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Résumé 2
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Introduction

In the last years several problems been studied at the interface between statistical physics and
computer science. The reason being that often these problems can be reinterpreted in the lan-
guage of physics of disordered systems, where a big number of variables interacts through local
fields dependent on the state of the surrounding neighborhood. The connection between the
two domains allows to address various interdisciplinary applications using theories developed
in statistical physics, in particular in the context of spin-glass theory. One of the most popular
methods developed in this field being the so called cavity method. Its popularity is due to the
fact that it allows a natural algorithmic formulation that has been proven successful to solve
many problems of combinatorial optimisation or constrained-satisfaction.
Among the numerous applications of this type the optimal routing on communication networks
is the subject of the first part of the thesis. In this case the objective is to find the optimal
way to distribute traffic along the network such that path length and traffic congestion are
both minimized, given a set of non-local constraints that the system has to satisfy. Routing
communication paths through optimal trajectories would allow the achievement of high quality
of transmission because an efficient usage of the resources allows to accommodate a higher
number of clients, avoiding at the same time the waste of bandwidth. Moreover, path length
minimization implies faster data transmission whereas the congestion minimization make the
networks more resilient to failures. To achieve this goal we will exploit the cavity method to
formulate efficient algorithms of type message-passing and thus solve the problem through its
numerical implementation.
The first routing application that we study is the Node-disjoint path problem, which is char-
acterized by the hard constraint that communications cannot overlap on nodes of the network.
For a given number of communications we will determine whether a solutions exists or the
system is frustrated, namely the situation where the constraints cannot all be satisfied simul-
taneously and there will be overlaps at certain nodes.
Next we study the Edge-disjoint path problem, where the previous hard constraint is relaxed:
overlaps are allowed at nodes but not along edges. This increases the number of possible path
configurations, thus the complexity of the problem. The principle used to solve this problem
is to map it into another well known combinatorial optimisation problem, namely the maxi-
mum weighted matching on graphs. The objective will be to accommodate the largest number
of communications. The results obtained through our algorithm are compared with the ones
obtained through other types of algorithms representing the state-of-the-art and proposed by
engineers and computer scientists on several benchmark instances. Compared to these we have
obtained improved performances with respect to the number of accommodated paths and our
approach also minimizes the total path length. Remarkably we found good performances also
in the case of loopy graphs, where the hypothesis behind the cavity method are usually not
satisfied. This achievement has been made possible by implementing a numerical variant to
the standard message-passing algorithm which forces the message-passing equations to reach
convergence, though towards suboptimal solutions.
We conclude the first part of the thesis by considering the final generalization of the problem:
overlap are now allowed but minimized, along with total path length. The goal will be to
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determine the Nash equilibrium of the problem, i.e. the stable situation where none of the
communications can improve its situation by modifying its path, given the others remain the
same. The absence of traffic constraints leads to an exponential complexity in the number of
communications, thus preventing a direct numerical implementation. Therefore we will address
the problem by considering a mean-field model where each communication makes its decision
based on its mean field estimation of the neighborhood configuration.
Next we will address the dynamic version of the cavity method, a model that can be used to
study dynamical processes on networks. This has only been recently developed and thus is far
from being completely mature to be implemented numerically. The major problem is given by
the exponential complexity that characterizes non-Markovian processes: each cavity message
is a function of a time trajectory and in general there is an exponential number of possible
ones. This is the main reason why its implementation has been limited to either unidirectional
dynamics or to processes that are in a stationary state, so that certain types of approximations
can be applied to lower the complexity. In this part of the thesis we will describe a method
that we have introduced in order to lower the complexity from exponential to polynomial but
without making any hypothesis about the reversibility of the dynamic nor on the network di-
rectionality. The main idea is to borrow the formalism developed in quantum mechanics to
describe a many-particle quantum state in the form of a Matrix Product State representation
and represent the dynamic cavity message using a similar decomposition; thus allowing an ap-
proximation of the equation with lower complexity. We will test the performance of this model
using Glauber dynamics with disorder and the majority rule on random regular graphs.
Another topic that has attracted much interest in statistical physics of dynamic processes is
the random walk on networks. The theory has been developed since many years in the case the
underneath topology is a d-dimensional lattice. On the contrary the case of random networks
has been tackled only in the past decade, leaving many questions still open for answers. In par-
ticular, with the fast development of communication networks such as the internet, the random
walk is being intensively used in all its variants for instance to route packets of data along the
network. Revealing and capturing some aspects related to this stochastic process will be the
objective of the second part of the thesis. In particular we will study the average number of
distinct sites visited by a random walker on a random topology, with the goal of characterizing
how, in the long-time limit, its linear behavior depends on the topology. To address this issue
we will reformulate the problem using an auxiliary system made of random variables jointly
distributed through a multivariate Gaussian distribution, their variances being directly related
to our quantity of interest. Hence we will propose a set of cavity equations to calculate these
variances for different graph topologies and thus to iteratively access the information about the
average number of distinct visited sites.
Our discussion will proceed by addressing the problem of characterizing rare events associated
to random walks on networks. This will be done by using large deviations theory with the idea
of transforming rare events under the standard unbiased walk to typical ones under a deformed
transition matrix. A study of the spectral properties of the latter will be performed, in particu-
lar to analyze the rare events statistics corresponding to the degree of the nodes visited during
the random walk. The results of numerical simulations on random graphs have highlighted the
presence of two dynamic phase transitions, thus we will conclude this part be analyzing the
properties of these.
As a last chapter we will outline a work that is not linked to either the previous topics but that
nonetheless has given new insights in the context of out-of-equilibrium physics. In particular we
will study a system made of two mesoscopic particles surrounded by a thermal bath. This study
allowed us to unveil the properties of a bath-mediated potential acting on the two mesoscopic
particles arising for the presence of the bath.
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Résumé

Différents problèmes à l’interface entre physique statistique et informatique théorique ont été
étudiés ces dernières années. Il s’avère que ces problèmes peuvent se reformuler dans le lan-
guage de la physique de systèmes désordonnés où un grand nombre de variables interagissent
localement. Cette connection entre les deux domaines offre la possibilité de les analyser en
s’inspirant de théories avancées de la physique statistique, notamment celles développées dans
le contexte des verres de spin comme le méthode de la cavité. En particulier cela donne lieu à des
formulations algorithmiques qui se sont révélées très efficaces dans la résolution des problèmes
d’optimisation sur réseaux.
Parmi les applications de ce type, le problème de routage optimal des chemins sur un réseau
de communication est le sujet de la premiere partie de cette thèse. Il s’agit de distribuer de
manière efficace le traffic sur un réseau alors que le système est sujet à des contraintes non lo-
cales. L’objectif est d’améliorer la qualité de transmission étant donné que le nombre de clients
desservis par un routage optimal sera plus élevé, tout en évitant le gaspillage de bande. Aussi,
en minimisant la longueur des chemins on pourrait réduire le délai de transmission et abaisser
l’impact d’échec d’une partie du réseau en distribuant le trafic sur plusieures jonctions. Pour
atteindre ce but on utilisera le méthode de la cavité qui permettra de formuler des algorithmes
efficaces dans la résolution numérique du problème.
D’abord on considérera un problème où les contraintes sont strictes, c’est-à-dire que les chemins
ne peuvent pas être en collision sur une même jonction. En fonction du nombre de chemins,
la question que l’on abordera sera : existe-t-il une solution ou le système est-il dans une situ-
ation de frustration ? C’est-à-dire un scénario où il n’est pas possible de respecter toutes les
contraintes et où les collisions sont inévitables.
Ensuite on relaxera les contraintes, en autorisant les collisions sur la même jonction mais pas
sur le même lien entre deux jonctions. Cela conduira à augmenter l’espace des configurations
possibles des chemins, donc la complexité du problème. Le principe utilisé pour apporter
une solution à cette deuxième application sera de la reformuler comme un autre problème
d’optimisation combinatoire, notamment le problème de matching sur réseau. La question que
l’on abordera dans ce deuxième cas sera : combien de chemins peut-on ajouter avant de créer
une situation de frustration ?
Les résultats obtenus avec notre algorithme ont été comparés avec ceux provenant d’autres
types d’algorithmes état de l’art développés par des ingénieurs et des informaticiens à partir de
benchmarks disponibles dans la littérature. Nous avons obtenu des performances supérieures à
celles de ces derniers en ce qui concerne la quantité de chemins desservis, en minimisant aussi
leur longueur.
Enfin on introduira le problème plus general du routage, c’est-à-dire que les collisions seront
permises mais l’objectif est de les minimiser, de même que la longueur des chemins. La question
que l’on abordera sera de trouver un routage qui correspond à l’Équilibre de Nash: le scénario
stable où chaque chemin ne peut améliorer sa condition en modifiant sa trajectoire si les autres
restent fixes.
L’absence des contraintes de collision impliquant une complexité exponentielle dans le nombre
des chemins, il s’agira donc d’adopter une formulation de champs moyen pour pouvoir ap-
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procher ce problème.
Dans en deuxième temps on considérera des problèmes de dynamique sur réseaux en utilisant
la méthode de la cavité. Celle-ci a été récemment proposée dans sa version dynamique, no-
tamment pour résoudre des problèmes d’inférence dynamique d’épidémies. La complexité du
problème est de nouveau exponentielle, mais cette fois par rapport à la variable temps, car le
nombre de trajectoires possibles augmente très vite avec la durée du processus. Pour cette rai-
son les problèmes analysés jusqu’à présent avaient une dynamique unidirectionnelle ou étaient
considérés dans le cas stationnaire. Il était nécessaire de développer la théorie de manière à
traiter de problèmes plus généraux. Nous avons donc formulé une approximation des equa-
tions de cavité en utilisant la théorie récemment développée des Matrix Product States (MPS),
employée en physique statistique quantique, pour obtenir des équations approchées avec com-
plexité polynomiale. L’efficacité des MPS dans la description des chaines de spin laisse bien
espérer le succès de ce programme dans notre cas. On donnera des exemples qui montreront la
qualité de cette approximation sur une topologie régulière, en particulier on simulera des proces-
sus de type dynamique de Glauber sur des systèmes désordonnés et du type règle de la majorité.

Un autre domaine de recherche, étudié depuis longtemps en physique statistique, est la
marche aléatoire. Plusieurs résultats ont été produits dans les cas d’une topologie régulière
en d dimensions. Cette théorie n’est cependant pas complètement mature dans les cas où la
promenade est effectuée sur un réseau aléatoire. En revanche c’est dans ce cas là que l’on trouve
le plus d’applications, notamment dans le contexte des réseaux de communication comme in-
ternet, où les données d’information sont souvant transmises par des marches aléatoires. Mieux
comprendre ce problème est l’objectif de la deuxième partie de cette thèse.
Dans un premier temps on abordera la question de savoir combien de sites différents la marche
visite-t-elle en moyenne dans son chemin. Comprendre comment cette quantité change avec
la topologie aléatoire du réseau est l’objectif de cette partie de thèse. Pour atteindre ce but
on reformulera le problème dans un système auxiliaire où les variables suivent une distribution
Gaussienne multi-dimensionnelle. Cela permettra de lier les variances des ces variables auxili-
aires avec notre quantité d’intérêt. La méthode de cavité nous permettra de les évaluer selon
la topologie du réseau et donc de résoudre le problème.
Ensuite on étudiera la statistique des événements rares des quantités associées à la marche
aléatoire sur réseau. Pour cela on utilisera la théorie des grandes déviations qui nous permettra
de transformer les événements rares selon la matrice de transition standard en événements typ-
iques suivant une matrice de transition modifiée. On étudiera donc les propriétés spectrales de
cette matrice déformée pour analyser notamment la statistique de degré des sites visités dans
une marche aléatoire. Les résultats des simulations numériques nous ont montré l’existence de
deux types de transition de phase dynamique. On terminera donc par l’analyse des propriétés
associées à ces deux transitions.
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Contents outline

The organization of this thesis is the following.
We will begin by describing in Chapter 1 the cavity method and deriving the corresponding
cavity equations in the finite temperature case, as well as the zero temperature limit used to
describe optimisation problems. In the first part we will address the static case, whereas in
the second one the dynamic version of the problem. The outcomes of this analysis will be
extensively used throughout the rest of the thesis.
In Chapter 2 we study three different applications of the static cavity method in the zero tem-
perature limit. These will concern variants of routing optimisation on networks starting with
the Node-disjoint path problem, followed by Edge-disjoint path problem and eventually the
Nash equilibrium version will be outlined.
Chapter 3 is devoted to the description of the Matrix Product State representation of the dy-
namic cavity equations. After a general introduction of its usage in the context of quantum
mechanics, we will discuss its functioning, its validity and how it improves the state-of-the-art
approximations of the dynamic message-passing. Results of numerical simulations of disordered
Glauber dynamics and majority rule on random regular graphs will be shown.
We turn to study the properties of random walks on networks in Chapter 4, which starts with
a general introduction of the formalism of this stochastic process in the case of random graphs.
The rest of the chapter is divided in two parts. The methodology used to characterize the
average number of distinct sites visited during a random walk on random networks is presented
in the first one. We will discuss how this problem can be solved by mapping it into a system of
jointly distributed random variables following a multivariate Gaussian distribution. The rare
event statistics of random walks on networks will be the main topic of the second part of the
chapter. This includes the application of large deviation theory that allows to formalize this
problem in terms of a deformed transition matrix. The analysis of its spectral properties along
with the treatment of the two dynamic phase transitions unveiled by the numerical simulations
will conclude this chapter.
The final Chapter 5 treats the independent topic of an out-of-equilibrium system of two meso-
scopic particles surrounded by a thermal bath. The model description along with two solvable
examples will be given. The outcomes of these examples will support the validity of a relation
we claim to exist between the friction kernel of memory and the bath-mediated potential acting
on the two particles arising for the presence of the bath.
Three appendices will complete the manuscript with additional information and details. Ap-
pendix 1 describes the reinforcement technique used to force convergence of the message-passing
equations, a tool used in section 2.2.1. Appendix 2 is devoted to the an extensive description of
the operations performed on tensors supporting section 3.2. It is useful in particular for writing
the code of the algorithm for numerical implementation. A detailed description of the various
random network topologies used in the main text will be given in appendix 3.
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Chapter 1

The cavity method

In the last decade several problems of combinatorial optimisation and constrained satisfaction
have been successfully modeled by statistical physicists using an iterative method introduced for
the first time in the context of spin glasses [1] which goes under the name of cavity method. The
original method has then been further developed to model the zero-temperature case [2] and to
deal with the hard regime of metastable states [3, 4]. This method enables the computation of
marginal probabilities of interacting variables lying on graphs, using only local computations.
It is exact on trees and represents a valid approximation for locally tree-like structures as is
the case of large sparse random networks. This method has been shown [5, 6] to be equivalent
to the message-passing algorithm used in computer science called Belief Propagation [7]. Its
distributive character makes it suited to be implemented numerically and allows the treatment
of single instances of graphs.
In the following we will describe in more details how it works and under what conditions it
is accurate. As a first analysis in section 1.1 we will address the static case starting at finite
temperatures than showing how it adapts to treat the zero-temperature limit; the latter case
being the one of interest when studying optimisation problems such as the ones studied in
chapter 2.
In a second moment, in section 1.2, we will modify the general cavity formalism introduced
to model the static case to study dynamic processes on networks. This reformulation of the
method has been only recently introduced and thus requires further studies in order to develop
an efficient algorithmic implementation and to asses its performance. This will be the subject
of chapter 3.

1.1 Static case

The static version of the cavity method is used to describe the probability distribution of
a system where the variables lie on a graph and are not time dependent. One exploits the
graphical model representation of the system to derive information about its statical properties.
Examples are marginal probabilities of a subset of variables, averages of observables or optimal
configurations in the optimisation version of the problem. To achieve this goal, given a set of
initial conditions, one has to iterate the self-consistent cavity equations until convergence; if
this is reached, the converged messages can then be collected and suitably used to derive these
quantities of interest.
The general model is specified by a bipartite graph G = (V , E ,F) characterized by V = |V|
nodes (or variable nodes), E = |E| edges and F = |F| interaction terms (or function nodes).
We denote the neighborhood of a variable node i ∈ V as ∂i and of a function node a ∈ F as ∂a.
Given a variable σi lying on a node i ∈ V and an interaction term ψa(σ∂a), which is function
of a set of variables σ∂a = {σa1, . . . , σa|∂a|} and lies on a ∈ F , an edge (i, a) exists in E if ψa
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involves the variable σi, i.e. if σi ∈ σ∂a. It is often convenient to represent it using a factor
graph diagram as in figure 1.1 where is depicted an example of a graph with three interaction
terms and four node variables.

ji

ψa

Figure 1.1: Factor graph. Squares represent function nodes a ∈ F , circles represent variable
nodes i ∈ V. In this example the central interaction ψa involves all the four variable nodes,
wheres the other two interactions are functions of only two variables.

In general the graph could be either directed or undirected depending on how one defines
edges and interaction terms. In this work we focus on the undirected graphs, however one can
apply all the following considerations to directed topologies as well.
The joint probability of a vector of variables σ̄ = (σ1, . . . , σV ) lying on a graph is in general
written as:

P (σ̄) =
1

Z

�

a∈F
ψa(σ∂a) (1.1)

where the factors ψa represent local interaction terms introduced above. The simplest exam-
ple is the pairwise model where variables interact pair-by-pair and ψa(σ∂a) can be written as
ψij(σi, σj).
The peculiarity of the expression (1.1) lies on its factorized character. This features allows
to treat complex global functions using only local information involving the different function
nodes. Starting from this consideration, one can then naturally set up an algorithmic routine to
exploit numerically this property; a general overview of different algorithms applied on factor
graphs can be found in [8].
The graphical structure allows in particular to efficiently derive the marginal probability of a
variable node i ∈ V. The marginal probability of a variable σi lying on i ∈ V is defined as:

Pi(σi) =
�

σ̄\i
P (σ̄) (1.2)

where σ̄ \ i = {σj : j ∈ V \ {i} } is the whole set of variable nodes excluding i. The general
idea behind the cavity method is to derive an expression for (1.2) which is exact on trees and is
a valid approximation for locally tree-like structures; we now describe how the cavity method
does this.
Suppose for a moment that our graph G is a tree, i.e. there are no loops. If one removes from
it a node i, and the corresponding edges (ia) where a ∈ ∂i, then the original tree is modified

into a graph Gi which is made of |∂i| independent subtrees T (i)
a rooted at a ∈ ∂i. Focusing on

one such subtree T
(i)
a , suppose now that only the edge (ai) is reintroduced. In figure 1.2(b)

we represent this situation. We can define as m̂a→i(σi) the marginal probability of σi in this
subtree. Using this definition one can write the marginal probability of σi in the original tree
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as:

Pi(σi) =
1

Zi

�

a∈∂i
m̂a→i(σi) (1.3)

where Zi is a normalization factor.

Ti(a)

i a

(a)

a i

Ta(i)

(b)

Figure 1.2: Cavity graphs. Squares represent function nodes a, circles represent variable nodes
i. The two subtrees generated by the cavity removal are depicted.

For the moment we only gave a definition of m̂a→i(σi), but now we want to formally char-
acterize it as a function of the interaction terms.
Suppose now to repeat a similar graph modification where this time we only remove the edge
(ia) and focus on the subtree T

(a)
i rooted at i of the original graph G. In figure 1.2(a) we give a

pictorial representation of this sub-graph. In a similar way we define as mi→a(σi) the marginal
probability of σi in this subtree where (ia) is not present. From these two definitions we can

notice that: mi→a(σi) in T
(a)
i depends only on all the other function nodes different from a;

m̂a→i(σi) in T
(i)
a depends on the function node ψa(σ̄∂a) and on the cavity marginals mj→a(σj)

of the neighboring variable nodes in T
(i)
a . Taking these facts into account finally we can write

the set of two self-consistent equations:

m
(t)
i→a(σi) =

1

Zi→a

�

b∈∂i\a
m̂

(t)
b→i(σi) (1.4)

m̂
(t+1)
a→i (σi) =

1

Za→i

�

σ∂a\i

ψa(σ∂a)
�

j∈∂a\i
m

(t)
j→a(σj) (1.5)

where we introduced a superscript (t) denoting the iteration time step. We call these equations
cavity or message-passing equations and the quantities mi→a(σi) and m̂a→i(σi) cavity messages.
These equations can be iterated numerically until convergence and the introduction of the
superscript (t) aims at helping visualizing this fact. The algorithmic implementation is often
called Belief Propagation or sum-product algorithm. If convergence is reached then eventually
one collects the cavity marginals and use them to calculate the original graph marginals using
(1.3). If the graph is a tree then they will return the exact marginals, otherwise they can still be
applied on locally tree-like structures for which they will represent a valid approximation. The
validity of this approximation relies on the fact that correlations among neighbors of a given
node decay exponentially fast, and this is due to the absence of short loops. On the contrary,
their presence would forbid the factorization (1.3) because neighbors will not be independent
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anymore. For sparse graphs, i.e. graphs where the number of edges E is much smaller than
the maximum number of edges V (V − 1)/2, loop length goes as log V . This means that in the
thermodynamic limit V → ∞ the message-passing algorithm gives asymptotically exact results
because short loops are absent. In case of loopy graphs usually convergence is not reached; one
can nonetheless introduce corrections to take into account correlations between the neighbors
of a given node as is done in [9].
We can summarize the arguments made above by describing the general algorithmic routine as
follows:

• Initialize messages mi→a(σi), m̂a→i(σi) at random (for instance as a uniform distribution)

• Pick arbitrarily a variable node i ∈ V and update using (1.4)

• Repeat for all other variable nodes

• Pick arbitrarily a function node a ∈ F and update using (1.5)

• Repeat for all other function nodes

• Repeat the whole procedure until mi→a(σi) and m̂a→i(σi) converge

Here for sake of simplicity we used a parallel update for the messages but other types of update
rules are possible.
We conclude this section by writing a more compact version of the cavity equations that we are
going to use in the rest of the thesis. The principle is to write one of the two types of messages
as a function of the other, thus unifying the two equations in a single one. It is particularly
convenient to use it in case of variable nodes staying on edges. In this case the variables have
at most three neighboring function nodes: two lying on the extremal nodes of the edge and in
general one external field acting on the edge variable (this can also be absent). Then one only
needs one type of message:

m
(t+1)
a→i (σi) =

1

Z→i

�

{σ∂a\i}
ψa(σ∂a)

�

k∈∂a\i

�

b∈∂k\a
m

(t)
b→k(σk) (1.6)

where the normalization factor becomes Z→i = Za→i

�

k∈∂a\i Zk→a.
A final simplification is obtained in the case of pairwise models, for which the function nodes
depend on exactly two variables: ψa(σ∂a) = ψij(xi, xj). In this case the joint probability (1.1)
can be written as:

P (σ̄) =
1

Z

�

(ij)∈E
ψij(σi, σj) (1.7)

and from this it follows that the message-passing equations are functions of only one type of
message and the order between sum and product could be inverted:

m
(t+1)
i→j (σi) =

1

Zi→j

�

k∈∂i\j

�

{σk}
ψki(σk, σi)m

(t)
k→i(σk) (1.8)

1.1.1 The optimisation version: the min-sum algorithm

Instead of being interested on the values of marginals Pi(σi) one can ask what is the most
likely configuration. If one associates a cost function E(σ̄) to a given configuration σ̄ then the
most likely configuration, or the optimal one, is the one that minimizes such cost. With this
formulation one can set up the optimisation version of the problem.
The two key ingredients needed to specify this type of problem are the cost function and the
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constraints, whereas the quantities of interest are usually the optimal configuration and the
optimal cost. The optimisation version of the cavity equations (1.4) and (1.5) can be obtained
by writing the mapping:

ψa(σ∂a) = e−βEa(σ∂a) (1.9)

where β is a parameter that can be tuned as it is usually done in the statistical physics context
where it is interpreted as an inverse temperature. Substituting this mapping into (1.4) and
(1.5) and taking the logarithm we have that products are transformed into sums. The optimal
configuration is obtained by minimizing instead of performing the marginalization (the sum over
the neighborhood configuration). In the statistical physics framework this can be translated
by considering the zero temperature limit (or β → ∞) of the problem. This approach of
considering the zero-temperature limit of the cavity equations has been introduced in [10].
Applying all the previous considerations leads to the so called min-sum [6] equations:

E
(t)
i→a(σi) =

�

b∈∂i\a
Ê

(t)
b→i(σi) + C

(t)
i→a (1.10)

Ê
(t+1)
a→i (σi) = min

{σ∂a\i}







Ea(σ∂a) +
�

j∈∂a\i
E

(t)
j→a(σj)







+ Ĉ
(t)
a→i (1.11)

Here the constants C
(t)
i→a and Ĉ

(t)
a→i are the counterparts of the normalization factors Zi→a and

Za→i appearing in (1.4) and (1.5). These constants can be arbitrarily chosen at each iteration

step; for instance once can fix them so that minσi
Ê

(t+1)
a→i (σi) = 0 and minσi

E
(t)
i→a(σi) = 0.

One then proceeds in the same way as for the sum-product by iterating the messages Ei→a(σi)

and Ê
(t+1)
a→i (σi) until convergence. If this is reached, the converged messages E∗

i→a are used to
calculate the minimal cost Emin and the optimal configuration σ∗

∂a:

Emin =
�

a

Ea(σ
∗
∂a) (1.12)

σ∗
∂a = argmin

σ∂a

�

Ea(σ∂a) +
�

i∈∂a
E∗

i→a(σi)

�

(1.13)

Also in this case we can make the notation more compact by eliminating one of the two equations
and using only one type of message:

E
(t+1)
i→a (σi) =

�

b∈∂i\a
min
σ∂b\i







Eb(σ∂b) +
�

j∈∂b\i
E

(t)
j→b(σj)







+ C
(t)
→i (1.14)

where the new additive constant is C
(t)
→i = C

(t)
i→a +

�

b∈∂i\a Ĉ
(t)
b→i . Throughout the rest of the

thesis we will use this compact notation.

1.2 Dynamic case

The cavity method presented in the previous section can be adapted to describe dynamic
processes on networks. In fact, if variables evolve in time, one could describe the time-dependent
joint probability distribution using the dynamic version of the message-passing equations (1.4)
and (1.5). We will refer to them as dynamic cavity method. The reasoning behind it is similar
to the one of the static case but this time there is one important issue that one has to consider
as we will see in what follows: the factor graph representation is full of loops, even if the
underlying topology is a tree.
As in the static model, we start by writing the joint probability distribution of a set of N
variables σ̄t = (σ̄t

1, . . . , σ̄
t
N ). This time they are time-dependent, so the entry σ̄t

i = (σ0
i , . . . , σ

t
i)
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is a t-dimensional vector denoting the trajectory in time of the variable σi located on node i.
The entry σt

i denotes the status of the variable on node i at the instant time step t. Therefore
the configuration σ̄t is a Nt-dimensional vector made of all the trajectories of the N variables.
We denote with W (σt+1

i |σt
i , {σt

j}j∈∂i) the transition probability that variable σi takes value σ
t+1
i

at time t+ 1 given the configuration (σt
i , {σt

j}j∈∂i) at the previous time step t. We then define
P0({σ0

i }) (with i = 1, . . . , N) the probability distribution of the configuration at the initial
time step t = 0. These two ingredients are all what is needed to specify the joint probability
distribution of a configuration of N trajectories:

P (σ̄t) = P0({σ0
i })

N
�

i=1

t−1
�

s=0

W (σs+1
i |σs

i , {σs
j}j∈∂i) (1.15)

This expression resembles the static case factor graph representation (1.1) if one considers
the products

�t−1
s=0W (σs+1

i |σs
i , {σs

j}j∈∂i) as the function nodes, i.e. the interaction terms. We
denote the graph as G = (V , E), with V = |V| nodes and E = |E| edges. This time though the
situation is more complex because the function nodes involve variables at different times steps,
with the consequence that the corresponding factor graph representation is full of short loops.
The situation is depicted in figure 1.3.

σit

ψi

σjt

ψj

Figure 1.3: Loopy factor graph representation. Squares represent function nodes ψi =
�t−1

s=0W (σs+1
i |σs

i , {σs
j}j∈∂i). Circles represent variable nodes σ̄t

i . Notice the presence of short
loops, even though the underlying graph is a tree.

This issue is overcome by taking as variable nodes pairs of variables (σ̄t
i ; σ̄

t
j) an putting them

on the edges of the factor graph. The function nodes, the transition probabilities, will be put
on nodes i ∈ V instead. This is represented in figure 1.4.

Also in this case we are interested to calculate quantities such as marginals of a single or
multiple variables so that these could then be used to calculate the average values of observables.
Given that variable nodes have always exactly two function nodes as neighbors, the cavity
equations corresponding to (1.4) and (1.5) can be written using only one type of message.
We could repeat considerations similar to the static case but this time instead of calculating
directly the marginal of a single trajectory Pi(σ̄

t
i), the form of the variable node allows us to

first factorize the 2-variable joint probability Pij(σ̄
t
i , σ̄

t
j) as a product of messages:

Pij(σ̄
t
i , σ̄

t
j) = µij(σ̄

t
i |σ̄t−1

j )µji(σ̄
t
j |σ̄t−1

i ) (1.16)

where the message µij(σ̄
t
i |σ̄t−1

j ) represents the marginal probability of the single trajectory σ̄t
i

in a cavity graph where the neighbor trajectory σ̄t−1
j has been fixed up to time t − 1 and

the function node in j has been removed. This equation is exact for trees and it is a valid
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ji (σit;σjt)

ψi ψj

Figure 1.4: Dynamic factor graph representation. Squares represent function nodes ψi =
�t−1

s=0W (σs+1
i |σs

i , {σs
j}j∈∂i). Circles represent variable nodes (σ̄t

i ; σ̄
t
j). This representation using

pairs of variables on edges allows to avoid short loops.

approximation for locally tree-like structures.
The messages so defined can be iteratively derived by keeping the cavity removal along the
neighbors, with a procedure similar to the static case. At the end we could write the following
cavity iteration:

µij(σ̄
t
i |σ̄t−1

j ) =
1

Zij
Pi(σ

0
i )

�

{σ̄t−1
k }

t−1
�

s=0

W (σs+1
i |σs

i , {σs
j}j∈∂i)

�

k∈∂i\j
µki(σ̄

t−1
k |σ̄t−2

i ) (1.17)

Here for the sake of simplicity we have assumed a factorized initial distribution P0({σ0
i }) =

�V
j=1 Pi(σ

0
i ) and will adopt this choice for the rest of the thesis; the Zij is a normalization term.

One important remark is that the message µij(σ̄
t
i |σ̄t−1

j ) should not be confused with the

conditional probability Pij(σ̄
t
i |σ̄t−1

j ) in the original graph. In fact the former is a quantity
defined in a modified graph (the cavity graph) whereas the latter is defined by the formula
Pij(σ̄

t
i , σ̄

t−1
j ) = Pij(σ̄

t
i |σ̄t−1

j )Pj(σ̄
t−1
j ).

From (1.16) one could obtain the 1-variable marginals by summing out the other variable:

Pi(σ̄
t
i) =

�

σ̄t
j

Pij(σ̄
t
i , σ̄

t
j) (1.18)

Notice that substituting (1.16) into (1.18) and using the fact that:
�

σt
j

µji(σ̄
t
j |σ̄t−1

i ) = µji(σ̄
t−1
j |σ̄t−2

i ) (1.19)

one could equivalently write:

Pi(σ̄
t
i) =

1

Z
Pi(σ

0
i )

�

{σ̄t−1
k }

t−1
�

s=0

W (σs+1
i |σs

i , {σs
j}j∈∂i)

�

k∈∂i
µki(σ̄

t−1
k ; σ̄t−2

i ) (1.20)

thus obtaining an expression similar to (1.17) but where we use the whole neighborhood k ∈ ∂i
in the right-most product as it was done for the static case.
It is possible, with the same reasoning, to calculate form this joint probability the one-time
marginal Pi(σ

t
i) representing the probability that variable located at node i has value σt

i at the
time step t:

Pi(σ
t
i) =

�

σ̄t−1
i

Pi(σ̄
t
i) =

�

σ̄t−1
i ,σ̄t

j

Pij(σ̄
t
i , σ̄

t
j) (1.21)

All other types of marginals could be derived by using similar arguments.
The single trajectory σ̄t

i can take dt possible values, where d is the number of values that σt
i

can take, for example d = 2 in the case of Ising spin. This implies that solving the cavity
equation (1.17) takes an exponential number of operations: one has to perform a summation
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over d(t−1)(ki−1) possible configurations, where ki is the degree of node i. Indeed, even though
the dynamics is Markovian (the transition probability involves only the previous time step),
the final marginal probability of a single trajectory depends on all the entire histories of the
neighbors. This is unfeasible to be implemented hence some sort of approximation need to be
introduced if one wants to solve the problem. Exploring this possibility is the goal of chapter
3. There we will describe a method that we introduced based on the Matrix Product State for-
mulation of quantum mechanics. This will let us reduce the complexity of the cavity equation
from exponential to polynomial and it does not rely on strict assumptions regarding the type
of network (directed or undirected) or of the dynamics (irreversible or reversible).
Contrarily to the static version, the dynamic cavity method has started to be studied only re-
cently [11]; various approximations have been proposed to tackle the problem at least in some
cases [12, 13, 14].
For instance, if the graph is directed, i.e. the interaction between nodes i and j works only on one
direction, then σ̄t

i does not depend on σ̄t−1
j and we can write the message µij(σ̄

t
i |σ̄t−1

j ) = µij(σ̄
t
i).

This would imply considering only the incoming neighbors k ∈ ∂iIN inside the product on the
right-hand side of (1.17), allowing to simplify the equations. If applied to partially symmetric
networks this can be considered as an heuristic approximation, which becomes exact for fully
asymmetric topologies.
Another type of approximation is a factorization in time of the messages that goes under the
name of one-time approximation. It has been used in [11, 12] for both fully and partially asym-
metric networks to study the stationary state of a diluted Ising model on graphs. In those works
the main assumption is to neglect correlations in time of the stationary (t → ∞) solution, an
hypothesis that allows a time factorization of the cavity equations and therefore the numerical
implementation. Even though without bond disorder they showed similar results between the-
ory and simulations, the situation is worsening by introducing disorder. Moreover in [12] for low
temperature dynamics, depending on the update rule, they either find a different fixed-point
(sequential update) compared with a Monte Carlo Markov Chain simulation, or the solution is
oscillating, thus not reaching a fixed-point (parallel update). Nonetheless the intermediate time
steps before reaching the stationary states show very different dynamics between Monte Carlo
and the one-time cavity approximation. The convergence region of non-equilibrium stationary
states under the one-time cavity approximation has been studied in [13] obtaining better results
compared with other approximations.
Another way to make the problem solvable is to study processes that are described by a unidi-
rectional dynamics, i.e. irreversible processes. That means that one only needs to keep track of
an instant time step instead of the whole trajectory. The time step that has to be recorded is
the one where a transition to another state happened, the main consequence of this fact being
that the complexity of the algorithm becomes polynomial in t, thus it is feasible to implement
the cavity equations. Another important consequence is that the validity of cavity method in
these processes allows the adaptation to solve inference problems, i.e. problems where an inter-
mediate state at time t is given and from this one wants to infer the state at a certain previous
time step t0 < t, this will be explained in more details below; or optimisation problems, i.e.
problems where one assigns a cost function to each of the states and wants to find the optimal
one.
In chapter 3 we will describe a new method to approximate the dynamic cavity equation (1.17)
that is solvable in polynomial time. This works for parallel updates and does not rely on
any assumption about the symmetry (or asymmetry) of the network topology nor on the ir-
reversibility of the process. This allows to obtain results comparable to Markov Chain Monte
Carlo simulations, when the latter could be used. However the potential of this method relies
in the possibility of studying problems where Monte Carlo fails or is inefficient, in particular it
well adapts to study infinite systems and inference and optimisation models of dynamic pro-
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cesses on networks. By this we mean problems where a final configuration σ̄T = (σT
1 , . . . , σ

T
V )

is given and one wants to infer what was the most likely initial configuration σ̄0 = (σ0
1, . . . , σ

0
V )

causing that final one, given the chosen transition rule. Formally this is defined as the problem
of finding:

σ̄0
∗ = argmax

{σ̄0}
P (σ̄0|σ̄T ) (1.22)

This problem is often tackled by using a Bayesian approach. Namely one uses Bayes’ rule [15]:

P (σ̄0|σ̄T ) ∝ P (σ̄T |σ̄0)P (σ̄0) (1.23)

Assuming that the initial probability distribution is uniform, then the inference problem (1.22)
can be reduced to the one of calculating:

σ̄0
∗ = argmax

{σ̄0}
P (σ̄T |σ̄0) (1.24)

Therefore a strategy could be to run message-passing equations similar to (1.17) for all the
possible initial configurations and at the end of t = T time steps collect the results to calculate
P (σ̄T |σ̄0). A common approach is to assign an energy to each of the initial configurations such
that the most likely one will be assigned the least energy:

E(σ̄0) = − logP (σ̄T |σ̄0) (1.25)

Thus one can rank accordingly the configurations and select the best one given this definition
of energy. Message-passing have been recently proven to be efficient when studying inference
problems of epidemics on networks[16, 17]. In these works models with unidirectional dynamics
are considered, so that the computational complexity is highly reduced and thus one can iterate
the equations numerically.

1.2.1 Glauber dynamics

One of the most studied among the dynamic processes on networks is the Glauber dynamic
[18]. This is a binary-variable model where the interactions are between neighboring nodes and
their strength is given by a stochastic variable Jij . The field acting at time t on a given node
i ∈ V is defined by:

ht
i = φi +

�

j∈∂i
Jijσ

t
j (1.26)

where φi is a local field that does not depend on the state of the neighborhood. To fix the
ideas, in the rest we will consider only the case φi = 0.
The transition probability of node i getting value σt+1

i ∈ {+1,−1} at time step t+1, given the
state of its neighborhood at the previous time t, is then given by:

W (σt+1
i |{σt

j}j∈∂i) =
e−βσt+1

i ht
i

2 cosh(βht
i)

(1.27)

The parameter β is treated as an inverse temperature and it controls the strength of the disorder.
For β → ∞ (or T → 0) the dynamic is deterministic and the system tends towards the ground
state with lowest energy. On the contrary, for β → 0 (or T → ∞) the dynamic is completely
stochastic. The last thing one has to do in order to completely determine the dynamics is define
an update routine and the time step. Here we will focus on discrete time steps and parallel
dynamics, meaning that at each time step t all the variables are simultaneously updated. A
famous model that uses this type of dynamics is the Little model of neural networks [19].
An alternative update rule is the sequential dymanics, the case where at each time step only
one variable is updated. An iteration sweep is completed when all the V variables have been
updated.
Considering the parallel dynamics, the joint distribution of the entire system at time step t+1
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is given by:

P (σt+1
1 , . . . , σt+i

V ) =
�

i∈V
W (σt+1

i |{σt
j}j∈∂i)P (σt

1, . . . , σ
t
V ) (1.28)

where the transition probability is the Glauber one as in (1.27).
This probability distribution obeys detailed-balance:

W (σ̄′|σ̄)P (σ̄) = W (σ̄|σ̄′)P (σ̄′) (1.29)

in the case that interactions are symmetric:

Jij = Jji (1.30)

This is the case we will consider here. This means that the dynamics will eventually reach
equilibrium, with a Gibbs probability distribution of the form:

Peq(σ̄) ∝ e−βHβ(σ̄) (1.31)

where the function Hβ(σ̄) is the Peretto’s pseudo-Hamiltonian [20] given by:

Hβ(σ̄) = − 1

β

�

i∈V
log 2 cosh(βhi) (1.32)

An alternative valid Hamiltonian, in the sense that is a function bounded from below and it
decreases almost monotonically with every step of the dynamics, is a quantity that can be
written as a sum of two-variable functions [21, 22]:

H t(σ̄t) = −
�

(ij)∈E
Jijσ

t
iσ

t−1
j (1.33)

This last expression is more convenient to be used when considering averages: one only needs
two-variable joint distributions P (σt

i , σ
t−1
j ) instead of expression (1.32) which needs the entire

neighborhood joint distribution. To see that this is a valid Hamiltonian in the sense specified
above, we can write the difference [21]:

∆H = H t+1(σ̄t+1)−H t(σ̄t) = −
�

i

�

σt+1
i − σt−1

i

�

�

j∈∂i
Jijσ

t
j (1.34)

From this expression one sees thatH t(σ̄t) does not change, i.e. ∆H = 0, when either consecutive
steps are identical or when two states alternate, i.e. σt+1

i −σt−1
i = 0 ∀i. The first case is when

the system has reached a fixed point, whereas the second is when a system is stuck in a 2-
cycle. This last situation is peculiar of the synchronous dynamics and in often seen for parallel
updates.
The evolution of this dynamics has been studied using cavity method in [11, 23, 13] with single-
spin time trajectories as variables. The computational complexity therefore grows exponentially
for unidirectional graphs, allowing numerical simulations only for few time steps.
Suppose that one is able to simulate a system under this dynamics. Examples of quantities of
interest to be measured as the system evolves are the one-time single-spin magnetization mi(t)
defined as:

mi(t) =
�

{σt
i}
σt
iPi(σ

t
i) = �σt

i� (1.35)

where Pi(σ
t
i) is the one-time marginal (1.21). From this expression one could define two other

observables, the total magnetization:

m(t) =
1

V

�

i

mi(t) (1.36)

and the (quadratic) change in magnetization ∆m(t) between two time-steps:

∆m(t) =
1

V

V
�

i=1

[mi(t)−mi(t− 1)]2 (1.37)
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This last expressions gives indications if the dynamics has reached equilibrium, thus can be
used for instance as a measure of algorithmic convergence when one expects that an equilibrium
regime has to be reached. A similar quantity often use in Spin Glass theory [24] is the Edwards-
Anderson order parameter:

qEA =
1

V

�

i

�σt
i�2 (1.38)

This parameter is used to measure the spins-glass phase, in fact a measured qEA �= 0 denotes a
freezing of the spins in random orientations. Notice that in this case the magnetization could
give misleading interpretations because it could be that the total m(t) = 0, as is the case of
the paramagnetic phase where mi(t) = 0. Thus one cannot distinguish whether the system is
frozen in a random orientation (spin-glass phase) or is in a paramagnetic phase just by looking
at m(t).
These quantities, along with the energy (1.33) will be the observables that we will measure to
test the validity of the dynamic cavity method approximation described in chapter 3.

1.2.2 The majority rule

Another example of a well studied dynamic process on networks is the majority rule.
In this model a variable at time t takes the value taken by the majority of its neighbors at the
previous time step:

σt+1
i = sign

�

�

j∈∂i
σt
j

�

(1.39)

if
�

�

j∈∂i σ
t
j

�

�= 0, otherwise

σt+1
i =

�

σt
i with probability 1/2

−σt
i with probability 1/2

(1.40)

The transition rule can thus be defined as:

W (σt+1
i |{σt

j}j∈∂i) =
�

�

�

σt+1
i = sign

�

�

j∈∂i σ
t
j

��

if
�

j σ
t
j �= 0

1/2 if
�

j σ
t
j = 0

(1.41)

where �(a) = 1 if the boolean variable a is true, otherwise �(a) = 0. The majority rule (1.41)
can be mapped into the β → ∞ limit of a Glauber dynamics as in (1.27) in the ferromagnetic
scenario, i.e. when Jij = J = +1 ∀(ij) ∈ E .
A part from the case where

�

j σ
t
j = 0 and the state σt

i is determined stochastically, for
other scenarios the process is deterministic. Nonetheless this definition can be generalized to a
stochastic model where a noise is introduced so that there is a finite probability that the state
makes en error, i.e. it updates with the opposite sign of the majority. This can be formalized
introducing a real parameter Q ∈ [0, 1] such that:

W (σt+1
i |{σt

j}j∈∂i) =
�

Q− (2Q− 1)�
�

σt+1
i = sign

�

�

j∈∂i σ
t
j

��

if
�

j σ
t
j �= 0

1/2 if
�

j σ
t
j = 0

(1.42)

which means that the probability for variable σt+1
i to take the sign of the majority is not exactly

1 but instead 1−Q.
Focusing on the case Q = 0, one interesting question for this problem is whether the dynamics
evolves to a consensus regime, namely a situation where all the variables take the same value.
The system has an up-down symmetry therefore, without loss of generality, here we define
consensus as the situation where all variables take σt

i = +1 (to focus the ideas on one of the
two states). In general the way the systems converges to consensus, if this is reached at all,
depends on the initial bias θ0 of the number of +1-variables. Formally, this quantity could be
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defined as a real number in [0, 1] such that ∀i ∈ V the initial marginal distribution is:

P0(σ
0
i = +1) =

1 + θ0
2

P0(σ
0
i = −1) =

1− θ0
2

This definition implies that the larger θ0 the higher the initial number of +1 variables, therefore
the more likely consensus will be reached. This suggests the definition of a quantity of interest
for this problem as the consensus threshold θc, namely the minimum value of θ0 such that the
final state has all variables σt = +1 with probability 1. Formally:

θc = inf{θ0 : Pθ0(σ
t
1 = +1, . . . , σt

V = +1) = 1} (1.43)

where Pθ0(σ
t
1, . . . , σ

t
V ) is the probability to have the configuration (σt

1, . . . , σ
t
V ) at final time t

given the initial bias θ0 at time t = 0.
Here we did not specify the final time step t, this is often set to t = ∞, a situation where one
wants that eventually the systems reaches consensus, no matter how long it will take. However
one could also fix an arbitrary finite t so that consensus has to be reached arbitrarily fast.
As for the case Q > 0, one usually fixes θ0 = 0 or very small, i.e. unbiased or almost unbiased
initial condition, and looks for the minimum Q such that consensus is not reached. In fact the
source of noise causes the variables to make errors when updating, thus leading the dynamics
out of consensus for increasing noise strength Q.

