É. Le-circuit, 36 3.3.1 Le courant calcique I Ca, p.48

R. Behdad, S. Binczak, A. Dmitrichev, V. Nekorkin, and J. M. Bilbault, Artificial Electrical Morris–Lecar Neuron, Neural Networks and Learning Systems, pp.1875-1884, 2015.
DOI : 10.1109/TNNLS.2014.2360072

S. Alexey, V. Dmitrichev, R. Nekorkin, S. Behdad, J. Binczak et al., Anti-phase wave patterns in a ring of electrically coupled oscillatory neurons, European Physical Journal -Special Topics, vol.222, pp.2633-2646, 2013.

R. Behdad, S. Binczak, V. I. Nekorkin, A. S. Dmitrichev, and J. M. Bilbault, Experimental study of electrical Morris-Lecar neuron, International Workshop on Neuromorphic and Brain-Based Computing Systems, 2013.

C. S. Invitées-1, R. Binczak, V. I. Behdad, A. S. Nekorkin, M. Dmitrichev et al., Electrical coupled Morris-Lecar neurons : from design to pattern analysis, Symposium " Dynamical Networks with Complex Links, pp.23-29, 2015.

R. Behdad, S. Binczak, A. S. Vladimir, I. Nekorkin, and J. Bilbault, Electronic Morris-Lecar neuron model, International Conference on Embedded Systems In Telecommunications And Instrumentation (ICES- TI'14, 2014.
DOI : 10.1109/embc.2013.6610671

A. Conférences-1.-rachid, S. Behdad, S. Binczak, M. Jacquir, J. Rossé et al., Etude expérimentale de neurones de Morris-Lecar (réalisation et couplage )

S. Jacquir, S. A. , T. Nguetcho, R. Behdad, S. Binczak et al., Transmission active d'une impulsion dans un modèle de neurone

R. Behdad, S. Binczak, A. Dmitrichev, V. Nekorkin, and J. M. Bilbault, Coupling of electrical Morris-Lecar neurons, ? école d'été sur la complexité, le chaos et la dynamique dans les réseaux biologiques, pp.12-16, 2014.

R. Behdad, S. Binczak, V. I. Nekorkin, A. S. Dmitrichev, and J. M. Bilbault, Dynamique non linéaire d'activités collectives de neurones couplés, Biologie, Médecine et Systèmes Complexes 26-28 Novembre 2012

A. Scott, Neuroscience : A mathematical primer, 2002.

E. M. Izhikevich, Dynamical systems in neuroscience, 2007.

M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. , Dynamical principles in neuroscience, Reviews of Modern Physics, vol.78, issue.4, p.1213, 2006.
DOI : 10.1103/RevModPhys.78.1213

B. J. Baars and N. M. Gage, Cognition, brain, and consciousness : Introduction to cognitive neuroscience, 2010.

N. Brenner, S. P. Strong, R. Koberle, W. Bialek, and R. R. Steveninck, Synergy in a Neural Code, Neural Computation, vol.57, issue.5, pp.1531-1552, 2000.
DOI : 10.1038/373515a0

E. M. Izhikevich, Polychronization: Computation with Spikes, Neural Computation, vol.71, issue.2, pp.245-282, 2006.
DOI : 10.1016/S0167-8760(00)00173-2

M. Eguia, M. Rabinovich, and H. Abarbanel, Information transmission and recovery in neural communications channels, Physical Review E, vol.62, issue.5, p.7111, 2000.
DOI : 10.1103/PhysRevE.62.7111

URL : http://www.aacademica.com/manuel.eguia/8.pdf

T. Nowotny, V. P. Zhigulin, A. I. Selverston, H. D. Abarbanel, and M. I. Rabinovich, Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity, The Journal of neuroscience, vol.23, issue.30, pp.9776-9785, 2003.

D. Sterratt, B. Graham, A. Gillies, and D. Willshaw, Principles of computational modelling in neuroscience, 2011.
DOI : 10.1017/CBO9780511975899

J. H. Byrne, R. Heidelberger, and M. N. Waxham, From molecules to networks : an introduction to cellular and molecular neuroscience, 2014.

