1 . Note that � M (t) and � R (t) are not necessarily the
same. For example, if a task has an output view on a stream and the consumer on this stream has
not been created yet, the indexes of the elements that are accessible by the view are known upon
the call to resolve_dependences , but the task only becomes ready when the input view of the
consumer is matched.

Let further Tseq = ht0; t1; t2; : : :i be the totally ordered set of tasks created by a sequential
control program with � C (t i) < � C (t i+1). To keep the de�nitions simple, we assume that a task
can reference a stream at most in one of its views. Let � S : T1 � S ! N0 be a partial function
that indicates when a task's view accessing a stream has been matched. For each streams 2 S
there are two totally ordered sets of tasks T s

seq;R = htR1 ; tR
2 ; : : :i and T s

seq;W = htW1 ; tW
2 ; : : :i with

� S (t R
j ; s) < � S (t R

j +1 ; s) and � S (t W
k ; s) < � S (t W

k+1 ; s). These sets can be obtained by selecting in order
only the tasks from Tseq that read from or write to s. We de�ne that Tseq and one of its permutations
T0

seq are equivalent if for all streams s the ordered sets T s
seq;R and T s

seq;R
0 as well as T s

seq;W and
T s

seq;W
0 are identical.

Let Tpar = fp 1 = ht11; t1
2; : : :i; p2 = ht21; t2

2; : : :i; : : : g be the set of all possible orders of task
creations that can result from the execution of a parallel control program. If for all Tpar 2 Tpar and
s 2 S the equations T s

seq;R = T s
par;R and T s

seq;W = T s
par;W hold, then the parallel control program

is equivalent to the sequential control program. As all matchings are identical to those of the
sequential control program, deterministic execution is thus preserved.

5.5.5 Sketching deterministic parallel task creation

The development of a method for the construction of a parallel control program from a se-
quential control program is beyond the scope of this thesis. Hence, we only provide a sketch
of how we have parallelized the control programs of most of the applications used in the ex-
perimental evaluation of this thesis and leave the development of a general method as a per-
spective for future work. In order to make concurrent matchings of views on the same stream
impossible, each stream is used to synchronize only two tasks: one task takes the role of the
producer on the stream and the other task is the consumer. For any order of calls to resolve_
dependences of the two views on a stream, i.e., calling resolve_dependences for the input
view before calling the functions for the output view or vice-versa, the input and output view
provide access to the same set of stream elements. Using the de�nitions above, this results in
8s 2 S : jT s

par;R j = jT s
par;W j = 1 _ j T s

par;R j = jT s
par;W j = 0 . This makes it impossible that the order of

values of the elements of a stream varies between executions. This also implies, that the order of
creation of these tasks does not have any in�uence on the matching on the streams, which �nally

101

Chapter 5: Dynamic single assignment

facilitates the development of a parallel control program.
However, although the order of calls to resolve_dependences can be arbitrary while pre-

serving the order of stream elements, the task creation relationships, i.e., which task creates another
task, is constrained. In particular, the control program must ensure that there are no deadlocks
resulting from the restriction that a task can only become ready when all of its consumers have
been created. Figure 5.11a and 5.11c illustrate task graphs and parallel control programs that result
in a deadlock due to this restriction. In the �rst case, shown in Figure 5.11a, each task creates its
direct consumer. However, the creation of a consumer takes place when the producer executes, but
this requires that the producer has become ready, which in turn requires that the consumer has
already been created. This phenomenon is not limited to direct producer-consumer relationships.
For example, in the task graph and control program of Figure 5.11c there are no task creations
between direct successors in the task graph, but the structure of the dependences still leads to a
deadlock. The task t0

u requires that t1
u has been created and createst1

l . However, t1
u is created by

t0
l , which in turn requires that t1

l has been created. The solution for the problems shown in the
�gures is given in Figure 5.11b and 5.11d. In Figure 5.11b, each task creates its indirect successor
in the task graph, as seen forseidel-1d. In Figure 5.11d, the creation oft0

u and t0
l is now done by t.

