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“Happy life with the machines, scattered around the room... Look what they made, they

made it for me! Happy technology!”

Joel Zimmerman & Chris James
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by Jorge L
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opez

Collaborative systems are growing in use and in popularity. The need to boost the meth-

ods concerning the interoperability is growing as well; therefore, trustworthy interactions

of the di↵erent systems are a priority. Trust as a computer science concept has been stud-

ied in the recent years. Nevertheless, in the literature, very little focus is placed on how

to assess the correctness of the interactions between the entities; even if most approaches

rely on the estimation of trust based on the accumulated measures of these values. To

broadly determine the correctness of interactions without targeting a specific domain or

application, an approach using Distributed On-line Network Monitoring (DONM) was

proposed. Furthermore, a prototype tool-set was developed to automatically test the

trust properties. DONM is a form passive testing; it analyzes systems’ responses and

test the correctness of the interactions via network traces. Since it relies on the stated

properties to test, a novel approach was proposed to automatically extract relevant

properties to test. Our approach deeply relies on the operation of On-line Monitoring

Systems. That is the reason why we propose new methods to enhance the state of the

art techniques to: a) e�ciently evaluate properties in O(n) time complexity using an

Extended Finite State Automata (EFSA) auxiliary data structure; and b) to expand

the language expressiveness to properly express the constraints of such systems, such as,

timeouts in order to avoid resource starvation. Finally, using the evaluation of the enti-

ties’ interactions provided by our approach, trust management engines will help trustors

to decide with whom and how to interact with other users or applications. We propose a

new framework that is flexible for any domain, allowing trustors to define the trust fea-

tures used to evaluate trustees in di↵erent contexts. Furthermore, with the evaluations

of the trust features, we propose a trust model which achieves close-to-human inference

of the trust assessment, by using a machine learning based trust model, namely solving

a multi-class classification problem using Support Vector Machines (SVM). Using the

SVM-based trust model, experiments were performed with simulated trust features to

estimate trust level ; an accuracy of more than 96% was achieved.
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Chapter 1

Introduction

“Even though the future seems far away, it is actually beginning right now.” — Mattie

Stepanek.

The continuous expansion of computer network communications has encouraged and en-

titled users and developers to create new ways to interact. In general, new applications

and systems can collaborate to provide a single composite service to the end user. In

addition to that, the interactions between the systems can become complex. Also, sensi-

tive transactions and critical operations are performed. For instance, external payment

gateways used by companies to process payments or external data storage using cloud

services. Furthermore, collaborative systems might deeply rely on peer systems or users’

correct data from these interactions to operate correctly. Many examples can be listed

in that category, some can be: a) crowd-sourcing applications [Yu et al., 2012], that

without the correct information, their operation becomes worthless, and b) for Mobile

Ad-Hoc Networks (MANets) [Mellouk et al., 2014], to properly route data with other

nodes. Given the previously mentioned facts, the need to guarantee the correctness of

those interactions is of great priority. Deciding with whom and how to interact with the

di↵erent entities is an important task that the systems and users need to accurately be

able to perform. A Human cognitive concept of this is trust.

The concepts of trust have been brought to computer science. The systems need to

interact with users and with other applications. The decision regarding with who and

how to interact with other users or applications depends on each application or system.

Probably, the most basic notion of trust is that, trust is a relationship; a relationship

between an entity which expects a behavior, the trustor, and the entity performing the

action, the trustee. One of the first works that introduced trust as a computer science

concept is the one realized in [Marsh, 1994]. In this work the authors assign a range of

1
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trust and distrust going from -1 to 1; -1 representing full distrust, and 1 representing

blind trust. While these fuzzy logic values are very intuitive for the characterization of

trust as a computer science concept, deciding when to consider an entity trustworthy

or not is done with a simple threshold. Nevertheless, this is a first interesting way

of formalizing trust concepts. Instead of using a binary approach of complete trust or

distrust, these values are considered as fuzzy logic values. Fuzzy logic variables or values

handle the concept of partial truth. For example to describe “how black is a gray color”,

you can use these type of values; a 0.1 value will indicate a pale gray. The same concept

applies for a trust value of 0.95, this means a strong trust from the trustor to the trustee.

Many systems have adopted this methodology as well. For example, in the works [Ray

and Chakraborty, 2004; Toumi et al., 2012], the functions of trust associate the trust

and distrust values on the same ranges from -1 to 1.

There are many definitions of trust in the literature, but the one we adopt is the one

commonly accepted, widespread and defined in [Grandison and Sloman, 2000] as: “the

firm belief in the competence of an entity to act dependably, securely, and reliably within

a specified context”.

From the definition we note that it involves several fundamental factors:

• The trustor trusts an entity called the trustee. This implies a mechanism for

identification or authentication

• Belief is a subjective concept for the trustor. It is regarding an expectation on

the future, but, it could be influenced by the past events with the trustee, i.e.,

experience

• The trustor expects behaviors from the trustee. Behaviors considered depend-

ably, secure and reliable

• A trustee might have di↵erent levels of trust for di↵erent contexts, that is, situa-

tions

The statements presented above are essential in the development of trust management

systems. From those points, many researchers have created their approaches of trust.

For instance, several trust management systems use security policies and authentication

in order to provide the concept of trust. In these types of systems, the entity called

trustee is related to an authentication mechanism. The security policy rules express the

actions allowed for each trustee. This is called “hard trust” because the actions can only

be permitted or denied, i.e., who can do what. The action on the security policy implies

a context. For example, trust management systems as PolicyMaker[Blaze et al., 1996],
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KeyNote[Blaze et al., 1999], REFEREE[Chu et al., 1997], and SD3[Jim, 2001] use policy

languages and authentication to provide the concept of trust. These works were some

of the pioneers in trust management systems.

“Soft trust” management systems, on the other hand are trust management systems

that are based on features as experience, reputation, risk, and others. For this purpose,

the evaluation of the trustee’s behaviors are added to assess the trustee experience. This

approach is somewhat closer to the human cognitive notion of trust. Nevertheless, most

of the works dedicated to trust estimations utilize only local observations. A crucial

aspect is that those trust management engines assume that the behavior evaluation is a

given system capability, and do not take into consideration how to perform these evalua-

tions. Additionally, to the best of our knowledge, no comprehensive methods to evaluate

behaviors are found in the trust literature. Likewise, no formal approaches have been de-

fined considering several points of observation. Normally, approaches consider the local

interactions between the trustor and the trustee. If beyond the local observations there

could exist untrustworthy behaviors, a local-only perspective will fail to detect them; we

expose some of these behaviors in this work. We tackle the previously mentioned issue,

and as the first contribution, we propose to provide behavioral evaluation, testing if the

interactions are trustworthy or not, based on the inspection and the correlation of the

network packets at di↵erent points of observation.

We aim at providing trust information in a comprehensive way so that, any generic

framework can use the information about these behaviors and incorporate them into

the trust estimation process. It is our point of view that trust systems will benefit

from di↵erent techniques inputs. That is the reason why in this first contribution we

do not aim to provide another approach how to assess trust, but, rather providing

a comprehensive way to perform behavior evaluation of the interactions. Given this

motivation, we present a distributed on-line monitoring tool-set to provide feedback

regarding the interactions between the entities, and a formal language to express trust

properties. It is extremely important to note that, we consider that any entity which

needs to trust another one, commonly, are systems that communicate through network

protocols. Therefore, our approach can be said to be deeply comprehensive for any

system who’s tra�c can be inspected. This can be considered as the lower layer of

abstraction if considering trust as a layered approach.

An important remark to clarify our contribution is that, in order to guarantee the correct

system interactions, the previously mentioned approach was proposed. This approach is

formulated as the well-known and widely-adopted approach of guaranteeing correctness

of given invariants (named throughout this thesis trust properties or simply properties)

as employed in [Bayse et al., 2005]. Even if other di↵erent approaches to guarantee the
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correctness of the interactions could be considered, those are left out of the scope of this

thesis.

Regarding our first contribution, the main aspects which can be highlighted are the

following:

• Defining a formal model to express trust properties in computer communication

networks

• Proposing a distributed monitoring approach to analyze trust properties in dis-

tributed networks

• Developing a set of tools for performing on-line distributed network monitoring for

evaluating behaviors in order to provide trust verdicts

• Successfully applying our methodology and tools to a real industrial DNS use case

scenario to evaluate the trustworthiness of the servers responding the queries from

DNS resolvers. Furthermore, to be able to correctly detect untrustworthy replies

in real time.

One important characteristic which is always desirable in trust systems is to have the

trust information as fast as possible, since guaranteeing sensitive or critical operations

can be done timely; that is the reason why our proposed mechanism focuses on moni-

toring the systems on real time. Being on-line network monitoring so important for our

approach, as the second contribution of our work is to propose enhancements to on-line

monitoring systems, namely:

• Identifying the areas of opportunity and motivation to enhance our on-line network

monitoring system, the one exposed as the first contribution

• Proposing a scalable evaluation method for any on-line network monitoring system,

by using an auxiliary model, an extended finite state automata (EFSA), and as

well as other known methods to reduce the time complexity of the evaluation

algorithm

• The modification of the language presented in the first approach to ease the usage

of our tools to avoid issues as resource starvation

• Consolidating our enhancements, using the newly proposed language with the

scalable algorithm to construct the corresponding EFSA from a property stated

in the language
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Once having a solid and enhanced approach on how to evaluate behaviors to provide

trust verdicts, we noticed that, the traditional methods to find trust properties can be

laborious and the process can be highly time consuming. Given that motivation, in this

work we propose a novel approach to automatically generate trust properties by em-

ploying techniques from the Process Mining (PM) research domain. In an intuitive way,

communicating systems and their intrinsic network protocols are defined as sequence

network packets or messages. Nonetheless, they can also be seen as sequences of struc-

tured activities, queries and responses that are executed by entities (e.g., clients and

servers), with the objective of exchanging some valuable information. From this point

of view, we propose to model the system’s behavior as a process flow and use the PM

techniques to analyze them. We aim at comparing formal models of the protocol spec-

ification and the models obtained from the PM techniques. Using these comparisons,

we propose a new algorithm to generate the suitable set of trust properties for any fault

found. The automatic trust property generation is our third contribution in this work.

One of the major challenges in the trust domain in computer science is the lack of

a generic framework. It can be appreciated in the surveys shown in [Artz and Gil,

2007] and [Momani and Challa, 2010]. Most frameworks force users to adopt a policy

language, or a fixed set of parameters, predefined by the trust management engine.

Moreover, they have the rigid approach of having a single trust threshold to distinguish

between trusted and untrusted entities. Our goal is to allow any existing software

implementations, systems, and devices to incorporate the trust concepts and use trust

management engines. One key fact that is usually overlooked is that, there is a huge

range of devices with very di↵erent processing capabilities. The interaction with such

engines, modules, and systems must be as less intrusive (transparent) and flexible as

possible. The flexibility concept is inherent to the trust nature; each trustor decides

“how” to trust the trustees.

After our proposed approach to comprehensively provide feedback regarding the entities’

interactions, we noticed that no trust management engines or frameworks are capable

of easily incorporating external feedback, nor adding new or extending trust properties

to monitor a particular behavior. In this work, as the fourth contribution we propose a

flexible an extensible framework by employing a RESTful web-service-based architecture

to exchange the trust feedback and to get the trust information from the trust manage-

ment engine. Furthermore, we entitle the trustor applications to define their own trust

contexts by specifying the trust features related to the context, and how to measure

them. In fact, in the literature, the capability of defining the trust contexts in the trust

management framework during execution time is not considered. It is our belief that

this contribution can encourage existing systems to incorporate trust concepts at a large
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scale. Additionally, we discuss the architecture, design, and proposed inputs for the

associated trust model.

When proposing an extensible and flexible trust management framework, the associated

trust model needs to be capable of incorporating various di↵erent inputs, indiscrimi-

nately. With all the inputs, the trust model needs to determine to which “trust zone”

the entity belongs to, considering that the feature space for the entities’ is evaluated

di↵erently in di↵erent zones. In order to obtain this, the fifth contribution of this work

is to present a trust model which is flexible and capable of accurately determining if

the values of the inputs can yield trustworthy interactions. Commonly, trust models

are based on a linear combination of inputs such as, knowledge, experience, and reputa-

tion. The associated weights of this linear combination determine how important each

parameter is. In contrast, the concept of trust is much more complex. For instance,

if a trust feature which is normally desired to have a high value is low, but the entity

has a rare high combination of two other less important parameters for which it should

be trusted, a simple linear combination is not capable to correctly model and express

this set of constraints. It is our vision that trust management systems must have their

criteria as close as we humans have in regards to trust. Likewise, trust models use a

threshold to determine whether the entity is trusted or not, which logically implies that

entities can only be binary classified. It is desirable to have multiple classes, in that

way, the trust level of the entities can be accomplished in a finer manner. To achieve

the close-to-human inference and a finner classification, we propose the use of machine

learning techniques, namely solving a multi-class classification problem where the classes

are: trustworthy, neutrally trusted, and untrustworthy; the inputs of the algorithm are

the di↵erent trust features and the labels, i.e., evaluations of the trust level given the

trust features. We present the trust model, and propose to solve it using Support Vec-

tor Machines (SVM) optionally using a Gaussian Kernel. We experiment our approach

by simulating values from di↵erent experiences and their associated trust levels. The

results are promising, they show high accuracy for determining the trust level that an

entity has. With an accurate trust level assessment, entities can decide how to interact

with their peers. For example a “neutrally trusted” entity, will be allowed to execute

a limited set of operations, while a “trustworthy” entity will be allowed to execute the

complete set of available operations.

The remainder of this thesis is organized as follows, in Chapter 2 we present the state

of the art regarding trust models and frameworks, on-line network monitoring systems,

and process mining. The Chapter 3, describes our generic approach to provide feedback

of desired trust properties using the formal distributed on-line network monitoring ap-

proach. Then, in Chapter 4 we show our proposed method to automatically extract the

trust properties to test. In Chapter 5 we show the enhancements proposed to on-line
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network monitoring systems. Later, in Chapter 6 we detail a generic trust manage-

ment framework, its architecture, design, and trust model to assess the trust level of the

entities. Finally, in Chapter 7 we conclude and provide perspectives for our future work.

In general terms, in Chapter 3, known techniques for conformance and performance

black box passive testing, using network packet captures were applied and extended to

use on-line and distributed concepts to fit the trust management domain requirements

and open problems of that domain. In the subsequent chapters, Chapter 4 and Chap-

ter 5, solutions to enhance the previously mentioned state of the art techniques were

proposed to ease the usage of them and to make them more scalable. Finally, in Chap-

ter 6, open problems in the trust management domain were identified and solutions to

them were proposed. Throughout the content of this thesis, we reference the associated

contributions with respect to these general terms and to the particularities previously

exposed in this chapter.



Chapter 2

Related Work

“If I have seen further it is by standing on the shoulders of Giants.” — Sir Isaac

Newton, Letter to Robert Hooke, February 5, 1676.

In the introductory chapter(Chapter 1), we showed an overview of what the work realized

by this thesis is about. In this chapter, we depict the state of the art solutions regarding

the related topics, in order to clearly distinguish the contributions of our work. More

than that, based on the exposition of the di↵erent works, we show that the existing

solutions leave some areas where some remaining open issues are encountered and a

contribution is needed; those areas where contributions are needed are the ones we

tackle throughout this thesis, making them our core contribution to the state of the art.

This Chapter is divided into two main related work sections. As stated in the introduc-

tion, our first contribution of this thesis is providing feedback on behavioral evaluation

using distributed on-line network monitoring. Therefore, we first explore the related

works on on-line network monitoring approaches. This is exposed in Section 2.1. Then,

in Section 2.2 we expose general trust frameworks to compare how our work could fit

into them and as well to compare our proposed contributions in the Chapter 6. Finally,

to clearly understand our contribution, this chapter finishes with an overview of the

remaining open issues given the exposed works, as well as our proposed solutions to

address the remaining open issues. Further, we discuss the relation between those open

issues and the specific content of the chapters of this thesis.

8
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2.1 Distributed On-line Network Monitoring for behav-

ioral feedback related work

In general terms, in the trust literature, there is little to no consideration on how to

evaluate the behaviors; they do not consider how to obtain them, they simply assume

they are present at the system. If considering trust as a layered and holistic approach,

overlooking at the behavioral evaluation is highly undesirable. In general the objective

of the behavioral evaluation is to provide an assessment of the outcome of an interaction.

When two entities are interacting, the trustworthiness of those interactions in question

needs to be rapidly evaluated. The desired behaviors of the interactions between the

entities need to enforce, therefore, they behaviors need to be specified and proven to be

the correct ones. The data extracted from the interactions need to be collected in some

points of observation in such a way that the approach is useful for most cases. Also, the

collected data need to be su�cient so that no untrustworthy behaviors can occur.

As stated before, while evaluating interactions, in order to provide a good behavioral

evaluation, at least two points need to be stated: i) the feedback should be provided on-

line to rapidly determine how to interact with the entities, and ii) we focus on network

tra�c inspection, based on the assumption that systems that interact mostly via network

protocols. Based on these points we present some related work.

Figure 2.1: Data forwarded towards unknown destination

One might consider that a first approach to do this is to use well known Intrusion Detec-

tion System (IDS) software to evaluate the interactions. The IDS software meets both

requirements stated above. The most used IDS software and the industry standard is

Snort [Roesch et al., 1999]. Snort has many advantages when used as an IDS, neverthe-

less, trust properties can be by far more complicated. Briefly described, untrustworthy

behaviors can be undetected, when the observations are coming from a single point of

observation, for instance consider the case depicted in the Figure 2.1. In that figure,

a message “M” that was intended only from “Host A” to “Host B” is detected at an

external point of observation in a path which does not belong to the path to reach
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“Host B”. Further information of how we tackle this issue is described in Chapter 3,

and specifically in Section 3.1. Furthermore, Snort utilizes regular expressions or sig-

natures to describe the network packets. However, while constructing trust properties,

granular access to the data is required given the network protocols’ semantics, and also

to make complex relationships between one observed network packet and the others.

As an example, the DNS packet format allows for compression. In a nutshell, in order

to avoid repeating some parts of a string in the DNS replies, DNS can encode a string

with a pointer to previous data within the same packet. Let us assume the DNS string

encoding as shown in Figure 2.2; the data is supposed to start in the bit 0 for the sake

of simplicity. DNS string encoding compression will allow to use a further reference,

for instance to [3]lor[ptr-to 4], in order to make [3]lor[16]telecom-sudparis[2]eu[0] with-

out repeating the last part. If the regular expression language was used or any other

signature mechanism, the semantics behind the DNS compression will make impossible

for the signature to be correctly detected, for example when searching for a value that

is not present completely, but referenced to another part of the packet. Our proposed

approach is capable of processing the network protocols’ semantic constructions and test

those taking them into consideration.

Figure 2.2: DNS string encoding

Additionally, di↵erent distributed approaches have been proposed for Intrusion Detec-

tion Systems(IDS). Several works like [Zargar et al., 2011], [Roschke et al., 2010] and

[Lo et al., 2010] using di↵erent methodologies have exposed IDS that are collaborative

or distributed as a solution to detect possible attacks, such as, to detect a distributed

denial of service (DDoS). Collaborative or distributed IDSs can observe that di↵erent

hosts located at di↵erent networks are sending network packets to the final common

target. Thus, concluding that a distributed denial of service attack occurs. This corre-

lation performed is without a doubt highly valuable. But, as trust properties are very

complex, and as shown by some studies, such as [Dagon et al., 2008], untrustworthy

replies can be produced without any security attacks. For example, let us assume a soft-

ware implementation that does not su↵er from any security breach. If the software has

some implementation faults (software bug) that can only be observed when several rare

circumstances come together and when this rare condition occurs, the implementation

does not provide a trustworthy response, making the interaction untrustworthy. Our
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approach enforces the trust properties regardless of the cause being a security breach

or a mistake. Furthermore, the granularity of accessing the data is not considered.

Likewise, the issue regarding the network protocols’ semantic can be overlooked if the

methodology does not consider granular access to the data.

As exposed by the previous works, IDS tools and methodologies cannot be directly

applied for behavioral evaluation given the set of constraints of the trust properties.

Mainly due to two reasons, i) The accuracy and granularity in the data inspection to

consider the network protocols’ semantics, and ii) the trustworthiness of the data can

be unrelated to any intrusion attempt. There are other approaches that perform passive

testing that can also be considered to be applied for evaluating the behavior of the

entities interaction for the trust domain. We present some related work next.

Regarding passive testing techniques, the basic idea is to check for the correct function-

ing of the system without stimulating the system via any inputs. In that sense, passive

testing has beyond any doubt a characteristic that is desirable when evaluating the trust-

worthiness of the interactions between the entities. Moreover, there exist works which

also propose the use of network packets to inspect the correct functioning of the systems

as our approach does. One interesting work is the one presented in [Cavalli et al., 2009],

in that work, the authors experimented the correctness of the OSLR protocol [Clausen

and Jacquet, 2003] by using network traces. This approach cannot be directly used

for our purposes, the main reasons are that the approach only uses o↵-line network

captures and that the observations are local only. The disadvantage with the approach

being o↵-line is that untrustworthy interactions can go undetected until the captures are

collected and the tests are executed. The delay in obtaining the trust verdicts can have

a high impact for critical systems. For instance, when a sensitive operation depends

on a previous (and also potentially sensitive) set of operations if obtaining the verdicts

without a considerable delay, the last operation could be refused to the untrustworthy

entity. On the other hand, if the time delay for obtaining verdicts is substantial, the

untrustworthy entity could interact and execute potentially critical sensitve operations

that ideally would have been refused.

Another interesting work from the passive testing domain is the one found in [Lee et al.,

2006]. In this work, the authors tested various di↵erent network protocols. Indeed,

making the approach as generic as possible so all network protocols can be tested with the

same methodology is one of our aims. However, the approach presented in the previously

mentioned work do not focus on some important aspects which are important for trust

properties. First, the data collection is done in an o↵-line manner using tcpdump1; it

has the same pitfalls as stated before for any o↵-line collection method. Second, in order

1
http://www.tcpdump.org
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to use their approach the generation of a formal model using an Extended Finite State

Machine (EFSM) is necessary. It is known to be a hard task to derive a model. To begin

with, a model requires without a doubt an expert in the protocol that will derive this

model. Furthermore, when deriving a model, any mistake in the model specification can

make the test results fruitless. Additionally, deriving any specification model can be a

highly time consuming task. Finally, the approach only considers local interactions and

certainly su↵ers from the same drawbacks as stated before.

An approach that tackled the issues how to finely describe the network packets, achieves

complex relationships is the tool presented in [Che et al., 2012a; Lalanne and Maag,

2013]. In fact, our first approach takes the base syntax of the language from this ap-

proach. Further, given the lack of expressiveness of the language we change it in Sec-

tion 5.4. The main shortcomings of this approach when evaluating behaviors for trust

feedback are: the absence of on-line functionality, and the fact the approach uses a single

point of observation.

Finally, in [Toumi et al., 2014], the authors also employ the concept of monitoring net-

work traces to provide behavioral feedback for trust management. This approach has

some shortcomings as well. First, it is not distributed and as stated before, untrust-

worthy behaviors can go undetected when considering a single point of observation.

The underlying tool the authors use to do the network evaluation is the Montimage

Monitoring Tool (MMT). The tool is very versatile and has many features, as stated

from their website2, the tool is capable of capturing and analyzing network tra�c. It

can be used to verify network functional properties, QoS and security properties and

is composed of NetCapture probes and a NetOperator application that allow deploying

a mixed distributed/centralized network monitoring solution. It incorporates machine-

learning algorithms for the identification and statistical analysis of network flows and

the detection of unexpected behavior and security flaws. Also, the language allows fine

granularity by defining a function that determines how to extract any required value.

Nonetheless, the MMT language formalism defines an “MMT Security Rule” as an if-

then expression, as shown in definition 10 of [Mallouli et al., 2012]. Therefore, it cannot

express several causalities and consequences. As for trust properties, in order to cor-

rectly expressing many trust properties, several implications are required. For instance,

a trust property with the construction “if A is observed, then, B must be observed, then

C should have occurred before A”. As a result, the formalization using the MMT tool

is not su�cient to express the desired trust properties.

Aside from the specific points that other passive testing approaches do not focus on as

stated before, and that are necessary for our behavioral evaluation, we also note that

2
http://www.montimage.com/en/products.php
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all of them may not target and that we consider important. The first is that the on-

line functioning needs to have great performance, due to the fact that the resources on

the testers are limited, even if the testers are large clusters. The second is that passive

testing techniques depend on the desired properties to enforce. The properties to enforce

can be somehow di�cult to discover and also a highly time-consuming process.