A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, p.500, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophysical Journal, vol.35, issue.1, pp.193-213, 1981.
DOI : 10.1016/S0006-3495(81)84782-0

L. Lapicque, Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarisation, J. Physiol. Pathol. Gen, vol.9, issue.1, pp.620-635, 1907.

E. M. Izhikevich, Which Model to Use for Cortical Spiking Neurons?, IEEE transactions on neural networks, pp.1063-1070, 2004.
DOI : 10.1109/TNN.2004.832719

J. G. Mancilla, T. J. Lewis, D. J. Pinto, J. Rinzel, and B. W. Connors, Synchronization of Electrically Coupled Pairs of Inhibitory Interneurons in Neocortex, Journal of Neuroscience, vol.27, issue.8, pp.2058-2073, 2007.
DOI : 10.1523/JNEUROSCI.2715-06.2007

F. Borges, E. Lameu, A. Batista, K. Iarosz, M. Baptista et al., Complementary action of chemical and electrical synapses to perception, Physica A: Statistical Mechanics and its Applications, vol.430, 2014.
DOI : 10.1016/j.physa.2015.02.098

E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. Hudspeth, Principles of neural science, 2014.

E. Puil, H. Meiri, and Y. Yarom, Resonant behavior and frequency preferences of thalamic neurons, Journal of neurophysiology, vol.71, issue.2, pp.575-582, 1994.

B. Hutcheon, R. M. Miura, and E. Puil, Subthreshold membrane resonance in neocortical neurons, Journal of Neurophysiology, vol.76, issue.2, pp.683-697, 1996.

B. Hutcheon, R. M. Miura, and E. Puil, Models of subthreshold membrane resonance in neocortical neurons, Journal of Neurophysiology, vol.76, issue.2, pp.698-714, 1996.

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics : From single neurons to networks and models of cognition, 2014.
DOI : 10.1017/CBO9781107447615

P. Crotti, Analysis of coherence resonance near bifurcation points in the stochastic Class II Morris-Lecar model, 2011.

S. Lynch, Dynamical systems with applications using MATLAB

S. H. Strogatz, Nonlinear dynamics and chaos : with applications to physics, biology, chemistry, and engineering, 2014.

G. Iooss and D. D. Joseph, Elementary stability and bifurcation theory, 2012.

D. Luo, Bifurcation theory and methods of dynamical systems, World Scientific, vol.15, 1997.

J. E. Marsden and M. Mccracken, The Hopf bifurcation and its applications, 2012.

T. Gilani and P. Hövel, Dynamical systems in neuroscience, Computational Neuroscience, 2012.

W. Gerstner and W. M. Kistler, Spiking neuron models : Single neurons, populations , plasticity, 2002.
DOI : 10.1017/CBO9780511815706

A. N. Burkitt, A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input, Biological Cybernetics, vol.68, issue.1, pp.1-19, 2006.
DOI : 10.1007/s00422-006-0068-6

N. Fourcaud-trocmé, D. Hansel, C. Van-vreeswijk, and N. Brunel, How spike generation mechanisms determine the neuronal response to fluctuating inputs, The Journal of neuroscience, vol.23, issue.37, pp.11628-11640, 2003.

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

S. Jacquir, S. Binczak, J. Bilbault, V. Kazantsev, and V. Nekorkin, Synaptic Coupling Between Two Electronic Neurons, Nonlinear Dynamics, vol.64, issue.1-4, pp.29-36, 2006.
DOI : 10.1007/s11071-006-1932-6

URL : https://hal.archives-ouvertes.fr/hal-00583790

M. Bordet and S. Morfu, Experimental and numerical enhancement of vibrational resonance in neural circuit, Proceedings of the Royal society of London. Series B. Biological sciences, pp.903-905, 1984.
DOI : 10.1049/el.2012.1343

URL : https://hal.archives-ouvertes.fr/hal-00730375

E. M. Izhikevich, Simple model of spiking neurons, IEEE Transactions on Neural Networks, vol.14, issue.6, pp.1569-1572, 2003.
DOI : 10.1109/TNN.2003.820440

C. Mead and L. Conway, Introduction to VLSI systems, 1980.

C. Mead, Neuromorphic electronic systems, Proceedings of the IEEE, vol.78, issue.10, pp.1629-1636, 1990.
DOI : 10.1109/5.58356

