H. Fink, P. Weigel, H. J. Purz, and J. Ganster, Structure formation of regenerated cellulose materials from NMMO-solutions, Progress in Polymer Science, vol.26, issue.9, pp.1473-1524, 2001.
DOI : 10.1016/S0079-6700(01)00025-9

C. Cuissinat and P. Navard, Swelling and Dissolution of Cellulose Part 1: Free Floating Cotton and Wood Fibres in N-Methylmorpholine-N-oxide???Water Mixtures, Macromolecular Symposia, vol.37, issue.1, pp.1-18, 2006.
DOI : 10.1002/masy.200651201

URL : https://hal.archives-ouvertes.fr/hal-00530620

Y. Su, C. Burger, H. Ma, B. Chu, and B. S. Hsiao, Exploring the Nature of Cellulose Microfibrils, Biomacromolecules, vol.16, issue.4, pp.1201-1209, 2015.
DOI : 10.1021/bm501897z

T. Saito, T. Uematsu, S. Kimura, T. Enomae, and A. Isogai, Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials, Soft Matter, vol.1, issue.19, pp.8804-8809, 2011.
DOI : 10.1016/j.compscitech.2011.07.003

Y. Habibi and A. Dufresne, Highly Filled Bionanocomposites from Functionalized Polysaccharide Nanocrystals, Biomacromolecules, vol.9, issue.7, pp.1974-1980, 2008.
DOI : 10.1021/bm8001717

T. Saito, R. Kuramae, J. Wohlert, L. A. Berglund, and A. Isogai, An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation, Biomacromolecules, vol.14, issue.1, pp.248-253, 2013.
DOI : 10.1021/bm301674e

I. Sakurada, Y. Nukushina, and T. Ito, Experimental determination of the elastic modulus of crystalline regions in oriented polymers, Journal of Polymer Science, vol.57, issue.165, pp.651-660, 1962.
DOI : 10.1002/pol.1962.1205716551

S. Iwamoto, W. Kai, A. Isogai, and T. Iwata, Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy, Biomacromolecules, vol.10, issue.9, pp.2571-2576, 2009.
DOI : 10.1021/bm900520n

S. Neyertz, A. Pizzi, A. Merlin, B. Maigret, D. Brown et al., A new all-atom force field for crystalline cellulose I, Journal of Applied Polymer Science, vol.32, issue.11, pp.1939-1946, 1985.
DOI : 10.1002/1097-4628(20001209)78:11<1939::AID-APP130>3.0.CO;2-9

T. Gurunathan, S. Mohanty, and S. K. Nayak, A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Composites Part A: Applied Science and Manufacturing, vol.77, pp.1-25, 2015.
DOI : 10.1016/j.compositesa.2015.06.007

K. Niskanen, Mechanics of Paper Products, Prog. Polym. Sci, vol.37, pp.1552-1596, 2012.

H. Sehaqui, N. Ezekiel-mushi, S. Morimune, M. Salajkova, T. Nishino et al., Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing, ACS Applied Materials & Interfaces, vol.4, issue.2, pp.1043-1049, 2012.
DOI : 10.1021/am2016766

R. Bardet, M. N. Belgacem, and J. Bras, Different strategies for obtaining high opacity films of MFC with TiO2 pigments, Cellulose, vol.356, issue.1, pp.3025-3037, 2013.
DOI : 10.1007/s10570-013-0025-1

H. Sehaqui, M. Salajková, Q. Zhou, and L. A. Berglund, Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions, Soft Matter, vol.5, issue.8, pp.1824-1832, 2010.
DOI : 10.1039/b927505c

J. G. Torres-rendon, F. H. Schacher, S. Ifuku, and A. Walther, Mechanical Performance of Macrofibers of Cellulose and Chitin Nanofibrils Aligned by Wet-Stretching: A Critical Comparison, Biomacromolecules, vol.15, issue.7, pp.2709-2717, 2014.
DOI : 10.1021/bm500566m

Y. Kobayashi, T. Saito, and A. Isogai, Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators, Angewandte Chemie, vol.24, issue.39, pp.10562-10565, 2014.
DOI : 10.1002/ange.201405123

A. B. Fall, S. B. Lindström, O. Sundman, L. Ödberg, and L. Wågberg, Colloidal Stability of Aqueous Nanofibrillated Cellulose Dispersions, Langmuir, vol.27, issue.18, pp.11332-11338, 2011.
DOI : 10.1021/la201947x

H. Sehaqui, N. Ezekiel-mushi, S. Morimune, M. Salajkova, T. Nishino et al., Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing, ACS Applied Materials & Interfaces, vol.4, issue.2, pp.1043-1049, 2012.
DOI : 10.1021/am2016766

