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ABSTRACT

Image-guided Simulation for Augmented Reality during Hepatic Surgery

Abstract: The main objective of this thesis is to provide surgeons with tools
for pre and intra-operative decision support during minimally invasive hepatic
surgery. These interventions are usually based on laparoscopic techniques or,
more recently, flexible endoscopy. During such operations, the surgeon tries to
remove a significant number of liver tumors while preserving the functional role
of the liver. This involves defining an optimal hepatectomy, i.e. ensuring that
the volume of post-operative liver is at least at 55% of the original liver and the
preserving at hepatic vasculature. Although intervention planning can now be
considered on the basis of preoperative patient-specific, significant movements
of the liver and its deformations during surgery data make this very difficult to
use planning in practice. The work proposed in this thesis aims to provide aug-
mented reality tools to be used in intra-operative conditions in order to visualize
the position of tumors and hepatic vascular networks at any time. To achieve this
we propose the following main steps:

• Modeling the liver biomechanics (and deformations due to breathing mo-
tion), and the inclusion of the pressure created by blowing Co2 during
surgery.

• Tracking features points on the surface of the liver in the endoscopic im-
ages and perform 3D reconstruction of the liver surface.

• Visualization of internal structure during the intervention, taking into ac-
count the intra-operative deformations.

• Real-time non-rigid registration of 3D liver model on the laparoscopic im-
age.

Keywords: Image-guided Simulation, Biomechanical Modeling, Real-Time Aug-
mented Reality, Computer Assisted Surgery, Minimally Invasive Surgery, Visual
Tracking, 3D Reconstruction, Non-rigid Registration.
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RÉSUMÉ

Simulation Guidée par l’Image pour la Réalité Augmentée durant la
Chirurgie Hépatique

Résumé:
L’objectif principal de cette thèse est de fournir aux chirurgiens des outils

d’aide à la décision pré et per-opératoire lors d’interventions minimalement in-
vasives en chirurgie hépatique. Ces interventions reposent en général sur des
techniques de laparoscopie ou plus récemment d’endoscopie flexible. Lors de
telles interventions, le chirurgien cherche à retirer un nombre souvent impor-
tant de tumeurs hépatiques, tout en préservant le rôle fonctionnel du foie. Cela
implique de définir une hépatectomie optimale, c’est à dire garantissant un vol-
ume du foie post-opératoire d’au moins 55% du foie initial et préservant au
mieux la vascularisation hépatique. Bien qu’une planification de l’intervention
puisse actuellement s’envisager sur la base de données pré-opératoire spéci-
fiques au patient, les mouvements importants du foie et ses déformations lors
de l’intervention rendent cette planification très difficile à exploiter en pratique.
Les travaux proposés dans cette thèse visent à fournir des outils de réalité aug-
mentée utilisables en conditions per-opératoires et permettant de visualiser à
chaque instant la position des tumeurs et réseaux vasculaires hépatiques. Pour
y parvenir nous proposons les étapes principales suivantes :

• Modélisation de la biomécanique du foie (déformations et mouvement dû
à la respiration), ainsi que la prise en compte de la pression créé par insuf-
flation de Co2 durant l’intervention.

• Suivi de points caractéristiques sur la surface du foie dans les images en-
doscopiques et Reconstruction 3D de la surface du foie.

• Visualisation de la planification lors de l’intervention en prenant en
compte les déformations per-opératoires.

• Recalage temps réel non rigide du modele 3D du foie sur l’image.

Mots-clés: Réalité Augmentée, Simulation Biomechanique Temps Réel,
Chirurgie Minimallement Invasive, Reconstruction 3D, Suivi Visuel, Chirurgie
Guidée par l’Image, Recalage non-rigid.
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1
GENERAL INTRODUCTION

Liver diseases cause around 700.000 deaths worldwide per year [WHO]. The in-
creasing number of deaths due to liver diseases has encouraged the medical
community, scientific groups as well as governments to take actions to reduce
this number.

Considerable advances in medicine have seen the emergence of new surgery
techniques such as Minimally Invasive Surgery (MIS). In this technique, the sur-
geon does not interact directly with organs but with instruments via trocars in-
serted through small incisions on the abdomen. The surgeon can observe these
instruments on a monitor retrieving a video stream captured by an endoscopic
camera inserted through the navel. This is obviously less painful for the patient
and the healing period is shorter. In addition, bleeding and risks of infection are
considerably reduced. This is why MIS techniques are nowadays widely used.
Despite MIS procedure is considered as a well-established technique, it remains
quite complex from a surgical skill standpoint, mainly because of the poor visual
feedback and due to the loss of direct manipulation. To enrich this visual feed-
back, several solutions have been proposed in the literature. The introduction of
optics in the abdomen has naturally led the research community to investigate
the use of Augmented Reality (AR) to guide the surgeon during the procedure.
Indeed, internal structures, such as tumors and vessels, can be modeled from
pre-operative data and superimposed on the intra-operative image, offering an
elegant and effective solution to reduce the surgical complexity.

The work presented in this thesis focuses on the elaboration of an AR frame-
work for guidance and assistance during MIS. Several works in this field have
been proposed, with elegant approaches and convincing results. These ap-
proaches are however limited to rigid organs, or consider the deformations neg-
ligible, which is, in practice not a valid assumption, especially when dealing with
the liver, considered as a hyper-elastic organ. We aim at bringing a solution that
permits to establish a coherent AR system that takes into account soft-tissue de-
formations. This is done by combining processing of image data acquired with

1



2 Chapter 1. General Introduction

a camera (that allows to achieve important tasks such as 3D reconstruction and
tracking of organs) and modeling liver deformations using real-time simulation
(that faithfully translate liver behaviour). We show throughout this manuscript,
with both theoretical and practical elements, that our method can be a viable
solution to this problem.

Manuscript Organisation

This thesis is organized progressively from the modeling of soft-tissue behaviour
and the analysis of endoscopic images to the development of an augmented re-
ality framework for hepatic surgery capable of handling elastic liver behaviour.

Chapter 2 introduces the three major fields that were studied during this the-
sis: i) Minimally invasive hepatic surgery where we first describe the liver, its
anatomy, its pathology and its surgery and then introduce some techniques of
Computer Assisted Surgery, ii) Biomechanical simulation of living tissues, where
we give the necessary background concerning computational mechanics and its
application to medical simulation and iii) Surgical vision, where we describe the
techniques proposed in the literature for estimating deformable organ motion
and shape.

Chapter 3 we propose an efficient real-time algorithm for recovery and aug-
mentation of highly elastic objects in a single view context. Using a rough esti-
mation of the material elasticity and the adequate boundary constraints, large
deformations can be efficiently handled. We present experiments in a general
context where various elastic objects are used since a ground truth can easily be
computed, and in the context of augmented reality for minimally invasive liver
surgery with surgical data.

Chapter 4 we present an approach that relies on the computation of image in-
formation acquired with stereo endoscopic camera, to drive a heterogeneous
mechanical model capable of faithfully translating the liver behaviour. Our ap-
proach for three-dimensional liver surface reconstruction is introduced where
we present a clusters-based filter that aims to add robustness to temporal track-
ing of liver deformations. The biomechanical liver model that accounts for
vessels heterogeneity is described and our non-rigid registration approach ex-
pressed as an energy minimization is introduced.

Chapter 5 , we confront our framework against three experimental scenarios.
First, we demonstrate with computer-generated data whether and where an het-
erogeneous model differs from an homogeneous one for the prediction of tumor
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location. Second, our approach is tested on an actual laparoscopic procedure
performed on a human liver, allowing us to qualitatively estimate how our ap-
proach could perform in a real surgical environment. Third, we rely on a real-
istic phantom liver to quantitatively measure the error between simulation and
ground truth. We further propose several strategies to add robustness to visual
tracking, and we discuss the importance of the material stiffness in the modeling
liver soft-tissue.

Chapter 6 concludes this thesis and opens new research directions such as ini-
tial alignment of pre- and intra-operative data, intuitive visualization of volumes
during augmentation and handling occlusions that may hinder the visual track-
ing.
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6 Chapter 2. Research Background

2.1 Introduction

The work presented in this thesis focuses on the elaboration of an augmented
reality framework for the guidance and assistance of surgeons during minimally
invasive surgery. Several works in this field have been proposed, with elegant
approach and convincing results. These methods share a common ground: pro-
cessing data derived from cameras (or similar sensors). The analysis of these
data has permitted the understanding of surgical scenes and the achievement of
important tasks such as 3D reconstruction, tracking of organs and surgical tools,
as well as the estimation of the camera pose and the detection of critical regions
of interest such as vessels.

One of the characteristics of a surgical scene is the deformation of soft-tissue
organs. Thus, the proposed methods that aim to establish a coherent augmented
reality framework in surgery have tried to incorporate such a characteristic in
their algorithm following several strategies. These studies mainly cover the heart
and kidneys, and this, because the deformation occurs in a quasi-rigid or cyclical
manner, which allows to model the deformation in a robust manner. Neverthe-
less, when dealing with hepatic surgery, elastic and unpredictable deformations
occur. The inclusion of these deformations are essential in the elaboration of
our framework. We introduce, in addition to vision analysis, the modeling and
simulation of mechanical behaviour of the liver.

We present in this chapter, the three major fields that were studied through-
out this thesis: Minimally invasive hepatic surgery and Computer Assisted
Surgery, biomechanical simulation of living tissues and surgical vision. We first
describe the liver, its anatomy, pathology and surgery. We then describe the cur-
rent techniques proposed in the literature for estimating soft-tissue organ mo-
tion and shape. Finally, we give the necessary background concerning compu-
tational mechanics and its application to medical simulation.

2.2 Hepatic Surgery

This section covers hepatic surgery, including the liver anatomy and diseases
and recent techniques used in operating rooms for the liver surgery. First, the
liver anatomy is briefly described, where only the aspects modeled in our study
are highlighted i.e. texture for visual tracking, ligaments for boundary conditions
and vessels representing the main source of heterogeneity. Hepatic diseases are
then addressed and the liver surgery is described to introduce minimally inva-
sive hepatic surgery. Finally, a brief overview of computer-assisted surgery tech-
niques is given.



2.2.1. Liver Anatomy 7

2.2.1 Liver Anatomy

The liver is a vital organ normally present in the human body, in the upper right
quadrant of the abdomen Maton et al. (1994). The liver has a wide range of func-
tions, including detoxification of various metabolites, protein synthesis, and the
production of biochemicals necessary for digestion. The liver is necessary for
survival, and there is currently no way to compensate the absence of the liver
functions in the long term, although new liver dialysis techniques can be used
in the short term.

Structure and texture The liver is a roughly triangular organ which extends
across the entire abdominal cavity just inferior to the diaphragm. Most of the
liver’s mass is located on the right side of the body where it descends inferiorly
towards the right kidney. The liver is made of very soft, pinkish-brown tissues
encapsulated by a connective tissue capsule. This capsule is further covered and
reinforced by the peritoneum of the abdominal cavity, which protects the liver
and holds it in place within the abdomen.

The liver consists of 4 distinct lobes - the left, right, caudate, and quadrate
lobes (cf Figure 2.1).

• The left and right lobes are the largest lobes and are separated by the falci-
form ligament. The right lobe is about 5 to 6 times larger than the tapered
left lobe.

• The small caudate lobe extends from the posterior side of the right lobe
and wraps around the inferior vena cava.

• The small quadrate lobe is inferior to the caudate lobe and extends from
the posterior side of the right lobe and wraps around the gallbladder.

Connections to surrounding organs The peritoneum connects the liver in 4 loca-
tions: the coronary ligament, the left and right triangular ligaments, and the fal-
ciform ligament. Anatomically, these connections are not true ligaments; rather,
they are condensed regions of peritoneal membrane which supports the liver.

• The wide coronary ligament connects the central superior portion of the
liver to the diaphragm.

• Located on the lateral borders of the left and right lobes, respectively, the
left and right triangular ligaments connect the superior ends of the liver to
the diaphragm.

• The falciform ligament runs inferiorly from the diaphragm across the an-
terior edge of the liver to its inferior border. At the inferior end of the liver,
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the falciform ligament forms the round ligament (ligamentum teres) of the
liver and connects the liver to the umbilicus. The round ligament is a rem-
nant of the umbilical vein which carries blood into the body during foetal
development.

Figure 2.1: Human Liver Anatomy (Encyclopedia Britannica).

The tubes which carry the bile through the liver and gallbladder are known as
bile ducts and they form a branched structure known as the biliary tree. The bile
produced by liver cells drains into microscopic canals known as bile canaliculi.
The countless bile canaliculi come together into many larger bile ducts found
throughout the liver.

Vascular Network The blood supply of the liver is unique among all organs of the
body due to the hepatic portal vein system. Blood travelling to the spleen, stom-
ach, pancreas, gallbladder, and intestines passes through capillaries in these or-
gans and is collected into the hepatic portal vein. The hepatic portal vein then
delivers blood to the liver tissues where the content of the blood is divided up
into small vessels and processed before flowing throughout the rest of the body.
The blood going out of the liver tissues is collected in the hepatic veins which
lead to the vena cava and return to the heart. The liver also has its own system
of arteries and arterioles which provide oxygenated blood to its tissues just like
any other organ.

The internal structure of the liver is made of around 100.000 small hexag-
onal functional units known as lobules. Each lobule consists of a central vein
surrounded by 6 hepatic portal veins and 6 hepatic arteries.
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2.2.2 Liver Diseases and Cancer

Liver diseases (also called hepatic diseases) are caused by the perturbation of
any liver function that causes illness. The liver is responsible for many criti-
cal functions within the body. The loss of those functions can cause significant
damage to the body. There are more than a hundred kinds of liver diseases, the
most spread one are : Hepatitis, fatty liver disease, alcoholic liver disease and
Cirrhosis. These diseases can form several types of tumors that cause liver can-
cer. The liver can be affected by primary liver cancer, which arises from the liver,
or by cancers which form in other parts of the body and then spread to the liver.
Most liver cancers are secondary or metastatic, meaning it started elsewhere in
the body. At this stage, the surgery, either with resection (removal of the tumor)
or a liver transplant, offers the only reasonable chance to cure liver cancer.

A surgery where a part of the liver is removed is called partial hepatectomy.
This operation is attempted only if the patient is healthy enough for surgery and
all of the tumor can be removed while enough healthy liver can be left. Unfortu-
nately, most liver cancers cannot be completely removed. Often, the cancer is in
too many different parts of the liver, is too large, or has spread beyond the liver.

When it is available, a liver transplant may be the best option for small liver
cancers. At this time, liver transplants can be an option for those with tumors
that cannot be removed with surgery, either because of the location of the tu-
mors or because the liver is too affected for the patient to withstand removing
part of it. In general, it is used to treat patients with small tumors (either 1 tu-
mor smaller than 5 cm across or 2 to 3 tumors no larger than 3 cm) that have not
invaded nearby the blood vessels.

2.2.3 Minimally Invasive Hepatic Surgery

In the last decades, considerable advances in medicine have seen the emergence
of Minimally Invasive Surgery (MIS) (also called laparoscopic surgery). In this
procedure, surgical instruments and an endoscopic camera are inserted into the
abdominal cavity through small incisions (usually 5 mm - 15 mm) in contrast
to open surgery where incisions are larger. The surgeon manipulates these in-
struments by watching a monitor displaying a video stream acquired from the
endoscopic camera (see Figure 2.2).

Procedure

Under general anaesthesia, the procedure requires a few small incisions in the
abdomen (cf figure 2.3), which are used as trocar ports. Usually two to four plas-
tic trocars of 11 mm and 12 mm diameter are placed to insert rigid surgical in-
struments. Another trocar is needed for the laparoscopic camera, which gives a
magnified view of the instruments and anatomy. The surgeon selects all ports
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Figure 2.2: Surgeons perform laparoscopic stomach surgery

by palpation of external anatomic landmarks. The optimal choice of the instru-
ment ports provides full access to the whole operation region as well as adequate
surgeon dexterity.

The key element in laparoscopic surgery is the laparoscope. Usually, it has
an oblique 30± optic to gain a wider perspective by rotating it about its own axis.
This is especially useful when inserting the laparoscope camera relatively par-
allel to an organ surface and for looking behind objects Stephen and Eubanks
(2004). To provide better visualization and exposure to the surgeons, CO2 is in-
sufflated into the abdomen to enlarge the surgeon’s working volume (cf figure
2.3). This gas is used because it is common to the human body and can be ab-
sorbed by the tissues and removed by the respiratory system Peng et al. (2009).
It is also non-flammable, this is important because electrosurgical devices are
commonly used in laparoscopic procedures.

(a) (b)

Figure 2.3: Minimally Invasive Surgery procedure: (a) Incisions for laparoscopic surgery and (b)
CO2 insufflated into the abdomen and camera insertion.
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There are two types of laparoscopic camera : a telescopic rod lens system, that
is usually connected to a video camera (single chip or three chips with high hor-
izontal image resolution of more than 750 lines), or a digital laparoscope where
the charge-coupled device is placed at the end of the laparoscope, eliminating
the rod lens system. Also attached is a fibre optic cable system connected to
a ’cold’ light source (halogen or xenon), to illuminate the operative field, in-
serted through a 5 mm or 10 mm cannula or trocar to view the operative field
Janie Fuller et al. (2003). The laparocopic camera is equipped with a cold light to
illuminate the working space as illustrated in Figure 2.4.

Figure 2.4: Stereo endoscope of the Da Vinci robot and two mounted monocular camera from
Karl Stroz Endoscopy.

Benefits and outcomes

Although open surgery is still very common, many procedures are now per-
formed with minimally invasive techniques for their advantages for the patient
(reduced pain and short recovery time). From a surgical skill standpoint these
procedures are quite complex mainly because the visual feedback is relatively
incomplete or poor and due to the loss of direct organ manipulation.

The main advantage of laparoscopic surgery Stephen and Eubanks (2004) is
the reduction of hemorrhaging, minimizing the need for blood transfusion. In
addition, the small incisions reduce the exposure of internal organs to possible
external contaminants thus decreasing the risk of infections.

While laparoscopic surgery is clearly advantageous in terms of patient out-
comes, the procedure is more difficult from the surgeon’s perspective when com-
pared to traditional open surgery Marvik et al. (2005). Indeed, the surgeon has
a limited range of motion and suffers from a poor depth perception. In addi-
tion, the surgeon must use tools to interact with organs rather than manipulat-
ing them directly with its hands. The tool endpoints move in the opposite direc-
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tion to the surgeon’s hands due to the pivot point, making laparoscopic surgery
a non-intuitive procedure Janie Fuller et al. (2003). These disadvantages lead
to the emergence of new techniques to help and assist the surgeon during MIS
known as Computer Assisted Surgery.

2.3 Computer Assisted Surgery

Computer assisted surgery (CAS) also known as computer assisted intervention
(CAI) or image guided surgery (IGS) uses advanced techniques in robotic and
computer science to improve the surgical procedures and provide decision sup-
port Marvik et al. (2005). The assistance can take several forms : pre-processing
of scanned data using image processing techniques, robotic surgery and telesur-
gical procedure, surgical simulation for planning and diagnosis, and surgical
navigation. In practice, these fields cannot be dissociated and can be used to-
gether at several stages (pre-operatively, and intra-operatively) to facilitate the
procedure.

Figure 2.5: Robotic-Assistance Surgery : ZEUS surgical plateform (left) and Da Vinci plateform
(right).

2.3.1 Robotic-assisted Surgery

Surgery has greatly benefited from advances in robotics Hungr et al. (2012). The
major advance of the last decades is the introduction of teleoperated surgical
platforms for MIS. These plateforms permit to control a slave robot (which holds
the surgical tools and the endoscope) from a distant master console that trans-
mits the surgeons gesture.

Currently, only two commercial platforms have been developed (illustrated
in Figure 2.5) the Zeus Robot from Computer Motion and the DaVinci Robot
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from Intuitive Surgical (nowadays the DaVinci platform is the only commercially
available surgical platform).

Such platforms provide surgeons with superior visualization, enhanced dex-
terity, precise movements and ergonomic confort, making it possible for com-
plex surgical procedures to be performed in a minimally invasive fashion. Their
current limitations reside mostly in restoring haptic feedback and visualization
enhancement Westebring et al. (2008).

2.3.2 Virtual patient

Creating a virtual image of the patient is considered as the most important com-
ponent of CAS with well-established imaging modalities, such as ultrasound,
MRI, CT, X-rays L. Soler (2000). The patient virtual image is essential for diag-
nosis in medical procedures and pre-operative planning. With the emergence
of new techniques of imaging and the advances in image processing as well as
computer graphics, medical imaging quickly muted to 3D data visualization and
fusion, trying to offer the surgeon enriched information and the possibility to vi-
sualize organs of the patient in 3D (see Fig 2.6-a).

(a) (b)

Figure 2.6: Computer Assisted Surgery : (a) 3D virtual patient built from CT Imaging (b) VR
Simulator for Cardiology Training.

2.3.3 Surgical Simulation

The main purpose of medical simulation is to properly train students in different
medical fields using advanced technology. In addition, around 100.000 deaths
are recorded annually due to medical mistakes, medical simulation can be a
solution to reduce this number. We can find in the literature several research
studies on medical simulation Marescaux et al. (1997); Ayache et al. (1998); Tal-
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bot et al. (2014); Selmi et al. (2013) as well as commercial simulators dedicated
to training for different types of surgery (see Fig 2.6-b). In addition to training,
medical simulation can be used pre-operatively, to plan surgical procedures or
intra-operatively during surgeries as a decision support, where it appears to be
an essential aspect of tomorrow’s surgery.

2.3.4 Augmented Reality for Surgery

One of the aims of surgical navigation is to provide surgeons with enriched visual
feedback while performing interventions. It can be used for example to avoid
critical areas such as vessels or to highlight the position of a tumour during an
hepatectomy. With the advances in surgical vision and the ability to compute
virtual organs pre-operatively, Augmented Reality has been considered as a suit-
able technology for CAS and leads the community to propose several methods
to bring AR in surgery.

Augmented Reality (AR) is the synthesis of real and virtual imagery. In con-
trast to Virtual Reality (VR), in which the user is immersed in an entirely artifi-
cial world, AR overlays extra information on real scenes. AR could overlay simple
highlights, arrows or text labels into the user’s view or more complicated graph-
ics like 3D models or animations Klein (2006). Ronald Azuma offered a definition
Azuma (1997) that Augmented Reality combines real and virtual and is interac-
tive, real time and registered in 3D.