URL : http://authors.library.caltech.edu/53090/1/00058356.pdf

R. Douglas, M. Mahowald, and C. Mead, Neuromorphic Analogue VLSI, Annual Review of Neuroscience, vol.18, issue.1, pp.255-281, 1995.
DOI : 10.1146/annurev.ne.18.030195.001351

J. Schemmel, D. Bruderle, A. Grubl, M. Hock, K. Meier et al., A waferscale neuromorphic hardware system for large-scale neural modeling, Circuits and Systems (ISCAS Proceedings of 2010 IEEE International Symposium on, pp.1947-1950, 2010.

G. Indiveri, B. Linares-barranco, T. J. Hamilton, A. Van-schaik, R. Etienne-cummings et al., Neuromorphic Silicon Neuron Circuits, Frontiers in Neuroscience, vol.5, 2011.
DOI : 10.3389/fnins.2011.00073

URL : https://hal.archives-ouvertes.fr/hal-00597675

A. Cassidy and A. G. Andreou, Dynamical digital silicon neurons, 2008 IEEE Biomedical Circuits and Systems Conference, pp.289-292, 2008.
DOI : 10.1109/BIOCAS.2008.4696931

S. Liu, Event-Based Neuromorphic Systems, 2015.
DOI : 10.1002/9781118927601

S. Saïghi, Circuits et systèmes de modélisation analogique de réseaux de neurones biologiques : application au développement d'outils pour les neurosciences computationnelles, 2004.

J. V. Arthur and K. Boahen, Silicon-neuron design : A dynamical systems approach Circuits and Systems I : Regular Papers, IEEE Transactions on, vol.58, issue.5, pp.1034-1043, 2011.

V. Douence, Circuits et systèmes de modélisation analogique de neurones biologiques, 2000.

D. Brüderle, M. A. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil et al., A comprehensive workflow for generalpurpose neural modeling with highly configurable neuromorphic hardware systems, Biological cybernetics, vol.104, pp.4-5, 2011.

A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre et al., A floating-gate-based field-programmable analog array Solid-State Circuits, IEEE Journal, vol.45, issue.9, pp.1781-1794, 2010.

G. N. Patel, J. H. Holleman, and S. P. Deweerth, Analog vlsi model of intersegmental coordination with nearest-neighbor coupling, Advances in neural information processing systems, pp.719-725, 1998.

J. M. Zurada, Introduction to artificial neural systems, 1992.

J. H. Wijekoon and P. Dudek, Compact silicon neuron circuit with spiking and bursting behaviour, Neural Networks, vol.21, issue.2-3, pp.524-534, 2008.
DOI : 10.1016/j.neunet.2007.12.037

J. H. Wijekoon and P. Dudek, Integrated circuit implementation of a cortical neuron, 2008 IEEE International Symposium on Circuits and Systems, pp.1784-1787, 2008.
DOI : 10.1109/ISCAS.2008.4541785

S. B. Furber, F. Galluppi, S. Temple, and L. Plana, The SpiNNaker Project, Proceedings of the IEEE, vol.102, issue.5, pp.652-665, 2014.
DOI : 10.1109/JPROC.2014.2304638

P. A. Merolla, J. V. Arthur, R. Alvarez-icaza, A. S. Cassidy, J. Sawada et al., A million spiking-neuron integrated circuit with a scalable communication network and interface, Science, vol.345, issue.6197, pp.668-673, 2014.
DOI : 10.1126/science.1254642

B. V. Benjamin, P. Gao, E. Mcquinn, S. Choudhary, A. R. Chandrasekaran et al., Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations, Proceedings of the IEEE, vol.102, issue.5, pp.699-716, 2014.
DOI : 10.1109/JPROC.2014.2313565

T. Yu and G. Cauwenberghs, Analog VLSI Biophysical Neurons and Synapses With Programmable Membrane Channel Kinetics, IEEE Transactions on Biomedical Circuits and Systems, vol.4, issue.3, pp.139-148, 2010.
DOI : 10.1109/TBCAS.2010.2048566

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.423.6981

. Izhikevich, Brain Corporation, 2009.