A. B. Fall, S. B. Lindström, J. Sprakel, and L. Wågberg, A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation, Soft Matter, vol.102, issue.6, pp.1852-1863, 2013.
DOI : 10.1017/S0022029900022433

M. Mohtaschemi, K. Dimic-misic, A. Puisto, M. Korhonen, T. Maloney et al., Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer, Cellulose, vol.18, issue.5, pp.1305-1312, 2014.
DOI : 10.1007/s10570-014-0235-1

O. Nechyporchuk, M. N. Belgacem, and F. Pignon, Concentration effect of TEMPO-oxidized nanofibrillated cellulose aqueous suspensions on the flow instabilities and small-angle X-ray scattering structural characterization, Cellulose, vol.17, issue.4, pp.2197-2210, 2015.
DOI : 10.1007/s10570-015-0640-0

P. Coussot, Rheometry of Pastes, Suspensions, and Granular Materials: Applications Industry and Environment, P. Coussot, J. Non-Newton. Fluid Mech, vol.211, issue.21, pp.31-49, 2005.
DOI : 10.1002/0471720577

M. Mohtaschemi, A. Sorvari, A. Puisto, M. Nuopponen, J. Seppälä et al., The vane method and kinetic modeling: shear rheology of nanofibrillated cellulose suspensions, Cellulose, vol.44, issue.6, pp.3913-3925, 2014.
DOI : 10.1007/s10570-014-0409-x

S. Varanasi, R. He, and W. Batchelor, Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point, Cellulose, vol.19, issue.2, pp.1885-1896, 2013.
DOI : 10.1007/s10570-013-9972-9

. Kerekes, Rheology of fibre suspensions in papermaking:??An overview of recent research, Nordic Pulp and Paper Research Journal, vol.21, issue.05, pp.598-612, 2006.
DOI : 10.3183/NPPRJ-2006-21-05-p598-612

J. Mewis and N. J. Wagner, Colloidal Suspension Rheology, Soft Matter, vol.3, pp.528-540, 2007.
DOI : 10.1017/CBO9780511977978

M. J. Solomon and P. T. Spicer, Microstructural regimes of colloidal rod suspensions, gels, and glasses, Soft Matter, vol.9, issue.7, pp.1391-1400, 2010.
DOI : 10.1039/b918281k

R. J. Hunter and S. K. Nicol, The dependence of plastic flow behavior of clay suspensions on surface properties, Journal of Colloid and Interface Science, vol.28, issue.2, pp.250-259, 1968.
DOI : 10.1016/0021-9797(68)90127-6

F. Folgar and C. L. Tucker, Orientation Behavior of Fibers in Concentrated Suspensions, Journal of Reinforced Plastics and Composites, vol.3, issue.2, pp.98-119, 1984.
DOI : 10.1177/073168448400300201

D. L. Koch, A model for orientational diffusion in fiber suspensions, Physics of Fluids, vol.7, issue.8, pp.2086-2088, 1995.
DOI : 10.1063/1.868455

G. Natale, M. C. Heuzey, P. J. Carreau, G. Ausias, and J. Férec, Rheological modeling of carbon nanotube suspensions with rod-rod interactions, AIChE Journal, vol.144, issue.2-3, pp.1476-1487, 2014.
DOI : 10.1002/aic.14316

URL : https://hal.archives-ouvertes.fr/hal-00985835

G. B. Jeffery, The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.102, issue.715, pp.161-179, 1922.
DOI : 10.1098/rspa.1922.0078

S. P. Meeker, R. T. Bonnecaze, and M. Cloitre, Slip and flow in pastes of soft particles: Direct observation and rheology, Journal of Rheology, vol.48, issue.6, pp.1295-1320, 2004.
DOI : 10.1122/1.1795171

S. Marze, D. Langevin, and A. Saint-jalmes, Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering, Journal of Rheology, vol.52, issue.5, pp.1091-1111, 2008.
DOI : 10.1122/1.2952510

URL : https://hal.archives-ouvertes.fr/hal-00672032

G. Ovarlez, S. Rodts, X. Chateau, and P. Coussot, Phenomenology and physical origin of shear localization and shear banding in complex fluids, Rheologica Acta, vol.18, issue.IIB, pp.831-844, 2009.
DOI : 10.1007/s00397-008-0344-6

URL : https://hal.archives-ouvertes.fr/hal-00454772

T. Gallot, C. Perge, V. Grenard, M. Fardin, N. Taberlet et al., Rheology: principles, measurements, and applications, VCH, 1994. 48 I, Instrum. Phys. Rev. Lett. Nat. Commun, vol.84, issue.6, pp.45107-45153, 2013.