One of the first studies on Augmented Reality for laparoscopy was proposed
by Fuchs et al. Fuchs et al. (1998). This work focused on AR visualization for la-
paroscopic surgery by the extraction of depth from the laparocopic camera. In
the context of surgical guidance, Suthau and Hellwich (2002) presented a con-
cept work for AR in medical applications using a Head-Mounted Display. Since
then, a number of medical AR systems have implemented the concept. In the
MEDARPA (MEDical Augmented Reality for Patient) Wesarg S. (2004), an AR
system to support MIS, only rigid transformations between the pre and intra-
operative images were considered and computed from markers attached to the
patient’s body. Marescaux et al. Marescaux (2004) reported the first real-time AR-
assisted laparoscopic adrenalectomy using manually assisted deformable regis-
tration. Yet many challenges remain unsolved in order to obtain real time fully
automatic registration methods for deformable organs without the need to fix
markers on the patient. A number of techniques have been proposed to increase
accuracy of tracking and registration of AR systems in surgery. A hybrid tracking
method for surgical augmented reality was proposed by Fischer et al. Fischer
et al. (2007). Still in the context of rigid registration, the system combines IGS
equipment for infrared tracking and image-based tracking and is capable of su-
perimposing tumor in video see-through AR and tracking instruments.
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Most of the early contributions are dedicated to rigid organs or assume that
elastic deformations between pre-operative and intra-operative data are negli-
gible. In practice, large elastic deformations may occur due to breathing or due
to the interaction of the organ with the surgeon’s tools. Past attempts to perform
AR on deformable organs made use of markers or navigation aids placed close to
the area of navigation targets Teber et al. (2009) or required interaction to refine
elastic registration between pre and intra-operative data Nicolau et al. (2011).
Others Figl et al. (2010) built pre-operatively a dynamic 4D model of the heart
which is registered to intra-operative data using ECG. Su et al. (2009) proposed
a 3D-3D iterative closest point (ICP) registration with an image-based tracking
to superimpose the 3D model onto laparoscopic images for kidney partial resec-
tion. Since kidney do not actually undergo elastic deformations during surgery
the 3D-3D registration is performed in a rigid manner. These methods have
shown the feasibility of automatic AR systems in surgery but put constraints on
the operating room, required interaction or are dedicated to specific - i.e. cyclic-
deformations.

Figure 2.7: Augmented reality for laparoscopic liver surgery. The purpose behind AR in surgery
is to visualize internal structures such as tumors, superimposed on the video stream, in 3D and
in real-time.

Recently, significant advances have been realized towards automatic reg-
istration between pre and intra-operative data in MIS. In the context of la-
paroscopy and with monocular images, Kim et al. (2012a) proposed a robust so-
lution to track and augment a deformable surgical site using shape from shading
and conformal mapping. However, their method only retrieves surface deforma-
tion and cannot ensure an accurate augmentation of inner structures. Puerto-
Souza et al. Puerto-Souza and Mariottini (2013) proposed a matching algorithm
called Hierarchical Multi-Affine capable of long-term tracking for augmentation
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during partial nephrectomy. This approach estimates a set of affine transforma-
tions from clusters of features in order to relocate occluded or missing features
for a coherent spatio-temporal mesh registration.

Computer Assisted Surgery appears to be an essential aspect of tomorrow’s
surgery, it becomes necessary in most of medical routines. These techniques
where proved to be efficient in pre-operative context, mainly in the process-
ing of virtual image of patient. However, they still have limits to deploy intra-
operatively, where the procedure complexity makes it challenging to guarantee
a successful surgery assistance. Augmented Reality has the potential to become
a well-established technique for surgical navigation. In the last decades, signif-
icant advances have been made in this area both theoretically and practically,
with real case studies. But most of the contributions do not consider non-rigid
behaviour of organs, which can be highly damaging when targeting medical ap-
plications where accuracy is critical. We propose in this thesis to bring simu-
lation in the operating room, by performing augmented reality taking into ac-
count elastic behaviour of human organs. We show that with this combination
internal structures such as tumors can be accurately located by propagating sur-
facic liver motion acquired form laparoscopic camera. Thus, this combination
involves two main domains: Processing of laparoscopic image with advanced
surgical vision techniques, and simulation of liver elasticity using mechanically-
based approaches.

2.4 Surgical Vision

Processing image data of the targeted environment is the first step towards an
Augmented Reality application. With the emergence of MIS and the introduc-
tion of optics in the surgical procedure routines, computer vision techniques
naturally appear as an appropriate support for surgical navigation and guidance.
Thus, in the last decades, several research groups have investigated new meth-
ods and approaches to understand surgical scenes. Among all the specialization
that appeared in this field, the most widely studied one is the estimation of organ
motion.

Estimating organ motion involves two main steps: 3D reconstruction of or-
gan shapes and its temporal visual tracking. In the following we give an overview
of actual techniques for shape recovery during MIS, using several types of acqui-
sition modality, and we describe the current techniques proposed for a robust
and accurate visual tracking of organ soft-tissue. In this section, these two steps
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are addressed where we only focus on estimating the organ shape and motion.
Surgical instrument tracking Allan et al. (2013) is not covered here.

2.4.1 Three-dimensional Shape Recovery

Many methods have attempted to recover 3D information on the organ from in-
tra abdominal images, these methods can be divided into two main categories
(see Figure 2.8): active techniques where the image is enriched to facilitate its
processing, like projecting patterns or lights. Generally, this enriching is done
through hardware modifications on optical devices or additional sensors, and
passive techniques that only rely on processing endoscopic images where no
additional information is needed. Both active and passive techniques have ad-
vantages and disadvantages and have been studied by the community.

Active Techniques

In order to acquire distance information during laparoscopic surgery, Penne et
al. Penne et al. (2009) introduced Time-of-Flight technique (ToF) via endoscope
optics. By measuring the time that the signal takes between the camera and
the target object (for instance an organ), this approach is able to perform depth
measurement at 20 fps. One of the advantages of ToF approach is that it requires
a small range to build a depth map which can be suitable knowing the restricted
working space of laparoscopic surgery. However, the in-vivo tests Groch et al.
(2012) recently performed suggest that ToF camera is not yet significant for clin-
ical uses.

Another active method used in laparoscopic surgery is Structured Light Mau-
rice et al. (2011); Albitar et al. (2007). In this method, a known pattern is pro-
jected onto the organ using a calibrated projected, the projected image is ac-
quired with a monocular camera and processed in order to reconstruct 3D shape
of the targeted object. The projector and optical sensor can be mounted on
the same endoscopic device or can be separated. In both cases, it consists of a
detection-correspondence-triangulation step. This method gives accurate and
robust 3D reconstruction, and performs well in case of featureless tissue, which
can be of interest for surgical context. Nevertheless, the quite heavy hardware
modifications and their cost make this technique not practical and hardly appli-
cable.

Photometric Stereo Collins and Bartoli (2012a); Herrera et al. (2013) has
recently been introduced as an alternative to strong hardware tuning. This
method aims to reconstruct surface normals of an object with images taken from
the same viewpoint under several illumination conditions. Based on a stan-
dard monocular laparoscope modified with three colour filters (red, green and
blue) placed at its tip (without physical dimension changes), Collins and Bartoli
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(2012a) propose to extend PS to closed-range constraint for 3D Reconstruction
in Laparoscopy. This method, tested on in-vivo pig liver, gives significant 3D
reconstruction and represents a practical and very inexpensive solution. How-
ever, its major limitation consists of the illumination perturbation that may oc-
cur when dealing with highly reflective organs such as the liver.

(a) (b)

(c)

Figure 2.8: Three-dimensional organs shape recovery with (a) structure from motion, (b) struc-
tured light and (c) simultaneous localisation and mapping. (Courtesy of Maier-Hein et al. (2013))

Passive Techniques

Since passive techniques are based on processing endoscopic images, the pro-
posed methods for 3D reconstruction are mainly inspired by classic computer
vision algorithms. However, where computer vision techniques perform well
on non-surgical data, visual complexity of the intra-abdominal scene makes the
direct translation of these algorithms difficult without a specific tuning and ad-
ditional visual cues.

Stereoscopy in MIS has been widely studied in the last decades Stoyanov et al.
(2005); Stoyanov (2012); Richa et al. (2010a); Su et al. (2009); Chang et al. (2013);
Rohl et al.; Pratt et al. (2010), with very effective methods and significant results,
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it currently represents the most feasible technique for 3D reconstruction when
dealing with in-vivo data. Sparse 3D reconstruction was studied for robotic as-
sisted intervention Stoyanov et al. (2005) as well as for registration purpose Su
et al. (2009), using stereo correspondence to register sparse 3D shape of targeted
organs with pre-operative 3D models. Using a growing seed technique, Stoy-
anov et al. Stoyanov (2012) are able to perform dense reconstruction on in-vivo
data. By imposing spatial and temporal constraints, this method is able to recon-
struct dense 3D scene flow accurately and efficiently. This dense reconstruction
is based on the propagation of information starting from a sparse set of can-
didate seed matches. The growing scheme also permits to reject outliers and
ensures uniqueness and symmetry in the estimated flow. This method has been
improved using convex optimisation Chang et al. (2013) to face texture-less area
issues. Other techniques Richa et al. (2010a,b) take advantage of motion tem-
plate in order to handle deformations and reduce specular highlight issue by
ensuring a temporal consistency.

Many of the exposed techniques can achieve real-time thanks to GPU im-
plementation and have been tested on ex-vivo and in-vivo data, making stere-
oscopy a promising technique for 3D liver reconstruction during MIS. Never-
theless, robustness regarding specular highlights, texture-less organ tissues and
occlusions remain its major limitations, in addition to disturbance coming from
smoke and blood that may highly affect the stereo-matching. Moreover, despite
the fact that the stereo-endoscopic devices (DaVinci Camera or Karl Storz Cam-
era) are currently used in clinical routine, they are rarely used compared with
classical monocular laparoscopic cameras. This can be explained by the fact
that in the early days of MIS, stereoscopic technology was not mature enough to
be considered in the Operating Rooms.

To overcome the need of stereo-endoscope, several monocular-based ap-
proaches have been proposed, these methods take advantage of camera motion
to simulate multiple camera or exploit shading properties of the organ.

Hu et al. (2007) proposed to use Structure-from-Motion (SfM) in laparo-
scopic surgery for 3D reconstruction of environment from multiple endoscopic
views. In this method, false feature correspondences are detected by impos-
ing trilinear constraints using three images instead of classical epipolar con-
straints between two images. The use of Simultaneous Localisation and Map-
ping (SLAM) in laparoscopy was studied by Mountney et al. (2006). One of the
main advantages of SLAM is that with the several observations of a particular en-
vironment the uncertainty of 3D reconstruction can be modelled and reduced.

Both SfM and SLAM assume a rigid environment, which is not the case when
dealing with laparoscopic liver surgery, where deformations from breathing and
heart beating occur. For that purpose, deformable SfM has been introduced
to handle the non-rigid organ behaviour Collins and Bartoli (2011) and cyclic
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motion model for cardiac and respiratory motion was incorporated into SLAM
framework Mountney and Yang (2010) to predict organ deformations. While
these techniques show promising results, their real robustness and accuracy are
not yet assessed.

With a laparoscopic camera surrounded by a light source, Shape-from-
Shading techniques have naturally appeared as a feasible solution. By using
shading and specular information acquired from a single image view, and an
appropriate light model, 3D shape of organs can be recovered Collins and Bar-
toli (2012b) in surgical context. In this study, a non-parametric light model is
used allowing the modeling of different endoscopic cameras. However, complex
reflectance properties of the organ tissues make the exploitation of shading not
practical. To improve reconstruction and homogenize the recovered 3D shape,
an alternative solution which combines SfS with SfM Malti et al. (2012) has re-
cently been proposed, making a step forward for future research.

2.4.2 Visual Tracking of Organ Tissue

Visual tracking aims to temporally locate the position of the targeted organ and
to provide the evolution of tissue behaviour over time (cf Figure 2.9). Depending
of the needs, these positions can be in 2D deduced directly form images, or in
3D where a reconstruction stage is required.

Figure 2.9: Tracking tissue locations in endoscopy (courtesy of Yip et al. (2012))

The main contribution in this area relies on the detection of salient land-
marks (or features) on the surface of the organ (see Figure 2.10). Features de-
tection is an important research area in computer vision, where a large num-
ber of feature detectors have been proposed Mikolajczyk et al. (2005) and tested
on MIS data Mountney et al. (2010). Once the landmarks are selected, an al-
gorithm for searching correspondences over frames is usually applied. These
correspondences can be found using an assumption on the organ motion in two
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consecutive frames Stoyanov (2012), or by searching for image similarities (fea-
ture matching) between the frames Puerto and Mariottini (2012).

Endoscopic images represent a quite complex data for computer vision,
since the presence of specular highlight and instrument may disturb the track-
ing. For that reason, the research community has focused on providing accurate
and robust methods for long-term tracking. To do so, hybrid methods have been
proposed to counteract the unreliability of each single method. In Stoyanov et al.
(2005) a combination of maximally stable extremal regions (MSER) Matas et al.
(2004) and the traditional gradient based image features Shi and Tomasi (1994) is
used for salient landmark selection. These landmarks are tracked using a mod-
ified Lucas-Kanade optical flow Lucas and Kanade (1981a) extended to stereo-
scopic images. This approach was further improved by incorporating the scale
invariant feature transform (SIFT) Lowe (2004a) to increase tracking robustness
Richa et al. (2010a). In Elhawary and Popovic (2010a), a simple combination of
the speeded up robust feature (SURF) Bay et al. (2008) method and optical flow
algorithm is proposed for heart surface tracking.

To cope with occluded regions, Puerto-Souza et al. Puerto (2011) proposed
a Hierarchical Multi-Affine matching algorithm capable of long-term tracking
for augmentation during partial nephrectomy. This approach estimates a set
of affine transformations from clusters of features in order to relocate missing
features to obtain a coherent spatio-temporal mesh registration.

Figure 2.10: Detectors and Descriptors with the (a) Affine-Invariant Anisotropic Region detector
(b) Harris-Affine (c) Hessian-Affine (d) MSER. (courtesy of Giannarou et al. (2013))

Other techniques rely on the use of temporal or physical models to avoid
occlusion by a prediction step Pratt et al. (2010). Using spatio-temporal con-
straints, Richa et al. Richa et al. (2010c) proposed to exploit the quasi-periodicity
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of heart beating motion to reduce tracking disturbances by using time-varying
dual Fourier series as a prediction model that also permits to handle occluded
surface.

Features algorithms that exhibited the highest density and temporal persis-
tency are the SIFT and SURF, both in terms of detector Mikolajczyk et al. (2005)
and descriptor Mikolajczyk and Schmid (2005). These methods can hardly
achieve real-time processing required in intra-operative context. A recent eval-
uation Yip et al. (2012) reports that a combination of the STAR feature detector
M. Agrawal and Blas (2008) and binary robust independent elementary features
M. Calonder and Fua (2010), can perform in real-time while maintaining high
feature density and tracking accuracy. Recently, Giannarou et al. (2013) pro-
posed an affine-invariant anisotropic feature detector dedicated to surgical data.
The detector is coupled with an Extended Kalman Filter (EKF) to allow accu-
rate identification and matching, and the exploitation of a GPU implementation
leads to reach real-time performance.

A wide range of feature detectors and descriptors have been developed by
the computer vision community. The application of these techniques to surgi-
cal vision has faced significant limitations due to the complexity of surgical en-
vironment in terms of soft tissue deformation and changing visual appearance.
To counteract these limitations, most of studies consider that the deformations
are small or cyclic, thus they can be subject to a predictive model to detect and
reduce outliers. When dealing with elastic liver this assumption can not be con-
sidered since large elastic deformations occur, and motion estimation is more
prone to outliers. In this thesis, we propose a method for 3D reconstruction and
tracking of liver deformations recovered from endoscopic images. This method
is less prone to disturbance since it does not totally depend on images, but relies
on geometrical processing of the reconstructed 3D point cloud. In addition, we
take advantage of the ability of the liver biomechanical model to estimate de-
formations where no features are tracked, to reduce the density of features and
apply very strict detection, matching and tracking filtering. Thus, a long-term
tracking of 3D features is possible, permitting an efficient non-rigid registration.

2.5 Modeling Non-rigid Objects

The choice of an appropriate deformable model is important to model or-
gan deformations. In this section we give a brief overview of popular meth-
ods used for the modeling of non-rigid objects. We mainly highlight the ap-
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proaches which were adopted by computer vision, namely physically-based
models, mass-spring systems, learned models and parametric shape warping.

2.5.1 Physically-based Models

that Mechanical models are very popular in both Computer Graphics and Com-
puter Vision. Their ability to translate physical behaviour of objects with fidelity
is a major feature for applications such as medical imaging Sermesant et al.
(2003); Baumann et al. (2009) and medical simulation Courtecuisse et al. (2014).
From a computer vision point of view, mechanical models have been used as
regularization of image fitting taking into account erroneous measurements. For
example, the Active Contour Models (Snakes) Kass et al. (1988a) attempt to min-
imize an external energy associated to image contour and and internal physical
energy associated to the model. This method was extended to handle volume
data Shen et al. (2011). In Schaerer et al. (2010), a dynamic model based on the
equation of dynamics for elastic materials is proposed, where forces measured
on the image drive the model towards object boundaries. The organ is supposed
to be homogeneous and the forces measured on MRI volumes, though noisy, are
available everywhere in the structure.

Most of the time, simple models based on linear elasticity are considered.
For tracking heart beat Pratt et al. (2010) used a 4D scan of the heart coupled
with a biomechanical model. It is controlled by surface constraints created by
features extracted from a stereovision stream and allows quite accurate overlay
of internal structures. This approach is however limited to cyclic movements
where no large deformations nor surgeon manipulation occurs. In Speidel et al.
(2011), intra-operative registration between stereo endoscopic images and pre-
operative modeling of the liver based on biomechanical properties was pro-
posed. A linear and a Neo-hookean elastic model are considered and the ac-
curacy of registation is assessed on a phantom. The results are slightly better
with the second model but the model is not suitable for real time simulation.

Mechanical models permit an accurate non-rigid registration while produc-
ing a coherent visual deformations. Their limitations reside in their complexity
and their cost in computing. In addition, a prior knowledge of the object physi-
cal properties is necessary.

2.5.2 Mass-spring System

Mass-springs System is a very intuitive deformable model Miller (1988). In this
model, the deformation is approximated by a set of point masses connected by
massless springs. Instead of going through a discretization stage, the model of-
fers directly a discrete model which only requires the solution of a system of cou-
pled ordinary differential equations.
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The main advantage of mass-spring system is its computational efficiency,
where real-time can easily be achieved. Its disadvantage is that it generates non-
realistic deformations. Indeed, it is difficult to link the stiffness of the springs
to real physical parameters. Furthermore, mesh resolution impacts heavily on
the deformations making the model mesh dependant. Despite these drawbacks,
mass-spring systems are used by the research community Ibai et al. (2014) and
in commercial medical simulators.

(a) (b) (c)

Figure 2.11: Deformable models: (a) Learned model Salzmann et al. (2007b) (b) Parametric
model Bartoli (2008) (c) Mass-spring systems Ibai et al. (2014).

2.5.3 Learned Non-rigid Models

Instead of trying to estimate a deformation with unknown physical parameters,
learning models permits to infer shape statistics from a training data which
groups the possible shape configurations. These models have been used in
computer vision for tracking 2D face deformations using Active Shapes Mod-
els Cootes et al. (1995) or Active Appearance Models Matthews and Baker (2004).
They have also been used for 3D non-rigid shape recovery from a single view
Salzmann et al. (2007b); Salzmann and Fua (2011).

Learned non-rigid models are considered very effective for many applica-
tions since they do not need a priori knowledge material parameters. However,
when dealing with deformable surface, the mesh includes many degrees of free-
dom. Building a correct database that will define all the possible deformations
with such a large number of degrees of freedom is an amount of work. As an
alternative, many approaches rely on the use of a regularization of paramet-
ric shape models, aiming to reduce the number of mesh vertices using control
points which interpolate the deformation in order to obtain a finer mesh de-
scription.
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2.5.4 Shape Parametrization

Parametric models are widely used in computer vision as warps functions for im-
age deformations. Where a large variety of warps functions exist in the literature,
the most popular warps are those based on Radial Basis Functions (RBF) such
as the Thin-Plate Spline (TPS) Bookstein (1989) and those based on the tensor-
product, called Free-Form Deformations (FFD) Sederberg and Parry (1986) using
cubic B-spline or Beziers volumes.

Thin-plate Spline is a radial basis function that specifies an approximation
function which minimizes its internal bending energy. It has been successfully
applied for modeling non-rigid surface Bartoli (2008) and has been extended
from affine to projective transformations. The TPS is very attractive, thanks to
its flexibility in placing control points which drive the deformation, thus recent
works take advantage of TPS for the modeling of heart tissue deformation Richa
et al. (2010a); Lim and Yang (12005).

The basic idea of Free-form Deformation model is to deform an object by
manipulating an underlying mesh of control points. The resulting deformation
controls the shape continuous of the 3D object and produces a smooth trans-
formation. FFD’s have been previously applied to tracking and motion analysis
in medical imaging Rueckert et al. (1999) and non-rigid surface Bartoli and Zis-
serman (2004a); Pizarro and Bartoli (2012). The disadvantage of standard FFD is
their lack of ability to model local deformations.

Shape Parametrization models are straightforward to implement in real-time
and are flexible since they rely on the manipulation of the mesh nodes or outly-
ing control points. Nevertheless, the absence of internal properties makes them
unsuitable for creating realistic biomechanical deformations.

Depending on the application, several methods can be considered for mod-
eling deformation. Mechanical models are used for application when the accu-
racy is critical such as medical non-rigid registration but rely on the prior es-
timation of the material parameters. Mass-spring systems are considered as a
quasi-physical models and are widely used in computer graphics since they are
intuitive and computationally fast. Nevertheless, they suffer from accuracy. One
can use the learned models when dealing with a limited amount of deformations
like human face deformations or parametric models that are very effective for in-
elastic non-rigid surfaces like papers or cloths, or for cyclic deformations such
as heart beating. The last two are however dedicated to surface deformations.

Although, mechanical models are seldom reported in image-based non-rigid
recovery since a prior knowledge of the material property is needed to correctly
estimate the deformation, and are computationally expensive and most of the
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time very complex. They are the most suitable for the modeling of liver tis-
sue where large, unpredictable deformations occur. Recent advances in med-
ical simulation have permitted to reach a trade-off between stability, real-time
achievement and accuracy which lead us to investigate their usability for medi-
cal augmented reality. In addition, we aim at augmenting the liver internal struc-
tures like tumors. Thus, a volumetric representation is necessary to propagate
into the volume, the liver deformations processed from image data, for an accu-
rate tumor localisation.

2.6 Physics-based Modeling

Our method involves the modeling and simulation of liver deformation, ac-
counting for vessels and tumors. Simulation of liver tissue deformations has
been studied both by computer graphic and medical simulation groups. The
non-linear visco-elastic behaviour of the liver makes its modeling very challeng-
ing. In addition to the various features which have to be considered in order
to correctly translate the behaviour of the liver tissue such as anisotropy, large
deformations or tissue heterogeneity, the real-time aspects of the simulation is
considered as one of the most important features in medical context. The real-
time constraint leads the community to propose several deformable models to
find the best compromise between stability, accuracy and performances.

In this section we give the necessary background concerning computational
mechanics and its application to medical simulation. We first give definitions
related to continuum mechanics, then we describe the Finite Element Method
that discretizes the domain covering linear and non-linear models. Finally, time
integration is treated and real-time approaches that permit medical uses are ex-
posed.

2.6.1 Continuum Elasticity

The most common approach to describe the deformation of an object is the La-
grangian view (where fluids are commonly described by the Eulerien View). It
permits to define a deformed object based on its initial (undeformed) state and
by a set of material parameters that define the way it deforms under external
loads.

Displacement field

The displacement field permits to determine for each particle in the initial con-
figuration its position in the deformed configuration. Let us define the rest shape
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as a continuous connected subset M of R3, we call material coordinates, the co-
ordinates m 2 M of a point in the object. The object leaves its rest shape to a
deformed configuration when forces are applied, thus a point originally at lo-
cation m will be defined by its new spatial coordinates at location x(m). Since
new locations can be defined for all material coordinates m, the vector field x
can be defined on M . Otherwise, the deformation can also be specified by the
displacement vector field u(m) = x(m)°m defined on M .