H. Markram, The Blue Brain Project, Nature Reviews Neuroscience, vol.60, issue.2, pp.153-160, 2006.
DOI : 10.1162/089976698300017502

C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. Dewolf et al., A Large-Scale Model of the Functioning Brain, Science, vol.338, issue.6111, pp.1202-1205, 2012.
DOI : 10.1126/science.1225266

P. Bonifazi, F. Difato, P. Massobrio, G. L. Breschi, V. Pasquale et al., In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses, Frontiers in neural circuits, 2013.
DOI : 10.3389/fncir.2013.00040

URL : https://hal.archives-ouvertes.fr/hal-00956625

G. Piret, C. Hébert, J. Mazellier, L. Rousseau, E. Scorsone et al., 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing, 3d-nanostructured borondoped diamond for microelectrode array neural interfacing, pp.173-183, 2015.
DOI : 10.1016/j.biomaterials.2015.02.021

URL : https://hal.archives-ouvertes.fr/hal-01132931

M. Tatsuno, Analysis and Modeling of Coordinated Multi-neuronal Activity, 2015.
DOI : 10.1007/978-1-4939-1969-7

K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara, and H. Kawakami, Bifurcations in Morris???Lecar neuron model, Neurocomputing, vol.69, issue.4-6, pp.293-316, 2006.
DOI : 10.1016/j.neucom.2005.03.006

V. B. Kazantsev, A. Tchakoutio-nguetcho, S. Jacquir, S. Binczak, and J. Bilbault, Active spike transmission in the neuron model with a winding threshold manifold, Neurocomputing, vol.83, pp.205-211, 2012.
DOI : 10.1016/j.neucom.2011.12.014

S. Binczak, V. Kazantsev, V. Nekorkin, and J. Bilbault, Experimental study of bifurcations in modified FitzHugh-Nagumo cell, Electronics Letters, vol.39, issue.13, pp.961-962, 2003.
DOI : 10.1049/el:20030657

S. Binczak and J. Bilbault, EXPERIMENTAL PROPAGATION FAILURE IN A NONLINEAR ELECTRICAL LATTICE, International Journal of Bifurcation and Chaos, vol.14, issue.05, pp.1819-1830, 2004.
DOI : 10.1142/S0218127404010187

V. Kazantsev, V. Nekorkin, S. Binczak, S. Jacquir, and J. Bilbault, Spiking dynamics of interacting oscillatory neurons, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.15, issue.2, pp.23103-023103, 2005.
DOI : 10.1063/1.1883866

T. Yu, T. J. Sejnowski, and G. Cauwenberghs, Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI, IEEE Transactions on Biomedical Circuits and Systems, vol.5, issue.5, pp.420-429, 2011.
DOI : 10.1109/TBCAS.2011.2169794

M. Sekerli and R. Butera, An implementation of a simple neuron model in field programmable analog arrays, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.4564-4567, 2004.
DOI : 10.1109/IEMBS.2004.1404266

F. Grassia, T. Lévi, S. Saïghi, and T. Kohno, Bifurcation analysis in a silicon neuron, Artificial Life and Robotics, vol.23, issue.3, pp.53-58, 2012.
DOI : 10.1007/s10015-012-0016-6

URL : https://hal.archives-ouvertes.fr/hal-00775856

M. F. Simoni, G. S. Cymbalyuk, M. E. Sorensen, R. L. Calabrese, and S. P. De-weerth, A Multiconductance Silicon Neuron With Biologically Matched Dynamics, IEEE Transactions on Biomedical Engineering, vol.51, issue.2, pp.342-354, 2004.
DOI : 10.1109/TBME.2003.820390

S. Saïghi, Y. Bornat, J. Tomas, and S. Renaud, Neuromimetic ICs and system for parameters extraction in biological neuron models, 2006 IEEE International Symposium on Circuits and Systems, p.5, 2006.
DOI : 10.1109/ISCAS.2006.1693557

X. Wu, J. Ma, L. Yuan, and Y. Liu, Simulating electric activities of neurons by using PSPICE, Nonlinear Dynamics, vol.17, issue.1, pp.113-126, 2014.
DOI : 10.1007/s11071-013-1053-y