Our approach relies on the monitoring of correct functioning of systems, therefore, tech-

niques for systems conformance can be compared. One of the most popular techniques

for ensuring the correctness of systems is Model Based Testing [Holzmann, 2004]. Those

techniques cannot always be directly applied to achieve our goal, the reason is that a

model of the system under test has to be derived in advance, and furthermore a set of

properties can be verified for corresponding violations. Typically, the system description

is omitted when performing on-line monitoring/passive testing, hence, this issue is left

out of the scope of this thesis. On the other hand, a formal specification of the system

under test can be inferred by observing input/output traces and applying machine learn-

ing techniques [Irfan et al., 2013]. However, even if this is an interesting perspective for

an alternative of our approach, it has not been developed nor tested. One of the major

concerns about this possible approach is the time frame needed to detect any potential

untrustworthy interaction. Moreover, even if the system has guaranteed correct func-

tioning, the interaction with other peers might provide untrustworthy data on real-time

execution. Also, as stated before, verifying the correctness of the specification model

can be hard, even if this was not an entirely manual process. Therefore, in this thesis,

we discuss how a number of properties can be still verified for a system under test when

the formal system specification is absent.

To the best of our knowledge, none of the systems or frameworks distributed network

monitoring with a flexible and expressive-enough language in order to provide trust

information. All the previous works have a single point of observation, which implies

that they only take into account the direct interactions between them and their peers

or the feedback (reputation/recommendation) regarding the interactions between other

peer entities. Nevertheless, the evaluation of interactions in order to construct the

“experience” are based on the assessment of a single point of observation at the time.

More than that, none of the works found in the literature tries to provide a generic

approach to describe behaviors to provide feedback to any soft trust management engine,

which is what our approach provides.
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2.2 Trust management engines related work

Many trust management systems are based on authentication and security policies. The

basic notion behind the concept of security policies consist on expressing a set of rules,

based on three factors: subjects, resources, and actions. A subject is nothing more than

an identified entity, i.e., the entity requesting the access; therefore, a way to uniquely

identify the entities is needed. Resources are considered the object to which the access

is given. For instance, data, service or system component. Finally, an action defines

which type of access the subject requests on the resource. Verifying a security rule is

considered to be guaranteeing that the subject requesting to perform the specified action

on the requested resource is entitled to do it. If the request if found in the security rules

the access if granted. After the security rule is verified, some concepts like obligations

that the subject needs to fulfill can be stated. Additionally, there are many languages

to express security policies. Nevertheless, the concepts of obligations and the di↵erent

languages are out of the scope of this thesis.

For example, pioneering systems like PolicyMaker [Blaze et al., 1996], KeyNote [Blaze

et al., 1999], REFEREE [Chu et al., 1997] and SD3 [Jim, 2001]; have presented trust

management systems based on security policies. These type of systems work by exchang-

ing credentials and applying the security policies to the authenticated entities. These

systems have several advantages. However, they are not generic and force users to adopt

certain authentication mechanisms and policy languages.

A more generic work is presented by TrustBuilder2 [Lee. et al., 2009]. In this work the

authors presented a generic and extensible framework for authentication and security

policy exchanges. The extensible features of the tool should allow interaction between

their tool and information provided by an external module. For example, the trust

information provided by analyzing the behaviors using distributed network monitoring.

We agree philosophically on a generic and reconfigurable framework is the best path to

make existing software to incorporate trust notions.

Other frameworks based on security policies have been presented. The framework called

XeNA was presented in [Haidar et al., 2009]. In this work the authors propose to use

eXtensible Access Control Markup Language (XACML) for access control management.

Trust with security policies is considered “hard trust”; because of the rigid concept of

only accepting certain entities and under certain situations.

In the literature, there are other works that use less rigid measures of trust. First

of all, these measures are dynamic, this means that the trust level of an entity can

increase or decrease along the time. Such approached are considered “soft trust”. The

most common parameter that systems that incorporate to achieve these are notions of
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trust as an experience/reputation. Both of the concepts are related. On the one hand,

experience is considered to be a cumulative measure of the evaluation of the previous

interactions. On the other hand, reputation is considered to be the experience regarding

a specific trustee estimated by an external entity and distributed. Many constraints can

be encountered in regards who to trust with recommendations; in general terms this is

also a problem of finding trustworthy recommendations.

For example, the work realized by [Movahedi et al., 2012], the authors applied these con-

cepts to mobile ad-hoc networks (MANet). They monitor the behaviors of the neighbor

nodes and keep local information of those interactions. Also they share this informa-

tion to other nodes on the network. Using both local and remote information, they can

calculate the trustworthiness of a node in the network.

Moreover, in [Toumi et al., 2012], the authors created TRUST-OrBAC. In this work the

authors propose to add an experience module on top of the security policy engine. We

also share the idea that trust systems should incorporate di↵erent approaches of trust.

Another interesting work that combine di↵erent approaches to provide trust information

is the work presented in [Grandison and Sloman, 2003]. The authors build a tool called

SULTAN. This tool incorporates also notions of risk into its design, quantifying risk and

actually applying these notions into their trust evaluation algorithms.

There are other works which use less rigid parameters of trust; less rigid parameters of

trust are similar to the human cognitive concept of it [Falcone and Castelfranchi, 2001].

Researchers have naturally proposed solutions that “mimic” the human responses to

trust. Recently, there is related work in the domain of supervised machine learning

[Hauke et al., 2013]. One interesting work that applies machine learning techniques is

found in [Song and Phoha, 2004]; in this work, they propose to use neural networks in

order to provide a global reputation model using the distributed reputation evaluations.

The global reputation is determined by the neural network’s output unit, a two class

classification in this case. Interesting results were shown by the global reputation model

using neural networks. A trust model with a broader scope, not only considering repu-

tation was introduced in [Wang and Vassileva, 2003]; in this work, the authors propose

the use of a Bayesian-Network trust model to properly interact with trustworthy peers.

In the latest, the trust was qualified as “satisfying” and “unsatisfying”, respectively

denoted as T = 1 and T = 0. Finally, in [Zhao and Pan, 2014] the authors presented

a more flexible trust model based on Support Vector Machines. In the previous, the

experiments were applied to social networks and the classification for this approach was

“trust”, and “distrust”. Our trust model approach is also based on solving a classifica-

tion problem, and we also apply SVM to solve it. Nevertheless, we propose a multi-class

classification to have a fine distinction when interacting with the entities. In addition to
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that, our approach aims to provide a generic framework to include any parameters and

an approach to describe the behaviors observed through network monitoring.

To the best of our knowledge, none of the systems or frameworks in their particular

methodologies and trust models target a generic framework. Furthermore, no trust

models have considered a multi-class classification; likewise to achieve a higher predic-

tion accuracy in an automated manner, we propose to solve the problem with SVM

and provide an algorithm to determine the best suited parameters to achieve higher

accuracy. All the exposed works provide little to no consideration of how the data gets

collected by the frameworks, they all assume the data is present at the trust manage-

ment engines somehow. In this thesis, we present our solutions for the previously stated

open challenges.

2.3 Remaining Open Challenges

As exposed before, some open challenges are not precisely tackled with the existing

solutions. Tackling some of these open issues is the contribution of this thesis. Therefore,

the remaining open issues and main contributions to highlight in this thesis are the

following:

• In the literature, there is little consideration on how to universally provide be-

havioral feedback for trust management. Under the assumption that systems that

need to guarantee trustworthy interactions are systems connected to the network,

we define a universal, granular, and on-line approach. This work is presented in

the Chapter 3 of this thesis.

• Many approaches which rely on passive testing independently from the input

sources, only test those properties which are explicitly declared. More often than

not, finding which properties are su�cient to test can be somewhat challenging.

Furthermore, to be sure that the properties are relevant (useful to test). In order

to tackle this, we generate trust properties from observed faults, with the help of

a model, using Process Mining techniques. This work is exposed in Chapter 4.

• Our approach to provide behavioral evaluation heavily relies on an on-line network

monitoring system. We understood that the on-line monitoring systems have dif-

ferent constraints that are overlooked by many. First, we enhance the algorithms

for the trust properties’ evaluations given the on-line resources consumption con-

straints. This work is shown in Section 5.3.
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• Many languages proposed by the on-line monitoring system do not consider the

ease of usage for the end-users, and moreover, are not capable of expressing all

what it is required. In order to ease the use of our formalism, we propose a language

extension to incorporate inherent constraints of on-line network monitoring. This

is shown in this thesis also in Chapter 5 in Section 5.4.

• Given the fact that no solutions in the state of the art consider the di↵erent devices’

capabilities, we have proposed a framework, which can o✏oad the trust assessment

to specialized trust management engines. Moreover, by o✏oading the services, we

consider allowing other sources to provide the feedback, trustor delegates. This

work can be seen in Chapter 6, specifically in Section 6.2.

• Yet another remaining open issue tackled in Chapter 6 is the proposal of a trust

model which is more flexible and has closer-to-human inference than the ones

proposed by the existing solutions. This work is shown in Section 6.3.



Chapter 3

Behavioral Evaluation Feedback

for Trust Management using

Distributed Network Monitoring

“L’essentiel est invisible pour les yeux.” — Renard / Antoine de Saint-Exupéry, Le

Petit Prince.

At the beginning of the work of this thesis, we realized that for soft trust management

engines which incorporated measures as experience, do not consider how to obtain the

evaluation of the interactions. The behavioral evaluation is an issue that is either not

addressed, assumed, omitted, or a particular strategy for a particular case is adopted

as exposed in the related work. Given this motivation, we propose to provide behav-

ioral feedback in a comprehensive manner, such that, any application can use it. Under

the assumption that systems which need to trust other systems are entities connected

through a computer network, we aim to guarantee the desired behaviors occur by mon-

itoring the network protocol messages. To determine what it needs to be guaranteed,

we express in a formal language the requirement, this formalism is what we describe as

a trust property.

This Chapter is divided into four Sections. First, in Section 3.1 we present the basic

notions of our approach, including the need to potentially consider di↵erent points of

observation. Later, in Section 3.2 we propose the language used to describe the trust

properties. In Section 3.4.4 we present the architecture, design, and algorithms for our

prototype tool set used to test the trust properties on on-line network captures. In the

last Section, we describe the experiments performed by using our formalism and tool set

18



Chapter 3. Behavioral Evaluation Feedback for Trust Management using Distributed
Network Monitoring 19

in an industrial partner architecture, including the performance evaluation for our tool

set as shown in Section 3.4.6.

In order to clarify the scope of the approach presented in this chapter, as mentioned

before, a trust property can be considered an invariant, and methods for guaranteeing

the fulfillment of these invariants is what this chapter proposes. There might be other

methods to guarantee the correctness of the entities’ interactions. For example, express-

ing “test objectives” with a partial specification model. This model could potentially

be some Finite State Machine (FSM) model. Given the fact that the desired passive

testing needs to be distributed, and therefore any input (message type) can appear at

any state, most probably the FSM model would also be complete. Nonetheless, this

interesting perspective is left out of the scope of this thesis. Furthermore, such form of

testing behaviors is left for future works.

In this Chapter, we expose the work which can be partially found in the following

publication list: [Che et al., 2015; López et al., 2014a, 2013, 2015a].

3.1 Untrustworthy behaviors detected through the use of

distributed network monitoring

3.1.1 General Definitions of the Proposed Approach

Our main objectives are: i) to be able to detect untrustworthy behaviors of entities in a

flexible manner, with a di↵erent perspective than other approaches, providing feedback

as fast as possible; ii) to provide a generic method to describe these untrustworthy

behaviors and finally, iii) to automatically test the described behaviors providing verdicts

regarding the trustworthiness of the interactions.

To tackle the first point, the distributed network monitoring approach was proposed.

With the use of distributed network monitoring, we can see behaviors, that when using

a single point of observation will not be possible to see. Let us present a possible

case scenario, a client computer is sending request to perform operations to a server.

Both, the client and the server have a trust management engine and they have allowed

actions and replies from each other. The client computer (at the left) sends a message

of the type “A” to the server (illustrated at the right side), and at the server side, the

message received is a message of the type “B”. The message type “B” is an allowed

message type and the server performs the action. If the network tra�c for both points

of observation could be obtained and compared, an untrustworthy behavior can be

detected. This example is illustrated in the Figure 3.1. Without correlating both points
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of observation, the untrustworthy behavior cannot be detected, even if having trust

management engines, the systems will consider the interaction trustworthy.

Figure 3.1: Data changed/tampered in the communication channel

Many other behaviors can be constructed from distributed network monitoring. The

complete scenario is derived when relationships are created from di↵erent network traces.

We do not consider this simply a security issue. In fact, due to the trust definition

we do not focus if the untrustworthy answer was due to an attack, a software failure

(bug), system failure, etc. The relevant fact is that the interaction was not proper and

reporting the untrustworthy interaction as soon as possible is our goal.

Our approach can solve problems with many other applications and scenarios. In the

Section 3.4, we present a detailed case scenario that when using our approach, untrust-

worthy behaviors are detected.

In order to accurately understand how our proposed approach solves the stated issues,

first we need to introduce some preliminary concepts. A network packet (packet

for short) is the abstraction of the transmitted bit-streams in a computer network;

this abstraction allows us to interpret a packet as a formatted data unit. A packet is

interpreted as a “Message” from a telecommunications protocol, for example a DNS

query, a DNS response, etc. Analyzing a packet is to access the data inside that

packet to search for particular values; these values have a defined meaning depending

on the network protocol. Finally, network monitoring is the technique of analyzing

the packets transmitted over a computer network.

In this thesis, we assume that the network packets are being forwarded from the di↵erent

sources of interest to a monitoring server. Each of these sources are network entities

monitored through interfaces called points of observation (P.O). We also assume that if

the network entity has many interfaces, all the forwarded packets from the same network

entity will be considered the same point of observation.



Chapter 3. Behavioral Evaluation Feedback for Trust Management using Distributed
Network Monitoring 21

The sequence of packets from a point of observation is called a network trace. A network

trace (trace for short) is potentially infinite. When we have di↵erent traces from the

points of observation, we can analyze the packets from one trace and create a relationship

to another trace, defining the concept of distributed network monitoring. The

complete scenario is derived when relationships are created from di↵erent network traces.

In order for us to provide evaluation about behaviors, relationships between packets

from di↵erent P.Os are created. The relationships are created with the packets fields

and conditions that hold over those fields in regards of other packets. The relationships

are made by doing comparisons. We can compare the values of these observations

with constant values or variable values. The variable values are extracted from other

packets. These comparisons are defined formally later in this work by the definition

of atoms. The atoms formalization is found on Definition 3.3. Please note that for

the time relationships, we assume the network traces are synchronized using the NTP

protocol [Mills, 1991]. Since there are multiple network traces from multiple P.Os, the

comparisons can be done from: i) a specific network trace, that is through a specific

point of observation, ii) any network trace, except a specific one or iii) any network

trace, that is, any point of observation, i.e., not specifying a point of observation.

By using the packet relationships and comparing the values will result in a composition.

This composition is formally defined also at Section 3.2 by the definition of formulas

in Definition 3.4. One formula is a formal representation of what we will call a trust

property. Many trust properties can be described and formalized in order to describe

trust on a environment or context. Once the desired trust properties are checked on the

network traces, we can give a testing verdict regarding the checked trust property. The

possible verdicts are pass, fail if the statement is present. If the trust property does

not reach a verdict, the result will be temporarily assigned to an inconclusive verdict.

If many trust properties are described, then, di↵erent trust verdicts can be obtained.

3.2 Formal Description of Trust Properties

The motivation and method of our approach were presented in the previous Section.

Now, in order to test the proposed trust properties using distributed network monitor-

ing we need to be able to express those properties. It is not su�cient to express the

trust properties, in fact we need to accurately express them, not leaving room for any

ambiguity; considering that, we need to employ a formalism. A formalism is not only

useful to unambiguously express the properties, but, also for the software tools to be

able to provide accurate verdicts. Without a doubt, our approach is more valuable when

verdicts can be automatized with a program. Further, when providing a formalism, more
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researchers related to the field can generate trust properties to test. Because of those

reasons we have created the necessary formal approach.

We decided to use our own approach rather than using other existing ones, the reason is

that with the use of our formalization, we can describe the packets in a finely parameter-

ized and at a granular level, as shown in Section 2.1. Thus, we can make more complex

and detailed relationships between packets. New application protocols rely heavily in

the data parts and the semantics of the protocols require a more data-oriented checking

that other approaches which are on-line are not able to provide. Even old protocols have

semantics that if the packets are treated as bit-streams some values in the data will be

unavailable to obtain. For example, in the DNS protocol, the DNS notation and data

compression method allows to specify a pointer to previously used data in the packet to

avoid duplication of data (see [Mockapetris, 1987b]).

The formalism basic and most important principles are: the representation of a protocol

message (packet) and the formal language lexical, syntactical and semantical properties;

we discuss these aspects next.

3.2.1 Preliminaries, Basic Definitions, and Language Specification For-

malisms

A communication protocol message is a collection of data fields of multiple domains.

Data domains are defined either as atomic or compound [Che et al., 2012b]. An atomic

domain is defined as a set of numeric or string values. A compound domain is defined

as follows.

Definition 3.1. A compound value v of length n > 0, is defined by the set of pairs

{(l
i

, v
i

) | l
i

2 L ^ v
i

2 D
i

[ {✏}, i = 1...n}, where L = {l1, ..., ln} is a predefined set of

labels and D
i

are data domains. A compound domain is then the set of all values with

the same set of labels and domains defined as hL,D1, ..., D
k

i.

Once given a network protocol P , a compound domain M
p

can generally be defined

by the set of labels and data domains derived from the message format defined in the

protocol specification/requirements. A message of a protocol P is any element m 2M
p

.

For each m 2M
p

, we add two fields: a real number t
m

2 R+ which represents the time

when the message m is received or sent by the monitored entity and P.O a string label

which represents the point of observation from which the message m is collected.
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Example 1. A possible message for the DNS protocol [Mockapetris, 1987b], specified

using the previous definition could be

m = {(time, ‘863.596183000’), (P.O,Auth DNS Srv)

(query id, 6912), (flags, {(response, 0), (opcode, std query), (truncated, 0),

(recursion desired, 1), (reserved, 0), (non auth data acceptable, 0)}),
(questions, 1), (answers, 0), (authority RRs, 0), (additional RRs, 0),

(queries, {(name, telecom-sudparis.eu), (type,A), (class, IN)})}

representing a DNS query for the domain telecom-sudparis.eu. The value of time

‘863.596183000’ (t0 + 863.596183000) is a relative value since the P.O started its timer

(initial value t0) when capturing traces.

A trace is a sequence of messages of the same domain containing the interactions of a

monitored entity in a network, through an interface, i.e., the P.O, with one or more

peers during an arbitrary period of time. The P.O also provides the relative time set

T ⇢ R+ for all messages m in each trace.

As described in the Section 3.1, our approach focuses on applying distributed network

monitoring to the trust management domain. In order to achieve that, we extended the

language taken from the work realized in [Lalanne and Maag, 2013] which has previously

been used for o↵-line passive testing of telecommunication protocols. Our current ap-

proach is for on-line and moreover, distributed systems, nevertheless, language exposed

in that work can be used as a base to our formalism. In this work the syntax and se-

mantics have been extended to include several P.Os. The syntax, based on Horn clauses

is defined to express properties that are checked on extracted traces. We describe it in

the following. Formulas in this logic can be defined with the introduction of terms and

atoms, as it follows.

Definition 3.2. A term is defined in the Backus Normal Form (BNF) as term ::= c |
x | x.l.l...l where c is a constant in some domain, x is a variable, l represents a label,

and x.l.l...l is called a selector variable.

Example 2. Let us consider the message in example 1, the value of recursion desired

inside flags can be represented by m.flags.recursion desired by using the selector

variable.

Definition 3.3. An atom is defined as

A ::= p

kz }| {
(term, ..., term) | term = term | term 6= term

| term < term | term > term | term+ term = term
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where p(term, ..., term) is a predicate of label p and arity k. The timed atom is a

particular atom defined as p

kz }| {
(term

t

, ..., term
t

), where term
t

2 T .

Example 3. Let us consider the message m of the previous example. A point of

observation constraint on m can be defined as ‘m.PO = Auth DNS Srv’. These atoms

help at defining timing aspects as mentioned in Section 3.2.1.

The relations between terms and atoms are stated by the definition of clauses. A clause

is an expression of the form

A0  A1 ^ ... ^A
n

where A0 is the head of the clause and A1 ^ ... ^A
n

its body, A
i

being atoms.

Definition 3.4. A formula is defined by the following BNF:

� ::= A1 ^ ... ^A
n

| �! � | 8
x

� | 8
y>x

�

| 8
y<x

� | 9
x

� | 9
y>x

� | 9
y<x

�

where A1, ..., An

are atoms, n � 1 and x, y are variables.

In our approach, while the variables x and y are used to formally specify the messages

of a trace, the quantifiers commonly define “it exists” (9) and “for all” (8). Therefore,

the formula 8
x

� means “for all messages x in the trace, � holds”.

The semantics used previously presented resembles the traditional Apt–Van Emdem–

Kowalsky semantics for logic programs [van Emden and Kowalski, 1976], from which

an extended version has been provided in order to deal with messages and trace tem-

poral quantifiers. Based on the above described operators and quantifiers, we provide

an interpretation of the formulas to evaluate them to > (‘Pass’), ? (‘Fail ’) or ‘?’ (‘In-

conclusive’). Here, we do not detail the evaluation and interpretation of the formal

properties on traces. However, in the Section 3.4.4 all the algorithms are defined.

We formalize trust by using the syntax above described and the truth values {>,?,?}
are provided to the interpretation of the obtained formulas on real protocol execution

traces. These formulas represent and allow to model trust properties.

3.3 Algorithms for Distributed On-line Network Property

Evaluation

After having the properties formalized, we propose a set of algorithms in order to evaluate

how each incoming packet from the live capture is evaluated to see if matches the disred
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Figure 3.2: Syntax Tree Formula Representation

properties to test. The evaluation process is described in the following. The evaluation

process, the algorithm to evaluate if a packet is a member of a set that satisfies a formula

starts by understanding some properties about the formulas to check. If the production

rule describing the formulas in the language grammar presented in Definition 3.4 is

represented as a syntax tree, as shown in the Figure 3.2; it will produce a recursive

subtree, in exception of the conjunction of atoms node (^). Therefore, this conjunction
of atoms will always be at the leafs of any formula. This conjunction of atoms will model

what we call a packet prototype. This is such a crucial concept for the testing algorithms

that a formal definition is necessary.

Definition 3.5. Let x be a packet prototype. x contains a set of atoms, a1, a2, ..., an.

With the restriction on the cardinality of the set of atoms n > 0. The packet prototype

contains all the necessary conditions for a packet to satisfy a given formula or part of it.

This will also include dependencies to other prototypes and relationships between them,

i.e., comparisons. When a packet matches all the atoms from a packet prototype, it will

become tagged as the packet prototype prototype.

As an example of the prototypes, consider for a simple property:

� = 8
x

(x.flags.request = 0! 9
y>x

(y.flags.request = 1 ^ y.id = x.id))

The prototype y that belongs to the property � describes that, in order for a packet to

be tagged as a “y”, it needs to have the request flag set(“on”). Also, it has a dependency

of type x and with that packet of type x, both their “ids” should match.

Finally, when a packet is tagged with a prototype, it gets stored on a list of that pro-

totype. Also, if the packet has dependencies it gets associated to those dependencies

within the property that the prototype belongs. When all the prototypes of a property

are completed or a packet of those associations gets a timeout, verdicts regarding that

property can be provided. The associated packets get removed from the respective lists.
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Typically each packet gets tested for each prototype, unless a prototype has dependencies

and any of the dependency lists is empty. In this case, the packet does not even get

tested for that prototype. This is a performance enhancement. All the design motivation

for our testing algorithm is to have a fast matching so that a packet can be kept, tagged

or discarded as fast as possible. The pseudo-code of the described evaluation algorithm

for the runmon tool is shown on the Algorithm 1.

Algorithm 1: Algorithm of online tester

Input: packet data-structure //Sent by the di↵erent threads which processing the
client connections.

Output: property verdicts report
for each packet on live capture do

packet time  get time(packet);
if last observed packet time < packet time then

last observed packet time  packet time;
end
for each prototype on prototype packets do

property  get prototype property(prototype);
if match properties of(prototype, packet) then

prototype list  get prototype list(prototype);
for each prototype dependency on dependencies(prototype) do

matched dependency  FALSE;
for each stored packet on
get dependency prototype list(prototype dependency) do

if match properties dependency(prototype dependency, packet,
stored packet) then

associate(packet, stored packet, property), matched dependency
 TRUE;
goto next dependency;

end

end
if !matched dependency then

goto next prototype
end

end
if prototype determines property(prototype) then

associations list  get associations(packet)
report property pass(property, packet, associations list)
delete from prototype lists(associations list)

end
else

push(prototype list, packet)
end

end
next prototype:

end

end
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The Algorithm 1 is pretty straightforward, even if it looks somewhat large. It takes

as an input a packet data structure, as the hierarchical attribute-value pairs as shown

in the compound value definitions in Section 3.2. The output of the algorithm are the

verdicts for the stated formulas for that packet. Each packet goes to the same testing

process. The testing process starts by synchronizing the last observed time for the

packets obtained from the current one. Then, for each of the prototypes of the formulas,

it tests the prototype atoms which do not include dependencies to other packets; if all

the tests are successful, the testing process continues, otherwise, the next prototype

is tested. If the testing process continues, the packet tests each atom which contains

a dependency against all the stored packets for that dependency; if all tests with the

dependencies are successful, the packet gets tagged as the prototype being tested. Once

the packet gets tagged, if the prototype is the last to be tested within a formula, the Pass

verdict is given. On the contrary, if the prototype does not the last to be tested within

the formula, it gets stored in the queue along with other packets tagged as the current

tested prototype. Finally, the evaluation process continues for renaming prototypes.