Figure 2.12: In the finite element method, a continuous deformation (left) is approximated by a
sum of (linear) basis functions defined inside a set of finite elements (right)

Strain tensor

We introduce the notion of strain tensor (noted ") reflecting the local deforma-
tions (elongation, compression, bending, twisting or shearing) of a displace-
ment field at a given point in the field. The elastic strain tensor " can be
computed from u(m) (" is a dimensionless quantity which, in the linear one-
dimensional case, is simply ¢l /l ). That strain must be measured in terms of
spatial variations of the displacement field u = u(m) = (u, v, w)T since a spatially
constant displacement field represents a translation of the object with no strain.

Several approaches exist in the literatures to compute the stress tensor. The
reader may refer to Nealen et al. (2006), for a comparison of different stress ten-
sors and their implication on the behaviour of objects. However, the two fre-
quently used elastic strains in the field of real-time simulation are the Green’s
nonlinear strain tensor and the Cauchy’s linear strain tensor:

"G = 1
2

(ru + (ru)T + (ru)Tru) (2.1)
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and

"C = 1
2

(ru + (ru)T ) (2.2)

where the symmetric tensor "G 2 R3£3 is the Green’s nonlinear strain tensor
and "G 2R3£3 its linearization, called Cauchy’s linear strain tensor. The gradient
of the displacement field is the 3 by 3 matrix below:

ru =

2

66664

@u
@x

@u
@y

@u
@z

@v
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@v
@y

@v
@z

@w
@x

@w
@y

@w
@z

3

77775
(2.3)

Stress tensor

Stress tensor defines the internal forces of the material that permit to maintain
a coherent environment, for example, it ensures the inability to stretch or com-
press an object to infinity. In other words, the stress tensor æ 2 R3£3 defines the
state of stress for each material point m in the deformed configuration. Under
the Cauchy’s law, internal forces of an object can be defined by its surface forces.
Thus, Cauchy stress tensor æ maps the normal to a surface n to the traction vec-
tor t acting on that surface, according to:

t = n ·æ (2.4)

where

æ=

2

66664

æ11 æ12 æ13

æ21 æ22 æ23

æ31 æ32 æ33

3

77775
(2.5)

The Cauchy stress tensor refers to the current configuration, that is, it is a
measure of force per unit area acting on a surface in the current configuration.
Since this current configuration is not always known, one can use the Piola-
Kirchhoff tensor which can express the stress from its rest shape.

Constitutive law

In practice, the strain tensor " and the stress tensoræ are closely related. Indeed,
the displacement of a point in the object will generate forces, which will con-
strain that displacement. This relation, called the constitutive law (or material
law), depends on the material properties that are often experimentally obtained.
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Linear Elasticy The most popular constitutive law in computer graphics is the
Hooke’s material law with a linearised Green-Lagrange tensor under the hypoth-
esis that the displacements are small. This linear elastic law consider that the
elongation is proportional to the force and is as follows:

æ= 2µ"+∏tr (")I (2.6)

∏ andµ are the Lamé coefficients that can be deduced from the Young Modu-
lus E and the Poisson coefficient ∫ which belong to the material’s physical prop-
erties:

∏= E∫
(1+∫)(1°2∫)

µ= E
2(1+∫)

(2.7)

E = µ(3∏+2µ)
∏+µ ∫= ∏

2(∏+µ)
(2.8)

The Poisson coefficient describes the compressibility of the material (0: per-
fectly compressible, 0.5: perfectly incompressible) while the Young Modulus de-
scribes the stiffness of the material. Often, the linear elastic law of equation Eq
2.6 is formulated as follows:

æ= E§" (2.9)

where E is a rank for tensor which relates the coefficients of the stress tensor
linearly to the coefficients of the strain tensor. Note that, the elastic energy W
can be written simply as a function of the linearized strain and stress tensors:

W = 1
2

tr (" ·æ) (2.10)

This linear relation is mathematically very convenient and allows to per-
form pre-computation, which leads to fast computation and very efficient al-
gorithms which is a major requirement in surgical simulators. Thus, this model
has been deployed for real-time simulation of elastic deformations in the context
of surgery simulation Bro-nielsen and Cotin (1996); Cotin et al. (1999); Szekely
et al. (2000), with correct visual rendering and haptic feedback. Its usability is
however dependent on the type of surgery and the structure of the modelled or-
gan, and limited to a certain range of deformations, to ensure the validity of the
small displacement hypothesis (less than 10% of the size of the mesh).

Non-linear Elasticity Although the hypothesis of linearity can give a good ap-
proximation in the case of small deformations, it is often violated when dealing
with large deformations under manipulation of surgical instruments. This may
introduce significant errors and unrealistic distortions of the mesh. Figure 2.13
illustrates the limitations of using linear elastic models.
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Figure 2.13: Comparison between non-linear (red) and linear (green) models with two beams
with the same mechanical properties deformated under the effect of the gravity: The limitation
of using linear elastic models reside in the simulation of large deformations when we notice a
visually aberrant deformation.

Modeling such deformations involves the expression of stress with the cur-
rent deformation, making the formalization and computation of such a relation
much more complex. Overall, the energy W involved in the deformation of an
hyper-elastic material (non-linear elasticity) is given by:

æ= @W(")
@"

(2.11)

We obtain here a general expression that relates stress to strain.
Several non-linear models have been proposed in surgical simulation try-

ing to faithfully reproduce organs behaviour Picinbono et al. (2003); Miller et al.
(2007); Comas et al. (2008); Marchesseau et al. (2010). The major issue resides
in their ability to perform real-time achievement while ensuring accuracy and
stability.

2.6.2 The Finite Element Method

At this stage, we describe a set of equations that govern the physical behaviour
of an object. These equations must be integrated throughout the area, which re-
sults in an infinite number of equations. The Finite Element Method (FEM) is a
popular method for finding approximate solutions of Partial Differential Equa-
tions (PDE’s) on irregular grids or meshes. It is worth mentioning that alterna-
tives to FEM exist such as finite differences method Terzopoulos et al. (1987),
finite volume method Teran et al. (2003) or boundary element method James
and Pai (1999).
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Domain Discretization

The essential characteristic of this approach is the discretization of a continu-
ous domain into a set of discrete sub-domains. In our case, the volume of the
deformable object is generally discretized using a mesh composed of linear el-
ements (triangles, tetrahedra, hexahedra, etc.) where shape functions are de-
fined. This leads to continuous representations with varying levels of continuity
(linear, quadratic, etc.).

(a) (b) (c)

Figure 2.14: Domain discretization: (a) P1 linear tetrahedral element, (b) liver FEM model with
1563 elements (c) liver FEM model with 3205 elements

The choice of the type of elements that compose the mesh is very important,
since it directly impacts the accuracy and the performance of the simulation.
Triangles are usually used for 2D representation while tetrahedra and hexahedra
are used for 3D. The elements are generated from surface meshes and must cover
all the volume of the object without any overlapping. In addition, each element
has an interpolation equation (or shape function) that defines the variation of
the quantity within the element. Very often, this shape function is polynomial
with an order chosen to be the lowest one possible.

The most popular elements used in the literature are P1 linear tetrahedral
elements (see Figure 2.14). These elements are the simplest elements in 3D: each
element has four nodes n =2 {1, . . .4} and interpolation functions are linear. The
simplest linear function in 3D is defined as:

∞(x1, x2, x3) = a +bx1 + cx2 +d x3 (2.12)

Numerical solution

The partial differential equation to be solved and governing dynamic elastic ma-
terials is given by:

Ωẍ =ræ+ f (2.13)
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where Ω is mass density of the material and f are externally applied forces
such as gravity. Divergence operator turns the 3£3 stress tensor back into a 3-
vector:

r ·æ=

2

66664

æxx,x +æx y,y +æxz,z

æy x,x +æy y,y +æy z,z

æzx,x +æz y,y +æzz,z

3

77775
(2.14)

representing the internal force resulting from a deformed infinitesimal vol-
ume. The FEM is used to turn a PDE into a set of algebraic equations which are
then solved numerically. To this end, the domain M is discretized into a finite
number of disjoint elements (i.e. a mesh). Instead of solving for the spatially
continuous function x(m, t ), one only solves for the discrete set of unknown po-
sitions xi (t ) of the nodes of the mesh. First, the function x(m, t ) is approximated
using the nodal values by:

x̃(m, t ) =
X

i
xi (t )bi (m) (2.15)

where bi () are fixed nodal basis functions also known as the Kronecker Delta
property which value is 1 at node i and 0 at all other nodes. In the most general
case of the Finite Element Method, basis functions do not have this property. In
that case, the unknowns are general parameters which can not be interpreted
as nodal values. Substituting x̃(m, t ) into Eq. 2.14 results in algebraic equations
for xi (t ). In Galerkin approach finding the unknowns xi (t ) is viewed as an op-
timization process. When substituting x(m, t ) by the approximation x̃(m, t ) the
infinitely dimensional search space of possible solutions is reduced to a finite
dimensional subspace. In general, no function in that subspace can solve the
original PDE. The approximation will generate a deviation or residue when sub-
stituted into the PDE. In Galerkin method, the approximation which minimizes
the residue is sought, i.e. an approximation whose residue is perpendicular to
the subspace of functions defined by (Eq. 2.15) is computed.

Very often, a simple form of the Finite Element method is used for interac-
tive simulation of deformable objects. In this method, both masses and (internal
and external) forces are lumped to the vertices. Nodes in the mesh are treated
like mass points in a mass-spring system while each element acts like a gener-
alized spring connecting all adjacent mass points. Forces acting on the nodes
of an element due to its deformation are computed as follows (see for instance
(O’Brien et al., 1999): given the positions of the vertices of an element and the
fixed basis functions, the continuous deformation field u(m) inside the element
can be computed using (Eq. 2.16). From u(m), the strain field "(m) and stress
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field æ(m) are computed. The deformation energy of the element is then given
by:

E =
Z

v
"(m)•æ(m)dm (2.16)

where the dot (•) represents the component-wise scalar product of the two ten-
sors. The forces can then be computed as the derivatives of the energy with re-
spect to the nodal positions. In general, the relationship between nodal forces
and nodal positions is non-linear. However, linear PDE yields linear algebraic
systems which can be solved more efficiently and more stably than non-linear
ones. Thus, a vast majority of the work done in the area of real-time deformable
models using FEM was based on linear elasticity equations.

2.6.3 Time Integration

The core mechanical equations based on Newton’s second law is given by Equa-
tion 2.13 in a non-linear ordinary differential equation system that can be writ-
ten:

Ma = f(x,v) (2.17)

where x, v, and f are respectively the position, velocity and force vectors, a
is the acceleration and M the mass matrix. f(x,v) defines both internal forces of
the physical model and the external forces applied on the object such as gravity,
interaction contacts or friction.

This system of equations gives an expression of the forces applied to the sim-
ulated objects depending on the current state. We need now to numerically solve
(i.e. integrate) this system of equations over time.

There exists a number of integration schemes Hauth et al. (2003). Most of the
studies in computer graphics relate the forward euler (explicit) and backward
euler (implicit) integration scheme.

Explicit scheme or forward Euler, is the simplest integration scheme where
integrals are evaluated with the left-hand rectangle method. Its advantage is that
it is easy to implement. However, it is stable only if the time step ¢t is smaller
than a stability threshold (This condition is known as the Courant-Friedrichs-
Lewy (CFL) stability condition). This threshold can be very small for stiff objects,
and if violated can lead simulation to explode.

Implicit scheme or backward Euler can counteract the stability issue of the
explicit integration by adding quantities at the next time step using right-hand
rectangle method. We describe here implicit schemes which were used in this
thesis, since it provides stability with relatively large time steps.

Let’s consider the time interval [t , t +h] which length h is called time step.
Integrating from t to t +h which updates velocities and positions based on ac-
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celerations at the end of the time step can be described as:

8
>>>>>><

>>>>>>:

M ·at+h =
Zt

t+h
f(xt ,vt )d t

vt+h = vt +
Zt

t+h
ad t

xt+h = xt +
Zt

t+h
vd t

(2.18)

The evaluation of integrals
Rt

t+h f(xt ,vt )d t ,
Rt

t+h ad t and
Rt

t+h vd t using the
backward euler scheme is as follows

8
>><

>>:

M ·at+h = f(xt+h ,vt+h)

vt+h = vt +hat+h

xt+h = xt +hvt+h

(2.19)

The resolution of this system implies the resolution of a non-linear system,
since f(xt+h ,vt+h) depends on xt+h and vt+h which are not known at the end
of the time step. Thus, to solve this system non-linear function f(xt+h ,vt+h) is
approximated by a first order approximation of a Taylor series expansion:

f(xt+h ,vt+h) º f(xt ,vt )+K · (xt+h °xt )+B · (vt+h °vt ) (2.20)

where K is the stiffness matrix and B the damping matrix. When combin-
ing equations 2.20 and 2.19 and let dv = hat+h = vt+h ° vt , we obtain the final
linearized system

(M°hB°h2K)| {z }
A

· dv|{z}
x

= hf(xt ,vt )+h2K ·vt| {z }
b

(2.21)

This equation is a linear system where A and b are known and x is the un-
known. Solving this type of systems was largely studied with a high number
of methods which aim to solve the system in an efficient fashion. A popular
method to efficiently solve this problem is the Conjugate Gradient (CG) itera-
tive solver Baraff (1998); Saad (2003). This iterative method can be tuned to
achieve accuracy as well as speed by controlling the number of iterations and
residual error threshold or by using pre-conditioning techniques Courtecuisse
et al. (2014). The CG iterative solver, however suffers from convergence issues
for ill-conditioned matrices, which can appear for inhomogeneous materials or
meshes with varying element sizes. Thus, some studies report the use of direct
solver (such as LDL or LU Trefethen and Bau (1997)) when dealing with non-
homogeneous tissue Peterlík et al. (2012).
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2.6.4 Achieving Real-time Simulation

As mentioned previously, the computation time of the previous algorithms is
a major aspect to consider when dealing with medical applications. In order
to reach real-time, several stages of the algorithm can be optimized. Some
approaches focus on a specific formulation of the constitutive law of the de-
formable object Comas et al. (2008); Müller and Gross (2004), others rely on the
optimization of the solver necessary to solve the linear system of equations re-
sulting from FEM formulation Barbič and James (2005); Bro-nielsen and Cotin
(1996); Allard et al. (2011), while a few approaches choose the adequate time in-
tegration scheme Miller et al. (2007); Hauth et al. (2003).

Physics-based modeling of liver tissue represents an important part of this
thesis. Since our goal is to provide a coherent augmented reality method for
surgery guidance, elastic behaviour of the liver is a key aspect to be considered.
We aim to bring simulation of soft-tissue in the operating rooms as in the last
decades, medical simulation was mainly used for surgery training and plaining.
Nevertheless, it is important to point out that this work uses well-established
methods, that have been previously developed. Our contributions in this field
consists of the appropriate definition of external forces which emanate from the
images and on the validation, through experiments, of the usability of real-time
simulation in an intra-operatively context.

2.7 Conclusion

We have presented in this chapter the medical context that motivates this work.
We have described minimally invasive surgery with its benefits and limitations
that pushed the emergence of new techniques in computer assisted surgery. One
of these techniques resides in the use of Augmented Reality in operating rooms
which still has several problems to be solved. Among all the current limitations
of surgical Augmented Reality, we focused on the correct modeling of soft-tissue
which is, in most of the literature, considered as rigid or negligible. We have
presented the current techniques for 3D reconstruction and tracking of human
organs which represent the first stage towards medical augmented reality and
gave an overview of the main numerical techniques for computing deformation
of elastic bodies in real-time.

In the following chapter, we present an approach for recovering 3D shape of
the liver under large elasticity, using a non-linear mechanical model and image
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data acquired from a monocular camera only. Tests on minimally invasive im-
ages are conducted and comparison with related techniques is provided where
we show that non physical approaches lack to correctly capture image deforma-
tions.
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3.1 Introduction

As stated in the previous chapter, our aim is to estimate three-dimensional mo-
tion of the liver during MIS from an endoscopic camera. In this context, sev-
eral techniques exist, using various types of optics and sensors (structured light,
stereoscopy, time-of-flight, photometry . . . ). Nevertheless, most of the time,
minimally invasive surgery relies on the use of a monocular endoscope with-
out any additional hardware modification. Thereby, we investigate here the 3D
recovery and augmentation of liver surface from a single view.

3D recovery and augmentation of deformable objects in a monocular context
is a challenging problem with many potential applications in computer graph-
ics, augmented reality and medical imaging. The difficulties originate from the
fact that several 3D shape configurations lead to the same 2D projection on
the image, which leads to obtain various ambiguities and make the problem
under-constrained. To overcome this problem, various approaches have been
considered with the aim to provide additional contraints and solve the ambigui-
ties. Many approaches introduced deformation models, which are often learned
from training data and derive models with few degrees of freedom. A lot of
papers have been devoted to inelastic materials such as papers, sails, clothes
. . . and make use of inextensibilty constraint, ensuring that the distance between
points remains constant. Other geometric or shading constraints have been pro-
posed to handle materials that can stretch. However, the additional constraints
that are used are not always suited to the properties of the object.

In this chapter, we propose an efficient real-time algorithm for recovery and
augmentation of highly elastic objects in a monocular context. Using a rough
estimation of the stiffness of the targeted object and the adequate boundary
constraints, our method outperforms state-of-the-art approaches. We present
experiments in a general context where various elastic objects are used since a
ground truth can easily be computed, and in the context of augmented reality
for minimally invasive liver surgery with surgical data.

3.2 Prior Works on Non-rigid Shape Recovery

In the early works on augmented reality for deformable objects, registration of
images of a deforming surface was obtained by computing dense 2D/2D trans-
formations using points correspondences. A parametric representation of de-
formation or regularization techniques were needed to prevent excessive wrin-
kling of the surface in the presence of erroneous correspondences. In Bartoli
and Zisserman (2004b), they take advantage of a rich texture information to
perform points matching between images, allowing a 2D deformation motion
model to be computed using Radial Basis Mapping. Pilet et al. (2008) proposed
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Figure 3.1: Three-dimensional reconstruction and augmentation of elastic objects from a single
view under several elongations. Our approach is able to handle extensibility of the material when
undergoing elongation. (top) Camera view of the re-textured elastic object and (bottom) the
recovered 3D shape showed in a different view.

a template-based fast and robust tracking for handling deformations. This ap-
proach uses a set of wide baseline feature matches assuming a well textured sur-
face and combines 2D deformable meshes with a robust estimation technique.
Zhu and Lyu (2007) demonstrated that a Finite Newton algorithm and an effi-
cient factorization method can reduce the number of iterations of the previous
method to solve the optimization problem. In order to handle the more chal-
lenginging case of deformation with self occlusions, Gay-Bellile et al. (2010) con-
sidered the occluded pixels as self-occlusion area that forces the wrap to shrink
instead of outliers. Inspired by this self-occlusion shrinking method, Hilsmann
et al. (2010) proposed an approach exploiting an optical flow extended by a spe-
cific illumination model which jointly estimates deformation and illumination
and can cope with self-occlusions through an occlusion map computed from
local statistical color models. In Pizarro and Bartoli (2012), self occlusions are
detected as outliers based on the assumption that the surface to detect is locally
smooth.

However, these methods based on 2D image transformations are well suited
to smooth deformations but are not suitable for highly elastic objects. In fact,
elastic deformations in 3D space can lead to highly complex 2D deformations in
the image plane, especially due to self occlusions, making inappropriate the use
of regularization contraints. For these reasons, state-of-the art methods perform
3D reconstruction of deformable surfaces using template-based techniques. Re-
covering the 3D shape of a deformable surface from a monocular video and a
template (a reference image of the surface for which the 3D shape is known)
can be ambiguous. Therefore, additional consistency constraints are required
to solve ambiguities. The inextensibility constraint is widely used to recover and
augment objets as sheets of paper, sails, tee-shirts. . . Shen et al. (2010); Perriollat
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et al. (2011). Methods differ in the way that inextensibility is considered as a hard
constraint or a penalty term and also in the efficiency of convex or non-convex
optimization associated to the procedure. In the general case, global smooth-
ness constraints are common to resolve the ambiguities of 3D reconstruction.
Many papers ressort to a linear description of feasable object deformation. Most
of the time, it is generated from a representative sample of possible shapes using
a dimensionality reduction process Salzmann et al. (2007b); Salzmann and Fua
(2011).

Some works attempt to overcome the need to provide plausible constraints
on the deformation by using richer sources of information. In Moreno-Noguer
et al. (2009) a closed-form solution constrained by shading information was in-
troduced to capture stretching surface. This method assumes a Lambertian sur-
face with a single point light source and yield good results. However, strong as-
sumptions on lighting make the method hard to generalize in all environments.
Other methods have been designed to cope with non smooth deformations, as
folding. Salzmann et al. (2007a) proposed to solve the problem as a convex min-
imization of the reprojection error formulated as a Second Order Cone Program-
ming (SOCP). The method restricts the motion from one frame to the next but
does not impose unwarranted surface smoothness, making it possible to recover
sharp folds.

Recently, many examples of mechanical-based tracking methods have
emerged. For instance the approach in Agudo et al. (2012), where a combina-
tion of Finite Element Modelling with an Extended Kalman Filter showed the
efficiency of physics-based methods. In Wuhrer et al. (2012), a linear finite el-
ement method is used to predict the deformation. The approach described in
Malti et al. (2013) relies on the minimization of a stretching energy subject to
external image constraints. The problem is formalized as a non-linear mini-
mization that unifies geometric constraints assuming a projective camera and
mechanical constraints and local linear elasticity. This method showed effective
results by considering the Poisson ratio as the unique mechanical parameter but
the framework is not built to handle high elastic deformations.

3.3 Non Linear Elastic model

The choice of a relevant constitutive model is essential as it will determine the
set of deformations we are able to capture and estimate while discriminating
non-plausible material configurations induced by the errors of tracking. Two
important assumptions are also made in order to reduce the complexity of the
deformation model and the number of related parameters. First, the material of
the deformable object will be homogeneous meaning that a uniform deforma-
tion will lead to equal (in magnitude) forces for any points of the object. Second,
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the material will also be considered as isotropic meaning that the response to a
deformation is independent of the orientation of the deformation. Moreover, the
computation time is also a key constraint as the targeted application should be
interactive. Interactive (or at least computationally fast) models for deformable
solids have been a major topic in the computer graphics community. Several re-
ports or surveys have been published to provide an exhaustive overview of state-
of-the-art methods Gibson and Mirtich (1997); Nealen et al. (2006); Sifakis and
Barbic (2012). In that context, Saint Venant-Kirchhoff model Sifakis and Bar-
bic (2012) appears to be an ideal compromise because it is able to handle non-
linear deformations, is rotationally invariant and is simple enough compared
to other non-linear models and therefore can be computed at interactive rates.
Several downsides however exist such as incorrect stress estimation under ex-
treme compression and sometimes the requirement to use non-linear solvers to
compute the motion over time. Incorrect stress estimation under any large de-
formation is not a major issue in our case since we are interested in capturing
an accurate deformation field and since the stress field is not measurable with
camera images. Recent works on simulation or on haptics rendering have pro-
posed computationally fast non-linear solvers such as Silcowitz-Hansen et al.
(2010) which leverages the pre-requisites of the use non-linear solvers with Saint
Venant-Kirchhoff model.