Exact calculations of the dynamics is not possible in general, therefore this model has often
been studied numerically using Monte Carlo simulations [25, 26]. Analytical approaches usually
rely on using mean-field approximations where one neglects dynamic correlations, so that the
state of a node depends on the average fraction of active nodes, i.e. nodes with σ = +1; thus
treating the state of a node and the one of its neighbors as independent. Although simple to
derive and solve, mean-field theories are not very accurate to study sparse graphs, i.e. when the
average degree �k� ≪ V . Indeed it has been shown that it is not appropriate to describe the
zero temperature Glauber dynamics, i.e. equivalent to the majority rule, on random networks
[27]. The theory can be improved by considering dynamic correlations at a pairwise-level, such
as for pair approximation. The cost is an increase in complexity that becomes more and more
important when increasing the accuracy. This is the case of approximate master equations
models [28], where the state of the neighborhood is taken into account generating large systems
of differential equations which are hard to solve. This complexity can be reduced by considering
irreversible dynamics. For equilibrium models, i.e. where detailed-balance is satisfied, these
different approximation methods result in dynamics evolving to the same final state for t → ∞,
despite for finite t they may differ. However, for non-equilibrium models they differ also for
t → ∞. This is the case of the majority rule with Q > 0.
Recently the majority rule (1.41), i.e. Q = 0, has been studied using the dynamic cavity
equations (1.17) [23]. This is a pioneering work in the sense that is one of the first to propose
the cavity formalism to describe dynamic processes on networks. In that work they focus on
regular graphs and give bounds for the consensus threshold θc as a function of the connectivity
k. In order to give estimates for infinite systems, they consider growing finite networks of size
V and calculate the threshold θc,V (k) as V grows. They performed numerical simulations for
varying k to see that this converges to a limit θc,rgraph(k) such that above this threshold the
dynamics converges with high probability to all +1. On the contrary, below this value the
dynamics gets stuck on either a 2-cycle or on a stationary point. This threshold decays to zero
with increasing connectivity k.
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1.2.3 Monte Carlo Markov Chain simulations

In this section we outline a technique often used to simulate numerically dynamical processes,
it is usually called Monte Carlo Markov Chain (MCMC). Its popularity is due to its simplicity
and the fact that it adapts well to simulate any type of process, regardless network topology,
dynamic type or type of variables considered. Despite these nice properties it presents also sev-
eral drawback, but we will describe them below. This technique will be useful for comparison
with our proposed dynamic cavity method, in fact in section 3.2.3 we will present numerical
simulations of both Glauber dynamics and Majority rule obtained through Monte Carlo and
our proposed method based on matrix product states.
The literature about this topic is very rich but often this causes confusion about what specific
variant of the Monte Carlo method is used. Therefore here we present only the variant of the
algorithm that we are going to use in our numerical simulations. The algorithm under parallel
and synchronous dynamics (the one considered in this work) works as following.
We initialize the system (σ0

1 , . . . , σ
0
V ) in a state sampled from the initial distribution P0(σ

0
1 , . . . , σ

0
V ).

Assuming that this is factorized as P0({σ0
i }) =

�V
j=1 Pi(σ

0
i ), the initial value of each variable

σ0
i is assigned to σ with probability Pi(σ).

Then ∀i ∈ V we update the variable σ1
i at the next time step t = 1 using a transition rule

given by the model considered, for instance (1.27) for the Glauber dynamics or (1.41) for
the majority rule. For a binary variable as in our case, this can be achieved by extracting a
real random number r uniformly in [0, 1] and then calculating W (σt+1

i = +1|{σt
j}j∈∂i) (here

t = 0). If this number is greater than the random r than the variable σ1
i is assigned value

+1, otherwise the assigned value will be −1. Similar reasoning applies if one calculates instead
W (σt+1

i = −1|{σt
j}j∈∂i). The same procedure is repeated for all V variables and this is con-

sidered as one sweep. Note that the order with which the variables are picked does not affect
the final result. Under parallel dynamic at each Monte Carlo sweep the new variables σt+1

i are
updated using the old ones σt

i , but these remain always the same inside the sweep routine. On
the contrary, for sequential updates one would pick one variable, update it, and then possibly
use this new value to update one of its neighbors. Therefore in general these two types of
update gives different configurations.
One performs t = T sweeps, where T is the maximum time of the dynamics and is given as in-
put. Eventually one gets a final configuration (σT

1 , . . . , σ
T
V ) that is only one of the possible ones

obtained starting from the initial distribution and following the chosen update rule. Therefore
one has to repeat the entire routine for Nreal number of instances. The integer number Nreal

is given as input and the greater its value the greater the statistical sampling from the desired
distribution (1.15).
Although being simple to implement and flexible in the sense that it easily adapts to simulate
any type of network or dynamics, this algorithm presents several drawbacks.
Firstly, if one is interested to sample a particular event, for instance the all +1 configuration,
it takes a big number of realizations Nreal in order to get good statistics, unless this happens
with high probability. In particular, when considering rare events, most of the Monte Carlo
realizations will be rejected because will not end up in the desired rare configuration.
Secondly, it works well for finite system sizes but it does not apply to infinite systems. When
the goal is to study the thermodynamic limit V → ∞, the Monte Carlo algorithm has to be
run for increasing system sizes and then the infinite limit can only be extrapolated from these
results.
Finally, this algorithm is not suited to set up inference problems as the one defined in (1.22).
The strategy of letting the system evolve through the chosen dynamics, starting from each
possible initial configuration so to calculate P (σ̄T |σ̄0), does not work well in this case. In fact
one would have to run a big number of realizations Nreal for each of the possible initial config-
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urations in order to get a good statistics of the set of trajectories, among the one starting at a
given σ̄0, that converge to the desired final state.

1.2.4 Population dynamics

Monte Carlo method is not appropriate to describe infinite systems. Therefore a common
strategy used to study the thermodynamic limit V → ∞ through numerical simulations is to
start by using a relatively small finite size V and then let the system grow towards bigger values
of V . The statistics of the macroscopic observables of interest are collected as a function of V
and the results on the infinite system is extrapolated by the one collected for finite and growing
V .
However, if one has access to at least some approximate probability distribution of the one
of interest P (σ̄t), then it could use this to study directly the thermodynamic limit using the
population dynamics algorithm [29]. To fix the ideas think for instance at the cavity messages
(1.17) µij(σ̄

t
i |σ̄t−1

j ) of the dynamical case (but the rest will be valid also if one considers the
static messages mi→a(σi) and m̂a→i(σi) (1.4), (1.5) ), as the approximate marginals of the
exact distribution. The idea behind population dynamics is to approximate these functions by
sampling N i.i.d. copies of µij, this set of copies P = {µ} is called population [6]. Then for
large N the empirical distribution of this sample converges to the actual distribution of µij.
The algorithmic steps for the dynamical cavity method are the following:

• Initialize {µ} using the initial distribution P0(σ̄
0)

• Pick a random µ∗ ∈ P and an integer k with distribution P (k)

• Pick k other µ ∈ P and k numbers J with distribution P (J)

• Update µ∗ using the update rule (1.17) where the µki are replaced by the set of k µ and
J extracted before

• Repeat for all µ ∈ P and for t steps

At the end one can calculate macroscopic averages using the population. For example the total
magnetization (1.36)

m(t) =
1

V

�

i

mi(t) (1.44)

can be calculated as:

m(t) =
1

R

R
�

n=1

mn(t) (1.45)

where R is a sufficiently big number, typically of the order of V , and the mn(t) are calculated
using the population in the following way.

• Pick randomly two µ ∈ P and calculate P (σt) using (1.16) and (1.21)

• Calculate mn(t) =
�

{σt} σ
tP (σt)

The resulting m(t) tends to the expected macroscopic average over the chosen graph type,
characterized by P (k) and over the disorder, characterized by P (J), for large values of N and
R.
Similar considerations can be done for the static equations, but in this case one has to iterate
the algorithm for several iteration steps. These are not related to any dynamics time (we are in
the static case). This time one has to wait until convergence of the population and this can be
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checked, for instance, by calculating (1.45) at the end of each iteration step, and controllin the
difference with the one obtained at the previous step. Once the averages are stable enough, i.e.
up to statistical fluctuations of the order of 1/

√
N , than this is a signal that the population

has converged.
Here we outlined the dynamical case because this is the scenario where we will use this algorithm
in 3.2. In particular we will address the majority rule, or zero temperature Glauber dynamics,
on regular graphs of infinite size. On the contrary we did not use population dynamics in our
application of the static problem. In routing problems in fact the presence of a parameter M
(the number of communications), enters explicitly in the expressions of the messages µij(Īij)
because it represents the domain of the variables Īij, which is of size 2M + 1. But when we fix
M at the same time we are fixing a system size V , as we will see in section (2.1). The result is
the impossibility of decoupling the messages domain from the system size, thus preventing us
to properly employ the thermodynamic limit through population dynamics.
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Chapter 2

Routing optimisation on random

networks

The power of the cavity method is the fact that global information is processed through local
updates among neighborhoods of nodes. This is particularly useful in the case of certain types
of optimisation problems where the cost function and the constraints are global and thus global
optimisation is required. Routing and path optimisation of networks are a famous example
among these. The high number of variables involved and their non-localized nature require a
global optimisation that is typically unfeasible to be performed through an extensive search
through the whole configuration space. Indeed they are often classified among the NP-complete
class [30] of hard combinatorial problems.
A typical routing optimisation problem on networks is a defined as follows. One has a set
of users that want to either move along the network or communicate with each other. They
are subject to a set of constraints and a cost function that depends on the specific problem.
Typically the cost function takes into account variables that involve the quality of the network
performance such as traffic, delay and total path length. Typical constraints take into account
link or node capacity limits and path continuity. The aim of the optimisation problem is to
route path trajectories (or communications) so to minimize the cost function and respect the
constraints.
These problems find many interdisciplinary applications such as in communication systems,
transmission networks and virtual circuit design. The interaction between paths is non-localized
hence local protocols fail to find the optimal configuration and global optimisation is required.
The types of algorithms proposed in the literature to tackle these problems use strategies such as
greedy heuristics, Montecarlo and linear programming techniques. In this chapter we present
a distributed algorithm that exploits message-passing techniques to efficiently tackle several
variants of routing optimisation problems by using local information.
The chapter outline is the following. We first set up the general framework that is shared
among all the proposed variants, this being based on the cavity method formalism. Then in the
following sections we present three specific problems starting from the one that has the hardest
constraints (the Node-Disjoint Path problem), then relaxing a bit the hard constraint (the
Edge-Disjoint Path problem), to finish with the complete constraint relaxation by introducing
the Nash Equilibrium variant of the problem.

2.0.5 The model

Here we set up the analytical formalism that will be used in all the next sections. In all these
problems the combination of cost function and constraints are chosen so to minimize both path
length and traffic, the latter represented by paths overlap. The model is conveniently formalized
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by taking variables Iij sitting on edges because the cost function f(Iij) typically involves the
flow passing throuhg an edge and the constraints, that act as factor nodes, are usually defined
on nodes of the graph. Therefore variables nodes are surrounded at most by three factor nodes:
one for each terminal node of the edge and one (if not absent) representing the cost of that
edge. Then the cavity formulation only needs one type of message as in (1.14), with variable
nodes denoted as (ij) and factor nodes as i. Then the left-hand side of (1.14) can be written

as E
(t+1)
(ij)→j(Īij), whereas the first sum in the right-hand side is made of only two contributions

so that at the end we obtain:

E
(t+1)
(ij)→j(Īij) = min

Ī∂i\(ij)|constraint







�

k∈∂i\j
E

(t)
(ki)→i(Īki)







+ f(Īij) + C
(t)
→j (2.1)

Notice that the edge cost f(Īij) stays outside the minimum because, for a given variable
Īij , its value is fixed. Furthermore, notice how the term Eb(σ∂b) does not appear explicitly
anymore. This is indeed implicitly present behind the constraint : it plays the role of the
interaction that couples the neighbors together. This scenario is represented in figure 2.1. We
notice the redundancy of using the edge notation in (ij) → j, so from now on we drop it in

favor of ij. In this way the message E
(t+1)
(ij)→j(Īij) becomes E

(t+1)
ij (Īij).

Iij ji f

Figure 2.1: Factor graph for routing. Black squares represent function nodes, these typically
represent the constraints coupling neighboring variables. Circles represent variable nodes that
in this case are located on edges of the underlying topology. Grey squares represent external
fields acting on the variable nodes, typically these are the cost of the edge.

The underlying network is represented by an undirected graph G = (V , E) with nodes i ∈ V
and edges (ij) ∈ E . We define a set of M communications C as paths along edges of the graph.
These originates at source nodes S (sender) ad terminates at receiver nodes R. Therefore a
communication Cµ ∈ C can be characterized by a pair of nodes (Sµ, Rµ), with µ = 1, . . . ,M ,
i.e. the sender and receiver of that specific communication. At each node i ∈ V we define a
variable Λµ

i that defines the state of the node. This is assigned at the beginning and will be an
input parameter of the problem:

Λµ
i =







+1 if i is a sender for communication µ
−1 if i is a receiver for communication µ
0 if i is neither a sender nor a receiver for communication µ

(2.2)

We call a site transit node if Λµ
i = 0. In principle all communications can pass through

a given node i, therefore we need an M-dimensional vector to fully characterize it: Λ̄i =
(Λ1

i , . . . ,Λ
M
i ). We define the norm of a vector as ||Λ̄i|| :=

�M
µ=1 |Λ

µ
i |, where |Λµ

i | is the absolute
value of Λµ

i . In the problems that we consider here each node can be either a sender or a receiver
for only one communication at a time (or a transit node), hence with this convention we have
||Λ̄i|| ∈ {0, 1}. Variables are defined on edges (ij) ∈ E and they represent the communication
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flow passing along the given edge:

Iµij =







+1 if µ passes through (ij) from i to j
−1 if µ passes through (ij) from j to i
0 if µ does not pass through (ij)

(2.3)

Notice that in this formalism Iµij = −Iµji. We term these variables currents and define for
each edge (ij) a vector Īij := (I1ij , . . . , I

M
ij ) that collects information on all currents involved in

that edge. The state of the whole network is thus characterized by the set {Īij : (ij) ∈ E}.
In general ||Īij|| ∈ [−M, . . . ,M ] but depending on the type of constraint this interval can be
reduced.
A constrained that is always present in the different variants of the problems is path contiguity:
a path is a set of consecutive links, i.e. no interruptions are allowed. This constraint causes
the interaction between currents to be highly non-localized and this represent one of the main
challenges of the problem. For instance this makes it difficult to use Montecarlo algorithms
because one has to define a suitable Montecarlo step where only a finite number of variables are
modified at each step. Hence if one wants to slightly modify a path and respect the contiguity
constraint it is not trivial how to do it by only varying few edges.

Around a given node i ∈ V we can represent this constraint as the Kirchhoff law:

�

j ∈∂ i

Iµij − Λµ
i = 0 ∀µ = 1, . . . ,M (2.4)

In this work we consider costs f(||Īij||) that are functions of the total current passing through
an edge so that the overall network cost is a sum over all the edges:

c({Īij}) =
�

(ij)∈E
f(||Īij||) (2.5)

This cost can be of different shapes but a typical choice is power-law f(I) = Iα with α
a parameter that can be tuned in order to favor or penalizes traffic. This approach has been
proposed in [31] where both the cases are studied considering a transportation network. In the
models we consider here we adopt a linear cost, i.e. α = 1. In this way the total cost will be
exactly equal to the total path length Ltot =

�M
µ=1 L

µ, where we define the length Lµ of the
path µ as the number of edges contributing to the trajectory. Now we have all the ingredients
needed to set up the min-sum cavity equation (2.1) (rewritten using the compact notation) of
the routing problem:

E
(t+1)
ij (Īij) = min

Īki|constraint







�

k∈∂i\j
E

(t)
ki (Īki)







+ f(||Īij||) (2.6)

where we have dropped the additive constant C
(t)
→i because from now on we assume that mes-

sages are normalized such that minĪ E
(t+1)
ij (Ī) = 0. This is one of the possible choices and it is

equivalent to fixing the constant at each time step. Equation (2.6) is saying that: in order to
calculate Eij(Īij) for a given current Īij, one has to find the best configuration of the neighbors
{Īki} such that the set of constraint is respected. Here constraint always contains Kirchhoff
law but, as we will see in the next sections, it will contain other constraints specified by the
model considered.
One then arbitrarily initializes the messages and iterates this equation until convergence. Once
this is reached, the converged messages E∗

ij(Īij) are collected to calculate the optimal configu-
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ration {Ī∗ij} using the incoming and outgoing messages for a given edge:

Ī∗ij = argmin
Ī

�

E∗
ij(Ī) + E∗

ji(−Ī)− f(||Ī||)
�

(2.7)

where the last term is subtracted to avoid double counting of the cost of the single edge
(ij). We sum over all (ij) ∈ E to find the different paths and total length:

Ltot :=
�

(ij)∈E
||Ī∗ij|| (2.8)

Finally, the minimal cost is then:

c∗ := min
Ī

1

|E|
�

(ij)∈E

�

E∗
ij(Ī) + E∗

ji(−Ī)− f(||Ī||)
�

(2.9)

Notice that in order to find the optimal configuration {Ī∗ij} it is necessary to perform the
calculation (2.7) ∀(ij) ∈ E . These calculations are carried out link by link as if the energies per
link were statistically independent. It is not intuitively clear that doing this will result in the
optimal paths which do not overlap and are also fully connected from the source to the receiver.
This is a consequence of having used messages which implicitly contain global information on
the constraints and path lengths, so that the energies per link are indeed globally interdependent
albeit in a non-obvious manner.

With this general set up the computational complexity of the algorithm is exponential in
the number of communications M . Indeed there are two main issues: the first is that mes-
sages Eij(Īij) can a priori take 3M values corresponding to all possible combinations of currents
passing through a single edge (ij). The complexity is then due to the size of the currents’
configuration space. Secondly, even if the configuration space is reduced (for instance by in-
troducing some constraints), for a given output current Īij, there is a large number of possible
neighborhood’s configuration {Īki}k∈∂i\j around the node i that is consistent with the set of
constraints. In the minimum inside (2.6) one has indeed to consider all the possible configu-
ration of currents entering and exiting node i. Unfortunately this number grows exponentially
with the degree of node i and with M .
In the next sections we will tackle these two problems separately. The first problem will be
dealt by shrinking the configuration space. This can be achieved by introducing an hard con-
straint that forbids many configurations, and this method will be explored when considering
the the Node-Disjoint Path problem in section 2.1. We tackled the second issue by performing
a mapping from a constrained routing problem into a combinatorial weighted matching [32]
problem. This has the effect or reducing the complexity to the one of a standard weighted
matching algorithm. This method will be presented when considering the Edge-Disjoint Path
problem in section 2.2. Finally we will relax further the constraints (and the configuration
space increases) outlining the Nash Equilibrium counterpart of the problem in section 2.3.
For the first two problems we performed extensive numerical simulations to test the algorithms
and compare it with alternative algorithms found in literature. For the Edge-Disjoint Path
we found benchmark results that allowed performance comparison. Unfortunately this was
not possible for the Node-Disjoint Path because of the absence of benchmarks; nonetheless, in
this case we compared results with a greedy algorithm. We also study statistical and scaling
properties of quantities of interest as a function of network size and number of paths starting
from the collected solutions.
As graph topologies we considered several types of complex networks. Here we quickly sum-
marize their properties but we leave more details in the appendix 3. Standard regular random
graphs (Reg): each node has fixed degree k; Erdős Rényi random graphs (ER) [33]: edges are
drawn at random between each pair of nodes with probability p = �k�/V ; a decorated random
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graph (RER): starting from a regular random graph of degree k1 (which is the minimum degree
of this graphs), we then randomly add new edges as in the ER model until the final average
connectivity is �k� = k > k1. Notice that the degree distribution in this case can be obtained
by writing k = k1 + d where d is Poisson distributed with �d� = k − k1.

One final remark concerns the infinite system case. In all what follows we tested the al-
gorithm on single instances of graphs and did not use population dynamics because we found
it not appropriate to study routing problems. The reason is the presence of the parameter M
that affects the domain of the fluxes Īij and thus enters explicitly in the expressions of the
messages. In fact when we fix M at the same time we are fixing a system size V , because we
extract random pairs (S,R) with density M/V , thus coupling the message domain with the
system size. There is also another problem, that such a macroscopic oriented approach would
introduce averages over all possible configurations (S,R), including both frustrated and unfrus-
trated configurations with much higher energies. Namely configurations for which the decision
problem, such as is the case in the node-disjoint path problem, could not find a solution. Thus
the macroscopic averages are highly biased by the fewer frustrated configurations and more
complex algorithm should be designed to discard such cases. For these two reasons we did not
consider in the population dynamic counterpart of the algorithm but focused only on averages
over single instances.

2.1 The Node-Disjoint Path problem

The Node-Disjoint Path problem (NDP) is a variant of a routing problem where path trajec-
tories are subject to the hard constraint that no two paths can share a node, thus overlap at
nodes is forbidden. In figure 2.2 we can see an example of non optimized network (left) and
the corresponding NDP solution (right). We see that communications are forced to reroute and
take longer paths in order to avoid overlap at nodes. The total path length of the new solution
is minimized in accordance with the node-disjointness constraint.
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Figure 2.2: NDP network example. (Left) Example of a network with three communications.
The blue and red communications are overlapping at nodes with the green one. (Right) The
NDP optimized solution: the green and red ones are forced to reroute through longer paths. The
total path length in nonetheless the minimal achievable when enforcing the node-disjointness
constraint.

The principal consequence of this constraint is that the configuration space of the variables
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(currents) is shrunk. In fact, saying that paths cannot overlap at nodes, means that along an
edge (ij) ∈ E can pass at most one communication at a time, i.e. ||Īij|| ∈ {0, 1}. Therefore
the number of possible values taken by Īij is shrunk from 3M to 2M + 1, one incoming and
one outgoing for each communication and zero. This problem was studied as a pure theoretical
problem by mathematicians in the series of graph minors [34], under the name of subgraph
homeomorphism problem. But it also finds many applications in the field of communication
networks. In particular in communication systems where the quality of the performance strictly
depends on a limited network capacity, it is paramount to manage traffic in order to prevent
congestion and allow a smooth information flow. This can be seen for instance in virtual circuit
routing where switches located at nodes may become bottlenecks. In general the NDP suits well
to manage networks where the quality of service (QoS) is one of the main requirements. For
instance in wireless communication signal interference (path overlap) causes low transmission
quality whereas in optical networks transmissions using the same wavelength cannot share the
same edge or vertex, hence all communications of the same wavelength must be non-overlapping
(disjoint). Finally, another important feature of the NDP is its distributive character. This
means that load is balanced among users and this makes the network more resilient to failures
and thus more robust.
Several algorithms have been proposed to solve this problem but often depend on the specific
network topology [35] and mostly focus on the optimisation version of the problem, i.e. maxi-
mizing the number of paths routed [36]. The satisfiability version of the problem, i.e. whether
all paths can be routed successfully without overlap, is not considered; theoretical studies often
give bounds to the achievable approximation instead of providing a practical algorithm for in-
dividual instances and fail to calculate path lengths and possible overlaps at the same time as
part of the optimisation process observables. In this work we focus on studying the satisfiability
version and use the cavity method to solve the problem. The results of this study can be found
in [37].

2.1.1 The NDP model

Adopting the general formalism introduced in section 2.0.5, here we specialize to the NDP case.
The peculiarity of this model is the hard constraint of node-disjointness. This corresponds to
have ||Īij|| ∈ {0, 1} and therefore we take:

f(||Ī||) =







∞ if ||Ī|| ≥ 2
1 if ||Ī|| = 1
0 if ||Ī|| = 0

(2.10)

so that the cost function (2.10) represents indeed the total path length.
One then has to solve the min-sum equation (2.6) iteratively and to do this we define a protocol
for taking into account only the allowed configurations at each edge given the current value Ī
passing through it and Λ̄i at vertex i.

If |Λ̄i| = 0 then:

Eil(Īil = 0̄) = min







�

j∈∂i\l
Eji(Īji = 0̄), (2.11)

min
j1,j2∈∂i\l;µ∈M



Ej1i(I
µ
j1i

= +1) + Ej2i(I
µ
j2i

= −1) +
�

k∈∂i\l,j1,j2

Eki(Īji = 0̄)











Eil(I
µ
il = ±1) = min

j∈∂i\l







Eji(I
µ
ji = ±1) +

�

k∈∂i\l,j
Eki(Īki = 0̄)
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If Λµ
i = ±1 then:

Eil(Īil = 0̄) = min
j∈∂i\l







Eji(I
µ
ji = ∓1) +

�

k∈∂i\l,j
Eki(Īki = 0̄)







(2.13)

Eji(I
ν
ji = ±1) = +∞ (ν �= µ) (2.14)

Eji(I
µ
ji = ∓1) = +∞ (2.15)

Eji(I
µ
ji = ±1) =

�

j∈∂i\l
Eji(0̄) + 1 (2.16)

The constant +1 that appears equations (2.12) and (2.16) are the costs assigned for a unit of
current passing through the considered edge (i.e. f(1) = 1). This cost is the one required for
the shortest paths but can be generalized to other arbitrary types of costs.

We can interpret these equations in the following way. Equation (2.11) represents the case
where i is a transit node and no current passes through edge (ij), then the allowed configurations
are that either no currents pass through the remaining neighboring edges (first term inside curly
brackets) or one current enters and then exits i through a pair of neighboring edges, all others
edges being unused (second term inside brackets). In figure 2.3(left and center) you can see a
diagram representing the different allowed configurations for a transit node. Equation (2.12)
represents the case where i is a transit node and the communication µ passes through edge (ij);
in this case the only allowed configuration is that where the same communication µ enters/exits
from one of the other neighboring edges, all others being unused. In figure 2.3(right) this
configuration is shown. Similar considerations are used to formulate the equations (2.13-2.16)
for senders and receivers.

"!!

ii i i

j2j1 j

l l l

k j

Figure 2.3: Transit node cavity diagram. Left and center represent the two terms inside the
min brackets in equation (2.11). Right represents equation (2.12).

Once convergence is achieved one can collect them and obtain the optimal solution using
(2.7) and the total path length using (2.8). Notice that, because of the choice of the cost
function (2.10), in this case total path length and total cost (2.9) exactly coincide.

2.1.2 Numerical results

For the NDP we study sparse regular, ER and RER random graphs as they are the most inter-
esting for the problem at hand, but the methodology can be easily extended to accommodate
other sparsely connected architectures. Clearly, due to the hard constraint of node disjoint
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paths, typically no solutions would be found in graphs having a non negligible number of nodes
with degree k = 1, 2. Moreover, graphs with a small number of high degree nodes (hubs) or
with high modularity measure, such as scale-free or planar graphs, are not interesting for the
node-disjoint routing problem since when a paths passes through one of these special nodes it
leads directly to graph fragmentation, hence frustration. The situation would be very different
for constraints on edges instead, but this will be explained in the next section.
From the simulations results we analyzed the statistics of the solutions’ path lengths to derive
information of the scaling with system size. Then we compared the results of the message-
passing with those given by a greedy algorithm. Here we present the main results, leaving the
details and further statistical analysis to the paper [37].
The greedy protocol considers only local information around the sources and then builds up a
solution step by step recursively, hence reducing considerably the complexity but at the same
time completely ignoring other communication positions in the network. A typical greedy algo-
rithm works in the following way: start by choosing an arbitrary pair (S,R), find the shortest
path linking the two nodes (we used breast-first search) and then remove nodes belonging to
this path from the available network nodes. Choose a second pair and repeat the procedures
until either all the M paths from sources to destinations have been established or no solution
can be found due to frustration. Clearly, the performance of this algorithm is strictly depen-
dent on the order in which we choose the pairs. For instance, in the extreme case the first
pair selected is the one with the longest shortest path among all the M communications; this
implies that we have effectively a more restricted graph and choice of paths, leading for a long
second path and even more restricted choice of paths later on.

Firstly we collected the total length of the instance for which a solution was found (un-
frustrated case). We found the scaling of the total path length to go as a cubic function of

M log V
V logγ(k−1)

with exponent γ that depends on the type of graph. A qualitative explanation of

the scaling is as follows. The average path length in random graphs goes as �l� ∼ log V/ log�k�
([38] ) and in our case we have M paths to consider. We can refine the dependence on k using
instead �l� ∼ log V/ log (k − 1). Now, suppose all communications take their shortest path, the
quantity x = M log V/ logγ (k − 1) would be a good estimate of graph occupancy for the NDP,
where the exponent γ has been introduced as a free parameter to account for the approximation
in the expression for �l� as a function of k for different types of graphs. Furthermore, if we
divide by the number of available nodes V we can define the occupancy ratio as M log V

V logγ (k−1)
= x.

Therefore in this simple case we would expect Ltot/V increasing linearly in x. If overlaps are
prohibited, for a sufficiently high value of M the communications are increasingly forced to take
longer routes, leading to a faster than linear increase in the scaling variable x. From numerical
simulations we found for the NDP a cubic increase Ltot

V
= ax + cx3 in the scaling variable

x = M log V
V logγ (k−1)

. For small M this function agrees well with the linear shortest path behavior
but for values of x > 0.2 the steeper increase of Ltot becomes predominant. These two phases
can be distinguished in figures 2.4 where the different topologies are considered and the average
connectivity is fixed (�k� = 3) so that we can fix γ = 0.

Moreover, we find that the message-passing (MP) always outperforms greedy breadth-first
search algorithms not only in finding better solution in terms of path length but also in reaching
a higher frustration threshold. This can be seen in figure 2.5 where we plot the failure ratio
defined as the number of unsuccessful instances (for which a solution is not found) over the
total number of realizations as a function of the scaling variable x. We notice that the greedy
algorithm reaches the frustration point (as a function of x) earlier than the corresponding global
MP algorithm, regardless the system sizes or graph type. This supports the reasoning that,
if a solution exists, a global management of the entire set of communications is required in
order to find an optimal solution. Whereas if each communication acts selfishly, seeking the
corresponding shortest path, unsolvable overlaps between communications emerge at lower x
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Figure 2.4: Scaling in total length. We plotted the scaling of the total length per node as a
function of M log V/V for Reg, ER and RER graphs of different system sizes; �k� = 3 for Reg
and ER and �k� = 4 for RER. We can see different slopes in the cubic fits of the various curves,
for instance ER graphs achieve shorter lengths but with higher cubic slope, meaning that their
length increases faster with traffic due to the smaller number of path choices.
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values.
The performance in term of path length is shown in figures 2.6, 2.7 and 2.8, where we plot the

total length found by the two algorithms when a solution was found. We can identify the sparse
interval where the algorithms give similar results because communications are far apart and
take the shortest paths. As the number of communications grow we observe an intermediate
regime where global optimisation performs better than greedy; and finally the dense regime
where the greedy algorithm fails to find a solution whereas the global optimisation algorithm
succeeds up to a critical M value. This shows that a global strategy is needed to optimally route
paths which do not overlap at nodes but also have minimal path lengths. Cubic fits are also
plotted (solid black line for global optimisation, dashed line for the greedy algorithm) whereas
the dotted line represents the shortest path (not considering overlap) trivial solution, i.e. the
sum of the M shortest path lengths, which is linear in x. Vertical lines show the frustration
points where no solution is found and the total path length is set to zero. Both algorithms show
an increased failure rate as the system size increases, presumably due to the unscaled limit on
the number of iterations allowed and possibly inherent finite-size effects.
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Figure 2.5: Failure rate for greedy and MP algorithms. We plotted for V = 2000 and for Reg
and ER of degree �k� = 3 and RER of �k� = 4, the failure rate as a function of M log V

V
. We can

notice that the greedy algorithm fails to find solution earlier than MP for all types of graph
considered. ER reaches frustration sooner due to less path choices, whereas RER has higher
frustration threshold because of the higher connectivity. The MP data shown are results of
averages calculated over a smaller number of instances than for the greedy algorithm, hence
the lines connecting them are less smooth.
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Figure 2.6: Expected total normalized path length - greedy vs global optimisation algorithms -
Reg graphs. System size V = 2000, 4000, 5000, 10000,γ = 0.87 and degree k = 3. Inset: Ratio
Lgreedy/LMP − 1 is plotted as a function of x. Notice the worse performance of the greedy
algorithm.
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Figure 2.7: Expected total normalized path length - greedy vs global optimisation algorithms
ER. System sizes V = 1000, 2000, 4000, 5000, γ = 0.69 and degree �k� = 3. Inset: the ratio
Lgreedy/LMP − 1 is plotted as a function of x. Notice the worse performance of the greedy.
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Figure 2.8: Expected total normalized path length - greedy vs global optimisation algorithms
RER. System sizes V = 1000, 2000, 4000 and degree �k� = 4. Inset: the ratio Lgreedy/LMP − 1
is plotted as a function of x. Notice the worse performance of the greedy.

2.2 The Edge-Disjoint Path problem

The Edge-Disjoint Path (EDP) problem is a variant of the routing problem where paths cannot
overlap at edges. A pictorial representation of the problem is given in figure 2.9.

In this way we relax a bit the hard node-disjointness constraint and allow a bigger number
of allowed configurations. Indeed node-disjointness implies edge-disjointness but the reverse is
not true. This increase in configuration space forces one to come up with a clever way to run
the message-passing equation when searching for the minimal cost neighborhood configuration
as in equation (2.6). Here we present an efficient way to perform this minimization by introduc-
ing a mapping between the EDP on a given graph and the combinatorial maximum weighted
matching [32] on an auxiliary graph.
In this work we focus on the optimisation version of the problem, namely we ask what is the
maximum number of communications Macc ≤ M that can be accommodated at the same time,
under the constraint that paths cannot overlap at edges. Moreover, the additional requirement
of minimization of the total path length will be considered.
Apart from a purely theoretical interest [39], it finds various application in communication
systems where a high quality of performance and full bandwidth exploitation is required. In-
deed routing via edge disjoint paths allows for an efficient bandwidth allocation among users
because overlap avoidance means full bandwidth exploitation by each single user. Example of
applications are in real-time servers, large-scale video-servers and in admission control virtual
circuit routing where one needs to reserve in advance a given path for each communication
request so that once the communication is established no interruption will occur. In particular
the EDP captures several aspects of the Routing and Wavelength Assignment (RWA) problem
in all-optical networks [40]. The aim of this problem is to find the optimal way to route optical
communications and the same time the optimal way to assign a wavelength to each of them so
that the least number of them will be used. Many algorithms have been proposed by computer
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Figure 2.9: An instance of the EDP problem over a 3-regular random graph of V = 20 and
M = 6: examples of solutions of the unconstrained (left) and optimal (right) EDP problem
are displayed. In the latter, the purple communication is redirected along a longer path to
avoid edge-overlap. The yellow one has two shortest paths of equal length (degeneracy) in the
unconstrained case, but once EDP is enforced this degeneracy is broken and only one of the
two is optimal (right).

scientists and engineers to tackle the EDP problem but here we focus on three of them. These
will be compared with our message-passing algorithm on several benchmark instances. The
results of this work can be found in [41].

2.2.1 The EDP model

As for the NDP, also in this case we adopt the general formalism introduced in section 2.0.5 and
specialize to the EDP case. Even in this case the disjointness constraint, this time on edges,
corresponds to have ||Īij|| ∈ {0, 1}. Again we take the cost function:

f(||Ī||) =







∞ if ||Ī|| ≥ 2
1 if ||Ī|| = 1
0 if ||Ī|| = 0

(2.17)

so that the cost function (2.17) represents the total path length. One then has to iterate
equation (2.6) until convergence and then collect the results. In order to maximize the number
of accommodated paths it is necessary to slightly modify the original instance of the graph
G(V , E) by introducing an extra edge between each pair (Sµ, Rµ) with sufficiently large cost.
This will be such that the algorithm could still always find a solution possibly using these
expensive extra edges. By construction, the cost of each of these M extra edges should be
larger than the maximum possible weight a single path can take. Then the solution of the EDP
problem is obtained by discarding the paths passing through the extra edges.
For the EDP problem it is not possible to define a protocol similar to the one used in the NDP.
In fact this is prevented by the size of the configuration space: for a given Īij the number of
possible neighboring currents entering and exiting node i grows exponentially with the degree
of that node. Nevertheless, the calculation can be performed efficiently by reducing it to a
maximum weight matching problem [32] on an auxiliary weighted complete graph G′

i. Here we
explain in more detail this mapping.
The first step is to build the auxiliary graph G′

i. This is a complete graph made of the neighbors
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Figure 2.10: Mapping into a weighted matching problem. Left: intermediate step where G′
i
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by the minimum weighted matching on the complete auxiliary graph G′′
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represent the best matching, i.e. the configuration where two other communications enter/exit
neighbors of i \ j.

k ∈ ∂i. This graph is weighted with weights on edges defined as entries of a matrix Q:

Qkl = − min
1≤|ν|≤M

{Eki(ν) + Eli(−ν)} + Eki(0) + Eli(0) (2.18)

where we adopted the shortcut Ekl(ν) = Ekl(Īkl) with Iµkl ≡ δµ,ν for ν > 0, Iµkl ≡ −δµ,ν for ν < 0
and Iµkl ≡ 0 for ν = 0. This notation maps the M-dimensional vectors Īij to the 2M+1 possible
current configurations ν allowed by the edge-disjointness constraint along a given edge. The
computation of matrix Q, that requires O(Mk2) operations, should be performed only once at
the beginning of the update routine for node i ∈ G.
The second step is to focus on a given neighbor j ∈ ∂i and a given communication µ with
the goal to update the message Eij(µ). In this case we assume that µ is passing through
the edge (ij) and therefore, for current conservation, it has to arrive from a second neighbor
l ∈ ∂i \ j. This will be the optimal one in terms of energy minimization. Then the least costly
configuration involving the remaining part of the neighborhood will be:

qmin
jl = −Mjl +

�

k∈∂i\{j,l}
Eki(0) (2.19)

where Mjl is the maximum weight of a matching on a second auxiliary graph that we define as
G′′

ijl. This graph is a complete graph as well, this time obtained from G′
i by removing nodes j

and l (and all their incident edges). A matching is a subset of edges of G′′
ijl that do not share any

vertex [32]. The maximum weighted matching is a matching with maximal weight, i.e. maximal
sum of weights of the edges belonging to the matching set. Finding Mjl is indeed equivalent
to assigning to some of the remaining pairs of neighboring nodes currents ν ∈ [−M, . . . ,M ]
that enters through one of them and exits through the other, such that the overall cost of the
configuration is minimum. The key point is that the matching condition, i.e. the fact that edges
in the solution set cannot have a vertex in common, in our problem translates in the condition
of forbidding edge overlaps. The major consequence of this fact is to reduce the computation
of the minimum inside equation (2.6) to computing the solution of a standard combinatorial
optimisation problem, i.e. the maximum weighted matching. This mapping is represented in
figure 2.10.

We can reduce further the computational complexity by a factor of M by noting the fol-
lowing. The possibility that the considered current µ passes also through another pair of
neighboring edges (different from the considered (ij) and (il)) is allowed. Nonetheless it will
be ruled out by the minimization calculation because this option will have higher cost.
In the previous argument we assumed that the neighbor l was the optimal one where µ has
to pass. Indeed the final step of the message-passing update is to minimize over the possible
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choices of l ∈ ∂i \ j given the matrix qmin. This is defined as the matrix with entries as in
(2.19). Eventually on has:

E
(t+1)
ij (µ) = min

l∈ ∂i \j

�

E
(t)
li (µ) + qmin

jl

�

+ cij(µ) (2.20)

where cij(µ) is the cost of edge (ij), that in our case is 0 if µ = 0 and 1 otherwise.
The overall computational complexity required to evaluate equation (2.20) can be split as
follows. Firstly, one needs to evaluate the weight matrix Q, this costs O(Mk2) operations.
The matching routine over the complete graphs G′′

ijl has complexity O(k3 log k) [42]. There
are O(k2) possible combinations of j and l in ∂i for which we need to calculate the matching.
Putting all together we obtain that the overall complexity of this algorithm will be:

O(k5 log k +Mk2)

which is polynomial in the variables k and M . Once we have performed this whole procedure,
we get all the information we need to calculate the 2M + 1 update messages Et+1

ij (µ), for each
j ∈ ∂ i, adding a term O(kM) to the final complexity (which is nonetheless negligible compared
to the previous two).
Finally we outline how to tackle the special cases where Λν

i �= 0 (node i is either a sender
or a receiver for a communication µ) and the case ν = 0. The case Λµ

i ∈ {±1} for a given
µ ∈ [1, . . . ,M ] requires the same computation as before but provided that an auxiliary node,
indexed by the communication label µ, is added to the original graph G and connected to
node i. Its exiting messages will be fixed once at the beginning in the following way and never
updated: Eµi(ν) = −∞ if 0 < ν = µ (sender) or 0 < −ν = µ (receiver), and Eµi(ν) = +∞
otherwise. The case of µ = 0, in which no current passes through edge (ij), regardless of what
happens on the other edges, is addressed by calculating a matching on a special auxiliary graph.
This is the (k − 1)-node complete graph composed made of all nodes l ∈ ∂ i\j.

2.2.2 Numerical results

We performed extensive numerical simulations that can be divided into two sets. The first
refers to simulations on regular, ER, SF and RER random graphs of various sizes and we com-
pared results with a greedy algorithm similar to the one used for the NDP. This time though
we restart n times the greedy (we used n = 50) and at the end kept the best results among the
n instances. We call this variant multi-start greedy (MSG). In the second set of simulations we
run message-passing on benchmark instances over various graphs found in literature [43, 44]
and compared the performance with three types of algorithms: an Ant Colony optimisation
(ACO), a Montecarlo-like Local Search (LS) and the MSG. Here we give the main results,
leaving the details to the paper [41].
Before describing the main results we may outline an efficient strategy to force messages’ con-
vergence that we adopted in all the simulations we performed. This is called reinforcement
technique [45, 46] and its based on the idea of introducing external local fields on edges so to
bias messages to align to them; thus aiding convergence but towards a sub-optimal solution.
The magnitude of these external fields is increased at each time step and is set by a parameter
that one has to tune. This controls the trade-off between faster convergence and reaching a bet-
ter solution. The details of this technique are given in appendix 1. The usage of this technique
has been particularly useful to solve instances on loopy graphs, where standard message-passing
usually fails to converge.