Furthermore, t0
u and t0

l create their indirect successors.
These examples illustrate that the dynamic task graph resulting from the sequential control

program must be analyzed carefully in order to avoid deadlocks when creating tasks with output
dependences. Hence, providing a generic method for the construction of a parallel control program
is a non-trivial task.

5.6 Summary
In this chapter, we introduced dynamic single assignment, which allows the run-time to

determine the working set of a task and allows it to control where the data accessed by a task
is placed through the allocating of input buffers. We provided an informal methodology for the
implementation of programs based on dynamic single assignment and illustrated this methodology
on a simple one-dimensional stencil code. We examined the in�uence of sequential control
programs on the memory footprint, data locality and contention on memory controller and
motivated that applications using dynamic single assignment bene�t from the implementation of
a parallel control program. The conditions for the parallelization of a control program are out of
the scope of this thesis and could thus only be outlined.

In the next chapter, we present a set of high performance scienti�c benchmarks based on
dynamic single assignment and describe the experimental setup for the experiments conducted in
this thesis.

102

6 Experimental Setup

To demonstrate that the optimizations presented in this thesis apply to real-world applications
and thus to show that they are practically relevant, we evaluate our concepts on a set of applications
executing on machines with contemporary hardware architectures. The purpose of this chapter
is to provide an overview of these applications as well as on the hardware environment used for
evaluation. We introduce a set of high performance, scienti�c applications implemented using the
language extensions of OpenStream of Chapter 3 and dynamic single assignment described in
Chapter 5 and describe the memory hierarchy of the many-core systems used in our experiments.
Furthermore, we provide a methodology for measurements and show which events are quanti�ed.

The chapter is structured as follows. In Section 6.1 we provide an overview of the benchmarks
used for evaluation as well as details on their implementation using dynamic single assignment
presented in the previous chapter. Section 6.2 presents the different baselines for the evaluation
and introduces shared memory programming using tokens for synchronization used in one of
the baselines. The methodology for the measurement of the execution time and the collection of
statistics using hardware performance counters is explained in Section 6.2.3, which introduces
the de�nition of the measurement interval. Details about the hardware environment are given in
Section 6.3 that describes the two test platforms used for the execution of the benchmarks. The
parametrization of the benchmarks, e.g., the size of input data and the granularity de�ning the
amount of work per task is presented in Section 6.4. To estimate which benchmarks are most
sensitive to the locality of memory accesses, Section 6.5 provides an overview of the characteristics
of the applications with respect to the memory hierarchy. The chapter �nishes with an analysis
of the scalability of the applications of the shared memory baseline in Section 6.6 to show that
interleaved allocation across all nodes is essential for performance. Parts of this chapter were
previously published in [46].

6.1 Benchmarks

For the experimental evaluation of the concepts presented in Chapters 7, 8 and 9, we have
implemented a set of high performance, scienti�c benchmarks. These applications can roughly
be divided into four categories: stencil computations(seidel,jacobi, andblur-roberts),integer sorting
(bitonic),clustering(k-means) andlinear algebra(cholesky). In this section, we provide an overview of
these benchmarks and brie�y describe their implementations.

Chapter 6: Experimental Setup

6.1.1 Seidel

The seidelbenchmark implements the Gauß-Seidel method, which iterates a �ve-point stencil
over a two-dimensional, dense N � N matrix of double precision �oating point elements with N
being a power of two. Similar to the one-dimensional stencil presented in Section 5.3, the value vi

x;y
of an element of an iteration i at position (x; y) in the matrix is calculated by taking into account
values from the previous iteration i � 1 as well as the current iteration, but in two dimensions:

vi
x;y =

1
5

�
vi

x�1 ;y + vi
x;y �1 + vi�1

x;y + vi�1
x+1 ;y + vi�1

x;y +1

�

Elements at the border of the matrix are treated as if the values of the missing neighbors were zero.
For example, the element in the corner at position (0; 0) is updated as follows:

vi
0;0 =

1
5

�
0 + 0 + vi�1

x;y + vi�1
x+1 ;y + vi�1

x;y +1

�
=

1
5

�
vi�1

x;y + vi�1
x+1 ;y + vi�1

x;y +1

�

As processing of the elements of the entire matrix in a single task would limit parallelism
and thus lead to poor performance, the matrix is tiled into blocks of SB � SB elements, each
treated by a separate task performing a single iteration on the tile. The number of tasks per
iteration is thus N 2