A Saint Venant-Kirchhoff (StVK) material is a material for which the Green-
Lagrange strain tensor E 2R3x3 is computed as a non-linear (quadratic) function
of the deformation gradient F 2R3x3 as:

E = 1
2

(FT F° I) (3.1)

where I 2 R3x3 is the identited matrix. The computation of the strain ten-
sor maybe computationnally intensive and several approaches have been inves-
tigated for interactive uses. For instance, Barbic and James Barbič and James
(2005) used model reduction and pre-computation reduced coordinates while
Zhong et. al. Zhong et al. (2005) used pre-computed relation between sur-
face and internal nodes. In the following, the elegant approach of Kikuuwe et.
al. Kikuuwe et al. (2009) is chosen since it does not require pre-computation nor
does it make any assumption on the deformations that will be generated. To
do that, fast computation is conducted using dedicated simple data-structures
(tetrahedron-sharing edge-pairs). We will detail the main points of Kikuuwe et.
al..

If v is a point in the deforming medium and v0 is its initial location, F can be
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expressed as F = @v
@v0

Since E is symmetric, its form is as follows:

E =

2

664

≤xx ≤x y ≤zx

≤x y ≤y y ≤y z

≤zx ≤y z ≤zz

3

775 (3.2)

and the 6 independent coefficients may be placed in a single vector ≤ using
Voigt notation:

≤= [≤xx ,≤y y ,≤zz ,2≤xz ,2≤y z ,2≤zx]T (3.3)

Computing E is often conducted by using a strain energy density w that will
be integrated over the whole deforming medium X through the following equa-
tion:

E =
Z

X
w d X (3.4)

An isotropic homogeneous Saint Venant-Kirchhoff material has w expressed
as follows:

w = ≤T D ≤/2 (3.5)

where D 2R6x6 is the following matrix:

D =

2

66666666664

∏+2µ ∏ ∏ 0 0 0

∏ ∏+2µ ∏ 0 0 0

∏ ∏ ∏+2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

3

77777777775

(3.6)

where∏ andµ are Lamé coefficients and can be computed thanks to the elas-
tic parameters of the material E and ∫. E is the Young’s modulus and is a mea-
sure of the stiffness of the material while ∫ is the Poisson’s ratio and estimates
the compressibility of the material.

For a deforming medium of arbitrary shape, it is often convenient to dis-
cretize the shape using elementary and simple elements. Tetrahedral decompo-
sition is often considered since efficient meshing algorithms exist. For a tetra-
hedron t , let us consider the edge e among the 6 possible edges of t , e being
connected two vertices vi and v j . Be le = vi ° v j and l 0

e = v0
i ° v0

j . Assuming
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that the deformation gradient F is constant in the neighborhood of t and has the
value Ft , le can be estimated as Ft l 0

e . The equation (3.1) can be used to write:

l T
e Et le = 1

2 l T
e (FT

t Ft ° I )le

l T
e Et le = 1

2 (klek2 °kl 0
e k2)

(3.7)

l 0
e can also be written in Voigt notation using the variable q0

e defined as:

q0
e =

2

66666666664

(vi .x ° v j .x)2

(vi .y ° v j .y)2

(vi .z ° v j .z)2

(vi .x ° v j .x)(vi .y ° v j .y)

(vi .y ° v j .y)(vi .z ° v j .z)

(vi .z ° v j .z)(vi .x °p j .x)

3

77777777775

(3.8)

where for each value .x, .y , .z is the first / second / third component of the
considered vector. The previous equation is rewritten by using Voigt notations
as:

q0T
e ≤t =

1
2

(klek2 °kl 0
e k2) (3.9)

This equation is considered for a single edge e but is suitable for the other
edges. By considering the 6 edges of the tetrahedron t , we obtain the following
equation:

Qt≤t =
1
2
Lt (3.10)

where Qt = [q0
0, q0

1, q0
2, q0

3, q0
4, q0

5]T (qe for the 6 possible edges) and Lt =
[kl0k2 ° kl 0

0k2,kl1k2 ° kl 0
1k2, . . .]T (again for the 6 possible edges). It should be

noted that Qt 2 R6x6 and Lt 2 R6. Qt is invertible if the 4 points are not linearly
dependent and therefore ≤t can be estimated as:

≤t =
1
2
Q°1

t Lt (3.11)

enabling to compute the strain energy in the tetrahedron t with

Wt = ≤T
t D ≤t /2 (3.12)

Therefore, the total strain energy W = P
Wt of the medium as a function of

the edge lengths of the tetrahedral mesh and elastic parameters. Eventually, the
forces exerted on the vertices can be computed as:

f (v) = @W

@vT (3.13)
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For computation purposes, a global stiffness matrix is also computed as:

K (v) = @ f (v)
@v

(3.14)

as it allows for a displacement d v (such as v 0 = v +d v) of the mesh vertices
to compute the resulting forces as:

f (v) = K (v)£d v (3.15)

This is a convenient equation that relates forces to any displacement of the
vertices but again it should be reminded that the matrix K (v) should be recom-
puted after every deformation to remain valid.

3.4 Problem Formulation

When dealing with elastic surface, additional penalty functions are used to ob-
tain a well-constrained system. These constraints are often based on the in-
extensibility property of the surface to be recovered. Since such constraints can-
not be considered in our case, we propose to consider the elastic registration as
a stretching energy minimization problem that accounts for the internal forces
of the mechanical and external forces emanated from the visual tracking.

3.4.1 Required assumptions

In order to ensure a good shape recovery and a well-posed system, we assume
that the following data are available:

• The projective matrix P assuming fixed camera under a full projective
model.

• The correct initial alignment of the mesh (in rest configuration) on the im-
age.

• A set T of paired points between the set of features U = {ui 2 R2} from vi-
sual tracking and the mesh vertices V = {vi 2R3} related to the mechanical
model.

• The material stiffness that represents the elasticity of the mechanical
model.

3.4.2 Initialization

At initialization, each feature ui is associated with a 3D point Ui by intersection
of the line of sight with the surface. Ui is expressed as a barycentric combination
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of facet vertices, following:

Ui = ai v1 +bi v2 + ci v3 (3.16)

where vi ;1∑i∑3 are the vectors of 3D vertex coordinates and (ai ,bi ,ci ) the
barycentric coordinates of Ui . We assume that this linear relation remains valid
during the deformation.

3.4.3 Image Fitting

We propose to consider the features displacement as a stretching energy defined
as

Es =
X

i2T

1
2

kkui °P (Ui )k2 (3.17)

where k can be seen as a stiffness and is experimentally chosen to be the
same order of magnitude of the Young’s modulus.

3.4.4 Boundary Conditions

In order to obtain a system that is sufficiently constrained to give good results,
we add to the system a set B of boundary constraints by using the hard con-
straint:

vi =Qi f or i 2 B (3.18)

where Qi are the known boundary conditions that can be seen as a set of fixed
vertices. The boundary conditions are necessary to yield good results. These
boundary conditions are most of the time quite natural and specify how the ob-
ject is linked to its environment such as an object fixed to a table or contained
by an obstacle (illustrated in Figure 3.7).

3.4.5 Energy Minimization

The minimization problem is then formulated as a constrained minimization
between internal elastic energy and stretching energy and can be written as fol-
lows:

mi nE(v) =P
t Wt +

P
i2T

1
2 kkui °P (Ui )k2

sub j ect to vi =Qi f or i 2 B
(3.19)

where Wt is the strain energy of a tetraherdon related to a Saint Venant-
Kirchhoff material and which depends on the position of the vertices. The ex-
pression of Wt is detailed in equation (3.12).
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3.4.6 Resolution

Equation (3.19) is a classical constrained minimization problem. We choose
to solve this equation by formulating a linear complementary problem (LCP)
that will be solved with a Gauss-Seidel algorithm using the approach reported
in Guébert et al. (2008). Finding the minimum of energy is conducted by de-
riving and setting to zero equation (3.19). This leads to an equality between in-
ternal elastic forces and stretching forces and this is equivalent to finding the
equilibrium state of the material due to external forces. Indeed kinetic energy
is not considered since we are not interested in capturing transient motions be-
cause first, the materials used are very soft and second, the acquisition rate is
high enough; therefore the deformation exhibits no significant transient motion.
Even if our approach is static (without dynamic due to kinetic energy of the ma-
terial), it can easily be adapted to dynamic motion with the same method by
adding a non-linear differential equation solver such as an implicit Euler with
a conjugate gradient. In other words, this amounts to solve the linear system
A · x = b given by integrating in time the equation of dynamic Ma = f, where f
includes the external forces fs derived form the stretching energy Es . Since the
model used here is homogeneous, once can rely on a conjugate gradient iterative
solver where pre-conditioning is possible to solve the linear system Courtecuisse
et al. (2012).

3.5 Experimental Results

In this section we present the results obtained using our method and the com-
parison conducted with existing techniques. We report results obtained on three
types of data: Silicone-made data, computer-generated data and liver data dur-
ing in-vivo surgical procedure. To test the ability of our approach to capture
3D elastic deformations, we capture several video sequences of a silicone-like
object undergoing different types of stretching deformation. We quantify three-
dimensional shape recovery error with respect to a ground truth while visual
assessment is reported on surgical data.

3.5.1 Computer-generated Data

We used the framework Sofa Faure et al. (2012) to generate elastic deformations
of a silicone-like object with a Young’s Modulus of E = 0.15 MPa. A force F is
applied on the object to produce a 3D deformation (cf Figure 3.2). A video se-
quence of the deformations is captured with a virtual camera. Figure 3.2 illus-
trates the results obtained by calculating the distance between the tracked and
simulated mesh where we report an average error of 0.83 % for simulation 1 and
0.70 % for simulation 2.
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(a) (b)

(c) (d)

Figure 3.2: 3D registration error on two computer-generated sequences. The applied forces are
represented with red arrows and the tetrahedral elements in blue (inverted top/down for a bet-
ter visualization of forces). (a) simulation 1 where a single force is applied and (b) simulation 2
where two forces in opposite directions are applied. (c) and (d) show the superimposition of the
recovered shape (in green) and the ground truth (black) for the first and second shape respec-
tively.

Figure 3.3: 3D registration error with variation of the Young’s Modulus for simulation 1 and sim-
ulation 2: Small variation of the Young’s Modulus value slightly affects the reconstruction while
distant values highly increase the error.

Parameters Sensitivity

We also conduct experiments on the same set of data where we vary Young’s
Modulus value. The plot 3.3 shows that small variation of the Young’s Modulus
slightly affects the registration error in comparison with the large errors that pro-
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duced greater or lower values. In the mean time, we notice that a value of k close
to the Young’s Modulus (at least at the same order of magnitude) gives the best
results in terms of accuracy.

Impact of Boundary Conditions

We take advantage of synthetic data to assess the necessary use of boundary con-
ditions to reach an acceptable shape recovery. We plot in the graphic of Figure
3.4 the 3D reconstruction error when varying the number of boundary points
from 12 to 48 points. The results show that boundary conditions are necessary
to yield good shape recovery and to resolve ambiguities.
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Figure 3.4: Impact of the boundary conditions on the 3D reconstruction.

3.5.2 Real Data

We tested our method on a silicone-like object of a size of 100£ 100£ 10 mm3

composed of linear P1 tetrahedral elements characterized by a Young’s Modulus
E = 0.25 MPa. Images were acquired using a monocular camera at 30 fps with
an image resolution of 640£480. The implementation was done in C++ on a PC
with an Intel i7 M620 2.76GHz processor.

2D Surface Registration and Retexturing

The aim of conducting tests on 2D surface is to be able to measure the registra-
tion error w.r.t the deformation of the object. Since the object boundaries can be
easily extracted from images, a way to quantify this error is to compute the dis-
tance between the silhouette computed from the recovered 3D object and the
actual boundaries extracted from images. The results reported in the plot 3.5
give the small 2D error even when the elongation increases (more than 120%).
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The relation between the accuracy of the augmentation and the number of tetra-
hedron elements is also reported in figure 3.5 where we can notice that a finer
mesh resolution reduces the registration error.
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Figure 3.5: Registration error with respect to object elongation with a variation of mesh resolu-
tion: With an adequate number of tetrahedral elements, the projection error can be significantly
reduced.

In order to ensure real-time achievement, a compromise has to be found be-
tween the number of elements and the computation time. While a large number
of elements permits to obtain an accurate registration, it also increases the com-
putation time. Table 3.1 shows the average errors and computation time w.r.t
mesh resolution.

Number of elements 256 576 1024 1600

Average 2D Error (%) 10.84 7.62 7.3 6.92

Computation time (fps) 29 17 9 5

Table 3.1: Impact of the number of elements on the computation time and the registration error,
where a large number of elements gives the lowest errors, it also increases the computation time.

3D Shape Recovery and Augmentation

For the three-dimensional reconstruction we propose to test our approach on 4
types of deformation, with extensibility up to 130% as illustrated in Figure 3.7.
We calculate the Euclidean distance between the reconstructed surface and a
ground truth. We compare our method with 3 existing approaches: an inexten-
sible method for isometric and conformal surface reconstruction described in
Bartoli et al. (2012) of which the code is freely available, a classical mass-spring
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system and a mechanical-based approach that considers a linear Strain/Stress
formulation Cotin et al. (1999). The plots and the resulting shapes are illustrated
in Figure 3.11.

Figure 3.6: Selected frames during a 2D elastic surface augmentation of the silicone-like material
when being stretched up to 120%, with (top) input images (middle) registered mesh (bottom)
surface retexturing.

Ground-truth acquisition The ground truth is obtained using a Structure from
Motion technique Snavely et al. (2006). At the end of each manipulation, we re-
construct the 3D scene of all the environment where we place fiducials around
the silicone object. These fiducials are necessary to align the 3D mesh on the in-
put image (last frame of the sequence) in order to scale the mesh and apply the
necessary rotation and translation. After the alignment is done, we keep only
the 3D mesh of the silicone object. Some errors may occur from these transfor-
mations, but it is worth mentioning that the same ground truth is used for the
comparison.
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(a) Deformation 1 (b) Deformation 2

(c) Deformation 3 (d) Deformation 4

Figure 3.7: Silicone Dataset. The mesh is represented in blue and the boundary conditions in
red surrounded by a black square.
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(a)

(b) (c)

Figure 3.8: 3D shape recovery of a silicone-like material deformation: Our method produces
the lowest error in comparison with other methods. (a) the sequence of deformation 1 with the
recovered mesh superimposed on the image (b) comparison with current techniques (c) ground
truth and shape recovery for each technique

Deformation 1: By stretching the object with an elongation of 30%, we force
the surface to fold. The template-based and linear FEM approaches fail to re-
cover the 3D shape. A non-linear method gives the lowest error with 2.62 mm.
A template-based method needs more features than other techniques with re-
spectively 168 features and 26 features.
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(a)

(b) (c)

Figure 3.9: 3D shape recovery of a silicone-like material deformation: Our method produces
the lowest error in comparison with other methods. (a) the sequence of deformation 2 with the
recovered mesh superimposed on the image (b) comparison with current techniques (c) ground
truth and shape recovery for each technique

Deformation 2: The surface is constrained with a rigid beam and stretched to
produce a triangle-like shape. Only the mass-spring models was not able to re-
cover the deformation. The template-based approach yields good results. How-
ever, mechanical methods report the most accurate registration with very close
error: 2.52 mm for the Linear FEM and 2.44 mm for our method. The number of
features extracted is 28 for all the methods except the template-based method,
where 237 features are necessary to yield good results.
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(a)

(b) (c)

Figure 3.10: 3D shape recovery of a silicone-like material deformation: Our method produces
the lowest error in comparison with other methods. (a) the sequence of deformation 3 with the
recovered mesh superimposed on the image (b) comparison with current techniques (c) ground
truth and shape recovery for each technique

Deformation 3: The object is elongated down and constrained at the center of
the object. The four methods succeed to recover the shape deformation with
174 extracted features. Our method outperforms the others with an error of 2.06
mm.
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(a)

(b) (c)

Figure 3.11: 3D shape recovery of a silicone-like material deformation: Our method produces
the lowest error in comparison with other methods. (a) the sequence of deformation 4 with the
recovered mesh superimposed on the image (b) comparison with current techniques (c) ground
truth and shape recovery for each technique

Deformation 4: Our approach gives a small error of 1.69 mm where the exten-
sibility is about 120%. The object highly elongated during the deformation and
produced a 3D shape by partially folding. The template-based method fails to
recover the stretched shape while the mass-spring and linear FEM models give
relatively good shape representations.
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3.6 Geometric Constraints Correction

Solving equation (3.19) yields to recover the 3D shape that satisfies the physi-
cal constraint of the object. However, in order to obtain the correct 3D recon-
struction, both physical and geometrical constraints have to be satisfied. The
geometrical constraint can be formulated as a minimization of the reprojection
error given by:

m =
√

x

y

!

= P M =
√

P11 X+P12Y +P13 Z+P14
P31 X+P32Y +P33 Z+P34
P21 X+P22Y +P23 Z+P24
P31 X+P32Y +P33 Z+P34

!

=
√

P1M
P3M
P2M
P3M

!

(3.20)

where Pk is the kth row of the projection matrix P assuming a projective
model, and the point m̂i = (x̂i , ŷi ) correspond to the projection of the point
Mi = (Xi ,Yi , Zi ) in the image.

3.6.1 Formulation

Adding the constraint 3.20 in the resolution of Equation (3.19) implies to solve
a non-linear problem since Mi is unknown at t and therefore significantly in-
creases the computational burden of our framework. In order to reduce the com-
plexity of such an approach, we use the assumption that the point Mi does not
significantly change between two successive steps (due to the acquisition fre-
quency and the relative low speed of the tracked features). Therefore, it means
that M t

i º M t°1
i and when solving the equation of constrained motion we use

the previously computed estimation of Mi and after the motion is solved, we
update the estimation of Mi . This allows to keep a linear system where we take
into account constraints (geometric or mechanical) in a generic way: adding
constraints in the equation of dynamic (Ma = f) is usually performed by adding
a term HT∏ where H is a matrix containing the constraint directions (how the
vertices are constrained) and ∏ is a vector of Lagrange multipliers containing
the constraint force intensities which is an unknown. In our case, the matrix H
is a sparse diagonal matrix where only fixed vertices have non-null coefficients
(such as boundary conditions). This will therby be expressed as:

(M°hB°h2K) ·dv = hf(xt ,vt )+h2K ·vt +hH(xt )T∏ (3.21)

The resolution of this equation can be efficiently achieved by, first comput-
ing the motion without constraint (called free-motion) that will solve the linear
system A · x = b and give a first estimation of Mi and then use an iterative al-
gorithm like Gauss-Seidel to find the ∏ and correct the free-motion to have the
final constrained motion (detailed in Guébert et al. (2008)) and thereby, update
the estimated point Mi which will now satisfy both mechanical and geometrical
constraints.
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3.6.2 Evaluation

We conduct experiments by computing the mean reprojection error using first
computer-generated data (see Figure 3.12). The unification of physical and pro-
jective constraints permits to reduce considerably the reprojection error where
we obtain error less than 0.8 pixel in contrast to purely physical formulation
where the error is around 1.8 pixel.
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Figure 3.12: Experiments with synthetic data with in (a) and (c) the reprojection error with and
without accounting for projective constraints for the first and second shape perspectively, and
in (b) and (d) the superimposition of the recovered shape (in green) on the ground truth (black)
for the first and second shape perspectively.

We further test the projective constraint correction with the previous dataset.
We compute the 3D reconstruction error between the recovered mesh and the
ground-truth as well as the reprojection error. The results are illustrated in Fig-
ure 3.13.
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(c) Deformation 3

Figure 3.13: Evaluation of the silicone dataset of the geometric constraints correction.

In deformation 1, the reconstruction error is reduced to 2.53 mm as well as
the reprojection error with 0.39 pixel and 3.21 pixels previously. In deformation
2, the re-projection error is dramatically reduced with an error of 0.92 pixel in
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contrast with an error of 4.47 pixels while deformation 3 shows that both meth-
ods produce very close reconstruction error with respectively 2.06 mm and 2.08
mm. The reprojection error is however considerably reduced when using the ge-
ometrical constraint with an error of 0.70 pixel while purely mechanical methods
exhibit an error of 2.20 pixels.

Overall, in all the deformations, the re-projection error are below one pixel
when using geometric constraint correction, way below the purely physical
method. 3D reconstruction errors are however very close to each other for both
techniques and remain for all the experiments below 3 mm.

3.7 Dealing with Self-occluded Regions

Solving the system of equations 3.21 yields to recover the 3D shape that will
satisfy both physical and geometrical constraints, and thus by finding the equi-
librium between internal and external forces. However, when dealing with oc-
cluded regions, extra care has to be taken in the expression of external loads. In-
deed, the physical model can be over-constrained by erroneous external forces
and can be forced to fit occluded features that are subject to erroneous positions.
This can highly damage the recovered shape as illustrated in Figure 3.14.

Top view Perspective view Front view

Top view Perspective view Front view

Figure 3.14: The inputs to the self-occlusion problem are the unreliable feature points that dam-
age the mesh. (a), (b) and (c) The recovered mesh under different views without handling self-
occlusions. (d), (e) and (f) The mesh under different views with our generic constraint based on
equal force distribution to handle self-occlusions.

3.7.1 Formulation

In order to resolve occlusions, several strategies have been considered. Some
rely on a preliminary stage that aims to reject outliers directly from the input im-
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age, leading to detect the occluded map on the mesh Pizarro and Bartoli (2012).
Other methods detect self-occlusions as warp shrinkage areas where the warp
is constrained to shrink rather than to fold Gay-Bellile et al. (2010), whereas vi-
sual consistency can also be considered in multiframe reconstruction Shaji et al.
(2011).

These approaches assume strong prior on the type of deformation, which
can hardly be considered for elastic object where the number of degrees of free-
dom is high, or relies on a two-stage processing to detect occluded areas. We
introduce here a weak, computationally cheap and generic constraint that eas-
ily fits into our framework. By taking advantage of the ability of the physical
model to estimate 3D shape where no external loads are present. We reduce
the number of features according to the resolution of the underlying mesh, in-
stead of simply evict outliers. Whereas in previous approaches the number of
features might not be large enough to recover self-occluded regions, it permits
in our case to equally distribute the stretching forces to ensure a global physical
consistency. We thus select among the set of features U = {Ui 2 R3} a subset of
features with high detection scores at the corresponding ui and impose a mini-
mal relative distance between them:

kUi °U jk ∏ ø (3.22)

where Uj is the closest neighbour of Ui and ø is the initial length of the edge
corresponding to the largest tetrahedral element of the model. Locally selecting
the features according to their detection scores make the tracking and the de-
tection of possible tracking failure easier, thus limiting the introduction of out-
liers in the visual features. Contrary to existing approaches which require many
features for correctly handling occlusions, we take advantage of the ability of the
mechanical model to predict the shape in areas with unobserved data, especially
in occluded areas, and select a set of reliable and roughly equally distributed fea-
tures to guide the mechanical model. This constraint has only to be considered
at initialisation, where the mesh is at its rest configuration, thereby, the exten-
sibility property of the material remains valid and self-occlusions are efficiently
handled.