Firstly we found that the message-passing always outperform the greedy both in terms of
total path length minimization and in the number of accommodated paths Macc. An example
of these results is plotted in figure 2.11 for the case of SF graphs; similar results are seen for
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the other topologies. As for the NDP, this shows that an efficient usage of local information is
crucial to achieve good performances.
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Figure 2.11: MP vs greedy performance. Left: Macc/M for SF of size V = 103 and average
degree �k� = 3. Error bars are smaller than the size of the symbols. Right: relative total length
y = 100(Lg/LMP −1) between greedy and message-passing. Here Lg and LMP denote the total
path lengths calculated with MSG and MP respectively. We use Reg, RER, ER and SF graphs
of fixed size V = 103 and average degree �k� = 5. The behavior of SF is different from the
other due to the topology rich of small-degree nodes. These act as bottlenecks preventing the
use of alternative edges and thus causing frustration.

We found a scaling variable x = M logV
V

similar to the NDP case and it can be justified
using the same reasoning. In figure 2.12 we plot the scaling behavior with system size of the
fraction 1 − Macc/M of unaccommodated communications and the average total path length
L/V of accommodated paths. We can distinguish two different behaviors depending on x: for
small values almost all the paths are accommodated, whereas at some value x∗ the curves for
different values of V depart from zero. This behavior can be interpreted as a SAT/UNSAT
transition, in analogy with the terminology of constraint-satisfaction problems [3]. Notice how
the curves collapse in the SAT regime whereas they split in the UNSAT case. Nonetheless the
curves with bigger sizes seems to superimpose, suggesting to interpret x as the correct scaling in
the thermodynamic limit V → ∞. Therefore this observed mismatch could be due to finite-size
effects.

The second set of simulations involves a comparison with two other types of algorithms on
benchmark instances. The first one is an Ant Colony optimisation metaheuristic [43]. This
method builds an EDP solution incrementally from partial solutions provided by a set of M
ants. Each ant generates a path for a given communication making probabilistic decisions
during the construction steps. These are made by processing local information modeled as
pheromone information provided by other ants. The advantage of this method is to divide the
EDP in subproblems and to use local information. The drawback is that it relies on several
parameters that need to be carefully tuned in order to have a sensitive solution. Moreover the
computational time increases considerably with the system size. The second algorithm is a
Montecarlo-based Local Search [44], that uses as main Montecarlo step a path rewiring based
on rooted spanning trees. Unfortunately the running time grows rapidly with the system size,
making it computationally expensive when used on large graphs. In Table 2.1 we report the
performance comparison in terms of Macc between the two versions of MP (with and without
reinforcement) and the other 3 types of algorithms. We find the the message-passing always
performs either equally or better than the other two. Remarkably, the best performances are
given on graphs that are highly non locally tree-like as meshes and planar graphs. We would
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Figure 2.12: Finite-size effects. We plot 1−Macc/M (top) and the total length per node L/V
(bottom) for Reg (left) snd ER (right) graphs as a function of the scaling variable M logV

V
. We

can notice the finite-size effects decreasing with system size leading to the curves corresponding
to the biggest graphs V = 8000, 10000 to almost superimpose. Note that in the SAT phase the
total length grows linearly in log V for all system sizes as expected but in the UNSAT phase
the graphs split. Error bars are smaller than point size.
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expect the assumptions behind the cavity method to fail in this cases. Indeed, even though the
standard MP fails to converge, the version with reinforcement always finds a solution that is
always better than the other algorithms. The larger performance gap is seen on larger set of
commodities and bigger graphs. Performance improvement reaches 27% with respect to LS, the
best one between the other algorithms tested. The same considerations can be made in the case
of planar graphs. We claim that this gap would increase with system size, but unfortunately
the size of benchmark graphs remains limited to V ≤ 500. As a final remark: given these
algorithms did not consider path length minimization, we could not compare performance in
terms of this quantity.

2.3 The Nash equilibrium problem with congestion

The NDP and EDP problems were both characterized by the hard constraint of disjointness
with the consequence of shrinking the configuration space by preventing overlaps. It is then a
natural question to ask what could it happen if we relax this constraint further. Namely, what
happens if we do allow overlap but penalize (or reward) it. This question has already been
addressed using message-passing techniques in [47, 31]. In this case they define a non-linear
cost function f(||Īij||) such that:

f(||Īij||) = ||Īij||α (2.21)

and the goal is to find the optimal configuration that minimizes the global cost function (2.5)
that in this case is given by

�

(ij)∈E ||Īij||α. Here α is a parameter that one tunes in order

to either penalize (α ≥ 1) or convey (α < 1) traffic congestion. An example of the optimal
configurations for the two cases is given in figure 2.13. Notice that with this generalization the
total cost of a communication coincides with the communication path length only when α = 1.
In general the cost of communication µ is defined as:

dµ(γ̄) =
�

(ij)∈γµ

f(||Īij||) (2.22)

where γ̄ is the M-dimensional vector with entires γµ, the latter representing the path taken
by communication µ, i.e. γµ = {(ij) ∈ E : Iµij = 1}.

Figure 2.13: Example of congestion problem taken from [31]. The path of each communication
is illustrated by nodes and edges of a specific color, whereas black nodes are shared by more
than one path. The size of a node is proportional to the amount of traffic through it, and
square nodes represent the source or destination of each communication. Left: Optimized
solution with α = 2, congestion is penalized. Right: optimal solution with α = 1/2, congestion
is consolidated.
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Instance MP MP rein = 0.002 MSG (greedy) ACO LS MP gain vs.
Name |V | |E| �k� �M� Mmin Mmax �M� Mmin Mmax �M� Mmin Mmax �M� Mmin Mmax �M� Mmin Mmax MSG ACO LS

blrand10 1 500 1020 4.08 16.00 16 16 16.00 16 16 13.65 13 15 14.80 14 16 16.00 16 16 6.67 0.00 0.00
blrand25 1 500 1020 4.08 32.00 32 32 32.00 32 32 27.75 26 30 31.85 31 32 32.00 32 32 6.67 0.00 0.00
blrand40 1 500 1020 4.08 38.00 38 38 38.00 38 38 33.10 32 35 37.85 37 38 37.90 37 38 8.57 0.00 0.00
blrand10 2 500 1020 4.08 26.00 26 26 25.65 25 26 23.85 23 25 25.25 25 26 26.00 26 26 4.00 0.00 0.00
blrand25 2 500 1020 4.08 35.00 35 35 35.00 35 35 30.75 29 33 34.75 34 35 34.95 34 35 6.06 0.00 0.00
blrand40 2 500 1020 4.08 37.00 37 37 37.00 37 37 32.45 31 34 36.95 36 37 36.95 36 37 8.82 0.00 0.00
blsdeg10 1 500 1020 4.08 17.00 17 17 16.89 15 17 14.65 14 16 15.95 15 16 17.00 17 17 6.25 6.25 0.00
blsdeg25 1 500 1020 4.08 36.00 36 36 36.00 36 36 31.55 30 33 35.80 35 36 36.00 36 36 9.09 0.00 0.00
blsdeg40 1 500 1020 4.08 34.00 34 34 34.00 34 34 29.00 28 31 33.65 33 34 34.00 34 34 9.68 0.00 0.00
blsdeg10 2 500 1020 4.08 20.00 20 20 19.85 19 20 16.90 16 18 19.20 19 20 20.00 20 20 11.11 0.00 0.00
blsdeg25 2 500 1020 4.08 34.00 34 34 34.00 34 34 28.45 27 30 32.95 32 34 33.90 33 34 13.33 0.00 0.00
blsdeg40 2 500 1020 4.08 37.00 37 37 37.00 37 37 31.75 30 33 36.50 35 37 37.00 37 37 12.12 0.00 0.00

mesh15 10 1 225 420 3.73 22.00 22 22 22.00 22 22 20.60 20 22 19.65 19 21 21.55 21 22 0.00 4.76 0.00
mesh15 25 1 225 420 3.73 36.00 36 36 35.10 35 36 28.30 27 30 27.70 26 29 32.00 31 33 20.00 24.14 9.09
mesh15 40 1 225 420 3.73 43.00 43 43 42.50 42 43 30.10 28 32 35.30 32 38 38.80 37 40 34.38 13.16 7.50
mesh15 10 2 225 420 3.73 - - - 19.89 19 20 19.75 19 20 17.50 17 19 19.45 19 20 0.00 5.26 0.00
mesh15 25 2 225 420 3.73 35.00 35 35 34.70 33 35 29.25 29 30 29.20 28 31 33.05 32 34 16.67 12.90 2.94
mesh15 40 2 225 420 3.73 42.00 42 42 41.35 41 42 29.80 29 32 34.00 33 36 37.60 36 39 31.25 16.67 7.69
mesh25 10 1 625 1200 3.84 - - - 47.25 46 48 40.70 40 42 32.85 29 36 41.00 39 43 14.29 33.33 11.63
mesh25 25 1 625 1200 3.84 - - - 68.30 67 69 48.40 47 51 45.00 42 49 55.55 54 59 35.29 40.82 16.95
mesh25 40 1 625 1200 3.84 - - - 88.74 88 90 54.35 53 58 57.70 53 61 69.30 67 72 55.17 47.54 25.00
mesh25 10 2 625 1200 3.84 - - - 44.33 43 46 40.05 38 42 30.10 28 33 37.90 36 40 9.52 39.39 15.00
mesh25 25 2 625 1200 3.84 - - - 67.22 65 70 48.90 47 52 45.60 44 48 54.70 52 59 34.62 45.83 18.64
mesh25 40 2 625 1200 3.84 - - - 88.55 87 90 54.05 51 57 57.75 54 61 68.85 66 71 57.89 47.54 26.76
steinb4 10 50 100 4.00 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 0.00 0.00 0.00
steinb4 25 50 100 4.00 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 0.00 0.00 0.00
steinb4 40 50 100 4.00 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 19.90 19 20 0.00 0.00 0.00
steinb10 10 75 150 4.00 7.00 7 7 7.00 7 7 7.00 7 7 7.00 7 7 7.00 7 7 0.00 0.00 0.00
steinb10 25 75 150 4.00 18.00 18 18 18.00 18 18 18.00 18 18 17.85 17 18 18.00 18 18 0.00 0.00 0.00
steinb10 40 75 150 4.00 28.00 28 28 27.65 27 29 25.10 24 27 24.35 23 26 27.30 27 28 7.41 11.54 3.57
steinb16 10 100 200 4.00 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 0.00 0.00 0.00
steinb16 25 100 200 4.00 25.00 25 25 25.00 25 25 25.00 25 25 24.35 24 25 25.00 25 25 0.00 0.00 0.00
steinb16 40 100 200 4.00 36.12 36 37 36.00 36 36 33.20 32 34 32.45 32 34 35.95 35 37 8.82 8.82 0.00
steinc6 10 500 1000 4.00 50.00 50 50 50.00 50 50 50.00 50 50 49.10 47 50 50.00 50 50 0.00 0.00 0.00
steinc6 25 500 1000 4.00 125.00 125 125 122.55 121 124 107.50 106 110 89.90 85 94 104.95 102 108 13.64 32.98 15.74
stienc6 40 500 1000 4.00 145.84 144 147 140.40 139 142 114.10 112 117 109.80 106 117 121.40 119 125 25.64 25.64 17.60

steincc11 10 500 2500 10.00 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 0.00 0.00 0.00
steinc11 25 500 2500 10.00 125.00 125 125 125.00 125 125 125.00 125 125 123.30 122 125 125.00 125 125 0.00 0.00 0.00
steinc11 40 500 2500 10.00 200.00 200 200 200.00 200 200 200.00 200 200 194.25 190 198 200.00 200 200 0.00 1.01 0.00
steinc16 10 500 12500 50.00 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 0.00 0.00 0.00
steinc16 25 500 12500 50.00 - - - 125 125 125 125.00 125 125 125.00 125 125 125.00 125 125 0.00 0.00 0.00
steinc16 40 500 12500 50.00 - - - 200 200 200 200.00 200 200 200.00 200 200 200.00 200 200 0.00 0.00 0.00
plan50 10 50 135 5.40 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 0.00 0.00 0.00
plan50 25 50 135 5.40 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 0.00 0.00 0.00
plan50 40 50 135 5.40 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 19.90 19 20 0.00 0.00 0.00
plan100 10 100 285 5.70 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 0.00 0.00 0.00
plan100 25 100 285 5.70 25.00 25 25 25.00 25 25 25.00 25 25 25.00 25 25 25.00 25 25 0.00 0.00 0.00
plan100 40 100 285 5.70 37.00 37 37 37.05 37 38 35.80 35 37 34.00 33 36 36.00 35 37 2.70 5.56 2.70
plan200 10 200 583 5.83 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 0.00 0.00 0.00
pan200 25 200 583 5.83 - - - 48.95 48 50 46.50 46 48 41.80 39 43 45.95 45 48 4.17 16.28 4.17
plan200 40 200 583 5.83 - - - 60.65 58 62 52.95 52 56 49.35 47 51 55.70 54 58 10.71 21.57 6.90
plan500 10 500 1477 5.91 50.00 50 50 50.00 50 50 50.00 50 50 44.95 42 47 50.00 50 50 0.00 6.38 0.00
plan500 25 500 1477 5.91 - - - 92.29 90 94 78.15 76 80 60.95 57 65 78.20 77 80 17.50 44.62 17.50
plan500 40 500 1477 5.91 - - - 122.31 119 124 92.60 90 95 82.85 78 86 100.15 97 102 30.53 44.19 21.57

Table 2.1: Message-passing and multi-start greedy performances. Columns 1-4 give the charac-
teristics of the benchmark. For each algorithm, columns 1-3 represent the average, the minimum
and the max number of accommodated paths over 20 runs of a given set of commodity instance
respectively. ACO and LS performances are reported in [43, 44]. Performance comparison
between MP and the other algorithms is given in the three last columns, representing the per-
formance ratio 100 · (MBP

acc /M
alg
acc − 1) where alg indicates the algorithm used (MSG, ACO and

LS respectively). We use as MMP
acc the best one between MP with and without reinforcement.
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This edge cost f can be generalized to any (non pathological) cost function to address spe-
cific needs. They have compared results obtained with their proposed message-passage routine
with both a greedy Dijkstra [48] and a multi-commodity flow algorithm. They found a gain in
cost of around 20% with respect to the Dijkstra and a smaller one when compared to the multi-
commodity. The great advantage of the message-passing is that not only is distributed, uses
local information, and does not require fine-tuning of parameters, but is flexible with respect to
the choice of cost function. This is important in particular in the case of concave cost functions,
i.e. when traffic congestion is rewarded, where multi-commodity flow is not applicable.

In that work they were interested in finding the global optimum. Even though the premises
are the same, in this work we ask a different question: what is (if it exists) the Nash equilibrium
solution? For Nash equilibrium we mean the concept defined in game theory where each player
(communication) will not gain by changing is strategy (path) if all the others’ remain the same
[49]. This can be formalized by defining c(σi|σ̄∂i) as the cost payed by the player i to adopt the
strategy (the variable) σi given the neighbors’ configuration is σ̄∂i. A configuration (σ∗

i , σ̄
∗
∂i) is

a pure Nash equilibrium [49] when:

c(σ∗
i |σ̄∗

∂i) = min
σi

c(σi|σ̄∗
∂i) (2.23)

Briefly, each player makes the best decision based on his knowledge on the others’ strategies.
The difference is subtle. Indeed the global optimum is when no single user can be better-off
by a change of path without causing the others’ paths to get more costly. Therefore in general
Nash equilibrium and global optimum do not coincide.
The main challenge concerning these two generalization of the routing problem (global optimum
and Nash equilibrium) is how to find the solution given the high number of communications
involved and the size of the network. The configuration space is exponential in the number
of communications therefore one needs to find a clever way to run through the neighbors
configuration in the calculation of the minimum inside (2.6). In [31] they adopted a mean-
field approximation. At each iteration step they calculated a mean-field current λMF

ki along
edge (ki) ∈ E representing the optimal configuration of communications passing along that
edge, based on the last message-passing update. The idea is to then update a message Eµ

ij(Īij)
(∀µ) approximating the currents passing along the neighborhood with the set of ki − 1 mean-
field currents {λMF

ki }k∈∂i\j. We will adopt a similar strategy adapted to a Nash equilibrium
formulation in the next sections. We should remark that this is an on-going work [50], for
which the theoretical framework has been set up but results from numerical simulations are
still to be obtained. Therefore in this thesis we will focus on the theoretical description of the
model leaving the numerical tests for a future manuscript [50].

2.3.1 The game theoretical formulation

Here we give the main definitions and principles needed to formulate our problem in the context
of game theory. Our model of routing will be introduced only in the next section.
The Nash equilibrium version of the routing problem is often called congestion game in the
context of game theory and was first proposed by Rosenthal in 1973 [51]. In this context it is
often convenient to define a so called potential function Φ(γ̄). This is a real valued function
of the M-dimensional vector made of the communication paths γ̄, where each of its entries
represents the path taken by communication µ, i.e. γµ = {(ij) ∈ E : Iµij = 1}.
Suppose for a moment that a given communication µ changes its path from γµ

1 to γµ
2 , while the

other communications do not change. If the change in cost for the communication ∆dµ =
dµ(γ2) − dµ(γ1) is equivalent to the change of the potential function ∆Φ = Φ(γµ

2 , γ̄
−µ) −

Φ(γµ
1 , γ̄

−µ), where γ̄−µ is the (M − 1)-dimensional vector where µ is not present, then the
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potential function is said to be exact. This definition can be generalized to the one of an
ordinal potential in the case where we don’t have an exact equality. In fact if we change a
communication path µ such that: ∆dµ < 0 implies ∆Φ < 0, then Φ is said to be an ordinal
potential. These two definitions are useful because potential functions have nice properties, the
most important one being that they admit a pure Nash equilibrium, this is the strategy γ̄∗ that
minimizes Φ(γ̄) [52]. Rosenthal proved [51] that a congestion game always admits a potential
function. Then, if we start from a given set of paths γ̄, and at each step which change one of
them so to reduce its cost, then also Φ(γ̄) will be reduced equally. Given that the potential
admits a finite amount of values, eventually it will reach the minimum. Indeed we can define
an exact potential as:

Φ(γ̄) =
�

(ij)∈E

nij(γ̄)
�

k=1

f(k) (2.24)

where nij(γ̄) is the max number of communications passing along edge (ij) given the set of
communications γ̄, i.e. it is equal to ||Īij|| given the set γ̄; f is the cost as defined in (2.21). The
second sum in (2.24) allows to write ∆dµ = dµ(γ2)− dµ(γ1) = Φ(γµ

2 , γ̄
−µ)− Φ(γµ

1 , γ̄
−µ) = ∆Φ,

this equality being valid for each change involving a single communication from γµ
1 to γµ

2 .
The spin-glass model [24] on a graph G = (V , E) is an example of a game that admits an exact
potential function. In this model a variable σi ∈ {−1,+1} is assigned to each node i ∈ V of the
graph and its cost is represented by hi = σi

�

j∈∂i Jijσj . The set of random variables {Jij}(ij)∈E
represents the disorder. One can then define the potential function Φ(σ̄) =

�

j<i Jijσiσj and
verify that for each arbitrary single-spin flip σi → σ′

i = −σi we have ∆hi = ∆Φ. Therefore it
is an exact game.
Even though in principle one could reach the Nash equilibrium by performing a set of successive
changes to a single communication path at each step, a strategy that is called best response, this
could take an exponential number of them. Suppose one could define the neighbor of a solution
of a game, in our case a set {Īij}(ij)∈E such that the constraints are satisfied, as another solution
which is somehow close to the previous one (one has to specify what is meant by close). For
example, in our case a neighbor could be the same set {Īij}(ij)∈E but this time one of the com-
munications takes another path, still respecting the constraints. In general this other solution
has a different cost (or energy). Then one can define a local protocol where, starting from a
given configuration, one replaces it with another one belonging to its neighborhood if this other
costs less. One iterates until no neighbor could be found with less cost. This means that a
local optimum has been reached. A typical example is the simulated annealing [53]. Assuming
that the best response of a player can be computed in polynomial time, it has been shown [54]
that the problem of finding Nash equilbria in a congestion game is among the PLS-complete
problems [55]. This means that firstly it is among the complexity class PLS (Polynomial Local
Search) [52]. Namely, one has to be able to establish if a given solution is locally optimal in
polynomial time; if it is not, one should be able to find a less costly one in its neighborhood.
PLS-Complete means that there exists a polynomial time reduction from all the other PLS
problems to the considered game, such that the local optima of the target problem coincide
with the ones of the original game. From these definitions it follows that congestion games,
which are in PLS-Complete, do have local optima. However, given that the configuration space
could be exponential, it could take exponential time to reach these local optima.

2.3.2 The model

In spite of what was needed in the formulation of the NDP and EDP, in the Nash equilibrium
version of the problem it is not enough to parametrize the model using only one variable Īij.
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This time we then define Iij as the net flux passing through an edge (ij) ∈ E , i.e. it is the
equivalent of ||Īij|| of the previous two formulations. For clarity it is convenient to parametrize
whether a communication passes or not through an edge using a different variable σµ

i (c.f. Iµi )
so that:

σµ
i =







1 if µ flows from i to j
−1 if µ flows from j to i
0 if µ does not pass trough (ij)

(2.25)

Therefore Iij =
�M

µ=1 |σ
µ
ij |. One could then define theM-dimensional vector σ̄ij = (σ1

ij , . . . , σ
M
ij )

denoting the currents’ configuration along edge (ij).
The cost paid by each communication to pass along an edge is:

cµij = |σµ
ij |φ(Iij) (2.26)

where φ(Iij) is a function of the net flow, it could either penalize or favor traffic congestion.
Then the global cost of edge (ij) is the sum of each communication’s cost: cij(Iij) = Iijφ(Iij).
Finally the total cost of a configuration {σ̄} is:

c({σ̄}) =
�

(ij)∈E
Iijφ(Iij) (2.27)

Notice that, with this definition, a linear edge cost φ(Iij) = Iij would correspond to a non-
linear (quadratic) global cost. Hence is enough to fix it linear to obtain a rich behavior. Even
in this case one constraint is given by Kirchhoff law at nodes using the same definition Λµ

i as
in (2.2):

�

∈∂ i

σµ
ij − Λµ

i = 0 ∀µ = 1, . . . ,M (2.28)

However this time the constraint characterizing the problem is the Nash constraint: for each
node we have to verify that it has the minimal distance (in terms of the cost we defined above)
from the source:

dµi = min
k∈∂i

{dµk + φ(I−µ
ki + 1)} (2.29)

where we introduced the variable dµi defined as the distance of node i from the source of
communication µ. The variable I−µ

ki represents the total flux on edge (ij) in the absence of
communication µ: this is a common notation in game theory where each player estimates the
others’ behavior and then adapts its strategy consequently. With this in mind, the +1 term in
(2.29) takes in consideration the presence of µ itself along that edge. This definition of distance
should not be confused with the path length. In fact the two would coincide only if φ(I) is
linear. Also in this case one could define an M-dimensional vector d̄i which has entries as in
(2.29).
In order to enforce the Nash constraint, along with the Kirchhoff law, it is convenient to use
the vector (d̄i, d̄j, σ̄ij, Iij) as the variable node in the factor graph representation. We then have
one type of function nodes Ψi acting on the neighborhood of a node i that represent the two
constraints; then we have another type of function node ψij that acts only on one variable node

and this represents both the cost function cij(Iij) and the condition Iij =
�M

µ=1 |σ
µ
ij | (this could

be interpreted as another constraint). This can be seen as a field acting on the edge (ij). The
factor graph is displayed in figure 2.14.

With this setting we can formulate the problem using the max-sum equations corresponding
to (2.6) but this time we take minus the cost (so the minimum becomes a maximum) and we
use two types of messages. One is used to enforce the constraint Iij =

�M
µ=1 |σ

µ
ij|, whereas the

other is the standard one of the message-passing formalism:
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Figure 2.14: Factor graph representation of the Nash equilibrium problem. Variable nodes
are the vectors (d̄i, d̄j, σ̄ij, Iij); function nodes are of two types: Ψi are acting on the whole
neighborhood of i and represent Nash and Kirchhoff constraints; ψij acts only on one variable

node and represents the cost function and the condition Iij =
�M

µ=1 |σ
µ
ij |.

hij(d̄i, d̄j, σ̄ij, Iij) = max
d̄k, σ̄ki, Iki, k ∈ ∂i \ j :
constraints

�

�

k

ĥki(d̄k, d̄i, σ̄ki, Iki)− Iijφ(Iij)

�

(2.30)

ĥij(d̄i, d̄j, σ̄ij, Iij) =

�

hij(d̄i, d̄j, σ̄ij , Iij) if Iij =
�M

µ=1 |σ
µ
ij |

−∞ otherwise
(2.31)

Notice that the term −Iijφ(Iij) has to be included inside the max because the constraint

Iij =
�M

µ=1 |σ
µ
ij| has to be enforced as well as the others. Solving this equation is highly non-

trivial. The major difficulty comes from the presence of the term Iij that couples together all
the communications, thus preventing to split the message hij into a sum of M terms. This can
be seen by making the following assumption:

hij(d̄i, d̄j, σ̄ij, Iij) =
�

ν

hν
ij(d

ν
i , d

ν
j , σ

ν
ij , Iij) (2.32)

and plugging it inside both sides of (2.30) (and considering the equivalent assumption valid for
(2.31). We obtain:

�

ν

hν
ij(d

ν
i , d

ν
j , σ

ν
ij , Iij) = max

d̄k, σ̄ki, Iki, k ∈ ∂i \ j :
constraints

�

�

ν

�

k

ĥν
ki(d

ν
k, d

ν
i , σ

ν
ki, Iki)−

�

ν

|σν
ij |φ(Iij)

�

(2.33)
The flow Iki inside the the first sum on the right-hand side of this equation prevents from

splitting the max into a sum of max over the different ĥν . In order to allow this decoupling we
need to introduce a mean-field approximation.
Suppose indeed that along the neighbors k ∈ ∂i \ j, instead of having a variable flux Iki, the
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current is fixed to Îki =
�

µ |σ̂
µ
ki|, where the σ̂µ

ki are the corresponding background communica-
tions contributing to the total background flow. We call this current the background current.
This can be considered as the optimal flow passing along the neighbor estimated using the
messages resulting from the last iteration. This background current acts as a mean-field and
allows us to decouple the messages as:

hν
ij(d

ν
i , d

ν
j , σ

ν
ij , Iij) = −|σν

ij |φ(Iij) + max
dνk ,σ

ν
ki:constraints

�

k∈∂i\j
ĥν
ki(d

ν
k, d

ν
i , σ

ν
ki) (2.34)

ĥν
ki(d

ν
k, d

ν
i , σ

ν
ki) = hν

ki(d
ν
k, d

ν
i , σ

ν
ki, Î

−ν
ki + |σν

ki|) (2.35)

Notice the term Î−ν
ki appearing in the second equation. This is the background flow in the

absence of communication ν, i.e. we have Îki = Î−ν
ki + |σν

ki|. This definition of background flow
can be formalized with a self-consistent pair of equations:

Îij =
�

µ

|σ̂µ
ij | (2.36)

σ̂µ
ij = argmax

σµ
ij

max
dµi ,d

µ
j

hµ
ij(d

µ
i , d

µ
j , σ

µ
ij , Îij) (2.37)

Notice that the background current Îij and the corresponding σ̂µ
ij are not symmetric. This is

given by the fact that the message hij itself is not symmetric. In fact hij and hji represent two
different cavity subgraphs generating from the removal of edge (ij) from the original graph.
The equations (2.36) and (2.37) represent the optimal configuration (under the mean-field
approximation) along edge (ij) in the cavity graph, subsequent to the last cavity update.
This time the algorithm makes one additional step needed to calculate the background current.
We can summarize the algorithmic procedure as follows:

• Initialize randomly the messages hν
ij(d

ν
i , d

ν
j , σ

ν
ij , Iij)

• Calculate the sets of background currents {Îij} and {σ̂µ
ij} ∀(ij) ∈ E

• Pick arbitrarily an edge (ij) ∈ E and update using (2.34) and (2.35)

• Calculate the new background currents on (ij) using (2.36) and (2.37)

• Repeat for all other edges

• Repeat the whole procedure until messages hν
ij(d

ν
i , d

ν
j , σ

ν
ij, Iij) converge

Upon reaching convergence, one collects the converged messages h∗ν
ij (d

ν
i , d

ν
j , σ

ν
ij , Iij) and cal-

culates the optimal configuration and its cost. The first one is obtained by combining the
in-going and out-going messages on a given edge:

I∗ij =
�

µ

|σ∗µ
ij | (2.38)

σ∗µ
ij = argmax

σµ
ij

max
dµi ,d

µ
j

�

h∗µ
ij (d

µ
i , d

µ
j , σ

µ
ij , Iij) + h∗µ

ji (d
µ
j , d

µ
i ,−σµ

ij , Iij) + |σµ
ij |φ(Iij)

�

(2.39)

where the last term is added to avoid cost double counting. Notice that this time the resulting
currents σ∗µ

ij and I∗ij are indeed symmetric. The optimal distances d∗µi will be the one used to
calculate (2.39):

(d∗µi , d∗µj ) = argmax
dµi ,d

µ
j

max
σµ
ij

�

h∗µ
ij (d

µ
i , d

µ
j , σ

µ
ij , Iij) + h∗µ

ji (d
µ
j , d

µ
i ,−σµ

ij , Iij) + |σµ
ij |φ(Iij)

�

(2.40)

Finally the optimal global cost will be:

c∗ =
�

(ij)∈E
I∗ijφ(I

∗
ij) (2.41)
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The actual implementation of the cavity equations poses some numerical challenges. The
major one is how to enforce the constraints efficiently, i.e. without running an extensive search
through the configuration space. Indeed enforcing Nash and Kirchhoff has the effect of coupling
the variables dµi and σµ

ij together. Think for instance at the case where for an internal node
i (i.e. Λν

i = 0) we have incoming and outgoing flows obeying Kirchhoff law: ∃k1, k2 ∈ ∂i |
σν
k1i

= +1, σν
k2i

= −1 and ∀k ∈ ∂i \ k1, k2 we have σν
ki = 0. In this case if we want to obey

also Nash equilibrium (i.e. dνi = maxk∈∂i
�

dνk + φ(I−ν
ki + 1)

�

) we need dνi = dνk1 + φ(I−ν
k1i

+ 1),
dνk2 = dνi + φ(I−ν

ik2
+ 1) and ∀k ∈ ∂i \ k1, k2 we need dνk + φ(I−ν

ki + 1) ≥ dνk1 + φ(I−ν
k1i

+ 1).
Another non-trivial task is how to parametrize the variables. In fact for a communication

made of r edges, dµi could take in principle any value from 0 to rφ(M). The latter represent-
ing the case where the communication path is crowded with M communications on all the r
edges. Practically though, this range is reduced because it is quite unlikely that dµi will be near
rφ(M), this is due to the Nash constraint (2.29). Therefore it is reasonable to assume that the
length is bounded to have maximal value dmax ≪ rφ(M), thus a possible parametrization is
dµi ∈ [0, dmax] with increments of φ(1) between two successive values in this interval.

At the moment we lack numerical results for testing the validity of this theoretical setup.
This is planned to be done in the next future and the results will appear in [50].
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Chapter 3

The Matrix Product State

approximation for the dynamic cavity

method

The dynamic cavity method introduced in section (1.2) is affected by a major problem. In is
exact form and if no assumptions are made about the network topology nor on the type of the
dynamics, it has an exponential complexity in time t. This allows the numerical implementation
only for few time steps, otherwise one is forced to formulate assumptions in order to make the
problem solvable. In the following we introduce a method used in quantum mechanics to
describe many-particle systems, the Matrix Product States (MPS). We will show how this
can be adapted to the cavity formalisms allowing to set up an approximation that scales only
polynomial in time. This adapts to describe parallel dynamics and has the potential to allow
the treatment of dynamical processes on infinite systems where standard techniques such as
Monte Carlo Markov Chain (see section 1.2.3) simulations fail. The results of this work will
soon appear in a future manuscript [56].
An important feature of this method is that it allows the estimate of marginal probabilities of
various types: either of a single trajectory or of a given configuration at a specific single time
step. In this case Monte Carlo becomes extremely inefficient because of the computational
cost required to run over a large portion, if not all, of the configuration space. Knowing the
probability of a given configuration σ̄T = (σT

i , . . . , σ
T
N ) at t = T could be useful in the context

of rare events. Consider for instance a dynamical process and a particular event which has a
low probability to happen but if it happens this will have major consequences, for instance an
earthquake or a bank failure. It should be of great interest to estimate the probability of this
to happen. The knowledge of the marginals in thus paramount when considering extreme or
rare events.
Another example is the case where one wants to estimate what was the more likely initial
condition σ̄∗ such that a given event σ̄T has been experienced at t = T . This is equivalent to
ask for:

σ̄∗ = argmin
σ̄0

P (σ̄0|σ̄T ) (3.1)

where P (σ̄0|σ̄T ) is the likelihood of having initial configuration σ̄0 conditioned to have the final
configuration σ̄T . This could be solved using Bayesian maximum likelihood. In this case one
assumes that:

P (σ̄0|σ̄T ) ∝ P (σ̄T |σ̄0) (3.2)

and therefore one needs to quantify the quantity P (σ̄T |σ̄0) in order to solve the problem. The
dynamical cavity method allows for such an estimate but, given the exponential number of
possible trajectories starting with a configuration σ̄0 and leading to the final σ̄T , it is in general
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not feasible if considering exact equations as in (1.17).
The remaining of the chapter is divided as follows: in section 3.1 we will introduce the

general framework of the MPS as it is used in the context of many-particle physics. The
adaptation of this method to the description of the dynamical cavity equations is given in
section 3.2. There we will both describe the model and present some preliminary numerical
results supporting the method.

3.1 The Matrix Product formalism in many particle

physics

In this section we give the theoretical background needed to understand the MPS formalism
used to describe the approximation of the dynamic cavity equations given in the next section
(3.2). We will set up the main framework used in quantum mechanics and introduced some
techniques of linear algebra needed for the actual numerical implementation.
In quantum mechanics the configuration space describing a many-particle system is in general
exponential in the number of particles. Therefore it can be computationally unfeasible to find a
particular state, for instance the ground state. Nonetheless it is reasonable to think that, if the
Hamiltonian describing the system is local, the search for a given state should be focused around
a small subset of the entire space. This suggests to find an efficient parametrization of the states
so to restrict the search around a sensitive neighborhood inside the complete configuration
space. In fact a given state can be written exactly as a product of matrices, the so called
Matrix Product State representation (MPS) [57]. In order to introduce this parametrization we
need two related concepts: the Singular Value Decomposition and the Schmidt decomposition.
These two ingredients will eventually enable the MPS decomposition.
Is a standard result of linear algebra that a given M ×M matrix A can be decomposed [58] as:

A = USV (3.3)

where U, V are unitary matrices, i.e. U †U = � and V V † = �, the symbol † denotes the
adjoint of the matrix and � is the (in this case M-dimensional) identity matrix. Whereas
S = diag(s1, . . . , sM) and the numbers si are called singular values. This can be written also
as:

Aab =
M
�

k=1

UakskVkb (3.4)

where Aab’s denote the entries of the matrix A. This decomposition is called the Singular Value
Decomposition (SVD).
One could then use the SVD to rewrite a pure quantum mechanics state, denoted as |Ψ� (using
Dirac notation [59]), in form of another decomposition by using the singular values si. The
state |Ψ� can be thought as a function containing the information about the probability of a
given configuration of quantum particles. This allows an analogy with the messages (1.17) in
the dynamic cavity method formalism.
In quantum mechanics [59] a state |Ψ� in a space AB is pure if it can be written as:

|Ψ� =
�

ij

Ψij |i�A |i�B (3.5)

where {|i�A} and {|i�B} are orthonormal basis of the spaces A and B. These could have in
principle different dimensions NA and NB but here we focus on our case which is NA = NB = M .
The coefficients Ψij can be seen as entries of a M × M matrix Ψ. Decomposing this matrix
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using SVD (3.4) leads to:

|Ψ� =
M
�

k=1

sk |a�A |b�B (3.6)

where |a� = �

a Uak |i�A and |b� = �

b V
∗
bk |i�B. From this we see that due to the orthonormality

of U and V also {|a�A} and {|a�B} are orthonormal basis of the spaces A and B. If the sum is
restricted to run over the sk > 0 equation (3.6) is called Schmidt decomposition. If the number
of such positive non-zero singular values is greater than 1, it means that |Ψ� is entangled.
Bearing in mind that the overall space AB can be huge, the form (3.6) suggests a convenient
approximation of the state |Ψ� into another state |Ψ̃� defined in a smaller space. In fact, if
one orders the singular values in decreasing order of their magnitude then one can neglect the
smaller si according to some criteria. The dimension M could then be reduced by truncating
the original matrix Ψ by keeping only the first M̃ entries of the matrices U and V of the singular
value decomposition (3.4), where we assumed that the si are ordered as described before. This
defines another matrix Ψ̃ so that the approximate state is:

|Ψ̃� =
M̃≤M
�

k=1

sk |ã�A |b̃�B (3.7)

where |ã� and |b̃� are the M̃ dimensional vectors which are made of the first M̃ entries of the
original |a� and |b� appearing in (3.6). This procedure is called truncation and the quality of
the approximation depends on how it is performed: the bigger the truncation, i.e. the bigger
the number of singular values neglected, the worsen the approximation.
It is important to say that the quality of the approximation should be given in terms of the
2-norm || |Ψ� ||22 of |Ψ�, which is the quantity of our interest given the analogy with the messages
in the cavity formalism. The 2-norm is defined as:

|| |Ψ� ||22 =
�

ij

|Ψij|2 �i|i�A �i|i�B (3.8)

Hence, starting from orthonormal basis {|i�A} and {|i�B}, we can write:

|| |Ψ� ||22 =
�

ij

|Ψij|2 = ||Ψ||2F (3.9)

where ||Ψ||F denotes the Frobenious norm of the matrix Ψ [58]. Equation (3.9) shows that
controlling the quality of the truncation, i.e. of the approximation of the state |Ψ� in terms of
the 2-norm, is equivalent to control the Frobenious norm of the matrix Ψ. This will be useful
when considering matrix products.
Equation (3.8) could also be written in terms of the singular values as:

|| |Ψ� ||22 =
M
�

k=1

s2k �a|a�A �b|b�B (3.10)

thus the quality of the truncation can be measured by the number of truncated singular values.
This also shows that we need orthonormal basis {|a�A} and {|a�B} in order to control the
approximation. Supposing this is the case, then we have that:

|| |Ψ� − |Ψ̃� ||22 =
�

�

k>M̃

s2k (3.11)

Considering a 1D chain long L of particles σi (with i = 1, . . . , L) we can generalize the state
representation (3.5) to the case:

|Ψ� =
�

σ1,...,σL

cσ1,...,σL
|σ1, . . . , σL� (3.12)
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where there are exponentially many, dL, coefficients cσ1,...,σL
. It is possible [57] to rewrite these

coefficients in a more convenient way as a product of matrices. This can be obtained by first
building, starting from the left, an initial matrix Ψ of dimension d× dL−1 as:

Ψσ1,(σ2,...,σL) = cσ1,...,σL
(3.13)

and then by performing successive SVD to it combined with some indices rearrangements.
Eventually [57] on obtains the matrix product representation:

|Ψ� =
�

σ1,...,σL

Aσ1 . . . AσL |σ1, . . . , σL� (3.14)

where Aσ1 , . . . .AσL are matrices of dimension at most (1×d), (d×d2), . . . , (dL/2−1×dL/2), (dL/2×
dL/2−1), . . . , (d2 × d), (d× 1) respectively.
This shows that they can blow up exponentially, thus preventing their numerical determination.
Similar MPS representations can be obtained [57] by starting with a matrix Ψ as in equation
(3.13) but starting ordering indices from the right, i.e. Ψ(σ1,...,σL−1),σL

= cσ1,...,σL
, or a combina-

tion of the two. Regardless the starting method, in general the matrices obtained in the MPS
are subject to a gauge degree of freedom that can be exploited to simplify manipulations.
Nonetheless the main problem remains: the dimension of these matrices can be exponential.
Indeed one could reduce this complexity by performing a truncation that keeps only a bounded
number M̃ < M of singular values. This will mean to compress the size of the matrices A so
to keep only the first M̃ rows and columns, thus obtaining new matrices Ã which are approxi-
mation of the previous ones.
As we said before, the magnitude of the truncation directly affects the quality of the approxi-
mation. Hence it is important to always specify what is the rule used to truncate. Two possible
truncation criteria can be considered in the MPS routine.
The first fixes a priori the number of singular values kept at each iteration update. This is
equivalent to fix the maximum matrix dimension M̃ .
The second fixes a threshold Lmax for the Frobenious norm of the difference in the exact matrix
A and its approximated counterpart Ã. Then in this second criterium one cuts the maximum
number of singular value so that the threshold norm is not overcome. This can be formalized
as follows: one as to find the minimum integer number M̃ ≤ M such that:

||A− Ã||2 =
�

�

i>M̃

s2i < Lmax (3.15)

where the truncated Ã is a M̃ × M̃ matrix with entries Ãab =
�M̃

k=1 UakskVkb and the sin-
gular values si are intended to be ordered in the decreasing order of their magnitude, i.e.
s1 ≥ s2 ≥ · · · ≥ sM .
To summarize, in this section we have introduced the MPS representation of a many-particle
quantum state. The exact representation involves matrices that in general can have a dimen-
sion blowing up exponentially. However, the MPS allows to perform a natural approximation
by keeping only the first M̃ singular values and thus compressing the original matrix, with the
effect of reducing the complexity from exponential to polynomial. This concept of approxi-
mating a matrix through truncations will be the main idea behind the dynamic cavity method
approximation which will be the subject of the next section.

3.2 The Matrix Product State representation of parallel

dynamics

Here we present an approximation of the dynamic cavity method introduced in section 1.2. The
main objective of this approximation is to reduce the complexity from exponential to polynomial
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and this is done by exploiting the concept of Matrix Product State (MPS) representation
introduced above. The idea is to make an analogy between a pure many-particle state of
quantum mechanics and the messages of the cavity method. That an analogy may be foreseen
is suggested by the fact that both these quantities contain information about the probability
of a given state. In quantum mechanics an entangled state cannot be factorized as a tensor
product of single states defined in different spaces. This means that different subsystems cannot
be treated as completely independent in an entangled state. Usually this entanglement arises
as a result of interactions between degrees of freedom of single-particle states. At the same
time under a generic dynamics, a cavity message cannot be factorized in time as a result of
the overall dynamics not being Markovian. Motivated by the fact that the complexity of a
many-particle quantum state can be reduced using MPS decomposition, we try to exploit the
same tool applying it to our problem.