C. P. Bennington, R. J. Kerekes, and J. R. Grace, The yield stress of fibre suspensions, The Canadian Journal of Chemical Engineering, vol.67, issue.3, pp.748-757, 1990.
DOI : 10.1002/cjce.5450680503

S. Toll and J. E. Månson, Dynamics of a planar concentrated fiber suspension with non???hydrodynamic interaction, Journal of Rheology, vol.38, issue.4, pp.985-997, 1994.
DOI : 10.1122/1.550539

S. Toll, Packing mechanics of fiber reinforcements, Polymer Engineering & Science, vol.26, issue.8, pp.1337-1350, 1998.
DOI : 10.1002/pen.10304

C. Servais, J. E. Månson, and S. Toll, Fiber???fiber interaction in concentrated suspensions: Disperse fibers, Journal of Rheology, vol.43, issue.4, pp.991-1004, 1999.
DOI : 10.1122/1.551014

S. L. Corre, P. Dumont, L. Orgéas, and D. Favier, Rheology of highly concentrated planar fiber suspensions, Journal of Rheology, vol.49, issue.5, pp.1029-1058, 2005.
DOI : 10.1122/1.1993594

J. Férec, G. Ausias, M. C. Heuzey, and P. J. Carreau, Modeling fiber interactions in semiconcentrated fiber suspensions, Journal of Rheology, vol.53, issue.1, pp.49-72, 2009.
DOI : 10.1122/1.3000732

S. Toll, Note: On the tube model for fiber suspensions, Journal of Rheology, vol.37, issue.1, pp.123-125, 1993.
DOI : 10.1122/1.550460

R. G. Larson, The Structure and Rheology of Complex Fluids, J. Rheol, pp.31-751, 1987.

J. Barrat and L. Bocquet, Large Slip Effect at a Nonwetting Fluid-Solid Interface, Physical Review Letters, vol.82, issue.23, pp.4671-4674, 1999.
DOI : 10.1103/PhysRevLett.82.4671

O. Guiraud, L. Orgéas, P. J. Dumont, and S. R. Du-roscoat, Microstructure and deformation micromechanisms of concentrated fiber bundle suspensions: An analysis combining x-ray microtomography and pull-out tests, Journal of Rheology, vol.56, issue.3, pp.593-623, 2012.
DOI : 10.1122/1.3698185

A. M. Wierenga and A. P. Philipse, Low-Shear Viscosities of (Semi-)Dilute, Aqueous Dispersions of Charged Boehmite Rods:?? Dynamic Scaling of Double Layer Effects, Langmuir, vol.13, issue.17, pp.4574-4582, 1997.
DOI : 10.1021/la9700477

A. Wierenga, A. P. Philipse, H. N. Lekkerkerker, and D. V. Boger, Aqueous Dispersions of Colloidal Boehmite:?? Structure, Dynamics, and Yield Stress of Rod Gels, Langmuir, vol.14, issue.1, pp.55-65, 1998.
DOI : 10.1021/la970376z

D. Ishii, T. Saito, and A. Isogai, Viscoelastic Evaluation of Average Length of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.12, issue.3, pp.548-550, 2011.
DOI : 10.1021/bm1013876

S. G. Advani, S. Wegner, T. Börzsönyi, T. Bien, G. Rose et al., Flow and Rheology in Polymer Composites Manufacturing, Soft Matter, vol.8, issue.71 1, 1994.

F. P. Bretherton, The motion of rigid particles in a shear flow at low Reynolds number, Journal of Fluid Mechanics, vol.217, issue.02, pp.284-304, 1962.
DOI : 10.1007/BF01968851

J. N. Israelachvili, Intermolecular and Surface Forces, 2011.

J. Araki, Electrostatic or steric? ??? preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides, Soft Matter, vol.1, issue.16, pp.4125-4141, 2013.
DOI : 10.1039/c3sm27514k

T. Saito, Y. Nishiyama, J. Putaux, M. Vignon, and A. Isogai, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, issue.6, pp.1687-1691, 2006.
DOI : 10.1021/bm060154s

URL : https://hal.archives-ouvertes.fr/hal-00305809

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.23, issue.10, pp.71-85, 2011.
DOI : 10.1039/C0NR00583E

Y. Kobayashi, T. Saito, and A. Isogai, Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators, Angewandte Chemie, vol.24, issue.39, pp.10562-10565, 2014.
DOI : 10.1002/ange.201405123

P. Coussot, Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment, P. Coussot, J. Non-Newton. Fluid Mech, vol.211, issue.14, pp.31-49, 2005.
DOI : 10.1002/0471720577

. Kerekes, Rheology of fibre suspensions in papermaking:??An overview of recent research, Nordic Pulp and Paper Research Journal, vol.21, issue.05, pp.598-612, 2006.
DOI : 10.3183/NPPRJ-2006-21-05-p598-612

J. Mewis and N. J. Wagner, Colloidal Suspension Rheology, Soft Matter, vol.3, pp.528-540, 2007.
DOI : 10.1017/CBO9780511977978