3.7.2 Evaluation

We confront our method to two video sequences with self-occluded surfaces.
We performed a comparison between the inextensible method and our method
without self-occlusions handling. We compared the 3D reconstruction error
with respect to the ground truth by computing the mean and RMS error.

Deformation 5 involves a surface with an extensibility of 10% and an oc-
cluded region of 25% whereas deformation 6 is done on a surface with an ex-
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(c) Experiment 6: Comparison (d) Ground truth
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Figure 3.15: Experiments conducted on the silicone dataset with self-occluded regions. The
graphics in (a) and (c) show the 3D error computed between the recovered mesh and the ground
truth using the inextensible method (Inext), our method without self-occlusion handling (Ext)
and our method with self-occlusion (OccExt) on experiment 5 and 6 respectively. (b) and (d)
show the ground truth. (e), (f), (g), (h), (i) and (j) show the 3D recovered mesh using each tech-
nique.

tensibility of 30% and an occluded region of 60% (see Figure 3.16). Salient land-
marks are tracked over frames using a classical optical flow algorithm which is
known to be prone to drifting. Thereby, we applied a very strict threshold on the
detector to reduce the possible cases of drifting. Once the initial set of features
is extracted we apply the condition of Eq. 3.22 with a value ø = 10 mm. The
features lying on the occluded region will nevertheless remain subject to posi-
tioning error. However, the equal distribution of the stretching forces permits to
minimize their impact on the recovery of the global shape.

The results illustrated in Figure 3.15 show that in both experiments our
method produces a visually correct 3D shape with the lowest 3D error in com-
parison with other approaches, that fail in recovering the 3D surface. We report
a mean error of 0.51 mm and a RMS error of 0.66 mm for deformation 5 and a
mean error of 1.72 mm and RMS error of 2.25 mm for deformation 6.

3.8 Surgical data

Our aim is to assess the robustness of our approach in a real environment (spec-
ular lights, beating heart, respiratory motion, instrument occlusions) and the
ability of our non-rigid registration in recovering 3D shapes from a single view.
We tested our approach on a video of in-vivo porcine liver showing one of the
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(a) Deformation 5 (b) 3D mesh (c) Re-texturing

(d) Deformation 6 (e) 3D mesh (f ) Re-texturing

Figure 3.16: Monocular 3D reconstruction of self-occluded elastic surfaces. (a) and (d) the cam-
era view of the registered mesh. (b) and (e) the recovered 3D shape. (c), (f) the recovered 3D
shape with re-texturing.

liver lobe undergoing elastic deformation and partially folding during a mini-
mally invasive surgery. We used a monocular laparoscopic camera from Karl
Storz Endoscopy acquiring video stream at a rate of 25 FPS with image resolu-
tion of 720£576 pixels and data computed from pre-operative scans. These data
permit to generate the necessary mesh for a correct modeling of the liver in three
steps: segmentation, volume generation and parametrisation. These 3 steps are
detailed in chapter 5, we give here a short explanation of the processing of pre-
operative data.

The volume issued from CT-scanner is used to generate the liver surface. This
segmentation is done semi-manually using active contour techniques (Snakes).
A volumetric mesh is necessary for a finite element modeling. The number of
elements is to be chosen carefully in order to ensure real-time performance as
well as sufficient accuracy. Our model is composed of 1024 linear P1 tetrahedral
elements. The elastic parameter is extracted from a textbook and does not suit
exactly the considered liver and is set according to Peterlík et al. (2012); Umale
et al. (2011) to E=3.5 KPa. The results illustrated in Figure 3.17 report a visually
correct 3D elastic augmentation of the liver model on the laparoscopic image
with a good 3D shape recovery.



62 Chapter 3. Reconstruction

Figure 3.17: 3D elastic augmentation of the mechanical model on laparoscopic images acquired
form a monocular camera. The augmentation is effective (left) even when the deformation gen-
erated by the instrument forces the lobe of the liver to fold (right).

3.9 Conclusion

In this chapter, we have proposed a real time and efficient method to capture
and augment highly elastic objects from a single view. This method makes use
of a mechanical model of the deformable object in the context of non linear elas-
ticity. With respect to many existing approaches, this method makes it possible
to avoid the definition of adhoc constraints to solve the ambiguities of recon-
struction. The conducted experiments proved that the method is flexible in the
sense that a classical model - the St Venant-Kirchhoff model- has proven to be
sufficient to handle various applications with a good accuracy. In addition, we
have shown that the method does not require an accurate knowledge of the ma-
terial stiffness. Moreover, we show that partial and self-occlusions can also be
efficiently handled since a few number of image points are sufficient to yield
good results.

The major limitation of this method is that it is applicable only on a certain
range of deformations, and cannot guarantee to capture large deformations that
occur in 3D space. In addition, the homogenous elastic model proposed here is
suitable for surface deformations but is not applicable for the localisation of tu-
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mors. In the next chapter, we propose to use a stereo-endoscope that will permit
to estimate more efficiently 3D motion of the liver. This motion field will drive
an heterogenous mechanical model that takes into account vascular network to
faithfully compute internal deformations.
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4.1 Introduction

In order to establish a full AR system for MIS, a number of difficult problems
have to be solved Nicolau et al. (2011). The abdominal cavity undergoing la-
paroscopic surgery remains a very challenging environment for computer vision
tasks. Surgical instruments interacting with the liver may cause large occlusions,
illumination variations caused by the endoscopic light and the liver bleeding or
smokes due to electrocautery may disturb organ motion tracking and 3D struc-
tures recovery. Among the most difficult and still unsolved issues is the capacity
to tackle, in real time, elastic deformations of the liver. The liver can undergo
large deformations due to surgical tools interaction or due to respiratory motion
and heart beating. Currently, most of the existing AR systems handle rigid mo-
tions of organs and only a very limited number of papers address the problem of
elastic organ deformation.

This chapter highlight our contributions on AR for Hepatic surgery account-
ing for large liver deformations. We present an approach that relies on the es-
timation of liver motion to drive a heterogeneous mechanical model capable of
translating the liver behaviour (see Figure 4.1). First, our approach for three-
dimensional liver surface reconstruction is described, in addition to the tem-
poral tracking of liver deformations. We then present a clusters-based filter that
aims to add robustness to visual tracking. Finally, the biomchanical liver that ac-
count for vessels heterogeneity is detailed and our non-rigid approach expressed
as an energy minimization is described.

4.2 Three-dimensional Liver Surface Reconstruction

The first step towards an Augmented Reality system is the understanding of the
environment to be augmented. This step is based on the analysis images cap-
tured from endoscopic cameras. In this section we present our method to recon-
struct the surface of the liver using well-established computer vision algorithm.
This approach involve two stage: Sparse reconstruction based on stereoscopy
and a surface shape estimation using Moving Least Square approximation.

4.2.1 Sparse 3D Reconstruction using Stereoscopy

Our 3D shape estimation approach is a feature-based method using a stereo-
endoscopic camera. Prominent features are detected and matched in the image
pair to recover a sparse 3D point cloud representing the liver and the surround-
ing tissues. In the following, we describe the camera model and the reconstruc-
tion method based on linear triangulation.
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Figure 4.1: Computational flow of the method: The biomechanical model guided by the 3D
image-points recovered from intra-abdominal image pair permits to propagate partial tissue de-
formations to vessels and tumors.

Camera Model and Calibration

As described in chapter 2, the endoscopic camera is inserted through a trocar
via small incision or natural orifice such as navel. In order to correctly retrieve
data from the camera, an appropriate model has to be chosen. The endoscopic
camera can be model as a pinhole camera defined by its intrinsic and extrinsic
parameters. The intrinsic parameters represent the optical features of the de-
vice, usually the lens focal and its position regarding the center of projection,
where the extrinsic parameters describe the localisation (rotation and transla-
tion) of the camera in a reference coordinate system. The lens of the endoscopic
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camera are very sensitive to distortion, that generate aberration while acquir-
ing informations. These distortions can be effectively modelled using radial and
tangential distortion coefficients.

The camera is also equipped by a light source that illuminates the abdom-
inal cavity. For Structure-from-Shading techniques, modelling the light source
is needed, however, since our method only exploit the optical device, no light
model is required.

The pinhole camera model establishes the relation between a point in the
surgical environment and the image plane, in other words it describes the map-
ping of the 3D point M = [X Y Z 1]T with the 2D image point m = [x y1]T follow-
ing:

m = A

"
R t

0 1

#

M = PM (4.1)

where A is a matrix of the intrinsic camera parameters and R and t the rota-
tion and translation matrices that describe the extrinsic position and orientation
of the device in the world coordinate system. The matrix P is called camera ma-
trix or projection matrix.

The camera parameters are determined through a calibration step. Cam-
era calibration is a well-studied process in computer vision Zhang (2000) with a
large number of techniques and toolkits. It is often the primary step when deal-
ing with cameras as it allows systems to relate what appears on an image and
where it is located in the world. It has been successfully translated to surgical vi-
sion where the calibration of endoscopic camera is done offline, pre-operatively.
However, some studies report the ineffectiveness of pre-calibration for surgical
context. Indeed, during surgery the model of the optical sensors may undergo
changes due to zooming and focusing, or due to moving scope. For that pur-
pose online camera calibration has been investigated Stoyanov and Yang (2005);
Barreto et al. (2009), but with limited results for MIS.

Despite calibration is a well-established technique, it can be quite complex
when dealing with laparoscopic camera and remains an important issue to be
addressed. Current calibration method may produce significant error (our ex-
periments report an average reprojection error of more than 1 pixel), which can
highly affect the reconstruction. This can be explained by the relative small base-
line.

Stereo Correspondence

Once the camera is calibrated, the exploitation of endoscopic images is possible.
We choose to rely on passive technique based on stereoscopy in order to esti-
mate the three-dimensional shape of the liver since it does not need additional
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hardware modification. Stereoscopy is also currently the most reliable and re-
producible technique for 3D reconstruction in surgical vision, when comparing
with non-rigid SfM and non-rigid SLAM.

Thus, using stereoscopy, we have as input two pairs of images Il and Ir . On
this stereo pairs (Il ,Ir ) we need to extract point of interest (or features) that
are sufficiently reliable for reconstruction and tracking. Where several detec-
tors have been developed in the literature Gauglitz et al. (2011); Mikolajczyk and
Schmid (2005), we use Speeded-up Robust Features (SURF) detector. Our choice
for SURF over other detector is motivated by its particular well-suitability for
robotic-guided endoscopy applications Elhawary and Popovic (2010b). More-
over, our tests have shown that it performs well with liver surface texture.

SURF is both a feature detector and descriptor. The detector is robust to
affine transformation, rotation and illumination changes, and is computation-
ally fast, it is based on the determinant of the Hessian blob detector to extract
distinct keypoints. Given a point x = (x, y) in an image I , the Hessian matrix
H(x,æ) in x at scale æ is defined as follows

H(x,æ) =

2

4
Lxx(x,æ) Lx y (x,æ)

Lx y (x,æ) Ly y (x,æ)

3

5 (4.2)

where Lxx(x,æ) is the convolution of the Gaussian second order derivative
with the image I in point x, and similarly for Lx y (x,æ) and Ly y (x,æ). This second
order Gaussian derivatives can be evaluated at a very low computational cost
thanks to the use of integral images.

The features are then selected if the determinant of the Hessian matrix
det (H) in above a certain threshold ø:

det (H) > ø (4.3)

The determinant of the Hessian in often called the Hessian Response and gives a
measure of reliability of the detected feature.

When using SURF detector on the stereo pairs (Il ,Ir ) with an appropriate
threshold we extract two sets of features El = (x1l , · · · , xnl ) and Er = (x1r , · · · , xmr )
where we need to estimate for each feature xi = (ui , vi ) the 3D point Xi =
(Ui ,Vi ,Wi ). This is done by establishing a correspondence between image
points xl √! xr , with a descriptor-based matching method.

Descriptors are used to find correspondences between features in pairs of
images. A descriptor is a distinct fingerprint assigned to each keypoint detected
w.r.t its pixel properties and its response to the detector. We rely on SURF since
it also provides a descriptor robust to noise. It uses the Haar wavelet response
of the keypoint region to build a binary descriptor represented as a vector of 128
dimension. The matching is done by computing a nearest neighbor search on
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Figure 4.2: 3D Estimation from a laparoscopic image pair of the abdominal cavity showing a part
of the liver. (a): SURF features detection on image pair acquired from the Da Vinci Robot. (b):
the resulting sparse 3D point set y plotted.

descriptors vectors based on an euclidean distance while ensuring to satisfy the
epipolar constraints Puerto and Mariottini (2012). A sparse set of m 3D points,
denoted by 3£m coordinate vector z, is by then reconstructed using a triangu-
lation algorithm described below. Examples of 2D matched features and recon-
structed 3D points from laparoscopic images are shown in Figure 4.2.

Triangulation

The triangulation Hartley and Sturm (1995) is the process of estimating the po-
sition of a 3D point X from its image points x and x 0 in two views knowing the
camera matrices of those views P and P 0 respectively, issued from the calibration
(see Figure 4.3). This amount to find the point X that exactly satisfies:

x º PX x0 º P0X (4.4)

In theory, a naive back-projection of the rays from the measured image
points will determine the 3D point X , however, in practice the measured im-
age point x and x 0 contains error, thus, the rays will not intersect in general. It is
then necessary to estimate a best point of intersection by the definition and min-
imization of a suitable cost function. The two rays corresponding to a matching
pair of points x √! x0 will meet in space if and only if the points satisfy relation-
ship:

÷x0F x = 0 (4.5)
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where F denotes the fundamental matrix defined for a pair of cameras. In reality,
the correct values of the corresponding image points should be points x̂ √! x̂ 0

lying close to the measured points x √! x 0 and satisfying the equation ÷x̂0F x̂ = 0
exactly. Under the assumption that the imaged points are perturbed by Gaussian
noise, the optimal, maximum likelihood solution minimizes the l2 reprojection
error

d(x, x̂)2 +d(x0, x̂0)2 (4.6)

where d(§,§) represents Euclidean distance, subject to the epipolar constraint

÷x̂0F x̂ = 0 (4.7)

Figure 4.3: Triangulation.

Once x̂ and x̂0 are found, the point X may be found by any triangulation
method.

We used the Iterative Linear Least Square Triangulation method (Iterative-
LS) Hartley and Zisserman (2004) to find the 3D point X that satisfies 4.4. In this
method the measurement x = PX, x0 = P0X can be combined into a form AX = 0
which is an equation linear in X.

First the homogeneous scale factor is eliminated by a cross product to give
three equations for each image point, of which two are linearly independent.
For example for the first image x £ (P X ) = 0 and writing this out gives:

x(p3T X )° (p1T X ) = 0

x(p3T X )° (p1T X ) = 0

x(p3T X )° (p1T X ) = 0

(4.8)

where pi T are the rows of P . These equations are linear in the components
of X .
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An equation of the form AX = 0 can then be composed, with

A =

2

666664

xp3T °p1T

y p3T °p2T

x 0p 03T °p 01T

y 0p 03T °p 02T

3

777775
(4.9)

where two equations have been included from each image, giving a total of
4 equations in 4 homogeneous unknowns. These equations define X only up to
an indeterminant scale factor. By setting X = (U ,V ,W,1)T the set of homoge-
neous equations, AX = 0, is reduced to a set of 4 inhomogeneous equations in
3 unknowns. One can find a least-squares solution to this problem by using the
Singular Value Decomposition.

This process is repeated several times to reduce the reprojection error, by
adaptively change the weights of the linear equations so that the weighted equa-
tions correspond to the errors in the image coordinate measurements.

Several triangulation methods exist such optimal triangulation Hartley and
Sturm (1995) which amounts to finding all roots of a degree-six polynomial.
Nevertheless, they are relatively non-trivial and difficult to implement and their
computational cost can be considerable Lindstrom (2010).

4.2.2 3D Surface Reconstruction using Moving Least-Squares

Our non-rigid registration method is based on a point-to-point approach, thus
a sparse surface reconstruction is sufficient. Nevertheless, the sparse set z of
recovered 3D points may contain erroneous points which can damage the regis-
tration. We propose to approximate a surface on the set of points z using Moving
Least-Squares surface (MLS) approach in order to reduce the erroneous points.

In the literature, several approaches has been proposed to make the 3D
reconstruction more accurate, through direct outliers rejection stage or using
smoothing techniques. In order to recover the 3D heart surface, a growing
scheme approach was proposed in Stoyanov (2012) that rejects outliers by ensur-
ing their uniqueness during a propagation step from sparse to dense reconstruc-
tion. Using spatio-temporal constraints, Richa et al. (2010b) proposed to exploit
the quasi-periodicity of the heart beating motion to reduce the reconstruction
disturbances by using a time-varying dual Fourier series as a prediction model
that also permit to handle occluded surface. Another way to regularize noisy im-
age information is to use an underlying geometrical model such as in Richa et al.
(2010c) where a Thin Plate Spline (TPS) is used to approximate the heart surface
deformation.

MLS are non-dependent on image texture since it purely relies on geometric
properties and no temporal constraints nor prior shape knowledge are needed to
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yield good results. Thereby, it makes it a generic technique for the computation
of 3D shapes, even in the presence of noisy image data.

Moving Least-Squares surface Moving Least-Squares surface (MLS) is a mesh-
free, non-parametric method to approximate a surface from a set of unstruc-
tured scattered point introduced by Levin (2004). It has been widely used in
computer graphics for surface reconstruction resulting in the emergence of var-
ious scanning method. The attractivity of MLS resides in the fact that the recon-
struction in done by local computations which permit to generate a surface that
is smooth everywhere. In addition it permits to compute a very good approxi-
mation of the intrinsic properties of the surface such as normal and curvature
directly from a noisy point-cloud.

Figure 4.4: Processing steps for the Moving Least Squares approximation. From Amenta and
Kil (2004). MLS energy function of Step 1, sums up the weighted distances from the fixed input
points in P to the plane with normal a through the point q = r +t a. The weight on an input point
pi 2 P , denoted here by its shade of grey, is a function of the distance from pi to q .

To determine MLS surface given a point set P = {pi 2R3}, a projection proce-
dure which projects any point near the point set onto the surface using a local
approximation is conducted (see Figure 4.4).

Given a point r 2 R3, the process follows two steps. First the computation of
a local patch, then the projection of the query point r onto the surface using a
polynomial function :

• Step 1 Compute a local reference plane in the neighborhood of r : Find a
plane H with normal vector a 2 R3 passing through some point q = r + t a
(for some t 2R) such that kak= 1 and H minimizes the least-squares error:

X

pi2P
< a, pi °q >2 µ(kpi °qk) (4.10)

Here, < a, pi°q >2 is the squared distance from each point {pi } to the plane
H , and µ(kpi °qk) is the weighting monotonic function (Gaussian).
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• Step 2 Project r on the surface : We consider the points xi to be the orthog-
onal projections of the points pi on the plane H with projected distance
fi =< a, pi °q > oriented with normal a and origin q . Thus, we apply the
MLS function approximation which consists of construction of a bivariate
polynomial g̃ 2 R3 of degree m (here we take m = 3) which locally mini-
mizes the least-squares error around q :

X

pi

(g (xi )° fi )2µ(||pi °q ||) (4.11)

That amounts to project r along the normal with distance g̃ (0) (local
approximation of the surface at q).

Figure 4.5: Stereoscopic flow estimation on laparoscopic images of the abdominal cavity show-
ing a part of the liver in two different cases with (top) high textured liver and (bottom) low tex-
tured liver: (a) Original input images, (b) the resulting sparse 3D point set z from stereo match-
ing, (c) the resulting sparse 3D point set y from MLS outliers filtering, (d) the projected image on
the reconstructed surface.

MLS surface approximation performs well when the targeted point set is rep-
resenting a concave or convex surface. This assumption can easily been consid-
ered with the liver knowing the shape of the lobes. However, since noisy data is
always prone to ambiguity between a noisy smooth region and a sharp feature,
some false-positive statement may still occur. Figure 4.5 illustrate MLS surface
approximation performed on point cloud resulting from a 3D sparse reconstruc-
tion of liver surface.

4.3 Tracking the liver tissue using Clusters-based Filter

Tracking organ tissue is a key component in an AR framework. We have pre-
sented in the previous chapter several methods that aim to perform a robust
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tissue motion estimation. However, even these techniques have been exten-
sively tested on the heart and kidney, very limited works attempted to conduct
experimentation on the liver. This can be explained by the fact that the heart
undergoes cyclic deformation that can be predicted, and the kidney undergoes
more rigid transform than elastic deformation, while the liver may be subjected
to high elastic deformation that distorts the tissue and may cause the loss of fea-
tures. In addition, the liver tissue is known to contain several repeated patterns,
which make it difficult to perform descriptor matching.

4.3.1 Feature-based Direct Tracking

Our visual tracking follows the work by Elhawary and Popovic (2010b) who eval-
uated the combination of the Lucas-Kanade (LK) optical flow Bouguet (2002)
and SURF detector for robotic-guided endoscopy. This study showed the ro-
bustness and accuracy of this combination and its usability for conventional la-
paroscopic surgery.

Lucas-Kanade Lucas and Kanade (1981b) algorithm is an iterative optical
flow that allows the tracking of features in successive pairs of images under the
assumptions that the local displacement of a pixel neighborhood is small and its
brightness is constant over frames.

Let us denote I (x, y, t ) the intensity of a pixel p = (x, y) at a time t . LK algo-
rithm aims to find the position of the pixel p at t + 1 based on the brightness
consistency equation:

I (x, y, t ) = I (x +u, y + v, t +1) (4.12)

Using Taylor Expansion, we can linearise I (x +u, y +v, t +1) at (x, y, t ) which
gives:

I (x +u, y + v, t +1) º I (x, y, t )+ Ix ·u + Iy · v + It (4.13)

I (x +u, y + v, t +1)° I (x, y, t ) = Ix ·u + Iy · v + It (4.14)

From the assumption of constant brightness we deduce Ix ·u+ Iy ·v + It º 0, the
equation of motion at each pixel is given by:

rI .[uv]T + It = 0 (4.15)

In order to recover the motion (u, v), equation 4.15 has to be solved. How-
ever, only the flow normal to the image gradient can be deduced form Eq 4.15.
To overcome this issue, LK optical flow uses a spatial coherence constraint as-
suming that j £ j neighbourhood around the pixel p has the same motion. This
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leads to a set of j linear equations that can be written in the form of Ad = b:
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(4.16)

This system is over-constrained since it has more equations than unknowns,
therefore the solution is approximated by the least squares principle by solving
the system (AT A)d = AT b following:
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Solving this system yields to obtain the optimal (u, v) that satisfies the motion
equation Eq 4.15, only if (AT A) is invertible which is the case when tracking high
textured regions.

A stop criteria is also considered when the spatial coherence assumption is
violated; despite this criteria, LK algorithm can produce errors. Therefore, it-
erative refinement is usually considered when dealing with large movements
Bouguet (2002).

This combination permits to track liver deformations, in presence of visual
disturbances. However, the features loss is a major drawback in optical flow
techniques, and does not permit to perform a long-term tracking.