The complexity of the cavity equation (1.17):

µij(σ̄
t+1
i |σ̄t

j) =
1

Zij

Pi(σ
0
i )

�

{σ̄t−1
k }

t
�

s=0

W (σs+1
i |σs

i , {σs
j}j∈∂i)

�

k∈∂i\j
µki(σ̄

t
k; σ̄

t−1
i ) (3.16)

is exponential in time because the path trajectory σ̄t
i can take dt possible values, where d is

the number of values that the variable σt
i can take. Therefore it can be numerically implemented

only up to few time steps. However the complexity can be substantially reduced if one assumes
that it can be factorized in time:

µij(σ̄
t
i |σ̄t−1

j ) =

t
�

s=0

µs
ij(σ

s+1
i |σs

j ) (3.17)

This assumption, the time-factorization approximation, should be intended valid in the sta-
tionary state t → ∞ where is reasonable to expect that messages do not depend on time but
it should not be applied to describe transient times where the dynamics is not Markovian. On
the computational side this assumption allows a feasible numerical implementation because the
complexity is reduced from exponential to polynomial in time.
Our idea is to write the general message µij(σ̄

t
i |σ̄t−1

j ) in a factorized form different from (3.17)
but that is valid ∀t, not only in the stationary state and regardless the properties of either
the network topology (directed or undirected) or the form of the dynamics (reversible or irre-
versible). This factorization is made in form of products of matrices, in analogy with what is
done in quantum mechanics to study entanglement between particles. Indeed in section (3.1)
we saw how to approximate a generic pure many-particle quantum state by representing it as
a product of matrices (3.14) and then compressing them by keeping only the biggest singular
values. Here we adapt the same idea to the representation of the messages.
We propose the following Matrix Product States (MPS) factorization ansatz for the dynamic
cavity equations:

µij(σ̄
t
i |σ̄t−1

j ) = A
(t+1)
ij (σt

i)A
(t)
ij (σ

t−1
i )

�

t
�

s=1

A
(s)
ij (σ

s−1
i |σs

j )

�

A
(0)
ij (σ0

j ) (3.18)

where the quantities A’s have the following shape: A
(t+1)
ij (σt

i) is a 1×M matrix; A
(t)
ij (σ

t−1
i ) and

all the A
(s)
ij (σ

s−1
i |σs

j ) are M ×M matrices; A
(0)
ij (σ

0
j ) is a M × 1 matrix. Therefore µij(σ̄

t
i |σ̄t−1

j )
results in a scalar quantity as it should be.
The matrix dimension M is in general determined by the number of neighbors of i and to the
quality of the approximation, thus it may differ for different messages and time steps. At the
initial time step one could simply fix M = 1 and then, iterating in time, this dimension will in
general blow up. The idea is then to control this increase in matrix dimension by performing
a truncation based on the singular values of the matrices A’s. We will explain this in more
details below but first we analyze the equation (3.18).
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The equation is saying that the messages can indeed be factorized in time but not as product
of messages itself, instead they are factorized as a structured combination of entries of matri-
ces. Each of these matrices being a function of only two successive time steps. This complex
combination is supposed to capture the whole information about the correlations in time of the
path trajectories. Therefore it is not assuming Markovianity and thus it should be valid ∀t, not
only for the stationary state but also for the transient times. The fact that the matrices A

(s)
ij

depend on only two time steps and not on the entire trajectory, could allow for a reduction in
complexity from exponential to polynomial in time. The product of such matrices entangles
the dynamics at different time steps together, thus processing the entire history without mak-
ing any assumption about the dynamics. The only requirement given by the matrix product
representation (3.18) is that the update should be made in parallel and with synchronous steps.
This is due to the number of matrices produced at each time step that have to be consistent
among all the edges in order to then insert them into the product over neighbors k ∈ ∂i \ j in
the left-hand side of (3.16).
Assuming the validity of the ansatz (3.18) on can insert it into (3.16) and obtain the update
rule consistently:

µij(σ̄
t+1
i |σ̄t

j) = B
(t+2)
ij (σt+1

i )B
(t+1)
ij (σt

i)

�

t
�

s=1

B
(s)
ij (σs−1

i |σs
j )

�

B
(0)
ij (σ0

j ) (3.19)

=
1

Zij
Pi(σ

0
i )

�

{σ̄t−1
k }

t
�

s=0

W (σs+1
i |σs

i , {σs
j}j∈∂i)×

×
�

k∈∂i\j

�

A
(t+1)
ki (σt

k)A
(t)
ki (σ

t−1
k )

�

t
�

s=1

A
(s)
ki (σ

s−1
k |σs

i )

�

A
(0)
ki (σ

0
i )

�

(3.20)

Notice that in Aij(σ
t−1
i |σt

j) the time indices are swapped as compared to their order inside the
transition probability. This is a necessary choice in order to get consistent representation for
the left and right-hand sides of equation (3.19). In particular this allows to perform efficiently
the product:

W (σs
i |σs−1

i , {σs−1
j }j∈∂i)

�

k∈∂i\j
A

(s)
ki (σ

s−1
k |σs

i ) (3.21)

because the variables σs
i and σs−1

k appear with the same time index in both the terms. One
could then perform a tensor product exploiting this consistency in the order of the indices.
The ansatz as it is, it’s exact to describe the cavity equations (3.16) but the size of the matrices
A’s increases with time, therefore leading to the exponential complexity of the original problem
if this increment is not controlled. The idea is thus to control the matrices’ dimension by
limiting it, at each time step, to an arbitrary maximum value that one has to fix in order
to tune the quality of the approximation, thus reducing the computational complexity. A
sensitive dimension control is achieved by rewriting the matrices A in the form of a Singular
Values Decomposition (SVD) [58], a linear algebra technique introduced above (3.4). In our
case this means to decompose the matrix A(σ|σ′) (where we omitted the superscript (s) and
the subscript ij for simplicity) as:

[A(σ|σ′)]a,b =
�

k

U(σ,a),kskVk,(σ′,b) (3.22)

where we are using the notation Um,n to denote the entry of a matrix so that it will be more
convenient to represent tensors. In fact in the numerical implementation on treats the matrix
A(σ|σ′) as a tensor made of 4 indices: one for each variable σ, σ′ and one for each entry a, b of
the matrix. This tensor will then be split among the unitary matrices U and V . To achieve
this one writes a new variable (σ, a) that will denote the row of the entry U(σ,a),k . This will be
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used to move variables σ among different positions in the matrix product ansatz. In particular
this will let us write A

(s)
ij (σ

t−1
i |σt

j) with the first variable (σi) appearing at a previous time step
compared to the second one (σj), which is the opposite of what happens for the transition
probabilities W (σt

i |σt−1
i , {σt−1

j }j∈∂i).

3.2.1 The MPS decomposition of messages

Here we present the main procedure needed to obtain the matrices B in (3.19) starting from
the neighbors’ A in (3.20), a series of successive operations on tensors developed by T. Barthel,
and allowing to eventually represent the messages as products over matrices.
The idea is to start by building an intermediate set of matrices C

(s)
ij (σs

i |σs−1
j ) using (3.21) and

the marginalization over the σs
k. For the sake of simplicity from now on we drop the dependence

on the variable σs−1
i inside W (σs

i |σs−1
i , {σs−1

j }j∈∂i) so to use instead transition probabilities of

the form W (σs
i |{σs−1

j }j∈∂i). The results we will obtain could be generalized to the former case
by adding more manipulations of tensors.
The definition of this intermediate matrix C(s) depends upon the position of the time step s
inside the interval [0, t+ 1].
For a bulk time step, i.e. 0 < s < t, we define:

C
(s)
ij (σs

i |σs−1
j ) =

�

{σs−1
k }k∈∂i\j

W (σs
i |{σs−1

j }j∈∂i)
�

k∈∂i\j
A

(s)
ki (σ

s−1
k |σs

i ) (3.23)

whereas at the boundaries (s = 0, t, t+ 1):

C
(0)
ij (σ0

i ) = Pi(σ
0
i )

�

k∈∂i\j
A

(0)
ki (σ

0
i ) (3.24)

C
(t)
ij (σ

t
i |σt−1

j ) =
�

{σt−1
k }k∈∂i\j

W (σt
i |{σt−1

j }j∈∂i)
�

k∈∂i\j
A

(t)
ki (σ

t−1
k ) (3.25)

C
(t+1)
ij (σt+1

i |σt
j) =

�

{σt
k}k∈∂i\j

W (σt+1
i |{σt

j}j∈∂i)
�

k∈∂i\j
A

(t+1)
ki (σt

k) (3.26)

The entry of a bulk matrix C can be written as:
�

C
(s)
ij (σs

i |σs−1
j )

�

ā,b̄
=

�

{σs−1
k }k∈∂i\j

W (σs
i |{σs−1

j }j∈∂i)
�

k∈∂i\j

�

A
(s)
ki (σ

s−1
k |σs

i )
�

ak,bk
(3.27)

so that the indices ā = (a1, . . . , aki−1) and b̄ = (b1, . . . , bki−1) grouped together lead to the final
matrix C that has dimension Mki−1, where ki is the degree of node i and M the dimension
of the matrices A. A graphical representation of a bulk matrix C

(s)
ij (σs

i |σs−1
j ) with k = z + 1

neighbors is given in figure 3.1.
Given the two sets of M indices ā and b̄, and considering the dimension d of the space of a

spin variable σs
i , the computational cost of computing (3.23) scales as O(d3M2(ki−1)). Similar

considerations can be made for the boundary terms (3.24),(3.25) and (3.26).
Putting all together one finally obtains:

µij(σ̄
t+1
i |σ̄t

j) =

�

t+1
�

s=1

C
(s)
ij (σs

i |σs−1
j )

�

C
(0)
ij (σ0

i ) (3.28)

Notice that form is not yet the one we want to finally obtain as in the ansatz (3.19), the
dependence on time is inverted among σs

i and σs−1
j as compared to what happens for the A’s.

Supposing to iterate this routine for increasing time t, the dimension of the matrices C will blow
up exponentially in time as expected for the exact cavity equations. Therefore now we proceed
to decompose the various C’s using SVD (3.4) and then compress the resulting matrices so to
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Figure 3.1: Example of a bulk matrix C
(s)
ij (σs

i |σs−1
j ) in the MPS representation (3.23). The blu

lines connecting the transition probability W = W (σs
i |σs−1

i , {σs−1
j }j∈∂i) with the matrices Aki

represent the marginalization over the variable σs−1
k . Notice the same dependence on σs

i of the
A’s and W .

control their dimension. One has to be careful though when truncating, because the property
of orthonormality among vectors has to be preserved in order to keep the Frobenius norm of
the truncated matrix close enough to the original one as in (3.15). In our case this means
performing two preparatory steps before the actual truncation. These are two sweeps where
we perform SVD for the matrices C in (3.28) first from left to right and then the other way
around. In each of these sweeps we do not truncate, but transform the matrices so to enforce
orthonormality, first for the right basis and then for the left one. Finally one can proceed with
the actual truncation by performing a third sweep from left to right. We leave the details of
these calculations in the appendix 2.

Once a given truncation threshold M̃ is chosen, one proceeds by truncating the sum in
(3.22) keeping only the first M̃ singular values. At the same time the matrices U, V will
be truncated as well, keeping only the first M̃ rows and columns. The more we truncate
the more the correlations are neglected. Nonetheless the bigger the truncation the faster the
numerical implementation, because the matrix product (3.18) is performed over matrices of
reduced dimension. Therefore setting the truncation threshold involves a trade-off between a
lower computational complexity and a worse quality of the solution or viceversa. In a sense,
the magnitude of the truncation controls the approximation of the time correlations of the
trajectories σ̄t

i .
The numerical implementation then works as follows. At the first time step s = 0 only two
matrices have to be built for each message: A

(0)
ij (σ

0
j ) and A

(1)
ij (σ

0
i ). Their dimension can be

arbitrarily initialized, the simplest choice is to fix M = 1. The only information given at the
first time step is Pi(σ

0
i ), therefore using the MPS ansatz (3.18) we have:

A
(0)
ij (σ

0
j ) = 1 (3.29)

A
(1)
ij (σ

0
i ) = Pi(σ

0
i ) (3.30)
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This is equivalent to initialize messages:

µij(σ
0
i ) = A

(1)
ij (σ

0
i )A

(0)
ij (σ0

j ) = Pi(σ
0
i ) (3.31)

where one could add a dummy variable σ−1
j in the numerical implementation to keep the

structure consistent with the messages obtained in the next iterations.
One proceeds with the next iteration by first building the matrices C using (3.24) and (3.25)
such that:

C
(0)
ij (σ0

i ) = Pi(σ
0
i )

�

k∈∂i\j
A

(0)
ki (σ

0
i ) = Pi(σ

0
i ) (3.32)

C
(1)
ij (σ1

i |σ0
j ) =

�

{σ0
k}k∈∂i\j

W (σ1
i |{σ0

j}j∈∂i)
�

k∈∂i\j
A

(1)
ki (σ

0
k) (3.33)

=
�

{σ0
k}k∈∂i\j

W (σ1
i |{σ0

j}j∈∂i)
�

k∈∂i\j
Pi(σ

0
i ) (3.34)

Notice that at this step the matrices C have still dimension M = 1 but indeed they should be
rewritten as tensor of the form:

C(σ|σ′)a,b = C(σ,a),(σ′ ,b) (3.35)

which makes the next SVD more convenient to perform as written in (3.22). As a result the
new tensor C has dimension d× d in this first time step where a = b = 1.
To complete this iteration one performs the MPS routine made of two preparatory sweeps to
ensure orthogonality and a third one to obtain the ansatz (3.19). At the end of this first step
one has a set of 3 matrices B such that:

µij(σ̄
1
i |σ̄0

j ) = B
(2)
ij (σ1

i )B
(1)
ij (σ0

i )B
(0)
ij (σ0

j ) (3.36)

This is nothing but an alternative parametrization of equation (3.34) multiplied by (3.32) con-
sistent with the MPS ansatz (3.18). The same procedure is repeated in the next steps s > 0. At
the end of each iteration a new set of t+2 matrices B is created and in general their dimension
increases with time in a way that is controlled by the chosen truncation criterium.

3.2.2 Evaluation of marginals

Eventually the quantities of interest, for instance one-time marginals P (σt
i , σ

t
j) as in (1.21)

or more generally P (σt1
i , σ

t2
j ), can be calculated from the MPS representation (3.18). This

evaluation can be performed at the end of each iteration step and the idea is to use the expression
(1.16) of the two-variable marginal:

Pij(σ̄
t
i , σ̄

t
j) = µij(σ̄

t
i |σ̄t−1

j )µji(σ̄
t
j |σ̄t−1

i ) (3.37)

and then marginalize out over all but the variable of interest.
In our MPS decomposition, the marginalization can be naturally formalized as a series of
successive tensor contractions. Namely the sum of products over the scalar entries having
same indices between two different tensors A,B, i.e. using Einstein notation [59] this is the
generalization of the trace of matrices AabBbc =

�

b AabBbc = Cac in the case of tensors.
In fact (3.37) is a product of matrices A(σ|σ′) but we have already seen that it is often convenient
to interpret them as tensors (3.35). Here we use a similar expression for aM-dimensional matrix
A(σ|σ′):

[A(σ|σ′)]a,b = Aσ,σ′,a,b (3.38)

hence a set of d2 matrices of dimension M × M is transformed in a d × d × M × M tensor.
As a result the marginalization over a variable σs

i in the calculation of the marginals (3.37)
is reduced to a contraction over the common indices of two tensors [A(σ|σ′)]a,c = Aσ,σ′,a,c and
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[B(σ|σ′′)]c,b = Bσ,σ′′,c,b:
�

{σ}
A(σ|σ′)B(σ|σ′′) = C(σ′, σ′′) (3.39)

[C(σ′, σ′′)]a,b = Aσ,σ′,a,cBσ,σ′′,c,b (3.40)

=
�

σ,c

Aσ,σ′,a,cBσ,σ′′,c,b (3.41)

This allows to perform to perform the marginalization over en entire trajectory σ̄t−1
i as a series

of successive single-time marginalization, thus reducing the complexity of this calculation from
exponential to polynomial in time t.
Here we describe the entire routine to calculate P (σt

i , σ
t
j) based on the tensor contractions just

described, but this procedure can be adapted to calculate other single-time marginals.
We start by writing (3.37) as a product of two sets of tensors A(s) and B(s), each one having 4

indices:
�

A(s)(σ|σ′)
�

a,b
= A

(s)
σ,σ′,a,b and

�

B(s)(σ|σ′′)
�

a′,b′
= B

(s)
σ,σ′′,a′,b′ so that:

µij(σ̄
t
i |σ̄t−1

j ) = A
(t+1)
ij (σt

i)A
(t)
ij (σ

t−1
i )

�

t
�

s=1

A
(s)
ij (σ

s−1
i |σs

j )

�

A
(0)
ij (σ

0
j ) (3.42)

µji(σ̄
t
j |σ̄t−1

i ) = B
(t+1)
ji (σt

j)B
(t)
ji (σ

t−1
j )

�

t
�

s=1

B
(s)
ji (σ

s−1
j |σs

i )

�

B
(0)
ji (σ

0
i ) (3.43)

In the rest, to simplify notation, we drop the indices ij and ji from the matrices A(s) and B(s)

respectively.
The dimension of A(s)(σ|σ′) is M1 and the one of B(s)(σ|σ′′) is M2. These two numbers
can be different depending on the contractions made to calculate the corresponding messages
µij(σ̄

t
i |σ̄t−1

j ) and µji(σ̄
t
j |σ̄t−1

i ) respectively. We can now rearrange the above products so to pair-

up matrices (or tensors using the definition (3.38) ) A(s)(σ|σ′) and B(s)(σ|σ′′) sharing the same
dependence on σ. Taking into account that their dimension can be different but the trace must
be performed over indices having same dimensionality, we should start from the right-most
matrices, i.e. the ones corresponding to time s = 0. In this case A(0)(σ) and B(0)(σ) are M1

and M2 dimensional vectors respectively, thus we can perform the trace by considering the

product of one over the transpose of the other. Here we consider the transpose
�

A(s)(σ|σ′)
�T

of

A(s)(σ|σ′).
Starting at s = 0 we have:

K(0)(σ0
i , σ

0
j ) = B(0)(σ0

i )
�

A(0)(σ0
j )
�T

(3.44)

where as usual K(0)(σ0
i , σ

0
j ) can be seen as a tensor with 4 indices Kσi,σj ,a,b. In this case a and b

have dimension M2 and M1 resulting from the contraction (3.44). Notice that in this first step
no marginalization has yet been performed.
We proceed at the next time steps s = 1, . . . , t− 1 by contracting further:

L(s+1)(σs+1
i , σs

i ) =
�

{σs
j}
B(s+1)(σs+1

i |σs
j )K

(s)(σs
i , σ

s
j ) (3.45)

K(s+1)(σs+1
i , σs+1

j ) =
�

{σs
i }
L(s+1)(σs+1

i , σs
i )

�

A(s+1)(σs+1
j |σs

i )
�T

(3.46)

where the quantities L(s) and K(s) are new tensors resulting from contractions following the
rule (3.39), they have dimension d× d×M2 ×M1. Note that this implies the implementation
of successive single-time marginalization as contraction over tensor indices.
The final time step is special as the first one because we have to use the boundary matrices
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A(t+1) and B(t+1) which are indeed 1×M1 and 1×M2 dimensional vectors:

K(t+1)(σt
i , σ

t
j) = B(t+1)(σt

j)K
(t)(σt

i , σ
t
j)

�

A(t+1)(σt)
�T

(3.47)

Note that this last tensor has dimension d × d. Eventually we use this resulting tensor to
calculate the two-variable joint probability as:

P (σt
i , σ

t
j) =

K(t+1)(σt
i , σ

t
j)

�

{σt
i ,σ

t
j}
K(t+1)(σt

i , σ
t
j)

(3.48)

A diagrammatic representation of this series of tensor contractions is given in figure 3.2.

A(1)

σi1 σi0

A(0)

σj0

B(0)B(1)

σi0

σj0

σj1

B(2)

σi2 σj
1

A(2)

σi1σj2

A(1)

σi0σj1

A(2)

σi1σj2

A(1)A(1)

σit-1

σjt-1

A(t+1)

σit

A(t)

σjt

B(t)B(t+1)

}

}

μij

μji

K(0)

K(1)

L(1)

{P(σit,σjt)=

Figure 3.2: Evaluation of two-variable marginal P (σt
i , σ

t
j) in the MPS representation. The red

block represent the L(1) tensor as defined in (3.45), horizontal lines are traces of matrices and
diagonal ones represent marginalization over the corresponding single-time variable. At the end
the remaining variables are σt

i and σt
j , in fact they are not contracted.

3.2.3 Numerical results

In this section we give the results of numerical simulations performed using Glauber dynam-
ics (1.27) for disordered systems and the majority rule in both the deterministic (1.41) and
stochastic (1.42) versions. Note that MPS representation allows to represent the synchronous
and parallel update rule, thus we simulate this type of update.
We use random regular graphs as graph topology because we want to focus on evaluating the
performance of the algorithm rather then analyze how the dynamics depends on the graph
topology. Therefore we use an homogenous graph topology and reserve to use other types of
random graphs for future applications.
The simulations are done using the MPS ansatz (3.18) starting with only two matrices A for
each message µij initialized as in (3.29) and (3.30). The system is the evolved using the defini-
tion of the transition matrix given by the model considered and at the end of each iteration step
macroscopic observables as those introduced in section 1.2.1 are evaluated using the routine
given in section 3.2.2.
We tested our algorithm running it on single instances of graphs and the population dynamic
version (1.2.4) as well. We used both the truncation criteria explained above: for the one with
a fixed number of singular values M̃ we used M̃ = 20; for the one that fixes the norm threshold
Lmax (3.15) we used values of Lmax from 10−3 to 10−8.
For performance comparison we run Monte Carlo Markov chain simulations as described in
section 1.2.3. For this we used the same graph instances as for the single instance runs of the
MPS cavity equations. We also run the exact dynamic cavity equations (1.17) up to time t = 6
(the exponential complexity of the exact case does not allow to solve it for bigger time) but we
found identical results for such small times, thus we do not report them.

58



In figure 3.3 we give the results of the Galuber time evolution of various observables for
different truncation criteria and for the Monte Carlo simulations. Here we consider single
instances over a 3-regular graph of finite size V = 1000 and disorder {Jij} distributed as a zero-
average Gaussian and variance 1. In addition, we considered β = 1 and we fix a small initial bias
of θ0 = 0.05. We can notice that both the magnetization and the energy are well reproduced
by our MPS approximation, the data in fact are very close to the Monte Carlo ones. When
considering smaller quantities, such as ∆m(t) (1.37) or qEA (1.38) we can notice that the MPS
does not perfectly superimpose, and indeed for the lowest value of the approximation, i.e. for
higher truncation Lmax = 10−3 the MPS falls apart considerably for increasing times. However,
improving the quality of the approximation, i.e. considering smaller Lmax, the MPS results
approach again the Monte Carlo ones. This suggests that a parameter tuning in the sense of
the truncation threshold should be performed depending on the model considered. Indeed we
found that for lower values of β, i.e. in higher temperature regimes, the worst approximation of
Lmax = 10−3 gives good results. Therefore suggesting that the more we lower the temperature
the more singular values we must keep in order to maintain a good quality of approximation.

We performed simulations of the Majority rule with stochastic noise and this time our
focus was on probing the behavior of the infinite system. Therefore we performed population
dynamics simulations of the cavity MPS approximation and compared them with Monte Carlo
simulations performed with growing V from 102 to 104. In figure 3.4 we plot the time-evolution
of the total magnetization for different noise values and with a small initial bias of θ0 = 0.01.
Note that smaller values of θ0 cannot be considered for small system sizes, as for V = 100. Here
we used only one truncation criterium, namely we fixed Lmax = 10−8 because from parameter
tuning we found this as a good trade-off between running time and quality of the approximation.
From the picture it is clear that our approximation, with a properly chosen level of truncation,
perfectly describes the infinite system size. Results of Monte Carlo simulations tend to approach
the MPS ones for largest values of V , however these results are affected by an error that increases
with system size. Therefore if one wants to implement Monte Carlo for bigger values of V a
larger number of instances should be considered, thus making the implementation considerably
slower.
Provided a proper truncation criterium is properly chosen, all these preliminary numerical
findings suggest that the MPS approximation of the dynamic cavity method could well describe
the time-evolution under a given dynamics rule. Not only one could apply this approximation
to analyze single instances, but also it well adapts to address the infinite system size using the
population dynamics version.
Here we focused on two types of dynamics but it would be interesting to explore also other
applications. Moreover, an interesting question would be to apply this approximation to study
inference problems on networks. This would in particular allow to tackle reversible dynamics
using the cavity method or to consider the entire time-evolution and not only the stationary
state. An opportunity that opens new perspective for future works.
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Figure 3.3: Observables evolution in Glauber dynamics. Example of the time evolution pre-
dicted by MPS and Monte Carlo (MC) (over 50000 instances) for a 3-regular graph of V = 1000.
Different curves represent the maximum norm threshold Lmax applied in the truncation. The
curve M = 20 is for the truncation criterium with fixed matrix dimension of 20 singular values.
We can notice the curve for Lmax = 10−3, after some time steps it starts to diverge. However,
by increasing the threshold the quality of the MPS approximation improves. The parameters
are: β = 1.0, θ0 = 0.05. Inset: ∆m(t) as defined in (1.37), this helps to notice the performance
for different truncation criteria with respect to the Monte Carlo (MC) simulations.
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predicted by the infinite system MPS (population dynamics) and Monte Carlo (MC) (over
10000 instances) for a 3-regular graph of V = 100, 103, 104. For the MPS we fixed a truncation
threshold Lmax = 10−8. Three values of the noise Q where considered: from top to bottom
Q = 0.00, 0.10, 0.15. We can notice that the finite size Monte Carlo tends towards the MPS
results for increasing system sizes. The initial bias is θ0 = 0.01.
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Chapter 4

Random walks on networks

In this chapter we study several problems involving random walks on networks. A random walk
is defined as a set of successive random steps made by a walker on a given topology, in this
work we focus on the case where the topology is a random networks. The random steps are
made from one node i to one of its neighboring sites j ∈ ∂i following a transition rule specified
by the model. This can be biased or not, in this introduction we will consider only the case of
unbiased walks in order to fix the ideas. In fact the generalization to the biased case will be
done by starting from the unbiased results; this approach will be followed when studying the
rare event statistics in section 4.3.1.
One of the most important features of a random walk is its cheap implementation. In fact a
walker makes a step with a certain probability that depends only on local information. This
means that it is not needed to know the situation on the entire network and this translates in
network scalability. At the same time if a random walk is used as a strategy for data transmis-
sion in communication networks, this feature could allow to achieve fast result and efficiently
in terms of energy requirements, given that it is not needed to store big routing tables. This
make them suited to be used in networks where the cost of information is high.
There are in general many quantities of interest when studying random walks on graphs [60]
but here we focus on the ones studied in [61] and [62].
From a random walker prospective, the two main differences between moving on a regular lat-
tice and on a random network are the graph heterogeneity and the absence of a metric. While a
regular lattice has an homoegenuos topology with a fixed number of neighbors for each node, a
generic random graph is instead characterized by a degree probability distribution P (k). This
gives the probability for a given node to have k neighbors and, a part from the regular graph
case where k is fixed for all nodes, in general this number varies with i ∈ V. This heterogeneity
requires a specific treatment when studying random walks and generalizations from the regular
lattice case cannot be performed.
The main quantity needed to characterize networks is the adjacency matrix A, a N ×N (where
N = |V|) matrix that contains all the information about the graph topology. Therefore is not
surprising that many of the techniques developed to study random walks on networks are based
on spectral properties of this or other related matrices.
Finally, a random network usually lacks of a universally agreed concept of distance, besides the
shortest path length. Therefore the machinery used to study random walks on regular lattices,
which relies on being able to characterize it through its spatial coordinates, is not applicable
to networks.
In the rest of the chapter we will take these facts into account and exploit different techniques
used in linear algebra, probability and large deviation theory to study several statistics associ-
ated to random walks on networks.
The rest of the chapter is organized as follow: the general model of random walks on networks
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is given in 4.1. In section 4.2 we study the average number of distinct sites visited by a random
walker. We conclude by studying rare events of random walks on networks by using the large
deviations formalism in section 4.3.1.

4.1 The model

Here we set up the general framework needed to characterize a random walk on graphs. This
will be used in all the next sections were several applications will be studied.

Given a random graph G(V , E) with V = |V| nodes and E = |E| edges, we denote the
neighbourhood of a node i ∈ V by ∂i, and its degree, i.e. the number of neighbours, by ki = |∂i|.
An overall characterization of the graph topology is then provided by the distribution of the
degrees ki, which we write as P (k). A more detailed study of different network topologies is
given in appendix 3.
Introducing matrix notation we define the graph adjacency matrix A as the matrix of dimension
N ×N with entries

aij =

�

1 if (i, j) ∈ E
0 otherwise

(4.1)

The nonzero entries of A thus indicate which pairs of nodes are connected by an edge. We do
not consider self-loops, thus aii = 0. The resulting matrix is column-stochastic, meaning that:

�

i

aij = 1 (4.2)

The same statement is in general not true for rows.
Throughout the rest of the thesis we will assume that the graph is singly connected. Should the
original random graph have disconnected pieces, we discard all except for the largest connected
component. This requirement is usually considered when studying random walks on networks
because the presence of small disconnected cluster would constraint the walker to stay on them.
This would give trivial results and hinder the more interesting behavior of a walk performed
on the giant cluster.
A random walk on a graph is a path γ = {i0, i1, . . . , in} made up of successive random steps
between adjacent nodes in on the graph, starting from a given node i0 ∈ V. Steps are performed
according to a transition probability from a node i to an adjacent node j given by:

wij =
aij
ki

(4.3)

in the case of unbiased walk. The biased case could be generalized by introducing a weight
dependent on the adjacent node j on the right-hand side of (4.3).
All adjacent neighbours of i then have equal probability of being reached in a step starting
from i. In matrix notation we define the transition matrix W as the matrix with entries wij.
Defining also D as the diagonal matrix with entries δijki, we have the relation:

W = D−1A (4.4)

We denote the probability of reaching node j in n steps starting from node i as Gij(n).
With these definitions, given an n-step random walk γ = {i0, i1, . . . , in}, the probability of
reaching node in starting from node i0 along this path is the product:

�

i=0,...,n−1

1

ki
=

1

k0

1

k1
× · · · × 1

kn−1
(4.5)

In general, in order to compute Gij(n) one has to consider all possible random walks connecting
i to j in n steps. Using the transition matrix W we can write this probability as:

Gij(n) = [W n]ij = [(D−1A)n]ij (4.6)
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In this section we will derive an expression for G(n), the matrix with entries Gij(n), where
the dependence on the graph size for large graphs is explicit. Here we will for the first time
have to restrict the type of graph: as explained below, we require that the eigenvalue spectrum
of A has a nonzero gap.

To transform to a symmetric matrix whose properties are simpler to understand, we rewrite
this as

Ĝ(z) = D−1/2R̂(z)D+1/2 (4.7)

in terms of the matrix

R̂(z) = (1− zD−1/2AD−1/2)−1 (4.8)

This matrix is now clearly symmetric, and we can diagonalize it as

R̂ = PΛP T (4.9)

where the matrix P has as columns the eigenvectors of R̂ and Λ is a matrix containing the
eigenvalues of R̂ on the diagonal.
In terms of the normalized adjacency matrix M = D−1/2AD−1/2 [63], one has

R̂(z) = (1− zM)−1 (4.10)

In the following we use Dirac bra-ket notation [64] to denote the eigenvectors |uk� of M . If
|uk� is one such eigenvector and λk the corresponding eigenvalue, then we have the eigenvalue
equation:

M |uk� = λk |uk� (4.11)

and it follows that

R̂(z) |uk� = (1− zλk)
−1 |uk� (4.12)

In words, R̂(z) has the same eigenvectors |uk� as M but with corresponding eigenvalues 1/(1−
zλk).
From spectral graph theory [63] we know that the z-independent matrix M has eigenvalues all
lying in the range [−1, 1]. By direct substitution into the eigenvalue equation for M one sees
that the vector with entries u1,i = c

√
ki is an eigenvector with eigenvalue λ1 = 1. The constant

c is found from the normalization condition �u1|u1� =
�V

i=1 u
2
1,i = 1 as c−1 =

�

V �k� where
�k� =

�

j∈V kj/V is the average degree of the graph. If the graph is singly connected then
there are no other eigenvectors with eigenvalue 1, so we can order the eigenvalues as

1 = λ1 > λ2 ≥ . . . ≥ λV ≥ −1 (4.13)

The fact that the eigenvalues lie between −1 and 1 can also be seen from the Perron-Frobenius
theorem [65, 66], given that the entries of |u1� are all positive and λ1 = 1. The theorem in
fact states [67] that a positive matrix always admits an eigenvalue λ1 which is grater than all
the others’ moduli. Moreover, the eigenvector |u1� corresponding to this maximal λ1 has all
positive entries u1i > 0.

Splitting off the contribution coming from λ1, we can now write the eigenvector decompo-
sition of R̂(z) as

R̂(z) = |u1� �u1|
1

1− z
+

V
�

k=2

|uk� �uk|
1

1− zλk

(4.14)

and clearly the first term will be dominant in the limit z → 1 that we will need to consider in
section 4.2.
With the shorthand

C(z) =

V
�

k=2

|uk� �uk|
1

1− zλk
(4.15)
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for the second term, we can then write

R̂ij(z) =

�

kikj

V �k�
1

1− z
+ Cij(z) (4.16)

From equation (4.7) we have:

Ĝij(z) =

�

kj
ki
R̂ij(z) (4.17)

so the analogous representation for Ĝ(z) reads:

Ĝij(z) =
kj

V �k�
1

1− z
+

�

kj
ki
Cij(z) (4.18)

4.2 The average number of distinct sites visited by a

random walker

In this section we will study an application of the formalism introduced above. Namely we will
analyze the large-n behavior of the average number of distinct sites S(n) visited by a random
walker on large networks. In particular we are interested to find an expression for the constant
prefactor B which characterizes the asymptotic linear behavior S(n) = Bn, in terms of the
graph topology. To achieve this goal we will first use the generating functions formalism to
relate the graph adjacency matrix to the prefactor. Secondly we will derive message-passing
equations to calculate its value through numerical simulations. The analysis of numerical results
will be done showing scaling behaviors with system size and graph connectivity.
Solving this problem could give important insights on the geometry of the coverage of nodes
of the graphs performed by a random walker. It finds direct applications in a variety of fields:
from chemistry with target decay [68] and trapping problems [69] in chemical reactions and in
the problem of annealing of point defects in crystals [70], to relaxation problems in disordered
systems [71] or in problems of dynamics on the internet [72, 73].

4.2.1 Results on various topologies

We denote by Fij(n) the probability of reaching site j for the first time after n steps for a
random walk starting at site i; note that for the case i = j we define “reaching” as “returning
to” so that Fii(0) = 0. We also define Hij(n) as the probability that site j has been visited at
least once in n steps by a random walker starting at site i, and let qj(n) be the probability that
a walker starting at site j does not return to it within n time steps.

With these definitions the average number of distinct sites visited by time n (i.e. after n
steps), starting at node i, can be written as:

Si(n) =
�

j∈V
Hij(n) (4.19)

Now if a node j has been visited at least once in a walk of n steps starting at node i, we can
call the time of the final visit of the walk m ≤ n and by definition the walk then never returns
to j in the remaining n−m steps.

Thus we can write the convolution:

Hij(n) =
n

�

m=0

Gij(m)qj(n−m) (4.20)

The generating function (or z-transform) of a quantity f(n) is defined as f̂(z) =
�∞

n=0 z
nf(n),

with z ∈ [0, 1), and has the property that the z-transform of a convolution is the product of
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the z-transforms. The z-transform of (4.20) is then

Ĥij(z) = Ĝij(z)q̂j(z) (4.21)

We now want to write everything in terms of Ĝij(z) and so need to find a relation linking

q̂j(z) to Ĝij(z), which we do via the first passage time probability Fjj(n). The probability of
returning to node j for the first time after exactly n steps can be written as:

qj(n− 1)− qj(n) = Fjj(n) (4.22)

Taking the z-transform of this expression and noting that qj(0) = 1, q̂j(z) =
�∞

n=0 z
nqj(n) and

F̂jj(z) =
�∞

n=1 z
nFjj(n) we have:

z

∞
�

n=1

qj(n− 1)zn−1 −
∞
�

n=1

qj(n)z
n =

∞
�

n=1

Fjj(n)z
n (4.23)

zq̂j(z)− [q̂(z)− 1] = 1− (1− z)q̂j(z) = F̂jj(z) (4.24)

Hence:

q̂j(z) =
1− F̂jj(z)

1− z
(4.25)

We now relate the generator Gjj(n) to the first passage time probability Fjj(n). The probability
of arriving at node j in n steps starting at the same node j, can be seen as the sum of the
probabilities grouped according to how often j is visited overall: we can reach j for the first
time after n steps; or a first time at n1 < n and a second time after another n − n1 steps; or
a first time at n1 < n, a second time after another n2 − n1 steps and a third time after a final
n− n2 steps, and so on. Mathematically this can be written as:

Gjj(n) = Fjj(n)+
n

�

n1=0

Fjj(n1)Fjj(n−n1)+
n

�

n2=0

n2
�

n1=0

Fjj(n1)Fjj(n2−n1)Fjj(n−n2)+ . . . (4.26)

To make the convolution structure clearer, we have included the extreme values (e.g. n1 = 0
and n1 = n in the first sum) here even though – because Fjj(0) = 0 – they do not contribute.
Taking the z-transform of both sides one sees that

Ĝjj(z) = 1 + F̂jj(z) + F̂ 2
jj(z) + · · · = 1

1− F̂jj(z)
(4.27)

Substituting this result into (4.21) using (4.25) we obtain:

Ĥij(z) = Ĝij(z)
1− F̂jj(z)

1− z
=

1

(1− z)

Ĝij(z)

Ĝjj(z)
(4.28)

This can now be inserted into (4.19) to give finally the z-transform of the average number of
distinct sites visited starting from site i:

Ŝi(z) =
1

1− z

�

j∈V

�

Ĝij(z)

Ĝjj(z)

�

(4.29)

One sees that the underlying quantity of central interest for our problem is Ĝij(z). The result
of equation (4.29) is valid in general, i.e. regardless of the graph topology. We note that to
understand the large n-behaviour of Si(n) we need to consider Ŝi(z) near z = 1. Specifically,
if as expected for V → ∞ we have Si(n) = Bn for large n, then the z-transform will diverge
for z → 1 as Ŝi(z) = B/(1− z)2. To calculate B we thus need to understand the behaviour of
Ĝij(z) for z → 1.

The problem of finding S(n) in the large-n limit has been addressed for various types of
topologies. For d-dimensional lattices it has been shown [74, 75, 76] that, for d > 3, S(n)
grows linearly in time as S(n) = n/W (d) with a prefactor 1/W (d) that depends on the lattice’s
dimension. For smaller dimension the growth is slower: S(n) =

�

8n/π for d = 1 and S(n) =
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πn/lnn, for d = 2. Further studies have characterized the same quantity when multiple walkers
are moving together [77, 78].
For Bethe lattices of connectivity k the behavior is again linear and the prefactor depends on
the connectivity as S(n) = [(k − 2)/(k − 1)]n [79]. Finally the case of graphs different from
lattices or random graphs has been tackles using the concept of spectral dimension d̃. Under
certain assumptions Si(t) ∼ tmin{1,d̃} for t → ∞ and d̃ �= 2. Examples of graphs for which it
was possible to calculate the spectral dimension d̃ are decimable fractals, bundled structures,
fractal trees and d-simplex. See [80, 81] for an overview. Nonetheless the determination of the
prefactor remains an open questions for these complex types of graphs.

4.2.2 Results on networks

In this section we focus our attention of networks topologies. We will adapt the main results
derived in the previous section to this case.
As we said before, few results are known about the average number of distinct sites visited
by a random walker when the topology is a random network, this problem being only recently
studied. In particular it has been found that for Scale-Free graphs (SF) [82, 83] (in the time
regime n ≫ 1) one recovers the linear behaviour S(n) ∼ n seen in both Bethe lattices and
d-dimensional lattices for d ≥ 3. However, there is very limited information on the prefactor B
describing this linear behavior S(n) = Bn on random networks. Indeed all the studies referred
to above are based on a scaling ansatz and on the analysis of numerical simulations; neither
provides a theoretical framework that fully characterizes the prefactor B to the same extent as
has been achieved for lattices.
We start by recalling the form (4.18) taken by the entries of Ĝij(z) in the case of networks:

Ĝij(z) =
kj

V �k�
1

1− z
+

�

kj
ki
Cij(z) (4.30)

This can be substituted in (4.29) to obtain:

Ŝi(z) =
1

1− z

�

j∈V







kj

R̂jj(z)V �k�(1− z)
+

�

kj
ki
Cij(z)V �k�(1− z)

kj + Cjj(z)V �k�(1− z)







(4.31)

This expression has to be taken in two limits: the thermodynamic V → ∞ and the large time
limit corresponding to z → 1. The order of taking the two limits is important to get physical
results, as we explain in more detail below. In the following we will consider first the limit
V → ∞ and then the limit z → 1. Note that the denominators in the two terms of (4.31) are
identical but written in two different forms that will make the limit procedure clearer.

The large V -limit is simple to take in (4.16), giving limV→∞ R̂jj(z) = Cjj(z). We are
assuming implicitly here that C(z) has a well-defined limit for V → ∞. This requires in
particular that λ2 stays away from 1, i.e. that the spectrum of M has a nonzero gap 1 − λ2

between the leading and first subleading eigenvalue for V → ∞. This is generally true for
regular [84, 85], ER [86, 87] and scale-free [88, 86] random graphs, but not for lattices, where the
eigenvectors are Fourier modes whose eigenvalue approaches 1 smoothly in the large wavelength
(zero wavevector) limit.

In the second term of (4.31), the first term in the denominator can be neglected for V → ∞
at fixed z < 1, giving

lim
V→∞

Ŝi(z) =
1

1− z

�

j∈V

�

kj
Cjj(z)V �k�(1− z)

+

�

kjCij(z)√
kiCjj(z)

�

(4.32)

Now we take the limit z → 1, in which the second term becomes negligible compared to the
first. With the assumption of a nonzero gap, Cjj(z) also has a finite limit for z → 1 so that we
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can define

lim
z→1

�

lim
V→∞

R̂jj(z)
�

= lim
z→1

Cjj(z) = Rj (4.33)

and get finally

lim
V→∞

Ŝi(z) =
1

V �k�(1− z)2

�

j∈V

kj
Rj

(4.34)

as the asymptotic behaviour for z → 1.
This has exactly the 1/(1− z)2 divergence we were expecting, and gives us the prefactor of

the large n-asymptote of the number of distinct sites visited:

lim
V→∞

Si(n) = B n (4.35)

where

B =
1

V �k�
�

j∈V

kj
Rj

(4.36)

This is the main result of this section, an expression for the topology-dependent for the constant
prefactor characterizing the linear behavior (4.35) of Si(n) in the large time and thermodynamic
limits.
Starting from expression (4.36) we can make three observations. Firstly, if we had inverted
the order of taking the limits and fixed V while taking z → 1, then we would have had
R̂jj(z) = kj/[V �k�(1− z)] to leading order. The second term in (4.31) would have disappeared
in the limit, so that

Ŝi(z) =
1

1− z

�

j∈V

kj

R̂jj(z)V �k�(1− z)
=

1

1− z
V (4.37)

to leading order near z = 1. This 1/(1− z) divergence of Ŝi(z) implies limn→∞ Si(n) = V , a
result which is clear intuitively: if we keep the graph size finite then in the limit of large times
the random walk will cover the entire graph, i.e. visit all nodes at least once.
Secondly, from equation (4.33) we can see that the information one needs to calculate B re-
sides in the quantities Cjj(z) =

�V
k=2 u

2
k,j/(1− zλk), where the uk,j are the components of the

eigenvectors |uk� of M and the λk the eigenvalues. So knowing the full spectrum of M and the
associated eigenvector statistics would in principle solve our problem of determining B. While
this is feasible computationally for finite and not too large V , we are not aware of a method
that would work in the thermodynamic limit V → ∞.
Thirdly, although the index i appears on the left hand side of equation (4.35), representing the
initial node of the walk, it does not appear on the right. This means that the average number
of distinct sites visited in the large n limit does not depend on the starting node, and therefore
we can drop the index i from the left hand side of (4.35). In particular, even for graphs with
broad degree distributions such as scale-free graphs, the number of distinct sites visited will be
the same whether we start the walk from a hub (a node with high degree) or a dangling end of
the graph (a node with degree one) – provided of course n is large enough.
Expression (4.36) shows that the quantity of interest for our problem is the ratio kj/Rj . The
degree ki is given by the graph degree distribution P (k) and if one considers single instances of
a graph this quantity is fixed at the beginning. The quantity Rj instead is given by (4.33) and
has to be determined. Therefore the original problem reduces to the another one: the calcu-
lation of the quantity R̂jj(z). Unfortunately this is not a straightforward task to accomplish,

even though we know the entries of the inverse R̂−1
ij (z) = δij − zaij(kikj)

−1/2.

Indeed we could find the valueRj either by calculating limz→1Cjj(z) where Cjj(z) =
�V

k=2 u
2
k,j/(1−

zλk) or by directly inverting the matrix R̂−1(z) = [1− zD−1/2AD−1/2]. However both of these
two methods are prohibitive computationally, already for individual graphs of large size V and
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even more so if in addition we want to average the results over an ensemble of random graphs.
The aim of this section, then, is to find a viable alternative method that will allow us to
characterize the value of R̂jj(z), and thus calculate limn→∞ S(n) through (4.35) and (4.36).