M. J. Solomon and P. T. Spicer, Microstructural regimes of colloidal rod suspensions, gels, and glasses, Soft Matter, vol.9, issue.7, pp.1391-1400, 2010.
DOI : 10.1039/b918281k

A. P. Philipse, The Random Contact Equation and Its Implications for (Colloidal) Rods in Packings, Suspensions, and Anisotropic Powders, Langmuir, vol.12, issue.5, pp.1127-1133, 1996.
DOI : 10.1021/la950671o

R. J. Hunter and S. K. Nicol, The dependence of plastic flow behavior of clay suspensions on surface properties, Journal of Colloid and Interface Science, vol.28, issue.2, pp.250-259, 1968.
DOI : 10.1016/0021-9797(68)90127-6

F. Folgar and C. L. Tucker, Orientation Behavior of Fibers in Concentrated Suspensions, Journal of Reinforced Plastics and Composites, vol.3, issue.2, pp.98-119, 1984.
DOI : 10.1177/073168448400300201

G. Natale, M. C. Heuzey, P. J. Carreau, G. Ausias, and J. Férec, Rheological modeling of carbon nanotube suspensions with rod-rod interactions, AIChE Journal, vol.144, issue.2-3, pp.1476-1487, 2014.
DOI : 10.1002/aic.14316

URL : https://hal.archives-ouvertes.fr/hal-00985835

G. B. Jeffery, The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.102, issue.715, pp.161-179, 1922.
DOI : 10.1098/rspa.1922.0078

S. P. Meeker, R. T. Bonnecaze, and M. Cloitre, Slip and flow in pastes of soft particles: Direct observation and rheology, Journal of Rheology, vol.48, issue.6, pp.1295-1320, 2004.
DOI : 10.1122/1.1795171

S. Marze, D. Langevin, and A. Saint-jalmes, Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering, Journal of Rheology, vol.52, issue.5, pp.1091-1111, 2008.
DOI : 10.1122/1.2952510

URL : https://hal.archives-ouvertes.fr/hal-00672032

G. Ovarlez, S. Rodts, X. Chateau, and P. Coussot, Phenomenology and physical origin of shear localization and shear banding in complex fluids, Rheologica Acta, vol.18, issue.IIB, pp.831-844, 2009.
DOI : 10.1007/s00397-008-0344-6

URL : https://hal.archives-ouvertes.fr/hal-00454772

. Sci, T. Instrum, V. Divoux, S. Grenard, and . Manneville, Rheology: principles, measurements, and applications, VCH, 1994. 38 I, Phys. Rev. Lett. Nat. Commun, vol.84, issue.6, pp.45107-45143, 2013.

C. P. Bennington, R. J. Kerekes, and J. R. Grace, The yield stress of fibre suspensions, The Canadian Journal of Chemical Engineering, vol.67, issue.3, pp.748-757, 1990.
DOI : 10.1002/cjce.5450680503

S. Toll and J. E. Månson, Dynamics of a planar concentrated fiber suspension with non???hydrodynamic interaction, Journal of Rheology, vol.38, issue.4, pp.985-997, 1994.
DOI : 10.1122/1.550539

S. Toll, Packing mechanics of fiber reinforcements, Polymer Engineering & Science, vol.26, issue.8, pp.1337-1350, 1998.
DOI : 10.1002/pen.10304

C. Servais, J. E. Månson, and S. Toll, Fiber???fiber interaction in concentrated suspensions: Disperse fibers, Journal of Rheology, vol.43, issue.4, pp.991-1004, 1999.
DOI : 10.1122/1.551014

S. Le-corre, P. Dumont, L. Orgéas, and D. Favier, Rheology of highly concentrated planar fiber suspensions, Journal of Rheology, vol.49, issue.5, pp.1029-1058, 2005.
DOI : 10.1122/1.1993594

J. Férec, G. Ausias, M. C. Heuzey, and P. J. Carreau, Modeling fiber interactions in semiconcentrated fiber suspensions, Journal of Rheology, vol.53, issue.1, pp.49-72, 2009.
DOI : 10.1122/1.3000732

S. Toll, Note: On the tube model for fiber suspensions, Journal of Rheology, vol.37, issue.1, pp.123-125, 1993.
DOI : 10.1122/1.550460

R. G. Larson, The Structure and Rheology of Complex Fluids, J. Rheol, pp.31-751, 1987.

J. Barrat and L. Bocquet, Large Slip Effect at a Nonwetting Fluid-Solid Interface, Physical Review Letters, vol.82, issue.23, pp.4671-4674, 1999.
DOI : 10.1103/PhysRevLett.82.4671

O. Guiraud, L. Orgéas, P. J. Dumont, and S. R. Du-roscoat, Microstructure and deformation micromechanisms of concentrated fiber bundle suspensions: An analysis combining x-ray microtomography and pull-out tests, Journal of Rheology, vol.56, issue.3, pp.593-623, 2012.
DOI : 10.1122/1.3698185