In order to ensure a long term stability for the non-rigid registration, we pro-
pose an additional layer to the direct tracking. This layer called Cluster-based
Filter (CbF) permits to create a set of n 3D control points, denoted by 3£n coor-
dinate vector y that guides the biomechanical model. Instead of constraining the
model directly with the extracted features, the clustering calculates a displace-
ment field for each control point based on the adjacent features. Its benefits are
twofold: i) It guaranties the minimization to remain stable since the number of
control points (and the amount of external forces) is less subject to lost features.
Moreover, it permits to avoid to over-constrain the corresponding tetrahedral
element which can often tend towards instability. ii) This permits to keep only
the needed features. Indeed, we can here exploit the capability of the mechan-
ical model to estimate deformations with a reduced number of external loads.
Figure 4.8 illustrates the clustering phase.
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Figure 4.6: A SURF feature being tracked over time (600 frames) using LK optical flow. (top)
tracking performed in both a forward and a backward time direction. Graph shows X and Y
coordinates as a function of time. (bottom) 50 £ 50 pixel window centred around the feature
location at every 100 frames.

Figure 4.7: Clusters-based Filtering

4.3.2 Clusters Building

Let us denote C = {ci 2 R3} the set of control points built form downsampling
the set y of 3D points resulting from MLS approximation stage. Each control
point defines a region of interest to group the surrounded features. The nearest
features to the control point are assigned to the cluster by combining the Hes-
sian responses of SURF detector and the Shepard’s Inverse Distance Weighting
(IDW). Shepard’s IDW allows the nearby feature to the control point to have the
largest weight while the Hessian response allows to prevent poor SURF detec-
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tion. Furthermore, it can be expressed as follows:

D(p) = qp

kX

i=1
widi (4.18)

where D is the weighted displacement of the control point p, k the total num-
ber of neighbors and di the displacement of the feature i . Assuming the quality
is isotropic at each feature, we define a normalized measure of quality qp for
each control point as the average of SURF Hessian responses of its neighbors. wi

is the weight assigned to each control point given by:

wi =
( rc°hi

rc hi
)2

Pm
j=1(

rc°h j

rc h j
)2

(4.19)

where rc is the radius of the cluster, hi the distance of the feature from the
control point and m the total number of neighbors.

Figure 4.8: Clustering phase : (left) The two views of 3D point cloud estimated from stereo
matching. The Blue sphere represents the rejected features. (right) Image is a representation
of the clusters. Red sphere represents the Control Points and the Green sphere the essential
features (neighbors).

4.3.3 Evaluation of the Cluster-based Filter

In order to provide quantitative evaluation of our approach, we first conduct
experiments based on computer-generated data in order to easily and quanti-
tatively compare the reference deformed mesh and the one obtained with our
approach.

We evaluate the accuracy of the registration by calculating the Hausdorff Dis-
tance as a metric between the reference 3D mesh (that underwent a synthetic
deformation) and the target 3D mesh (that underwent the deformation con-
trolled by the tracked control points). This metric Nicolas Aspert (2002) is the
reference metric for comparing two meshes in the Computer Graphics and the
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Figure 4.9: Trained synthetic data : From left to right : Ears deformations of the Stanford Bunny,
large, small and local Cube deformation, local Human Liver deformation in opposite direction.
The volumetric mesh composed of tetrahedra is displayed in blue. The fixed constraints are
represented by red markers and the direction of the force field applied is illustrated by the green
lines.

Reconstruction scientific community. In the following experiments, we use the
Rounded Mean Square Error (RMSE) of the Hausdorff Distance as the metric.

For this evaluation we use three models: A Stanford Bunny, a Human Liver
and a Cube, and three types of deformations, Large, Local and Small. Figure 4.9
illustrates the trained synthetic data.

In order to deform the 3D mesh, the displacement field of the control point
has to be computed. Each control point is represented by a set of features.
The influence of each feature on the displacement field of the control point is
weighted by the feature quality (Hessian Response to SURF detector) and the
distance of the feature from the control point. The table below shows the results
of a comparative study of the weighted techniques:

Mesh Type of Deformation Hessian IDW Combination

Cube

Small Surface Pressure 0.030 0.033 0.032

Local Surface Pressure 0.084 0.088 0.076

Large Surface Pressure 0.083 0.092 0.087

Liver
1st Lobe elongation 0.193 0.165 0.165

2nd Lobe Elongation 0.200 0.211 0.195

Bunny Ears Tearing 0.084 0.053 0.052

Weighted means based on the combination of the Hessian responses and the
Shepards’s IDW gives the best result in terms of accuracy. The Shepards’s IDW
gives results almost similar to this combination in some cases.

We further test the Cbf on real data. Figure 4.10 illustrates results from our
non-rigid tracking on a deformed cube (initial situation, intermediate configu-
ration and final configuration). From a qualitative standpoint, the results of the
final configuration exhibit a good correlation between the reference mesh and
the tracked one.
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Figure 4.10: A sequence of images showing a cube being deformed. (Top) augmented reality im-
ages where the mesh in wireframe is superimposed on the video stream, (Middle) the deformed
mesh, (Bottom) the volumetric mesh composed of tetrahedra.

4.4 Liver Biomechanical Model

In this section we provide a description of the biomechanical model used to
compute the deformations of the liver. Before giving details of the tetrahedral
model employed for parenchyma, we give and overview of the existing mod-
els for the real-time simulation of liver soft-tissue, we then focus on the model
of vascularization and mechanical coupling between those two. Since the final
composite model is heterogeneous and anisotropic due to the vascular struc-
tures, we finally describe the solution process based on a direct solver, still al-
lowing real-time performance.

4.4.1 Parenchyma Model

In order to correctly translate the parenchyma tissue behaviour, two proper-
ties must be taken into account: non-linearity of the organ tissue and its visco-
elasticity. These two features are reported in most biomechanical studies con-
cerning the constitutive models of the liver parenchyma (see Kerdok et al. (2006)
or Gao et al. (2009) for instance) and have been numerically modelled by the
computer graphics community. From a usability point of view, an additional
characteristic must be considered : the real-time achievement. This property is
decisive in the choice of an appropriate biomechanical model.
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Even though linear models yield fast and stable simulations, they are not suit-
able for large deformations. On the other hand, by using Green’s non-linear
strain tensor, more realistic deformations can be performed, but with more
costly simulation and complex numerical problems.

In this study, we aim at modeling large deformations correctly in real-time,
since during surgical interventions, important displacements of tissue (e.g. the
liver lobes) occur due to the action of surgical tools. On the other hand, we do
not focus on the transient part of the deformation but rather the static equilib-
rium under some specific loading conditions, we do not take into account the
viscous properties of the tissue.

For this reason we have opted for a finite element method based on a co-
rotational formulation which allows large displacements while relying on a lin-
ear expression of the stress-strain relationship.

Figure 4.11: To compute the elastic forces acting at the vertices of a tetrahedron, its deformed
coordinates x are rotated back to an unrotated frame R°1

e x. There, the displacements R°1
e x°x0

are multiplied by the stiffness matrix yielding the forces Ke (R°1
e x° x0) that are finally rotated

back to the frame of the deformed tetrahedron by multiplying them by Re . From Müller and
Gross (2004).

Corotational Model The co-rotational model is a very popular method in com-
puter graphics and medical simulation introduced by Felippa in Felippa and
Haugen (2005). This method is based on the decomposition of the actual ele-
ment configuration into rotational and deformational components, both being
quantified w. r. t. the initial position. More precisely, the actual position of the
element nodes determines the base of the element (given by three chosen adja-
cent edges), which are both rotated and deformed w. r. t. the initial base of the
same element (see Figure 4.11). This can be achieved in different ways, such as
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polar decomposition (Müller and Gross (2004)) or through geometrical analysis
(Nesme et al. (2005)).

The linear equation fe = Ke ue that relates the force/displacement relation-
ship for an element e connecting ne nodes is then replaced by

fe = ReKeRT
e (x°x0) (4.20)

Re is a matrix that contains n 3£ 3 identical rotation matrices along its diago-
nal (n is the number of nodes in the element). The vector x contains the actual
positions of the nodes of the element while x0 contains their rest positions.

In our method we employ the technique described in Nesme et al. (2005)
in order to extract the rotational component (denoted as Re ). The matrix Re is
used to update the local stiffness matrix Ke of the element. Therefore, via these
element-wise rotations, the actual global stiffness matrix K depends in each step
on the actual deformation u and the equation relating the external forces to the
displacements can be written as:

f = K(u)u with u = x°x0 (4.21)

where x0 and x represent nodal positions in rest and actual positions, respec-
tively, and f are the external forces.

Assuming that linear tetrahedral P1 elements are employed in the finite el-
ement formulation of the parenchyma model and the mesh is composed of NP

nodes, the resulting system has 3NP degrees of freedom, i. e. uP, fP are vectors of
the size 3NP whereas KP is a 3NP£3NP matrix, where the subscript P denotes
the parenchyma.

Such a technique overcomes some of the limitations of linearly elastic mod-
els, without compromising too much the computational efficiency and has been
successfully used for real-time simulation of liver tissue Saupin et al. (2008);
Courtecuisse et al. (2012).

4.4.2 Vessel model

The vascular system is considered as the main source of heterogeneity which has
a global influence on the mechanical response of the vascularized tissue due to
important stiffness of the vessel wall. The model employed here is based on work
presented in Peterlík et al. (2012). Besides describing the model in the actual sce-
nario, additional details concerning the assembling of the composite system are
given in the following text. Is should be emphasized that a potential viscoelas-
tic response due to fluids (i. e. blood) circulating in the vessels is not taken into
account.

From the mechanical point of view, the vascular system is modeled with se-
rially linked beam elements in a similar way as proposed by Duriez et al. (2006)
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for simulating catheters and guide wires (validated experimentally in Dequidt
et al. (2008) by studying the coil rest shape under deformation). This method,
based on three-dimensional beam theory Przemieniecki (1985) permits to han-
dle geometric non-linearities while maintaining real-time computation thanks
to using a substructures-based optimization (each substructure can be consti-
tuted of one or several beam elements, and is analyzed independently).

(a)

(b) (c)

Figure 4.12: Vascular Network model. (a) Catheter with the beam model in its curved rest shape:
with the tricolor nodal frames; and the red frames matching the middle of each beam. (b) Beams
generated along the vessels mesh. (c) a zoom into (b) showing a bifurcation where beams are
superimposed.

Each beam element is delimited by two nodes that have 6 degrees of freedom
(DOF): 3 angular qr and 3 spatial positions qt. The beam element includes a
12£12 symmetric stiffness matrix Ke that relates the nodal degrees of freedom
of a beam element to the forces and torques applied to them. The final internal
forces fi generated by the deformation of the structure at one node i are:

fi =
iX

e=i°1
Re(q)Ke(Re(q)T(q°qe)°prest) (4.22)
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where e is the index of the two beams connected to this i th node. qi°1 , qi and
qi+1 are the vectors of the 6 DOF positions of the three nodes (respectively i °1,
i , i +1) and belong to the two beams in the global frame (quaternions are used
for rotations). The tricolor frames in Figure 5.1, illustrate these nodal frames. qej

denotes the middle frame of the j th beam (red frames) that is computed as an
intermediate 6 DOF positions between the two nodes of the beam where prest

corresponds to the 6 DOF rest positions of these nodes in the local frame.
This model shares some similarities with the co-rotational model described

above, and in particular geometrically non-linear deformations. At the same
time it accounts for rotational degrees of freedom, i. e. besides linear positions
and forces, orientation and torques are included in the mechanical formulation.
However, we introduce some modifications to the model to take into account the
particular nature of vessels, in particular through specific cross section profiles
and moments of inertia Przemieniecki (1985).

The static formulation for the deformation of a beam is described by a system
similar to Eq. 4.21 with constituents uV, fV and KV. However, as each node is
equipped with 6 degrees of freedom due to the rotational components, the size
of vectors uV and fV is 6NV and KV is a 6NV£6NV matrix where NV is the size of
the beam mesh representing the geometry of vessels.

It is worth mentioning that other techniques exist in the literature for model-
ing wire-like structures such as Super-Helix model Bertails et al. (2006) or angu-
lar springs model Wang et al. (2007). These models are however more complex
or do not faithfully reproduce the physical vessels behaviour.

4.4.3 Mapping of tumors and parenchyma

The size of tumors being relatively small comparing with the whole parenchyma,
we assume that its influence on the overall mechanical behaviour is negligeable
and therefore the coupling with parenchyma can be only geometric. However, a
purely geometric mapping may deform the shape of the tumor which may cause
erroneous measurements. For this reason the tumor is modelled as a real me-
chanical object with a very stiff Young’s Modulus. This modellng does not af-
fect the performance of the simulation and permits a conservation of the shape
of the tumor while allowing correct in-depth propagation of the deformation.
With the same formulation as the parenchyma (co-rotational model), coupling
between tumors and parenchyma is done following Faure et al. (2012).

Let ∞ be the function used to map the positions xp of the parenchyma model
to the positions xt of the tumor model. The positions are mapped following:

xt = ∞(xp ) (4.23)
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where the velocities are mapped such as:

vt = Jvp (4.24)

where J = @xt
@xp

is the Jacobian matrix that encodes the linear relation between the
parenchyma and the tumors velocities. Accelerations can be mapped using:

at = Jap + @J
@xp

vp (4.25)

In our case, the operators ∞ and J are the same, since we consider that ∞ is
linear with respect to xp . The matrix J contains barycentric coordinates of the
degrees of freedom of the tumors w. r. t.to the corresponding parenchyma ele-
ment (in our case linear P1 tetrahedral element).

The stress/strain relation related to the material law of the elastic model im-
plies that each displacement generated forces. The propagation of the positions
and velocities are from the parenchyma to the tumors. The forces are prop-
agated conversely, from the tumors to the parenchymas’ degrees of freedom
where Newton’s law is applied. Given forces ft applied to tumors model, the
mapping computes and accumulates the equivalent forces fp applied to its mas-
ter. Since equivalent forces must have the same power, the following relation
holds:

v÷p fp = v÷t ft (4.26)

Given the relation of Equation 4.24 and using the virtual work principle, the pre-
vious relation can finally be expressed as:

fp = J÷ft (4.27)

It is important to recall that only the liver surface deformation is estimated
using our visual tracking method, thereby, the deformation of the parachyma
is driven by loads acting solely on its surface. The mapping relations permit to
propagate this deformation to the tumors where we can estimate their positions
over time. Several tumors can be mapped where each tumor accumulates its
contribution to the forces on the parenchyma using its mapping.

4.4.4 Coupling between vessel and parenchyma

In order to build the composite model of vascularized tissue, we adopt the
method proposed in Peterlík et al. (2012). At the beginning of the time step, the
forces applied in the beam points are propagated to the vertices of tetrahedra.
Then, stiffness matrices for both beams and tetrahedral models are assembled
and combined together as described below. The composite system is solved re-
sulting in displacements of the tetrahedral vertices (see Figure 4.13). Finally, the
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Figure 4.13: Mapping between 6DoF beam node and tetrahedron in initial and rotated positions.
The positions of beam and tetrahedron nodes do not coincide.

positions of beam nodes are updated based on actual positions of tetrahedra.
For the sake of simplicity, we first describe the positional mapping between the
nodes, then the propagation of forces and finally, we show how the stiffness ma-
trices combined together to get the global stiffness matrix of the composite sys-
tem.

(a) (b)

Figure 4.14: 3D heterogeneous biomechanical model of the liver with : (a) heterogenous liver
including the vascular network in wireframe, in (b) beams generated along the vessels.

Let us first focus on positional mapping of an arbitrary beam point of the ves-
sel network. We recall that the point is defined by its position p and orientation O
in space. Before the simulation starts, the point is associated with a tetrahedron
T so that it is located inside T . Two quantities are precomputed for the point:
the barycentric coordinates of p w. r. t. the tetrahedron T (denoted as ØT ) and
orientation OT of the point formulated relatively with respect to the tetrahedron
T , computed as

OT = B°1
T O (4.28)
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where BT is an orthogonal base given by the edges connecting the nodes of the
tetrahedron T in the rest position. It should be noted that the same matrix is
required by the co-rotational model. Since it is supposed that no relative motion
between the parenchyma and vessels occurs, both ØT and OT remain constant
during the simulation and in each step they are used to calculate the updated
position p and orientation O of the beam point in space. As for the position,
the calculation using barycentric coordinates is straightforward. The updated
orientation O0 is computed as

O0 = B0
T OT (4.29)

where B0
T is the base given by updated positions of the tetrahedron T . The calcu-

lation of the updated base B0
T requires the orthogonalization process. However,

this computation is already needed by the co-rotation model, so the mapping
does not introduce an additional significant computational cost.

In the same time step, the response forces applied in the beam node are
mapped onto the vertices of the associated tetrahedron T . For the beam point,
there are linear forces f as well as torquesø, whereas for the tetrahedron, only lin-
ear forces F are modelled in the element vertices. The linear response force f is
mapped from the beam point to its corresponding tetrahedron T using barycen-
tric coordinates ØT introduced above. The torques ø are transformed to linear
forces acting in the tetrahedron nodes using the equation ø= r£F where r is the
vector connecting the beam and tetrahedron nodes. Putting it together, the force
contribution of the beam point is added to the forces applied in the vertices of
associated tetrahedron T as

Fi = Fi +Øi f° (ri £ø) (4.30)

where i runs over the vertices of T .
As introduced above, the vascularized tissue is a composite deformable ob-

ject, where the total stiffness matrix K is composed of contributions provided
by stiffness of parenchyma KP and stiffness of vessel walls KV. Let us suppose
that the mapping between the beam and tetrahedra nodes can be expressed in a
matrix form as fP = JT fV where J is a 3NP£6NV Jacobian matrix of the mapping
between the nodes of parenchyma and the vessels Faure et al. (2012). The global
stiffness K matrix is then computed as

K = KP+ J>KVJ (4.31)

4.5 Non-rigid Registration

Non-rigid registration consists of a 3D point-to-point registration that links the
image-based 3D features representing the liver motion to the degrees of freedom
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of the liver physical model. Registration is done at each frame captured by the
endoscopic camera in order to correctly pilot the mechanical model, and thus to
estimate the correct position of the underlying tumors.

4.5.1 Initial State

Initialization is the alignment of the 3D mesh (with the underlying physical
model) on the laparoscopic image at t = 0. This step is critical and special
care must be taken during this phase since it can significantly impact the esti-
mated position of the tumor given the deformations that organs undergo during
surgery. In addition, since gas is insufflated (pneumoperitoneum) to increase
the working space Bano et al. (2012), the preoperative data may no longer corre-
spond to the intraoperative image.

The initial alignment is an ill-posed problem where we aim at registering two
sets of 3D points without knowing the matching between these two sets. Due
to this complexity and despite the numerous AR techniques in surgery, very few
works have investigated the initial alignment between laparoscopic images and
the three-dimensional model. Clements and et al. (2008) introduced an ICP-
based approach to aid in the initial pose estimation. Using salient anatomical
features, identifiable in both preoperative images and intraoperative liver sur-
face data, this method is able to reach a reasonable solution, but is restrained to
rigid transformations. Another intraoperative registration method is presented
in Dagon et al. (2008). The authors used an intraoperative ultrasound probe to
register the vessel tree on a 3D liver model. However, since our aim is to regis-
ter laparoscopic data recorded by a camera, such information is not available.
Recently, Oktay et al. (2013) proposed a method that combines pneumoperit-
moneum simulation and CT-scan imaging. By considering the intraoperative
data acquired from CT-scans (after gas insufflation) as an additional constraint
to drive the simulation, this method provides accurate registration. Neverthe-
less, it relies on intraoperative scans which are not considered in the operating
room.

Currently, no technique is mature enough to permit an automatic initial
alignment, and this issue remains a challenge to be solved by the scientific com-
munity. This is why, we rely on a manual initial alignment to reduce errors that
may emanate from a bad initialization. As in related works Su et al. (2009)Puerto-
Souza and Mariottini (2013) the initialization is done manually through a Graph-
ical User Interface (GUI). Nevertheless, preliminary tests on non-rigid alignment
using anatomical landmarks and atlas-based model show the potential of these
approaches for initial alignment Plantefeve et al. (2014).



Alignment of virtual and real camera 89

Alignment of virtual and real camera

Assuming a calibrated endoscopic camera, the matrix A of the intrinsic parame-
ters is defined as follows:

A =

2

664

fx 0 cx

0 fy cy

0 0 1

3

775 (4.32)

where fx and fy are the focal lengths, cx and cy the principal point. The first
step to ensure visual consistency, is to load these intrinsic parameters on the
GUI virtual camera.

Model alignment

3D surface reconstruction is built on the first pair of laparoscopic images (the
first pair is chosen so that a large part of the liver is visible) using the MLS surface
approximation. The liver mesh is then aligned manually to the reconstructed
surface, based on salient geometrical landmarks such as liver contours or sur-
rounded ligaments. This alignment consists of finding the matrix [R|t] of rota-
tion and translation that permits a correct visual alignment of the mesh and the
surface (cf. Fig. 4.15).

This rigid transformation is insufficient to correctly initialise the registration.
Indeed, due to gas insufflation, pre-operative data (liver mesh computed for
CT-scans) geometrically differs form intra-operative data (reconstructed patch)
Sanchez-Margallo et al. (2011). To solve this issue, we constrain the biomechan-
ical model (including the vessels and the tumour) with external forces so that it
better fits the visible liver surface recovered.

Figure 4.15: Initial model alignment (simulated data): The mesh in purple represent the 3D
model computed from CT scans in a different reference, the mesh in blue represents the MLS
surface reconstructed from laparoscopic image pair. It represents around 30% of the whole liver
that is represented in green.
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Point correspondence

The temporal non-rigid registration is a point-to-point registration (cf. Fig. 4.16),
therefore, the set of three-dimensional points y are projected onto the liver
model surface using a ray casting method Roth (1982).

Ray-casting is a well-established technique widely used in computer graph-
ics for visual rendering. The algorithm is based on ray-surface intersection test
by projecting a set of points from a defined origin (for instance the camera lo-
cation) to a targeted mesh surface (for instance the liver mesh). Its advantage
in our case is twofold: it permits to directly correspond the set of points y to
the degrees of freedom of the mechanical model, in addition, it allows to avoid
the features that do not belong to the liver but to the surrounding tissues since
only the 3D points that intersect the liver surface after ray-casting are kept, the
features that do not belong to the liver are filtered out from laparoscopic images.

Virtual Camera

Ray Casting

Liver Mesh Surface

Image Point
Projected Point
Spring

Figure 4.16: Point-to-point registration: The initial set of control points mathb f y is projected
on the surface using ray-casting to pair the set mathb f y with the degrees of freedom of the
mechanical model mathb f x at t = 0.

Boundary conditions

Boundary conditions are defined by fixing a set of degrees of freedom of the
biomechanical model that represents the falciform ligament and the underlying
fat (see Figure 4.17). Recent studies focused on the importance of modeling the
ligament Bosman et al. (2014). Indeed, boundary conditions can be modelled
as springs, linear FEM model or considered as fixed vertices of the volumetric
mesh. The latter method is used in our work. This amounts to substitute in the
stiffness matrix K the couple row/column of the index of the fixed point by zero.
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This point will not influence and will not be influenced by other points in the
mesh.

Figure 4.17: Boundary conditions: The liver model (in green) is constrained by fixed vertices (in
purple) that represent the falciform ligament and the underlying fat.