In the following we will propose and describe a method to address this problem of charac-
terizing the diagonal entry R̂jj(z). This has already been deployed in the context of spectral
analysis to calculate the sparse random matrix spectra [89].
That a connection to spectral problems should exist is suggested by looking at the definition
of the resolvent R(z,M) of a random matrix M . This is defined as:

R(z,M) = (M − z1)−1 (4.38)

Therefore the shape of zR̂(z) = (z−1
1−D−1/2AD−1/2)−1 suggests that, up to a trivial rescaling,

R̂(z) has the structure of a resolvent (with parameter z−1) for the random matrix D−1/2AD−1/2.
It is from such resolvents that spectral information is normally derived, in an approach that
in the statistical physics literature goes back to at least Edwards and Jones [90]. Accordingly
the two steps we will need to take mirror closely those used to find resolvents of sparse random
matrices in [89]: we first write the R̂jj(z) as variances in a Gaussian distribution with covariance

matrix R̂−1(z), and then exploit the fact that this distribution has a graphical model structure
to derive cavity equations from which these variances can be found.

4.2.3 The auxiliary multivariate Gaussian distribution

As we pointed out before, we have en exact expression for the inverse R̂−1(z) = [1−zD−1/2AD−1/2],
but inverting it to find a similar expression for R̂(z) as a function of the adjacency matrix A
is not straightforward. Thus we may prefer to work directly with R̂−1(z) and from this derive
information about the diagonal entries R̂jj (4.33). We can achieve this by considering the def-
inition of a multivariate Gaussian distribution.
A multivariate Gaussian random variable is a n-dimensional vector x̄ = (x1, . . . , xn), with
entries xi being random variables such that their joint distribution P (x̄) := P (x1, . . . , xn) is
Gaussian [15]:

P (x̄) ∝ e−x̄T Σ−1 x̄/2 (4.39)

where the matrix Σ is called the covariance matrix and has the property that Σij = �(xi −
µi)(xj − µj)�, where µ1, µj are the mean values of the variables xi, xj respectively; the symbol
∝ means proportional to, thus we omitted the normalization. This implies that the variance of
a zero-mean variable xj is �x2

j� = Σjj . Moreover we have the property [15] that the marginal
probability distribution P (xj) of the single random variable xj , which is defined as:

P (xj) :=

�

P (x̄)
�

i�=j

dxi (4.40)

is itself Gaussian distributed. Therefore we can write:

P (xj) ∝ e
− (xj−µj )

2

2vj (4.41)

where µj = �xj� is the mean value and vj = �x2
j� is the variance.

In the expression (4.39) it appears the inverse Σ−1 of the covariance matrix, but the variance
of a zero-mean variable �x2

j� is equal to the diagonal entry of Σ itself. The analogy with our

problem now becomes clear: we have an expression for the inverse R̂−1(z) but the quantity of

interest is the diagonal entry Rj = limz→1

�

limV→∞ R̂jj(z)
�

(4.33). This suggest us that if we

were able to consider R̂(z) as the covariance matrix Σ of a multivariate Gaussian distribution
we could characterize the joint probability distribution (4.39) using its known inverse R̂−1(z)
and then explicitly find the variances �x2

j� to obtain our quantity of interest Rjj(z) through
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the relation R̂jj = Σjj = �x2
j�; in this way we could obtain the diagonal entries Rj without

performing an expensive matrix inversion. Fortunately we can make this characterization.
Indeed if a matrix is symmetric and positive semi-definite then it can be a candidate for a
covariance matrix [15] of a multivariate Gaussian distribution. Given that, for 0 ≤ z < 1,
R̂(z) = [1 − zD−1/2AD−1/2]−1 is symmetric with all non-negative eigenvalues (4.13), then it
is positive semi-definite and it can be a considered as the covariance matrix associated to a
multivariate distribution of the form (4.39).
We can thus define a mapping from our original problem of finding the entries of R̂(z) to an
auxiliary problem of finding the variances of N random variables xi jointly distributed through
a multivariate Guassian distribution. The link between these two problems is given by the
equation:

R̂jj(z) = Σjj = �x2
j� (4.42)

It follows that the quantity of interest in this auxiliary problem is the variance �x2
j�.

We start by defining a vector of random variables (x1, . . . , xV ) and assign to this the zero mean
Gaussian distribution with covariance matrix R̂(z):

P (x̄) ∝ e−x̄TR̂−1(z)x̄/2 = e−x̄T (1−zD−1/2AD−1/2)x̄/2 (4.43)

The marginal distribution of any component of the vector, obtained by integrating P (x̄) over
all other components, is then also Gaussian:

P (xj) ∝ e−x2
j/(2vj ) (4.44)

with variance vj = �x2
j� = R̂jj(z). Our goal is now to calculate these marginal variances

efficiently, i.e. without a full matrix inversion. The key property of the probability distribution
(4.43) is that it can be written in the form

P (x̄) =
�

i∈V
e−x2

i /2
�

(ij)∈E
ezxixj(kikj)−1/2

(4.45)

As this factorizes into contributions associated with the nodes and edges of the underlying
graph, is an example of a graphical model similar to the one (4.45) introduced in section
1.1. In that chapter we have seen that in such a graphical model marginal distributions can
be obtained using message-passing, or cavity, equations. In this case the situation simplifies
though, because the general expression for a factor graph representation (4.45) reduces to the
one of a pair-wise model where the functional nodes ψa(x∂a) is a function of only two variables
of the form:

ψa(x∂a) ∼ ψij(xi, xj) (4.46)

The φi(xi) can be treated as an external field acting on variable xi.
In our case we have:

ψij(xi, xj) = ezxixj(kikj)
−1/2

(4.47)

φi(xi) = e−x2
i /2 (4.48)

In this case one needs only one type of message as in (1.8). This auxiliary graphical model is
represented in figure 4.1.

To calculate the marginal distribution of xj , we follow the procedure described in section
1.1 where we suppose the graph is a tree and imagine to first remove all edge factors ψij(xj , xi)
from P (x̄), where i runs over all neighbours of j. The tree is now split into subtrees rooted
at each neighbour i, and one can define the cavity marginal of i, νi→j(xi) as the marginal that
is obtained from a (suitably renormalized) probability distribution containing only the factors
from the relevant subtree. To get the marginal of xj , we now just need to reinstate the missing
edge factors as well as the node factor at j and integrate over the values of the nodes that we
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ψij(xi,xj)xi xj

φ(xi) φ(xj)

Figure 4.1: Multivariate Gaussian factor graph. The auxiliary system of jointly multivariate
Gaussian variables xi is represented as a pairwise graphical model. The variances �x2

i � are the
quantity of interest because they correspond to R̂jj(z) (4.42).

have not yet marginalized over, namely, the neighbours i:

P (xj) ∝ φj(xj)
�

i∈∂j

�

dxi ψji(xj , xi)νi→j(xi) (4.49)

Our messages sent from i to j are the quantities νi→j(xi), also called cavity marginals: each
message tells node j what the marginal of its neighbour i would have been if the edge between
them had been severed.

The cavity marginals can now be obtained from an analogous relation. To get νi→j(xi), one
can think of removing all edges connecting i to its neighbours l other than j; note that the
edge connecting i to j has already been taken out in the definition of the cavity marginal. This
generates independent subtrees rooted at the neighbours l, and the marginals at these nodes
are νl→i(xl). Reinstating removed edge factors and marginalizing over neighbours then yields

νi→j(xi) ∝ φi(xi)
�

l∈∂i\j

�

dxl ψil(xi, xl)νl→i(xl) (4.50)

One can then sweep through the tree in a way that calculates each message once messages have
been received from all neighbours except the intended recipient of the message. The structure
of equation (4.50) suggests that a convenient way to perform the iteration is to start at leaf
nodes, where simply νi→j(xi) ∝ φi(xi). Once all messages have been found, the marginals can
be deduced from (4.49).

As explained in section 1.1, expression (4.50) is exact on trees because of the absence of
loops, i.e. of correlations between neighbors of a given node. On a general graph this is an
approximate expression which becomes more and more accurate for locally tree-like structures.
This is the case of random graphs in the thermodynamic limit V → ∞ because loops, which
correspond to correlations, increase weakly (logarithmically) in V thus leading to a locally
tree-like topology.

Specializing now to our auxiliary Gaussian graphical model, the cavity marginals must also
be Gaussian as follows from a general property of multivariate Gaussian distributions. We can
then write them as:

νl→i(xl) ∝ e−x2
l /(2v

(i)
l ) (4.51)

which defines the cavity variances v
(i)
l .

Now consider the integral inside (4.50), note that thanks to the properties of Gaussian
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integrals we have:
�

dxl νl→i(xl)e
z

xlxi√
klki =

�

dxl e
− x2l

2v
(i)
l e

z
xlxi√
klki (4.52)

∝ e
z2

2

x2i v
(i)
l

klki (4.53)

where we have omitted the normalization.
Using this result we can develop further the product in (4.50) to obtain:

νi→j(xi) ∝ e−
1
2
x2
i

�

l∈∂i\j
e

z2

2

x2i v
(i)
l

klki = e
− 1

2
x2
i [1− z2

ki

�
l∈∂i\j

v
(i)
l
kl

]
(4.54)

which resembles the typical formula of a zero-mean Gaussian distribution with variance given
by:

v
(j)
i = ki



ki − z2
�

l∈∂i\j

v
(i)
l

kl





−1

(4.55)

Repeating the same calculations as in (4.54) but extending the product over all the neighbors,
we obtain the expression for the marginal (4.49):

P (xj) ∝ e−x2
j/2

�

i∈∂j
e

z2

2

x2j v
(j)
i

kjki = e
− 1

2
x2
j [1− z2

kj

�
i∈∂j

v
(j)
i
ki

]
(4.56)

which has analogously the form of a zero-mean Gaussian variable with variance:

vj = kj

�

kj − z2
�

i∈∂j

v
(j)
i

ki

�−1

(4.57)

These two relations are the direct analogues of Eqs. (11) and (12) in [89].
The variances vj , when calculated in the limit z → 1, are the quantity of interest for our

problem as vj = �x2
j� = Rj. They are known once the cavity variances have been obtained by

solving (4.55).
In practice we use the rescaled cavity variances

mi→j =
v
(j)
i

ki
(4.58)

as messages from node i to node j. With this definition and using (4.55) for z → 1 the cavity
equations are:

mi→j =



ki −
�

l∈∂i\j
ml→i





−1

(4.59)

We solve these by iteration according to

m
(t+1)
i→j =



ki −
�

l∈∂i\j
m

(t)
l→i





−1

(4.60)

where t represents a discrete iteration time step. This equation corresponds to the general
pairwise-model message-passing equation (1.8) encountered in section 1.1.
Starting from a given graph G, a suitably chosen convergence criterion and a maximum iteration
time Tmax, the algorithm then works as following:

1. Initialize the messages m
(0)
i→j randomly.
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2. Run through all edges (ij) and find for each the updated messages m
(t+1)
i→j , m

(t+1)
j→i from

(4.60).

3. Increase t by one.

4. Repeat steps 2 and 3 until either convergence is reached or t = Tmax.

If convergence is reached, i.e. the preset convergence criterion is satisfied, one can collect the
results and calculate the variances vj using (4.57) and (4.58):

vj = kj

�

kj −
�

i∈∂j
mi→j

�−1

(4.61)

where mi→j are the converged messages.
If we identify vj = �x2

j� = Rj we can then also express directly the prefactor (4.36) in the
linear asymptote in the number of distinct sites visited, S(n) = Bn, as

B =
1

V �k�
�

j∈V

kj
vj

(4.62)

=
1

V �k�
�

j∈V

�

kj −
�

i∈∂j
mi→j

�

(4.63)

There is one subtlety here that we have glossed over: the variances vj are the full marginal

variances R̂jj(z), which from (4.16) have the form kj/[V �k�(1− z)] +Cjj(z). In the calculation
of B we need Rj = limz→1Cjj(z), where the contribution ∝ (1− z)−1 has been removed.
Above we have taken the limit z → 1. This requires implicitly that 1 − z needs to lie in the
range 1/V ≪ 1 − z ≪ 1 where the divergent contribution to R̂jj(z) is still small enough to
be neglected compared to Cjj(z). That it is then allowable nevertheless to set z = 1 directly
in the cavity equations that we solve is something that has to be checked numerically: we do
indeed always find finite marginals vj from converged solutions for the cavity marginals. The
divergent solution also exists as a separate fixed point, namely the trivial solution mi→j ≡ 1 of
(4.59), but is not accessed in this iterative solution method.

Regular graph case.

For a generic random topology equations (4.60) are difficult to solve analytically. Nevertheless
for random regular graphs, for which the degree is the same k for all nodes, one can suppose
that the nodes are all equivalent. Therefore one can assume that the messages and all the
quantities of interest are as well all the same and thus we can drop the indices:

ki = k (4.64)

mi→j = m (4.65)

vj = v (4.66)

First of all we substitute into (4.59) to get:

m =



k −
�

l∈∂i\j
m





−1

= [k − (k − 1)m]−1 (4.67)

We obtain a second order equation in m:

m2(k − 1)−mk + 1 = 0 (4.68)

with solutions m = 1/(k−1) orm = 1. The first solution is the one we require; the second one is
the trivial solution discussed above that gives divergent variances in (4.61). Fromm = 1/(k − 1)

73



one can find the cavity variances and from there the full variances. In fact, substituting this
solution into (4.61) we get:

v = k [k −
�

k∈∂i
m]−1

= k [k − km]−1

= k

�

k

�

1− 1

k − 1

��−1

So that we finally obtain the full variances:

v =
k − 1

k − 2
(4.69)

We substitute into the expressions (4.62) for the prefactor B to obtain:

B =
1

V k

�

j∈V

k

v

=
1

V k

V k(k − 2)

k − 1
And eventually the prefactor becomes:

B =
k − 2

k − 1
(4.70)

This result agrees with the one derived for Bethe lattices of connectivity k [79]. This is as
expected, given that the cavity method is exact on tree graphs.
Therefore we can conclude that the large time limit of the average number of distinct sites of
a random walk on a k-regular graph is:

lim
n→∞

S(n) =

�

k − 2

k − 1

�

n (4.71)

4.2.4 Numerical results

We performed numerical simulations to test the predictions from our cavity approach for the
number of distinct sites visited. We used four types of graph structures: regular random graphs
(Reg), Erdős-Rényi (ER) [33], scale-free (SF) using a preferential attachment scheme [83] and
the RER. The detailed definition of these topologies can be found in appendix 3. For each of
these graph topologies we investigated three fixed sizes V = 103, 104, 105 and different average
degrees. For ER graphs we only used the giant connected component of each graph sampled,
but the average degrees we consider are large enough (�k� ≥ 4) for this to reduce V by at most
by 2%. The other types of graph have only one connected component by construction.
We performed two types of simulations.
The first one aims at testing the validity of the cavity predictions (4.63), we denote this MP
(message-passing). Therefore we evaluated the cavity equations by iterating equation (4.59).
These depend on the graph topology through the realization of {ki} of a given graph instance.
The iterative solution converged quickly, in typically around 10 iteration steps. Once conver-
gence was reached, we collected the cavity messages to calculate the full marginal through
(4.61). As for the convergence criterium we used the following rule: convergence is reached if
for y consecutive times we have:

max
(ij)∈E

|m(t+1)
i→j −m

(t)
i→j| < ǫ (4.72)

where we set y = 10 and ǫ = 10−5. Finally, the results for B were averaged over 1, 000 different
graph instances for V = 103, 104 and 100 instances for the bigger graphs of size V = 105.
The second type of simulation is a Markov chain simulation of an unbiased random walk, we
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denote it by RW (random walk). Starting from the same graph instances of the MP simulations,
a starting node i0 ∈ V is chosen randomly and then a walk is performed as a series of jumps
with transition probability wij = aij/ki as in (4.3). We keep track of the number of distinct
visited sites as the walk progresses. For each instance of a given graph type, only a single walk
was performed starting from a randomly chosen initial site. From this description we can see
that in this case there is an additional source of randomness arising from the particular random
walk trajectory that is obtained on a given graph. On the contrary, in the MP simulations
randomness was due only to the topology of each graph.

Here we briefly comment on how the cavity predictions depend on graph size V . We argued
that the method should become exact in the limit V → ∞, and so a priori should extrapolate
our predictions for B to this limit. We found, however, that for our relatively large graph
sizes the predictions for different V agreed within the error bars. Thus we did not perform a
systematic extrapolation and simply used the predictions for V = 104, as the largest graph size
for which we could obtain a statistically large sample (1000 graph instances) of data. The fact
that already V = 103, our smallest size, is large enough to obtain results that are essentially
indistinguishable from those for V → ∞ is consistent with findings from cavity predictions in
other contexts, see e.g. [91, 92].
An alternative approach to evaluating the cavity predictions would have been to move from
specific graph instances to solving the limiting (V → ∞) integral equations for the distribution
of messages across the graph. These equations can be read off more or less directly from the
cavity equations, see e.g. [91, 93], or obtained from replica calculations [94] and then solved
numerically using population dynamics. Given the good agreement between the predictions for
our three different V this approach would be expected to give identical predictions, so we did
not pursue it.

Our first task is to verify that the cavity equations do indeed correctly predict the prefactor
B for random walks on large graphs, therefore we compared the average number of sites S(n)
obtained from the Markov chain RW versus Bn, with B the value taken from the cavity MP
simulations. If these two agree then the data points should lie on the diagonal y = x. We see
in figure 4.2 that this is indeed the case, for graphs of size V = 104. Here we used ER graphs
of different average connectivities k = 4, 7 and 10. Similar levels of agreement are obtained for
the other graph ensembles and sizes. We conclude that the numerical data thus fully support
our argument that the cavity predictions will be exact for large V , and show that in fact V does
not have to be excessively large to reach good quantitative agreement between the predictions
and direct simulations.

4.2.5 Dependence on graph topology.

We next look more systematically at how the prefactor B in the large n-behaviour S(n) = Bn
depends on the topology of the graphs we study. In figure 4.3 we report the dependence of the
cavity prediction for B on average node degree �k�, for the four different graph ensembles we

studied. We found that for each graph type a hyperbolic fit of the form B(�k�) = �k�−c1
�k�−c2

gives a
good description of the data, with the parameters c1, c2 dependent on the graph topology but
best fit values always satisfying c1 = c2 + 1. Thus we could interpret the generic graph result
as the one for a regular graph with effective degree �k�− c2+1. This is intriguing as it suggests
that the effect of changing the average degree is quite similar between the different graph types.

Comparing the various graph ensemble we found that the prefactor B is smallest for regular
graphs, given a fixed average connectivity. This finding suggests that heterogeneity in the node
degrees generically seems to increase the number of distinct sites a random walk will visit, a
result that seems to us non-trivial. We argue that it would be interesting to investigate as a
broader conjecture: could there be a lower bound B ≥ (�k� − 2)/(�k� − 1)?
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Figure 4.2: Average number of distinct sites visited, S(n) for random walks on ER graphs of
size V = 104. S(n) is plotted against Bn with the prefactor B as predicted by the cavity
method (4.63), for different average degrees �k� = 4, 7, 10 as shown in the legend. In the linear
regime, before the random walk starts to saturate the graph, data points lie on the diagonal,
showing excellent agreement between predictions and direct simulations.

It is know that the spectral gap of a given graph, the difference between the first two eigenvalues,
is maximal for regular random graphs [95, 96]. Thus one may wonder, if the conjecture about
the lower bound were correct, whether this is related to the spectral gap.
We may attempt to argue on this by looking at the prefactor (4.36). Indeed the spectral gap
appears to impact the numerator of this expression through equation (4.33) and by using the
definition Cjj(z) =

�V
k=2 u

2
k,j/(1 − zλk). Nonetheless the gap contribution could be balanced

off by the square of the eigenvector entries u2
k,j of the matrix R which can be of order O(1) or

O(1/V ) depending on the eigenvector localization or delocalization respectively. For instance
scale-free graphs have been shown empirically to be localized (when considering the adjacency
matrix), i.e. only a few eigenvector entries are non-zero and these correspond to the high degree
nodes [86], whereas for ER graph the amplitude of the eigenvalue entries is evenly distributed
among all the nodes; this difference can be detected for instance by calculating the inverse
participation ratio [94, 86].
Taking all these considerations into account, we conclude that one would then need to consider
these two aspects at the same time in order to make a more rigorous statement. Unfortunately
the absence of a general analytical characterization for either the eigenvalues or the eigenvector
entries makes this difficult.
A concluding remark regarding the topology dependence is the following. Suppose that for
various graph ensembles the average degree �k� is fixed. Can we characterize the increase in B
with some measure of spread of degrees such as the variance �k2� − �k�2? For our admittedly
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limited choice of graph ensembles it is certainly true that the scale-free graphs (SF), which
have the broadest degree distributions, also give the largest B. Below them are the ER graphs.
The RER graphs, finally, with their character intermediate between regular and ER, also have
prefactors B that lie between those of the ER and regular graphs.
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Figure 4.3: Prefactor B predicted by cavity method as a function of average degree, for different
graph types as shown in the legend. The lines represent hyperbolic fits; see text for details.
Note that the results for Reg and RER are essentially on top of each other, and the same is
true for ER and SF.

4.2.6 Finite-size effects and scaling.

In this paragraph we interpret and use the results of the numerical simulations to describe
finite-size effects. By this we mean to find a proper analytical description of the behaviour of
S(n) on graphs of large but finite size V . In fact our derivation of B and its prediction using
cavity techniques was done taking a large V -limit so cannot make statements about this regime.
Instead in the following we will comment on the numerical results using physical intuition and
construct a suitable finite-size scaling ansatz that captures the different aspects provided by
the numerical analysis.
A first observation concerns time. This follows from the interpretation of results plotted in
figure 4.4, which shows results of S(n)/V as a function of n/V for fixed graph size V = 104

and graphs with �k� = 4. Here we can distinguish a number of time regimes. Initially S(n) is
linear in n with prefactor 1. This is greater than the large n prediction Bn with a prefactor
B < 1, because the random walker has not yet had much opportunity to return to previous
sites; in particular one has, trivially, S(1) = 1, ignoring the starting site v0. A second regime is
seen for larger n: in this case one finds the predicted linear growth with prefactor B < 1, i.e.
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S(n) = Bn. Finally, once Bn becomes comparable to V , a crossover to sublinear growth takes
place, and eventually S(n) approaches V as the walker visits all sites for asymptotically large
n. Plots for other graph sizes and average degrees look qualitatively identical.
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Figure 4.4: Finite size effects: we show the walker behavior by plotting S(n)/V , i.e. the fraction
of distinct sites visited, derived from direct simulations vs n/V . Results are from averages over
1000 instances of graphs of fixed size V = 104 and average degree �k� = 4, for different graph
topologies: a) Regular; b) RER; c) ER; d) SF. The dashed red lines show the cavity predictions
Bn for the linear growth with n, a regime which is clearer in the log-log plot insets. Beyond
that one observes a slow crossover, with S(n)/V eventually approaching unity. Solid lines show
our phenomenological scaling fits.

These results suggested us to propose as a plausible scaling function that encompasses the
various regimes (without the initial small n-piece) the following ansatz

S(n, V ) = Bnf

�

Bn

V

�

(4.73)

where the limiting behaviour of the scaling function must be

f(x) ≈
�

1 x ≪ 1
1
x

x ≫ 1
(4.74)

to reproduce S(n, V ) ≈ Bn and S(n, V ) ≈ V when n is much smaller and much larger than
V , respectively. We tested the validity of this ansatz (4.73) by plotting S(n)/(Bn) vs Bn/V
with B predicted from the cavity equations. These results can be seen in figure 4.5; here we
used graph sizes V = 103, 104, 105 and two values for the average degree �k� = 4, 10. This
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plot allows us to directly have a graphical representation of the scaling function f(x). Very
good agreement is seen between the three different graph sizes: these all collapse onto the same
curve, except the initial regime discussed above where S(n) ≈ n and hence S(n)/(Bn) > 1.
Beyond this we observe a plateau at S(n)/(Bn) = 1, which in a different guise verifies our claim
above that the cavity method does indeed predict the prefactor B correctly. For x = Bn/V
growing towards unity, the curves drop below this plateau as expected, indicating the start of
the saturation regime. Asymptotically the scaling function f(x) then approaches 1/x, reflecting
the final saturation of S(n) at the upper bound V .

The same figure reveals another interesting and unexpected result, which indeed was not
required by our ansatz per se. The plots for graphs of different average degree show a good
data collapse. This is suggesting that using Bn/V as the argument of the scaling function
seems sufficient to absorb all the variation with �k�, without further changes in f(x). The only
exception is provided by the scale free graphs, which we discuss in more detail below.

Encouraged by the good agreement of the numerical data with the ansatz (4.73), we at-
tempted to find simple fits to the scaling function f(x). The simulation data show that the
crossover starts off with a roughly exponential departure from the small x-plateau f(x) ≈ 1,
which suggests a scaling function of the form:

f(x) = a/ln(b+ (ea − b)eax) (4.75)

where a and b are fitting parameters. Figure 4.5 shows that this form fits the data extremely
well, and except for the scale-free graphs the fits can be performed even with fixed b = 1,
leaving a single fit parameter.

The case of SF requires a separate comment. For this type of graph in fact we see results
behaving differently than the other graph ensembles. Firstly, the data in figure 4.5 do not
collapse perfectly for different V in the intermediate regime where x = Bn/V is order unity or
somewhat smaller. Secondly, the crossover in f(x) is slower, with f(x) lower in the crossover
region than for the other three graph types. We conjecture that both of these effects are due
to the presence of many small loops in SF graphs, for example triangles (loops of length 3). To
support this hypothesis, we calculated the average number of triangles present in the different
types of graph, taking averages over 100 graph instances of size V = 103. We found results in the
same range for Reg, ER and RER graphs, where the average percentage of nodes that are part
of at least one triangle does not exceed 2%, 7% and 37% for �k� = 4, 6, 10 whereas for SF graphs
the relevant fractions of nodes reach 9%, 24% and 51% for the same average degrees. These
results confirm that SF graphs generated via preferential attachment contain a higher number
of short loops than the other topologies. In fact it has been shown by spectral arguments [86]
that, even though the fraction of nodes in triangles will tend to zero for V → ∞, the growth rate
of the number of loops of length l ≥ 4 exceeds all polynomial growth rates, thus these graphs
do not become locally treelike for large V . Therefore it is somewhat surprising that the cavity
predictions for B are quantitatively accurate even for SF graphs. This feature was nonetheless
already encountered in the EDP problem 2.2.1. There for very loopy graphs, meshes or planar
graphs, we could still find solutions of the optimisation problem using message-passing with
reinforcement. Remarkably these solutions were better than the other alternative algorithms.
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Figure 4.5: Finite-size scaling of number of distinct sites visited, showing y = S(n)/(Bn)
versus x = Bn/V . Data from direct simulations (symbols), with B predicted from the cavity
equations, are shown for graphs of sizes V = 103, 104, 105 and average degrees �k� = 4, 10. The
graph topologies are: (a) Regular; (b) RER; (c) ER; (d) SF. Very good collapse onto a master
curve y = f(x) is seen between the different average degrees and – in (a,b,c) – also different
V . The initial plateau at y = 1 shows the agreement between direct simulations and cavity
predictions. For larger x saturation sets in, with f(x) ≈ 1/x asyptotically (dotted black line).

4.3 The rare events statistics of random walks on net-

works

In this section we focus our attention to study properties of rare events associated to unbi-
ased random walks on networks. A rare event could have serious consequences on the networks
situation, think for instance at the situation where in a communication network a router is over-
loaded. Considering cybersecurity, one could model the path made by viruses or spam emails
as a random walk. A rare event could be represented by the case where the malicious attack
succeeds to infect many sensible nodes, an event that could have catastrophic consequences.
Studying rare events statistic associated to a random walk on a network could highlight some
important aspects related to this dynamic process that are usually hindered by the average
behavior of the walker. Our goal here is to analyze this topic by exploiting large deviation
techniques. We want to characterize the statistics associated to rare event statistics of path
averages or, equivalently, of time integrated variables and see how the results vary with graph
topology. This approach is different from the one recently adopted to analyzed rare events for
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biased random walks in complex networks in [97]. That work addressed rare fluctuations in
single node occupancy for an ensemble of independent (biased) walkers in the stationary state
of the system. Instead, rare event statistics of path averages has been looked at for instance in
the context of kinetically constrained models of glassy relaxation [98]; relations to constrained
ensembles of trajectories were explored in [99] for Glauber dynamics in the 1-d Ising chain. In
these works they use large deviation formalism as a tool to explore dynamical phase transitions,
a topic that here comes out as the outcome of the numerical study of our theory. Indeed we
observe two types of dynamic phase transitions, whose details depend on the nature of the
observable for which the rare events statistics is studied. In this work we focus the numerical
studies on the degree of the nodes visited by the random walker, but the theoretical analysis
will be addressed in the general case. An analytical approximation of the Legendre transform
of the large deviation rate function will be given for graphs of large average connectivity. In
the rest of the chapter we will discuss the main ideas presented in [62]. Our main focus is
on the interplay between rare event statistics, the heterogeneity of the underlying system, and
dynamic localization phenomena.

4.3.1 Large deviation theory

In this section we introduce the main ideas behind the large deviation formalism. In particular
we will describe the main tools that we will use to address our problem in the next sections.
Large deviation theory [100, 101] studies the exponentially decay of probabilities of large fluc-
tuations in random systems. In general in these systems the probability of a given event
concentrates around the average. However it is important to obtain a finer characterization of
the fluctuations around this average or the decay in probability towards the tail of the distri-
bution. This is the main objective of large deviation theory.
The starting point of this theory is the formulation of the large deviation principle [100, 101].
This states that a probability distribution function P (xn) of a random variable xn satisfies a
large deviation principle if the following limit exists:

lim
n→∞

−1

n
lnP (xn) = I(xn) (4.76)

where I(x) is called the rate function. This principle can be interpreted by saying that the
behavior for large n of P (xn) is dominated by a decaying exponential and that the rate of this
decay is controlled by I(xn). Formally this can be written also as:

P (xn) ∝ e−nI(xn)+o(n) (4.77)

where o(n) means corrections sub-linear in n. This shows that the function I(x) controls
the dominant exponential term and the remaining o(n) terms are neglected. Indeed P (xn)
concentrates on the points corresponding to the zeros of I(xn). These points are the typical
values in the large n limit. Therefore, concerning our problem of studying rare events, we
are interested to determine this function. Unfortunately, proving that P (x) follows the large
deviation principle (4.76) or finding an analytical representation of I(x) could be both hard
tasks. Nonetheless one could overcome this problem by using the Gärtner-Ellis theorem [101]
and the concept of limiting cumulant generating function λ(k). The latter is a quantity defined
as:

λ(k) = lim
n→∞

1

n
lnE[enkxn] (4.78)

where the symbols E[x] means the expected value of xn and k is a real parameter.
The theorem says [100, 101] that, if λ(k) is differentiable, then xn satisfies the large deviation
principle (4.76) and the rate function I(xn) is determined as the Legendre transform [102, 103]
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of λ(k) as:

I(x) = sup
k∈R

{kx− λ(k)} (4.79)

where sup is the supremum. This in particular shows that it is possible to calculate I(x)
without knowing explicitly P (x), it is sufficient to know the cumulant generating function λ(k)
and check that this is differentiable. This is indeed the strategy that we will adopt in the
following.
In general one can calculate the Legendre transform (4.79) by using the property of λ(k) of
being differentiable [102, 103]. In this case one could define:

F (x, k) = kx− λ(k) (4.80)

and take the derivative with respect to k forcing it to be zero in order to calculate the maximum:

∂

∂k
F (x, k) = 0 (4.81)

But the form of F (x, k) implies that:

λ′(k̃) = x (4.82)

In general there could be more than one k̃ such that (4.82) is valid. However, if λ′(k) is continuos
and monotonically increasing for increasing k and it goes as λ′(k) → −∞ for k → −∞ and
λ′(k) → +∞ for k → +∞ then there is a unique k̃. This (or these if there are more than one)
value k̃ of k is the one that corresponds to the supremum in (4.79) so that we can finally write:

I(x) = k̃x− λ(k̃) (4.83)

We have seen that the knowledge of λ(k) is sufficient to derive the rate function. One has to be
careful though. Indeed in all our considerations we were assuming that λ(k) was differentiable
∀k ∈ R. This is one of the main hypothesis needed in order to apply the Gärtner-Ellis theorem
(4.79). However, even if this was not the case, for instance when λ(k) has one (or more) non-
differentiable point k∗, the theorem could still be applied to the subset of the domain of λ(k)
where this is differentiable. One could say that the Gärtner-Ellis theorem is applied piece-wise
in this case.
The fact that λ(k) is not differentiable in some points, is a signature that the rate function
either is not strictly convex, i.e. admits linear parts, or is not convex [101]. These two cases
cannot be distinguished and in fact I(x) cannot be calculated as the Legendre transform of
λ(k). If one tries to do this, i.e. applies (4.79) in the non differentiable points of λ(k), one
only finds the convex envelope of I(x) [101]. This is defined as the double Legendre-Fenchel
transform of I. The problem is that the rate function coincides with its convex envelope only
if it is convex. If I(x) is not convex than it can have more than one minimum and rare events
are indeed rarer than what predicted by the convex enveloped calculated from λ(k). If instead
I(x) is convex but not strictly, i.e. admits a linear part, than the exponential decay of P (x) is
slower than the strictly convex case where I(x) has the shape of a parabola.

4.3.2 Large deviation theory adopted to rare events on networks

The theory of large deviations introduced above could be adapted to describe the rare events
statistics associated to functions defined on vertices i ∈ V along paths made by an unbiased
random walker on the network. We consider functions that take the form f(ǫi), where ǫi are
quenched random variables associated with the nodes of the graph. These variables could either
be stochastic or deterministic. In the first case one could take them to be either independent or
correlated to the node degree ki. In the deterministic case the non-trivial choice is to take them
as functions of the degree f(ki). In this work we focus on the latter, reserving the stochastic
case for future works. Nevertheless we will describe a general model valid in both cases and we
will point out when the results will be restricted to the deterministic case.
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Consider a path īl = (i0, . . . , il) of length l of a random walk over a network, with ın, n = 0, . . . , l
denoting the visited nodes in ∈ V at each step n. We are interested to study the statistics of
empirical averages:

φ̂l =
1

l

l
�

n=1

f(ǫin) (4.84)

where {in} are the nodes of the path īl. The mean of φ̂(ǫl) is defined as:

φ̄l =
1

l

�

īl

P (̄il)
l

�

n=1

f(ǫin) (4.85)

=
1

l

�

l
�

n=1

f(ǫin)

�

(4.86)

where P (̄il) is the probability of having a path īl given a walk with unbiased transition prob-
ability as in (4.4) and an arbitrary distribution of initial conditions. The mean φ̄l could be
computed using the moment generating function Zl(s) of the form:

Zl(s) = E
�

es
�l

n=0 f(ǫin )
�

(4.87)

=
�

īl

P (̄il)e
s
�l

n=0 f(ǫin ) (4.88)

and then noting that the mean (4.85) could be written as:

φ̄l =
d

ds

1

l
Zl(s)|s=0 (4.89)

We expect that for large l the empirical average (4.84) is highly peaked around the mean
(4.85). However focusing our attention on the mean may hinder some interesting behavior that
could be seen only when considering fluctuations around this mean. Therefore in the following
we will explore the behavior of φ̂l when this deviates from the mean. Formally, we are interested
in quantifying the probability of rare events, i.e. in quantifying P (φ)dφ = Prob(φ̂ ∈ [φ,φ+dφ) ).
To achieve this we will deploy the large deviation formalism introduced above. In what follows,
for simplicity of notation, we will use the variable φ instead of φ̂l taken in the limit l → ∞.
We start by defining the cumulant generating function:

ψl(s) =
1

l
lnE

�

es
�l

n=0 f(ǫin )
�

(4.90)

=
1

l
lnZl(s) (4.91)

and assume that this quantity exists and is differentiable.
In this case one can define the equivalent of the limiting cumulant generating function (4.78)
specific to our problem:

ψ(s) = lim
l→∞

ψl(s) (4.92)

Therefore one could use the Gärtner-Ellis theorem (4.79) to imply the validity of the large
deviation principle (4.77). This means that P (φ) has an asymptotic behavior (valid for large
l) of the form:

P (φ) ∼ exp{−lI(φ)} (4.93)

where the exponential decay is controlled by the rate function I(φ).
Moreover this quantity can be determined as the Legendre transform of ψ(s):

I(φ) = sup
s∈R

{sφ− ψ(s)} (4.94)

and we can conclude that P (φ) concentrates around the zeros of I(φ), i.e. the typical values
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of φ. In what follows we are interested to find how φ deviates from these typical values. We
could calculate I(φ) by taking the derivative of (4.94) with respect to s so that we recover
(4.82),(4.83) and eventually we could write:

ψ′(s∗) = fφ (4.95)

I(φ) = s∗φ− ψ(s∗) (4.96)

or equivalently we could write the parametric expression:

I(ψ′) = s∗ψ′ − ψ(s∗) (4.97)

where s∗ is the solution of (4.95). This last equation is particularly convenient in the case where
finding an analytical expression for I(φ) is difficult. In this case one can nonetheless evaluate
it numerically by first evaluating both ψ(s) and ψ′(s). Then one could plot I as a parametric
function of ψ′.

4.3.3 Evaluation using the spectrum of a deformed transition matrix

Following the considerations made above, the whole problem is translated to the determination
of the limiting cumulant generating function ψ(s) and its Legendre transform, i.e. the rate
function I(φ). Here we will tackle this problem by relating ψ(s) to the eigenvalues of a deformed
transition matrix W (s) (or its symmetric counterpart W̃ (s)) that results from a modification
of the unbiased walk transition matrix W as in (4.4). The idea is that rare events under W are
mapped into typical events under the deformed dynamics regulated by W (s).
In what follows it is convenient to adopt the convention of denoting by Wij as the transition
probability of jumping from j to i, instead of the contrary as done in section 4.2.
First of all notice that the path probability P (̄il) can be written in terms of W as:

P (̄il) =

�

l−1
�

n=0

Win+1in

�

p0(i0) (4.98)

In this way one could express compactly the moment generating function Zl(s) defined in (4.87)
as:

Zl(s) =
�

īl

�

l
�

n=1

esf(ǫin )Winin−1

�

p0(i0) (4.99)

=
�

in,i0

[W l(s)]il,i0p0(i0) (4.100)

where we have introduced a (first) deformed transition matrix W (s) with entries:

Wij(s) = esf(ǫi)Wij (4.101)

Notice that this matrix is in general not symmetric.
Now we consider the large l limit of Zl(s) and for this purpose it is convenient to evaluate it in
terms of the spectral decomposition of W (s). Denoting by λα the eigenvalues of W (s) and by
vα and wα the corresponding right and left eigenvector (respectively), one has:

Zl(s) =
�

α

λl
α(1,vα)(wα,p0) (4.102)

where 1 = (1, . . . , 1) and p0 = (p0(i1), . . . , p0(iV ) ). We follow the convention in [62] to denote
inner product using brackets (·, ·). Notice that the eigenvalues and eigenvectors depend implic-
itly on s, even though we dropped this dependence when using the notation λα. Indeed one
has λα = λα(s).
Taking the ln of this expression we obtain the cumulant generating function ψl(s) as defined in
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(4.91) as a function of the spectrum of W (s):

ψl(s) = lnλ1 +
1

l

�

(1,v1)(w1,p0) +
�

α�=1

�

λα

λ1

�l

(1,vα)(wα,p0)

�

(4.103)

where we separated on purpose the leading eigenvalue λ1 from the rest of the spectrum λ1 >
|λ2| ≥ · · · ≥ λN . Here this series of inequalitis is a consequence of the Perron-Frobenius theorem
[67].
This spectral decomposition allows to determine the large l limit as a function of only the leading
eigenvalue λ1. In fact the contributions of all the other λα (with α �= 1) in the determination
of ψ(s) are negligible when l → ∞. This can be seen by taking in (4.103) first l → ∞, because

of the term
�

λα

λ1

�l

→ 0, and only after we can consider the thermodynamic limit V → ∞. This

order in taking the limits is important to insure that the product (1,vα)(wα,p0) is a finite
quantity, therefore allowing to discard the sum inside (4.103).
Bearing in mind that λ1 = λ1(s), eventually we can write:

ψ(s) = lnλ1(s) (4.104)

and thus:

I(φ) = sup
s
{sφ− lnλ1(s)} (4.105)

and everything resolves to the evaluation of the leading eigenvector of the matrix W (s) defined
in (4.101). One could equivalently write parametric expressions by taking the derivative with
respect to s:

ψ′(s∗) =
λ′
1(s

∗)

λ1(s∗)
= φ (4.106)

I(ψ′) = s∗ψ′ − ψ(s∗) (4.107)

These last two equations are particularly convenient when the numerical evaluation of I is the
only viable way to determine the rate function.
The case s = 0 is trivial. Indeed the column-stochasticity, i.e. the property

�

i Wij(s) = 1,
yields a left row eigenvector w1 = (1, . . . , 1), corresponding to the maximum eigenvalue λ1 = 1.
Whereas the corresponding right column eigenvector v1 has entries v1i ∝ ki.
For the case s �= 0 such closed form expressions are in general not known.
As we already mentioned, this matrix is not symmetric. Therefore it could be convenient to
symmetrize it in order to compute λ1 efficiently. This is obtained by defining another deformed
matrix W̃ (s) applying a similarity transform to W (s) as:

W̃ (s) = D−1/2W (s)D1/2 (4.108)

The matrix W̃ij(s) has entries:

W̃ij(s) = e
s
2
f(ǫi)

aij
�

kikj
e

s
2
f(ǫj) (4.109)

This matrix has the same spectrum of W (s). In fact, denoting by uα an eigenvector of W̃ , we
have the eigenvalue equation:

W̃ (s)uα = λαuα (4.110)

D−1/2W (s)D1/2uα = λαuα (4.111)

and multiplying on the left by D1/2 both the sides of the equation we obtain:

W (s)D1/2uα = λαD
1/2uα (4.112)

which is the eigenvalue equation of W (s) for the eigenvalue λα and corresponding eigenvector
D1/2uα. The same reasoning can be made using the left eigenvector wα of W (s). Thus W̃ (s)
and W (s) have the same spectrum, and in particular the same leading λ1. The eigenvectors
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are not the same instead, nonetheless they can be related by:

vα = D1/2uα (4.113)

wα = uT
αD

−1/2 (4.114)

where uT
α denotes the row vector corespondent to uα.

Ideally, for the non-zero s, one would like to find simple analytical results as for the s =
0 case. Unfortunately, the graph heterogeneity makes this a difficult task to be addressed.
Moreover the strategy of performing a direct matrix diagonalization of either W (s) or W̃ (s)
could be daunting for large N . This is valid even if one considers alternative methods that
calculates only the first eigenvalue as the Lanczos algorithm [104]. Hence we are interested to
find a fast viable approximation.
We start by noting that the form of W (s) in (4.101) suggests us the following ansatz for the
left eigenvector w1:

λ1wj =
1

kj

�

i∈∂j
wie

sf(ǫi) (4.115)

This defines a system of V equations, i.e. one equation ∀i ∈ V. These equations can be solved
iteratively using Lagrange multiplier formalism combined with the cavity method [105], though
we found that using a Lanczos algorithm [104] to determine the largest eigenvalue of W̃ (s) is
usually more efficient than a simple forward iteration of (4.115).
In general though, as already mentioned before, one could numerically determine λ1 and from
this calculate ψ(s) using (4.104). Eventually one could determine the rate function using the
parametric expression (4.107) but first one has to calculate ψ′(s). This could be done numer-
ically but fortunately there exists an analytical exact formula to characterize this derivative
starting from the eigenvalue equation for W̃ (s) and using (4.106). Here we can use W̃ (s) be-
cause the spectrum is the same as the one of W (s) and all we need to calculate ψ′(s) is λ1.
In fact, considering the first eigenvalue λ1 and the corresponding eigenvector v, the eigenvalue
equation W̃ (s)v = λ1v yields:

λ1 = (v, W̃ (s)v) (4.116)

=
�

i

vi
�

j

W̃ij(s)vj (4.117)

Note that we also have:

W̃ ′
ij(s) =

�

f(ǫi)

2
+

f(ǫj)

2

�

W̃ij(s) (4.118)

where the last equation is symmetric in ij.
Now we consider (4.106). Taking the first order derivative with respect to s of (4.117) and
combining it with (4.118), eventually we obtain:

ψ′(s) =
�

i

v2i f(ǫi) (4.119)

This formula could be used to evaluate numerically ψ′(s) by using the components vi of the
first eigenvector, thus avoiding to perform the numerical derivation of ψ(s).