S2
B

. However, not all of these tasks can execute in parallel, since each block
relies on data from its neighborhood, as illustrated in Figure 6.1a. A subset of the dynamic
task graph showing the producers and consumers of a task bi

X;Y , calculating the values of the
i th iteration on the block at coordinates X; Y , is given in Figure 6.1b. The values generated by
this task belong to the elements that are within the square-shaped block of the matrix, which
are fv i

x;y jX � SB � x < (X + 1) � SB ^ Y � SB � y < (Y + 1) � SB g. The graph contains two
types of dependences: heavy dependences between tasks that treat the same block at different
iterations (e.g., between bi�1

X;Y and bi
X;Y or between bi

X;Y and bi+1
X;Y) and light dependences between

neighboring blocks of the same iteration (e.g., between bi
X;Y and bi

X +1 ;Y or between bi
X;Y and

bi
X;Y +1) or neighboring blocks across iterations (e.g., between bi

X;Y and bi+1
X �1 ;Y or between bi

X;Y

and bi+1
X;Y �1). The heavy dependences correspond to data dependences for entire blocks, which

consist of SB � SB elements, while light dependences represent data dependences for the borders
of blocks and only comprise SB elements. The valueSdbl in the task graph stands for the size of a
double precision �oating point value of eight bytes.

The data of a block is processed by two nested loops iterating over the x and y coordinates
of the elements of a block. Throughout the execution of these two loops, each data element is
read multiple times. It is therefore crucial for performance that a block �ts into the cache of the
processor to avoid repetitive accesses to main memory for the same elements. Hence,SB must be
chosen such thatSB � SB � Sdbl is smaller than the cache capacity associated to a single core.

Similar to the implementation of the one-dimensional version of the benchmark, elements at
the borders of a block are read by more than one task and need to be copied to two streams. The
�rst stream is used to pass the whole block to the task treating the same block at the next iteration
and the other stream is used to pass the elements to the task treating the neighbor block. This is
shown in Figure 6.1c. Figure 6.1d combines the illustrations of Figure 6.1b and 6.1c and shows the
data dependences of a single task, the elements of a block and the copied elements at the borders.

The parallel control program is also similar to the one-dimensional version of the benchmark
as each taskbi

X;Y creates its indirect successor along the path of heavy dependences, i.e. the task
processing bi+2

X;Y . Figure 6.1e shows a three-dimensional illustration of a task graph that includes
the scheme for task creation for 16 blocks and four iterations. The vertical axis in this illustration
represents the iterations, while the other two axes indicate the block coordinates of the block treated
by a task. Note that neither the tasks in the center of the cube nor the dependences from and to
these tasks are shown in order to keep the �gure readable. To be used as a drop-in replacement for
a sequential version operating on a global matrix in shared memory, i.e. whose elements are not
stored in streams, the benchmark requires two types of auxiliary tasks. The �rst type corresponds

104

Chapter 6: Experimental Setup

Current iter ation

Previous iter ation

Current b lock

(a) Illustration of the stencil pattern (b) Dynamic task graph (excerpt)

copy copy

copy

copy

Right neigh
bor, same
iteration

Left neigh
bor, next
iteration

Top neighbor,
next iteration

Bottom neighbor,
same iteration

(c) Data at the borders copied to multiple streams

Left neighbor

(X 1, Y)
Top neighbor

(X, Y+1)