As mentioned before, an important point to consider with our algorithm design is the

scalability. This was taken into consideration in the evaluation algorithm. In here

we present the time and space complexity of our algorithm. We start with the time

complexity evaluation, by looking at the work our algorithm does in the worst-case

scenario.

T (eval all prots) =

NpX

i=1

(⇥(1) + T (eval prop
i

))

= N
p

+

NpX

i=1

T (eval prop
i

)

(3.1)

N
p

is the number of prototypes.

T (eval prot
i

) = T (eval independent atoms
i

) +⇥(1) +
NPDiX

j=1

T (eval dep
j

) +⇥(1)

= 2⇥(1) + T (eval independent atoms
i

) +
NPDiX

j=1

T (eval dep
j

)

(3.2)

NPD
i

is the ith prototype number of dependencies.
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T (eval independent atoms
i

) =
NPAiX

j=1

⇥(1)

= NPA
i

(3.3)

NPA
i

is ith prototype number of atoms that require no dependencies.

T (eval dep
j

) = ⇥(1) +

QLjX

k=1

(T (eval dependency atoms
k

) +⇥(1)) +⇥(1)

= 2⇥(1) +QL
j

+

QLjX

k=1

T (eval dependency atoms
k

)

= 2⇥(1) +QL
j

+QL
j

⇤ T (eval dependency atoms
k

)

(3.4)

QL
j

is the length of the queue of stored packets for dependency j.

T (eval dependency atoms
k

) =

NDAjX

l=1

⇥(1)

= NDA
j

(3.5)

NDA
j

is the number of atoms of the dependency j.

Substituting the equation 3.4, 3.5 and 3.3 into the equation 3.2 we obtain the following

equation:

T (eval prot
i

) = NPA
i

+ 2⇥(1) +
NPDiX

j=1

(2⇥(1) +QL
j

+QL
j

⇤NDA
j

)

= NPA
i

+ 2⇥(1) + 2NPD
i

+
NPDiX

j=1

(QL
j

+QL
j

⇤NDA
j

)

(3.6)

Substituting the equation 3.6 into the equation 3.1 we obtain the following equation:
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T (eval all prots) = N
p

+

NpX

i=1

0

@NPA
i

+ 2⇥(1) + 2NPD
i

+
NPDiX

j=1

(QL
j

+QL
j

⇤NDA
j

)

1

A

= N
p

+ 2N
p

+

NpX

i=1

NPA
i

+

NpX

i=1

2NPD
i

+

NpX

i=1

NPDiX

j=1

QL
j

+

NpX

i=1

NPDiX

j=1

QL
j

⇤NDA
j

= 3N
p

+

NpX

i=1

NPA
i

+

NpX

i=1

2NPD
i

+

NpX

i=1

NPDiX

j=1

QL
j

+

NpX

i=1

NPDiX

j=1

QL
j

⇤NDA
j

(3.7)

The meaning behind the
P

Np

i=1

P
NPDi
j=1 QL

j

⇤ NDA
j

term, is that, for each prototype

dependency, all the atoms related to that dependency need to be tested against the

stored packets of that dependency. Considering the worst-case analysis, that will be

when each prototype takes all possible dependencies into the evaluation. According to

the semantics of the language, the largest amount of dependencies a prototype can take

is all the previously observed dependencies, i.e., when, NPD
i

= i � 1. Under that as-

sumption, the expression
P

Np

i=1

P
NPDi
j=1 QL

j

⇤NDA
j

can be written as:
P

Np

i=1

P
i�1
j=1QL

j

⇤
NDA

j

. This expression can be reduced to
P

Np

i=1((Np

� i)QL
i

⇤NDA
i

)(and respectively
P

Np

i=1

P
NPDi
j=1 QL

j

to
P

Np

i=1(Np

� i)QL
i

). Finally, the work performed by our algorithm

in the worst-case can be expressed in the following equation:

T (eval all prots) = 3N
p

+

NpX

i=1

NPA
i

+

NpX

i=1

2NPD
i

+

NpX

i=1

(N
p

� i)QL
i

+

NpX

i=1

((N
p

� i)QL
i

⇤NDA
i

)

(3.8)

Where N
p

is the number of prototypes in the formulae, NPA
i

is number of atoms that

require no dependencies of the ith prototype, NPD
i

is the number of dependencies of

the ith prototype, QL
i

is the length of the queue of stored packets of the ith prototype,

and NDA
i

is the number of atoms that require dependencies of the ith prototype.

As shown in the equation 3.8, the algorithm heavily depends on two di↵erent parameters.

The first parameter is the number of atoms in the formulae (individual comparisons of

the packets), hereinafter denoted as n, and the second one is the length of the stored

packet queues. Depending on the number of stored packets and on the number of atoms

in the formulae, di↵erent ways to express the time complexity of the algorithm can be

obtained. We do the complexity algorithm for the both parameters. If we consider that

the asymptotic upper bound depending on the number of atoms in the formulae, we
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can say that the running time of the algorithm can be expressed by a function which

is f(n) = O(n) =
P

Np

i=1NPA
i

+
P

Np

i=1((Np

� i)QL
i

⇤ NDA
i

), a linear combination

of all the atoms in all prototypes. On the other case, if we consider the asymptotic

upper bound depending on the length of the queues of stored packets, we get that the

running time of our algorithm can be expressed by f(n) = O(n) =
P

Np

i=1(Np

� i)QL
i

+
P

Np

i=1((Np

� i)QL
i

⇤ NDA
i

), yet again a linear combination of elements. Given the

experiments performed so far, the running time of the algorithm is good which the

is backed up with the complexity analysis which provides us the linear time (O(n))

complexity. Finally, if denoting the complexity as a function of all involved variables it

is said to be f(n, l) = O(n ⇤ l) = P
Np

i=1NPA
i

+
P

Np

i=1((Np

� i)QL
i

⇤NDA
i

).

The space complexity analysis for our algorithm follows, we start by looking at the space

our algorithm requires in the worst-case scenario.

S(eval all prots) =

NpX

i=1

(⇥(0) + S(eval prot
i

))

=

NpX

i=1

S(eval prot
i

)

(3.9)

N
p

is the number of prototypes.

S(eval prot
i

) = ⇥(0) +⇥(0) +
NDPiX

j=1

S(eval dep
j

) +⇥(1)

=
NDPiX

j=1

S(eval dep
j

) +⇥(1)

(3.10)

NPD
i

is the ith prototype number of dependencies. ⇥(1) is the result of storing the

packet in the prototype list assuming the worst-case scenario where the formulae will

store all packets get stored in all lists.

S(eval dep
j

) = ⇥(0) +⇥(1))

= ⇥(1)
(3.11)

The ⇥(1) is the result of associating always the packet to each dependency.

Now, substituting the equation 3.11 into the equation 3.10 we get:
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S(eval prot
i

) =
NDPiX

j=1

⇥(1) +⇥(1)

= NPD
i

+ 1

(3.12)

Similarly, if substituting the equation 3.12 into the equation 3.9 we get:

S(eval all prots) =

NpX

i=1

NPD
i

+ 1

=

NpX

i=1

1 +

NpX

i=1

NPD
i

= N
p

+

NpX

i=1

(NPD
i

+ 1)

(3.13)

Where N
p

is the number of prototypes in the formulae, NPD
i

is the number of depen-

dencies of the ith prototype.

For the sake of consistency, in order to express our space complexity with the same

variable as our time complexity, we note that the number of dependencies contained

in each prototype can be described as the number of dependent atoms multiplied for

a constant, that is NPD
i

= c
i

⇤ NDA
i

. The reason is that for a prototype to have

a dependency at least an atom is needed to express it. Therefore, the space required

by our algorithm can be expressed like: N
p

+
P

Np

i=1(ci ⇤ NPD
i

+ 1) and reduced to:

2N
p

+
P

Np

i=1(ci ⇤ NPA
i

). This implies that the space complexity can be expressed as

a linear combination of the number of dependent atoms in each prototype, i.e., f(n) =

O(n) =
P

Np

i=1(ci ⇤ NPA
i

). This result makes sense, since, an algorithm that can be

executed in linear time can only modify linearly the memory.

Besides the main process listening to client connections, two threads are created; one for

periodically updating the current status to the user and the other for the global timeout

of packets. The global timeout of packets refers to the maximum time a packet can

be kept if this packet is not a dependency of any other packet within a property. This

global timeout is used by the on-line monitoring to ensure that potentially incomplete

properties do not occupy resources permanently. For instance, a very simple property

which states that: “for each request there should exist a response” if no response exists,

then, the request package would potentially be stored permanently and no fail verdict

will be reported. When a packet is decided to be removed by the timeout function if

the packet has not been used for completing one property, then a Fail verdict will be
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reported for that property. The value of the timeout its determined by an expert in the

protocol. Let us assume using the same property, there is no request present (or has

not occurred). This is when a property actually can report the Inconclusive status.

The basic idea behind the inconclusive verdict is that there is not enough information

present to provide other verdict. In general terms it happens due to the lack of presence

of expected packets where those packets are the cause of the property. As in our previous

example, no requests are present. In more specific cases, it can happen when the cause

of a property relies on a P.O who’s network tra�c is missing at the monitoring server.

The inconclusive verdict in on-line monitoring di↵ers from o↵-line approaches. In o↵-

line approaches, when an expected reply is not found at the end of a collected packet

capture (in a file, for instance), this causes an inconclusive verdict. In on-line network

monitoring, the presence of a consequent packet is a↵ected by the configured timeouts.

The pseudo-code for the timeout function is shown in the Algorithm 2.

Algorithm 2: Algorithm of timeout function
Input: global timeout value
Output: property verdicts report / packet list cleanup
sleep(global timeout value);
for each prototype on prototype packets do

property  get prototype property(prototype);
for each stored packet on get prototype list(prototype) do

associations list  get associations(stored packet);
report property fail(property, stored packet, associations list);
delete from prototype lists(associations list);

end

end

The Algorithm 2, takes as input the global timeout parameter, the maximum time a

packet is allowed to be present in the system without completing a formula (providing a

pass verdict). As an output, it provides fail verdicts for all the packets that exceeded the

timeout and cleans the prototype packet queues; removing the no-longer needed packets

due to the timeout. The algorithm starts by waiting the global timeout value, after the

global timeout value passed, it proceeds to go into each of the prototypes. For each

prototype, it goes into each of the stored packets queues and if the elapsed time of the

packet exceeds the global timeout, the packet gets deleted and the function reports fail.

In this section we presented the details and design about our software. In the next

section we present the experiments performed by using our tools and formalism, in order

to provide the evaluation about the behavior of the described system and to provide trust

verdicts.
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3.4 Experiments

3.4.1 Preliminaries — The Domain Name System

The Domain Name System (DNS), standardized on RFC 1035 [Mockapetris, 1987b], is

a hierarchical naming system for network entities. Its most common known use is to

associate a domain names to numerical IP address. Although, it can be used to store

several other types of information. It is one of the most essential services in the Internet.

The main purpose is to make easy for users to remember specific hostnames or service

providers. For instance, it is easy to remember the name “google.com”, yet, is hard to

remember “173.194.40.167” which is actually one of the IP addresses associated for that

domain name. Moreover, for all the services in the Internet, DNS provides information

as well, for example, information about where certain service as the mail exchanger is

located for certain domain.

The functional aspect of DNS as described before is hierarchical. A domain name consists

of labels that are concatenated to each other and separated by dots. For example

the domain name “www.example.com” consists of three labels, “www”, “example” and

“com”. The labels hierarchy goes from left to right, being the rightmost label the one

with the highest hierarchy. The rightmost label is called top level domains (TLD). The

information of the TLDs are stored on the root DNS servers. The TLD DNS servers have

the information of the authoritative DNS servers for each domain. The authoritative

DNS servers are the servers that have the o�cial DNS records for a domain.

The domain name resolution mechanism starts with a DNS resolver. The DNS resolvers

asks its local caching DNS server the domain in question. The caching DNS server is

usually a recursive resolver. It queries the root DNS servers for the information about

the TLD of the domain in question. After that, it queries the TLD server to obtain

the information about the authoritative DNS server. Then it continues this recursive

process until it reaches an answer. The final step is to return the DNS resolver an

answer. In Figure 3.3 an example message sequence chart of a DNS resolver asking the

domain “subdomain.domain.tld” and its resolution process is shown.

We shortly described the domain name system in order to have clear concepts of the

problematic we decided to tackle. In the following subsection we describe the scenario.

3.4.2 Scenario Description

We choose to tackle the same scenario as chosen by [Jim, 2001] and [Fan et al., 2011]

since this is still an open issue on trust and security. Also, the implications of trust and
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Figure 3.3: Distributed monitoring of DNS responses

security on this scenario can a↵ect all types of end users and systems. The problem can

be described as trusting DNS responses to queries.

The DNS original design does not take into consideration any concept of trust or se-

curity (although an extension to address these issues exist, several challenges are still

present. We discuss this later). If the DNS query responses are modified, it can have

severe implications. End users and systems can be deceived and send data to the wrong

destination. The target is to divert the data from the original source. The information

can be later delivered to the real destination; the end user or system might not notice

any untrustworthy interaction. End users can be directed to phishing pages, advertising

pages or any other. Moreover, the system can have a trust management engine in place

and consider all the interactions as trustworthy.

To understand how a DNS response can be changed, we first analyze the structure of a

DNS query and response. A DNS query has the following relevant parameters:

• Source address and source port.

• Destination address and destination port (53).

• Query ID.

• Query name, type and class.

The response back includes the same fields. The use of the query ID is to synchro-

nize/correlate the response back. Knowledge about three parameters is required to

successfully spoof a response: the query ID, source port and Destination address.

Many attacks against the DNS systems have been studied. The attacks basically work

by winning a “race condition”. The objective is to get the spoofed responses arrive
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before the original one. If a specific domain is the target of the spoofing, the queries

can be forced. For example, connecting to an SMTP server and providing the desired

domain name in order to get the resolver to query it. Many techniques can be used in

order to spoof the packet. Brute force, random chance or man in the middle attacks.

Perhaps, the most e↵ective one is the Kaminsky attack as analized in [Alexiou et al.,

2010]. The possibility that the caching DNS server is compromised by any other way

or that messages are being tampered in the middle exists. In any of the situations

mentioned before, the caching DNS server was not acting securely.

In many occasions DNS caches change the records, willingly or not. Possibly, ISPs can

do this at their caching DNS servers; motivated to save bandwidth or to hijack the non

existent domains to forward users to publicity sites. We consider this case as the caching

DNS server is not acting dependably. We can also consider the case the caching DNS

server is returning the wrong records due to a system failure or software bug. In this case

the caching DNS server lacks of competence. In [Dagon et al., 2008] the authors analyze

many cases including the hijacking of non existent domains for commercial abuse and

the software implementation errors.

If the caching DNS server is not competent to act dependably, securely, and reliably to

return the correct DNS records, it is not acting in a trustworthy manner by definition.

That is the reason why this cannot be considered only a security issue. This is a trust

issue, trustworthy interactions between the DNS caching server and the resolvers are a

must.

A DNS security extension, DNSSEC, is proposed at RFC 4033 [Arends et al., 2005]. In

a nutshell, DNSSEC uses electronic signed data. The signatures are encrypted using

asymmetric keys. The signatures are added in a hierarchical chain. All DNS resolvers

have the public keys from the root DNS servers. The DNS resolvers do the chain

resolution. This makes a DNS resolver also able to verify the returned records actually

belong to an authoritative server.

In [Jim, 2001], to prove their framework, the authors also created a service similar to

DNSSEC. This is done using their tool, SD3, by implementing policies and using the

tool certificate evaluator built in the tool.

DNSSEC has backward compatibility in its design. This can be desirable, since DNS

resolvers can decide not to implement the DNSSEC verification and they will be able

to continue working despite the fact the authoritative records implement DNSSEC.

However, a true implementation on the Internet can take many years; because, in order

for it to truly work, a complete change on all internet DNS authoritative servers and
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DNS resolvers is needed. A similar case happens with the IPv6 protocol [Deering and

Hinden, 1998], the adoption of this protocol requiere a global change in the Internet.

Let us assume the following case, when an employee is working at a remote location,

which can be a hotel with public Internet connection. The employee is using a company

application that sends data to a company application server. The hotel’s caching DNS

server sends the wrong information to the client computer. The client computer will send

the application data to a third party machine. This third party machine eavesdrops

the communication and then re-routes tra�c to the original destination, that is the

company’s application server. Both the application server and the client computer will

not detect any malicious behavior.

By the use of distributed network monitoring we can improve the trustworthiness in

the DNS responses. Combining information from di↵erent points of observation allow

to identify situations that with a single observation will not be possible. The client

computer sends the DNS tra�c to the monitoring server. Also, the authoritative DNS

server for the domain sends the DNS tra�c to the monitoring server as well. A simulation

of this scenario is shown in the Section 3.4.5

As this scenario and previous sections illustrated, we can use the formal approach and

create trust properties to provide trust information which will be detailed in the following

subsection.

3.4.3 Formal Specification

We have formally defined one formula in order to express trust properties. As described

in the scenario, our target is to guarantee that the responses from the DNS resolvers

match the responses from the authoritative DNS server. With the use of distributed

network monitoring and our formal specification we can declare the necessary trust

property. After evaluating it, it will provide trust verdicts applied to the previously

described scenario. We describe the trust property and then formalize it.

The trust property, extracted from the concept and facilities of DNS [Mockapetris, 1987a]

is:  = “For all responses from an authoritative DNS server, all future responses from

other points of observation are the same replies of the authoritative DNS server if the

queries are the same”. This can be expressed by the following formula:

 ={8
x

(req f(x,ADS))! 9
y>x

(res f(y, x,ADS))}!
{8

a

(req anf(a, y, ADS))! 9
b>a

(res enf(b, a, y, ADS))}
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Where the intermediate clauses are defined such as:

req(x) x.flags.response = 0

res(y) x.flags.response = 1

eq q(x, y) x.queries = y.queries

eq a(x, y) x.answers = y.answers

from(x, P ) x.PO = P

nfrom(x, P ) x.PO 6= P

after(x, y) x.time > y.time

resp(y, x) res(y) ^ y.query
i

d = x.query id ^ eq q(x, y)

req f(x, P ) req(x) ^ from(x, P )

req nf(x, P ) req(x) ^ nfrom(x, P )

res f(y, x, P ) resp(y, x) ^ from(y, P )

res nf(y, x, P ) resp(y, x) ^ nfrom(y, P )

req a(x, y) after(x, y) ^ req(x) ^ eq q(x, y)

req anf(x, y, P ) req a(x, y) ^ nfrom(x, P )

res enf(x, y, z, P ) res nf(x, y, P ) ^ eq a(x, z)

“ADS” is the assigned label to the authoritative DNS server P.O (see Section 3.2).

The second trust property is related to the DNS updates. An update in the DNS values

will imply that caching DNS servers might have the wrong records. However, this is the

expected behavior; the caching DNS servers can have the wrong values for the validity of

the time to live (TTL) of each record. Even if this is the expected behavior, this means

the caching DNS server has untrustworthy records. In this work we do not focus on how

to measure or interpret the trust information we provide. Nevertheless, this information

could be used by caching DNS servers to re-query the authoritative DNS server when

a change in the records is performed. We will consider that a caching DNS server with

the wrong DNS records can still be trustworthy if the following trust property holds:

� = “For all responses from an authoritative DNS server, if it exists a future response

from other points of observation that is not the same response of the authoritative DNS

server and the queries are the same, then, a previous authoritative DNS response with

the same value as the conflicting response must exist; also, its TTL should be bigger than

the di↵erence between the conflicting response and the previous authoritative response”.

This can be expressed by the following formula:

� = {(↵! �)! �}

↵ = {8
x

(req f(x,ADS))! 9
y>x

(res f(y, x,ADS)}
� = {9

a

(req anf(a, y, ADS))! 9
b>a

(res dnf(b, a, y, ADS)}
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� = {9
m

(req bf(m, a,ADS))! 9
n>m

(res eft(m,n, b, ADS))}

The intermediate clauses used for the first formula are used in these intermediate clauses,

but, also we define new ones, which are:

ne a(x, y) x.answers 6= y.answers

bef(x, y) x.time < y.time

ttl
a

(x, y) x.anwers.TTL+ x.time > y.time

req b(x, y) bef(x, y) ^ req(x) ^ eq q(x, y)

req bf(x, y, P ) req b(x, y) ^ from(x, P )

res dnf(y, x, z, P ) res nf(y, x, P ) ^ ne
a

(y, z)

res ef(y, x, z, P ) res f((y, x, P ) ^ eq a(y, z)

res eft(y, x, z, P ) res ef(y, x, z, P ) ^ ttl
a

(y, z)

By formalizing two trust properties we demonstrate how generic our method is and the

global applicability to any other protocol. Furthermore, how using our formal approach,

trust properties can be formulated using the description of the behavior through the

use of distributed network monitoring. The only requisite is to have the messages of

the protocol represented as a hierarchical attribute-value pairs, i.e., compound values as

described in Section 3.2.

3.4.4 Software Tools for Automatized Testing of Trust Properties: ex-

mon and runmon

Automatically testing the trust properties gives a lot of added value to our contribution.

In order to automatically test the trust properties using the formal approach presented

in the Section 3.2. Furthermore, the approach used to implement the tools and the

implemented algorithms rely on the syntax of the language and the concepts presented

in the same formal approach section. We developed two di↵erent software tools. Both

software pieces were developed in the C language. Those are: extmon: A software tool

used to forward filtered network tra�c observed locally to a remote monitoring server.

This software runs on all di↵erent P.Os. runmon: A server-side program that gathers,

correlates and tests the packets sent from di↵erent points of observation. This tool runs

on the monitoring server. More details about the design of both software tools is given

in the following.

The extmon tool captures the network tra�c using libpcap [McCanne and Jacobson,

1993]. The live capture starts on a network interface specified by the user; an o↵-line

evaluation is possible by supplying a filename instead of an interface. However, for
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Figure 3.4: PCAP Over Network packet format

o↵-line captures, the time at which the packets were captured can a↵ect when making

time relationships with other live captures. Also, all packets are forwarded without any

pause by the tool and that can produce undesired results. The tra�c is filtered, so only

interesting tra�c gets forwarded to the monitoring server. This filtering is also done

via libpcap. An example of a filter could be “port 21”, for instance, in case that we

are interested in the FTP control tra�c. Please note that by default the tra�c directed

to the monitoring server (address and port) is always excluded to avoid flooding and

potentially a self DoS. Hence, an explicit filtering of this is not needed.

After the interesting tra�c has been filtered, a connection to the user-specified moni-

toring server is established. This connection is by default a secure connection; the data

get encrypted using well known cryptographic protocols, SSL[Freier et al., 2011] and

TLS[Dierks, 2008]. The motivation for using a secure connection by default is to avoid

introducing security flaws when handling the interesting tra�c. If the data were sent

in clear text, the monitoring channel could introduce security holes, for instance leaving

the application data vulnerable to man-in-the-middle attacks. Regarding the protocol

in which our tool transmits the information, we developed a very simple protocol. The

protocol transmits data using the TCP transport layer[Postel, 1981] to guarantee the

reliable deliver of packets. No specific port has been chosen for the communication of

the protocol; as of now, the port is a configurable option. The data sent by the extmon

tool follow a very simple packet format. The format of the packets is based on the

data structures provided by libpcap. One of the most important aspects regarding the

protocol is that the time when the packet was captured is included in the packet. The

captured time is important due to the synchronization issues as mentioned in Section 3.1.

The format of the protocol packets is described in Figure 3.4.

The description of each field is explained on the Table 3.1.

On the receiving end, the runmon tool, a server socket is bound to a local IP address

and port, and it listens for client connections. For each new connection a new thread

is created that processes the bit-streams of network tra�c. Those streams are mapped

into a data structures and the specific packet properties are added. For example, the
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Table 3.1: PCAP Over Network Packet Format Fields

Field Description

TV SEC LENGTH (1
Byte)

The field with the length of the TV SEC field. This is due to the libpcap
specification, that states that data structures should use architecture dependent
representation for time values. Some architectures might have di↵erent length
of those time values. Moreover, for future compatibility this avoids changing
the packet structure.

TV SEC
(TV SEC LENGTH
Bytes)

The field containing the time at which the captured package occurred, in Unix-
time representation.

TV USEC LENGTH
(1 Byte)

The field with the length of the TV USEC field. The same concept as
TV SEC LENGTH.

TV USEC
(TV USEC LENGTH
Bytes)

The field containing the rest of the elapsed time in microseconds at which the
captured package occurred.

CAPLEN (4 Bytes) The field with the length of the portion present of the captured packet.
LEN (4 Bytes) The field with the actual length of the captured packet.
DATA (CAPLEN
Bytes)

This is the actual data of the captured packet. This includes all network layers,
which means it will contain the intact information as sni↵ed. This is important,
since, the forwarded packet can be delivered via a di↵erent network interface (or
using a relay) and the point of observation will be taken from information con-
tained in the captured packet. The design is like this, because, the interactions
of interest are the ones being forwarded through the capturing tool.