4.3.4 Degree-based approximation

One could attempt to solve analytically the system of equations (4.115) by considering a degree-
based approximation, a method that has been often used to study epidemic processes on net-
works [106, 107]. In this case one assumes that eigenvalue’s entries wi only depend on the

86



degree ki of node i:

wi = w(ki) (4.120)

thus nodes with same degree will correspond to equal eigenvector entries. This could be
rephrased by saying that all nodes with a given degree are considered statistically equiva-
lent.
This approximation is expected to be valid when the average degree c = �k� =

�

i∈V ki/V is
large enough and the degree distribution is not too heterogenous.
If this is the case we could write the eigenvalue equation (4.115) by using the law of large
numbers as:

λ1w(k) =
�

k′

P (k′|k)w(k′) esf(k
′) (4.121)

where P (k′|k) is the probability for a node of degree k to have neighboring node of degree k′.
In an Erős-Renýı graph and more generally in any configuration model ensemble or in a graph
where two-point correlations are not present we have that P (k′|k) is independent on k. In fact
one has [106, 107]:

P (k′|k) = P (k′)
k′

�k� (4.122)

In this case the right-hand side of (4.121) does not depend on k and thus the left-hand side
neither. This implies that the w(k) are in fact independent on k.
The eigenvalue equation (4.121) then simplifies to:

λ1w = w
�

k′

P (k′)
k′

�k� e
sf(k′) (4.123)

(4.124)

and one can drop the w so to eventually obtain:

λ1 =

�

k

�k�e
sf(k)

�

(4.125)

where the average is over the degree distribution P (k). From this expressionone could calculate
ψ = lnλ1 as in (4.104).
We found that this approximation yields excellent results for large mean connectivities c = �k�
on ER graphs and more generally for configuration models without low degree nodes. This can
be seen in figure 4.6 where we plot a comparison with numerical simulations for ER with c = 30
and for f(ki) = ki/c. Numerical simulations are used to determine �lnλ1�, where the average
is over 1000 instances of these types of ER graphs.

4.3.5 Eigenvector localization

The exponential form (4.101) of the deformed transition matrix suggests that for large values
of |s| the random walk may be highly localized around nodes where sf(ǫi) is very large. This
feature can be quantitatively investigated be defining the inverse participation ratio of the
eigenvector corresponding to the largest eigenvalue λ1 of W (s). Denoting by vi its components,
this is defined as [108]:

IPR[v] =

�

i v
4
i

�

�

i v
2
i

�2 (4.126)

One expects IPR[v] ∼ N−1 for a delocalized vector, whereas IPR[v] = O(1), if v is localized.
In fact a delocalized N -dimensional vector with norm ||v|| = 1 has homogenous entries, each
one of the order vi ∼ 1/

√
N . This gives a denominator ∼ 1 in (4.126) and a numerator ∼ N−1.

On the contrary, a localized v has most of the entries zero or close to zero and only a few
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vi = O(1) contributing the most to the norm.
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Figure 4.6: Degree-based approximation. We plot ψ = lnλ1 as a function of s for ER networks
with c = 30 and f(ki) = ki/c the renormalized degree. The green curve is the result of
the large-degree approximation (4.125) for this graph ensemble. In blue we plot results from
numerical simulations over 1000 realizations of the graph topology. INSET: the rate function
I(φ) resulting from the numerical and analytical degree-based approximation.

4.3.6 Numerical results

We performed numerical simulations to evaluate λ1 and the IPR[v] for several instances of
random network of type Erdős-Rényi (ER) [33] and scale-free (SF) under the preferential at-
tachment scheme [83]. See appendix 3 for more details about the graph construction. We used
various average connectivities c and system sizes V .
We looked at two different definitions for f(kit): a normalized degree f(ki) = ki/c and a binary
function f(ki) = 1, (0) if ki > c, (ki ≤ c), respectively.
We restricted ourselves in the simulations to connected graphs, in order to prevent isolated
nodes or small disconnected clusters (e.g. dimers) dominating λ1 and thus the IPR for negative
s, as these would represent trivial instances of rare events, where a walker starts and is thus
stuck on a small disconnected component of the graph. Therefore, after having generated a
graph, we kept only the giant component and calculated λ1 and v on it.
The first type of results concerns λ1. To evaluate this quantity one could for instance use
Lanczos algorithm [104] that allows to evaluate efficiently only the the first n eigenvalues of
interest, if the system size is small enough(V < 4000). Otherwise we found that solving the
eigenvalue equation (4.121) iteratively as proposed in [105] is faster for bigger system sizes.
Once we have λ1 this can be used to calculate the relevant quantities ψ(s), ψ′(s) and I(φ) using
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(4.104), (4.119) (for this we also need the eigenvector components vi) and (4.107) respectively.

In figure 4.7 we plot two examples of rate functions for the two choices of f(ki). We plot the
I as parametric functions of φ as in (4.105). We could notice that for f(ki) = ki/c the curve
seems to show a linear behavior with slope a on the left of the minimum for increasing system
sizes. This is a signal that ψ(s) may not be differentiable in s∗ = a as N increases. Therefore
we analysed the behavior of ψ(s) for the largest system size (N = 6400) and indeed noticed the
existence of this non-differentiable point which we estimated to be s∗ = 0.302± 0.021 for c = 6
and s∗ = −0.061± 0.008. In figure 4.8 we plot the linear fit on the left side of the rate function
with slope s∗ and in the inset we display ψ(s) for the two different average connectivities. We
can notice that in s∗ the tangents take two different values approaching this point from the left
and from the right. This behavior seems to smooth out with increasing c, and indeed this is
confirmed by the inset of figure 4.6 where for high average connectivity c = 30 shows a rate
function without linear parts. On the contrary for the smallest connectivity c = 3 the linear
part is the sharpest and for this it is more evident the presence of the complex hull of the
otherwise parabolic behavior, as can be seen in figure 4.6 (bottom).

Also the right branch of the rate function seems to have a slow increasing slope as for the
linear left branch. However the result of a quadratic fit on the right side of the curve seems to
better describe its behavior instead of a linear one. For the binary case the rate function shows
a regular behavior too for increasing N and in fact ψ(s) (not plotted) is always differentiable
in this case.
The presence of a non-differentiable point of ψ(s) implies that one cannot apply the Gärtner-
Ellis theorem (4.79) in the point s = s∗. The linear part of the curve of I(φ) represents its
convex envelope, i.e. the Legendre transform of ψ(s). This coincides with the actual rate
function I(φ) only if the rate function is convex (or strictly convex). If this was the case then
the exponential decay of P (φ) would be slower that the strictly convex case where I(φ) is a
parabola. This allows to differentiate small deviations (I is parabolic) and large deviations (I
has a linear part) from the typical value corresponding to the minimum of I. If instead I(φ) is
not convex, than it admits more than one minimum and this translates into P (φ) having rare
events which are rarer than what is predicted by the convex envelope calculated from ψ(s).
The presence of this linear part, thus of a non-differentiable point of ψ(s), is a signature of
a dynamic phase transition concerning the largest eigenvalue of W (s). In fact λ1(s) cannot
display a non analyticity unless it is degenerate. Unless you have a cycle, in a finite system the
largest eigenvalue of W (s) will be non degenerate, but as the system size grows, a degeneracy
may develop; the transition becoming sharp as N → ∞.
To better explore this conjecture we monitored the second largest eigenvalue λ2(s) and indeed
saw an avoided level crossing near the estimated s∗. By this we mean that the two eigenvalues
start far apart from each other and then λ2 approaches more and more λ1 as s → s∗− without
ever reaching it. Then they start to get apart again when s > s∗, on the right side of the
transition point.

A better signature of this level crossing and degeneracy is obtained by monitoring a relax-
ation time so defined:

τ = − 1

log
�

λ2

λ1

� (4.127)

From this definition we see that a divergence arises for λ2 → λ1, i.e. for a level crossing; whereas
an increasing gap between the first two eigenvalues would give τ → 0. In figure 4.9 we can
notice a divergence close to s∗ for the case of ER graphs of average connectivity c = 6; this
seems to keep diverging more sharply for increasing N . Another smaller divergence seems to
develop for a positive value of s, a signal of a linear branch of the rate function on the right
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Figure 4.7: Rate function I(φ) as a function of φ. We use ER graphs with c = 6, f(kit) the
renormalized degree (top) and the binary function (bottom). Results are averages over 1000
realizations of each graph topology. Different colors represent different system sizes. Insets:
the same curves for a fixed size N = 3200 and different connectivities.
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Figure 4.8: Rate function linear behavior. I(ψ′) exhibits a linear behavior for ψ′ ∈ (a1, a2), these
corresponds to the vertical lines. This results are for ER graphs of c = 6 and different system
sizes. From a linear fit we estimated a1 = 0.45 ± 0.04 and a2 = 1.09 ± 0.01, these are plotted
as vertical lines. The linear curve linear fit with slope s∗ = −0.302± 0.021 is superimposed to
show the agreement with the estimated non-differentiable point of ψ′(s). Inset: ψ(s) is plotted
around the non-differentiable point s∗. The two tangents, denoted with f(x) and g(x), are
displayed. These are the results of linear fits. Their resulting slopes a1 and a2 correspond to
the extremes of the interval where the rate function is linear.

side of the curve. However, as we have already seen if figure 4.8, indeed there seems to be no
linear envelope, and a slowly quadratic increase better fits the data.
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Figure 4.9: Relaxation time. The quantity (4.127) is plotted as a function of s for ER graphs
of increasing system sizes (from the bottom to the top curves) and �k� = 6 . A divergence
peak seems to develop around the estimated transition point s∗ = −0.301 signaling the
presence of a non analytic point of ψ′(s). A smaller peak for a positive value of s seems seems
to develop as well, however the corresponding behavior of the rate function around that point
seems to be quadratic.

We can conclude that all these findings unveil the presence a first type of dynamic phase
transition related to a switching between modes phenomenon, as the deformation parameter s
used to select rare events is varied. Namely, the level crossing of the first two largest eigenvalues,
implies that the mode which realizes the typical rare event changes at the given s to another
mode, and the original one is no longer the dominant rare event. Thus it can be interpreted as
a dynamic phase transition in the rare events ensemble.

The second type of result concerns the IPR (4.126), the quantity playing the role of a
signature of eigenvector localization. In figure 4.10 we give results of numerical evaluations of
this quantity for the two different expressions for f(ki). In the case of f(ki) = ki (top) we see
high localization for big values of |s|. This shows that in this interval the walk concentrates on
very high (or very low) degree nodes. On the contrary for values of s ∈ [−0.1, 0.7] the IPR is
almost zero, thus showing delocalization. The case of the binary f(ki) (bottom) also shows both
regimes but in this case we have that the localization happens only for negative values of s and
small c, whereas for positive values the IPR goes to zero. Localization persists at negative s up
to c ∼ 10. This is related to the binary nature of the function. The random walk at large |s| can
be understood as a random walk on an effective network where the low (or high) degree nodes
have been replaced by an absorbing state (this effectively corresponds to the random walker
falling into a hole). The extended range of localization at negative s regime can be understood
as a consequence of this absorbing state and the low degree of the “allowed” nodes: the effective
graph is more strongly fragmented than mere random removal of nodes would suggest, and the
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random walk is attracted to those connected components of the effective network where the
probability of falling into a hole is lowest. On low-c networks, this limits the choices to small
chains at the periphery of the network and thus creates significant localization. Thus the system
exhibits a localization transition, indicating that rare large fluctuations of path averages are
typically realized by trajectories that remain localized on small subsets of the network.

We show the transition between the two phases in the insets of the two figures. There
we take logarithmic scale and plot the IPR as a function of 1/N . We can notice that in the
localized regime the IPR tends to a constant value with increasing system size, i.e. decreasing
1/N . Whereas in the delocalized regime we have a linear behavior that persists at all N .
The existence of a localized phase in either the choices of f(ki) highlight the presence of a
dynamic cluster, a set of consecutive nodes that have very high (or low) degree. We call this
concept dynamic to not confuse it with the static clusters usually characterizing the topology.
Here these structures arise only when performing a random walk under the deformed dynamics
(4.101) and depend on the shape of f(ki). The static clusters instead are sets of nodes charac-
terized by given topological properties, such as their mean degree with respect with the overall
graph’s one. They are extensively used in the studies of community detection on networks
[109, 110] and their existence is hence independent on the random walk. These dynamic clus-
ters arise as a consequence of the transition matrix deformation and are detected by studying
the leading eigenvector.

This set of results follows from a preliminary work on rare events associated to random
walks on networks that opens new questions that needs to be understood.
First of all here we focused our attention of deterministic functions f(ki) of the node degree.
It may be an interesting generalization to consider stochastic functions instead. We indeed
have obtained some preliminary results for binary functions taking values independently on ki,
however these results are not reported here because they require a deeper understanding and
a thorough interpretation.
Secondly, we considered functions taking values on nodes. The same formalism could be adapted
to a dual case where variables are instead on edges. This could be of interest for instance
when studying routing problems on networks subject to capacity constraints or having costs
represented by weights. A rare event in this case could be associated to a walk performed on
overcrowded (or completely empty) edges. The arguments made above seem to adapt to this
case but a deeper analysis has to be formulated in order to state more rigorous results. We
leave all these open issues for further studies.
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Chapter 5

Non-equilibrium Statistical Mechanics

of the Heat Bath

for Two Brownian Particles

In this chapter we will described a model whose development has begun before the official
start of the PhD but that has been finally completed only during the first year of the thesis.
Therefore it is a Chapter independent form the others and is based on the work published in
[111]. Here we outline the main ideas and focus on the novel outcomes resulting from this work,
leaving the details of the computation to the reference [111].
The model is composed of two mesoscopic brownian particles that interact through a potential
U0(X1, X2), where X1 and X2 are their respective positions. At the same they are surrounded
by a thermal bath. The latter is represented as an infinite number of microscopic particles that
interact with both of the brownian ones, leading to a frictional memory force that causes the
dynamics to be non-Markovian. It is an out-of-equilibrium system that we solved extending
Zwanzig model [112]. Zwanzig presented an analytically solvable microscopic model of a sin-
gle Brownian particle in an arbitrary potential. The heat bath around a single heavy particle
has been modeled by many light mass particles each of which is coupled to the heavy particle
through a Hookean spring. Despite the simplicity of considering only one brownian particle,
that model has revealed to be very instructive in providing a concrete picture of the micro-
scopic origin of the generalized Langevin equation. That inspired us to expect that solvable
microscopic models including more than one heavy particles will help us to have clear idea
about the non-local aspects of the heat bath. Therefore we studied a two-particle system using
a similar Mori-Zwanzig formalism [113, 114, 115] that leads to a neatly solvable model and
eventually yields to a generalized Langevin equation. This result unveils the appearance of a
bath-mediated effective potential UBbB(X1, X2) that acts on the two brownian particles, so that
the overall potential controlling their interaction will be the sum:

U(X1, X2) = U0(X1, X2) + UBbB(X1, X2) (5.1)

In addition, we found that this induced potential UBbB(X1, X2) its directly related to the friction
kernel and the thermal noises through the microscopic parameters and its analytic expression
can be derived from the equations of motion. This allowed us to address the work needed in
order to change the friction kernel, a quantity which has not been accessible on the level of
Langevin dynamics.
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Figure 5.1: Hamiltonian model of two Brownian particles. Two mesoscopic particles are sur-
rounded by an heat bath modeled as an infinite set of microscopic harmonic oscillators.

5.1 The model

The starting point of the Mori-Zwanzig formalism [113, 114, 115] is to write down an Hamilto-
nian that captures all the interactions present in the system, so that as a next step one could
apply Hamilton equations to it.
In our system the whole Hamiltonian consists of two heavy (Brownian) particles of mass MJ

with J = 1 and 2 and many light ” gas” particles of mass mi, where the index i distinguishes
each gas particle. In figure 5.1 the heavy particles and the gas particles are schematically
shown. Each gas particle is linked at least to one of the heavy particles J = 1 or 2, through the
Hooke’s spring with the spring constant, miω

2
i,J(> 0), and the natural length optimisationi,J .

Some of the gas particles can be linked to both heavy particles, when ω2
i,1ω

2
i,2 > 0. In figure 5.1

these links are represented by dashed lines. The heavy particles can interact with each other as
well as with some external potentials, such as the force field of optical pincers. For the sake of
solvability, the actual model is limited in the one-dimensional space while figure 5.1 gives the
general idea in higher dimensions.
All these premises are represented as the following Hamiltonian, H = H0 +Hb +HbB:

H0 =
P 2
1

2M1

+
P 2
2

2M2

+ U0(X1, X2) (5.2)

Hb =
�

i

p2i
2mi

, HbB =
�

i

mi

2

2
�

J=1

ω2
i,J(qi − ℓi,J −XJ)

2 (5.3)

where the pairs (XJ , PJ) and (xi, pi) denote, respectively, the positions and momenta of the
heavy (J) or light (i) particles. The bare potential energy for the heavy particles, U0(X1, X2),
may reflect the distant-force interaction between them as function ofX1−X2, as well as external
force fields on the individual heavy particles such as of optical pincers. That qi and XJ appears
as a simple difference, (qi − XJ), reflects the translational symmetry of the heat bath. In
the original Zwanzig model [112] the heat bath was essentially translationally invariant with
any prefactor of XJ and any natural lengths of each spring because these parameters could
be absorbed by redefining qi and the associated parameters, mi or ωi,J . In the present model,
however, such redefinitions are impossible in the presence of light particles coupled to the both
heavy particles, i.e. with ω2

i,1ω
2
i,2 > 0. By contrast, when ωi,J = 0 for a J value, the natural

length ℓi,J is merely a dummy parameter.
One can thus derive the Hamilton equations of the Hamiltonian H for both the Brownian
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particles and the light mass ones. The Brownian particles obey the following dynamics:

MJ
d2XJ

dt2
= − ∂U0

∂XJ

+
�

i

miω
2
i,J(qi −XJ − ℓi,J) (5.4)

whereas the equations for (qi(t), pi(t)) reads:

mi
d2qi
dt2

= −mi

2
�

J=1

ω2
i,J(qi −XJ − ℓi,J) (5.5)

Given the initial values of (qi, pi) we can solve for qi(t) assuming that the histories of XJ

(J = 1 and 2) up to the time t are given. We assume that at t = 0 the bath variables In order
to assure the compatibility with the initial canonical equilibrium of the heat bath, we assume
the vanishing initial velocity for the Brownian particles dXJ/dt|t=0 = 0. Upon substituting the
solutions for qi(t) the dynamics of XJ(t) is rigorously reduced to

MJ
d2XJ(t)

dt2

= −∂(U0 + UBbB)

∂XJ
−

2
�

J ′=1

� t

0

KJ,J ′(t− τ)
dXJ ′(τ)

dτ
dτ + ǫJ (t), (5.6)

where we obtain the bath-mediated static potential supplementing U0 as:

UBbB(X1, X2) =
kBbB

2
(X1 −X2 + LBbB)

2 (5.7)

with

kBbB =
�

i

miω
2
i,1ω

2
i,2

ω̃2
i

, LBbB =
1

kBbB

�

i

miω
2
i,1ω

2
i,2(ℓi,1 − ℓi,2)

ω̃2
i

, (5.8)

under the definition, ω̃2
i = ω2

i,1 + ω2
i,2.

Note that UBbB depends on X1 and X2 though the difference X1 − X2 therefore it possess
translational invariance.

The friction kernel KJ,J ′(s) is found to be

KJ,J ′(s) =
�

i

miω
2
i,Jω

2
i,J ′

ω̃2
i

cos(ω̃is), (5.9)

which satisfies the symmetry properties:

KJ,J ′(s) = KJ ′,J(s) = KJ,J ′(−s) (5.10)

If we complement (5.6) by the initial conditions, XJ(0) and dXJ/dt(0) = 0, the noise term ǫJ(t)
is given by

ǫJ (t) ≡
�

i

miω
2
i,J

�

q̃i(0) cos(ω̃it) +
dq̃i(0)

dt

sin(ω̃it)

ω̃i

�

(5.11)

with

q̃i(t) ≡ qi(t)−
2

�

J=1

ω2
i,J

ω̃i
[ℓi,J +XJ(t)]. (5.12)

The physical meaning of q̃i is clear from the following rewriting of the potential energy part of
HbB :

�

i

mi

2

2
�

J=1

ω2
i,J(qi − ℓi,J −XJ)

2 =
�

i

miω̃
2
i

2
q̃2i + UBbB(X1, X2). (5.13)

This identity assures that, if the light particles are initially in canonical equilibrium at temper-
ature T under a given set of XJ(0) and dXJ/dt(0) ≡ 0, the variable q̃i(0) and dq̃i/dt(0) should
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obey the equipartition laws:

miω̃
2
i �q̃i(0)q̃j(0)� = δi,jkBT (5.14)

mi� ˙̃qi(0) ˙̃qj(0)� = δi,jkBT (5.15)

and

�q̃i(0) ˙̃qj(0)� = 0 (5.16)

where ˙̃qi = dq̃i/dt, and � · � denotes the average over the initial canonical ensemble, δi,j is the
Kronecker’s delta and kB is the Boltzmann constant.
It then leads to the fluctuation-dissipation relation of the second kind between the random
forces and the friction kernel KJ,J ′(s):

�ǫJ(t)ǫJ ′(t′)� = kBT KJ,J ′(t− t′). (5.17)

In the Markovian limit where the decay of KJ,J ′(s) with s is sufficiently rapid, the friction
coefficient γJ,J ′ is defined through the approximation, KJ,J ′(s) ≃ 2γJ,J ′δ(s).

5.2 Analysis of the results

A first observation is that each light mass degrees of freedom (qi, pi) may represent one of
the fluctuation modes of the heat bath that couple with the heavy mass particles. The static
aspect of their coupling leads to an effective interaction potential UBbB between the Brownian
particles (see (5.13)), while their dynamic aspect leads to the cross-coupling , K1,2 or γ1,2 (see
(5.9)). In both aspects, static and dynamic, the non-local terms arose from those modes i with
ω2
i,1ω

2
i,2 > 0.

Secondly, the presence of a bath-mediated potential UBbB suggested us to pursue possible links
between this quantity and the friction kernel K1,2, either at a phenomenological level or by
analytical model. In our work we propose the following general relation:

K1,2(0) = − ∂

∂X1

∂

∂X2

UBbB(X1, X2) (5.18)

where the right-hand side is evaluated at the equilibrium position of the Brownian particles
XJ = �XJ�eq. The main implication of this relation is that the bath-mediated potential cannot
be controlled independently from the frictional one. Our approach is to regard the heat bath
as the weakly nonequilibrium system which is both perturbed and sensed by the mesoscopic
Brownian particles. A general argument supporting this expression can be given using linear-
response theory of non-equilibrium statistical mechanics as it is explained in more details in
[111].
A part from the Hamiltonian system described in section 5.1, relation (5.18) holds exactly also
for another analytically solvable model.
This is constructed by modifying the previous one by replacing the Hamiltonian evolution of
each light mass particle (5.5) by the overdamped stochastic evolution governed by the Langevin
equation:

0 = −γi
dqi
dt

+ ǫi(t)−mi

2
�

J=1

ω2
i,J(qi −XJ(t)− ℓi,J) (5.19)

where γi is the friction constant with which the ith gas particle is coupled to an outer-heat bath
of temperature T ; ǫi(t) is a Gaussian white random force from the outer-bath obeying:

�ǫi(t)� = 0 (5.20)

�ǫi(t)ǫi′(t′) � = 2kBT δ(t− t′)δi,i′ (5.21)

This outer-heat bath may represent those degrees of freedom of the whole-heat bath which are
not directly coupled to the Brownian particles.
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One can the integrate (5.19) and substitute the resulting qi(t) into the equation of motion for
the Browinan particles:

MJ
d2XJ(t)

dt2
= − ∂U0

∂XJ
+

�

i

miω
2
i,J(qi −XJ − ℓi,J) (5.22)

obtaining again equations (5.6) and (5.17), the main result being the presence of the bath-
mediated potential as we had before. In this overdamped model, miω

2
i,J simply represents the

spring constant between the ith light mass and the Jth Brownian particle.
The kernel and noise terms are different from the previous case:

KJ,J ′(s) =
�

i

miω
2
i,Jω

2
i,J ′

ω̃2
i

e−(|s|/τi) (5.23)

ǫJ(t) =
�

i

miω
2
i,J

� ∞

0

e−(s/τi)

γi
ǫi(t− s) ds (5.24)

where τi = γi/(miω̃
2
i ). Nevertheless we have that the forms of K1,2(0) and UBbB(X1, X2) are

the same as the previous model, those confirming our claim (5.18).
The validity of this claim implies that one cannot control the friction kernel without modifying
the bath-mediated interaction between the two Brownian particles. For example suppose to
modify all the ωi,J by a multiplicative factor λ such that:

ωi,J → λωi,J (5.25)

this yields to change both kernel and bath-mediated potential by a factor of λ2:

KJ,J ′(s) → λ2KJ,J ′(s) (5.26)

UBbB(X) → λ2UBbB(X) (5.27)

In particular this implies that the work WK to change the off-diagonal friction kernel K1,2

cannot be isolated from the work WU to change the bath-mediated potential. From the point
of view of stochastic energetics [116] this operational inseparability implies that we cannot
access the work to change the friction coefficients. One could in fact identify [116] the work
WK as a function of the microscopic quantities of the above model. Therefore, unless we have
access to the microscopic fluctuations of the heat bath, the quantity WK cannot be accessed.
To summarize, we proposed a relation (5.18) between the bath-mediated effective potential and
the friction memory kernel acting on two mesoscopic Brownian particles. We presented two
solvable models that agree to this claim and allowed us to characterize these quantities as a
function of the microscopic variables of the heat bath.
To support further these theoretical findings one should test this relation either experimentally
or numerically. In particular an open question is the generalization of these results to other
models [117, 118]; for example, in the reaction dynamics of protein molecules or of colloidal
particles, where nonlocal fluctuations of the solvent may play important roles both kinetically
and statically.

99



Chapter 6

Conclusions and future perspectives

The optimal routing of paths on a networks subject to non-local constraints is a challenge that
can be addressed in various areas ranging from engineering to mathematics. The approach of
statistical physics has been to propose the cavity method, originally developed in the context of
spin glasses, as an efficient model to solve also this type of optimization problem. In this thesis
we studied several variants of routing problems by applying and adapting the cavity method
formalism to all the proposed different versions of routing. The message-passing equations de-
scribing the various systems have been proposed, along with their algorithmic implementations.
In particular we addressed the challenge of imposing the non-local constraints for numerical
implementation, and analyzed how varying a set of hard constraints affects the complexity of
the problem.
Incorporating the lessons provided by the first works, namely the node-disjoint and the edge-
disjoint path problems, we were able to move on to the final step in a crescendo of complexity
by considering the Nash equilibrium version of the problem. Although we were able to lay
down the theoretical set up, its actual performance it is still an open question at the present.
Therefore as a future and on-going work it will be necessary to implement the algorithm and
test the theory through numerical simulations.

The dynamic version of the cavity equations is a method that has been considered only re-
cently. The success of the static version in solving various optimisation and inference problems
suggests that the exploration of the dynamic version should be pursued, with the objective
of unveiling hidden aspects associated to dynamic processes on networks that other standard
algorithms, such as the Monte Carlo method, fail to capture. The Matrix Product State ap-
proximation we proposed to represent the dynamic cavity equation candidates as a promising
tool to address this goal. This seminal work should therefore be treated as a starting point to
explore the validity and performance of dynamic message-passing. Its implementation to study
several types of dynamic processes on networks is a challenge and a task that we set for future
works.

The topic of random walks on networks have been extensively studied in the last decades,
its popularity being induced by the sprouting of communication and social networks. Despite
the high volume of studies on this subjects, many questions are still open for answers. In this
work we analyzed two of them, interpolating between spectral properties of the walk transition
matrix, cavity method and large deviation theory. The main outcomes of this analysis are
the characterization of the average number of distinct sites S(n) visited during a random walk
on a network and its behavior as a function of the graph topology. Then, starting from the
theoretical set up we provided to study rare events associated to random walks on networks we
were able to unveil two dynamic phase transitions.
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All these findings open the stage for future explorations. In particular it would be interesting
to generalize the formulation of S(n) in the case of different types of random walk strategies,
a characterization that has been addressed for random walks on regular topologies.
As for the rare events statistics, our preliminary work asks for a natural development: here we
considered deterministic functions of the node degree but what would it happen if the functions
where instead stochastic? In addition, these were defined on nodes, therefore it is a natural
question to ask what would be the outcome if they were applied on edges instead.

Finally, one last remark about the non-equilibrium model presented in the last chapter
of the thesis. In this work we were able to characterize the macroscopic behavior of two
Brownian particles by considering the microscopic properties of the surrounding thermal bath.
An interesting question to ask in this case is how would this discussion adapt in the presence of
active motion. Addressing this issue would allow to shed some light on the interplay between
the microscopic degrees of freedom and the macroscopic behavior of systems out-of-equilibrium.
Therefore an extension of our model to the active case should be considered for future works.
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1 The role of reinforcement.

In order to aid and speed-up convergence of the MP equations, we used a reinforcement tech-
nique [45, 46], in which a set of external local fields ht

ij(µ) = Et
ij(µ) + Et

ji(−µ) − cij(µ) act
on the messages gradually biasing them to align with themselves. The reinforcement is in-
troduced by promoting edge costs to become communication-dependent quantities defined as
linear combinations of the cost at the previous time-step and the reinforcement local fields:

ct+1
ij (µ) = ctij(µ) + γth

t
ij(µ) (1)

with c0ij(µ) = cij. This cost will then be inserted into equation (2.20) to replace the term
cij(µ). This has the effect to lead the messages to converge faster, gradually bootstrapping the
system into a simpler one with large external fields. In practice we choose γt = tρ and one
has to choose the growth rate of γ by tuning the reinforcement parameter ρ, that controls the
trade-off between having a faster convergence and reaching a better solution.

2 Shuffling tensor indices.

In Chapter 3 we proposed an ansatz to write the dynamic cavity messages as a product of
matrices (3.18). In order to have consistent expressions in both the sides of that equation we
have to define matrices A(σs−1|σ′s) which have a dependence on σs reversed when compared
with the one of the transition rateW (σs|{σ′ s−1}σ′∈∂σ). However one could exploit the properties
of tensors and reshuffle consistently the indices in order to recover anstaz (3.18). Here we
explain in more details the operations performed over the tensors in order to update the cavity
messages in the MPS form. These have been developed by Thomas Barthel and allow for a
natural algorithmic implementation.
The starting point is equation (3.28):

µij(σ̄
t+1
i |σ̄t

j) =

�

t+1
�

s=1

C
(s)
ij (σs

i |σs−1
j )

�

C
(0)
ij (σ0

i ) (2)

Notice the dependence on σs, at this point it is the same as for the transition rates.
Before giving all the operational details we describe the general procedure that will help us to
follow the various steps. The entire routine is made of three sweeps, each one being a set of
operations, either SVD or truncations, performed in one direction on the product appearing in
(2).
The first is a preparatory sweep made from right to left, i.e. from C(0) to C(t+1). The aim of
this is to impose orthonormality condition to the right basis of |ψ� as in the MPS formalism
described in section 3.1, thus in this sweep we will preform SVD but no truncation. This
operation will be denoted using the symbol

SVD
=.

The result will be to transform the matrix C to a modified C̃ describing the same vector |ψ�
but this time obeying the right orthonormal condition:

�

n

C̃n[C̃n]† = � (3)

such that the reduced right basis for all the bipartitions of the system are orthonormal. In this
sweep we do not truncate nor move any index, so the matrix dimension remains the same.
After this preparatory sweep two others will be performed, this time applying truncation along

with SVD. This combined operation will be denoted with
SVD≈.

The first sweep will be from left to right and the goal is to apply a fist shuffle to the time indices
from:

(σt+1
i , σt

j) , (σ
t
i , σ

t−1
j ) . . . (σ1

i , σ
0
j ) , (σ

0
i ) (4)
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of the matrices C̃ to:

(σt+1
i ) , (σt

i , σ
t
j) , (σ

t−1
i , σt−1

j ) . . . (σ0
i , σ

0
j ) (5)

by introducing a new set of matrices D such that (2) will be transformed to:

µij(σ̄
t+1
i |σ̄t

j) = D
(t+1)
ij (σt+1

i )

�

t
�

s=0

D
(s)
ij (σs

i |σs
j )

�

(6)

After this a final sweep will be performed from right to left. Here we apply again SVD and
truncation, with the aim of yielding a second shuffling to the time indices from:

(σt+1
i ) , (σt

i , σ
t
j) , (σ

t−1
i , σt−1

j ) . . . (σ0
i , σ

0
j ) (7)

of the matrices D to:

(σt+1
i ) , (σt

i) , (σ
t−1
i , σt

j), . . . (σ
0
i , σ

1
j )(σ

0
j ) (8)

which is the final form appearing in the matrices B of the canonical form (3.19).
Now we describe in more details each of the three sweeps.

Preparatory sweep: C → C̃. This sweep is performed from right to left and SVD with no
truncation are applied. Starting from the right boundary (s = 0):

C(0)(σ0
i )

SVD
= U (0)Λ(0)C̃(0)(σ0

i ) (9)

where C̃(0)(σ0
i ) obeys orthonormal condition.

In the bulk, i.e. 0 < s < t+ 1, we have:

C(s)(σs
i , σ

s−1
j )

SVD
= U (s)Λ(s)C̃(s)(σs

i , σ
s−1
j ) (10)

where again C̃(s)(σs
i , σ

s−1
j ) is orthonormal.

Finally in the left boundary, i.e. s = t+ 1, we obtain:

C(t+1)(σt+1
i , σt

j)U
(t)Λ(t) = C̃(t+1)(σt+1

i , σt
j) (11)

but this time C̃(t+1)(σt+1
i , σt

j) is not orthonormal. This will be fixed in the next sweep though.

Second sweep: C̃ → D. The sweep is performed from left to right, this time we apply
truncation along with SVD. Starting from the left boundary (s = t+ 1):

C̃(t+1)(σt+1
i , σt

j)
SVD≈ D(t+1)(σt+1

i )Λ(t+1)V (t+1)(σt
j) (12)

where now D(t+1)(σt+1
i ) obeys left orthonormal condition.

In the bulk, i.e. 0 < s < t+ 1, moving to the right we have:

Λ(s+1)V (s+1)(σs
j )C̃

(s)(σs
i , σ

s−1
j )

SVD≈ D(s)(σs
i , σ

s
j )Λ

(s)V (s)(σs−1
j ) (13)

where again D(s)(σs
i , σ

s
j ) is left orthonormal. Finally at the right boundary, i.e. s = 0, we

obtain:

Λ(1)V (1)(σ0
j )C̃

(0)(σ0
i ) = D(0)(σ0

i , σ
0
j ) (14)

where this last step is just a definition and no SVD has been performed. Note also that
D(0)(σ0

i , σ
0
j ) is orthonormal. From now on both left and right basis will be orthonormal therefore

we can truncate freely without worrying about altering the Frobenius norm and thus the quality
of the approximation.

Third sweep: D → B. The sweep is performed from right to left, we apply truncation along
with SVD. Starting from the right boundary (s = 0):

D(0)(σ0
i , σ

0
j )

SVD≈ U (0)(σ0
i )Λ

(0)B(0)(σ0
j ) (15)
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where B(0)(σ0
j ) obeys right orthonormal condition.

In the bulk, i.e. 0 < s < t+ 1, moving to the left we have:

D(s)(σs
i , σ

s
j )U

(s−1)(σs−1
i )Λ(s−1)SVD≈ U (s)(σs

i )Λ
(s)Bs(σs−1

i , σs
j ) (16)

where again Bs(σs−1
i , σs

j ) is right orthonormal.
Finally at the left boundary, i.e. s = t + 1, we obtain the last two matrices B as:

U (t)(σt
i)Λ

(t) SVD≈ U (t+1)Λ(t+1)Bt+1(σt
i) (17)

D(t+1)(σt+1
i )U (t+1)Λ(t+1) = Bt+2(σt+1

i ) (18)

where this last step is just a definition and no SVD has been performed.
The overall outcome of these three sweep will be the expression (3.19):

µij(σ̄
t+1
i |σ̄t

j) = B
(t+2)
ij (σt+1

i )B
(t+1)
ij (σt

i)

�

t
�

s=1

B
(s)
ij (σs−1

i |σs
j )

�

B
(0)
ij (σ0

j ) (19)

which is consistent with the ansatz (3.18).

3 Random networks.

Throughout the thesis we have implemented many numerical simulations over various random
network topologies. This section is thus devoted to description of the different topologies used
in the main text so that the reader unacquainted could find here all the information needed to
understand what type of graph we have considered in our analysis.

Regular graphs. The simpler type of random graph is the k-regular random graph. This
is defined as the random graph where each node has fixed degree k. The topology is thus
homogenous and this often allows to derive analytical results as we have done in section 4.2.3.
In the statistical physics community this is often confused with the Bethe lattice of connectivity
k. Although similar they are not equivalent because the latter is defined as an infinite tree where
each node has the same degree k. The main difference between the two is than the presence of
loops in the case of a regular graph. However this difference becomes more and more negligible
as the system size increases, i.e. V → ∞, thus one can interchange these two definition for
large sizes.
The finite version of the Bethe lattice is called Cayley tree and this should not be confused with
a regular graph instead. The Cayley tree is in fact rich of leaves of connectivity k = 1, also
called the surface of the tree. The finite character thus makes this surface highly non-negligible
and this fact has a huge impact on the phenomena happening on the graph. In particular this
can be seen when studying dynamical processes such as the majority rule where a non-negligible
number of leaves keeps flickering between two states; thus impacting the total magnetization
of a great amount.

Erdős-Rényi graphs. An Erdős-Rényi (ER) graph is the most general prototype of a random
graph and was first introduced in [33]. There are two equivalent, but different, definitions that
one can arbitrarily choose. The one we used in the numerical simulations is the one that fixes
the system size V and a real number p ∈ [0, 1] such that: for each possible pair of nodes (i, j),
with i, j ∈ V, an edge is added between them with constant probability p. One can thus tune
p in order to control the density of edges, the largest limit being p = 1 that leads to a fully
connected graph with V (V − 1)/2 edges.
Considering large system sizes V , the degree distribution tends to a Poissonian of the form:

P (k) ∝ �k�ke−�k�

k!
(20)
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where the average degree is linked to the parameter p through pV = �k�.

Scale-free graphs. Contrarily to what has been said fro ER graphs, in the case of Scale-free
(SF) graphs there is not a unique definition to build it. Instead it is defined as a graph where
the degree distribution is a power-law of the form:

P (k) ∝ k−γ (21)

where γ is a real parameter that one tunes in order to control the degree heterogeneity: the
smaller γ the higher the heterogeneity among the realized degrees. Usually one chooses γ ∈
(2, 3) because it has been shown [83] that several real networks fall into this interval. Their
main feature is that they have fat tails, i.e. there is a non-negligible probability of having nodes
with high degree and these are usually called hubs. Among the various existing methods to
build them, in this work we used the preferential attachment routine proposed in [83]. The
scheme works as follows: start with a graph of m0 vertices and introduce sequentially V −m0

new vertices by attaching each of them to m already existing nodes. The probability π to pick
a certain node i as one of these m neighbors is proportional to its degree:

π(ki) ∼ ki (22)

thus high degree nodes will be more likely to be picked and hence they will increase their
degree while the graph grows (a rule that is often informally called rich gets richer). This
scheme leads to a power-law degree distribution with γ = 2.9± 0.1 [83]; we empirically observe
this value in our simulations. We also tried other generation methods for scale-free graphs that
yield different values of γ, but as the results were qualitatively similar to those for preferential
attachment we only show the latter as representative for our scale-free graph simulations.

RER graphs The last type of graph is an interpolation between a k-regular graph and
an Erdős-Rényi one that we proposed in order to perturbe the homogenous topology of the
regular graph with a noise that follows the ER rule, thus avoiding to achieve too large degree
heterogeneity as in the SF graphs. The RER graph is built as follows: we start from a k0-
regular random graph which correspond to the basic structure of the graph. Then edges (that
are not yet present) are added on top of this structure independently with probability p as in
the ER model; if p is chosen such that d = pV then the final average degree of such a graph is
�k� = k0 + d for large V . This graph ensemble thus interpolates between the regular and ER
cases and is similar to the one analyzed in [119, 82] with the difference that here we start from
a regular graph instead of a ring or a lattice.
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[6] Mézard M and Montanari A. Information, physics, and computation. Oxford University
Press, 2009.

[7] Pearl J. Proceedings American Association of Artificial Intelligen ce National Conference
on AI, (Pittsburgh, PA, USA, 1982):133–136, 1982.

[8] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the sum-
product algorithm. Information Theory, IEEE Transactions on, 47(2):498–519, 2001.

[9] Andrea Montanari and Tommaso Rizzo. How to compute loop corrections to the bethe ap-
proximation. Journal of Statistical Mechanics: Theory and Experiment, 2005(10):P10011,
2005.
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[86] Farkas I J, Derényi I, A-L Barabási, and Vicsek T. Spectra of “real-world” graphs:
Beyond the semicircle law. Physical Review E, 64(2):026704, 2001.

110
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Abstract. A localized method to distribute paths on random graphs is devised, aimed at
finding the shortest paths between given source/destination pairs while avoiding path overlaps
at nodes. We propose a method based on message-passing techniques to process global
information and distribute paths optimally. Statistical properties such as scaling with system
size and number of paths, average path-length and the transition to the frustrated regime are
analyzed. The performance of the suggested algorithm is evaluated through a comparison
against a greedy algorithm.
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1. Introduction

Among the various computationally-hard constraint satisfaction problems, routing and path
optimization have attracted particular attention in recent years due to their non-localized
nature and interdisciplinary relevance. The node-disjoint path (NDP) problem on graphs
studied here, aims at finding a set of paths linking specified pairs of nodes (communications)
such that no two paths share a node; the problem is classified among the NP-complete class [1]
of hard combinatorial problems. This has not only been studied as a purely theoretical
problem by mathematicians in the series of graph minors [2] under the name of subgraph
homeomorphism problem, but also by practitioners due to its wide applicability to various
fields. For instance, in communication systems where the network performance is often
strictly related to capacity limits, traffic congestion and the rate of information flow; and in
problems of virtual circuit routing where switches located at nodes may become bottlenecks.
Moreover, due to their distributive nature NDP is more resilient to failure and represents one
aspect of optimal routing where network robustness is the main objective.

One specific communication application where efficient and effective NDP algorithms
are essential is in the area of optical networks where transmissions using the same wavelength
cannot share the same edge or vertex, hence all communications of the same wavelength must
be non-overlapping (disjoint). Consequently, such an algorithm impacts on the achievable
network capacity and transmission rate. In this field of routing and wavelength assignment [3],
the objective is to find a routing assignment that minimizes the number of wavelengths used.
Different techniques that exploit disjoint paths heuristic algorithms have been proposed to
tackle this problem; for instance, greedy algorithms [4, 5], approximations based on rounding
integer linear programming formulations [6, 7], post-optimization methods [8], bin packing
algorithms [9], various heuristic genetic algorithms such as ant colony optimization [10] and
differential evolution [11].