Right neighbor

(X+1, Y)
Bottom neighbor
(X, Y 1)x

i

y

(d) Tiling and data dependences

x

i

y

(e) Illustration of the control program
x

i

y Initial
tasks

Terminal
tasks

(f) Illustration of the control program including
auxiliary tasks

Figure 6.1: Seidel: two-dimensional �ve-point stencil

y

x

i

y

(a)

y

x

i

y

(b)

y

x

i

y

(c)

y

x

i

y

(d)

y

x

i

y

(e)

y

x

i

y

(f)

Figure 6.2: Seidel: progress within the task graph

105

Chapter 6: Experimental Setup

to initial tasks that copy data from shared memory to streams and that execute before the tasks
that carry out the actual computation of the stencil. The second type consists of terminal tasks
that copy the data back to shared memory and which are thus needed at the end of the execution.
Figure 6.1f shows the tasks of Figure 6.1e, but also includes the auxiliary tasks. The purpose of the
root task (not shown in the graph) is the creation of the initial tasks as well as the tasks for the �rst
iteration. If the number of iterations is smaller than two, the root task also creates the terminal
tasks, as these tasks do not have indirect predecessors.

Due to the dependences between tasks within and across iterations, execution starts at the lower
left corner of the matrix at block coordinates (0; 0) at the front of the three-dimensional illustration.
Afterwards, execution progresses along the dependences, from left to right, from front to the rear
and from the bottom to the top as shown in Figure 6.2. Hence, in a �rst phase, the number of tasks
that are ready for execution increases, resulting in growing parallelism (Figure 6.2a to 6.2c). Once
the maximum number of tasks ready for execution has been reached, parallelism declines until the
task at the upper right corner at the rear of the three-dimensional representation is executed at the
very end (Figure 6.2d to 6.2f).

6.1.2 Jacobi

The two-dimensional version of the jacobibenchmark, jacobi-2d, is a �ve-point iterative stencil
operating on a dense, N � M matrix of double precision �oating point values with N and M
being powers of two. The code of this benchmark is inspired by an implementation from the P OLY-
BENCH [75] suite with characteristics similar to the seidelbenchmark presented above. The matrix
is processed in tiles of sizeSB;N � SB;M with SB;N jN and SB;M jM , resulting in N �M

SB;M �S B;N
tasks

per iteration. However, in contrast to seidel,jacobi-2ddoes not have intra-iteration dependences and
each value generated for the ith version of an element only depends on values from the previous
iteration i � 1:

vi
x;y =

1
5

�
vi�1

x�1 ;y + vi�1
x;y �1 + vi�1

x;y + vi�1
x+1 ;y + vi�1

x;y +1

�

Figure 6.3a illustrates the principles of this calculation. The division into blocks is identical
to seidelwith similar dependences for each task, as shown in Figure 6.3b and Figure 6.3c. The
absence of intra-iteration dependences in Figure 6.3c manifests as the absence of arrows pointing
from the top towards the task in the middle. The parallel control program is identical to seideland
each task creates its indirect successor in the task graph along the iteration dimension, i.e. the task
processing the same block at the iteration i + 2 . Figure 6.3d illustrates the control program for 16
blocks and four iterations, including auxiliary tasks copying data from shared memory to streams
as well as auxiliary tasks writing the results back to shared memory.

Although the task graph of jacobi-2dis similar to seidel, execution progresses differently within
the task graph during execution due to the missing intra-iteration dependences. In contrast to the
triangle-shaped wavefront of seidel, the wavefront of jacobi-2dcan have a rectangular shape and
the program can advance iteration by iteration as shown in Figure 6.4. However, this pattern of
progress is not unique and is only likely to occur for a high number of workers. If the number of
workers is lower than the number of blocks, it is more likely that tasks of later iterations execute in
parallel with tasks of earlier iterations, leading to dynamic pipelining effects. Examples of such
cases are given in Figure 6.5, showing triangular-shaped wavefronts similar to seidel(Figure 6.5a
and 6.5b) as well as progress in a pyramid-like fashion (Figure 6.5c and 6.5d). Which progress
pattern occurs at execution time depends on the number of workers, on the order of the creation
of auxiliary tasks as well as on the timing of task execution due to dynamic events such as
work-stealing.