P.O information depending on the package source and destination IP addresses. Also,

the packet time is used for controlling the last observed time of packets which is used for

timeouts. The bit-stream arrival time is not used, since, network delays in delivering the

tra�c could provide false results of the package arrival times. As stated in Section 3.1,

we assume those systems have time synchronization.

Finally, the interaction between the extmon (forwarding the network tra�c) and run-

mon is shown on Figure 3.5. All clients are running the extmon tool and the monitoring

server is running the runmon tool. Please note that given the evaluation process de-

scribed above the number of points of observation is only limited by the resources of the

host running the runmon tool.

As shown on Figure 3.5, the interaction requires of several points of observation(P.Os). In

most of the cases, the tra�c forwarded using the extmon utility to the monitoring server

can be enclosed by the trust properties and their requirements; if the trust properties

work only on a specific protocol, there is no need to send all tra�c. In our case, we were

only interested in the DNS protocol, therefore, the DNS tra�c is filtered and forwarded.

The necessary intervention for a system to become a monitored node consists only in

installing the utility, configuring what is the interesting tra�c, the target server and

other necessary parameters. The required access rights to install the utility are super-

user rights; in order to open a live capture on an interface, super-user access rights

are needed. This depends from operating system to operating system, but, in most

cases these privileges are required. Nevertheless, the software is installed with execution

super-user privileges (known in Linux as the sticky bit). Therefore, a regular user is able

to execute the software if the administrator installs the tool with this permission or adds
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Figure 3.5: extmon / runmon interaction

it afterwards. This process needs to be done only once. Afterwards, executing the tool

can be an automated and simple process. In fact, forwarding packets with our utility

partially creates the points of observation. A point of observation is considered per

interface. It does not really matter if that interface has many IP addresses configured.

However, the points of observation depend on the configuration on the tester / target

server. In the monitoring server, the final configuration of the P.Os can be done by

configuring per combinations of IP address and ports. For instance, three di↵erent IP

addresses are considered to be the same P.O or the same IP address is considered di↵erent

P.Os with di↵erent ports. This was done to provide a broader degree of flexibility.

The amount of P.Os needed depends on the desired trust properties to check. For

example, for the particular case where a single point of observation is required by the

trust properties, only the interaction of that P.O and its peers can be checked; this will

be external network monitoring, and not, distributed network monitoring. Nevertheless,

the usability to external monitoring is valuable, for instance for cloud computing systems.

On the other hand, when trust properties depend on several P.Os, the necessary ones

need to be available. If the input of the required and necessary P.Os is not available at

the monitoring server, it will not be able to provide a valuable conclusion.
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3.4.5 Experimental Simulation Architecture and Results

We proposed a first approach of how, by using our approach, trust verdicts can be

obtained. By manually checking combined o↵-line traces from di↵erent points of obser-

vation we proved the value of the formal approach [López et al., 2013]. In this work, we

collect the live captures from di↵erent points of observation, on-line and automatically.

The development of the necessary on-line and distributed network monitoring concepts,

developing tools and performing experiments and simulations have been done to extend

this work. In this work. we conducted our experiments performing a simulation of the

specified scenario on a real case study. A monitoring server was deployed. The run-

mon tool was executed in that server. On desktop machines (clients), we executed our

extmon tool, forwarding the DNS tra�c to the monitoring server. Also, the extmon

tool was executed in a live server provided by an industrial partner, Tilidom1. These

experiments were realized at “ns2.tilidom.com”, one of the authoritative DNS servers for

the domain “tilidom.com”. In this server, the only tra�c forwarded to the monitoring

server was the DNS tra�c as well. A table with the machines configuration is shown in

Table 3.2.

Machine desig-
nation

CPU configu-
ration

RAM configu-
ration

Operating sys-
tem

Monitoring
Server

2 X Intel(R)
Pentium(R)
CPU G6950 @
2.80GHz

4GB debian 6.0.6

Client 1 / Client
2 / Rogue DNS
Server

Intel(R)
Core(TM) i5-
2415M CPU @
2.3GHz

2GB CentOS 6.4 with
GUI, Virtual Ma-
chine running on
VirtualBox 4.3.6
r91406 for Mac
OS X 10.9.1

Authoritative
DNS Server

–(Not disclosed
for privacy rea-
sons)

–(Not disclosed
for privacy rea-
sons)

–(Not disclosed
for privacy rea-
sons)

Table 3.2: Machines Configuration

As explained in the Section 3.4.4, the runmon utility is running at the monitoring server,

testing the coded properties, and the extmon utility is running in all other points of

observation. At the runmon tool we configured the P.O “ADS” for the IP addresses of

the authoritative DNS servers for the domain “tilidom.com”. The  property was coded

into the runmon tool. We also created a DNS service in other server (the rogue DNS

server) using the bind2 software. At that service we created a master zone for the domain

1
http://tilidom.com/

2
https://www.isc.org/downloads/bind/

http://tilidom.com/
https://www.isc.org/downloads/bind/
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“tilidom.com” and created di↵erent values for the DNS records. These values di↵ered

from the answers of the authoritative DNS server values. This in order to simulate a

rogue DNS server. This rogue DNS server was configured as the DNS resolver for the

“Client 2” machine. We illustrate our testing architecture in Figure 3.6.

Figure 3.6: Simulation Architecture

The authoritative DNS server always replies to queries from di↵erent DNS caching

servers, such as, Google public DNS servers, OpenDNS servers or Level3 DNS servers.

Thus, this tra�c was the one that was being forwarded from the authoritative DNS

server to the monitoring server. At the client machines we forced the query for the

particular domain, “tilidom.com” by going to a web browser and requesting that web

page.

The Message Sequence Chart (MSC) for the relevant messages received by the monitor-

ing server is shown on Figure 3.7.

PASS verdicts were obtained for the  property for all hosts in exception of the tra�c

sent by “Client 2”. For the “Client 2” FAIL verdicts were obtained. This was in fact

the expected result of the simulation. Results from the � trust property were > (‘Pass’).

This means that on that network trace no DNS updates or untrustworthy responses were

provided.
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Auth DNS Server Client 1 Monitoring Server Client 2

Q:tilidom.com

R:62.73.5.128

Q:tilidom.com

R:157.159.100.213

Q:tilidom.com

R:62.73.5.128

Figure 3.7: MSC for relevant messages at the monitoring server

3.4.6 Performance Evaluation

Some notions regarding the performance evaluation of our tools are presented in this

subsection. When executing our tools, the load of the di↵erent resources has been

observed. The observed performance so far is good; the runmon tool took few resources.

When testing, the runmon tool usually consumes around 40MB of RAM memory and

the CPU usage increases around 5% of. Nonetheless, this depends highly on the tested

properties and amount of received packets, we discuss some tests performed to better

outline the result. In order to perform a stress test, an o↵-line capture of three million

packets processed without any delay, the memory increased up to around 80MB. The

reason why the RAM memory does not get a high impact is because of the timeouts;

the timeouts avoid the RAM memory resource starvation. When testing the o↵-line

capture with three million packets, the CPU usage reached a 100% since, there exists

no limit to the amount of resources the tool uses and all packets were processed at once.

The network tra�c was increased linearly by the receiving messages. On the sending

hosts, the forwarding of packets uses no perceivable CPU consumption. When testing

the tool to send up to 100 packets per second, the CPU usage increased in a 10% for

the lasting period of the test. The same rise was experienced when the host sent 100

packets per second without the tool running. Finally, regarding the network tra�c for

the extmon tool, it increased in the amount of duplicated data to the monitoring server.

No noticeable change in the memory was observed.



Chapter 4

Using Process Mining to

Automatically Generate Trust

Properties

“What makes Superman a hero is not that he has power, but that he has the wisdom

and the maturity to use the power wisely...” — Christopher Reeve

After providing trust verdicts regarding the interactions of the entities, we realized that,

generally speaking, in passive testing techniques, there is little consideration of how to

extract relevant properties to test. It can be a di�cult task to choose what behavior to

assure. Moreover, when passive testing techniques are at runtime, the allocation of the

resources has a critical role. Therefore, correctly choosing the properties to test becomes

a crucial task.

As stated in the introduction, in general terms, the work performed in this chapter cor-

responds to enhancing current state of the art proposals, specifically for passive testing

methods, in order to automatically generate the “test properties“. This addresses the

remaining open issue as stated in the Section 2.3.

This Chapter is divided as follows: in the Section 4.1, we give some concepts of what

Process Mining is and how it can be applied to telecommunication protocols. Later, in

Section 4.2 we present our approach to automatically extract trust properties from the

obtained Process Mining (PM) model and a given specification.

In this chapter, we detail the contribution which is partially published in the work

realized in [López et al., 2015c].

45
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4.1 Preliminaries — Process Mining

Process mining (PM) is a research discipline that seeks to discover, monitoring and im-

prove real processes by extracting knowledge from event logs available. This discipline

has proven to be a valuable tool for discovery and understanding processes in di↵er-

ent contexts, such as business processes in productive industries, clinical processes in

health centers and software development processes [van der Aalst, 2011]. With PM,

di↵erent perspectives of the process can be analyzed: control flow (how the activities

are performed), organizational (who run the process), temporal (when and how long the

execution takes) and data (what specific characteristics of each execution of the process).

PM algorithms use event logs with varied types of information; while the modeled pro-

cess can be any of the ones described above, some fields are mandatories: case id,

activity name, timestamp, resource. Using this information, algorithms can model

the sequences of activities in a global model. PM algorithms can handle this data to a

greater or lesser extent, with noise, incomplete data or several di↵erent manners to run

the processes. These algorithms detect sequentiality and parallelism found in the actual

execution of the cases, which may di↵er from planned or expected behavior.

The first algorithm developed is the Alpha Miner (AM) [Van der Aalst et al., 2004],

which creates a Petri net from the event log. AM analyzes the traces of every case

performed, counting how many times the activities are performed in a particular order

(e.g.: activity B follows activity A). With this analysis the sequentiality and parallelism

in the process are determined, and the process model can be created. Additionally,

AM identifies the average time between activities, who performed every activity and

the times of each one, that allow us to di↵erentiate the performance of each actor in

the process. Even though the AM algorithm is simple and intuitive, it cannot handle

real logs. Nevertheless, starting from Alpha Miner, several new algorithms have been

developed addressing the weakness of the AM, such as A+ (an improvement of AM),

Fuzzy Miner (FM), Flexible Heuristic Miner (FHM), etc.

Fuzzy Miner (FM), was the first algorithm to directly address the problems of large

numbers of activities and highly unstructured behaviors. FM uses significance/correla-

tion metrics to interactively simplify the process model at desired level of abstraction.

When FM takes as inputs the logs and it generates the PM weighted graphs [Günther

and Van Der Aalst, 2007].

In order to analyze other perspective of the processes, social network analysis algorithms

were developed to create the social net behind the event log. Also algorithms to under-

stand the roles (who are performing a set of activities), work teams (who are working

together), an how is flowing the activities between actors (handover of work).
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Several programs implement these algorithms, the most complete —in the sense of al-

gorithms implemented— is the ProM Framework, an open source software developed by

the Process Mining Group, Eindhoven Technical University. Its commercial PM soft-

ware version is the well known Disco tool 1, developed by Fluxicon. Furthermore, the

Disco tool is based on the FM algorithm [Rozinat, 2013].

4.1.1 Process Mining example

For a better understanding of what PM techniques can achieve, in this subsection, we

use one of the Disco data examples, to briefly demonstrate the PM capabilities.

The example is a log taken from a real call-center which has been simplified and

“anonymized”. The file is formatted as a Comma Separated Values (CVS) file. The

first row of the file contains the field names. Part of the CVS file is shown in the

Figure 4.1.

Figure 4.1: PM Model Weighted Graph

As you can see, the mapping between the file columns and the necessary fields (case

id, activity, timestamp, and resource) from the PM required fields is necessary, given

the fact that the column names are not forcibly required to be the same. Using the

disco tool, a mapping can be achieved. For this particular example, the mapping is a

follows: Service ID=Case ID; Operation=Activity; Start Date,End Date=Timestamp;

Agent=Resource.

To easily exemplify how process mining can help we show in Figure 4.2 the graph of

activities extracted from the example log. In this graph, the process flow starts with the

1
http://fluxicon.com/disco/

http://fluxicon.com/disco/
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green vertex (with the “play” sign), and finishes with the red vertex (with the “stop”

sign). The transitions between each activity (vertex) show the number of times those

were found in the logs. From this graph, a great quantity of information can be obtained

or inferred. In the next section, we discuss some usages of the PM techniques.

Figure 4.2: Generated PM graph from example input log

4.1.2 Process Mining Beyond Process Discovery Related Work

Process mining considers the activity sequences and times, it is capable of control-flow

discovery, conformance checking and enhancement of the processes. PM algorithms

are also capable to show organizational, case and time perspectives that also play an

important role. Another distinctive feature of PM is that it considers parallelism and

concurrence for the analysis. From the point of view of using process mining for model

and analyze Internet traces, and given the newly nature of this techniques and tools,

we can cite the work published in 2013 by Poggi et al [Poggi et al., 2013]. In there, the

authors analyze a set of e-commerce Website logs, in order to extract business models

from real-life Web data, obtaining a relationship between pages, exit points and critical

path taken by costumers. Notice that the main objective of this work is to analyze the

process from the e-commerce business point of view and not for analyzing the behavior

of the web protocol.

Some theoretical work was made by Houi et al. [Houy et al., 2011] where they study

how PM techniques and tools should be applied in large sets of interdependent inter-

organizational processes instead the limited set used in the precedent studies.
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We also may cite the works like, [Azzini and Ceravolo, 2013] that uses the process mining

techniques to discover the interactions between social media, to improve recommender

systems. This interesting work inspired our approach in the sense that process mining

techniques and algorithms can be used for purposes other than just process discovery.

However, though these works are interesting, to the best of our knowledge, there are no

systems or frameworks that use process mining to extract trust properties to be applied

within monitoring techniques.

4.2 Automatic Extraction of Trust Properties

As described in Section 3.2, the trust properties are descriptions of expected behaviors.

In many occasions, the trust properties are meant to be designed by experts in each

particular protocol. However, manually going through an RFC and trying to recognize

which requirements might be interesting to enforce as trust properties can be somewhat

di�cult. Furthermore, when manually extracting all possible trust properties derived

from the protocol standard, one can model trust properties that will not be relevant

to check; for example trust properties that will always produce pass (or fail) verdicts,

and such properties will be just occupying resources unnecessarily. One basic constraint

regarding on-line monitoring solutions is to provide the verdicts as soon as possible, this

is exactly the value behind them. For that reason, having trust properties that will

always have the same result, wasting resources can have a negative impact in the mon-

itoring system. Therefore, the main question that arises is — how can trust properties

be extracted automatically? We propose the use of PM techniques in order to automat-

ically extract trust properties from observed faults, i.e., untrustworthy behaviors in the

communication protocols’ interactions.

As explained in the Section 4.1, the PM techniques take as input the logs from the

systems and the output of the process mining is a directed and weighted graph, an

ordered triplet, G = (V,A,w), where V is a set of elements called vertices, A is a set of

ordered pairs of vertices called arcs, and w is the weight function such that w : A 7! Z+,

the positive weight function. We refer to this graph as the PM model. The vertices,

called activities in the PM model, represent network packets, inputs or outputs for a

given communication protocol. The arcs represent the transition between one network

packet to the other, the process flow in PM. Finally, the weights represent the number

of times the associated process flow (arc) is observed in the input logs.

Our approach relies on comparing the PM model with a specification model. The spec-

ification model can be obtained in two di↵erent manners; on the one hand it can be
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obtained by manually deriving this model from a protocol RFC, and on the other hand

it can be obtained via a previously generated PM model. Before analyzing how the

comparison between the specification model and the PM model is done, important con-

straint, regarding the PM model and the specification model are described:

1. Both models have the same vertex names, due to the fact that in the PM the

activities are explicitly enumerated, and therefore no unknown vertices can be

obtained in the PM model. As a consequence, the sets of vertices and arcs are

labeled equally and they can be compared without the need of an explicit mapping

2. Both models have a vertex with in-degree equals to zero (no incoming arcs), source

vertex (start of a process). In other words, both models are “rooted” graphs

3. Both models have a vertex with out-degree equals to zero (no outgoing arcs), sink

vertex (end of a process)

4. The arcs’ associated weights in the PM model denote the number of occurrences

from one activity to the other and thus, these weights depend on the observed

processes in the input logs of the PM. For this reason, weights cannot influence

how both models can be compared

5. Vertices in the models are activities; the meaning behind a vertex which is not

present in the PM model is that the activity was not observed during the execution

time of the logs. Therefore, the missing vertices and associated arcs in the PM

model are not considered as a fault

6. An arc which is not found in the specification model can have two meanings: if the

specification model was generated via a previous PMmodel, the specification might

not be complete and the missing arc can be incorporated into the specification;

the second meaning is that a fault in the process flow occurred

To compare the specification model and the PM model, we define the comparison as

a conformance relation. Intuitively, that conformance relation between the two models

can be done using the definition of graph isomorphism. It is highly important to note

that, taking into account the previously mentioned constraints, we note that knowing if

both models are isomorphic or not, does not yield useful information for our model and

purposes. Then, we define our conformance relation based on those constraints as the

partial order relation: “the PM model should be a subgraph of the specification model,

ignoring the associated weights of the arcs”. This is formally expressed as:

Definition 4.1. Let S = (V
S

, A
S

, w
S

) be the specification model, where V
S

is the

set of vertices, A
S

the set of arcs, and w
S

the positive weight function of S. Let
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P = (V
P

, A
P

, w
P

) be the PM model, where V
P

is the set of vertices, A
P

the set of arcs,

and w
P

the positive weight function of P. P is said to conform to S if and only if P is a

subgraph of S, ignoring their weights. In a formal notation: P ' S , 8(a, b) 2 A
P

=)
(a, b) 2 A

S

Given the constraint 1, we note that V
P

✓ V
S

is guaranteed. If P 6' S (the PM model

does not conform to the specification), it implies at least a fault is present in the PM

model, and therefore an untrustworthy behavior observed. The other possibility would

be that the specification model is not correct. Nevertheless, throughout this study, we

assume the correctness of the specification model; it is out of the scope of this work

the validation of it. As consequence of the Definition 4.1, we note the statement in the

following corollary:

Corollary 4.2. If P 6' S, there exists elements in the set of arcs of the PM model

that are not present in the set of arcs of the specification model. Each element in the

set of arcs not present in the specification are considered faults. In a formal notation:

P 6' S , A
P

6= A
P

\A
S

. Hence, the set of faults F = {(a, b) : (a, b) 2 A
P

\A
P

\A
S

}.

Proof. Let us derive the very simple proof of our previously stated corollary. Let us

begin by proving that A
P

6= A
P

\A
S

=) P 6' S.
if A

P

6= A
P

\A
S

, then A
P

\A
P

\A
S

6= ;
Let (c1, c2) 2 A

P

\A
P

\A
S

(c1, c2) 2 A
P

// Given the set di↵erence definition, it must be present in this set.

(c1, c2) 62 A
S

// Otherwise it will not be present in the di↵erence.

if (c1, c2) 2 A
P

=) (c1, c2) 2 A
S

does not hold. Therefore, P 6' S
Let us continue by proving that P 6' S =) A

P

6= A
P

\A
S

if P 6' S =) 9(c1, c2) 2 A
P

^ (c1, c2) 62 A
S

A
P

6= A
P

\A
S

// Since (c1, c2) exists in A
P

and not in A
S

Having proved both implications, we can conclude that:

P 6' S , A
P

6= A
P

\A
S

In order to extract the trust properties automatically, we will use the known PM model

faults. Knowing which process faults can occur, we can generate a trust property for

each of those untrustworthy behaviors in order to monitor them. At a first glimpse,

composing paths from the start vertex to the end vertex which include the largest

amount of faults can be the solution. Nevertheless, this approach will be incorrect due

to the fact that all possible combinations need to be enumerated in order to guarantee

that all the untrustworthy behaviors are detected independently from the process flow.

By individually taking the faults, no untrustworthy behaviors can go undetected. We
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also aid the performance of the checking tool, since the combinations in the paths can

easily exceed the number of individual faults. In short, to get verdicts as fast as possible,

we use on-line monitoring systems, and the less resources invested to guarantee the

trustworthy behavior of entities, the better.

Having established on which elements we will generate the trust properties, it is im-

portant to note that the concept of these elements are faults and trust properties are

expressed as expected behaviors. As a result, both concepts have opposite logical rea-

soning, one looks for expected behaviors and the other knows how a fault must be like.

Note that the concept of fault in trust properties is not considered in our approach and

the feasibility to include this into our concepts is outside of the scope of this thesis.

Then, how do the trust properties can be generated automatically? The strategy is to

generate what we want to enforce; for each fault, we generate a set of trust properties for

each of the allowed behaviors in the specification model (arcs in the specification model),

which have the same source vertex as the fault. By generating the trust properties as

stated before, not only the particular fault will be enforced, all other behaviors which

are not allowed after the enforced activity (source vertex) will rise fail verdicts, not only

the one observed. One might conclude that only the specification model is necessary to

derive such trust properties. Nevertheless, as stated before, not all specified behaviors

are necessary to enforce (is useless to have an always-pass verdict, for instance) and the

contribution of the PM model is to discover which of those faults can actually take place

based on the system’s logs.

After having the clear strategy how the trust properties can be generated from the

conformance relation between the models, we need to introduce another concept in

order to generate the trust properties in our proposed language. It is important to note

that the PM activities and packet prototypes have a one-to-one relationship, they both

describe the packet required fields. Therefore, we define:

Definition 4.3. The mapping function T , is a function such that each activity in the

PM, i.e., vertex, is transformed into a packet prototype. T is formally defined as:

T : V
S

7! Prototype

Where V
S

is the set of vertices in the specification model, that is, the set of activities

defined in the PM configuration, and Prototype is a formatted text string according

to our language’s grammar, as shown in Section 3.2. For example, the transformation

of the activity, query type “MX” to our language will include two atoms, testing that

the flag response is not set and that the query type is MX, that is T (query \MX) =

p.flags.response = 0 ^ p.queries.type = MX
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Using our definitions we can now proceed to present the trust property generation from

the specification and PM models. The algorithm is shown in the Algorithm 3. The

algorithm is pretty straight forward, first it creates the set of trust properties as an

empty set, the property count (i) is initialized and the set of faults F is computed (as

the arcs present in the PM model and not in the specification). Then, for each fault

(or arc not present in the specification model), a set of properties is generated. The

generated set of properties puts for all of them the causes as the transformation of the

source vertex. The conclusions are derived from all the sink vertices on the specification

model. Finally, note that since the trust properties have the inverse logic of the arcs

which are considered faults, repeated sets of trust properties can appear for arcs with

a common source. That is the reason why the algorithm considers deleting arcs with

common source after the trust property generation.

Algorithm 3: Trust property generation algorithm

Input: S = (V
S

, A
S

, w
S

),P = (V
P

, A
P

, w
P

)
Output: trustProperties
trustProperties  ?;
i  0;
F  A

P

\A
P

\A
S

;
foreach varc 2 F do

cause  “8
x

(‘T (source(varc))’)! 9
y>x

”;
foreach arc 2 arcsWSrc(source(varc), A

S

) do
consequence  “(‘T (sink(arc), A

S

)’)”;
i  i + 1;
pName = “�‘i’ =”;
trustP  concat(pName, cause, consequence);
add(trustP, trustProperties);

end
foreach arc 2 arcsWSrc(source(varc), F ) do

deleteFrom(F , arc);
end

end

4.2.1 Automatic Trust Property Extraction Algorithm Usage

In this subsection, we use a running example, to better demonstrate use the previously

presented approach and algorithm.

Let us consider the partial specification model of the DNS protocol (RFC 1035 [Mock-

apetris, 1987b]), S, represented by Figure 4.3, and an assumed PM model P for a DNS

resolver, represented by Figure 4.4. Also, let us consider the following transformation

function, manually constructed by a DNS protocol expert based on the PM activities
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and our language syntax:

T (query \A) = x.flags.response = 0 ∧ x.queries.type = A

T (query \AAAA) = x.flags.response = 0 ∧ x.queries.type = AAAA

T (response \A) = y.flags.response = 1 ∧ y.queries.type = A

T (response \AAAA) = y.flags.response = 1 ∧ y.queries.type = AAAA

Figure 4.3: Specification Model Weighted Graph

Figure 4.4: PM Model Weighted Graph

We know that P �� S, since AP \ AP ∩ AS �= ∅. Furthermore, AP \ AP ∩ AS =

{(query \A, response \AAAA)}. This information can be useful to add to S if it was

derived using a previous PM model. However, this is out of the scope of the example

and moreover, we are interested in the automatic trust property generation. If we input

the two models to the Algorithm 3, the trust properties generated by our algorithm will

be the following:

Φ1 = ∀x(x.flags.response = 0 ∧ x.queries.type = A)

→
∃y>x(y.flags.response = 1 ∧ y.queries.type = A)
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�1 is the single trust property generated by our algorithm. This trust property will be

enforcing the allowed transitions where the untrustworthy behavior was observed in the

PM model as explained before.