A. M. Wierenga and A. P. Philipse, Low-Shear Viscosities of (Semi-)Dilute, Aqueous Dispersions of Charged Boehmite Rods:?? Dynamic Scaling of Double Layer Effects, Langmuir, vol.13, issue.17, pp.4574-4582, 1997.
DOI : 10.1021/la9700477

A. Wierenga, A. P. Philipse, H. N. Lekkerkerker, and D. V. Boger, Aqueous Dispersions of Colloidal Boehmite:?? Structure, Dynamics, and Yield Stress of Rod Gels, Langmuir, vol.14, issue.1, pp.55-65, 1998.
DOI : 10.1021/la970376z

D. Ishii, T. Saito, and A. Isogai, Viscoelastic Evaluation of Average Length of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.12, issue.3, pp.548-550, 2011.
DOI : 10.1021/bm1013876

S. G. Advani, S. Wegner, T. Börzsönyi, T. Bien, G. Rose et al., Flow and Rheology in Polymer Composites Manufacturing, Soft Matter, vol.8, issue.61, pp.10950-10958, 1994.

F. P. Bretherton, The motion of rigid particles in a shear flow at low Reynolds number, Journal of Fluid Mechanics, vol.217, issue.02, pp.284-304, 1962.
DOI : 10.1007/BF01968851

J. N. Israelachvili, Intermolecular and Surface Forces, 2011.

J. Araki, Electrostatic or steric? ??? preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides, Soft Matter, vol.1, issue.16, pp.4125-4141, 2013.
DOI : 10.1039/c3sm27514k

K. Lee, Y. Aitomäki, L. A. Berglund, K. Oksman, and A. Bismarck, On the use of nanocellulose as reinforcement in polymer matrix composites, Composites Science and Technology, vol.105, pp.15-27, 2014.
DOI : 10.1016/j.compscitech.2014.08.032

C. Wu, Q. Yang, M. Takeuchi, T. Saito, and A. Isogai, Highly tough and transparent layered composites of nanocellulose and synthetic silicate, Nanoscale, vol.363, issue.1, pp.392-399, 2013.
DOI : 10.1039/C3NR04102F

H. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z. Ruan et al., Transparent nanopaper with tailored optical properties, Nanoscale, vol.62, issue.9, pp.3787-3792, 2013.
DOI : 10.1039/c3nr00520h

J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach et al., Highly Transparent and Flexible Nanopaper Transistors, ACS Nano, vol.7, issue.3, pp.2106-2113, 2013.
DOI : 10.1021/nn304407r

C. Aulin, G. Salazar-alvarez, and T. Lindström, High strength, flexible and transparent nanofibrillated cellulose???nanoclay biohybrid films with tunable oxygen and water vapor permeability, Nanoscale, vol.50, issue.20, pp.6622-6628, 2012.
DOI : 10.1039/c2nr31726e

M. Hsieh, C. Kim, M. Nogi, and K. Suganuma, Electrically conductive lines on cellulose nanopaper for flexible electrical devices, Nanoscale, vol.2, issue.19, pp.9289-9295, 2013.
DOI : 10.1039/c3nr01951a

Z. Shi, G. O. Phillips, and G. Yang, Nanocellulose electroconductive composites, Nanoscale, vol.3, issue.8, pp.3194-3201, 2013.
DOI : 10.1039/c3nr00408b

R. Bardet, M. N. Belgacem, and J. Bras, Different strategies for obtaining high opacity films of MFC with TiO2 pigments, Cellulose, vol.356, issue.1, pp.3025-3037, 2013.
DOI : 10.1007/s10570-013-0025-1

S. Saini, N. Belgacem, J. Mendes, G. Elegir, and J. Bras, Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release, ACS Applied Materials & Interfaces, vol.7, issue.32, pp.18076-18085, 2015.
DOI : 10.1021/acsami.5b04938

T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose, Biomacromolecules, vol.8, issue.8, pp.2485-2491, 2007.
DOI : 10.1021/bm0703970

URL : https://hal.archives-ouvertes.fr/hal-00305562

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.23, issue.10, pp.71-85, 2011.
DOI : 10.1039/C0NR00583E

F. Dalmas, J. Cavaillé, C. Gauthier, L. Chazeau, and R. Dendievel, Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions, Composites Science and Technology, vol.67, issue.5, pp.829-839, 2007.
DOI : 10.1016/j.compscitech.2006.01.030

URL : https://hal.archives-ouvertes.fr/hal-00434177

V. Favier, H. Chanzy, and J. Cavaillé, Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules, vol.28, issue.18, pp.6365-6367, 1995.
DOI : 10.1021/ma00122a053