In addition to the two-dimensional version, we have also implemented a one-dimensional
version, jacobi-1dimplementing a three-point stencil as well as a three-dimensional version of the
benchmark, jacobi-3dimplementing a nine-point stencil with similar characteristics.

106

Chapter 6: Experimental Setup

Current iter ation

Previous iter ation

Current b lock

(a) Illustration of the stencil pattern (b) Dynamic task graph (excerpt)

x

i

y
Left neighbor

(X 1, Y)
Top neighbor

(X, Y+1)

Right neighbor

(X+1, Y)
Bottom neighbor
(X, Y 1)

(c) Tiling and data dependences
x

i

y Initial
tasks

Terminal
tasks

(d) Illustration of the control program including
auxiliary tasks

Figure 6.3: Jacobi-2d: two-dimensional �ve-point stencil

y

x

i

y

i

(a)

y

x

y

(b)

y

x

i

(c)

y

x

i

(d)

y

x

i

y

(e)

y

x

i

y

(f)

Figure 6.4: Jacobi-2d: progress within the task graph for a high number of workers

y

x

i

y

(a)

y

x

i

y

(b)

y

x

i

(c)

y

x

i

(d)

Figure 6.5: Jacobi-2d: progress within the task graph depending on the timing

107

Chapter 6: Experimental Setup

6.1.3 Blur-roberts

The blur-robertsbenchmark [59] carries out the stencil computations of two kernels used in
image processing on a denseN � M matrix of double precision �oating point elements, processed
in blocks of size SB;N � SB;M , with SB;M jN and SB;N jM . The application �rst applies a blur �lter
on each element of the two-dimensional input matrix, averaging the values of the eight neighbors
surrounding the element and the element itself. In a second step, the algorithm applies the Roberts
Cross Operator used for edge detection involving the lower left element, the element right below,
the left element and the element itself. At the end of this operation, the result is written back to
the original matrix. An illustration of the two steps for a single block is given in Figure 6.6a and
Figure 6.6b. According to the description of the two steps the �nal value v00

x;y of an element at the
position (x; y) in the output matrix is calculated as follows:

v00
x;y = v0

x;y � v0
x�1 ;y +1 + v0

x;y +1 � v0
x�1 ;y with

v0
x;y =

1
9

(vx�1 ;y �1 + vx;y �1 + vx+1 ;y �1 + vx�1 ;y + vx;y + vx+1;y + vx�1 ;y +1 + vx;y +1 + vx+1 ;y +1)

In contrast to seideland jacobi,blur-robertsonly performs a single iteration on each block. To
limit the overhead related to the execution of auxiliary tasks, the application does not use dedicated
tasks to copy data from shared memory to streams and from streams back to shared memory.
Instead, initial data is read from shared memory directly by blur tasks and �nal data is written
back by tasks applying the Roberts Cross Operator. Hence, streams are only used to exchange
data between the blur tasks and the tasks applying the Roberts Cross Operator. Similar to seidel
and jacobi, data needed by multiple tasks is copied to several streams. From a block's perspective
these are the elements at the top row, the upper right corner and the right column as shown in
Figure 6.6c.

One of the key characteristics of blur-robertsare the short dependence paths including only
two tasks per block, namely the blur �lter and the Roberts Cross Operator. Figure 6.6d shows the
dependences from the perspective of a single task of the blur �lter. The task bX;Y designates a blur
task operating on block (X; Y) and rX;Y is a task that applies the Roberts Cross Operator on the
block with the block coordinates (X; Y). Besides the main dependence betweenbX;Y and r X;Y for
the block data of size SB � SB multiplied with the size of a double precision �oating point value
Sdbl , the graph also contains dependences for the right and top border of a tile, i.e. a dependence
of SB elements betweenbX;Y and r X +1;Y and a dependence of the same size betweenbX;Y and
r X;Y +1 , as well as a dependence for the upper right corner of the tile of a single element between
bX;Y and rX +1 ;Y +1 . The remaining dependences of a single integer of size Sint ensure that the
values of the input matrix are not overwritten before they have been read by the corresponding
tasks carrying out the blur �lter as explained below.