As shown in the previous example, our proposed method is able to automatically de-

rive meaningful trust properties. As demonstrated, our approach does not depend on

a specific communication protocol. Our approach is generic and extensible. The only

requirements necessary are: i) having a specification model which can be obtained from

previous PM observations; ii) having a generated a PM model using well-known tech-

niques as presented in Section 4.1; iii) having a mapping function for the PM activities

to network packet prototypes; since both PM activities and network packet prototypes

have a one-to-one relationship, deriving this function does not represent a challenge.

All these requirements are highly feasible to obtain and the benefits of automatically

generating the trust properties in order to enforce trustworthy interactions has a greater

value.



Chapter 5

Enhancements for On-line

Network Monitoring Systems

“Perfection is not attainable, but if we chase perfection we can catch excellence.” —

Vince Lombardi

In Chapter 3, we presented our approach to provide behavioral feedback by using dis-

tributed on-line network monitoring. The approach deeply relies on the distributed

on-line network monitoring tools to test the trust properties.

After doing the experimental results, we noticed that our approach had some elements

that could be improved. In fact, we noticed that the concept of timeout to avoid resource

starvation was mandatory. Furthermore, given the nature of real time feedback, great

performance of the evaluation needs to be guaranteed. In this chapter, we propose

enhancements to the current On-line Network Monitoring Systems.

In the introductory chapter we exposed that, in general terms, the work performed in

this chapter corresponds to enhancing current state of the art proposals, specifically for

passive testing methods, in order to provide ease of usage of our approach and to have a

scalable evaluation of the properties. This addresses the remaining open issue as stated

in the Section 2.3.

This chapter is divided as follows: In Section 5.1, we give basic concepts and notions

about Extended Finite State Machines and Extended Finite State Automata,(EFSA)

employed in future sections of this chapter. Later, in Section 5.2 we detail the elements

that to be enhanced. In Section 5.3, we expose the approach for enhancing the property

evaluation process. Finally, in Section 5.4, we propose a new language to adopt all the

new concepts and to ease the usage. At a first glimpse one might be tempted to avoid

56
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having a language representation to ease the usage if having an EFSA to describe and

test the behaviors. Nevertheless, the language increases the usability. Furthermore,

since the basic notions of atoms, prototypes, etc., are kept in both the language and the

EFSA both concepts are coherent and throughout this chapter we present this.

In this chapter, we expose the work which was partially published in the following

publications: [López et al., 2014b, 2015b].

5.1 Preliminaries — Extended Finite State Machines and

Extended Finite State Automata

In this section, we introduce the necessary concepts of an Extended Finite State Au-

tomata (EFSA). First, we use the definition of Extended Finite State Machines (EFSM)

to help define the EFSA model. The EFSA model has been used for di↵erent appli-

cations in the testing domain, such as, [El-Fakih et al., 2008; El-Fakih et al., 2003].

Furthermore, to test telecommunication protocols, the same model has been used as

shown in [Kushik et al., 2014]; additionally, the EFSM model definition is extracted

from the previously exposed work. Let us start by introducing the EFSM model in the

following subsection.

5.1.1 EFSM Model

A finite state machine (FSM ), or simply a machine as it often appears in the literature,

is a 5-tuple S = hS, I,O, h
S

, S0i, where S is a finite nonempty set of states with a

nonempty subset S0 of initial states; I and O are finite input and output alphabets;

and h
S

✓ S ⇥ I ⇥ O ⇥ S is a behavior (transition) relation. An output function is

defined as out : S ⇥ I 7! O, the output symbol obtained when applying a state-input

pair. If |S0| = 1 then the machine is initialized, otherwise it is non-initialized (weakly

initialized). An FSM is nondeterministic (NFSM) if for some pair (s, i) 2 S ⇥ I there

exist several pairs (o, s0) 2 O⇥S such that (s, i, o, s0) 2 h
S

, otherwise S is deterministic.

If for each pair (s, i) 2 S ⇥ I there exists (o, s0) 2 O ⇥ S such that (s, i, o, s0) 2 h
S

then

the FSM is complete, otherwise it is partial. If for each triplet (s, i, o) 2 S ⇥ I ⇥O there

exists at most one state s0 2 S such that (s, i, o, s0) 2 h
S

then the FSM is observable,

otherwise it is nonobsevable. The FSM behavior is extended to input sequences (by

sequentially applying the inputs and following the transitions). For example, the output

function defined over the input sequence of length n, ↵ 2 I⇤ = I1I2...In, and the state s

as an output sequence ! 2 O⇤ by sequentially applying I
j

to the output function at all

intermediate states (following the transitions).
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Given an FSM S = hS, I,O, h
S

, S0i, two states s1, s2 2 S are compatible if for each

input sequence ↵ 2 I⇤ the sets of output responses at these states to ↵ coincide, i.e.

out(s1,↵) = out(s2,↵). Two states are distinguishable if there exists an input sequence

↵ such that ↵ is a defined input sequence at both states s1 and s2 and out(s1,↵) 6=
out(s2,↵). The FSM S is reduced if its states are pair-wise distinguishable. States

s1, s2 of S are separable if there exists an input sequence ↵ 2 I⇤ such that out(s1,↵) \
out(s2,↵) = ?; in this case, ↵ is a separating sequence of states s1 and s2. If there exists

an input sequence ↵ that separates every two distinct states of the set S0, then ↵ is a

separating sequence for the set S0.

An extended finite state machine (EFSM) [Petrenko et al., 2004] A is a pair (S, T ) of

a set S of states and a set T of transitions between states, such that each transition

t 2 T is a tuple (s, i, o, P, v
p

, o
p

, s0), where s, s0 2 S are the starting and final states of a

transition; i 2 I is an input with the set D
inp�i

of possible vectors of corresponding input

parameter values, o 2 O is an output with the set D
out�o

of possible vectors of output

parameter values; P , v
p

, and o
p

are functions, defined over input parameters and context

variables V . The context variables are variables which can hold di↵erent valuations v,

and the associated set of valuations is denoted as D
V

also called a context of A. A

configuration of A is a tuple (s, v) of state and context. A designated configuration

that the machine usually starts from is called the initial configuration. By definition,

P : D
inp�i

⇥ D
V

�! {True, False} is a predicate where D
V

is the set of context

vectors; o
p

: D
inp�i

⇥ D
V

�! D
out�o

is an output parameter update function; v
p

:

D
inp�i

⇥D
V

�! D
V

is a context update function.

According to [Petrenko et al., 2004], we use the following definitions. Given an input i

and a vector p 2 D
inp�i

, the pair (i, p) is called a parameterized input; if there are no

parameters for the input i then i is a non-parameterized input. A sequence of parame-

terized inputs (possibly some of them are non-parameterized) is called a parameterized

input sequence. A context vector v 2 D
V

is called a context of A. A configuration of

A is a pair (s, v). Usually, the initial state and the initial configuration of the EFSM

are given; thus, given a parameterized input sequence of the EFSM, we can calculate a

corresponding parameterized output sequence by simulating the behavior of the EFSM

under the input sequence starting from the initial configuration.

An EFSM is consistent if for each transition at state s with input i, every element in

D
inp�i

⇥D
V

evaluates exactly one predicate to true among all predicates guarding the

di↵erent transitions with the starting state s and input i; in other words, the predicates

are mutually exclusive and their disjunction evaluates to true. An EFSM A is completely

specified if for each pair (s, i) 2 S⇥I, there exists at least one transition at state s with

the input i. The authors of most papers develop test derivation strategies for consistent
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and completely specified EFSMs. However, such EFSMs are rarely met when building

protocol specifications at high abstraction levels.

The equivalence and distinguishability relations for EFSM configurations are defined

similar to those over FSM states. Two initialized EFSMs are compatible if their ini-

tial configurations are compatible. Di↵erently from FSMs, we still lack necessary and

su�cient conditions for establishing whether even two complete and consistent EFSMs

are equivalent. Two states of an EFSM are separable if there exists a (parameterized)

input sequence such that at these states the sets of parameterized output responses

of the EFSM to this input sequence do not intersect (for any values of context vari-

ables). In other words, if two states s and s0 of the EFSM are separable then each two

configurations at these states are separable.

When the values of each context variable and of each input parameter are finite, an

EFSM A can be unfolded to an equivalent FSM, written FSM
sim

(A), by simulating

its behavior with respect to all possible values of context variables and input vectors.

The equivalence means that the set of traces of the FSM coincides with the set of

parameterized traces of the EFSM. Given a state s of EFSM A, a context vector v, an

input i and the vector p of input parameters, we derive the transition from configuration

(s, v) under input (i, p) in the corresponding FSM. We first determine the outgoing

transition (s, i, o, P, v
p

, o
p

, s0) from state s where the predicate P is true for the input

vector p and the context vector v, update the context vector to the vector v0 according

to the assignment v
p

of this transition, determine the parameterized output (o, w) and

add the transition ((s, v), (i, p), (o, w), (s0, v0)) to the set of transitions of the FSM

FSM
sim

(A). The number of states of the obtained FSM equals the number of di↵erent

configurations (s, v) of the EFSM that are reachable from the initial configuration. If

an EFSM is consistent and completely specified, the corresponding FSM is complete and

deterministic. Two EFSMs are equivalent if and only if their corresponding FSMs are

equivalent [Faro and Petrenko, 1990]. When the specification domain of some context

variable and/or some input parameter is infinite or the number of generated transitions

becomes huge, the EFSM behavior is simulated up to the given number of transitions

or up to the given length of input sequences.

5.1.2 EFSA Model

As stated before, we used the EFSM model to help defining the EFSA model. Departing

from the EFSM definition, we define an EFSA also as a pair (S, T, S
i

, S
f

) of a set S of

states, S
i

a non-empty subset of S of initial states, S
f

a non-empty subset of S of

“final” or “accepting states”, and a set T of transitions between states, such that each
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transition t 2 T is a tuple (s, i, o, P, v
p

, o
p

, s0) as defined in an EFSM. A restriction on

the transitions is defined for an EFSA, only an input or output can be found in the

transitions and not both at the same time.

While there are other definitions of the “same” object in the literature, as the one

shown in [Smith et al., 2008], we prefer the definition previously shown due to its clarity

regarding the predicates and updating functions needed for our proposed auxiliary data

structure.

In this section, we have presented the Extended Finite State Automata model. Later,

in the Section 5.3 we use an auxiliary EFSA data structure to enhance the evaluation

of trust properties.

5.2 Distributed On-line Network Monitoring — Identify-

ing Areas of Improvement

In this Section we identify the areas of improvement of state of the art solutions of on-line

network monitoring. This was motivated after we extensively worked on our approach

presented in Section 3. Since our approach heavily relies on on-line network monitoring

systems and its correct and scalable functioning, the need to enhance those features as

much as possible is a must. Therefore, we seek to improve our proposed solutions in

these areas.

5.2.1 Language lack of expressiveness

As stated before, a distributed on-line network monitoring approach requires the corre-

lation between di↵erent packets. There are some important constraints in the system’s

behavior. Those constraints are the following:

• A property has a set of conditions that must be met. Conditions over the packet

itself or previously stored packets (dependencies)

• In order to avoid resource starvation (resource leaks, memory and processor), our

proposed strategy is to incorporate stored packet timeouts. A timeout might

produce a verdict in the system, a timeout fail

• Some exceptions to the timeouts are needed. For instance, some packets might be

kept until a condition is met, e.g., when a new sample of a packet prototype is

found
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• For each packet, all conditions must be tested, since, in on-line network monitoring

each packet could arrive to the testing system at any given state

Our current language does not take all these constraints into account. This motivates

us to improve our current language in order to be able to express timeouts and hold

conditions. Changing the semantics of some quantifiers can also be useful to correctly

express in the language what we need. Another aspect that could be improved is to

have a better property evaluation. The motivation behind this is due to the fact that

on-line monitoring can be a highly costly process.

5.2.2 E↵ective language evaluation

Considering the critical constraints about time processing in on-line network monitoring,

we note that the formula can be evaluated using an auxiliary data structure. We have

chosen to use an Extended Finite State Automata (EFSA). Works like [Smith et al.,

2008], clearly expose the urge to have great performance on the properties’ evaluation.

These properties use a regular expression language. More than that, they also use a

state model to e�ciently test these properties.

Please note that, this does not imply that we need a model to describe the system. By

using a state model to evaluate the properties, a better performance and expressiveness

is obtained as a result. The previously described model fits the requirements of on-line

monitoring systems. We explain how this model fits in the following.

State models have been widely used for scalable evaluation of other properties / lan-

guages. For example, a regular expression parser, without using a state machine evalua-

tion, for evaluating disjunctions, it will have to exhaust all the OR (options) possibilities

until it matches the proper one, for instance:

Allowed = ^(a|e|i|o|u) + (b|c|d|f |g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z) + $

Assuming a generic evaluation algorithm, without using state machines for evaluation,

the disjunctions (or options) would have to be evaluated one by one, and using the ex-

treme cases where the input string can be “uuuzzz”, 72 (4*3 + 20*3) wrong comparisons

will be performed. On the other hand, with a Finite State Automata used to evaluate

the input string, at the initial state, all vowels are added as inputs and the transitions

are to the same initial state. In the same state, all consonants are added as inputs and

they all have their transitions at the final / accepting state. While evaluating the same

string, when observing the letter “u” as input in the initial state, the transition is done
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to the same initial state. The algorithm for evaluating with the transition functions is

quite simple.

For our particular case, let us assume that we have this property to check in a distributed

on-line monitoring system:

� =8x(x.dns.flags.QR = 0 ^ x.PO = “ADS”)!
9y > x(y.dns.flags.QR = 1 ^ y.PO = “ADS” ^ y.dns.ID = x.dns.ID)!
9a > y(a.dns.flags.QR = 0 ^ a.PO 6= “ADS”)!
9b > a((b.dns.flags.QR = 1 ^ b.PO 6= “ADS” ^ b.dns.ID = a.dns.ID^
y.dns.answers = b.dns.answers)

Note that our generic algorithm for evaluating a formula presented in Chapter 3, can

be enhanced performance-wise oriented. One might think than when evaluating the last

packet prototype of a given formula has the worst performance. However, since a packet

can match several prototypes, all prototypes need to be checked against each packet. On

the other hand, if one could keep track of the already matched predicates (or atoms),

then, this would improve the testing procedure. For instance, in the property described

above (�), for a packet that matches the characteristics described by the “prototype b”

(to be tagged as a “b” type). Using the generic algorithm presented in Section 3.4.4,

eight comparisons / atomic tests (or atoms) will be made to conclude that the packet

matches the “prototype b”; out of which four of those evaluations will be repeated.

If a state model derived from the formula existed, the evaluations can be “tracked” and

the problems previously described do not apply. The condition for using an associated

state model is that the state model can accept the same inputs as the described formula.

If this condition is satisfied, then, using a state model as an auxiliary data structure is

better suited for properties’ evaluation.

A complexity analysis of both algorithms should reveal which of those is the better (we

will discuss this later). More than that, when di↵erent sets of properties are analyzed

with the use of a combined EFSA, all properties that have common predicates (or

atoms), for instance, several properties might start with “for each request”. In fact,

the algorithm for generating the EFSA will strongly influence the performance of the

evaluation algorithm. The “naive” algorithm for generating the EFSA can improve

the performance. However, exactly the composition can lead to an EFSA, such that,

each state will have fewer and only necessary predicates to be evaluated. The goal
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is to evaluate at the beginning the most common conjunction of predicates of all the

properties.

Taking into account the proposed way to generate the EFSA, we note some relevant

facts:

• The more repeated transitions are added first to the predicates to evaluate, thus,

they are evaluated first by our state evaluation algorithm.

• If no repeated predicates (atoms) are found in the formulae, the transitions number

will be the number of atoms.

In the subsequent sections, we describe our proposed solutions for the stated challenges

exposed in this section.

5.3 Enhancing On-line network monitoring system’s ex-

pressiveness and scalability with EFSA

The evaluation process in an on-line monitoring system consists in evaluating if each

packet complies the desired trust properties we need to check. Therefore, a scalable way

for the evaluation algorithm is perhaps the biggest requirement. The trust properties

have a set of conditions (atoms) that a packet’s data needs to match against constant

values or against the values of previously stored packets, as explained before. After

matching the packet’s conditions, checking if the matched packet completed a trust

property is necessary. In order to provide verdicts regarding the trust properties we de-

veloped a first approach using the algorithm presented in our work at Section 3.4.4. The

worst-case analysis of the time work performed by the previously mentioned algorithm

is expressed by the following equation:

T (eval all prots) = 3N
p

+

NpX

i=1

NPA
i

+

NpX

i=1

2NPD
i

+

NpX

i=1

(N
p

� i)QL
i

+

NpX

i=1

((N
p

� i)QL
i

⇤NDA
i

)

(5.1)

Where N
p

is the number of prototypes in the formulae, NPA
i

is number of atoms that

require no dependencies of the ith prototype, NPD
i

is the number of dependencies of

the ith prototype, QL
i

is the length of the queue of stored packets of the ith prototype,
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and NDA
i

is the number of atoms that require dependencies of the ith prototype. The

experimental results achieved with the first algorithm are good. However, due to the

on-line monitoring constraints, we are required to create the most scalable algorithm

for the evaluation of trust properties. Based on the time complexity analysis of our

algorithm, we note that the term that dominates the equation is the term
P

Np

i=1((Np

�
i)QL

i

⇤ NDA
i

); from this term we can observe that atoms (conditions/comparisons)

need to be checked against the stored packet queues and this is being repeated up to

N
p

� i times. In order to create a scalable algorithm, we need to avoid re-doing any

atomic tests on a packet since the result of the atomic test will not change for each

packet.

In order to improve the algorithm, known techniques are applied. First, we propose

to make use of a data structure that will aid avoiding repeated checks. In addition to

that, we propose to keep track of previously visited packets in the stored queue to avoid

re-visiting packets, which did not match previous tests.

We have chosen to use a tree-structured (single rooted) extended finite state automata

(EFSA) as the structure for the scalable evaluation. The reason is that we propose

evaluating the packets by doing the atomic test once and to keep track of the already

tested atoms (a transition model based on predicates) and then, when a packet is found

to match a prototype (at some accept state), execute some actions (updating functions),

for instance, storing the packet on a queue or reporting a property verdict. These types

of models have become popular to achieve scalable algorithms, for example, several works

like [Becchi et al., 2009; Smith et al., 2008] use di↵erent types of automata, finite, non-

deterministic, hybrid and extended to evaluate a regular expression language to achieve

a scalable deep packet inspection.

Our target is to generate the EFSA from the necessary prototypes. The strategy in order

to avoid repeating atomic tests is to generate transitions from the root state, adding

predicates of the atomic tests which are more common at the beginning and creating

related atomic tests (atomic tests which are part of the same prototype) along the same

path; for the next prototypes, uncommon atoms will be branches added at the current

state after following the common transitions. Therefore, our algorithm to generate the

EFSA relies on three principal actions: i) comparing each atom and add a count of how

many times it appears in the formulae; ii) sorting the prototypes putting first the ones

containing the most common atoms, then, do a nested-sorting according the second most

common atom, and so on; iii) finally, going along the path of the EFSA creating new

nodes branching with its respective transitions based on the atoms or just following the

already existing ones (starting from the root) and adding the proper updating functions.
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The algorithm to generate our EFSA based on the formulae prototypes can be found in

the Algorithm 4.

Algorithm 4: EFSA generation
Input: Prototypes P , State root
Output: EFSA
foreach atom 2 P do

repeated[atom]  count(atom, P);
end
maxRepeated  max(repeated);
sortedPrototypes  P;
repeat

atom  atomRepeated(maxRepeated, P);
sortedPrototypes  sortWRT(sortedPrototypes, atom) /* nested-sorting */

repeated[atom]  -repeated[atom];
maxRepeated  max(repeated);

until maxRepeated >1 ;
current  root;
foreach P 2 sortedPrototypes do

while (atom  higerCountAtom(P)) > 0 do
if atom /2 transitions(current) then

addTransition(current, atom);
end
delete(atom,P);
doTransition(current, atom);

end
addUpdatingFuncs(current, selectFuncs(P)) /* appropriate for the prototype */

end

Example of a EFSA generation: let us consider the trust property ”For all responses

from an authoritative DNS server, all future responses from other points of observation

are the same replies from the authoritative DNS server if the queries are the same”. The

trust property as shown before is:

� =8x(x.dns.flags.QR = 0 ^ x.PO = “ADS”)!
9y > x(y.dns.flags.QR = 1 ^ y.PO = “ADS” ^ y.dns.ID = x.dns.ID)!
9a > y(a.dns.flags.QR = 0 ^ a.PO 6= “ADS”)!
9b > a((b.dns.flags.QR = 1 ^ b.PO 6= “ADS” ^ b.dns.ID = a.dns.ID^
y.dns.answers = b.dns.answers)

Using our approach, the prototypes found in the previous formalized trust property are:
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p1 p.dns.flags.QR = 0 ^ p.PO = “ADS”

p2 p.dns.flags.QR = 1 ^ p.PO = “ADS” ^ p.dns.ID = p1.dns.ID

p3 p.dns.flags.QR = 0 ^ p.PO 6= “ADS” ^ p.dns.queries = p1.dns.queries

p4 p.dns.flags.QR = 1 ^ p.PO 6= “ADS” ^ p.dns.ID = p3.dns.ID

^ p.dns.answers = p2.dns.answers

As an example the list of compared atoms will be:

p.dns.flags.QR = 0 2

p.PO = “ADS” 2

p.dns.flags.QR = 1 2

p.dns.ID = p1.dns.ID  1

p.PO 6= “ADS” 2

p.dns.queries = p1.dns.queries 1

p.dns.ID = p3.dns.ID  1

p.dns.answers = p2.dns.answers 1

Given the sorting performed by the algorithm, the order of the sorted atoms is: p1p2p3p4.

For this particular example, the order of the prototypes is not altered when sorting them.

Nonetheless, the algorithm in the general case will sort with respect of the nested most

common atoms. Finally, the generated EFSA by our algorithm is represented in the

Figure 5.1.

Once having the generated EFSA, we can introduce the proposed algorithm that will

be used to evaluate the packets using the auxiliary data structure we generated. The

algorithm is shown in Algorithm 5.

The main idea behind the Algorithm 5 is to go through the transitions of the EFSA. If

the evaluated predicate (or atom equivalent test) contains dependencies, filter the stored

packets that do match the predicate along with the packet; if the packet matches with

at least one stored packet, the predicate is considered to be successfully passed the test.

If the predicate does not include dependencies, then, the predicate is directly tested. If

the predicate successfully passed the test, it triggers a transition. If the transition is

executed, all updating functions are performed. The updating functions related to store

the packet or report success on the property. If the transition is executed, the current

state is replaced by the final state of the transition and the evaluation process starts
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Figure 5.1: Generated EFSA

again from the predicates of that state. If the predicate does not pass successfully,

then, the next predicate of the current state is evaluated. Now, we can proceed to

calculate the complexity of the evaluation algorithm using the auxiliary EFSA (as shown

in Algorithm 5):

T (eval states) =

|S|∑
i=1

(Θ(1) + T (eval transi)

= |S|+
|S|∑
i=1

T (eval transi)

(5.2)

Where |S| is the cardinality of the set of states in the EFSA.
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Algorithm 5: Evaluation algorithm using EFSA
Input: EFSA A, StoredPackets sps, Packet pi
Output: Property verdicts
repeat

transitioned  false;
foreach predicate in getTransitions(getCurrentState(A)) do

if hasDependencies(predicate) then
partialResult  false;
tempStoredPackets  createStoredPackets();
foreach storedPacket in getStoredPackets(sps, predicate) do

if evalDependency(predicate, pi, storedPacket) then
partialResult  true;
add(tempStoredPackets, storedPacket) /* avoid unnecessary checks */

end

end
setStoredPackets(sps, predicate, tempStoredPackets);
transitioned  partialResult;

else
transitioned  evalIndependent(predicate, pi);

end
if transitioned then

foreach updatingFunc in getUpdatingFuncs(A, predicate) do
execute(updatingFunc, pi);

end
setCurrentState(A, getStateTransition(A, predicate));
goto end loop;

end

end
end loop :

until transitioned ;

T (eval trans
i

) =

|TAi|X

j=1

(⇥(1) +⇥(1) +⇥(1) + T (eval sp
j

) +⇥(1) +⇥(1)) +⇥(1)

+

|Ui|X

j=1

⇥(1) +⇥(1)

= 5 |TA
i

|+ |U
i

|+
|TAi|X

j=1

T (eval sp
j

) + 2⇥(1)

(5.3)

Where |TA
i

| is the cardinality of the set of transitions of the ith element of the state

set, |U
i

| is the cardinality of the set of updating functions for the ith state executed

transition.
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T (eval sp
j

) =

|Qj |X

k=1

(⇥(1) +⇥(1) +⇥(1))

= 3 |Q
j

|
(5.4)

Where |Q
j

| is the length of the queue of the jth prototype stored packets queue.