Another important application of NDP is in the design of very large system integrated
circuits (VLSI), where one searches for non-overlapping wired paths to connect different in-
tegrated hardware components, to avoid cross-path interference.
Similarly, in wireless ad-hoc communication networks [12, 13, 14], where each node can act
as a router, path overlaps imply signal interference and low transmission quality, whereas
longer paths imply poor signal to noise ratio due to multiple relays and higher transmission
power; hence the need to consider both path length and transmission overlaps to be minimized
is essential for routing problems. Solutions to the NDP problem also provide fault tolerant
routes due to the optimal separation of communication paths all over the network, so that if
a node (router) fails, as frequently happens in wireless networks due to the mobility of hosts,
only few communications will be affected [15, 16]. This feature is particularly important
when quality of service (QoS) is one of the main requirements in the set up of a communica-
tion network, along with the load-balancing feature of NDP that prevents network congestion
by establishing non-overlapping routes. This is especially relevant to connection-oriented net-
works [17] that are strongly affected by node failures and congestion [18].
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Practical algorithms for various applications often depend on the specific network
topologies considered [19] and mostly focus on the optimization version of the problem, i.e.
maximizing the number of paths routed [20]. The satisfiability version of the problem, i.e.
whether all paths can be routed successfully without overlap, is not considered; theoretical
studies often give bounds to the achievable approximation instead of providing a practical
algorithm for individual instances and fail to calculate path lengths and possible overlaps at
the same time as part of the optimization process observables. Given that paths are constrained
to be contiguous and interaction between paths is non-localized, a local protocol is insufficient
and global optimization is required. The computational complexity is determined by the fact
that such a global optimization problem has to consider all variables simultaneously in order
to minimize a cost function with non local interactions between variables.

Unlike other constrained satisfaction problems on networks, NDP has received little
attention within the statistical physics community. In this paper we consider a random version
of NDP on regular graphs (Reg), Erdős Rényi (ER) [21] and a dedicated type of random
graph (RER) described in Section 4, with the aim of testing the efficacy of statistical physics-
based methods derived in the context of spin glass theory [22] such as belief propagation or
message-passing (MP) cavity method [23, 24] as viable alternatives to greedy algorithms; we
also study statistical and scaling properties of quantities of interest as a function of network
size and number of paths. We study sparse regular, ER and RER random graphs as they are
the most interesting for the problem at hand, but the methodology can be easily extended to
accommodate other sparsely connected architectures. Clearly, due to the hard constraint of
node disjoint paths, typically no solutions would be found in graphs having a non negligible
number of nodes with degree k = 1, 2. Moreover, graphs with a small number of high degree
nodes (hubs) or with high modularity measure, such as scale-free or planar graphs, are not
interesting for the node-disjoint routing problem since when a paths passes through one of
these special nodes it leads directly to graph fragmentation, hence frustration. The situation
would be very different for constraints on edges instead, but this variant of the problem is left
for future work. Finally, the requirement for the graph to be sparse is suggested by restrictions
on the validity of the cavity method which is based on fast decaying correlation functions, i.e.
a negligible number of loops in the graph.

Numerical simulations indicate that MP outperforms greedy breadth-first search
algorithms not only in finding better solution but also in reaching a higher frustration
threshold. Moreover, we find scaling of the expected total length of the NDP as a function of
the system size and graph connectivity that goes as M logV

V logγ(k−1) with exponent γ that depends on
the type of graph, where V is the number of nodes and M the number of paths. We find good
agreements between theory and simulation data for graphs of average degrees k = 3, 5, 7 and
sizes V = 1000, 2000, 4000, 5000, 10000. Finally, we study statistical properties of physical
quantities observed a posteriori, i.e. when a solution is found, such as path length distribution,
degree distribution and maximum cluster size for the case of regular graphs.

The reminder of the paper is organized as follows: in Section 2 we will introduce
the model used followed by the algorithmic solution in Section 3. Results obtained from
numerical studies will be presented in Section 4 followed by conclusions and future research
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directions in Section 5.

2. Model

Given an undirected graph (or network) G = (V,E) characterized by V = |V| nodes and
E = |E| edges we define a set of M communications C as paths on edges of the graph, each of
which originates from a source node S and terminates in a receiver node R. We introduce a
variable Λµi to characterize each node i ∈ V:

Λ
µ

i =























+1 if i is a sender for communication µ
−1 if i is a receiver for communication µ
0 if i is neither a sender nor a receiver for communication µ

(1)

The full node characterization is specified by a vector Λ̄i := (Λ1
i , . . . ,Λ

M
i ) of modulus

||Λ̄i|| :=
�M
µ=1 |Λ

µ

i | ∈ {0, 1}, where |Λµi | denotes the absolute value of Λµi ; ||Λ̄i|| is 0 if i is neither
a sender nor a receiver for any communication, termed a transit node, and 1 if i is either a
sender or a receiver of some communication. In this way each node can send or receive at
most one communication.

For a given set of M sender-receiver pairs (S µ,Rµ) with µ = 1, . . . ,M we address the
problem of finding a set of communications that optimize a cost function which penalizes
path length and prevents communications overlap (traffic). The state of the network can be
specified by introducing a variable Iµi j for each edge (i j) ∈ E and for each communication µ,
which specifies whether communication µ passes through edge (i j) and in which direction:

Iµi j =























+1 if µ passes through (i j) from i to j
−1 if µ passes through (i j) from j to i
0 if µ does not pass through (i j)

(2)

Notice that in this formalism Iµi j = −I
µ

ji. We term these variables currents and define for each
edge (i j) a vector Īi j := (I1

i j, . . . , I
M
i j ) that collects information on all currents involved in that

edge. Currents are subject to Kirchhoff law:
�

j ∈∂ i

Iµi j − Λ
µ

i = 0 ∀µ = 1, . . . ,M . (3)

For a given path optimization problem we seek the communication configuration C∗ that
minimizes a cost function c({Īi j}), which penalizes path length and traffic congestion:

c({Īi j}) =
�

(i j)∈E

f (||Īi j||) (4)

where f (||Īi j||) is a monotonically increasing function of ||Īi j|| :=
�M
µ=1 |I

µ

i j|, that penalizes both
congestion and path length; where |Iµi j| denotes the absolute value of Iµi j.
We would like now to search for approximate solutions to this problem by message-passing
equations [23]. To derive a distributed algorithm it is useful first to consider tree-like graphs
T , for which one can derive exact recursive equations, and later on use these equations as an
approximation for arbitrary graphs G.
If T is a tree, the removal of any edge (i j) ∈ E dividesT in two disjoint subtrees Ti and T j (see
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figure 1). We can define Êi j(Ī) as the optimized cost on Ti when the current Ī flows through
on the edge (i j); in this way we can write the message sent from node i to his neighbor j when
the current Īi j flows through the edge (i j) as Ei j(Īi j) := Êi j(Īi j) + f (||Īi j||).

i j

Ti Tj

Figure 1: Subtree division. Ti is the subtree rooted in i when the edge (i j) is removed. Conversely, T j

is the subtree rooted in j after the same edge removal.

The messages Ei j(Īi j) admit the min-sum [23] recursion relation:

Ei j(Īi j) = min
Īki |constraint



















�

k∈∂i\ j

Eki(Īki)



















+ f (||Īi j||) , (5)

where the symbol ∂i stands for the set of neighbors of node i and the constraint is the Kirchoff
law (3).
In the following we will use the recursion equation (5) on arbitrary random graphs to
approximate the constrained minimum of c({Īi j}), the cost defined in equation (4). Namely:

c∗ := min
Ī

1
E

�

(i j)∈E

�

Ei j(Ī) + E ji(−Ī) − f (||Ī||)
�

(6)

where the last subtracted term is introduced to avoid double counting the cost of edge (i j).
Unfortunately, the computational complexity of this algorithm is exponential in the number
of communications M. In fact, messages Ei j(Īi j) can a priori take 3M values corresponding
to all possible currents passing through a single edge (i j). Therefore, we cannot generally
treat even moderately large values of M [25]. The problem can be simplified if we introduce
the hard constraint that paths cannot overlap on nodes (and thus neither on edges). This
has the important consequence of reducing the configuration space from 3M to 2M + 1
and the computational complexity becomes linear in M. This restricted version of the
path optimization problem is called the node-disjoint path problem (NDP), as we already
mentioned in the introduction, and is the problem we address here. Notice that since we



Shortest node-disjoint paths on random graphs 6

impose the node-disjoint constraint for the communications, then one communication at most
flows through the edges, so that ||Īi j|| =

�M
µ=1 |I

µ

i j| ∈ {0, 1}. This corresponds to taking:

f (||Ī||) =























∞ if ||Ī|| ≥ 2
1 if ||Ī|| = 1
0 if ||Ī|| = 0

(7)

so that the cost function (4) represents indeed the total path length.
In order to solve equation (5) iteratively we define a protocol for taking into account only
the allowed configurations at each edge given the current value Ī passing through it and Λ̄i at
vertex i.

If |Λ̄i| = 0 then:

Eil(Īil = 0̄) = min



















�

j∈∂i\l

E ji(Ī ji = 0̄), (8)

min
j1 , j2∈∂i\l;µ∈M

















E j1i(I
µ

j1 i
= +1) + E j2i(I

µ

j2i
= −1) +

�

k∈∂i\l, j1 , j2

Eki(Ī ji = 0̄)



































Eil(I
µ

il = ±1) = min
j∈∂i\l



















E ji(I
µ

ji = ±1) +
�

k∈∂i\l, j

Eki(Īki = 0̄)



















+ 1 (9)

If Λµi = ±1 then:

Eil(Īil = 0̄) = min
j∈∂i\l



















E ji(I
µ

ji = ∓1) +
�

k∈∂i\l, j

Eki(Īki = 0̄)



















(10)

E ji(Iνji = ±1) = +∞ (ν � µ) (11)

E ji(I
µ

ji = ∓1) = +∞ (12)

E ji(I
µ

ji = ±1) =
�

j∈∂i\l

E ji(0̄) + 1 (13)

The constant +1 that appears equations (9) and (13) are the costs assigned for a unit of current
passing through the considered edge (i.e. f (1) = 1). This cost is the one required for the
shortest paths but can be generalized to other arbitrary types of costs.

Equation (8) represents the case where i is a transit node and no current passes through
edge (i j), then the allowed configurations are that either no currents pass through the
remaining neighboring edges (first term inside curly brackets) or one current enters and
then exits i through a pair of neighboring edges, all others edges being unused (second
term inside brackets). In figure 2 you can see a diagram representing the different allowed
configurations for a transit node. Equation (9) represents the case where i is a transit node and
the communication µ passes through edge (i j); in this case the only allowed configuration is
that where the same communication µ enters/exits from one of the other neighboring edges,
all others being unused. Similar considerations are used to formulate the equations (10-13)
for senders and receivers.

The procedures of applying the algorithm can be summarized as follows:
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"!!

ii i i

j2j1 j

l l l

k j

Figure 2: Transit node cavity diagram. Left and center represent the two terms inside the min brackets
in equation (8). Right represents equation (9) .

• Initialize messages at random.

• Pick in random order all i ∈ V and update messages using (8), (9) and (10-13) until
convergence is reached (i.e., message changes are below a given threshold).

• Use the converged messages to calculate physical observables.
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Figure 3: Edge-disjoint routes. For a single instance of a graph of size V = 20 and M = 3
communications we have on the left the shortest paths and on the right the optimal non-overlapping
solutions. We can see that the green path has to be re-routed to avoid both blue and red
communications. Also the red one cannot take its shortest path because the sender of the green
communication is on that path.
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3. Obtaining a solution

Once the iterative equations (8), (9) and (10-13) have converged, the resulting messages can
be used to calculate the solution. We define the energy per link [24]:

ELink
i j (Ī) :=

�

Ei j(Ī) + E ji(−Ī) − ||Ī||
�

(14)

where the last term on the right ||Ī|| is subtracted to avoid double counting as it appears in both
of the previous two terms. To find a solution we calculate:

E∗Linki j := min
Ī

ELink
i j (Ī) (15)

for each link in the graph and store the current values that minimize the energy per link for
each edge:

Ī∗i j := argminĪ E
Link
i j (Ī) . (16)

Eventually, we sum over all (i j) ∈ E to find the different paths and total length:

Ltot :=
�

(i j)∈E

||Ī∗i j|| . (17)

In the cavity formalism [24] this is equivalent to calculating the quantity:

Ei := min
Īki|constraint

�

k∈∂i

Eki(Īki) , (18)

which represents the energy per node. Finally, the total energy (or path length) is the
combination of the two, which in the case of a k−regular graph establishes the formal relation:

Et =

�

i∈V

Ei −
k
2

�

(i j)∈E

ELink
i j . (19)

Notice that the calculation of ELink∗
i j is carried out link by link as if the energies per

link were statistically independent. It is not intuitively clear that doing this will result in
the optimal paths which do not overlap and are also fully connected from the source to the
receiver. This is a consequence of having used messages which implicitly contain global
information on the constraints and path lengths, so that the energies per link are indeed
globally interdependent albeit in a non-obvious manner.

To fully characterize the solutions statistically we calculate also other observables as
explained below. Finally, we calculate the paths and corresponding lengths in a sequential
order using a greedy breadth first-search local algorithm (BFS) to compare the results obtained
against our MP-based algorithm.

3.1. Algorithmic complexity

The node-disjoint constraint is very restrictive and algorithmically helpful in comparison to
other routing models where overlaps are allowed but minimized [25, 26]. This hard constraint
is indeed paramount in reducing considerably the algorithm’s computational complexity. If
we allow for overlaps we need to span a configuration space of the order of 3M at each
cavity iteration, leading to a complexity of O(N (3M)k−1), where the exponent k − 1 explores
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the different flux combinations for each of the k − 1 independent neighboring sites of the
considered message; there are order of N such messages. In order to tackle this issue proper
approximations have to be introduced as in [25, 26] where they use techniques from polymer
physics [25] or convexity properties of the cost function [26]. On the contrary when the
overlap is prohibited we reduce the configuration space from 3M to (2M + 1), as this is
the number of allowed configurations (the term 2M is derived from the number of possible
currents Iµ = ±1 and the additional +1 is due to the configuration of all 0), hence there is no
need for approximations because the entire configuration space can be efficiently calculated
by the cavity equation. Actually, the use of cavity MP implicitly requires one important
approximation as it assumes that when node i ∈ V is removed, all its neighbors are statistically
independent. This is equivalent of having fast decaying correlation function between these
neighboring nodes. This hypothesis is verified in trees and in locally tree-like sparse graphs.

For the same reason is important to distinguish between edge and node overlaps. In
this work we chose to consider constraints on nodes motivated by the reduced complexity as
explained before; in case of edge constraints one has to consider a much bigger configuration
space where all configurations with different communications entering and exiting the same
transit node must be considered in the optimization routine. For this reason approximations
should be introduced as in the case of the models which minimize overlap. The edge-disjoint
variant of the problem will be left for future work.

We performed single instance simulations to find optimal microscopic solutions; to
obtain macroscopic averages one would usually use population dynamics, one of the most
commonly used numerical tools in statistical mechanics literatures [27, 23] for studying
similar models. Population dynamics is considered when the thermodynamic limit V → ∞
is taken and the system size is not fixed a priori as in the single instance algorithm. In our
model the use of population dynamics does not make much sense since the parameter M
enters explicitly in the expressions of the messages because it represents the domain of the
fluxes, which is of size 2M + 1. But when we fix M at the same time we are fixing a system
size V , because we extract random pairs (S ,R) with density M/V . Hence, it is impossible to
decouple the messages domain from the system size, preventing us to properly employ the
thermodynamic limit through population dynamics. There is also another problem, that such
a macroscopic oriented approach would introduce averages over all possible configurations
(S ,R), including both frustrated and unfrustrated configurations with much higher energies.
Thus the macroscopic averages are highly biased by the fewer frustrated configurations and
more complex algorithm should be designed to discard such cases. For these two reasons
we did not consider in the following the population dynamic counterpart of the algorithm but
focused only on averages over single instances.

3.2. Greedy algorithm

To test the performance of the algorithm we compared the results obtained with those given by
a greedy algorithm (or its variant) that is often used in literatures to solve the NDP problem in
different contexts [12, 13, 4, 5]. The greedy protocol considers only local information around
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the sources and then builds up a solution step by step recursively, hence reducing considerably
the complexity but at the same time completely ignoring other communication positions in the
network.

A typical greedy algorithm works in the following way: start by choosing an arbitrary
pair (S ,R), find the shortest path linking the two nodes and then remove nodes belonging to
this path from the available network nodes. Choose a second pair and repeat the procedures
until either all the M paths from sources to destinations have been established or no solution
can be found due to frustration. Clearly, the performance of this algorithm is strictly
dependent on the order in which we choose the pairs. For instance, in the extreme case the
first pair selected is the one with the longest shortest path among all the M communications;
this implies that we have effectively a more restricted graph and choice of paths, leading for a
long second path and even more restricted choice of paths later on.

4. The results

We performed numerical simulations on three types of random graphs. Standard regular
random graphs (Reg): each node has fixed degree k; Erdős Rényi random graphs (ER)
[21]: edges are drawn at random between each pair of nodes with probability p = �k�/V;
a decorated random graph (RER): starting from a regular random graph of degree k1 (which
is the minimum degree of this graphs), we then randomly add new edges as in the ER model
until the final average connectivity is �k� = k > k1. Notice that the degree distribution
in this case can be obtained by writing k = k1 + d where d is Poisson distributed with
�d� = k − k1. The parameters used were average degrees �k� = 3, 5, 7 and system sizes of
V = 1000, 2000, 4000, 5000, 10000.We calculated averages over [50 − 500] realizations for
both the MP and the greedy algorithms; we used a smaller number of realizations for cases
of higher complexity (as for V = 104 and k = 7). Nevertheless, results in all cases are stable
and with small error bars with respect to the symbols used. We omitted the error bars from
the figures for clarity.

We found a system size scaling that is a cubic function of the variable x := M logV
V logγ (k−1) .

A qualitative explanation of the scaling is as follows. The average path length in random
graphs goes as �l� ∼ logV/ log�k� (see [28] for an extensive review of graphs properties)
and in our case we have M paths to consider.We can refine the dependence on k using
instead �l� ∼ logV/ log (k − 1). Now, suppose all communications take their shortest path, the
quantity x = M logV/ logγ (k − 1) would be a good estimate of graph occupancy for the NDP,
where the exponent γ has been introduced as a free parameter to account for the approximation
in the expression for �l� as a function of k for different types of graphs. Furthermore, if we
divide by the number of available nodes V we can define the occupancy ratio as M logV

V logγ (k−1) = x.
Therefore in this simple case we would expect Ltot/V increasing linearly in x. If overlaps
are prohibited, for a sufficiently high value of M the communications are increasingly forced
to take longer routes, leading to a faster than linear increase in the scaling variable x. From
numerical simulations we found for the NDP a cubic increase Ltot

V = ax + cx3 in the scaling
variable x = M logV

V logγ (k−1) . For small M this function agrees well with the linear shortest path
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Figure 4: Expected total normalized path length - regular graphs (Reg). We obtained results for regular
graphs of fixed degree k = 3, 5, 7 and for system size V = 2000, 4000, 5000, 10000. We found a global
scaling rule with respect to the variable x := M logVl/V logγ(k − 1), with l = 1.00 and γ = 0.87. In
black (solid line) we draw the cubic fit ax + cx3, with a = 0.910 ± 0.001 and c = 0.660 ± 0.009. The
dotted-dashed line represent the shortest path (not considering overlap) trivial solution. Error are not
reported because smaller or comparable to point sizes.

behavior but for values of x > 0.2 the steeper increase of Ltot becomes predominant. Figures
4 and 5 show a good data collapse of the normalized expected total length per node Ltot/V as
a function of the scaling variable x for different graph connectivities for Reg and ER graphs
respectively. We notice a first regime where the curves follow the linear behavior of the
dashed line representing the shortest paths. The term “sparse regime” is used since paths are
sufficiently far apart, M is small, and then no re-routing is needed as each communication
will simply take its shortest path. For x > 0.2 the curves show the cubic steeper behavior that
represents the increase in path lengths to avoid overlaps. The term “dense phase” reflects the
increase in path density; M is sufficiently high so that shortest-path choices induce conflicting
demands and communications are rerouted, taking longer paths to avoid overlaps.

Finally, for large M we can identify different frustration points, represented by vertical
lines in figure 4, that connect the largest M for which solutions have been found with the
points where frustration is reached and the length is set to 0 by convention. We see that
the frustration points do not collapse and that the bigger the graph size V and the higher the
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Figure 5: Expected total normalized path length - Erdős Rényi (ER). We obtained results for ER
graphs of expected degree �k� = 3, 5, 7 and for system size V = 1000, 2000, 4000, 5000. We found a
global scaling rule with respect to the variable x := M logVl/V logγ(k−1), with l = 1.00 and γ = 0.69.
In black (solid line) we draw the cubic fit ax + cx3, with a = 0.77 ± 0.01 and c = 0.96 ± 0.03. The
dotted-dashed line represent the shortest path (not considering overlap) trivial solution.

connectivity k, the earlier frustration sets in (as a functions of x). Arguably, this is due to
algorithmic convergence rather than theoretical arguments. In fact the higher V and k are,
the higher the corresponding algorithmic complexity, and hence the larger the number of
iterations required to reach convergence. Due to the prohibitive computation cost we ran a
smaller number of instances for higher values of V and k, and without increasing the preset
maximum convergence time. We suspect that convergence can be reached in these cases
albeit in a much longer times, and hence a solution could be found as well in theory, but has
not been found due to the computational limits imposed. Hence we can not provide a precise
measure for the frustration transitions nor make further statements regarding their collapses
for different systems sizes and connectivities.

In figure 6 we can see the scaling behavior for Reg, ER and RER of given average
connectivity and different system sizes; we fixed γ = 0 arbitrarily to highlight the dependence
on V . We can notice how different types of graph, although having different average lengths,
follow the same cubic scaling in x. The steeper slope of the ER graphs shows the smaller
number of paths choices in this type of graphs that forces the path to rewire in increasingly
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more convoluted patterns and hence also reach frustration earlier.
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Figure 6: Scaling in total length. We plotted the scaling of the total length per node as a function
of M logV/V for Reg, ER and RER graphs of different system sizes; �k� = 3 for Reg and ER and
�k� = 4 for RER. We can see different slopes in the cubic fits of the various curves, for instance ER
graphs achieve shorter lengths but with higher cubic slope, meaning that their length increases faster
with traffic due to the smaller number of path choices.

We found that our MP algorithm outperforms the greedy BFS both in finding a better
solution (smaller Ltot) and in reaching higher values of the frustration transitions. In figures 7,
8 and 9 we plotted the expected normalized total length for both greedy and MP algorithms,
for the three graph types, fixed connectivity and different system sizes. We focused on the
case �k� = 3 for Reg and ER and �k� = 4 for RER because of its lower complexity compared
to higher k; nevertheless, simulations for different k values indeed agree with the suggested
scaling and exhibit the same behavior. Initially, in the x range where solutions exist the
greedy algorithm gives the same total length as the global algorithm up to a certain value
of M (and x). The explanation is that in this interval the graph is sparse, communications
typically do not interact and shortest paths can be selected. This also shows that for a small
number of paths the global procedure reduces to act similarly to the greedy algorithm does,
e.g. when rerouting is required it involves only two paths, the optimal solution will adopt the
shortest path for one and will reroute the second. When M increases, we see that the global
optimization algorithm outperforms the greedy approach in both finding the optimal solution
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and in achieving a higher frustration threshold. In the regime where the global algorithm gives
a better solution (i.e. shorter total length) we see that it is more efficient to globally reroute
paths rather than taking the shortest path of selected paths and adapt the other paths. This
means that the optimal solution is not a simple superposition of the first n-shortest path of the
M communications, but is a more complex solution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6

L
t
o
t
/
V

MlogV/ Vlog
γ
(k-1)

Total length vs greedy Reg

2000 k3
4000 
5000 

10000 
2000 greedy

4000 
5000 

10000 
fit

greedy fit
shortest

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.1  0.2  0.3  0.4  0.5

L
g
r
/
L
M
P
 
-
1

Figure 7: Expected total normalized path length - greedy vs global optimization algorithms - Reg
graphs. We compared results obtained by a greedy BFS algorithm and our global optimization for
system size V = 2000, 4000, 5000, 10000,γ = 0.87 and degree k = 3. We can identify the sparse
interval where the algorithms give similar results because communications are far apart and take the
shortest paths. As the number of communications grow we observe an intermediate regime where
global optimization performs better than BFS; and finally the dense regime where the greedy BFS
algorithm fails to find a solution whereas the global optimization algorithm succeeds up to a critical M
value. Cubic fits are also plotted (solid black line for global optimization, dashed line for the greedy
BFS algorithm) whereas the dotted line represents the shortest path (not considering overlap) trivial
solution, i.e. the sum of the M shortest path lengths, which is linear in x. Vertical lines show the
frustration points where no solution is found and the total path length is set to zero. Inset: Ratio
Lgreedy/LMP − 1 is plotted as a function of x. Notice the worse performance of the greedy algorithm.

Figure 10 shows the failure ratio defined as the number of unsuccessful instances (for
which a solution is not found) over the total number of realizations as a function of the scaling
variable x. We notice that the greedy algorithm reaches the frustration point (as a function of
x) earlier than the corresponding global MP algorithm, regardless the system sizes or graph
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Figure 8: Expected total normalized path length - greedy vs global optimization algorithms ER.
System sizes V = 1000, 2000, 4000, 5000, γ = 0.69 and degree �k� = 3. Inset: the ratio Lgreedy/LMP−1
is plotted as a function of x. Notice the worse performance of the greedy.

type.
This shows that, if a solution exists, a global management of the entire set of

communications is required in order to find an optimal solution. Whereas if each
communication acts selfishly, seeking the corresponding shortest path, unsolvable overlaps
between communications emerge at lower x values. Both algorithms show an increased failure
rate as the system size increases, presumably due to the unscaled limit on the number of
iterations allowed and possibly inherent finite-size effects.

4.1. A posteriori statistics: maximum cluster size and degree distribution (regular graph
case).

To better understand the optimization process and characterize the solutions obtained we
carried out a statistical analysis of the solution a posteriori. Given the clearer statistical
interpretation of the results obtained (due to the limited number of possible connectivity values
and their evolution, and the higher frustration threshold for a given connectivity), we chose to
study regular graphs. In this case one can gain more insights into the type of routes formed and
the reduced effective graphs that emerge for any number of communications. By a posteriori
we mean that once a solution was found, by an MP or greedy algorithm, we removed from the
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Figure 9: Expected total normalized path length - greedy vs global optimization algorithms RER.
System sizes V = 1000, 2000, 4000 and degree �k� = 4. Inset: the ratio Lgreedy/LMP − 1 is plotted as a
function of x. Notice the worse performance of the greedy.

graph G all nodes and edges taking part in the paths and then calculated statistical properties
of the remaining graph G′. In particular, we calculated the maximum cluster size and the
degree distribution.

The existence of a solution to a given set of communications is strictly related to the
connectivity of the graph. Each time a solution for a subset of communications is found,
edges and nodes involved in the solution paths are effectively removed; and properties of
the reduced graph provide information on its ability to accommodate more source-destination
pairs and the efficiency of the obtained solution in making use of the topology. Figure 11
shows the max cluster sizes ratio of G′ as a function of the scaling variable x. This quantity
is defined as the ratio between the number of nodes in the maximum connected cluster over
the number of nodes in the same graph G′, the graph obtained after edge and node removal
of the obtained solution paths. For both the greedy and the global MP algorithm we see an
abrupt step change at some x value, between a graph that has a giant connected component
and a situation where no solution exists, such that we set the ratio to zero by convention.
Moreover, this drop is more abrupt and occurs for smaller x values in the case of the greedy
algorithm. This means that the greedy procedure does not distribute paths evenly on the graph
and creates small disconnected clusters; the greedy algorithm is therefore more sensitive to
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Figure 10: Failure rate for greedy and MP algorithms. We plotted for V = 2000 and for Reg and ER
of degree �k� = 3 and RER of �k� = 4, the failure rate as a function of M logV

V . We can notice that the
greedy algorithm fails to find solution earlier than MP for all types of graph considered. ER reaches
frustration sooner due to less path choices, whereas RER has higher frustration threshold because of
the higher connectivity. The MP data shown are results of averages calculated over a smaller number
of instances than for the greedy algorithm, hence the lines connecting them are less smooth.

small changes in connectivity compared to the global MP algorithm, for which the drop is
more gradual at first and occurs at higher x values. This reconfirms the previous results that
the greedy behavior is fragile and sensitive to the position of the communication pairs and the
order in which they are selected.

We evaluate the a posteriori degree distribution P(k) by calculating the connectivities
ki ∀i ∈ G′ for the different k values, and from these derive the average degree �k� as a function
of the scaling variable x. Results shown in Figure 12 for different system size and k = 3
show consistent trends; starting from a 3−regular graph we end up, close to the frustration
transition point and after the node and edge removal, with about 20% of the nodes with k = 3,
whereas ∼ 40% have degree k = 2 and ∼ 30% have k = 1. The decay of �k�/k is also plotted
for the same process. Also here we see a good data collapse (the different curves can only be
distinguished close to frustration).

From graph theory [28] we know that when �k� ∼ 1 the graph is likely disconnected,
at least to two giant components; the numerical results show that frustration is reached when
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�k�/k has value∼ 50−60%, which corresponds to an average degree �k� ∼ 1.5−1.8, still higher
than the connectivity threshold 1. This can be explained by the fact that tighter constraints
on edge availability are imposed in the case of the NDP problem, resulting in frustration even
before the graph disconnects (i.e., disconnection is sufficient but not necessary for frustration).
Indeed in our model it is insufficient to have just a good number of available links, but they
should also constitute clusters of connected links to accommodate new communication paths.
Hence the average connectivity value observed at the frustration point of �k� > 1.
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Figure 11: Maximum cluster size greedy vs MP algorithms. The maximum cluster size, i.e. the ratio
of giant component size normalized with respect to V , is plotted as a function of the scaling variable x.
We see that in both cases frustration is reached for giant component values above 60%; the lower values
obtained for smaller graphs result from very few biased successful instances where source-destination
pairs (S ,R) are selected from different clusters.

4.2. Path length and stretch distribution.

Another interesting quantity to consider is the path length distribution close to the critical
threshold, and its comparison with the shortest path distribution. Using the rescaled variable

L
logV/ logγ(k−1) , where L is the length per communication, we present in figure 13 the distribution
obtained for different system sizes. We see a good data collapse for graphs of different system
sizes and connectivities to a Gaussian-like distribution with left fat tails, as confirmed by
the log-plot on the right panel. This can be explained by the fact that the shorter of the M
shortest paths are less likely to be rerouted. A graph with a high number of communications
exhibits a path length distribution with higher length averages (with respect to the shortest
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Figure 12: Degree distribution and �k�. We plotted P(k) for k = 0, . . . , 3 as a function of x =
M logV/V logγ(k − 1) for a 3−regular graph and system size V = 2000, 4000, 5000, 10000. From
top to bottom: the curve at the top is P(3) while the one at the bottom represents P(0). The black line
represents �k�/3 for the different system sizes.

path distribution) as well as higher variances because solution path lengths are more broadly
spread. We notice that the left tails are similar for all connectivity values whereas the right tails
are broader for lower connectivities close to the frustration point. This can be explained by the
fact that short paths are less likely to be rerouted and occur in roughly the same proportion in
graphs of different connectivities; hence the similarity in the fat left tails. Regarding the right
tails - many paths are rerouted through longer routes by the MP-algorithm, but graphs with
higher degree allow for more communications with shorter routes due to the higher routing
flexibility they offer.

Figure 14 shows the stretch, defined as the difference between the shortest path and the
path length obtained through MP optimization, for M close to frustration ( M logV

V logγ(k−1) ∼ 0.5)
for different system sizes. We can see that for graphs of degree k = 3 only 34 − 38 % of the
communications follow the shortest path, all other communications are routed through longer
paths. A higher fraction of shortest-path communications is found for higher connectivity
graphs, presumably due to the higher routing flexibility they offer. Looking at the tails we can
see that there is a non-negligible fraction of paths that stretch considerably compared to the
average shortest path length.

5. Conclusion

We studied the shortest node-disjoint path problem on regular, ER and RER random
graphs using message-passing cavity equations. We found that the suggested MP algorithm
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Figure 13: Path length distribution. Left - Path lengths Lν in the dense interval M logV/ logγ(k − 1) ∼
0.5 are normalized and plotted for k = 3, 5, 7 graphs against the corresponding shortest paths (violet
curves). We see a more broadly spread distributions with higher averages for all graphs with respect
to the shortest paths, signaling the path rerouting due to the MP optimization. Right - path lengths
are plotted in log scale to highlight the left fat tails where the shortest paths are similar irrespective
of connectivity, whereas other paths are rerouted by the MP algorithm and are considerably longer,
almost by a factor of two (right tails).
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Figure 14: Stretch distribution. Left - The difference Lν − Lνshortest is normalized and plotted for each
communication in the dense regime for degrees k = 3, 5, 7. For k = 3 we have 40% of communications
correspond to the shortest paths while others take routes which are long compared to the average path
length logV/ logγ(k− 1). In the case of higher connectivities k = 5, 7 there is a higher fraction of paths
with the same length as the shortest path due to the routing flexibility offered. Right - The same data
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outperforms the greedy breadth-first search approach both in finding better solutions (shorter
total path length) and in finding solutions for higher values of M. This shows that a global
strategy is needed to optimally route paths which do not overlap at nodes but also have
minimal path lengths. We found a scaling rule for the total length that goes as a cubic function
of the occupancy ratio M logV

V logγ(k−1) , with γ varying with the graph topology. This behavior
resembles the shortest path length for small M but increases faster than linearly for a higher
number of paths.

We also studied statistical properties of physical observables a posteriori in the case of
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regular graphs. We found good data collapses for regular graphs of different system sizes and
connectivities for quantities such as maximum cluster size, degree distribution and, length and
stretch distributions.

We believe this approach is theoretically interesting due to its relevance to hard
combinatorial complexity problems but also offers a new direction for solving important
practical routing problem in communication, in particular in optical and wireless ad-hoc
networks and VLSI design. This study offers the first step for realizing the potential in this
new direction.
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The edge-disjoint path problem on random graphs by message-passing
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We present a message-passing algorithm to solve the edge disjoint path problem (EDP) on graphs incorporat-
ing under a unique framework both traffic optimization and path length minimization. The min-sum equations
for this problem present an exponential computational cost in the number of paths. To overcome this obstacle we
propose an efficient implementation by mapping the equations onto a weighted combinatorial matching prob-
lem over an auxiliary graph. We perform extensive numerical simulations on random graphs of various types
to test the performance both in terms of path length minimization and maximization of the number of accom-
modated paths. In addition, we test the performance on benchmark instances on various graphs by comparison
with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always out-
performs the others in terms of the number of accommodated paths when considering non trivial instances
(otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect
to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis
behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations
do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution,
we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms
of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all
paths can be accomodated and one in which this is not possible. We also investigate the behaviour of both the
number of paths to be accomodated and their minimum total length.
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† caterina.de-bacco@lptms.u-psud.fr



2

18

0

15

8

5

9

10

16

17

14

11

12
19

6

2

13

7

3

4

1

18

0

15

8

5

9

10

16

17

14

11

12
19

6

2

13

7

3

4

1

FIG. 1: An instance of the EDP problem over a 3-regular random graph of V = 20 and M = 6: examples of solutions of the
unconstrained (left) and optimal (right) EDP problem are displayed. In the latter, the purple communication is redirected along
a longer path to avoid edge-overlap. The yellow one has two shortest paths of equal length (degeneracy) in the unconstrained

case, but once EDP is enforced this degeneracy is broken and only one of the two is optimal (right).

I. INTRODUCTION

The optimization of routing and connection requests is one of the main problems faced in traffic engineering and communi-
cation networks [1]. The need to deliver Quality of service (QoS) [2, 3] performances, when transmitting data over a network
subject to overload and failures, requires both efficient traffic management and resource optimization.
Some aspects of these problems can be formalized using the edge-disjoint path (EDP) problem. This is a constrained opti-
mization problem that is defined as follows. For a given network and a set of communication requests among pairs of users,
the EDP consists in finding the maximum number of communications that can be accommodated at the same time, under the
constraint that different paths cannot overlap on edges. Moreover, the additional requirement of minimization of the total path
length can be considered. Apart from a purely theoretical interest [4], the EDP finds a wide range of applications: in very-large-
scale-integration (VLSI) design, in admission control and virtual circuit routing and in all-optical networks. In VLSI design it is
required to route wires on a circuit avoiding overlaps, along with minimizing the length of the wires [5, 6]. In admission control
and virtual circuit routing [7–9] one needs to reserve in advance a given path for each communication request so that once the
communication is established no interruption will occur. This has applications in real-time database servers, large-scale video
servers [10–12], streaming data and bandwidth reservation in communication networks [13–16] and in parallel supercomputers.
All these applications require high quality data transmission and full bandwidth exploitation. Routing via edge disjoint paths
allows for an efficient bandwidth allocation among users because overlap avoidance means full bandwidth exploitation by each
single user. An area that has attracted particular attention in the last decade is communication transmission in all-optical net-
works. Along an optical fiber different communications cannot be assigned the same wavelength to transmit data. Moreover,
a unique wavelength must be assigned on all the edges contributing to the path assigned for a given communication. Routing
communications under the above two requirements define the problem of routing and wavelength assignments (RWA) in this
type of networks [17]. These two constraints suggest that a strategy that iteratively builds edge disjoint paths solutions could
allow for a more efficient bandwidth management, namely by using an overall smaller number of wavelengths. This leaves
available the remaining ones (according to the edge capacity) to be used either by new users entering the network or by allowing
current users to exploit higher bandwidth. This strategy has indeed been applied using greedy [18] and genetic algorithms [19]
with performances comparable to other methods based on integer linear programming, graph coloring or bin packing.
The EDP is classified among Karp’s NP-hard combinatorial problems [20, 21]. Defining the approximation ratio of a given
algorithm as the ratio between the result obtained in term of cost/profit by the algorithm and the optimal one (or viceversa de-
pending on what order gives the maximum ratio), the EDP problem is hard to approximate in the worst case; it has been proved
that even an approximation with ratio O(m

1
2−ε) is NP-Hard. The best known approximation ratio for the number of accomodated

paths is O(min{n2/3,
√
m}) [22, 23] where n and m are the number of nodes and edges in the graph, respectively. Negative results

on worst-case inapproximability did not stop progress on heuristc approaches. The problem has been studied intensely with a
variety of classical techniques: heuristic greedy algorithms [13, 14, 18, 24], elaborated strategies using bin packing[25], inte-
ger/linear programming relaxations [26–29], post-optimization [30], Montecarlo local search [31], genetic algorithms [32–34],
particle swarm optimization [35] and ant colony optimization [36], among them.

In this paper we propose a distributed algorithm to solve the EDP problem based on message-passing (MP) techniques (or
cavity method) [37]. This method has been extensively employed to address problems in spin glass theory [38–40], combinatorial
optimization [41] and more recently in routing problems on networks [42–45]. The evaluation of the equations at the core of the
MP technique requires, for each vertex i in the underlying graph, to solve a local combinatorial optimization problem, performing
a minimum over a set which is exponentially large in the number of neighbors of i. We propose an efficient method to perform
this calculation, by mapping it into a minimum-weight matching problem on a complete auxiliary graph with vertices in the set
∂i of neighbors of i, that can be solved by classical algorithms [46]. With this construction, each iteration of the MP equations
can be computed in a time which is polynomial in the number of graph edges (and linear in average for sparse random graphs).
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The MP algorithm is tested on computer-generated instances of different classes of random graphs to study the scaling properties
with the system size and to compare the performances against a greedy algorithm. We also considered the EDP problem on some
benchmark instances found in the literature, for which we could compare the message-passing results with those obtained using
other types of algorithms: greedy, ant colony optimization [36] and Montecarlo local search [31].
The paper is organized as follows. In Section II we define the EDP optimization problem, for which we present the message-
passing equations in Section III, together with the mapping on a matching problem that simplifies their actual implementation.
Section IV reports the results of simulations on random graphs and the scaling of the relevant quantities with the system size,
while the comparison between the performances of the message-passing algorithm and other methods is discussed in Section V.
Conclusions are given in Section VI.

II. THE EDGE-DISJOINT PATHS PROBLEM

Given a network and a set of M communications requests between pairs of senders and receivers, the standard EDP consists
in finding the maximum number of accommodated paths which are mutually edge disjoint. In the applications described in the
Introduction, the length of the communication paths is a quantity that, directly or indirectly, affects the overall transmission
performances, in terms of transmission delays, infrastructure cost and network robustness. We take into account this aspect by
considering the Minimum Weight Edge Disjoint Paths (MWEDP) problem, a generalization of the EDP problem that combines
in a unique framework both path length optimization and edge disjointness. An instance of the MWEDP problem is defined by a
graph G(V,E), whereV denotes the set of nodes and E is the set of edges, by an assignment of edge weights w, that we assume
to be non-negative real numbers and by a set of M communication requests {(S µ,Rµ)}µ=1,...,M between ordered pairs of nodes.
We denote by πµ, a path, i.e. a set of consecutive edges e ∈ E, that connects a sender S µ with the corresponding receiver Rµ. The
optimization problem consists in finding M pairwise edge-disjoint paths πµ while minimizing the total edge weight

�

µ w(πµ),
where w(πµ) =

�

e∈πµ w(e).
The classical EDP problem could be trivially recovered by assigning zero weight to all edges in G(V,E) and a positive cost

to each communication that is not accommodated. Alternatively, any solution of the MWEDP problem can be reinterpreted as a
solution of the classical EDP problem by slightly modifying the original instance of the graph G(V,E) by introducing an extra
edge between each pair (S µ,Rµ) with sufficiently large cost, such that the algorithm could still always find a solution possibly
using these expensive extra edges. By construction, the cost of each of these M extra edges should be larger than the maximum
possible weight a single path can take. Then the solution of the classical EDP problem is obtained from any solution of the
MWEDP problem by discarding the paths passing through the extra edges. In the present paper, we keep information about path
length minimization by assigning unit weights (i.e. wi j = 1,∀(i j) ∈ E) to the original edges of the graph G(V,E) and a fixed
cost |E| + 1 to the extra edge added between each pair (S µ,Rµ).

We introduce M-dimensional variables Īi j = (I1
i j, . . . , I

M
i j ) with entries Iµi j ∈ {±1, 0} representing the communication passing

along an edge:

Iµi j =























1, if communication µ passes from i to j,
−1, if communication µ passes from j to i,
0, otherwise.

(1)

We call these vectors currents as they must satisfy current conservation at each node i (Kirchhoff law):
�

j∈∂i

Iµi j + Λ
µ

i = 0, ∀µ = 1, . . . ,M, (2)

where we defined for each node i and each communication µ a variable Λµi such that

Λ
µ

i =























1 if i = S µ,
−1 if i = Rµ,
0 otherwise.

(3)

The constraint of edge-disjointness specifies that for each edge (i j), at most one of Iµi j is non-zero, therefore each vector Īi j can
be parametrized by a variable taking 2M + 1 different values. Notice that the set of variables {Īi j}(i j)∈E completely specifies the
state of the network. In this multi-flow formalism, the MWEDP problem is a combinatorial optimization problem in which the
global cost function C({Īi j}) =

�

(i j)∈E wi j f (||Īi j||) depends additively on the total net current ||Īi j|| =
�

µ |I
µ

i j| along the edges, and
the edge-disjointness is ensured by defining

f (||Īi j||) =























0, if ||Īi j|| = 0,
1, if ||Īi j|| = 1,
+∞, if ||Īi j|| > 1,

(4)
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FIG. 2: The modified cavity graph G[i j].

where |Iµi j| = 0, 1 denotes the absolute value of Iµi j. Thus configurations with more than one communication passing along an
edge have infinite cost and, in the case of unit weights, the total cost C({Īi j}), if finite, represents exactly the total path length, i.e.
the number of edges traversed by paths.