URL : https://hal.archives-ouvertes.fr/hal-00310722

V. Favier, J. Cavaillé, G. R. Canova, and S. C. Shrivastava, Mechanical percolation in cellulose whisker nanocomposites, Polymer Engineering & Science, vol.9, issue.10, pp.1732-1739, 1997.
DOI : 10.1002/pen.11821

H. Sehaqui, Q. Zhou, and L. A. Berglund, Nanostructured biocomposites of high toughness???a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix, Soft Matter, vol.450, issue.16, pp.7342-7350, 2011.
DOI : 10.1039/c1sm05325f

C. J. Plummer, S. Galland, F. Ansari, Y. Leterrier, P. Bourban et al., Influence of processing routes on morphology and low strain stiffness of polymer/nanofibrillated cellulose composites, Plastics, Rubber and Composites, vol.44, issue.3, pp.81-86, 2015.
DOI : 10.1002/masy.201050801

A. Kulachenko, T. Denoyelle, S. Galland, and S. B. Lindström, Elastic properties of cellulose nanopaper, Cellulose, vol.13, issue.1, pp.793-807, 2012.
DOI : 10.1007/s10570-012-9685-5

S. W. Tsai, S. W. Tsai, and N. J. Pagano, Theory of composites design, Think composites Dayton Invariant properties of composites materials, Br. J. Appl. Phys, vol.3, pp.72-79, 1952.

H. Cheng, S. Wang, and D. P. Harper, Effects of process and source on elastic modulus of single cellulose fibrils evaluated by atomic force microscopy, Composites Part A: Applied Science and Manufacturing, vol.40, issue.5, pp.583-588, 1964.
DOI : 10.1016/j.compositesa.2009.02.011

S. Iwamoto, W. Kai, A. Isogai, and T. Iwata, Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy, Biomacromolecules, vol.10, issue.9, pp.2571-2576, 2009.
DOI : 10.1021/bm900520n

L. Heux, G. Chauve, and C. Bonini, Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents, Langmuir, vol.16, issue.21, pp.8210-8212, 2000.
DOI : 10.1021/la9913957

A. J. Benítez, J. Torres-rendon, M. Poutanen, and A. Walther, Humidity and Multiscale Structure Govern Mechanical Properties and Deformation Modes in Films of Native Cellulose Nanofibrils, Biomacromolecules, vol.14, issue.12, pp.4497-4506, 2013.
DOI : 10.1021/bm401451m

T. Saito, T. Uematsu, S. Kimura, T. Enomae, and A. Isogai, Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials, Soft Matter, vol.1, issue.19, pp.8804-8809, 2011.
DOI : 10.1016/j.compscitech.2011.07.003

S. Fujisawa, T. Ikeuchi, M. Takeuchi, T. Saito, and A. Isogai, Superior Reinforcement Effect of TEMPO-Oxidized Cellulose Nanofibrils in Polystyrene Matrix: Optical, Thermal, and Mechanical Studies, Biomacromolecules, vol.13, issue.7, pp.2188-2194, 2012.
DOI : 10.1021/bm300609c

H. Sehaqui, N. Ezekiel-mushi, S. Morimune, M. Salajkova, T. Nishino et al., Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing, ACS Applied Materials & Interfaces, vol.4, issue.2, pp.1043-1049, 2012.
DOI : 10.1021/am2016766

J. Viguié, P. Latil, L. Orgéas, P. J. Dumont, S. Rolland-du-roscoat et al., Finding fibres and their contacts within 3D images of disordered fibrous media, Composites Science and Technology, vol.89, pp.202-210, 2013.
DOI : 10.1016/j.compscitech.2013.09.023

C. Marulier, P. J. Dumont, L. Orgéas, S. R. Du-roscoat, and D. Caillerie, 3D analysis of paper microstructures at the scale of fibres and bonds, Cellulose, vol.81, issue.13, pp.1517-1539, 2015.
DOI : 10.1007/s10570-015-0610-6

F. Dalmas, R. Dendievel, L. Chazeau, J. Cavaillé, and C. Gauthier, Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks, Acta Materialia, vol.54, issue.11, pp.2923-2931, 2006.
DOI : 10.1016/j.actamat.2006.02.028

URL : https://hal.archives-ouvertes.fr/hal-00436177

. Salminen, Simulation of network shrinkage, Nordic Pulp and Paper Research Journal, vol.17, issue.02, pp.105-110, 2002.
DOI : 10.3183/NPPRJ-2002-17-02-p105-110

I. Sakurada, Y. Nukushina, and T. Ito, Experimental determination of the elastic modulus of crystalline regions in oriented polymers, Journal of Polymer Science, vol.57, issue.165, pp.651-660, 1962.
DOI : 10.1002/pol.1962.1205716551