Substituting the equation 5.4 into the equation 5.3 we get:

T (eval trans
i

) = 5 |TA
i

|+ |U
i

|+ 2⇥(1) +

|TAi|X

j=1

3 |Q
j

| (5.5)

Subsequently, substituting equation 5.5 in the equation 5.2 we get:

T (eval states) = |S|+
|S|X

i=1

(5 |TA
i

|+ |U
i

|+ 2⇥(1) +

|TAi|X

j=1

3 |Q
j

|)

= |S|+
|S|X

i=1

(5 |TA
i

|) +
|S|X

i=1

(|U
i

|) +
|S|X

i=1

(2⇥(1)) +

|S|X

i=1

(

|TAi|X

j=1

3 |Q
j

|)

= 3 |S|+
|S|X

i=1

(5 |TA
i

|) +
|S|X

i=1

(|U
i

|) +
|S|X

i=1

(

|TAi|X

j=1

3 |Q
j

|)

(5.6)

We note that counting from all states each transition is the equivalent to count all

transitions, i.e., |T |, the cardinality of all transitions. Similarly, counting from all states

each updating function is the equivalent to count all updating functions, i.e., |U |, the
cardinality of all updating functions. Doing this substitutions in the 5.6 equation, we

get:

T (eval states) = 3 |S|+ 5 |T |+ |U |+ 3

|T |X

i=1

|Q
i

| (5.7)

The complexity of our algorithm results in an improved linear complexity, O(|T |) =
P|T |

i=1 |Qi

|. We also note that any algorithm that runs in linear time can only modify

a linear amount of memory cells and therefore the space complexity of the algorithm

yields a linear space complexity. It is also important to remark that the complexity of

the algorithm (both in time and space) highly depends on the length of the stored queues

of packets. In our previous chapter, Chapter 3, we have proposed having a continuous

parallel process that given a timeout threshold will remove from the packet queues
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unused packets. We do this in order to avoid resource starvation in the monitoring

system. This timeout parallel process is kept for this algorithm as well.

5.4 E↵ective language modifications adapted to the en-

hanced system’s model

In the previous section we presented an approach that is capable of testing properties in

a scalable manner. As it can be appreciated, the algorithms do not depend on the input

language, but, on the basic definitions proposed by our approach, particularly in the

Definition 3.5, the packet prototype definition. Therefore, any input language can be

used as long as it expresses correctly the concept of packet prototypes. One might think

that as a result no language is necessary to be defined, nonetheless, there exist many

advantages in having a carefully designed language that will express all the constraints

needed. Perhaps the main reason is that a common language can motivate ease the use

of the approach for di↵erent users and researchers without in-depth knowledge of the

internal concepts and functioning of our proposed approach. Furthermore, with a very

well specified language the ambiguity in while describing the desired trust properties can

be avoided and this fact while testing is highly important, in order to clearly know the

expected results of the properties. Given this motivation, we propose an extension and

modification of the language proposed by [Lalanne and Maag, 2013]. All the aspects are

further discussed in a holistic manner through di↵erent considerations of the language.

These considerations are exposed in the following subsections.

5.4.1 Lexical considerations of TeAR

In order to define the structure of the language (grammar) we first need to define which

characters are allowed in the language. More importantly, how the sequences of char-

acters form meaningful character strings (we call these sequences: tokens, and a single

sequence: token) are formed. In order to precisely define how the language meaningful

sequences are formed, the lexical analysis is performed. This will be the equivalent to

human language as how to identify correctly an article, a subject, etc.; then, with the

syntactic analysis we say that a sentence can be formed using them in the appropriate

order.

We assume that all reserved keywords or tokens are case sensitive for those characters

with case distinction they are considered di↵erently. For example a variable named x1

will di↵er from the variable named X1 or a property named ⇡ will be di↵erent from a

property named ⇧.
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We have few reserved keywords in our language. Those are the following: ”HN”, ”exists”,

”foreach”, and “null”. The tokens, “->”, “<-”, “(”, “)”, “^”, “=”, “!=”, “>”, “>=”,

“+”, “:”, and “-” are self-represented tokens and they have a special meaning depending

on where they are found in the language (grammatical sense). Further details about

the meaning of each token, and reserved word are expressed in subsection 5.4.3 of the

language.

In order to provide readability and cleanness we have also considered a mechanism to

add comments. We decided to use one of the most standard notations for comments in

computer science. The beginning of a comment starts with the character sequence “//”

and finishes with the end of the line; a multi-line comment starts with the sequence “/*”

and finishes with the sequence “*/”. Tokens are separated from each other with the use

of a blank space. Continuing with the aspect of readability, a blank space is defined

as one or more white spaces, tabulators, breaking-line characters and also comments.

This was motivated due to past experiences when we struggled to keep our work easily

readable for us and for other reviewers of our work.

NUMBER is an integer number or a floating-point number. An integer number is a

sequence of numeric characters (from 0 to 9) or a 0x sequence followed by a sequence of

numeric characters or characters from a to f, and its respective upper case equivalent.

An integer can also be a minus sign (-) followed by a sequence of numeric characters

described before. Note that integers can be described as in its hexadecimal representa-

tion with the use of the sequence 0x. A floating-point number is a sequence of numeric,

followed by a dot and another sequence of numeric characters; it can also be a minus sign

(-) followed by a sequence of numeric characters followed by a dot and another sequence

of numeric characters. Please note that for the lexical analysis we do not consider the

length of the numbers, the range of those numbers is expressed in subsection 5.4.3.

STRING is used to describe a string constant. String constants are formed by a sequence

of CHARS enclosed by double quotes. CHARS are considered to be any UTF-8 character

in exception of double quotes (”) or backslash (\), plus the two-character sequences \”,
\\, \t, \r and \n to denote double special characters inside the string constant.

PROP NAME is used to describe a property name. Typically in our approach, prop-

erty’s names are considered to use Greek characters, just to make a clear distinction of

what a property name from any other identifier. Then, PROP NAME is a sequence of

alphanumeric characters ([0-9a-zA-ZA-⌦↵-!]), underscore ( ) and not starting with a

number. It is not a requirement to name properties with Greek characters.

VAR NAME is used to describe variable identifiers. VAR NAME can be a variable

name or a variable name with a timeout. A variable name is formed by a sequence
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of alphanumeric characters or the underscore character, but not starting with a num-

ber. VAR NAME W TO describes a variable name with a timeout, it is a sequence of

alphanumeric characters (not starting with a number), or the underscore character fol-

lowed by a colon (:) and then followed by an integer number (see above). VAR NAME W HC

describes a variable name with a hold condition timeout, it is a sequence of alphanumeric

characters (not starting with a number) or the underscore character followed by a colon

(:) and then followed by the keyword HN. Details regarding the timeouts are given in

subsection 5.4.3.

SELECTOR VARIABLE is used to describe data within a hierarchical structure. The

pattern used to describe this is formed by any variable name (see above) followed by any

amount of repetitions formed by: a dot (.) followed by a variable name sequence. An

example would be “req sip1.sip.cseq.method”. The meaning of this is detailed as well in

subsection 5.4.3.

Finally, it is important to consider that all tokens must be separated by a blank space

(see above) or a token that is not a keyword or an identifier. For example the sequence

HNHNHNHN will not be considered four di↵erent keywords, it will be considered a

variable name due to the fact that the longest matching sequence corresponds to a

variable name. Nevertheless, the sequence “req sip1.sip.cseq.num-2” will be considered

three di↵erent tokens, since the “-” token, which is not a keyword nor an identifier

separates the SELECTOR VARIABLE and the NUMBER.

Note: Any other input will be considered unacceptable, and it will make that the input

source not to be taken into account.

5.4.2 TeAR grammar

In this subsection, we describe the TeAR grammar. We will use the very popular and

well-adopted Backus Naur Form (BNF) [Backus, 1959] notation to represent the gram-

mar. Briefly described, the non-terminal symbols are denoted in lower case characters

and enclosed between the pair of symbols “<” and ‘‘ >”. A terminal symbol will be

represented in upper case or between quotation marks. The vertical bar (or pipe sym-

bol) “—” represents a choice between one symbol substitution and the other. Finally,

the “::=” symbol is used to separate the non-terminal symbol on the left hand side

from the right hand terminal and non-terminal symbols in the production rules. For

our particular case, our terminal symbols do not include any of the meta-symbols (such

as repetitions or optional) used to describe the grammar; hence, we will not use any

special notation other than the previously described tokens in the lexical analysis of the

language. The first is the term production rule:
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< term >::= < term > “ + ” < term > | < term > “� ” < term > |“(” < term > “)”

|NUMBER|STRING|SELECTOR V ARIABLE|V AR NAME|“null”

The last production rule specifies which data can be considered. Please note that the

basic data types and basic arithmetic operators are considered so far. For more infor-

mation regarding the terms, please see our subsection 5.4.3. A term is an element which

can be used while doing atomic comparisons. The following production rule shows the

atoms (atomic comparisons) production rule:

< atom >::= < term > “ = ” < term > | < term > “! = ” < term >

| < term > “ > ” < term > | < term > “ >= ” < term >

The production rule presented above, is one of the most important production rules of

the language. It describes the atomic comparisons upon which the language is based

on. We add a useful range of comparisons; by combining di↵erent terms, more complex

comparisons can be achieved. The meaning behind each comparison is very clear, nev-

ertheless, each interpretation is covered in subsection 5.4.3. The following production

rule is simply an auxiliary production rule, it is nothing more than a comma separated

term list used in other production rules.

< term list >::=< term > | < term > “, ” < term list >

One of the production rules that uses the term list is the macro production rule. The

primary use of it is to provide a ease of use and readability when using the language, in

order not to repeat common conjunctions of atoms. We give further detail of the macros

in the subsection 5.4.3.

< macro >::= V AR NAME“(” < term list > “)”

Please note that the macro production rule is a way to invoke a previously defined macro.

How to define macros is presented later in this subsection. The following production

rule denotes the atoms conjunction:
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< atoms conjunction >::= < atom > | < macro > | < atom > “ ^ ”

< atoms conjunction >

As it can be seen from the previously stated production rule, the atoms can also be a

macro. Therefore, a conjunction of atoms is a simple conjunction between macro calls

and atoms. The following production rule is a production rule which encapsulates all

the possible manners to express a variable and its associated timeout:

< var timeout >::= V AR NAME|V AR NAME W TO|V AR NAME W HC

As mentioned in the subsection 5.4.1, there are three ways to express a variable and

its respective timeout, this production rule collects them all. The next production rule

is the formula production rule, it is among the most important production rules of the

language, it expresses how a formula could be constructed in order to test it against the

network packets.

< formula >::= “foreach” < var timeout > “(” < atoms conjunction > ”)”

| “foreach” < var timeout > “ > ” < var timeout > “(” < atoms conjunction > “)”

| “foreach” < var timeout > “ < ” < var timeout > “(” < atoms conjunction > “)”

| “exists” < var timeout > “(” < atoms conjunction > “)”

| “exists” < var timeout > “ > ” < var timeout > “(” < atoms conjunction > “)”

| “exists” < var timeout > “ < ” < var timeout > “(” < atoms conjunction > “)”

| < formula > “! ” < formula > |“(” < formula > “)”|PROP NAME

From the previous production rule, one important aspect is the possibility to include

previously declared formula via macro formula assignation (later explained) by the use

of PROP NAME. The usage and meaning of the production rules are stated in subsec-

tion 5.4.3. Besides that, the only non-recursive production rules of formulas, i.e., the

conjunction of atoms is previously stated. The goal of the language is exactly to test a

set of formulae against the network packets as stated before, however, further auxiliary

rules of the language are needed in order to help its definition. Following we state the

formula assignation:
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< formula assignation >::= PROP NAME “ = ” < formula >

The previous production rule is to emphasize that each property must have its own

name. This is done as a mechanism to refer to a certain formula in the formulae. The

following production rule is the list of variable names, an auxiliary production rule of a

simple comma separated variable list:

< var name list >::= V AR NAME|V AR NAME “, ” < var name list >

The usage of the previously stated production rule is found in the macro assignation

production rule, which is stated in the following:

< macro assignation >::=V AR NAME“(” < var name list > “)” “<-”

< atoms conjunction >

This provides flexibility and readability when writing the formulae. A basic replacement

concept of the right hand assignation from the left hand. A clear definition of how to

use the macro assignation is stated in subsection 5.4.3. Next we present another macro

assignation, but, a wider level, the formula macro assignation:

< formula macro assignation >::= PROP NAME “<-” < formula >

The previous production rule is just to avoid repeating common parts of a formula. Fur-

ther information regarding its interpretation and usage can be found in subsection 5.4.3.

Finally, we present the formulae production rule, it joins all the previously stated pro-

duction rules:

< formulae >::= < formula assignation > | < formula assignation >< formulae >

| < formula macro assignation >< formulae >

| < macro assignation >< formulae >
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The previous production rule, this denotes that the grammar can accept several formula

assignations, formula macro assignations or macro assignations. Please notice that at

least one formula assignation is necessary.

Note: The input that describes the properties must comply with the production rules

defined above. If the input source does not follow the grammar rules, then, it will be

considered a faulty input and not taken into account.

Also, variables express associated timeouts. We added a new production rule, a very

simple production rule for the variables and timeouts described below:

Note: The input that describes the properties, must comply with the production rules

defined above. If the input source does not follow the grammar rules, then, it will be

considered a faulty input and not taken into account.

5.4.3 Semantics of TeAR

Hereafter, we focus on the semantic of the new language, i.e., the meaning behind the

language composition. We will provide how each component and construction of the

language should be interpreted; this is highly important, since it will leave no room for

ambiguities. First, it is important to understand that the language is designed to test

network packets and make correlations between them in real time (on-line).

As stated before (as it can be seen in our language’s grammar), our language consists

of a list of property assignations, macro assignations and formula macro assignations.

The list should be treated as: individual and unrelated set of formulae; the macro

assignations and formula macro assignations will not be tested, they are only used to

avoid text duplication and to provide more readability in the formulae, therefore, at

least a formula assignation is required, this is also enforced by the language’s grammar.

The formula assignations provide properties to check in the trace or live capture; those

properties must be checked upon each new packet arrival. A sequence of packets that do

not comply with one or many properties is considered to be a failure for each property

that it does not comply. Therefore, it is possible to have several failures of each of the

properties that a packet does not comply.

Unused macros or formula macros are acceptable, however, not recommended. The

use of macros should also be taken into consideration just to provide readily and to

avoid repeating common parts of the formula. Nevertheless, one should not rely on this

mechanism as both of them are just pre-processing features. For both, the substitution

will be done replacing the text at the left hand of the “<-” reserved word with the text

at the left side. As an example, consider the following formulae:
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⇧ <- foreach x : 10(x.IP.source = “192.168.5.10000)

withinT ime(x, y, T ) <- x.time+ T >= y.time

�1 = ⇧ -> exists y : 10 > x(y.IP.source! = “192.168.5.100000 ^ withinT ime(x, y, 9))

Direct substitutions will be applied taking the macro assignations into the formulae.

This will have the same result as writing the single property like this:

�1 = foreach x : 10(x.IP.source = “192.168.5.10000) ->

exists y : 10 > x(y.IP.source! = “192.168.5.100000 ^ x.time+ 9 >= y.time)

As stated before, the only advantage of macros is readability and avoiding text duplica-

tion, and both formulae achieve the same set of tests.

Given the fact that two formulas can express the same with di↵erent order of elements,

we define equivalence between formulas. For the sake of simplicity and readability, we

explain the equivalence between them when we explain each of the language components.

Nevertheless, we will make use of this concept to further explain some elements of the

language with higher hierarchy.

Moving on to the formula assignations, they are nothing more than a mechanism for

referring to each formula. Also note that we consider possible the possibility of two or

more di↵erent formula assignations with same or equivalent formula. This is discouraged

and considered to be a fault. We do not remove one of the formulae, since, the tool is

unable to determine which one the user wants to keep. The reason for this to be a

fault is that, on-line monitoring systems cannot waste any resources. In order to express

possibilities after a common part of the formula, we do not provide a mechanism to

express options. The reason is that given the inherited meaning of formulae being

independent clauses, the logical or value is implicit between them. Therefore, writing

two formulae with di↵erent parts expresses the optionality.

Logical or construction for TeAR proof. Let ↵, �, and � be a formule. Let � the desired

construction of choices between � and � after ↵, i.e., � = ↵! (� _ �).

� = ↵! (� _ �), � = ¬↵_¬↵_ (� _ �), � = ¬↵_ � _¬↵_ �, � = ↵! � _↵! �

For example, to express that after a request from an IP address a response from one of

two di↵erent IP address can come it can be done with two di↵erent formulae. First let

us assume the source iP as:,“10.0.10.10”, and the possible responses as, “10.1.10.1” or
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“10.1.10.2”. This will be expressed as:

�1 =foreach x : 10(x.IP.source = “10.0.10.1000) ->

exists y : 10 > x(y.IP.source = “10.1.10.100)

�2 =foreach x : 10(x.IP.source = “10.0.10.1000) ->

exists y : 10 > x(y.IP.source = “10.1.10.200)

It is up to the entity processing the verdicts to determine if the failure of one of this

properties is considered a fail or the composition of them (if �1 or �2, then, success or

fail).

A formula expresses a sequence of packets as they will appear, the tests required for

them to pass, and the relationships between those packets. Given the construction of

the formula grammar, the formula can only express the tests applied to a packet. If

a packet matches the tests (the atomic tests conjunction, discussed after), then, this

packet will be considered to belong to the set of the stated variable, and added to its

corresponding queue. Therefore, we say that a variable in the language declares a packet

prototype, containing all the specifications of what a packet should have to be considered

to belong to the set of that prototype.

As well, as stated in the grammar, the only way to link two or more packets is through

the reserved keyword ”->”, which should be interpreted as implies ; an if-then semantic

construction. The time relationship between the packets is expressed via the “>” and

“<” reserved keywords, they should be interpreted as after and before, respectively. Two

important concepts need to be explicitly stated. First, the cause and consequence

packets, the cause is the packet described by the formula at the left part of the ”->”

keyword, and the consequence, the one at the right. If the cause formula is met, then,

the consequence of the formula must be met; otherwise, a FAIL verdict will be obtained

(so far, fail verdicts can be obtained via the timeouts, more of this explained further).

The second concept is about the time positioning of the packets. The packet which is

called predecessor is the one captured by the monitoring tool, before the successor,

and viceversa.

Please note that a packet which is stated to be the predecessor to any other successor

of packets cannot include any references (in the terms) to the packets depending on

it. The reason is that information of the future packet is not available in when testing

the packet stated to be a predecessor in the past. For example, the following formulae
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contains errors:

�1 =foreach x : 10(x.IP.source = “10.0.10.1000) ->

exists y : 10 < x(y.IP.source = “10.1.10.100 ^ y.tcp.sport = x.tcp.dport)

The reason is that when testing a packet, to determine if that packet belongs to the

set “y”, no information regarding “x” is available. Therefore, this formula is invalid.

For instance, to test if the corresponding communication ports match, the atomic tests

could go in the successor packet, “x”, like this:

�1 =foreach x : 10(x.IP.source = “10.0.10.1000 ^ y.tcp.sport = x.tcp.dport) ->

exists y : 10 < x(y.IP.source = “10.1.10.100)

A packet will be kept in the system during a certain period of time, depending on the

specified configuration. Nevertheless, there are two main cases, if the associated timeout

(expressed via <var timeout> ) has not been reached, or if the packet is a dependency

of a successor packet. In the second case, if the timeout is reached for the second packet,

the dependency will be removed and if the packet has no other dependencies it will be

released. If the timeout is reached for a packet, the error will be reported for this packet

and all its associated predecessors only once. The default time units for the timeouts

are expressed in microseconds. The timeout must be detailed in the language in

a formula when the new variable (prototype) is declared. A timeout of a previously

declared variable will be ignored. For example:

�1 =foreach x : 10(x.IP.source = “10.0.10.1000 ^ y.tcp.sport = x.tcp.dport) ->

exists y < x : 20(y.IP.source = “10.1.10.100)

The timeout 20us in the variable x is ignored in the previous formula, and the prototype

y is not considered to be complete, since, no timeout was declared, thus yielding an

error.

The quantifiers, “foreach”, and “exists” have a meaning in regards of the cause (left part

of the “implication”). “exists” implies that the cause is taken away from the potential

packets in its set of the cause packet(s), since, at least one occurrence matching “exists”

has been found. On the contrary, “foreach”, will keep the cause packet(s) in its(their)

queue. At the chronological beginning (the first predecessor) of a formula, only “foreach”

quantifiers should be used, since on-line monitoring is a continuous process, and looking

for a single packet is not its target. It is considered an error to have an “exists” as
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the first chronological packet. Also, please note that the performance might be a↵ected

when using the “foreach” quantifier in the consequence packets (after the “implication”),

and most of the times each packet is not associated to many. Also, the quantifiers di↵er

in respect of the timeout of the cause of the packet. For an “exists” quantifier in the

consequence, the packets at the cause get released from the memory if they have no

dependencies. For a “foreach” quantifier in the consequence, the last packet at the

cause remains in the queue for the configured timeout amount of time, if the timeout

is then reached, no error is produced for that packet. Consider the following TeAR

formulae:

�1 =exists y : 10 > x(y.IP.source = “10.0.10.1000 ^ y.tcp.sport = x.tcp.dport) ->

foreach x : 10 < y(y.IP.source = “10.1.10.100)

Please note that in the previous formulae, the first chronological packet prototype is

x. Therefore, no violation regarding the quantifier chronological position occurs. An

interesting aspect to note is how the semantic behind the construction of the reply

packet in the cause di↵ers if the reply packet was in the consequence. If the reply packet

is described in the consequence, it implies that all requests must have those replies; if

the reply packet is in the cause, it implies that a reply formed like that must have a

request as described.

A special way to keep packets is defined with the VAR NAME W HC type. It keeps

the packet until a new packet matching the atoms arrives, then, the packet is released

when no more dependencies are present.

Atoms conjunctions are nothing more than a logical conjunction of atomic tests — a

list of tests. Atoms on the other hand, as stated before, are atomic tests, comparisons

between one data element (term) and another. Note that relationships such as < and

<= can be expressed interchanging the order of the terms, this is the reason why they

are not included. A term can have four di↵erent data types: “null”, number, string,

and associative array. The associative array type is a collection of key value pairs; the

values can be either ‘null”, number, string, and associative array, the keys are string

labels. The comparisons between “null” and any data type is allowed. String-number

comparisons are not allowed. The comparison between associative arrays can be done

only with associative arrays (and null). The comparison between associative arrays is

done recursively, so that all the set of keys in one should be the same in the other, and

the values associated of both should be the same.
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Terms belong to the stated data types, they can either be constant values or variable

terms extracted from the network packets through the SELECTOR VARIABLE. The

SELECTOR VARIABLE can give also dictionary types as explained before.

Numbers can only be represented in the range [�2147483647,+2147483647], larger inte-

gers or floating point numbers are not allowed. This is very important for the language

users as well as for the implementation; the messages hierarchical data structures must

take this into consideration, if a number has a bigger representation in the protocol, this

number should be split into parts to process it correctly.

Finally, we can explain the concept of formula equivalence starting by the definition of

term equivalence. A term is said to be equivalent to another if they are both constants

and if they are equivalent, or if they are the same selector variable. String constants are

equivalent if they are equal strings, case sensitive. Number constants are equivalent if

the number value is exactly the same; for integer-floating-point number comparison, no

approximation is performed. An atom is said to be equivalent to another if the operator

of both atoms is the same and they contain the two matching terms (in no particular

order). An exception occurs with the “>”, and “>=” operators. the mathematical

equivalence should be preserved, and therefore the terms are not exchangeable. For

example, consider the following formulae:

�1 =exists y : 10 > x(y.IP.source = “10.0.10.1000 ^ y.tcp.sport = x.tcp.dport) ->

foreach x : 10 < y(y.IP.source = “10.1.10.100)

�2 =exists y : 10 > x(“10.0.10.1000 = y.IP.source ^ y.tcp.sport = x.tcp.dport) ->

foreach x : 10 < y(y.IP.source = “10.1.10.100)

In the previous example, both, �1 and �2 are equivalent formulae. As stated before,

equivalent formulae is considered an error in the formulae input.

One last important fact that needs to be taken into account is the uniqueness of the

identifiers. The identifiers must be unique for the formulae names as well as for the

variable prototypes inside a formula. This must be true after the macros have been re-

placed. Circular macro referencing will produce an error, i.e., one macro cannot reference

another macro which references the first one.



Chapter 5. Enhancements for On-line Network Monitoring Systems 82

5.4.4 TeAR examples

In this subsection, for a better understanding of the language, an example is provided.

We express properties extracted from the SIP [Rosenberg et al., 2002] protocol confor-

mance and performance requirements in the proposed language. Also, we express in

comments technical details of those formulae, such as, timeouts and others.

Let us assume the following conformance requirements: “Every INVITE request must

be responded with a final non-provisional code”, “Every successful INVITE request

must be responded with a success response”. Also consider the following performance

requirement: “The response time for each request should not exceed 8s”. Based on this

requirements, we create the following formulae:

/***********************************************************************

MACROS

***********************************************************************/

/***********************************************************************

*** A request has the sip method.

*** For a response the SIP response code is found instead.

***********************************************************************/

request(x) <- x.sip.method != null

response(y) <- y.sip.method = null

/***********************************************************************

To see if a SIP response corresponds to a request, one should check the equality

of the cseq of the headers.