R. Behdad, S. Binczak, A. Dmitrichev, V. Nekorkin, and J. Bilbault, Artificial Electrical Morris–Lecar Neuron, Neural Networks and Learning Systems, pp.1875-1884, 2015.
DOI : 10.1109/TNNLS.2014.2360072

H. Lecar, Morris-Lecar model, Scholarpedia, vol.2, issue.10, p.1333, 2007.
DOI : 10.4249/scholarpedia.1333

G. Ermentrout and D. Terman, Dynamics, Mathematical Foundations of Neuroscience, vol.35, pp.49-75, 2010.
DOI : 10.1007/978-0-387-87708-2_3

URL : https://hal.archives-ouvertes.fr/hal-00846120

J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations, Methods in Neuronal Modeling : From Ions to Networks, 1998.

J. Cosp, S. Binczak, J. Madrenas, and D. Fernández, Realistic model of compact VLSI FitzHugh???Nagumo oscillators, International Journal of Electronics, vol.117, issue.3, pp.220-230, 2014.
DOI : 10.1007/978-0-387-76479-5

A. Gratz, Operational transconductance amplifiers, 2005.

R. Marston, Understanding and using OTA OP-AMP ICs, Nults & Volts Magazine, pp.70-74, 2003.

N. Semiconductor, Lm13700 dual operational transconductance amplifiers with linearizing diodes and buffers, 2000.

A. Devices, Low cost analog multiplier ad633 EN : Special Linear Manual Reference, pp.2-47, 1992.

G. Patel and S. Deweerth, Analogue VLSI Morris-Lecar neuron, Electronics Letters, vol.33, issue.12, pp.997-998, 1997.
DOI : 10.1049/el:19970686

A. Devices, Analog Switch ADG419 http://www.analog.com/media/en/ technical-documentation/data-sheets, 2009.

P. Wallisch, M. E. Lusignan, M. D. Benayoun, T. I. Baker, A. S. Dickey et al., MATLAB for neuroscientists : an introduction to scientific computing in MATLAB, 2014.

G. Griffiths and W. E. Schiesser, Traveling wave analysis of partial differential equations : numerical and analytical methods with MATLAB and Maple, 2010.

A. Hess, L. Yu, I. Klein, M. De-mazancourt, G. Jebrak et al., Neural Mechanisms Underlying Breathing Complexity, PLoS ONE, vol.83, issue.10, 2013.
DOI : 10.1371/journal.pone.0075740.s008

E. M. Izhikevich, NEURAL EXCITABILITY, SPIKING AND BURSTING, International Journal of Bifurcation and Chaos, vol.10, issue.06, pp.1171-1266, 2000.
DOI : 10.1142/S0218127400000840

L. Duan, D. Zhai, and Q. Lu, Bifurcation and bursting in morris-lecar model for class i and class ii excitability, DYNAMICAL SYSTEMS, pp.391-399, 2011.

L. Duan, Q. Lu, and D. Cheng, Bursting of Morris-Lecar neuronal model with current-feedback control, Science in China Series E : Technological Sciences, pp.771-781, 2009.
DOI : 10.1007/s11431-009-0040-5

A. Antoniou, Gyrators using operational amplifiers, Electronics Letters, vol.3, issue.8, pp.350-352, 1967.
DOI : 10.1049/el:19670270

A. Dmitrichev, V. Nekorkin, R. Behdad, S. Binczak, and J. Bilbault, Anti-phase wave patterns in a ring of electrically coupled oscillatory neurons, The European Physical Journal Special Topics, vol.4, issue.10, pp.2633-2646, 2013.
DOI : 10.1140/epjst/e2013-02043-6

URL : https://hal.archives-ouvertes.fr/hal-00909693

V. Nekorkin and M. G. Velarde, Synergetic phenomena in active lattices : patterns, waves, solitons, chaos, 2002.
DOI : 10.1007/978-3-642-56053-8

V. Nekorkin, D. Kasatkin, and A. Dmitrichev, Transient dynamics in a small ensemble of synaptically coupled Morris-Lecar neurons, Radiophysics and Quantum Electronics, vol.17, issue.6, pp.45-52, 2010.
DOI : 10.1007/s11141-010-9203-2

