Shape-based approaches for fast multi-organ localization and segmentation in 3D medical images - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2015

Shape-based approaches for fast multi-organ localization and segmentation in 3D medical images

Méthodes multi-organes rapides avec a priori de forme pour la localisation et la segmentation en imagerie médicale 3D

Résumé

With the ubiquity of imaging in medical applications (diagnostic, treatment follow-up, surgery planning. . . ), image processing algorithms have become of primary importance. Algorithms help clinicians extract critical information more quickly and more reliably from increasingly large and complex acquisitions. In this context, anatomy localization and segmentation is a crucial component in modern clinical workflows. Due to particularly high requirements in terms of robustness, accuracy and speed, designing such tools remains a challenging task. In this work, we propose a complete pipeline for the segmentation of multiple organs in medical images. The method is generic, it can be applied to varying numbers of organs, on different imaging modalities. Our approach consists of three components: (i) an automatic localization algorithm, (ii) an automatic segmentation algorithm, (iii) a framework for interactive corrections. We present these components as a coherent processing chain, although each block could easily be used independently of the others. To fulfill clinical requirements, we focus on robust and efficient solutions. Our anatomy localization method is based on a cascade of Random Regression Forests (Cuingnet et al., 2012). One key originality of our work is the use of shape priors for each organ (thanks to probabilistic atlases). Combined with the evaluation of the trained regression forests, they result in shape-consistent confidence maps for each organ instead of simple bounding boxes. Our segmentation method extends the implicit template deformation framework of Mory et al. (2012) to multiple organs. The proposed formulation builds on the versatility of the original approach and introduces new non-overlapping constraints and contrast-invariant forces. This makes our approach a fully automatic, robust and efficient method for the coherent segmentation of multiple structures. In the case of imperfect segmentation results, it is crucial to enable clinicians to correct them easily. We show that our automatic segmentation framework can be extended with simple user-driven constraints to allow for intuitive interactive corrections. We believe that this final component is key towards the applicability of our pipeline in actual clinical routine. Each of our algorithmic components has been evaluated on large clinical databases. We illustrate their use on CT, MRI and US data and present a user study gathering the feedback of medical imaging experts. The results demonstrate the interest in our method and its potential for clinical use.
Avec l’utilisation de plus en plus répandue de l’imagerie dans la pratique médicale (diagnostic, suivi, planification d’intervention, etc.), le développement d’algorithmes d’analyse d’images est devenu primordial. Ces algorithmes permettent aux cliniciens d’analyser et d’interpréter plus facilement et plus rapidement des données de plus en plus complexes. Dans ce contexte, la localisation et la segmentation de structures anatomiques sont devenues des composants critiques dans les processus cliniques modernes. La conception de tels outils pour répondre aux exigences de robustesse, précision et rapidité demeure cependant un réel défi technique. Ce travail propose une méthode complète pour la segmentation de plusieurs organes dans des images médicales. Cette méthode, générique et pouvant être appliquée à un nombre varié de structures et dans différentes modalités d’imagerie, est constituée de trois composants : (i) un algorithme de localisation automatique, (ii) un algorithme de segmentation, (iii) un outil de correction interactive. Ces différentes parties peuvent s’enchaîner aisément pour former un outil complet et cohérent, mais peuvent aussi bien être utilisées indépendemment. L’accent a été mis sur des méthodes robustes et efficaces afin de répondre aux exigences cliniques. Notre méthode de localisation s’appuie sur une cascade de régression par forêts aléatoires (Cuingnet et al., 2012). Elle introduit l’utilisation d’informations a priori de forme, spécifiques à chaque organe (grâce à des atlas probabilistes) pour des résultats plus cohérents avec la réalité anatomique. Notre méthode de segmentation étend la méthode de segmentation par modèle implicite (Mory et al., 2012) à plusieurs modèles. La formulation proposée permet d’obtenir des déformations cohérentes, notamment en introduisant des contraintes de non recouvrement entre les modèles déformés. En s’appuyant sur des forces images polyvalentes, l’approche proposée se montre robuste et performante pour la segmentation de multiples structures. Toute méthode automatique n’est cependant jamais parfaite. Afin que le clinicien garde la main sur le résultat final, nous proposons d’enrichir la formulation précédente avec des contraintes fournies par l’utilisateur. Une optimisation localisée permet d’obtenir un outil facile à utiliser et au comportement intuitif. Ce dernier composant est crucial pour que notre outil soit réellement utilisable en pratique. Chacun de ces trois composants a été évalué sur plusieurs grandes bases de données cliniques (en tomodensitométrie, imagerie par résonance magnétique et ultrasons). Une étude avec des utilisateurs nous a aussi permis de recueillir des retours positifs de plusieurs experts en imagerie médicale. Les différents résultats présentés dans ce manuscrit montrent l’intérêt de notre méthode et son potentiel pour une utilisation clinique.
Fichier principal
Vignette du fichier
Gauriau_TheseManuscrit.pdf (66.21 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-01254550 , version 1 (12-01-2016)

Identifiants

  • HAL Id : tel-01254550 , version 1

Citer

Romane Gauriau. Shape-based approaches for fast multi-organ localization and segmentation in 3D medical images. Signal and Image Processing. Telecom ParisTech, 2015. English. ⟨NNT : 2015ENST0032⟩. ⟨tel-01254550⟩
334 Consultations
112 Téléchargements

Partager

Gmail Facebook X LinkedIn More