***********************************************************************/

responds(y, x) <- request(x) ^ response(y) ^ x.sip.headers.cseq = y.sip.headers.cseq

/***********************************************************************

A provisional request code in SIP is defined as 1xx. Non provisional are the

rest of codes. Also, codes start at 100.
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***********************************************************************/

nonProvisional(y) <- y.status.code >= 200

/***********************************************************************

A successful request code in SIP is defined as 2xx.

***********************************************************************/

successful(y) <- y.status.code >= 200 ^ 300 > y.status.code

/***********************************************************************

A way to calculate if a packet was observed before a desired time T,

relative to another packet.

***********************************************************************/

inT ime(p1, p2, T ) <- p2.time+ T >= p1.time

/***********************************************************************

FORMULA MACROS

***********************************************************************/

/***********************************************************************

Formula macro for invite requests with a timeout of 10s

***********************************************************************/

µInvite <- foreach x : 10000000(request(x) ^ x.sip.method = “INV ITE00)

/***********************************************************************

FORMULAE

***********************************************************************/

/***********************************************************************

First conformance requirement

Every INVITE request must be responded with a final non-provisional code

***********************************************************************/

⇥1 = µInvite -> exists y : 10000000 > x(nonProvisional(y) ^ responds(y, x))
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/***********************************************************************

Second conformance requirement

Every successful INVITE request must be responded with a success response

***********************************************************************/

⇥2 = µInvite -> exists y : 10000000 > x(successful(y) ^ responds(y, x))

/***********************************************************************

First performance requirement

The response time for each request should not exceed 8s

ACK responses are just acknowledgments, therefore, we do not care

***********************************************************************/

�1 = foreach x : 10000000(request(x) ^ x.sip.method != “ACK 00) ->

exists y : 10000000 > x(successful(y) ^ responds(y, x) ^ inT ime(x, y, 8000000))

/***********************************************************************

Example: previous formula without macro usage:

***********************************************************************/

�1 = foreach x : 10000000(x.sip.method != null ^ != “ACK 00) ->

exists y : 10000000 > x(y.status.code >= 200 ^ 300 > y.status.code) ^ y.sip.method = null^
x.sip.headers.cseq = y.sip.headers.cseq ^ y.time+ 8000000 >= x.time)

To demonstrate the flexibility of our approach, we include a property that will test the

TCP protocol [Postel, 1981]. The conformance requirement to monitor is “For each syn-

ack there should exist an ack corresponding to it”. In addition to it, the performance

requirement: “Every TCP packet to the host 217.160.43.140, an acknowledgment of the

sent data should be received and it should not exceed 1s”. The properties expressed in

the TeAR language are as follows:

/***********************************************************************

—Conformance Requirement—

For this example, we do not use macros.
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Please note:

A. The source and destination ports are matched.

B. The the ack number in the ack package corresponds to the

previous seq number plus one (reply to syn-ack).

***********************************************************************/

syncorrect = foreach x : 10000000(x.tcp.flags.syn = 1 ^ x.tcp.flags.ack = 1) ->

exists y : 1000000 > x(y.tcp.flags.ack = 1 ^ y.tcp.ack = x.tcp.seq + 1^
y.tcp.sport = y.tcp.sport ^ y.tcp.dport ^ y.tcp.dport = x.tcp.sport)

/***********************************************************************

—Performance Requirement—

For this example, we do not use macros.

Please note:

A. The source and destination ports are matched.

B. The the ack number in the ack package corresponds to the

previous seq number (reply not to syn-ack).

***********************************************************************/

�1 = foreach x : 5000000(x.tcp.flags != 0x10 ^ x.ip.ip dest = “217.160.43.14000) ->

exists y : 5000000 > x(y..ip.ip source = “217.160.43.14000 ^ y.tcp.sport = x.tcp.dport^
y.tcp.dport = x.tcp.sport ^ y.tcp.flags.ack = 1 ^ y.tcp.ack = x.tcp.seq

^ y.time+ 1000000 >= x.time)



Chapter 6

A generic trust framework

“To be trusted is a greater compliment than being loved” — George MacDonald, The

Marquis of Lossie (1877).

While performing the first work on this thesis, proposing another trust management

engine was not what we intended. We assumed that, by modifying one of the existing

trust management engines to incorporate our approach presented in Chapter 3, we could

make trust management engines generic in terms of the possible trust features they could

evaluate and take into consideration.

As stated in Chapter 1, the work performed in this Chapter is based on identifying

the open problems in the trust domain. Furthermore, solutions to these problems were

proposed. In addition to that, as shown in the Chapter 2, the existing solutions do not

tackle these precise issues.

After our proposed approach to generically provide feedback regarding the entities’ in-

teractions, we noticed that no trust management engines or frameworks are capable of

being easily re-configurable in the parameters they use, when adding new, and exten-

sible trust properties to monitor a set of behaviors. Furthermore, the devices which

can use the trust concepts might have various capabilities, and therefore, a framework

that might allow o✏oading the services is proposed. In this Chapter, we propose a

generic framework with a RESTful web-service based architecture to exchange the trust

feedback and to get the trust information from the trust management engine. We also

discuss the architecture, design, and proposed input features for the associated trust

model, namely in Section 6.2.

Further, when having all the inputs (trust features), an appropriate module (trust model)

which is capable of processing them and to accurately assess the entity’s trust level is

86
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a delicate task. An important aspect of the trust model is that it should be flexible

enough and to be able to respond to the trust evaluations as close as possible to the

human cognitive notion of trust. We propose a new trust model based on the solution of

a multi-class classification problem. We solve the problem using a well known machine

learning technique, Support Vector Machines (SVM), optionally using a Gaussian (or

Radial Basis) kernel function. The trust model is shown in Section 6.3. Nevertheless,

in order to fully comprehend the trust model, important concepts of machine learning

and SVM are needed to be introduced. Therefore, we present a preliminary section with

those concepts in Section 6.1.

In this chapter, we describe the results which are partially published in [López and

Maag, 2015b] and [López and Maag, 2015a].

6.1 Preliminaries — Support Vector Machines (SVM)

To understand what Support Vector Machines (SVM) are, first, we will give a small

overview of what machine learning algorithms can achieve, and the basic notions of

them.

Machine learning algorithms are designed to learn from available data in order to make

predictions / estimations. Typically, the machine learning algorithms operate by build-

ing a model from the data input to learn how to predict, without being explicitly in-

structed. The main distinctions in machine learning algorithms are:

• Supervised machine learning: the algorithm takes as inputs the examples

alongside their expected outputs. Given the inputs, the final goal is to learn how

to map to the training example outputs.

• Unsupervised machine learning: The algorithm takes as inputs examples with-

out expected outputs. The goal is to find a structure in the pattern, discovering

some common features in the data.

Many other tasks can be accomplished with machine learning, for instance, reinforcement

learning is considered to di↵er from standard supervised machine learning, since, the goal

is to take the proper actions given some interactions and to maximize some measure

of cumulative reward. For example, a model that learns to play a video-game given

“random” attempts and trying to maximize how much it progresses in the level. In

this thesis, the discussion of such applications in machine learning is out of the scope.

Nevertheless, we focus on supervised machine learning. The reason is that, our main

task to solve is to correctly classify the trustworthiness of an entity based on its inputs.
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Formally, the inputs are called features. A feature vector, denoted as
�!
X , is an n-tuple

of the di↵erent inputs, x1, x2, ..., xn for an n dimensional feature vector (i.e.,
���
�!
X
��� = n).

The expected output for a given feature vector is called a label, denoted simply as y, and

the possible set of outputs respectively, Y . The set of examples, called a training set,

consists of pairs of a feature vector and a label; each pair called a training example,

denoted as (
�!
X (i), y(i)), for the i-th training example. The complete training set can be

denoted as T S = (
�!
X,Y ). The cardinality of the training set is usually denoted by the

letter m = |T S|, a training set with m training examples.

In general terms, in supervised machine learning, the objective is to find a function,

h⇥(X) called the hypothesis, such that, h⇥ : X 7! Y . Please note that, the hypothesis

has a subindex ⇥, this is because ⇥ is the array of parameters of the hypothesis function.

A common hypothesis is based on the linear combination between the parameters and

the features. Therefore, the objective is to find the values of ⇥ that minimizes the

error (commonly the squared error) between the predictions and the output of h⇥. The

function to minimize is often called the cost function, denoted as J(⇥). To optimize

the cost functions, known algorithms as gradient descent, Newton’s method, or more

specialized techniques as shown in [Fan et al., 2005].

A common problem with supervised machine learning is that the training set could

not have enough training examples or that the training set has many examples that will

train the machine with poor generalization (also called high variance); when this problem

occurs, it is called over-fitting. To avoid over-fitting, one popular strategy (perhaps

the most popular) relies on using a regularization term in the optimization objective,

to obtain “simpler functions”. Commonly, the regularization term introduced is the

squared Euclidean norm of the weights, i.e.,
P

n

i=1⇥i

2. A constant, multiplying either

the regularization term or the cost term is introduced to control finely the penalization.

This constant is known as the cost or regularization parameter, denoted by � or C.

In order to see how well the prediction of the model generalizes to any given data set,

a common technique is employed, i.e., cross-validation. Given a data set, the whole

data set could be considered the training set. Nevertheless, in order to see how well the

trained model generalizes (avoiding over-fitting), a sub-set of the data set is chosen as the

training set and another sub-set is chosen to test how accurate the model can predict;

the other sub-set is known as the validation set. Cross-validation is essentially to

perform the validation with di↵erent parts of the data set (and therefore the training set

with the remainder). The di↵erent results of the cross-validation are averaged to output

a final estimation of the precision obtained. Furthermore, among cross-validation, one

common type which is used is n-fold cross validation. In n-fold cross validation, the set

is divided into n equal parts. Then, one part is chosen as the validation set, and the
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reminder n � 1 parts are used as the training set. The process is repeated n times for

the n folds. It is important to note that, depending on the regularization parameter

(and others from the particular machine learning algorithm), the same cross-validation

accuracy can change.

Typically, when talking about the classification problems that supervised machine learn-

ing can solve, multi-class classification refers to when the classification of the feature

vector can be mapped into more than two di↵erent classes. Depending on the algo-

rithm, they can have native support for multi-class classification or not. In general, if

an algorithm can only distinguish between “a positive“ and “a negative” class, there

are some well known strategies for reducing a multi-class classification problem into a

binary classification problem. The most popular strategies to reduce a multi-class clas-

sification problem are the ones known as “one-versus-all” and “one-versus-one”. In

one-versus-all, the strategy consists in training a single classifier per class, with that

class as the positive class and the rest of the classes marked as the negative class. In

addition to that, the classifier needs to output a value with the confidence score of the

prediction. By choosing the higher confidence score, the final prediction in regards to

which class the inputs belong is obtained. In one-versus-one strategy, the model trains

k(k � 1)/2 binary classifiers, where k is the total number of classes. For each binary

classifier, it receives a pair of classes from the original training set and the classifier

learns to distinguish between the two classes. The final prediction is obtained where the

positive class is obtained the most among all binary classifiers. No strategy has been

proven to be better for all cases, for some particular practical cases and algorithms some

interesting studies support one strategy over the other, as seen in [Hsu and Lin, 2002],

for example.

When talking about the hypersurface that separates the classes of the feature space,

called decision boundary, there are two major cases. The first is when the data is

linearly separable (therefore the hypersurface is a hyperplane), and the second case, is

when the data is non-linearly separable. The supervised machine learning algorithms are

capable of handling linearly separable data in a fairly easy manner. Depending on the

algorithm, there are some ways to classify non-linearly separable data. For example, with

logistic regression, a higher degree polynomial of the input features could be constructed

to obtain a non-linear decision boundary; while using artificial neural networks, adding

hidden layers will help obtaining a non-linear decision boundary; and finally when using

SVM, using the kernel method will achieve the same. Later in this section we discuss

what the kernel method is for SVM.

With the general knowledge about supervised machine learning, we can now present the

SVM model particularities. Given a training set T S, with training examples (
�!
X (i), y(i)),
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with cardinality m, where each training example
�!
X (i) 2 <n and y(i) 2 {�1, 1}, the

Support Vector Machines proposed in [Boser et al., 1992], and kept until nowadays

[Wang et al., 2014], proposes to optimize the following cost function:

minimize
⇥

J(⇥) = C
mX

i=1

⇠
i

+
1

2

nX

i=1

⇥2
i

subject to y
i

(⇥| · �(�!X (i))� b) � 1� ⇠
i

,

⇠
i

� 0.

Note that, ⇠
i

is considered the prediction error for the i-th label, calculated as ⇠
i

=

1 � y(i)(⇥| · �(�!X (i)) + b). Also note that the constant C, must be greater than 0. C

is exactly the regularization parameter as previously discussed; also note the typical

squared Euclidean norm of the weights to avoid over-fitting. Another important charac-

teristic to discuss is the function �. To properly discuss �, one must know the concept

of kernels. Let us first introduce that concept.

An important statement is that the algorithm of SVM finds a hyperplane to separate

data, making SVM a linear classifier algorithm. Later, to make SVM a non-linear

classifier, the kernel method was proposed. Shortly, a kernel function (or similarity

function) is a function that allows to find a linearly separating hyperplane, potentially

mapping the features into a higher dimensional space. The kernel is a function, such

that k : X ⇥X 7! < that satisfies:

k(
�!
X (i),

�!
X (j)) = �(

�!
X (i)) · �(�!X (j))

Where � is a feature map, such that � : X 7! H, where H is a dot product space.

Examples of widely used and applied kernels are:

• Linear Kernel: k(
�!
X (i),

�!
X (j)) =

�!
X (i) ·�!X (j)

• Polynomial Kernel: k(
�!
X (i),

�!
X (j)) = (�

�!
X (i) · �!X (j) + r)d, where d is the degree of

the polynomial, � and r are kernel parameters. � > 0

• Radial Basis Function Kernel(RBFK): k(
�!
X (i),

�!
X (j)) = e��k�!X (i)��!

X

(j)k
2

, � is a ker-

nel parameter. � > 0

• Sigmoid Kernel: k(
�!
X (i),

�!
X (j)) = tanh(�

�!
X (i) ·�!X (j)+ r), � and r are kernel param-

eters.

Please note that the kernel parameters, such as d, � and r, modify how the kernel could

potentially map the data, and therefore how the classification is done. Similarly, as with
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the regularization parameter, the best way to find the optimal kernel parameters is done

using cross-validation. Certainly, when trying to discover the optimal value for more

than one parameter, all combinations between the reasonable values for the parameters

should be tested in order to determine the best suited parameters. For instance, for two

parameters under two di↵erent ranges, each point of the Cartesian map of parameters

(under the ranges) should be used to train the model using cross-validation sets. The

values for the parameters with the best obtained accuracy are the better suited to finally

train the model.

Although there exist newer and di↵erent kernels proposed by researchers [Wang et al.,

2006; Zhang et al., 2013], the RBFK is perhaps the most widely used kernel with SVM;

it has proven to have good performance and accurate classification [Deng et al., 2012].

With the concepts of how support vector machines work, we can further explain the

idea of our trust model. Nevertheless, first we introduce the whole trust management

framework architecture in the following section.

6.2 An Extensible and Dynamic Trust Management Frame-

work

One of the biggest challenges when designing a generic trust management framework is

that, trust is a concept for which each entity, user, or system have di↵erent trust features,

measures, and di↵erent contexts. For instance, an entity might consider trustworthy that

the responses from a peer arrive within a specified time frame, while another entity might

consider trustworthy a low amount of retransmissions. Nonetheless, the same trust

management engine should handle the di↵erent assessments of trust for the di↵erent

trustors. This motivates the need to have a generic framework, in which the trust

management engine is able to collect the trust information from the trustor, process

those features, then, make the information of the trust levels available to the trustor.

The first thing we need to express is that each trustor might have di↵erent contexts

to evaluate the trustees. Therefore, the trust features will vary from trustor to trustor

and from context to context. Furthermore, the trust features of a context might change

along the time, in order to use more meaningful trust features for the context, one might

add or remove trust features from a given context.

We also note that, in order to give greater flexibility, each trustor might decide di↵erently

on how to interact with trustees. Therefore, the framework proposes to provide di↵erent

trust levels to help the trustor to accurately decide how to interact with the trustee.
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When the trust information regarding a trustee in a specified context is available, the

trustor decides how to interact with the corresponding trustee. It is up to the trustor’s

criteria how to interact with the trustee depending on the trustee’s trust level. For

example, a trustor decides not to interact with a trustee with a certain trust level,

which can be equal for another trustor that interacts with the trustee with a limited set

of operations.

Finally, the last notion is that the information might be collected not only by the trustor;

the trustor might allow other entities to provide trust information where the trustor

cannot obtain the information. Possibly a trustee performs observable actions for the

third party entity or the third party entity has knowledge of the trustee’s trust features.

Now, let us define the previously expressed relationships and notions. First, let us define

what a trust feature is.

Definition 6.1. Let x be one trust feature. x is a desired feature to be taken into

consideration for a trust assessment. A trust feature has an associated numeric measure.

No numeric limitation is defined for trust features, therefore, x 2 <, where as usual, <
denotes the set of real numbers.

Having the trust feature definition, we proceed to define a context.

Definition 6.2. Let x
i

be a trust feature, Let C be a context. C is a defined set of

trust features, C =
S

n

i=1 xi. Where n is the number of trust features associated to the

context C. A single constraint is defined for the set size, that is |C| > 0, to guarantee

contexts are not empty sets.

With the help of the previous definition we proceed to define what is a trustee.

Definition 6.3. Let CS be a set of contexts. A trustee is an entity which interacts

within an environment where the trust features of all elements of CS can be measured.

Also, the limitation on the cardinality of CS is the same, |CS| > 0, this guarantees that

a trustee is an entity with meaningful interactions for our framework.

Finally, we define trustor in the following manner:

Definition 6.4. Let T S be a set of trustees for a defined set of contexts CS, each

context denoted as CS
i

, respectively, we denote the associated trust features as x
ij

, for

i = 1, 2, ..., |CS|, and j = 1, 2, ..., |CS
i

|, depending on each context length. A trustor

is an entity which: i) might collect trust features measures, by evaluating x
ij

from the

observations of T S, and provides the numeric measure of those evaluations to the trust

management engine; ii) might delegate other entities to provide the numeric measure to
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the trust management engine about collected trust features, x
ij

from the observations

of T S; iii) queries the trust management engine for the trust level of T S and based on

that information, determines how to interact 8t 2 T S.

Immediately, the first question that comes after the stated definitions is what a trust

feature can be, and how it can be measured. One good example of what a trust feature is

found in our generic approach to obtain trust verdicts as shown in the Section 3.2. One

might consider that a simple way to measure is to map -1, 0, and 1 for fail, inconclusive,

and pass verdicts respectively might be enough. Nevertheless, since our goal is to have

a generic framework, we need to define how the possible trust features behave, and how

to calculate their numeric measure for all cases.

Commonly, trust researchers define well known and established features as: knowledge,

reputation, and experience. Starting from these well known features we will examine

di↵erent measure possibilities. As for knowledge, it can be a wide range of elements, for

example, a trustee has a certificate or some means to increase its trust, or it has a geolo-

cation corresponding to the given information, etc. For all of these cases, the numeric

measure of the trust features will be a number, either a boolean value, representing if the

trustee has the corresponding trust feature or not, or perhaps a fuzzy logic value or any

other measure of that knowledge. In the end, the numerical value will be represented

by a real number. Regarding reputation, there are several options, reputation could be

characterized as a real number if it was obtained via a central reputation engine. The

other possibility is to consider di↵erent sources of reputation for the same trustee; in

this case we consider two di↵erent possible approaches: to have n di↵erent trust features

or to consider an average of them. In Section 6.3, we explain why we do not consider a

weighted average to prioritize certain reputation opinions. Finally, experience is usually

considered as the collection of behavior evaluations with a forgetting factor. The for-

getting factor is a function that favors newer interactions and places more importance

on newer interactions, and respectively lower importance in older interactions. So far,

we have noticed that all other inputs will use one of the previously exposed numeric

measures. Therefore, we define the following way to calculate the numeric measure.

Definition 6.5. Let x be a trust feature. The numeric measure of x can be calculated in

two di↵erent manners, those are the following: a) x = v, where v 2 <, v is a direct assign-

ment of a value given an evaluation; and b) a cumulative value, x =
P

n

i=1 ff(i) ⇤ e(i),
where ff(i) is a forgetting factor function applied to the observation i, while e(i) is

the evaluation of the observation i. Please note that, new measures in the first case

are interpreted as updates and updates replace old measures, on the other hand, in the

second case, new measures get incorporated into the measure. In our framework, we
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propose the following forgetting factor functions:

ff(x) = 1

ff(x) = x/n

ff(x) = x2/n2

ff(x) = e(x�n)/n

ff(x) = log(n/(n+ 1� x))

Where n is the number of observations. To give a better idea how those functions behave,

we show them in Figure 6.1.

Figure 6.1: Forgetting factor functions

Since our goal is to entitle any device to incorporate trust notions into their interactions,

we need to consider a feasible technology to exchange the trust features, contexts, trust

feature measures, and trust evaluations. Nowadays, devices have very distinct capabil-

ities, therefore we need to employ an architecture that can be used without distinction

by many devices, ranging from embedded systems, wearables, and limited processing

capability devices to dedicated servers and clusters. For that reason, we propose an ad-

equate and generic architecture in which the trust management engine can be executed

separately from the trustor. Nevertheless, all the functionality must be preserved. We

also need to consider that, it is possible that the device can have several applications

that could be interpreted as di↵erent trustors. Ideally, all those applications could use

the same trust management engine.
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As previously stated, we assume that entities which need to trust other entities are

entities connected to a network. With this assumption, we also consider that commu-

nication in that network is possible with other systems. Therefore, we propose the use

of a RESTful web-service architecture [Richardson and Ruby, 2008], in order to entitle

a wide range of devices to use a trust management engine in our framework. Recently,

many researchers have invested e↵orts to decide on the architecture that will allow on

one hand specialized providers to take care of punctual tasks, and on the other hand,

devices with limited capabilities to rely the processing of certain functions to more ca-

pable or more specialized entities. Many well known applications in the Internet provide

web-services to interact with their applications, and moreover, low processing devices

rely on such architectures [Christensen, 2009]. Also, we propose the use of JSON [Bray,

2014], as a lightweight language for data interchange. In our architecture, we assume

that the handling of the tra�c is following the industry standards and being sent in

HTTPS when the exchange of trust data is done over a public network. Likewise, we

assume that a trustors are created in the trust management system with at least one

authorized key to identify its data requests; additional keys can be associated to the

trustors in order to entitle third party feedback to the trust monitoring engine. The

summary of the proposed RESTful API is shown in Table 6.1.

Method Parameters Description

GET /con-

text/{ctx id}

ctx id, optional

trustor id, required

auth key, required

Gets the context information and

associated trust features. If no

ctx id is provided, it gets all the as-

sociated contexts of the trustor.



Chapter 6. A generic trust framework 96

POST /context/

trustor id, required

auth key, required

trustP array, optional

Creates a new context. Adds the

associated trust features to the

context. The array of trust fea-

tures must be in a key-value for-

mat. The key is the name of

the contexts and the value should

be a pair, measure and forget-

ting function.“V” for a single value

measure, and “C” for a cumula-

tive measurement. For the forget-

ting function, the number associ-

ated as previously noted. Exam-

ple, {“Experience Behavior TCP”:

[{“measure”‘:‘C”, “↵”:1}]}, this

creates a cumulative measure with

ff(x) = 1. The result is the con-

text object with its corresponding

ctx id.

POST /contex-

t/add tp/{ctx id}

ctx id, required

auth key, required

trustP array, required

Adds the set of trust features,

trustP array to the specified con-

text, ctx id.

POST /contex-

t/del tp/{ctx id}

ctx id, required

auth key, required

trustP array, required

Deletes the set of trust features,

trustP array to the specified con-

text, ctx id.

GET

/trustee/{trustee id}

trustee id, required

trustor id, required

auth key, required

Gets the information related to the

trustee with id, trustee id.

POST /trustee/

trustee desc, required

trustor id, required

auth key, required

Creates a new trustee, adds the

description, trustee desc to the

trustee. The call returns the newly

created trustee.
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POST /trustee/e-

val/{trustee id}

trustee id, required

trustor id, required

auth key, required

ctx id, required

trustPM array, required

Creates a new measurement of

the trustee, trustee id in the con-

text, ctx id, updating the mea-

surements in trustPM array. The

measurements get replaced if the

measurement is a single value,

they get added into the cumula-

tive value otherwise. An example

of an element of trustPM array is

{“Experience Behavior TCP”: -1}.

GET /trustee/e-

val/{trustee id}

trustee id, required

trustor id, required

auth key, required

ctx id, required

Based on the trust model, the trust

management engine retrieves the

trust evaluation of the trustee with

id, trustee id in the context, ctx id.