4.5.2 Stretching Energy Minimization

Non-rigid registration can be seen as a stretching energy minimization between
the three dimensional features recovered from laparoscopic images that repre-
sent the tracking energy Wext and the biomechanical model derived from preop-
erative CT data. We consider an energy that accounts for the internal energy of
the biomechanical model Wint and the tracking energy Wext.

We aim at simulating the liver elasticity at each frame under certain loads
without dealing with the dynamic part of the deformation but rather the static
equilibrium of the mechanical core. In addition, the blood flow is not considered
in the vascular network model. Thus, we consider a quasi-static scenario, i. e.
the actual shape of a deformable object under applied forces is computed using
finite element formulation without dealing with tissue transient properties.

The core mechanical equations based on Newton’s second law is given by a
non-linear ordinary differential equations system that can be written as follows:

Ma = Fext °Fint (4.33)

where a is the acceleration and M the mass matrix. The forces Fext are the
external forces acting on the model and Fint the internal forces of the material.
The quasi-static case implies that the acceleration a is zero, thus we obtain:

Fint = Fext (4.34)

This system of equations consists of deriving the external and internal ener-
gies, Wext and Wint respectively. The aim is to reach an extremum (minimum)
where the internal forces equal the tracking forces Wint =Wext.
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Internal Forces

Using the co-rotational formulation described above the internal forces are ex-
pressed as:

fi(x) = ReK(Re
>x°x0) (4.35)

where K represents the stiffness matrix, Re the co-rotational matrix and x,x0 are
vectors of size 3n representing the position of the n degrees of freedom of the
mechanical model, respectively at any time t and time t = 0.

External Forces

External forces are defined by pairing the m 3D points y to the n degrees of free-
dom x of the bio-mechanical model. The tracked control points y0 at initializa-
tion (t = 0) are expressed in barycentric coordinates of the adjacent degrees of
freedom leading to the linear relation:

y0 = Lx0 (4.36)

where L is a rectangular matrix (3m,3n). We assume this linear relation remains
valid during the deformation.

At any later time t , the stretching forces induced by the tracking of control
points are defined as

ft(y) = k(y°y0) (4.37)

where k can be seen as stiffness. Finally, the stretching forces can be expressed
with respect to the degrees of freedom as

ft(x) = L>ft(y) (4.38)

ft(x) = L>kL(x°x0) (4.39)

Parameter k is set to be at the same order of magnitude as the Young’s modulus
to insure that the simulation remains stable even at large integration steps.

4.5.3 Resolution

Considering a quasi-static scenario, we aim at solving the linear system given by
Eq. 4.21 at each step of the simulation. A wide range of direct and iterative solvers
have been proposed in the past to solve such a system of equations emerging in
physics-based modeling of deformable bodies. In case of homogeneous systems
in which the finite element formulation results in well-conditioned matrices, it-
erative solvers have proven to be efficient techniques converging rapidly to the
optimal solution. However, in our case, the final matrix K gathers mechanical
contributions of both parenchyma and vessel walls. As the experiments report a
significant difference in stiffness of these two components (e. g. see Umale et al.
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(2011)), the composite system results in a poorly conditioned matrix. In this case
the convergence of iterative solvers becomes an important issue. Thus, we rely
here on direct methods.

Direct methods aim to calculate with an exact way the inverse of the system
matrix (or a factorization) that permits to obtain the solution in a finite number
of operations. These methods are considered robust as they are relatively insen-
sitive to numerical problems such as ill-conditioned systems or imprecisions.
One can explicitly calculate the exact inverse matrix A°1 in order to directly solve
the system such as x = A°1b. In some cases, for example where the matrix A is
diagonal, this computation can be very effective and trivial and real-time can
be considered. However, in general cases, the computation of A°1 can be very
costly and complex. In addition, the storage of A°1 can be a limitation since it
becomes a dense matrix. For this purpose, condensation techniques have been
proposed Bro-nielsen and Cotin (1996) considering static and quasi-static cases.
These techniques aim at reducing the number of degrees of freedom so that the
computation of the inverse can be achieved in real-time.

In order to exploit the sparse matrix that produces the mechanical system, a
factorization method can be considered. The factorization expresses the matrix
A as a product of simple matrices. For example, any invertible matrix can be ex-
pressed as the product of a lower triangular matrix and an upper triangular ma-
trix A = LU. This is called LU decomposition where LU stands for Lower Upper.
This decomposition results in a system with two linear equations composed with
triangular matrices, which can be efficiently solved. However, the factorization
may fail to materialize without a correct ordering or permutations in the matrix.
Thereby, a permutation matrix P is usually used resulting in the factorization of
PAP°1 instead of A. This permutation is sufficient for the LU factorization, but
is however time consuming without considering optimized computation algo-
rithms [Toledo (2003)].

For efficient numerical solutions, other factorization methods can be con-
sidered. For example Cholesky factorization, of the form LL÷, is based on the
decomposition into the product of a lower triangular matrix and its conjugate
transpose, and can be applied only on positive-definite symmetric matrix. It
is more efficient than LU decomposition Trefethen and Bau (1997), but is nev-
ertheless sensitive to numerical instabilities since it is based on the extraction
of square roots. To avoid this issue, a closely related variant of the classical
Cholesky decomposition can be used: LDL decomposition. Of the form LDL÷,
it calculates separately the inverse of the diagonal matrix D with avoiding the
extraction of square roots. For this reason, we rely on direct LDL÷ solver for the
resolution of our system. Although the solver imposes stricter limitations on the
size of the system being resolved, it still provides a stable real-time solution ap-
plicable to the problems considered in our work.



94 Chapter 4. IDeaS

4.6 Conclusion

The method presented here addresses several important limitations that cur-
rently hinder the use of augmented reality in clinical routine of minimally inva-
sive procedures. We particularly focused on the three-dimensional localization
and visualization of internal structures, such as blood vessels and tumors. To
this end, we have developed an image-guided biomechanical model that is able
to capture complex deformations underwent by the liver during surgery. The
deformation model is guided by both internal forces (associated to a biome-
chanically validated model of the liver) and external forces related to three-
dimensional points (reconstructed from stereo images). Such characteristics
make our model able to capture both the organ surface and inner structures
motion while being parameterized with textbook Young’s modulus and Poisson’s
ratio values.

In the next chapter, we present the results obtained through in vivo qualita-
tive assessment on a human liver and quantitative validation on a phantom liver
where errors well below the current surgical margins are measured. In addition,
we present further strategies to reduce these errors.
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5.1 Introduction

In laparoscopic surgery, validation remains very challenging. In our case, this
problem is more complex since neither qualitative results nor visual assessment
can validate the deformation of internal structures that are not visible in laparo-
scopic images. In order to assess the performance of our approach, we con-
front in this chapter our framework against three experimental scenarios. First,
we demonstrate with computer-generated data whether and where an hetero-
geneous model differs from an homogeneous one for the prediction of tumor
location. Second, our approach is tested on an actual laparoscopic procedure
performed on a human liver, allowing us to qualitatively estimate how our ap-
proach could perform in a real surgical environment. Third, we rely on a real-
istic phantom liver to quantitatively measure the error between simulation and
ground truth.

We further propose several strategies to add robustness to visual tracking,
and we discuss the importance of the material stiffness in the modeling of liver
paranchyma.

5.2 Pre-operative Data Acquisition

The used pre-operative data consist of a set of CT-scans pre-operatively per-
formed on patients. We exploit these data to build anatomical model of the
liver which consists of the parenchyma, the tumors and the vascular network.
The liver model is built following three steps: segmentation and mesh gen-
eration, volumetric model generation (capable of computing FEM) and tissue
parametrization.

5.2.1 Segmentation:

Although this thesis does not address the challenging task of surface reconstruc-
tion, a good surface representation is very important for physical simulation op-
erations. We use segmentation technique to generate liver surface together with
tumors surface from the volumetric CT images. Segmentation is done semi-
manually using active contour technique (Snakes) Kass et al. (1988b) available
in the software itksnap Yushkevich et al. (2006). Usually, a mesh-smoothing step
is required after segmentation to reduce the number of triangles and obtain a
suitable mesh for volumetric mesh generation.

Vessels are more difficult to segment than the parenchyma, considering their
small diameter and their proximity to each others. For this reason, a contrast
enhancement is needed before segmentation to easily detect salient edges.
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(a) (b)

(c)

Figure 5.1: Vessel model with (a) and (b) the central lines extracted using Dijkstra algorithm and
(c) the beams generated along the central lines.

5.2.2 Volumetric mesh generation:

Volumetric meshes are necessary for a finite element modeling. Thus, from the
previously generated surface we build a volume representation of the liver com-
posed of linear P1 tetrahedral elements, using 3D Delaunay triangulation algo-
rithm which is available in CGal library [CGA]. The number and type of elements
are to be chosen carefully in order to ensure real-time performance as well as
sufficient accuracy (see Figure 5.2).

This technique is well suited for representing liver and tumors volume, how-
ever, it is not appropriate for vascular network. Indeed, the shape and thick-
ness of the vessels make it difficult to create a correct volumetric representation.
Moreover, since the vessels model used in our composite model is a wire-like
model, central lines of the vessels are needed to build the beam model (see fig-
ure 5.2). We used the method described in Verscheure et al. (2013) to extract
these central lines. This approach implements an iterative Dijkstra minimum
cost spanning tree to extract the vessels skeleton. Having the vessels skeleton,
beams are generated along the central lines to obtain the final vascular network
model by choosing the thickness of the vessel wall (for instance tV=200 ) and the
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spacing between the beams (deduced from the number of beams, for instance
120 beam elements).

(a) (b)

Figure 5.2: Liver segmentation: (a) one image from CT scanning, (b) volumetric representation
of the liver (in blue) computed from its surfacic representation (in wireframe).

5.2.3 Tissue Parametrisation:

Several studies have measured the characteristics of liver soft-tissue Kerdok
(2006), using different measurement devices on living and non-living tissues. In
this study, the used elastic parameters are summarized in table 5.1 and are set
according to Yamada (1970); Umale et al. (2011); Peterlík et al. (2012).

Parenchyma Vascular Network

Young’s Modulus EP=27 kPa EV=0.62 MPa

Poisson’s Ratio ∫P=0.45 ∫V=0.45

Resolution 3391 tetrahedral (P1) elements 120 beam elements

Table 5.1: Liver tissue parametrisation and resolution.

5.3 Experiments with computer-generated data

We evaluate the impact on registration, of using a heterogeneous model instead
of a homogeneous model (which can be seen as providing similar results as an
advanced geometric approach). This is done by calculating the Euclidean dis-
tance between the estimated tumor location in the cases of homogeneous and
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heterogeneous deformations (see 5.2). We also measure this influence depend-
ing on the location of the tumor in the liver, at three different locations: 1) close
to the point of interaction in order to quantify local deformation, 2) away from
the point of interaction to quantify global behaviour, and 3) in the middle of the
vascular network to assess its influence. The simulations are generated using
SOFA framework Allard et al. (2007).

The results illustrated in figure 5.3 show that taking into account the vascular
network impacts the tumor location. We can notice a difference in the distance
of about 15 mm in the case where the tumor is located close to the deformation.
We also notice that even if the tumor is located far from the point of interac-
tion, it remains influenced by the vascular network with a distance of more than
3 mm. However, when the tumor is very close to the boundary conditions, the
impact of the vascular network is considerably reduced, which is an expected
result.

Figure 5.3: The impact of the vascular network on tumor deformation depending on its position
in the liver: the distance between the tumor using homogeneous and heterogeneous biome-
chanical model is important locally (red) and globally (blue) and less important when the tumor
is constrained by the vessels. The meshes illustrate the distance between the position of the
tumor in a homogeneous and a heterogeneous case for each location in the liver.

5.4 Experiments on in vivo Human Liver

When dealing with an actual patient, quantitative validation implies major tech-
nical challenges as well as ethical issues. Our approach was conducted on a la-
paroscopic sequence taken during a real examination. Our aim is to assess the
robustness of tracking in a real environment (specular lights, beating heart, res-
piratory motion, instrument occlusions) and the performance of our non-rigid
registration.



100 Chapter 5. xp

5.4.1 Augmentation of Vascular Network and Tumor

The simulation employing this model was running stably in real-time: refresh
rate of 25 FPS was achieved on a PC having equipped with an Intel i7 M620
2.76GHz processor, with images of a resolution of 960 £ 540 acquired from
DaVinci Robot provided by Intuitive Surgical.

In this sequence, the liver is deformed with a surgical tool manipulated by the
surgeon. The right lobe is grasped and stretched in different directions reaching
elongation up to 60% of the initial liver size. As stated in chapter 4, boundary
conditions are necessary to yield satisfying results, especially where the liver un-
dergoes high elongations. The MLS reconstruction permits to obtain a 3D sur-
face that represents approximatively 30% of the liver. On the set of 264 extracted
features 26 control points are built when using a radius Rc = 5 mm. Visual track-
ing performs well on a sequence of 812 frames showing long-term robustness
of the tracking. The parameters of LK optical flow consist of a window size of
51£51 pixels and an interframe motion threshold of 20 pixels. The optical flow
is prone to drifting and many features are filtered out during tracking leading
to loss of control points. This may unbalance the minimization and disturb the
registration where we noticed sudden deformations where the control points are
deleted. Indeed, due to the fact that the elastic behaviour of the model aims at
restoring its rest shape, deleting the external loads produces instabilities (in the
neighbourhood of the corresponding tetrahedral element). However, this is only
visible during a short time margin, since the mechanical model aims to interpo-
late the deformation where no loads are present. Overall, the registration gives
coherent visual augmentation despite these visual disturbances. Figures 5.6 and
5.7 illustrate four frames of the augmentation and show a good visual match be-
tween laparoscopic images and the liver mesh.

Since no quantitative results can be obtained from in vivo data about the sur-
face registration, we propose to compute the projection error (in percentage of
the whole liver) of the overlaid mesh on the laparoscopic image. To do so, we
measure the distance between the overlaid mesh contour and the liver contour,
both extracted manually. Figure 5.4 illustrates these distances and shows that
increasing the number of tetrahedral elements reduces significantly superim-
position errors.

5.4.2 Performance Vs Accuracy

The computational cost of the simulation is given by several factors. First, due
to the heterogeneity and anisotropy introduced by the vascular structures, iter-
ative solvers (such as conjugate gradients) cannot be used due to convergence
issues. Therefore, a direct solver (such as LDL-decomposition) is necessary to
solve the system in each time step. However, the time needed to compute the
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Figure 5.4: Projection error (in percentage of the whole liver) at selected frames, of the overlaid
mesh on laparoscopic views with a variation of the number of elements.

LDL decomposition increases rapidly with the number of mechanical degrees
of freedom of the model, which is given by the number of tetrahedral elements
representing the parenchyma. Furthermore, the number of beam elements rep-
resenting the vessels affects the performance as well, due to the computation of
mapping which is calculated in each step of the simulation. Fig. 5.5 shows the
relation between the number of tetrahedral and beam elements and the refresh
rate of the simulation.

(a) (b)

Figure 5.5: Performance of the simulation w.r.t. the number of elements: (a): different density
of parenchyma meshes (while number of beams equals to 164), (b): different density of beam
elements (while the same tetrahedral mesh is used with 3072 elements).
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(a)

(b)

Figure 5.6: A sequence of images showing the superimposition of the real-time biomechani-
cal model onto the human liver undergoing deformation due to surgical instrument interaction
during MIS. The liver is represented in wireframe, the tumor in purple, the hepatic vein is shown
in blue and the portal vein in green. On the left virtual camera with the original laparoscopic
angle and right a different angle.
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(a)

(b)

Figure 5.7: A sequence of images showing, in different views, the superimposition of the real-
time biomechanical model onto the human liver undergoing deformation due to surgical in-
strument interaction during MIS. The liver is represented in wireframe, the tumor in purple, the
hepatic vein is shown in blue and the portal vein in green. On the left virtual camera with the
original laparoscopic angle and right a different angle.
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5.4.3 Evaluation of the Cluster-based Filter

We further confront the tracking using cluster-based filtering with real clinical
data. Figure 5.8 illustrates four selected frames of the augmentation performed
on a sequence of 812 frames showing the long-term robustness of the tracking
using the CbF.

(a)

(b)

(c)

Figure 5.8: Comparison between (left) optical flow tracking and (right) tracking with CbF. (a)
a top view showing the registration error that may occur using a direct method. The biome-
chanical model (in white wireframe) is locally constrained by a 3D feature in the case of a direct
tracking while it is constrained by a set of features grouped around a control point. (b) and (c), a
front view showing the visual accuracy of our method. The correct shape is well recovered even
if the boundary (manually segmented and represented here in yellow) is not correct everywhere.

We can notice in the comparison illustrated in Figure 5.16 that the optical-
flow tracking itself fails to accurately register the model onto the image, mainly
because noisy 3D features which locally constraint the model are subject to
drifts. Table 5.2 summarizes the projection errors of the mesh on the endoscopic
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images (manually extracted contours) and shows the CbF tracking permits to re-
duce considerably the error w.r.t the optical-flow approach.

Projection error (px)

Frame #100 #200 #300 #400

Clusters-based Tracking 54.72 110.57 145.33 75.55

Optical-flow approach 809.95 659.04 304.78 766.01

Table 5.2: A comparison between the clusters-based approach and optical-flow tracking.

5.5 Experiments with Liver Phantom Data

In laparoscopic surgery, a reproducible validation remains a challenging task. In
our case, the problem is more complex since neither qualitative results nor vi-
sual assessment can be used for validation easily since the internal structures
are not visible in laparoscopic images. We believe that performing a CT scan
of a phantom liver during the deformation is an ideal way of defining a ground
truth for the location of an internal structure (e.g. a tumor). However, surgi-
cal instruments as well as the laparoscopic camera produce significant artifacts
during a CT in vivo acquisition. Further, the boundary conditions of the liver
surface, which influence the motion and deformation of the organ significantly,
are difficult to reliably identify. Therefore, we designed a validation protocol in
order to quantify the error of the prediction computed by the simulation. In the
following, we first describe the bench used to validate our simulation by provid-
ing details about the phantom construction and desired properties. Second, we
explain how the ground truth is determined and finally, we present a detailed
comparison and evaluation of the results.

5.5.1 Bench Description

Required Properties

Quantitative validation strongly depends on the targeted application. The ex-
vivo setup was designed to mimic as closely as possible a typical difficulty en-
countered during liver tumor resection in laparoscopy: the liver is firmly grasped
and the tumor location must be predicted despite important deformations. The
first two features concern the liver phantom that should be based on a patient-
specific data, encompass the vasculature as well as tumors, and display known
mechanical properties similar to those of a human liver. Ground truth tumor
locations are tracked with successive CT-scans of the liver acquired while a pro-
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gressive force is applied. The phantom and the global setup should be compat-
ible with CT imaging. The applied force should be controlled to be reproduced
in the simulation. Moreover, the reproducibility of the deformation is impor-
tant also because recording the laparoscopic video and CT acquisition cannot be
done simultaneously, thus each must be performed separately, even when using
the same deformation. Finally, the grasping device should not occult video im-
ages and deformations should be varied, which requires the ability to modulate
the force direction and amplitude.

Figure 5.9: Heterogeneous liver phantom: the vascular network (right) is considered as the main
source of heterogeneity of the silicon-made phantom (left).

Model Fabrication

To the best of our knowledge, the known polymers and similar materials are
not capable of reproducing the behavior of liver tissue with high fidelity. How-
ever, extremely soft silicone rubber seems to be a good choice because it is close
enough to real liver properties, has similar density and good maximal elonga-
tion before a failure occurs. Using a surface representation of real patient data,
we employed 3D printing to reproduce the exact geometry of the organ and the
vascular network.

Given the stiffness of the vessel wall reported for example in Umale et al.
(2011), the network was produced directly by 3D printing using the softest avail-
able polymer (DM9895) having the Shore hardness A=90.

The fabrication of the parenchyma was performed using a mold made in a
Siligum to reproduce the liver shape. The mold was further filled with an ex-
tremely soft silicone rubber mix using Ecoflexő 00-20 and additive Slackerő in
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ratio 1:1/8 by volume. During the filling procedure, the printed vascular net-
works together with artificial inclusions (representing randomly placed tumors)
where inserted inside the mold. The phantom is shown in Fig. 5.9.

The procedure results in a very soft and elastic material representing the
parenchyma with a harder vascular network placed inside. Each component is
easily detectable on a CT scan in order to perform an automatic segmentation.
Table 5.3 shows the values of the most significant parameters for each compo-
nent. Finally, the phantom is manually textured with salient marks in order to
ensure robust tracking.

Vessels Parenchyma Tumor

Mass (gr) 30 675 0.2

Volume (cc) 32.9 690.2 6.3

Largest dimension (mm) 148 179 3

Young’s Modulus (MPa) 9.2 0.05 -

Poisson’s ratio 0.45 0.40 -

Table 5.3: Characteristics of the phantom vessels, parenchyma and tumors.

Bench Design and Construction

Considering the specifications and constraints formulated earlier, we apply a de-
formation so that the errors introduced due the friction between different parts
of the setup are minimized. To induce the deformation, we use a servomotor
BMS-2514 capable of a torque up to 23.2 kg.cm, attached to a pulley of 71 mm
diameter. Three different threads attached to the same region of the liver sur-
face using graspers are used to pull in three different directions aligned to x,y
and z axes as seen in the camera view. The effective force up to 64 N can be
applied on the liver surface via this mechanism depicted in Fig. 5.10.

Three different configurations induced by the threads are depicted in
Fig. 5.10: in Configuration 1, a lateral pulling is applied, in Configuration 2, the
surface is being pulled upwards and in Configuration 3, pulling towards the cam-
era is performed.

To ensure the compatibility with X-ray based imaging, every element close to
the liver is made of low density substances. More precisely, each grasper as well
as the two closest pulleys have been specially designed and 3D-printed in PLA
plastic, chosen for its high rigidity compared to other thermoplastics, providing
reliability and stability in the output deformation. Polyamide bolts have been
used to fix every element to the base platform.

Arduino-based micro-controller is used to control the servomotor which is
driven according to the commands received from a wired electromagnetically
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(a)

(b)

Figure 5.10: Validation bench with top (a) and side (b) views. The bench is CT-compatible and
allows easy reproduction of the experiments. The three configurations permit to quantify the
errors depending on the direction and elongation and at the same time, they can be simulated
straightforwardly via Dirichlet boundary conditions.

isolated control pad. The control is also visualized using a LED which is used for
synchronization.

The liver is fixed to the bench using glue to ensure fixed boundary conditions.

5.5.2 Ground Truth Acquisition

The ground truth acquisition involves two procedures described in Fig. 5.11):

• CT-scanning: we perform a CT scan of the phantom, being first at un-
deformed configuration, and then at different deformed configurations
(cf. Tab. 5.4). The scans are acquired with Siemens Somatom CT Scanner
which produces high quality volume images.

• Video streaming: we record the deformation induced by pulling the
threads using a stereo endoscopic camera. The video stream is recorded
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at 29.97 FPS producing 960£540 images acquired from the DaVinci Robot
from Intuitive Surgical.

(a)

(b)

Figure 5.11: Experimental protocol for the quantitative validation: (a) CT-scanner with the
bench. The wire hooked to the lobe is pulled by the servomotor and maintained in position
while performing a new CT scan to provide a ground truth deformation. (b) An overview of
stereoscopic camera acquiring a video stream of the deformation.