J. Lafranceschina and R. Wackerbauer, Impact of weak excitatory synapses on chaotic transients in a diffusively coupled Morris-Lecar neuronal network, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.25, issue.1, p.13119, 2015.
DOI : 10.1063/1.4907193

T. Instruments, LM134/LM234/LM334 3-Terminal Adjustable Current Sources

M. Circuit-Équivalent-pour-le-modèle-de, V. Est-le-potentiel-de-la-membrane, and .. , C m est la capacité membranaire et I app le courant appliqué. I Ca , I K et I L sont les courants de calcium, potassium et de fuite respectivement, p.36

O. Cette-figure-montre-le-courant-de-sortie-d-'un and .. , Pour les petites variations de (v + ? v ? ), l'OTA fonctionne en mode linéaire (trait en gras), en revanche, si les variations sont plus grandes, alors l'OTA se sature et le courant de sortie prend la forme d'une sigmoïde (trait plein) Si on veut élargir la zone linéaire (??), un courant de diode est nécessaire. Ici, on pose I bias = 1mA, I D = 0, p.38

M. Schéma-du-circuit-complet-de, les résistances R bias et R D permettent de contrôler les courants de polarisation et de diode respectivement pour les différents OTAs utilisés, p.39

L. Figure, en pointillés) montre la droite décroissante g Ca (V Ca ? V) · 10 3 et le courant de sortie M ? (V) · 10 ?3 (en traits pleins) de l'OTA 1, ce qui donne le courant de polarisation (traits pleins) de l'OTA 2. La figure 3.8(b) montre la comparaison entre les résultats expérimental (+) et théorique (traits pleins) pour le courant calcium I Ca selon l'équation (3.15), p.41

L. De-la-diode, la droite en traits pleins donne la courbe du courant de fuite I L . En (b), comparaison des résultats expérimentaux (++) et théoriques (traits pleins) du courant de fuite I, p.48

S. .. Le-diagramme-de-bifurcation-au-niveau-de-(-c-m, AH et FLC correspondent aux bifurcations : Saddle-Node, Saddle Node on an Invariant Circle, Andronov-Hopf et Fold Limit Cycles respectivement, p.52

. Le-passage-périodique, entre la zone (A) à décharge et la zone (B) de repos, donne le comportement de rafales. La figure (b) illustre les deux bifurcations nécessaires pour la génération de rafales (bursts), la bifurcation de l'état de repos et la bifurcation de cycle limite, p.57

F. Dans-cette, on donne des chaînes fermées de neurone de ML avec un nombre impair (égal à 9) de neurones initialement à l'état oscillatoire. À gauche, l'état initial de la chaîne et à droite son état final. Le nombre de neurones initialement à l'état d'équilibre stable en (a), (b) et (c) est de 2, 1 et 3 respectivement, p.93

F. Dans-cette, on donne des chaînes fermées de neurone de ML avec un nombre pair (égal 8) de neurones initialement à l'état oscillatoire. À gauche, l'état initial de la chaîne et à droite son état final. Le nombre de neurones initialement à l'état d'équilibre stable en (a), (b) et (c) est de 2, 1 et 3 respectivement, p.101

. Couplage-Électrique-bidirectionnel-de-n-cellules-de-morris-lecar, Le couplage électrique est bien approché par un couplage linéaire résistif R c = 5.128k? ? D = 0.195mS /cm 2 . C m = 18 µF, I app = 102 µA et le reste des paramètres comme dans le tableau 3, conditions aux limites périodiques. En (b), conditions aux limites libres. . . . . . . . . . . 103

D. Le-nombre, opérations à virgule flottante par seconde (FLOPS) mesure la vitesse d'une résolution informatique, p.23

L. Différents and M. , Pour l'ensemble des OTAs, I bias doit être ? 2, p.44

/. Ota and L. Le, Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers) est un OTA de deuxième génération

O. Il-est-en-fait-un-double, Le LM13700 est une version améliorée de CA3080. Il possède un étage (buffer) qui peut être utilisé

L. Le and . Est-en-fait-un-composant-très-polyvalent, il peut aussi être utilisé en tant qu'amplificateur commandé en tension (VCA), résistance commandée en tension