T. Nishino, K. Takano, and K. Nakamae, Elastic modulus of the crystalline regions of cellulose polymorphs, Journal of Polymer Science Part B: Polymer Physics, vol.33, issue.11, pp.1647-1651, 1995.
DOI : 10.1002/polb.1995.090331110

M. Bulota, S. Tanpichai, M. Hughes, and S. J. Eichhorn, Micromechanics of TEMPO-Oxidized Fibrillated Cellulose Composites, ACS Applied Materials & Interfaces, vol.4, issue.1, pp.331-337, 2012.
DOI : 10.1021/am201399q

S. Tanpichai, W. W. Sampson, and S. J. Eichhorn, Stress transfer in microfibrillated cellulose reinforced poly(vinyl alcohol) composites, Composites Part A: Applied Science and Manufacturing, vol.65, pp.186-191, 2014.
DOI : 10.1016/j.compositesa.2014.06.014

G. E. Pike and C. H. Seager, Percolation and conductivity: A computer study. I, Physical Review B, vol.10, issue.4, pp.1421-1434, 1974.
DOI : 10.1103/PhysRevB.10.1421

Y. Nishiyama, U. Kim, D. Kim, K. S. Katsumata, R. P. May et al., Periodic Disorder along Ramie Cellulose Microfibrils, Biomacromolecules, vol.4, issue.4, pp.1013-1017, 2003.
DOI : 10.1021/bm025772x

R. J. Hill, Elastic Modulus of Microfibrillar Cellulose Gels, Biomacromolecules, vol.9, issue.10, pp.2963-2966, 2008.
DOI : 10.1021/bm800490x

M. Bergenstråhle, L. A. Berglund, and K. Mazeau, Thermal Response in Crystalline I?? Cellulose:?? A Molecular Dynamics Study, The Journal of Physical Chemistry B, vol.111, issue.30, pp.9138-9145, 2007.
DOI : 10.1021/jp072258i

K. Niskanen, Mechanics of Paper Products, 2012.

S. Le-corre, D. Caillerie, L. Orgéas, and D. Favier, Behavior of a net of fibers linked by viscous interactions: theory and mechanical properties, Journal of the Mechanics and Physics of Solids, vol.52, issue.2, pp.395-421, 2004.
DOI : 10.1016/S0022-5096(03)00090-5

URL : https://hal.archives-ouvertes.fr/hal-00531571

S. L. Corre, P. J. Dumont, L. Orgéas, and D. Favier, Rheology of highly concentrated planar fiber suspensions, Journal of Rheology, vol.49, issue.5, pp.1029-1058, 2005.
DOI : 10.1122/1.1993594

J. Auriault, Heterogeneous medium. Is an equivalent macroscopic description possible?, International Journal of Engineering Science, vol.29, issue.7, pp.785-795, 1991.
DOI : 10.1016/0020-7225(91)90001-J

C. Marulier, S. G. Advani, C. L. Tucker, and I. , Etude multi-échelles des couplages entre propriétés hygroélastiques des papiers et leur microstructure, J. Rheol, issue.70, pp.31-751, 1987.

E. Materials, Extraction and charcaterization of NFC suspensions, p.155

.. Mechanical, Macroscale and mesoscale rheological behaviour -Main aspects, p.169

R. and L. J. Gibson, The hierarchical structure and mechanics of plant materials, Journal of The Royal Society Interface, vol.60, issue.2, pp.2749-2766, 2012.
DOI : 10.1111/j.1469-8137.2008.02759.x

D. Klemm, B. Heublein, H. Fink, and A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition, vol.34, issue.55, pp.3358-3393, 2005.
DOI : 10.1002/anie.200460587

M. Henriksson, G. Henriksson, L. A. Berglund, and T. Lindström, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, European Polymer Journal, vol.43, issue.8, pp.3434-3441, 2007.
DOI : 10.1016/j.eurpolymj.2007.05.038

T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose, Biomacromolecules, vol.8, issue.8, pp.2485-2491, 2007.
DOI : 10.1021/bm0703970

URL : https://hal.archives-ouvertes.fr/hal-00305562

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.23, issue.10, pp.71-85, 2011.
DOI : 10.1039/C0NR00583E

S. Abe, H. Iwamoto, and . Yano, Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood, Biomacromolecules, vol.8, issue.10, pp.3276-3278, 2007.
DOI : 10.1021/bm700624p

T. Saito, T. Uematsu, S. Kimura, T. Enomae, and A. Isogai, Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials, Soft Matter, vol.1, issue.19, pp.8804-8809, 2011.
DOI : 10.1016/j.compscitech.2011.07.003

H. Sehaqui, M. Salajková, Q. Zhou, and L. A. Berglund, Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions, Soft Matter, vol.5, issue.8, pp.1824-1825, 2010.
DOI : 10.1039/b927505c