The two procedures are repeated for each configuration, so a sufficiently
large data set is obtained giving the exact locations of the tumors and the cor-
responding stereo endoscopic views. A result of the three-dimensional recon-
struction from CT scans is illustrated in Fig. 5.12.

5.5.3 Model Comparison and Quantitative Results

In order to justify the employment of a heterogeneous biomechanical model, a
comparison with a homogeneous model is provided for three different tumor lo-
cations: near the point of traction (Tumor 1) and surrounded by vessels (Tumor
2 and Tumor 3). Additionally, a comparison with a mass-spring model is pro-



110 Chapter 5. xp

(a) (b)

(c) (d)

(e) (f )

Figure 5.12: CT-scans: the liver with the initial locations of the tumors in front (a) and top (b)
views and 3D reconstructed phantom from CT images at rest (c) and deformed in Configuration
1 (d), Configuration 2 (e) and Configuration 3 (f).

Config. 1 Config. 2 Config. 3

Elongation (mm) Force (N)

18.8 3.13 3.13 0.93

37.7 6.47 6.72 2.06

56.5 8.87 9.27 4.12

75.4 12.65 12.94 -

Table 5.4: Elongation and forces applied for each configuration.

vided. It should be emphasized that the comparison is done with the same data
and parameters and using the same initial registration.
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(a) (b)

(c) (d)

Figure 5.13: A comparison of homogeneous FEM model, heterogeneous FEM model and mass-
spring model for the Configuration 1 with: Tumor 1 (a), Tumor 2 (b), Tumor 3 (c), and the average
error (d).

Configuration 1

In this configuration the lobe is mainly pulled along x and z axes. The heteroge-
neous model gives the lowest errors when compared to the homogeneous and
the mass-spring models. The largest difference between the models can be no-
ticed in the case of Tumor 2 and Tumor 3 that are surrounded by vessels. Also,
for those two tumors we can notice that despite the increase of elongation the
error remains below 6 mm. The average error for Tumor 1 is 7.40 mm, 2.79 mm
for Tumor 2 and 5.46 mm for Tumor 3, which is significantly lower than errors
obtained from homogeneous and mass-spring models (cf. Fig. 5.13).
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(a) (b)

(c) (d)

Figure 5.14: A comparison of homogeneous FEM model, heterogeneous FEM model and mass-
spring model for the Configuration 2 with: Tumor 1 (a), Tumor 2 (b), Tumor 3 (c), and the average
error (d).

Configuration 2

In this case the liver lobe is subjected to an elongation along y and z axes. Sim-
ilarly to Configuration 1, the heterogeneous model gives the lowest errors when
compared to the homogeneous and the mass-spring models. However, in Tumor
1, the error in heterogeneous model remains important (9.26 mm) and remains
close to the results obtained using the other two models. Moreover, it increases
with the elongation. It should be noted that the z axis shows the highest uncer-
tainty in the 3D reconstruction which might partially explain the result, together
with the magnitude of the external applied force. The average error for Tumor 2
is 3.39 mm and Tumor 3 4.28 mm.
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(a) (b)

(c) (d)

Figure 5.15: A comparison of homogeneous FEM model, heterogeneous FEM model and mass-
spring model for the Configuration 3 with: Tumor 1 (a), Tumor 2 (b), Tumor 3 (c), and the average
error (d).

Configuration 3

The purpose of Configuration 3 is to pull one lobe of the liver in the direction of
the camera. Even if the average errors for the three tumors are low, (4.17 mm,
2.91 mm and 3.49 mm), we noticed a similarity between the three models which
can be explained by the fact that the deformation underwent by the liver is close
to a rigid transformation (mainly rotation). The vascular network effect on the
behaviour is therefore reduced.

Overall

The overall results show that the use of a heterogeneous model reduces the dis-
tance between the scanned tumor and the simulated one considerably. These
errors depend on the location of the tumor and the type of deformation.
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5.6 Imposing additional Constraints

Solving the minimization problem Fext = Fint does not necessarily yields to a
right mesh registration. Indeed, the biomechanical model can be forced to fit
noisy points generated from the three-dimensional motion recovery. This can
be highly damaging without imposing additional constraints in order to regular-
ize the image fitting term.

One way to address this problem is to define additional penalties. These
penalties have been widely studied and can be expressed as the form of M-
estimators Rousseeuw and Leroy (1987); Zhang and Zhang (1997), widely used in
computer vision, or using temporal consistency such as in Richa et al. (2010b) or
take advantage of the global smoothness Stoyanov (2012) for tracking the heart
surface.

We expose here two different types of penalties, that both offer a way to re-
duce the damage of noisy points on the registration: An image-based penalty
where the reliability of 3D reconstruction is directly introduced in the minimiza-
tion problem, and a mechanical constraint that defines a cut-off value to confine
the external forces and detect aberrant measurements.

5.6.1 Image-based Penalties

Our aim is to take into account the uncertainty of the image data to reduce the
registration error, so that non-rigid registration will be less prone to noisy 3D
features. The errors of the image data are generated from an incorrect 3D recon-
struction. Thus, we define the reprojection error measured from the triangula-
tion step as a measure of reliability. This error is computationally cheap, purely
geometric and computed as follows

d(x, x̂)2 +d(x0, x̂0)2 (5.1)

where d(§,§) represents Euclidean distance, x and x 0 are the matched points
on the left and right image respectively, x̂ and x̂ 0 are the measured points lying
close to x and x 0 and satisfying the equation ÷x̂0F x̂ = 0.

We take advantage of this measure to associate each reconstructed 3D point
with a reliability q . Reliability values are normalized so that q = 1 for the most
reliable 3D point and q = 0 for the least reliable 3D point in y point set. We
denote q the 3£n vector formed of all q values, assuming the quality is isotropic
at each point. Thus, external forces are expressed as follows:

ft(x) = L> ·k ·q ·L · (x°x0) (5.2)

Note that our method is built in a way to easily incorporate other measures
of uncertainty. Indeed, since the recovery of the points implies different steps,
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several measures of uncertainty can be considered, such as the determinant of
the Hessian matrix from SURF detector, the Euclidean distances of the matched
SURF descriptors or the eigenvalues of the covariance matrix on the features.

5.6.2 Mechanical Penalties

The external stretching force being purely virtual, we propose to define a phys-
ical magnitude that will limit the external force amplitude. Moreover, since the
noise is mainly due to a bad depth estimation, the stiffness of the detected out-
lier is cancelled instead of simply deleted. In the meantime, this constraint also
ensures that the energy minimization remains the same at each time step by pre-
venting the mesh from suddenly loosing features which will locally disturb the
model. Furthermore, the physical penalties are expressed for each control point
ci as follows:

k ·kyi °y0
ik<∏ (5.3)

where yi and y0
i are vectors representing the position of the control points

ci , respectively at any time t and time t = 0, where the subscript i denotes the
control points. The value ∏ is the maximal force amplitude.

This penalty fits within our framework and can be added for each control
point without affecting the real-time performance. Combining this penalty with
the optical flow temporal constraints and the boundary conditions results in a
system that is sufficiently constrained to yield good results.

5.6.3 Evaluation

We estimate the registration error by calculating Euclidean distance km°pk be-
tween the degree of freedom m of the mechanical model and the tracked point
p in the endoscopic images. RMS error is measured at each frame on two dif-
ferent views of the liver showing respectively the left and right lobe and plotted
in Figure 5.16 where we conduct a comparison with tracking without additional
constraints.

We can notice that the mechanical penalty reduces considerably the registra-
tion. The calculated average RMS error is 2.48 mm for the left lobe and 4.8 mm
for the right lobe, way below tracking using image-based penalties and without
additional constraints.

5.7 On the importance of Young’s modulus

The main idea behind the method presented in the chapter 4 is to use features
extracted from laparoscopic image as external loads to drive a biomechanical
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Figure 5.16: A comparative study between our tracking and related works conducted on in-vivo
human liver with (a) left lobe and (b) right lobe. The registration error using mechanical penal-
ties is considerably reduced. We can also notice that the errors are very close until the frame 100
where outliers appear and disturb the registration.

model. These features are considered as external constraints and can be ex-
pressed as forces, such as in Eq. 5.2 or as displacement. Each expression in-
volves a different modeling of the physical model. If we consider u 2R3 a tracked
point estimated from images and v 2R3 the corresponding point mapped in the
biomechencial model, expressing external constraints as displacement means
that we impose to the point v to have the exact position of the point u. Thus,
the material stiffness is less important. However, when we express the external
loads as forces, the model plays a regularization role where the point v will not
exactly lie on the point u when reaching an equilibrium. At this time, the mate-
rial stiffness plays an important role in the final solution.

We propose in the following to experimentally demonstrate the role of
Young’s Modulus when considering each expression of external loads, by con-
ducting simulated tests for each scenario.

We performed the study on a laparoscopic scene that represents the right and
left lobes separated in the anterior side by the falciform ligament (Fig. 5.17). We
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(a) (b)

Figure 5.17: Laparoscopic view of the liver showing (a) the contours of lobes, falciform ligament
and surrounding fat, (b) superimposed FE meshes generated from pre-operative CT scans.

used the same model described in Chapter 4 for the parenchyma with Young’s
modulus set to Epar = 27 kPa. The ligaments are simulated with FEM using the
corotational formulation with Young’s modulus of Eli g = 150 kPa (fixed nodes
can also be considered). The falciform ligament is difficult to extract from
the pre-operative images, however, recent work Plantefeve et al. (2014) shows
promising results in the transfer of the ligament positions using atlas-based
techniques. Thus, we assume that the ligament position can be determined. The
underlying fat supporting the liver is also modeled to simulate the surrounding
connective tissues.

We consider two scenarios: first, the liver is deformed with a surgical instru-
ment with known positions. Second, a force similar to that imposed by the in-
strument is applied to the surface of the liver. The important difference between
these experiments is in the type of load that creates the deformation: in the first
case, a displacement is imposed on a part of the mesh (in the region of the liver
that is being grasped), whereas in the second case a force (an effort) is imposed
on the surface of the model.

Pneumoperitoneum:
Pressure

(a)

Grasping:
External Forces

(b)

Figure 5.18: Simulation scenarios: (a) simulation of pneumoperitoneum by the application of a
pressure on the liver surface, (b) the liver is deformed with a surgical instrument by a prescribed
displacement/force.
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For each scenario we under- and over-estimate the Young’s modulus of the
parenchyma Epar by the factor of two w.r.t. the reference simulation. In both
cases, the goal is to obtain the displacement field of the nodes of the liver
model. The error evaluation of the displacement is done after the equilibrium
is achieved using RMSE error.
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Figure 5.19: Evaluation of the RMS error (in mm) for prescribed displacement and prescribed
forces (traction and pressure), compared to our reference simulation.

The grasping is simulated by prescribing a displacement on the lobe of the
liver with a maximum displacement of 75 mm. To ensure that both prescribed
displacements/efforts tests result in a similar motion. The prescribed force value
is computed from the prescribed displacements scenario. We measure the aver-
age elastic force of the displaced nodes of the liver after equilibrium. In our ex-
periment, a traction force of 15.42 N has to be applied on the nodes to be equiva-
lent to the prescribed displacements. It should be emphasized that the direction
of the force vector is chosen to be the same as the one of the displacement vector
and the displacements and efforts are prescribed on the same nodes.

An additional scenario similar to the second one is considered by applying
a pressure on the surface of the model to simulate pneumoperitoneum. An av-
erage pressure of 12 mmHg, usually chosen by the surgeon during abdominal
laparoscopic surgery Bano et al. (2012), is applied.

The results presented in Fig. 5.19 show two specific scenarios: simulations
where the deformation is induced by prescribing a displacement and those
where applied forces are prescribed, each of them having their own require-
ments.

Considering prescribed displacements, our results show that a large differ-
ence in the elasticity parameter of the liver has a relatively small impact on the
error. As for the prescribed forces, the influence of variation in Young’s modu-
lus of the parenchyma is much more significant than in the case of prescribed
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displacements. The results emphasize the importance of using patient-specific
data in such scenarios.

5.8 Conclusion

We presented in this chapter several experiments conducted on computer-
generated data, human liver data and phantom data. We demonstrate the im-
pact of modeling of the vascular network through simulations. A complete ex-
perimental bench capable to reproduce as closely as possible a typical scenario
encountered during liver tumor resection was designed, where we calculate tu-
mor position errors below the safety margins actually preserved during inter-
ventions. Promising results were also obtained using in-vivo human liver data in
terms of surface registration and a computation time compatible with the real-
time visual feedback.

We then proposed and evaluated the imposition of additional constraints
to the minimization, in order to bring the visual tracking more robustness and
make the non-rigid registration less prone to outliers. We finally conducted a
sensitivty study to evaluate the importance of Young’s Modulus, depending on
the expression of external loads.
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GENERAL CONCLUSION

6.1 Conclusion

Augmented Reality has the potential to offer significant improvements to the
medical practice in terms of decision support and navigation. In the domain
of minimally invasive hepatic surgery, technical improvements such as visual
feedback and localisation of risky areas aim to make the surgical more intuitive
for surgeons and the procedure safer for patients.

The work presented in this thesis addressed several important limitations
that currently hinder the use of Augmented Reality in clinical routine of min-
imally invasive procedures. We particularly focus on three-dimensional local-
ization and visualization of internal structures, such as blood vessels and tu-
mors. To this end, we have developed an image-guided biomechanical model
that is able to capture complex deformations underwent by the liver during
surgery. The deformation model is guided by both internal forces (associated
to a biomechanically validated model of the liver) and external forces related
to three-dimensional points (reconstructed from stereo images) which incorpo-
rate a quality measure of their reliability. Such characteristics make our model
able to capture both the organ surface and inner structures motion while being
parameterized with textbook Young’s modulus and Poisson’s ratio values.

Large elastic deformations are efficiently handled, thanks to the use of a het-
erogeneous model capable of faithfully translating liver behaviour. This model
that considers the vascular network as the main source of heterogeneity achieves
real-time performance, while ensuring accuracy and stability.

Tracking the liver surface imposes several challenges from a computer vision
point of view. A long-term visual recovery method based on surface reconstruc-
tion using moving-least squares and temporal tracking based on a cluster-based
filter has been proposed for estimating liver motion. By integrating the physical
model to visual tracking, tracking robustness facing disturbances and occlusions
is significantly improved.
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Promising results were obtained through in-vivo qualitative assessment on a
human liver and quantitative validation on a phantom liver in terms of surface
registration and localisation of internal tumors. We reported an estimation of the
position below the actual clinical margin and a computation time compatible
with the real-time visual feedback.

6.2 Perspectives

In order to design a full Augmented Reality system for a practical use in real sur-
gical scenarios, some issues require a special attention.

From a simulation point of view, we believe that the use of a real-time hetero-
geneous biomechanical model permits to accurately reproduce the behaviour
of the liver undergoing large deformations. However, we are aware that a bet-
ter definition of the boundary conditions is needed to capture its motion with
an increased accuracy. We consider addressing this issue already in the initial
registration phase. Finally, a correct estimation of the mechanical properties is
another key aspect that is to be improved, as these parameters are known to
vary significantly. We believe that integrating the elastography data recorded
pre-operatively could substantially increase the accuracy of the model. How-
ever, a deeper sensitivity study concerning the importance of these parameters
has to be conducted, where recent works Miller and Lu (2013); Bosman et al.
(2014) exhibit that depending on the simulation scenario, patient specific tissue
parameters may not be necessary.

From a computer vision point of view, several disturbances may occur during
the tracking stage due to the outliers. Actual clinical conditions where smoke,
bleeding, or other surgical events may hinder the tracking. One way to reduce
the impact of the outliers, is the labelling of the intra-abdominal scene by seg-
menting the liver, the surrounding tissues and the surgical tools to isolate the
liver surface.

Another limitation concerning the practical implementation of the method
in the clinical environment is given by the initial registration, which is done
manually. As stated before, substantial improvement of this part of the work flow
is beyond the scope of this work since the solution is quite complex as the un-
derlying problem is ill-posed due to the difficult extraction of salient geometrical
and anatomical landmarks from the patient data. Promising preliminary results
were obtained using anatomical landmarks and an atlas-based model Plantefeve
et al. (2014).

More validation is obviously required though it is worth mentioning that val-
idations implying actual organs are seldom reported in previous works. A quan-
titative evaluation of the impact of the initial registration on the tumor position
has to be conducted, and several cases have to be studied in order to better as-
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sess the method.
As a longer-term perspective, we would like to explore and answer two es-

sential questions: The first one is "How to define the role of surgeons in the
framework?". We strongly believe that it is necessary to fully involve surgeons as
essential actors in the framework. In order to answer this question, it is impor-
tant to first define a protocol to extract the real needs of surgeons. The second
question concerns computer vision, "Is computer vision the solution when deal-
ing with surgical data ?" We believe that computer vision at its own can hardly
reach the level of robustness required for medical routines. More precisely, im-
ages acquired from the laparoscopic camera are still very challenging to process
and would deserve to be enriched, either thanks to optical hardware modifica-
tions, where in the future more advanced camera capable of direct 3D recon-
struction can find their place in laparoscopy, or changes in tissue texture with
additional natural landmarks. Moreover, the imaging modalities such as MRI,
CT, US can also be considered in the operating room, in order to provide a cor-
rect initial 3D model that will simplify the initial alignment. These two points are
to be addressed jointly, where surgeons can be a solution to validate and control
computer vision algorithms to increase robustness of visual tracking and recon-
struction.
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A.1 Time Integration

In order to simulate dynamic deformable solids, we need to know the time de-
pendent world coordinates x(m, t ) of all points in M . Given x(m, t ) we can sub-
sequently display the configurations x(0),x(¢t ), .. describing the motion and
deformation of the object. Here¢t is a fixed time step of the simulation and x(t )
represents the entire vector field at time t . The unknown vector fields x(t ) are
not given directly but implicitly as the solution of a differential equation, namely
Newton’s second law of motion of the form

ẍ = F (ẋ,x, t ) (A.1)

where ẍ and ẋ are the second and first time derivatives of x, respectively and
F () a general function given by the physical model of the deformable object. In
order to find the solution x(t ), this second order differential equation is often
rewritten as a coupled set of two first order equations

(
ẋ = v

v̇ = F (v,x, t )
(A.2)

where the new quantity v represents ẋ. A discrete set of values x(0), x(¢t ),
x(2¢t ), .. of the unknown vector field x which is needed for the animation can
now be obtained by numerically solving (i.e. integrating) this system of equa-
tion.

There exist a number of integration schemes, (see (Hauth et al., 2003) for
instance). We only describe here the forward euler (explicit)and backward euler
(implicit) integration scheme.

Explicit scheme

Explicit scheme or forward Euler, is the simplest integration scheme. The time
derivatives are replaced by finite differences

(
v̇(t ) = [v(t +¢t )°v(t )]/¢t

ẋ(t ) = [x(t +¢t )°x(t )]/¢t
(A.3)

Substituting these into the above equations and solving for the quantities at
the next time step t +¢t yields

(
x(t +¢t ) = x(t )+¢tv(t )

v(t +¢t ) = v(t )+¢tF (v(t ),x(t ), t )
(A.4)

One advantage of explicit methods is that they are easy to implement. how-
ever they are stable only only if the time step¢t is smaller than a stability thresh-
old. This threshold can be very small for stiff objects, and if violated can lead the
simulation to explode.
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Implicit scheme

Implicit scheme (or backward Euler) can counteract the stability issue of the ex-
plicit integration by adding quantities at the next time step t +¢t on both sides
of the equation

(
x(t +¢t ) = x(t )+¢tv(t +¢t )

v(t +¢t ) = v(t )+¢tF (v(t +¢t ),x(t +¢t ), t )
(A.5)

The implicit Euler scheme is stable for arbitrarily large time steps ¢t . This
gain comes with the price of having to solve an algebraic system of equations at
each time step.
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A.2 Linear Elasticity

When linearized, the relationship for an element e connecting ne nodes can sim-
ply be expressed as

fe = Ke ue (A.6)

where fe 2R3ne contains the ne nodal forces and ue 2R3ne the ne nodal displace-
ments of an element. The matrix Ke 2 R3ne£3ne is called the stiffness matrix of
the element. Because elastic forces coming from adjacent elements add up at
a node, a stiffness matrix K 2 R3n£3n for an entire mesh with n nodes can be
formed by assembling the element’s stiffness matrices

K =
X

e
Ke (A.7)

In the linear case, if we let u = x°x0 where the vectors x and x0 contain, re-
spectively, the actual and the rest positions of the nodes. The equation of motion
in the dynamic case can be written

Mü+Du̇+Ku = fext (A.8)

where M 2 Rn£n the mass matrix, D 2 Rn£n the damping matrix and fext 2
Rn externally applied forces. If we consider that mass and damping effects are
concentrated at the nodes (technique called mass lumping) then M and D are
diagonal matrices. In this case, M just contains the point masses of the nodes
of the mesh on its diagonal. The damping matrix D is often defined as a linear
combination of the stiffness matrix K and the mass matrix M, and is referred to
as Raleigh damping (D =ÆM+ØK).
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A.3 Mass-spring System

Mass-springs System is a very intuitive deformable model Miller (1988). In this
model, the deformation is approximated by a set of point masses connected by
massless springs. Instead of going through a discretization stage, the model of-
fers directly a discrete model which only require the solution of a system of cou-
pled ordinary differential equations.

Springs are commonly modeled as being linearly elastic; the force acting on
mass i , generated by a spring connecting i and j together is

fi = ks(|xi j |° li j )
xi j

|xi j |
(A.9)

where xi j is the difference between the two masses’ position vectors (x j °xi ), ks

is the spring’s stiffness and li j is its rest length.
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A.4 Sofa: An open source framework for medical simulation

SOFA1 is an Open Source framework primarily targeted at real-time simulation,
with an emphasis on medical simulation. The development of SOFA started 7
years ago, from a common vision of several teams at INRIA and of the CIMIT
simulation group Allard et al. (2007). In recent years, SOFA framework has be-
gun to be renown worldwide as an open-source libraries of reference in the field
of interactive (bio)mechanical simulation. SOFA facilitates collaborations be-
tween specialists from various domains, by decomposing complex simulators
into components designed independently, and providing a simple way of build-
ing simulation prototypes. Each component encapsulates one of the aspects of
a simulation, such as the degrees of freedom, the forces and constraints, the dif-
ferential equations, the main loop algorithms, the linear solvers, the collision
detection algorithms or the interaction devices... The simulated objects can be
represented using several models, each of them optimized for a different task
such as the computation of internal forces, collision detection, haptics or visual
display as described in Faure et al. (2012).

Figure A.1: A simulated Liverin SOFA. Left: The liver displayed in its environment. Right: Three
representations are used for the liver: one master model for the internal deformable mechanics,
one for the collisions, and one for the visualization. Mappings (black arrows) are used to propa-
gate positions (X) and velocities (V) from master to slaves, while forces (F) are propagated in the
opposite direction. From Faure et al. (2012).

1www.sofa-framework.org
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A.5 Additional material

• Single View Augmentation of 3D Elastic Objects http://youtu.be/

dMmpUoFbBDo

• Accurate Tracking of Hepatic Tumors for Augmented Reality in Robotic As-
sisted Surgery: http://youtu.be/dMmpUoFbBDo

http://youtu.be/dMmpUoFbBDo
http://youtu.be/dMmpUoFbBDo
http://youtu.be/dMmpUoFbBDo
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