When the blur �lter is applied to a block, the task associated to this block both reads values
from within the block and from the direct neighbors, as shown in Figure 6.6e. As the �nal data is
written back to the original matrix, it must be ensured that the Roberts Cross tasks operating on
neighboring blocks do not overwrite the original values before the blur task has �nished reading
all of the required elements. Without protection, it would be possible that the blur �lter operates
with data already updated by a Roberts Cross Task as shown in Figure 6.6f. To avoid these early
updates of the original matrix, each Roberts Cross Operator task requires the permission of the
neighboring blur tasks, which is modeled as a data dependence of a single integer element.

Due to the absence of dependences between blur tasks, all blur tasks can execute in parallel.
The available parallelism at the beginning of the execution is thus only limited by the rate of task
creation and progress can be made on any part of the matrix. As far as the Roberts Cross Operator
tasks are concerned, parallelism is limited by the number of completed blur tasks as well as the
location of the blocks associated to these tasks.

108

Chapter 6: Experimental Setup

(a) Blur �lter (b) Roberts Cross Operator (c) Data at the borders copied
to multiple streams

(d) Dynamic task graph (excerpt) (e) Data dependences
of a blur task

(f) Early update of the original
matrix

Figure 6.6: Blur-roberts: consecutive applications of two stencils

6.1.4 Bitonic

The bitonicbenchmark implements a bitonic sorting network [16], capable of sorting an array
of 2N arbitrary 64-bit signed integer values. The sorting process is divided into N stages, each
performing a series of compare-and-exchange operations on the elements of the array. At each
stage, chunks of the array with a �xed size are sorted with a doubling chunk size from one stage to
another. That is, at the end of the kth stage, all chunks of size 2k+1 are sorted internally. Hence, the
�rst stage sorts pairs, the second stage all chunks of size four and so on, until the entire array is
sorted at the end of stageN � 1. An advantage of the bitonic sorting algorithm is that data can be
treated in �xed-size blocks by a sorting network of a �xed structure, keeping parallelism and the
amount of work per task constant on average.

Figure 6.7a shows a sorting network for arrays with eight elements divided into blocks of
two elements. During stage 0, each block is sorted internally by applying a compare-and-swap
operation to the pair that forms the block. This means that the element with a lower index in the
array is swapped with its neighbor if its value is greater. If this is not the case, both values remain at
their current positions. Let vk

j be the element at position j of the array, resulting from stage k. The
values v0

j of the array at the end of stage 0 are sorted, such thatv0
2i � v0

2i+1 for 0 � i � 2N �1 � 2. The
next stage sorts quadruples and yields v1

j with v1
4i � v1

4i+1 � v1
4i+2 � v1

4i+3 for 0 � i � 2N �2 � 4.
During the last stage, the entire array is sorted with v2

i � v2
i+1 for 0 � i < 2N � 1.

Figure 6.7b reveals that there are two types of operations, which can be seen best in stage 2.
The triangle-shaped operations merge two chunks by comparing the elements vc+i with vc+s�i�1 ,
where c is the base index of a chunk and s the size of a chunk (e.g., for s = 2 the base index of the
third chunk is c = 4). The second type of operation sorts a chunk internally by comparing and
swapping the elements of the upper and the lower half of the chunk for a successively re�ned
chunk size, indicated by the rectangles in Figure 6.7b. The compare-and-swap operations of both
types of operations can be grouped, such that a task that executes these operations takes either
one block as its input and produces exactly one block of output or such that it takes two blocks on
input and generates two output blocks. Figure 6.7c provides an example of such a grouping. Note
that this property is independent of the block size and the size of the array, as long as both are a
power of two.

109

	Introduction