Z. M. Ali and L. J. Gibson, The structure and mechanics of nanofibrillar cellulose foams, Soft Matter, vol.3, issue.5, pp.1580-1588, 2013.
DOI : 10.1039/C2SM27197D

Y. Kobayashi, T. Saito, and A. Isogai, Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators, Angewandte Chemie, vol.24, issue.39, pp.10562-10565, 2014.
DOI : 10.1002/ange.201405123

A. J. Benítez, J. Torres-rendon, M. Poutanen, and A. Walther, Humidity and Multiscale Structure Govern Mechanical Properties and Deformation Modes in Films of Native Cellulose Nanofibrils, Biomacromolecules, vol.14, issue.12, pp.4497-4506, 2013.
DOI : 10.1021/bm401451m

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties 17 N. Mills, Polymer Foams Handbook: Engineering and Biomechanics Applications and Design Guide, pp.1913-1927, 1997.
DOI : 10.1017/CBO9781139878326

S. Deville, Ice-templating, freeze casting: Beyond materials processing, Journal of Materials Research, vol.87, issue.17, pp.2202-2219, 2013.
DOI : 10.1016/j.coldregions.2009.02.001

URL : https://hal.archives-ouvertes.fr/hal-00933994

W. L. Li, K. Lu, and J. Y. Walz, Freeze casting of porous materials: review of critical factors in microstructure evolution, International Materials Reviews, vol.87, issue.10, pp.37-60, 2012.
DOI : 10.1016/j.carbon.2010.10.024

S. Deville, E. Maire, G. Bernard-granger, A. Lasalle, A. Bogner et al., Metastable and unstable cellular solidification of colloidal suspensions, Nature Materials, vol.35, issue.12, pp.966-972, 2009.
DOI : 10.1038/nmat2571

URL : https://hal.archives-ouvertes.fr/hal-00639455

L. Qian and H. Zhang, Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials, Journal of Chemical Technology & Biotechnology, vol.2, issue.2, pp.172-184, 2011.
DOI : 10.1002/jctb.2495

W. Chen, H. Yu, Q. Li, Y. Liu, and J. Li, Ultralight and highly flexible aerogels with long cellulose I nanofibers, Soft Matter, vol.394, issue.21, pp.10360-10368, 2011.
DOI : 10.1039/c1sm06179h

L. Melone, L. Altomare, I. Alfieri, A. Lorenzi, L. De-nardo et al., Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: Synthesis, characterization, and photocatalytic properties, Journal of Photochemistry and Photobiology A: Chemistry, vol.261, issue.25, pp.53-60, 2004.
DOI : 10.1016/j.jphotochem.2013.04.004

D. Brabazon, D. J. Browne, and A. J. Carr, Mechanical stir casting of aluminium alloys from the mushy state: process, microstructure and mechanical properties, Materials Science and Engineering: A, vol.326, issue.2, pp.370-381, 2002.
DOI : 10.1016/S0921-5093(01)01832-9

D. H. Kirkwood, Semisolid metal processing, International Materials Reviews, vol.3, issue.1, pp.173-189, 1994.
DOI : 10.1016/0921-5093(91)90232-C

S. Varanasi, R. He, and W. Batchelor, Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point, Cellulose, vol.19, issue.2, pp.1885-1896, 2013.
DOI : 10.1007/s10570-013-9972-9

R. J. Hill, Elastic Modulus of Microfibrillar Cellulose Gels, Biomacromolecules, vol.9, issue.10, pp.2963-2966, 2008.
DOI : 10.1021/bm800490x

O. Bouaziz, J. P. Masse, S. Allain, L. Orgéas, and P. Latil, Compression of crumpled aluminum thin foils and comparison with other cellular materials, Materials Science and Engineering: A, vol.570, issue.7, pp.1-7, 2011.
DOI : 10.1016/j.msea.2013.01.031

URL : https://hal.archives-ouvertes.fr/hal-00821940

S. Cottrino, P. Viviès, D. Fabrègue, and E. Maire, Mechanical properties of crumpled aluminum foils, Acta Materialia, vol.81, pp.98-110, 2014.
DOI : 10.1016/j.actamat.2014.07.069

R. Sescousse, R. Gavillon, and T. Budtova, Aerocellulose from cellulose???ionic liquid solutions: Preparation, properties and comparison with cellulose???NaOH and cellulose???NMMO routes, Carbohydrate Polymers, vol.83, issue.4, pp.1766-1774, 2011.
DOI : 10.1016/j.carbpol.2010.10.043

URL : https://hal.archives-ouvertes.fr/hal-00574148

T. Woignier, J. Phalippou, and R. Vacher, Parameters affecting elastic properties of silica aerogels, Journal of Materials Research, vol.56, issue.03, pp.688-692, 1989.
DOI : 10.1209/0295-5075/6/1/009