Table 6.1: RESTful API summary

For a better understanding of the trust data exchange in our framework, we show a

simplified framework architecture in the Figure 6.2. We depict the components as blocks

with the understanding that those blocks inside the dashed box can be executed in the

same device or in di↵erent devices communicating through the network. First, the block

depicted as the trust management engine, is in charge of the exchange of trust data

from the trustors and trustor delegates (using JSON over the RESTful API). The trust

data from the trustors and trustor delegates contains the evaluation of the trustees,

represented by the solid arrows. Inside the trust management engine, the component

which decides the trust level of the trustees based on the evaluations provided by the

trustors and trustor delegates is the trust model, it is represented in a block inside the

trust management engine. We consider that turstors might be di↵erent applications that

can be run at the same device as the trust management engine; nonetheless, they can all

be running in separate devices, they are depicted as blocks in the other end of the trust

data communication. The dashed lines represent the interactions between the trustors

and the trustees, from which the evaluation of the trustees behaviors can be obtained

by either the trustor or its delegates. The other end of the dashed lines represent the

trustees, the entities interacting with the trustors and trustor delegates for which the

trustors need to assess the trust level.
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Figure 6.2: Generic Architecture Interaction

Finally, note that we have not specified how the trust model decides how to assess the

trust data to determine the level of trustworthiness of a trustee. In our framework, we

make a clear distinction of how to exchange the trust data and how it can be processed.

In the Section 6.3, we present our proposed trust model.

6.3 A Machine-Learning-Based Trust Model

The trust model that a trust management engine utilizes has a fundamental role in the

trust management framework. Therefore, carefully selecting an appropriate trust model

for our architecture is a must. The first characteristic needed to take into account is

that, our approach is context-based oriented, evaluating the trust level per context with

di↵erent trust features for each context; the sets of trust features may have a di↵erent

cardinality. Furthermore, the features might have di↵erent influence to the overall level

of trust of the trustees. A well known approach, as used in [Toumi et al., 2012], proposes

to assess the trustworthiness as a linear combination of the trust features, such that, for

a context C, the trust assessment T , of a trustee t, is calculated as T =
P|C|

i=1 ↵i

· x
i

,

where ↵
i

is a normalized weight, an associated weight w
i

is associated to the feature

x
i

, hence the normalized weights are commonly calculated as, ↵
i

= w
i

/
P|C|

j=1wj

. Often

the weights are interpreted as the relevance a feature has with respect to the others,

and the most common strategy of how to choose each w
i

is to assign a value that can

express that. For example, for a two trust feature context, if x1 is more important than

x2, one might choose w1 = 5, w2 = 10; if both are equallly important, one might choose
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w1 = 1, w2 = 1. Since the w
i

values are chosen without a range the normalized weights

are used to correctly express how important is w
i

from the others, i.e., ↵
i

. Additionally,

adjusting the evaluations is usually desired to have the trust assessments within a known

interval to be able to compare the result, and therefore decide what to do with that linear

combination. There exist disadvantages to this approach, the main ones are:

• It is a hard task to choose how a given trust feature should influence globally on

the trust assessment for a given context.

• The lack of flexibility of a simple weighting takes place as well. For instance, a

context with n trust features in which two specific ones have little importance

alone, but, high values of them combined is considered trustworthy by itself, even

the rest are low. With this approach, there is no feasible way to achieve an accurate

measure for this case.

• A common misconception is that with the trust level as a continuous range, a

precise decision can be achieved due to the limitless numbers between the contin-

uous range. Nevertheless, a threshold is commonly used to decide when an entity

is trustworthy or not, e.g., when T > 0.2, splitting the range between only two

areas.

We would like that our trust model overcomes the previously stated drawbacks. Further,

it is highly desirable, our trust model can be as flexible, and act as close as our human

cognitive notion of trust. Based on this, we propose to present the assessment of trust as

a multi-class classification problem and to solve it using machine learning techniques. On

the one hand, the multi-class classification will provide a better refined manner to decide

how to interact with the trusted entities, on the other hand, solving the problem with

machine learning techniques will give the trust model a fairly close-to-human inference.

In order to achieve this, we formally define the necessary inputs for the machine learning

algorithm, the set of features as the trust features in a context, i.e.,
�!
X = C. The

training sets are undoubtedly the measures stored in the trust management engine.

Before applying the machine learning techniques, we need to be able to obtain the labels

y(i), assigned for each training set, (
�!
X (i), y(i)), for i = 1, 2, ...,m, where m is the total

number of trustees t, evaluated for the associated context C, also known as the number

of training sets. Then, the immediate questioning is how those labels are obtained?

At the trust management engine an administrative module is defined, first to configure

the trustors and trustor delegates, specially to authorize the access through authorized

keys, and second to be able to collect the training set labels. To obtain the labels, the

collected measures get extracted in the trust management system and they are presented
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in a view where the trustor application developers or administrators can assess to which

class the measures belong. In our current approach a manual intervention is required

to obtain the labels in he system. We define three trust assessment classes for our

trust model, those are: “untrustworthy”, “neutrally trusted”, and “trustworthy”,

respectively quantified as -1, 0, and 1.

Having the training sets complete, there exist many machine learning algorithms to solve

such multi-class classification problem [Duda et al., 2000]. Among the most popular and

widely adopted algorithms to solve this, there is logistic regression, artificial neural

networks and support vector machines.

Let us examine which machine learning algorithms will be the best suited for solving

our multi-class classification problem. Based on the assumptions that the trust data

can have a varied behavior, we assume the data will be seldom linearly separable. With

logistic regression, to achieve non-linear classification, choosing the degree of the poly-

nomial can be a challenging and somewhat di�cult to automate task. As for artificial

neural networks, designing the architecture to fit all the problems is a di�cult task to

automate, also, complex designs of artificial neural networks can lead to a high resource

consumption. SVM can classify non-linearly separable data by applying similarity func-

tions, also known as kernel methods. If the data is linearly separable, the linear kernel

can be used. For those reasons, we have chosen to utilize SVM to solve the classification

problem.

For our trust model, we show that an algorithm can be developed to find the optimal

parameter configuration for support vector machines. Namely, deciding which kernel

method to use and its parameters, in order to predict more accurately the trust as-

sessment according to the particular training sets. As the authors in [wei Hsu et al.,

2010] state, the radial basis function kernel (RBFK)1 is suitable for most cases in

exception when the number of features is very large, i.e.,
���
�!
X
��� > 10000. We consider

the number of features, i.e., trust features cannot reach a considerable high number.

Nevertheless, to implement a trust model that is capable of providing accurate results

for a generic training set, we consider the possibility that the data has many features or

it is linearly separable, in which case the linear kernel2 is better suited, and that is the

reason why we consider the linear kernel as well. Also to avoid a data over-fitting, we

use n-fold cross validation sets with the 1
5th of the training sets to avoid this problem.

In the Algorithm 6, we propose to obtain the better suited parameters to train our SVM

model. We assume
�!
X , and �!y are inputs to our algorithm and as a solution, it obtains

the best values for the parameters: RBFK, true if the radial basis function kernel is the

1
Described in Section 6.1

2
Described in Section 6.1
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best, false if the linear kernel is; C, the cost or regularization parameter; �, the gamma

parameter of the RBFK; and maxAccuracy, the maximum prediction accuracy using

cross validation sets. The algorithm is straightforward, it first scales the features, then,

it determines the best accuracy possible, varying the value of the SVM configuration

parameters. The accuracy is obtained by training the SVM and doing a n-fold cross

validation on the training set. In n-fold cross validation the training set is divided into

n subsets of equal size, then, one subset is tested using the classifier trained on the

remaining n � 1 subsets. The accuracy is the percentage of correct classifications the

classifier obtained from the testing set. Determining the best accuracy is done varying

the parameters C, and � over a “grid search”, a combination of all pairs of the designated

ranges for both parameters. In fact, a called loose grid search since the grid points are

largely separated, increments of powers of two. After the optimal values are found using

the loose grid search, we do a grid search with finer steps (20.25) in the area found by the

grid search. Finally the optimal values to train the SVM are found. Note that the fixed

values as 5 for the n-folds, the range [2�5, 215] for C, the range [2�15, 23] for �, and the

step increments of 20.25 in the fine grid search are known and commonly recommended

practical values, for more details see [wei Hsu et al., 2010].

After finding optimal parameters to train the SVM with our algorithm, we perform

the training of the SVM using those parameters and obtain the trust level prediction

model. This model is precisely the trust model, which predicts the trustworthiness of a

trustee requested by the trustor. As an example, the trustor should obtain the response

{”trustlevel”: [”value”: 1, ”description”: ”trustworthy”]} for a trustee with the mea-

sures that the trust model predicts as trustworthy (value = 1). If the trustor requests

the trust level of a trustee in a context in which the trust model is not yet trained,

the following response will be obtained: {”trustlevel”: [”value”: 2, ”description”: ”non
trained model for context ctx id”]}. When trust features are added or removed from or

to the context, respectively, the previous training sets are no longer valid, then, the pro-

cess of re-labeling and re-training should be conducted. Finally, If new labels are added,

and based on the new labels, the prediction error goes below a configurable threshold,

the trust model automatically re-trains.

6.3.1 Experimental Evaluation

We conducted the experiments by simulating trust data using two trust features, with

a single context. Nowadays, di↵erent public weather service providers exist. A large

amount of applications use these public service providers to present the weather for
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Algorithm 6: SVM best parameter selection algorithm

Input: T S = (
�!
X,Y )

Output: optimal(RBFK,C, �,maxAccuracy)
RBFK  true;
C  0; �  0; maxAccuracy  0;
accuracy  0; n = 5 ;��!
XS  scale(

�!
X ) ;

for i = �5 to 15 do
for j = �15 to 3 do

accuracy  xV al(n,
��!
XS,

�!
Y , 2i, true, 2j) ;

if accuracy >= maxAccuracy then
C  i; �  j; maxAccuracy = accuracy;

end

end

end
for i = �5 to 15 do

accuracy  xV al(n,
��!
XS,

�!
Y , 2i, false, 0) ;

if accuracy >= maxAccuracy then
C  i; �  j; maxAccuracy = accuracy;
RBFK  false;

end

end
tempC  C, temp�  � ;
for i = tempC � 1 to tempC + 1, i i+ 0.25 do

for j = temp� � 1 to temp� + 1, j  j + 0.25 do

accuracy  xV al(n,
��!
XS,

�!
Y , 2i, RBFK, 2j);

if accuracy >= maxAccuracy then
C  i; �  j; maxAccuracy = accuracy;

end

end

end
C  2C ; �  2� ;

their users. Some examples of such providers can be AccuWather3, OpenWeatherMap4,

and Forecast.io5. We propose the context of trusting public forecast of weather providers,

from now on referred as the context C. In order to trust public forecast providers, we

need to determine what is important in a weather forecast service. The first feature we

assume to be a cumulative value of the evaluation of the TCP response time less than 1s;

we want the information collected to arrive in a timely manner, this feature is addressed

as x1. For the second trust feature, denoted as x2, we propose the cumulative value of

the service temperature response standard deviation less than 5% of the mean. With

the second trust feature, we assume the responses should not vary greatly. Randomly

3
http://www.accuweather.com

4
http://openweathermap.org

5
http://forecast.io

http://www.accuweather.com
http://openweathermap.org
http://forecast.io
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we choose the simulated values for the trust features, x1 and x2, for the single context

C. We labeled each simulated measurements,
�!
X (i) with our subjective perception of

their trust level, respectively adding -1 for untrustworthy, 0 for neutrally trusted, and 1

for trusted, providing y(i). Based on the our complete training set (
�!
X,�!y ), the plotted

data looks as shown in Figure 6.3. We simulated only two trust features for the sake of

simplicity, usually understanding plots is easier in two dimensions.

Figure 6.3: Simulated trust property measures

To conclude our experiments, we used the GNU Octave programming language [Eaton

et al., 2008]. Then, using our algorithm we found the optimal values for C, �, and

RBFK. The optimal values are: C = 28, � = 2�3, RBFK = true. The best accuracy

using the n-fold cross validation sets for the presented data obtained was 96.610169%.

The worth of the presented algorithm to find the optimal values can be easily seen in here,

with a C = 29, � = 2�2, RBFK = true, we obtain the best accuracy of 85.5932%, a very

large di↵erence compared to the slight parameter di↵erence. The decision boundaries

of a trained SVM without the optimal parameters is shown in Figure 6.4. The decision

boundaries of our trained SVM with optimal parameters are shown in the Figure 6.5.

It is easy to compare how the decision boundaries are more accurate to predict separate

the di↵erent classes in Figure 6.5; it can be seen that the decision boundaries that
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separate the classes include two di↵erent classes in some cases from the examples in

the Figure 6.4(mostly seen in the neutrally trusted labels, denoted with black circles are

sometimes grouped with untrustworthy labels, red dots), while they are clearly separated

without mixing di↵erent classes in the Figure 6.5. To train the SVM, including the

testing using the cross validations sets, we used a library, LIBSVM [Chang and Lin,

2011]. As the image shows, the accuracy of the prediction is quite good, and due to the

cross set validation procedures, the over-fitting problem to this particular set of data is

not a problem.

Figure 6.4: Decision boundaries for the trained SVM without optimal parameters
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Figure 6.5: Decision boundaries for the trained SVM using optimal parameters



Chapter 7

Conclusion and Future Work

“Do. Or do not. There is no try.” — Master Yoda, The Empire Strikes Back.

As described in the Chapter 2, some remaining open issues were tackled throughout this

thesis. During the reminding chapters, we have exposed our proposed solutions to this

remaining open issues. The conclusion of the work performed and the perspectives for

future work are described in this Chapter.

In order to present our conclusions in a better way and for greater readability, we present

our conclusion separated in di↵erent sections from the perspectives. Also, for the same

reason, both sections are explained in a chapter-oriented manner.

7.1 Conclusion

First, as shown in Chapter 3, we propose a novel testing methodology using a formal

distributed approach, to monitor and to provide behavioral evaluation feedback regard-

ing trust properties. We evaluate those trust properties on real distributed live captures.

While most of the approaches are based on local probes (points of observations or in-

terfaces), in this work, we provide verdicts based on the correlation of the observed live

captures from distributed systems. A formal syntax and semantics are defined to express

trust properties. Interesting and promising results were obtained.

Furthermore, we have implemented a suite of testing tools using our formal distributed

approach to test trust properties by evaluating behaviors on on-line distributed network

captures. We define a correlation of the network tra�c to evaluate the behaviors in

distributed systems to provide trust verdicts in a generic manner so that any trust

management system can benefit from it. For the experimental results, the case scenario

106
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is simulated within the real architecture of an industrial partner. Trust properties were

verified in the industrial partner authoritative DNS server’s live captures, and other

DNS resolvers as points of observation.

The work done in Chapter 3 was performed by enhancing known techniques for con-

formance and performance black box passive testing, using network packet captures.

The state of the art techniques were extended to use on-line and distributed concepts,

to further fit the trust management domain requirements and open problems of that

domain.

Later, in Chapter 4, we have presented an extension to our generic and extensible trust

monitoring approach. In order to automatically generate trust properties, a new ap-

proach was presented aided by the use of process mining techniques. From the compar-

isons of two directed weighted graphs, one representing the network protocol specifica-

tion, and the other model provided by as the output of a PM technique. We analyze

the conformance relation between the models and conclude regarding the potentially

observed faults, i.e., untrustworthy behaviors in the interactions found in the telecom-

munication protocols. For that purpose, we defined a mapping function from the process

mining activities and our proposed language syntax, and an algorithm to compare the

models to extract the trust properties. Thus, we can apply the previously stated behav-

ioral evaluation technique based on these automatically generated properties.

The proposed approach in Chapter 4, can be described overall as proposing solutions to

enhance the previously mentioned state of the art techniques to ease the usage of them

and to make them more scalable. Yet another work performed in this thesis that fits

this description is the one found in Chapter 5.

Precisely in Chapter 5, we have presented a scalable approach to evaluate on-line network

monitoring systems. Furthermore, we have introduced an algorithm that regardless

of the language used to express the monitoring properties is capable of generating an

auxiliary model to evaluate them; the only requirements are the basic concepts and

constraints that any on-line network monitoring system has. The proposed method

after creating the data-structure uses a second algorithm that we presented in order to

evaluate the packets and provide verdicts regarding them in a linear time, O(n).

In addition to that, in Chapter 5, in order to express the necessary concepts of on-line

distributed network monitoring, and to ease the usage of expressing the trust properties,

we have presented a language modification and extension that fits any system executing

testing at runtime. The language specification can be used in any domain in which

on-line network monitoring is utilized. Properties of di↵erent application domains are
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written in the new language. For instance, properties for conformance, performance

testing, and behavioral evaluation for trust management.

Finally, in Chapter 6, we have presented a methodology in which systems, applications or

devices could universally adopt trust concepts using di↵erent trust parameters for each

context. Furthermore, we present the architecture, and propose an API to exchange the

trust measurements and trust evaluations using RESTful web-services. In addition to

it, we present a suitable trust model for the approach, by solving a multi-class classifica-

tion problem with machine learning techniques, namely using support vector machines.

Further, we have presented an algorithm which is capable to find the best parameters

of the SVM to get better accuracy to predict the trustee’s trust levels by using n-fold

cross validation sets. Finally, we simulate trust measurements and provide a trust model

which has a prediction accuracy of the 96.61%.

7.2 Future Work

With the work realized by this thesis, we manage to close remaining open issues in the

related domains. As well, as a natural consequence, interesting aspects to work on,

appeared. In this Section, we describe some of the interesting perspectives for future

work.

The obtained results in Chapter 3, are very valuable, nevertheless, further testing of our

method would be valuable to prove its scalability. Although the theoretical complexity

and current experiments indicate that the scalability of our approach is good; having

several case studies to have a better estimation about the correlation between the phys-

ical resources and our tool capabilities would be highly valuable, to show in detail the

overhead introduced by our proposed tools.

An interesting perspective is, to add di↵erent and configurable weights to each part of

the trust property evaluations. This will provide behavioral feedback with an accurate

evaluation of the level of completion of the given trust property.

Additionally, we note that the traces may be collected by our server at di↵erent peri-

ods and then eventually with an important delay (due to the diverse queries/responses

along the testing time). For the time being, as expressed in Chapter 3, we rely on the

systems having time synchronized between them using the well known NTP protocol.

An interesting perspective is to create a time synchronization handshake periodically

between the P.Os and the monitoring server, to establish the di↵erence in time of each

P.O and using a common reference.
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We consider that the comparison of the values in the trust properties can be done against

constant values or values of stored packets. However, an interesting extension will be to

compare against stored statistical results from these multiple points of observation.

We plan to extend our extmon tool in order to provide a generic interface for di↵erent

systems to be able to send their interesting tra�c. This will allow any external moni-

toring platforms to acquire messages from remote systems as soon as possible, and to

perform any kind of analysis within a reduced time delay. In order to improve the exmon

scalability, we plan to send not the complete packets, but, only the necessary fields used

in checked trust properties.

Likewise, it is undeniable that applying our approach and tools to di↵erent domains and

protocols will be interesting to prove the versatility of the tool.

Finally, proposing di↵erent methods which might be more scalable, as formalizing the

“test objectives” as FSMs and simply checking if the input sequence belongs to the

language of the machine is an interesting perspective. Nevertheless, consideration for

messages (inputs) which are not included in the original protocol description (language),

but that are accepted by the machine implementation is an area to pay attention.

Concerning the approach presented in Chapter 4, this method seems to provide relevant

results, there are still issues to resolve and perspectives to target. Indeed, the generated

properties are highly dependent to the monitored traces from which the process mining

tool is applied. Therefore, it does not guarantee that these properties will be applicable

on all protocol traces. This could then cause the creation of several inconclusive verdicts.

Furthermore, we depend on “an external” formal protocol specification. We aim at

creating this model by PM techniques through an “ideal” controlled system in which

trust issues would not occur. Further, we aim at including the concept of violation in

trust properties in order to consider both concepts, faults that should be avoided and

trust properties that are expressed as expected behaviors.

Our contribution for the Chapter 5 of this thesis focuses on two things. The first one

is to provide verdicts in a scalable manner and as stated in Section 5.3, the algorithm

highly depends on the length of the queues of previously stored packets. Second, to

enhance the expressiveness of the language to make it generic enough for any given

protocol and on-line constrains. Therefore, incorporating the enhancements into our

tool set is included into our perspectives.

Finally, since the approach described in Chapter 6 seems promising, we plan to im-

plement the generic trust management engine to combine all the capabilities and to

experiment using trust measures provided from the feedback provided by our previously
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developed set of tools as shown in Chapter 3. Further, we plan to increase some fea-

tures in the trust management engine, for example, adding more choices to calculate

experiences or accumulated measurements; adding more options to calculate forgetting

factor functions is also included. Even if the justification to use SVM to solve our prob-

lem is fair, selecting the better suited parameters to train the model requires to train

several SVM models. For that reason, comparing the e�ciency of a SVM model and

an artificial neural network model, for instance is an interesting perspective. Further,

many machine learning algorithms should be compared and probably many options for

the model should be given. Another interesting perspective is that, due to the fact that

we consider that the multi-class option gives great flexibility to the trustors we plan to

further investigate expanding the presented trust classes. Yet another interesting per-

spective is the possibility to include di↵erent trust models to provide the capability of

deciding which trust model to use. Finally, we also plan to investigate the applicability

of other machine learning techniques to the trust models, especially non-supervised ma-

chine learning techniques to suggest a pre-classification without the need of explicitly

providing the labels of the data set.
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Mots clés : Confiance, Monitorage Distribué de Réseaux, Systèmes En-ligne 

Les systèmes collaboratifs sont aujourd’hui devenus 
très populaires et sont de plus en plus utilisés dans de 
nombreux domaines divers. De fait, les interactions 
de confiance des differents systèmes sont devenus 
une priorité. La confiance, en tant que concept 
informatique, a été étudiéé très récemment. 
Cependant, dans la littérature, très peu d’attention a 
été portée pour évaluer l’exactitude des interactions 
entre entités communicantes; même si la plupart des 
approches se sont basées sur les mesures cumulées 
de ces valeurs. Pour déterminer, de façon générale, 
l’exactitude de ces interactions, une approche 
nommée Monitorage des Réseaux En-Ligne et 
Distribué (MRED) a été proposée. De plus, des 
outils prototypes ont été développés pour tester 
automatiquement les propriétés de confiance entre 
entités dans des systèmes communicants. MRED est 
une forme de test passif; elle analyse les réponses 
des systèmes et teste l’exactitude des interactions en 
utilisant des traces de réseaux. Comme elle dépend 
des propriétés à tester, une nouvelle approche a été 
proposée pour faire l’extraction automatique de 
propriétés pertinentes que l’ont pourrait, in fine, 
 

tester dans un système sous test. Aussi, nous 
proposons de nouvelles méthodes afin d’améliorer 
les techniques fournies dans l’état de l’art pour: a) 
évaluer efficacement les propriétés avec une 
complexité en temps O(n), ce en utilisant un 
Automate Fini Déterministe Prolongée (EFSA); et b) 
élargir l’expressivité du langage proposé pour 
exprimer correctement les contraintes systèmes, 
comme les délais d’attente pour éviter le manque de 
ressources. Finalement, nous proposons un nouveau 
cadre flexible utilisable dans de très nombreux 
domaines, qui permet la définition de 
caractéristiques de confiance afin d’évaluer les 
entités dans des contextes différents. De surcroît, 
avec les évaluations des caractéristiques de 
confiance, nous proposons un modèle de confiance 
basé sur l’apprentissage automatique, utilisant des 
Machine à vecteurs de support (SVM). A partir de 
ces modèles, des expérimentations ont été effectuées 
en simulant des caractéristiques de confiance pour 
estimer le niveau de confiance; une précision de plus 
de 96% a été obtenue. 

 

 

Title : Distributed On-line Network Monitoring for Trust Assessment 
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Collaborative systems are growing in use and in 
popularity. The need to boost the methods 
concerning the interoperability is growing as well; 
therefore, trustworthy interactions of the different 
systems are a priority. Trust as a computer science 
concept has been studied in the recent years. 
Nevertheless, in the literature, very little focus is 
placed on how to assess the correctness of the 
interactions between the entities; even if most 
approaches rely on the estimation of trust based on 
the accumulated measures of these values. To 
broadly determine the correctness of interactions 
without targeting a specific domain or application, 
an approach using Distributed On-line Network 
Monitoring (DONM) was proposed. Furthermore, a 
prototype tool-set was developed to automatically 
test the trust properties. DONM is a form passive 
testing; it analyzes systems' responses and test the 
correctness of the interactions via network traces. 
Since it relies on the stated properties to test, a 
novel approach was proposed to automatically 
extract relevant properties to test. Our approach 
deeply relies on the operation of On-line Monitoring 
Systems. That is the reason why we propose new 
  

methods to enhance the state of the art techniques 
to: a) efficiently evaluate properties in O(n) time 
complexity using an Extended Finite State 
Automata (EFSA) auxiliary data structure; and b) to 
expand the language expressiveness to properly 
express the constraints of such systems, such as,  
timeouts in order to avoid resource starvation. 
Finally, using the evaluation of the entities' 
interactions provided by our approach, trust 
management engines will help trustors to decide 
with whom and how to interact with other users or 
applications. We propose a new framework that is 
flexible for any domain, allowing trustors to define 
the trust features used to evaluate trustees in 
different contexts. Furthermore, with the evaluations 
of the trust features, we propose a trust model which 
achieves close-to-human inference of the trust 
assessment, by using a machine learning based trust 
model, namely solving a multi-class classification 
problem using Support Vector Machines (SVM). 
Using the SVM-based trust model, experiments 
were performed with simulated trust features to 
estimate trust level; an accuracy of more than 96\% 
was achieved. 
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