III. THE MESSAGE-PASSING ALGORITHM

On a tree, the optimization problem defined in Sec II can be solved exactly by iteration using the following message-passing
algorithm. Let us assume that G is a tree and consider the subtree G[i j] defined by the connected component of i in G \ (i j) (see
Figure 2). We define Ei j(Īi j) to be the minimum cost C({Īi j}) among current configurations that satisfy Kirchoff’s laws on all
vertices of G[i j] given that we fix an input (or output) extra current Īi j entering (or exiting) node i. Because of the absence of
cycles, it is possible to write a recursive equation for Ei j as a sum of cost contributions coming from neighbors of i in the subtree,
plus the single cost contribution due to the current Īi j passing along edge (i j). We call these quantities Ei j(Īi j) messages and they
verify the min-sum recursion relation [39]:

Ei j(Īi j) = min
{Īki}|constraint



















�

k∈∂i\ j

Eki(Īki)



















+ f (||Īi j||) (5)

where constraint is the Kirchhoff law at node i and ∂i denotes the neighborhood of i. This relation is exact for trees and can
be considered as approximately correct for locally tree-like graphs, such as sparse random ones [37, 39], where correlations
between neighbors of a given node decay exponentially. One can develop further this recursion to obtain a set of three types of
message-passing equations, one for each type of node, i.e. for each value of Λµi . A fixed point of these equations can be found
by iteration from arbitrary initial values for the messages until convergence. Then, one can collect at each edge the incoming
and the outgoing converged messages to find the optimal configuration {Ī∗i j}(i j)∈E such that:

Ī∗i j = argminĪ
�

Ei j(Ī) + E ji(−Ī) − f (||Ī||)
�

(6)

where the last term is subtracted to avoid double counting of the cost of the single edge (i j).

A. The mapping into a weighted matching problem.

The min-sum algorithm as in (5) presents a computational bottleneck coming from the fact that for each output current Īi j there
is a large number of possible neighborhood’s configurations {Īki}k∈∂i\ j that are consistent both with the edge-disjoint constraints
and with Kirchhoff’s law. In the calculation of the minimum in (5) one needs in fact to consider all possible combinations of
paths entering and exiting node i; the number of such combinations grows exponentially with the degree of node i. Nevertheless,
the calculation can be performed efficiently by reducing it to a maximum weight matching problem [46] on an auxiliary weighted
complete graph G′i . The nodes of G′i are the neighbors k ∈ ∂i and the (symmetric) weights matrix Q will be defined as

Qkl = − min
1≤|ν|≤M

{Eki(ν) + Eli(−ν)} + Eki(0) + Eli(0) (7)
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FIG. 3: Mapping into a weighted matching problem. Left: intermediate step where G′i is built. On the leftmost part we show an
example of several communications passing along (i j) and exiting along the remaining neighbors k ∈ ∂i \ j. Right: the final

step where G′′i jl is built; the best configuration around node i when the blue current passes through (i j) is given by the minimum
weighted matching on the complete auxiliary graph G′′i jl. Edges red and green represent the best matching, i.e. the configuration

where two other communications enter/exit neighbors of i \ j.

where Ekl(ν) = Ekl(Īkl) with Iµkl ≡ δµ,ν for ν > 0, Iµkl ≡ −δµ,ν for ν < 0 and Iµkl ≡ 0 for ν = 0. Notice that this notation maps the
M-dimensional vectors Īi j to the 2M + 1 possible current configurations ν allowed by the edge-disjointness constraint along a
given edge. The computation of matrix Q, that requires O(Mk2) operations, should be performed only once at the beginning of
the update routine for node i ∈ G.

Consider now a neighbor j ∈ ∂i and a given µ passing through edge (i j), we want to update Ei j(Īi j). Assuming to know the
other vertex l ∈ ∂i\ j where the current µ entering (resp. exiting) node i can exit (resp. enter), then the least costly configuration
in the remaining neighborhood is given by

qmin
jl = −Mjl +

�

k∈∂i\{ j,l}

Eki(0) (8)

where Mjl is the maximum weight of a matching on a complete graph G′′i jl with k − 2 nodes, built from G′i by removing nodes
j and l (and all their incident edges). Recall that a matching is a subset of edges of G′′i jl that do not share any vertex[46]. This is
indeed equivalent to assigning to some of the remaining pairs of neighboring nodes currents ν ∈ [−M, . . . ,M] that enters through
one of them and exits through the other, such that the overall cost of the configuration is minimum. The key point is that the
matching condition, i.e. the fact that edges in the solution set cannot have a vertex in common, in our problem translates in
the condition of forbidding edge overlaps. Hence, thanks to this auxiliary mapping, we are able to reduce the computation of
the update rule for the MP equations of the edge disjoint path problem to the solution of a standard (polynomial) combinatorial
optimization problem, i.e. maximum weight matching. In Figure 3 we give a diagrammatic representation of the mapping.
Note that in the maximum matching problem, edges in the input graph with negative weight can be simply removed. Notice
that the neighboring current ν can also be a priori equal to µ in this algorithm, because the configurations where µ appears in
more than one pair of edges will be eliminated in the minimization calculation as they have higher cost in our formulation. The
minimum weight is thus independent of µ, i.e. of which message we are updating, a fact that allows reducing the complexity of
the algorithm by a factor M.

Finally one needs to minimize over l given the matrix qmin:

Et+1
i j (µ) = min

l ∈ ∂i \ j

�

Et
li(µ) + q

min
jl

�

+ ci j(µ) (9)

where ci j(µ) is the cost of edge (i j), that in our case is 0 if µ = 0 and 1 otherwise. We can notice that in order to evaluate each
term inside the brackets we need to perform a matching optimization on each of the (k − 2)-node complete graphs G′′i jl built
∀ l ∈ ∂i \ j. Each of these matching routine has complexity O(k3 log k) [47] and there are O(k2) possible combinations of j and
l. Reminding that we first need to evaluate the weight matrix Q, the overall complexity of this algorithm will be:

O(k5 log k + Mk2)

which is polynomial in the variables k and M. Once we have performed this whole procedure, we get all the information we
need to calculate the 2M + 1 update messages Et+1

i j (µ), for each j ∈ ∂ i, adding a term O(kM) to the final complexity (which is
nonetheless negligible compared to the previous two).

The case of µ = 0, in which no current passes through edge (i j) regardless of what happens on the other edges, is addressed
by calculating a matching on the (k−1)-node complete graph composed of all nodes l ∈ ∂ i\ j. If i is either a sender or a receiver,
i.e. Λµi ∈ {±1} for a given µ ∈ [1, . . . ,M], the same computation can be performed provided that an auxiliary node, indexed by
the communication label µ is added to the original graph G and connected to node i, such that its exiting messages will be fixed
once at the beginning in the following way and never updated: Eµi(ν) = −∞ if 0 < ν = µ (sender) or 0 < −ν = µ (receiver), and
Eµi(ν) = +∞ otherwise.
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B. The role of reinforcement.

In order to aid and speed-up convergence of the MP equations, we used a reinforcement technique [48, 49], in which a set
of external local fields hti j(µ) = Et

i j(µ) + Et
ji(−µ) − ci j(µ) act on the messages gradually biasing them to align with themselves.

The reinforcement is introduced by promoting edge costs to become communication-dependent quantities defined as linear
combinations of the cost at the previous time-step and the reinforcement local fields:

ct+1
i j (µ) = cti j(µ) + γth

t
i j(µ) (10)

with c0
i j(µ) = ci j. This cost will then be inserted into equation (9) to replace the term ci j(µ). This has the effect to lead the

messages to converge faster, gradually bootstrapping the system into a simpler one with large external fields. In practice we
choose γt = tρ and one has to choose the growth rate of γ by tuning the reinforcement parameter ρ, that controls the trade-off
between having a faster convergence and reaching a better solution. We tested ρ on instances on three types of graphs to finally
choose to fix it to ρ = 0.002 in the rest of the simulations. In Figure 4 we could notice that this value achieves comparable results
(inset) in terms of Macc/M to lower ρ in less time.
In Figure 5(left) we report the number of converged instances (over 100 realizations) for standard MP (without reinforcement)
on four types of random graphs (as described in the next section) and fixed size V = 1000 and average degree �k� = 3. The
convergence failure of the standard MP increases considerably with M/V until it reaches a peak value, then it decreases. On the
contrary, when reinforcement is used, convergence is always achieved in less than 100 steps (right panel).
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FIG. 4: Reinforcement performance. Number of iterations to reach convergence as a function of reinforcement parameter ρ on
BRITE graphs AS-BA217 (V=100) with M = 25, 40, blrand1 (V=500) with M = 125 and mesh 15x15 with M = 22. Inset: the

number of accomodated paths Macc is substantially unchanged in the range of parameter values under study.

IV. RESULTS ON RANDOM GRAPHS

First, we tested the MP algorithm on various types of random graphs, with fixed size V = |V| = 1000 and average degree
�k� = 3, 5, 7: regular random graphs (Reg), Erdős-Rényi random graphs (ER) [50], random graphs with power-law distribution
(SF) [51] and a set of graphs (RER) obtained adding edges independently with probability p starting from a k0-regular random
graph (for large V, the final average degree of such graphs is �k� = k0 + d, with d = pV). We compared the performance
with a multi-start greedy algorithm (MSG) [36]. This heuristic algorithm calculates paths by iteratively choosing a (random)
communication µ, finding the corresponding shortest path and removing the edges belonging to the path from the graph. The
process is repeated until either there are no paths left to be routed or no communications can be accommodated anymore in
the graph. The multi-start version repeats the same procedure a given number of times and keeps the best solution in terms
of Macc, the number of accommodated paths. A bounded-length version [52] of MSG has been used to develop an iterative
algorithm to solve the RWA using EDP in [18]: its performance was comparable to the one obtained using a linear programming
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FIG. 5: Left: Fraction of instances in which convergence standard MP fails (reinforced MP always converged in our
experiments). Right: number of iterations for convergence for standard MP and reinforced MP (ρ = 0.002) in case of random

graphs of V = 1000 and �k� = 3 as a function of M/V . Notice how the reinforcement term, besides ensuring convergence,
greatly improves the convergence time.

solver on graphs of small sizes (V ≤ 40) but with faster execution times. This makes it suited to be tested on larger graphs. A
disadvantage of the greedy method is that it relies heavily on the order in which communications are accommodated (it disregards
the information about sender-receiver pairs other than the ones already accommodated). The difference in the performances
of the message-passing and greedy algorithm could then be used to assess the relevance of local information usage in such
optimization problem. We tested both the standard multi-start and the bounded-length version but we found equal results with
the first being slightly faster, in our tests, in terms of execution times. Thus we decided to use the standard MSG in our
simulations. First we compared the results in terms of number of accommodated paths Macc by calculating the ratio Macc/M. In
Figure 6 we show the behavior of Macc/M for each type of random graph and V = 103, �k� = 3 using MP, reinforced MP and
MSG. Both MP versions perform better than MSG, with the standard MP giving better results. The corresponding results for
�k� = 5 are similar (not reported) but the value Macc/M < 1 is reached at higher values of M/V and standard MP and MP with
reinforcement give almost always the same solutions. The case �k� = 7 is not reported because, given the high number of edges,
the solutions are often trivial (i.e. Macc/M = 1), a part from the case of SF graphs where we have instead Macc/M < 1 due to the
presence of many small degree nodes. We also studied the total path length as a function of M/V for the solutions, obtained with
the different algorithms. We consider the ratio between the total path lengths obtained with greedy and MP for solutions in which
the number Macc of accommodated path is the same. In Figure 7 we can see that MP always outperforms the MSG algorithm
for all types of graph under study. The results for the SF graph with �k� = 7 are quite different from the other graphs: both for
MP and MSG the ratio departs from 1 at rather small values of M/V, possibly because the maximum number of accommodated
paths is limited by the existence of many small degree nodes that act as bottlenecks, preventing the use of many alternative edge-
disjoint routes. The scaling behavior of the fraction 1−Macc/M of unaccommodated communications and the average total path
length L/V of accommodated paths with the system size in the solutions obtained using the MP algorithm is shown in Figure 8
for regular random graphs and ER random graphs. These quantities are plot as functions of the scaling variable x = M logV

V . Note
that when paths do not interact, x is a measure the total path length per site, as the average path lenght is proportional to logV.
In the top panels, two regimes are visible: for small x, all communications can be accommodated, whereas at some value x∗ the
curves for different values of V depart from zero. This behavior can be interpreted as a SAT/UNSAT transition, in analogy with
the terminology of constraint-satisfaction problems [41]. The collapse of the curves L/V for different values of V is very good in
the region in which all paths can be accommodated. On the contrary, in the UNSAT region, the curves for different sizes do not
collapse anymore, though the relative difference between them seems to decrease by increasing the system size, and the curves
for the largest graphs analyzed (V = 8000, 10000) are almost superimposed. We argue that x is the correct scaling variable in
the limit of infinitely large graphs, and the observed mismatch could be due to finite-size effects. The change of slope in the
roughly linear behavior of the average total length L/V is motivated by the fact that in the SAT region, all communications can
be accommodated at the cost of taking longer paths with respect to those actually accommodated in the UNSAT region.
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FIG. 6: MP vs greedy performance. We plot the performance in terms of Macc/M for (from top to bottom) regular, RER, ER
and SF graphs of fixed size V = 103 and average degree �k� = 3. Error bars are smaller than the size of the symbols.

V. COMPARISONWITH OTHERMETHODS

A comparison between the performances of the MP algorithm and those of alternative algorithms proposed in the literature
[31, 36] is reported in Table I. As benchmark instances we used: two internet-like topologies generated using the BRITE graph
generator [53] with parameters set as in [36]; mesh graphs of sizes 15x15 and 25x25, Steiner and planar graphs as reported
in [31]. For each of these graphs we used the same set of sender-receiver pairs of size M = 0.10V, 0.25V, 0.40V used in [31].
For each of these instances we ran the MP, MP with reinforcement and MSG algorithms 20 times and collected the average,
minimum and maximum number of accommodated paths Macc along with the average computational time in seconds. All results
are reported in Table I.

A. Other optimization methods.

A part from the multi-start greedy, we used as comparison two more structured algorithms. The first one is an Ant Colony
Optimization metaheuristic [36]. This method builds an EDP solution incrementally from partial solutions provided by a set
of M ants. Each ant generates a path for a given communication making probabilistic decisions during the construction steps.
These are made by processing local information modeled as pheromone information provided by other ants. The advantage
of this method is to divide the EDP in subproblems and to use local information. The drawback is that it relies on several
parameters that need to be carefully tuned in order to have a sensitive solution. Moreover the computational time increases
considerably with the system size. The second algorithm is a Montecarlo-based Local Search [31], that uses as main Montecarlo
step a path rewiring based on rooted spanning trees. Unfortunately the running time grows rapidly with the system size, making
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FIG. 7: Length performance. We plot (left) the relative performance of MSG over MP in terms of total length of the solution
paths: y = 100(Lg/LMP − 1). Here Lg and LMP denote the total path lengths calculated with MSG and MP respectively. We use

Reg, RER, ER and SF graphs of fixed size V = 103 and average degree �k� = 3, 5, 7 (from top to bottom). On the right we
report the number of instances where the two algorithms find the same solution in term of Macc/M over 100 realizations.

it computationally expensive when used on large graphs. Results are reported in Table I. Finally, we performed simulation using
the multi-start greedy heuristic described above.

B. Results.

In Table I we report the performance comparison in terms of Macc between the two versions of MP (with and without rein-
forcement) and the other 3 types of algorithms. The message-passing always performs equal or better than the other methods.
Surprisingly the best performances are given for meshes and planar graphs, where we would expect the failure of MP due to
the existence of short loops. What we find instead is that, even though the standard MP converges in few of these instances
on meshes, the version with reinforcement always finds a solution that is always better than the other algorithms. The larger
performance gap is seen on larger set of commodities and bigger graphs. Performance improvement reaches 27% with respect
to LS, the best one between the other algorithms tested. The same considerations can be made in the case of planar graphs. We
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FIG. 8: Finite-size effects. We plot 1 − Macc/M (top) and the total length per node L/V (bottom) for Reg (left) snd ER (right)
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V . We can notice the finite-size effects decreasing with system size leading to
the curves corresponding to the biggest graphs V = 8000, 10000 to almost superimpose. Note that in the SAT phase the total
length grows linearly in logV for all system sizes as expected but in the UNSAT phase the graphs split. Error bars are smaller

than point size.

claim that this gap would increase with system size, but unfortunately the size of benchmark graphs remains limited to V ≤ 500.
Moreover these alternative algorithms do not consider path length optimization, thus we cannot compare the performance with
respect to this variable. The ACO has been recently tested on several types of graphs (still with V ≤ 500) against a Genetic
Algorithm (GA) in [54]. It performed better than GA in the case of BRITE graphs 1-6 and 14% worse in the case of 10x10
and 15x15 mesh graphs. The MP algorithm always outperforms ACO and in the case of 15x15 mesh the gap reaches 23.5%.
Unfortunately neither the GA has been tested on larger graphs nor gives results in terms of path length of the solutions.

VI. CONCLUSIONS

The EDP problem is a combinatorial optimization problem that finds applications in several traffic engineering problems,
from VLSI design to routing and access control management in communication networks. In this work we proposed a min-
sum message-passing algorithm to find the maximum number of communications Macc that can be accommodated in a network
subject to edge-disjoint constraints and minimizing total path length at the same time. We devised an efficient method to
implement these equations by exploiting a mapping into a minimum weight matching problem on an auxiliary graph. The
standard MP algorithm and the version with reinforcement consistently outperform alternative algorithms found in the literature
on different types of benchmark graphs in terms of the fraction Macc/M of accommodated communications. We found two
different behaviors: on some “easy” instances, all algorithm accommodate all requests, providing the same results and suggesting
that these could be the optimal ones; there are non-trivial instances in which Macc/M < 1, but the message-passing algorithm
always outperforms the other algorithms in terms of the number of accommodated paths. In particular we obtained better results
in the case of meshes and planar graphs, even though these topologies are not locally tree-like as required by the cavity method.
In these cases, we could always ensure convergence of the MP equations by exploiting a reinforcement technique. The quality



11

of solutions improves with decreasing the reinforcement parameter, such that we could always find better solutions than those
obtained using the other algorithms under study. Unfortunately, for the heuristic algorithms employed on the benchmarks we
could not access other relevant metrics such as the average total path length, as it was not considered before in the literature
[31, 36]. Nonetheless we could directly compute such quantity for a multi-start greedy heuristic in several graphs, finding that
MP always gives a lower average path length for solutions with the same fraction of accommodated communications.

In conclusion, combining the good performance results, in terms of traffic and path length, with the polynomial time imple-
mentation, the use of the MP algorithm opens new perspectives in the solution of relevant routing problems over communication
networks such as the RWA in optical networks. In particular, it would be interesting to apply the MP algorithm in the iterative
construction of RWA solutions over communication networks with finite link capacity, as it has been done for other types of
EDP algorithms.
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Appendix A: Convergence criterion

Given a decision variable dt to be calculated at each iteration update step t, an integer variable n and a time step Tmax we have
convergence if, for n consecutive iteration steps, dt does not change, and we fix a maximum iteration time Tmax to update MP
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equations. Formally this writes:

∃ t0 ∈ [1, Tmax − n] s.t. dt0+i = dt0 ∀i = 1, . . . , n (A1)

In our simulations we defined the decision variable as the total difference of the optimal currents (calculated edge by edge)
between two consecutive iteration steps :

dt =
�

(i j)∈E

[1 − δµti j,µt−1
i j

] (A2)

where µti j = |minµ=−M,...,M
�

Ei j(µ) + E ji(−µ) − ci j(µ)
�

| and convergence is reached when dt = 0 for n consecutive time steps.

Appendix B: Benchmark results
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Instance MP MP rein = 0.002 MSG (greedy) ACO LS MP gain vs.
Name |V | |E| �k� �M� Mmin Mmax �M� Mmin Mmax �M� Mmin Mmax �M� Mmin Mmax �M� Mmin Mmax MSG ACO LS

blrand10 1 500 1020 4.08 16.00 16 16 16.00 16 16 13.65 13 15 14.80 14 16 16.00 16 16 6.67 0.00 0.00
blrand25 1 500 1020 4.08 32.00 32 32 32.00 32 32 27.75 26 30 31.85 31 32 32.00 32 32 6.67 0.00 0.00
blrand40 1 500 1020 4.08 38.00 38 38 38.00 38 38 33.10 32 35 37.85 37 38 37.90 37 38 8.57 0.00 0.00
blrand10 2 500 1020 4.08 26.00 26 26 25.65 25 26 23.85 23 25 25.25 25 26 26.00 26 26 4.00 0.00 0.00
blrand25 2 500 1020 4.08 35.00 35 35 35.00 35 35 30.75 29 33 34.75 34 35 34.95 34 35 6.06 0.00 0.00
blrand40 2 500 1020 4.08 37.00 37 37 37.00 37 37 32.45 31 34 36.95 36 37 36.95 36 37 8.82 0.00 0.00
blsdeg10 1 500 1020 4.08 17.00 17 17 16.89 15 17 14.65 14 16 15.95 15 16 17.00 17 17 6.25 6.25 0.00
blsdeg25 1 500 1020 4.08 36.00 36 36 36.00 36 36 31.55 30 33 35.80 35 36 36.00 36 36 9.09 0.00 0.00
blsdeg40 1 500 1020 4.08 34.00 34 34 34.00 34 34 29.00 28 31 33.65 33 34 34.00 34 34 9.68 0.00 0.00
blsdeg10 2 500 1020 4.08 20.00 20 20 19.85 19 20 16.90 16 18 19.20 19 20 20.00 20 20 11.11 0.00 0.00
blsdeg25 2 500 1020 4.08 34.00 34 34 34.00 34 34 28.45 27 30 32.95 32 34 33.90 33 34 13.33 0.00 0.00
blsdeg40 2 500 1020 4.08 37.00 37 37 37.00 37 37 31.75 30 33 36.50 35 37 37.00 37 37 12.12 0.00 0.00

mesh15 10 1 225 420 3.73 22.00 22 22 22.00 22 22 20.60 20 22 19.65 19 21 21.55 21 22 0.00 4.76 0.00
mesh15 25 1 225 420 3.73 36.00 36 36 35.10 35 36 28.30 27 30 27.70 26 29 32.00 31 33 20.00 24.14 9.09
mesh15 40 1 225 420 3.73 43.00 43 43 42.50 42 43 30.10 28 32 35.30 32 38 38.80 37 40 34.38 13.16 7.50
mesh15 10 2 225 420 3.73 - - - 19.89 19 20 19.75 19 20 17.50 17 19 19.45 19 20 0.00 5.26 0.00
mesh15 25 2 225 420 3.73 35.00 35 35 34.70 33 35 29.25 29 30 29.20 28 31 33.05 32 34 16.67 12.90 2.94
mesh15 40 2 225 420 3.73 42.00 42 42 41.35 41 42 29.80 29 32 34.00 33 36 37.60 36 39 31.25 16.67 7.69
mesh25 10 1 625 1200 3.84 - - - 47.25 46 48 40.70 40 42 32.85 29 36 41.00 39 43 14.29 33.33 11.63
mesh25 25 1 625 1200 3.84 - - - 68.30 67 69 48.40 47 51 45.00 42 49 55.55 54 59 35.29 40.82 16.95
mesh25 40 1 625 1200 3.84 - - - 88.74 88 90 54.35 53 58 57.70 53 61 69.30 67 72 55.17 47.54 25.00
mesh25 10 2 625 1200 3.84 - - - 44.33 43 46 40.05 38 42 30.10 28 33 37.90 36 40 9.52 39.39 15.00
mesh25 25 2 625 1200 3.84 - - - 67.22 65 70 48.90 47 52 45.60 44 48 54.70 52 59 34.62 45.83 18.64
mesh25 40 2 625 1200 3.84 - - - 88.55 87 90 54.05 51 57 57.75 54 61 68.85 66 71 57.89 47.54 26.76

steinb4 10 50 100 4.00 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 0.00 0.00 0.00
steinb4 25 50 100 4.00 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 0.00 0.00 0.00
steinb4 40 50 100 4.00 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 19.90 19 20 0.00 0.00 0.00

steinb10 10 75 150 4.00 7.00 7 7 7.00 7 7 7.00 7 7 7.00 7 7 7.00 7 7 0.00 0.00 0.00
steinb10 25 75 150 4.00 18.00 18 18 18.00 18 18 18.00 18 18 17.85 17 18 18.00 18 18 0.00 0.00 0.00
steinb10 40 75 150 4.00 28.00 28 28 27.65 27 29 25.10 24 27 24.35 23 26 27.30 27 28 7.41 11.54 3.57
steinb16 10 100 200 4.00 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 0.00 0.00 0.00
steinb16 25 100 200 4.00 25.00 25 25 25.00 25 25 25.00 25 25 24.35 24 25 25.00 25 25 0.00 0.00 0.00
steinb16 40 100 200 4.00 36.12 36 37 36.00 36 36 33.20 32 34 32.45 32 34 35.95 35 37 8.82 8.82 0.00

steinc6 10 500 1000 4.00 50.00 50 50 50.00 50 50 50.00 50 50 49.10 47 50 50.00 50 50 0.00 0.00 0.00
steinc6 25 500 1000 4.00 125.00 125 125 122.55 121 124 107.50 106 110 89.90 85 94 104.95 102 108 13.64 32.98 15.74
stienc6 40 500 1000 4.00 145.84 144 147 140.40 139 142 114.10 112 117 109.80 106 117 121.40 119 125 25.64 25.64 17.60

steincc11 10 500 2500 10.00 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 0.00 0.00 0.00
steinc11 25 500 2500 10.00 125.00 125 125 125.00 125 125 125.00 125 125 123.30 122 125 125.00 125 125 0.00 0.00 0.00
steinc11 40 500 2500 10.00 200.00 200 200 200.00 200 200 200.00 200 200 194.25 190 198 200.00 200 200 0.00 1.01 0.00
steinc16 10 500 12500 50.00 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 0.00 0.00 0.00
steinc16 25 500 12500 50.00 - - - 125 125 125 125.00 125 125 125.00 125 125 125.00 125 125 0.00 0.00 0.00
steinc16 40 500 12500 50.00 - - - 200 200 200 200.00 200 200 200.00 200 200 200.00 200 200 0.00 0.00 0.00

plan50 10 50 135 5.40 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 0.00 0.00 0.00
plan50 25 50 135 5.40 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 0.00 0.00 0.00
plan50 40 50 135 5.40 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 19.90 19 20 0.00 0.00 0.00

plan100 10 100 285 5.70 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 0.00 0.00 0.00
plan100 25 100 285 5.70 25.00 25 25 25.00 25 25 25.00 25 25 25.00 25 25 25.00 25 25 0.00 0.00 0.00
plan100 40 100 285 5.70 37.00 37 37 37.05 37 38 35.80 35 37 34.00 33 36 36.00 35 37 2.70 5.56 2.70
plan200 10 200 583 5.83 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 0.00 0.00 0.00
pan200 25 200 583 5.83 - - - 48.95 48 50 46.50 46 48 41.80 39 43 45.95 45 48 4.17 16.28 4.17

plan200 40 200 583 5.83 - - - 60.65 58 62 52.95 52 56 49.35 47 51 55.70 54 58 10.71 21.57 6.90
plan500 10 500 1477 5.91 50.00 50 50 50.00 50 50 50.00 50 50 44.95 42 47 50.00 50 50 0.00 6.38 0.00
plan500 25 500 1477 5.91 - - - 92.29 90 94 78.15 76 80 60.95 57 65 78.20 77 80 17.50 44.62 17.50
plan500 40 500 1477 5.91 - - - 122.31 119 124 92.60 90 95 82.85 78 86 100.15 97 102 30.53 44.19 21.57

TABLE I: Message-passing and multi-start greedy performances. Columns 1-4 give the characteristics of the benchmark. For
each algorithm, columns 1-3 represent the average, the minimum and the max number of accommodated paths over 20 runs of
a given set of commodity instance respectively. ACO and LS performances are reported in [31, 36]. Performance comparison

between MP and the other algorithms is given in the three last columns, representing the performance ratio
100 · (MBP

acc/M
alg
acc − 1) where alg indicates the algorithm used (MSG, ACO and LS respectively). We use as MMP

acc the best one
between MP with and without reinforcement.
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Abstract. We study the linear large-n behavior of the average number of distinct

sites S(n) visited by a random walker after n steps on a large random graph. An

expression for the graph topology–dependent prefactor B in S(n) = Bn is proposed.

We use generating function techniques to relate this prefactor to the graph adjacency

matrix and then devise message-passing equations to calculate its value. Numerical

simulations are performed to evaluate the agreement between the message passing

predictions and random walk simulations on random graphs. Scaling with system size

and average graph connectivity are also analysed.
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1. Introduction.

The average number of distinct sites S(n) visited by a random walker of n steps moving

on a graph provides important information about the geometry of the coverage of vertices

on the graph. The problem of characterizing this quantity S(n) as a function of time

n finds interdisciplinary applications such as in target decay [1] and trapping problems

[2] in chemical reactions, in the problem of annealing of point defects in crystals [3], in

relaxation problems in disordered systems [4] or in problems of dynamics on the internet

[5, 6]. Further studies have characterized the same quantity when multiple walkers are

moving together [7, 8].

The problem has been widely studied (in the limit n ≫ 1) in the case of d-dimensional

lattices [9, 10, 11] where a number of independent studies all show that for d > 3 the

average number of distinct visited sites grows linearly in time as S(n) = n/W (d) with

a prefactor 1/W (d) dependent on the dimension; whereas in d = 1, 2 this growth is

slower, with S(n) =
�

8n/π and S(n) = πn/lnn, respectively. In the case of Bethe

lattices of connectivity k the behaviour is linear again [12], with a prefactor dependent

on the lattice connectivity S(n) = [(k − 2)/(k − 1)]n. This problem has been tackled

also in the cases of graphs different from lattices or random graphs by using the spectral

dimension d̃. Under certain assumptions Si(t) ∼ tmin{1,d̃} for t → ∞ and d̃ �= 2. The

quantity d̃ has been calculated for complex types of graphs such as decimable fractals,

bundled structures, fractal trees and d-simplex. See [13, 14] for an overview. Nonetheless

the determination of the prefactor remains an open questions for these complex types

of graphs.

The situation where the underlying topology is a random network has only recently

been studied; in particular it has been found that for Scale-Free graphs (SF) [15, 16]

(in the time regime n ≫ 1) one recovers the linear behaviour S(n) ∼ n seen in both

Bethe lattices and d-dimensional lattices for d ≥ 3. However, there is very limited

information on the prefactor B describing this linear behavior S(n) = Bn on random

networks. Indeed all the studies referred to above are based on a scaling ansatz and

on the analysis of numerical simulations; neither provides a theoretical framework that

fully characterizes the prefactor B to the same extent as has been achieved for lattices.

The difficulty in setting up a theoretical model to characterize this prefactor is due to

the asymmetry between forward and backward steps during the walk; this asymmetry

is induced by the random nature of the graph structure, where nodes have a number of

neighbours (degree) that is a random quantity extracted from a probability distribution.

In this work we combine a general generating function approach, valid also for lattices,

with the cavity formalism [17, 18] that has proved to be useful in a wide range of

other problems in statistical physics [19]. We derive an approximate expression for the

topology dependent prefactor B that is valid in the thermodynamic limit of large graphs,

and for n ≫ 1. We develop message-passing equations to calculate its value and perform

numerical simulations on different graph topologies. Finally we describe the behaviour

of S(n) in three different time regimes through scaling considerations. We propose this
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framework as an alternative tool to the standard ones used in the case of lattices.

The paper is organized as follows: in section 2 we introduce the general model and

the notation used to describe a random walk on random networks. Section 3 sets out

the generating function approach to the problem. In section 4 we then adapt it to the

particular case of random networks. Our main results are derived using message-passing

techniques in section 5, leading to an explicit relation between the topology dependent

prefactor and the cavity marginals. In section 6 we present and discuss the results of

numerical simulations, including the scaling for finite graphs. We conclude in section 7

with a brief summary and outlook.

2. Random walks on graphs.

Given a random graph G(V , E) with V = |V| nodes and E = |E| edges, we denote the

neighbourhood of a node i ∈ V by ∂i, and its degree, i.e. the number of neighbours,

by ki = |∂i|. An overall characterization of the graph topology is then provided by the

distribution of the degrees ki, which we write as P (k).

Introducing matrix notation we define the graph adjacency matrix A as the matrix with

entries

aij =

�

1 if (i, j) ∈ E
0 otherwise

(1)

The nonzero entries of A then indicate which pairs of nodes are connected by an edge.

We do not consider self-loops, thus aii = 0. Throughout we will assume that the graph

is singly connected. Should the original random graph have disconnected pieces, we

discard all except for the largest connected component.

A random walk on a graph is a path γ = {v0, v1, . . . , vn} made up of successive random

steps between adjacent nodes vi on the graph, starting from a given node v0 ∈ V. Steps
are performed according to a transition probability from a node i to an adjacent node

j given by:

wij =
aij
ki

(2)

All adjacent neighbours of i then have equal probability of being reached in a step

starting from i. In matrix notation we define the transition matrix W as the matrix

with entries wij. Defining also D as the diagonal matrix with entries δijki, we have the

relation:

W = D−1A (3)

We denote the probability of reaching node j in n steps starting from node i as Gij(n).

With these definitions, given an n-step random walk γ = {v0, v1, . . . , vn}, the probability
of reaching node vn starting from node v0 along this path is the product:

�

i=0,...,n−1

1

ki
=

1

k0

1

k1
× . . .× 1

kn−1
(4)
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In general, in order to compute Gij(n) one has to consider all possible random walks

connecting i to j in n steps. Using the transition matrix W we can write this probability

as:

Gij(n) = [W n]ij = [(D−1A)n]ij . (5)

3. Average number of distinct sites: general results.

We are interested in finding the average number of distinct sites Si(n) visited by a

random walker taking n steps on a graph starting at node i.

In this section we derive general results that are valid for any graph topology, including

in particular the case of d-dimensional lattices. We use the formalism of generating

functions, a tool that has been used to calculate Si(n) on lattices [12, 10] as well as

other quantities of interest in the study of random walks on networks [13, 20, 1, 21].

We denote by Fij(n) the probability of reaching site j for the first time after n steps for

a random walk starting at site i; note that for the case i = j we define “reaching” as

“returning to” so that Fii(0) = 0. We also define Hij(n) as the probability that site j

has been visited at least once in n steps by a random walker starting at site i, and let

qj(n) be the probability that a walker starting at site j does not return to it within n

time steps.

With these definitions the average number of distinct sites visited by time n (i.e.

after n steps), starting at node i, can be written as:

Si(n) =
�

j∈V
Hij(n) (6)

Now if a node j has been visited at least once in a walk of n steps starting at node

i, we can call the time of the final visit of the walk m ≤ n and by definition the walk

then never returns to j in the remaining n−m steps.

Thus we can write the convolution:

Hij(n) =
n

�

m=0

Gij(m)qj(n−m) (7)

The generating function (or z-transform) of a quantity f(n) is defined as f̂(z) =
�∞

n=0 z
nf(n), with z ∈ [0, 1), and has the property that the z-transform of a convolution

is the product of the z-transforms. The z-transform of (7) is then

Ĥij(z) = Ĝij(z)q̂j(z) (8)

We now want to write everything in terms of Ĝij(z) and so need to find a relation

linking q̂j(z) to Ĝij(z), which we do via the first passage time probability Fjj(n). The

probability of returning to node j for the first time after exactly n steps can be written

as:

qj(n− 1)− qj(n) = Fjj(n) (9)
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Taking the z-transform of this expression and noting that qj(0) = 1, q̂j(z) =
�∞

n=0 z
nqj(n) and F̂jj(z) =

�∞
n=1 z

nFjj(n) we have:

z

∞
�

n=1

qj(n− 1)zn−1 −
∞
�

n=1

qj(n)z
n =

∞
�

n=1

Fjj(n)z
n (10)

zq̂j(z)− [q̂(z)− 1] = 1− (1− z)q̂j(z) = F̂jj(z) (11)

Hence:

q̂j(z) =
1− F̂jj(z)

1− z
(12)

We now relate the generator Gjj(n) to the first passage time probability Fjj(n). The

probability of arriving at node j in n steps starting at the same node j, can be seen as

the sum of the probabilities grouped according to how often j is visited overall: we can

reach j for the first time after n steps; or a first time at n1 < n and a second time after

another n − n1 steps; or a first time at n1 < n, a second time after another n2 − n1

steps and a third time after a final n− n2 steps, and so on. Mathematically this can be

written as:

Gjj(n) = Fjj(n)+
n

�

n1=0

Fjj(n1)Fjj(n−n1)+
n

�

n2=0

n2
�

n1=0

Fjj(n1)Fjj(n2−n1)Fjj(n−n2)+. . . (13)

To make the convolution structure clearer, we have included the extreme values (e.g.

n1 = 0 and n1 = n in the first sum) here even though – because Fjj(0) = 0 – they do

not contribute. Taking the z-transform of both sides one sees that

Ĝjj(z) = 1 + F̂jj(z) + F̂ 2
jj(z) + . . . =

1

1− F̂jj(z)
(14)

Substituting this result into (8) using (12) we obtain:

Ĥij(z) = Ĝij(z)
1 − F̂jj(z)

1− z
=

1

(1− z)

Ĝij(z)

Ĝjj(z)
(15)

This can now be inserted into (6) to give finally the z-transform of the average number

of distinct sites visited starting from site i:

Ŝi(z) =
1

1− z

�

j∈V

�

Ĝij(z)

Ĝjj(z)

�

(16)

One sees that the underlying quantity of central interest for our problem is Ĝij(z). The

result of equation (16) is valid in general, i.e. regardless of the graph topology. We

note that to understand the large n-behaviour of Si(n) we need to consider Ŝi(z) near

z = 1. Specifically, if as expected for V → ∞ we have Si(n) = Bn for large n, then the

z-transform will diverge for z → 1 as Ŝi(z) = B/(1− z)2. To calculate B we thus need

to understand the behaviour of Ĝij(z) for z → 1.
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4. Average number of distinct sites: random graph results.

In this section we will derive an expression for G(n), the matrix with entries Gij(n),

where the dependence on the graph size for large graphs is explicit. Here we will for

the first time have to restrict the type of graph: as explained below, we require that the

eigenvalue spectrum of A has a nonzero gap.

As we saw in section 2, in the case of random graphs we have G(n) = W n =

(D−1A)n and hence Ĝ(z) = (1 − zD−1A)−1, which relates the propagator G to the

graph topology via the adjacency matrix A.

To transform to a symmetric matrix whose properties are simpler to understand,

we rewrite this as

Ĝ(z) = D−1/2R̂(z)D+1/2 (17)

in terms of the matrix

R̂(z) = (1− zD−1/2AD−1/2)−1 (18)

This matrix is now clearly symmetric, and we can diagonalize it as

R̂ = PΛP T (19)

where the matrix P has as columns the eigenvectors of R̂ and Λ is a matrix containing

the eigenvalues of R̂ on the diagonal.

In terms of the normalized adjacency matrix M = D−1/2AD−1/2 [22], one has

R̂(z) = (1− zM)−1 (20)

In the following we use Dirac bra-ket notation [23] to denote the eigenvectors |uk� of

M . If |uk� is one such eigenvector and λk the corresponding eigenvalue, then

M |uk� = λk |uk� (21)

and it follows that

R̂(z) |uk� = (1− zλk)
−1 |uk� (22)

In words, R̂(z) has the same eigenvectors |uk� as M but with corresponding eigenvalues

1/(1− zλk).

From spectral graph theory [22] we know that the z-independent matrix M has

eigenvalues all lying in the range [−1, 1].

By direct substitution into the eigenvalue equation for M one sees that the vector

with entries u1,i = c
√
ki is an eigenvector with eigenvalue λ1 = 1. The constant c is

found from the normalization condition �u1|u1� =
�V

i=1 u
2
1,i = 1 as c−1 =

�

V �k� where
�k� =

�

j∈V kj/V is the average degree of the graph. If the graph is singly connected

then there are no other eigenvectors with eigenvalue 1, so we can order the eigenvalues

as

1 = λ1 > λ2 ≥ . . . ≥ λV ≥ −1 (23)

(The fact that the eigenvalues lie between −1 and 1 can also be seen from the Perron-

Frobenius theorem [24, 25], given that the entries of |u1� are all positive and λ1 = 1.)
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Splitting off the contribution from λ1, we can now write the eigenvector

decomposition of R̂(z) as

R̂(z) = |u1� �u1|
1

1− z
+

V
�

k=2

|uk� �uk|
1

1− zλk
(24)

and clearly the first term will be dominant in the limit z → 1 that we need to consider.

With the shorthand

C(z) =
V
�

k=2

|uk� �uk|
1

1− zλk

(25)

for the second term, we can then write

R̂ij(z) =

�

kikj

V �k�
1

1− z
+ Cij(z) (26)

From equation (17) we have Ĝij(z) = (kj/ki)
1/2R̂ij(z), so the analogous representation

for Ĝ(z) reads

Ĝij(z) =
kj

V �k�
1

1− z
+

�

kj
ki
Cij(z) (27)

We can now substitute these expressions into equation (16) to obtain:

Ŝi(z) =
1

1− z

�

j∈V







kj

R̂jj(z)V �k�(1− z)
+

�

kj
ki
Cij(z)V �k�(1− z)

kj + Cjj(z)V �k�(1− z)







(28)

In the following we will consider first the limit V → ∞ and then the limit z → 1.

This order of taking the two limits is important to get physical results, as we explain

in more detail below. Note that the denominators in the two terms of (28) are identical

but written in two different forms that will make the limit procedure clearer.

The large V -limit is simple to take in (26), giving limV→∞ R̂jj(z) = Cjj(z). We are

assuming implicitly here that C(z) has a well-defined limit for V → ∞. This requires

in particular that λ2 stays away from 1, i.e. that the spectrum of M has a nonzero gap

1−λ2 between the leading and first subleading eigenvalue for V → ∞. This is generally

true for regular [26, 27], ER [28, 29] and scale-free [30, 28] random graphs, but not

for lattices, where the eigenvectors are Fourier modes whose eigenvalue approaches 1

smoothly in the large wavelength (zero wavevector) limit.

In the second term of (28), the first term in the denominator can be neglected for

V → ∞ at fixed z < 1, giving

lim
V→∞

Ŝi(z) =
1

1− z

�

j∈V

�

kj
Cjj(z)V �k�(1− z)

+

�

kjCij(z)√
kiCjj(z)

�

(29)

Now we take the limit z → 1, in which the second term becomes negligible compared to

the first. With the assumption of a nonzero gap, Cjj(z) also has a finite limit for z → 1

so that we can define

lim
z→1

�

lim
V→∞

R̂jj(z)
�

= lim
z→1

Cjj(z) = Rj (30)
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and get finally

lim
V→∞

Ŝi(z) =
1

V �k�(1− z)2

�

j∈V

kj
Rj

(31)

as the asymptotic behaviour for z → 1.

This has exactly the 1/(1 − z)2 divergence we were expecting, and gives us the

prefactor of the large n-asymptote of the number of distinct sites visited:

lim
V→∞

Si(n) = B n (32)

where

B =
1

V �k�
�

j∈V

kj
Rj

(33)

We can make three observations. Firstly, if we had inverted the order of taking the limits

and fixed V while taking z → 1, then we would have had R̂jj(z) = kj/[V �k�(1− z)] to

leading order. The second term in (28) would have disappeared in the limit, so that

Ŝi(z) =
1

1− z

�

j∈V

kj

R̂jj(z)V �k�(1− z)
=

1

1− z
V (34)

to leading order near z = 1. This 1/(1 − z) divergence of Ŝi(z) implies

limn→∞ Si(n) = V , a result which is clear intuitively: if we keep the graph size finite

then in the limit of large times the random walk will cover the entire graph, i.e. visit all

nodes at least once.

Secondly, from equation (30) we can see that the information one needs to calculate B

resides in the quantities Cjj(z) =
�V

k=2 u
2
k,j/(1−zλk), where the uk,j are the components

of the eigenvectors |uk� of M and the λk the eigenvalues. So knowing the full spectrum

of M and the associated eigenvector statistics would in principle solve our problem of

determining B. While this is feasible computationally for finite and not too large V , we

are not aware of a method that would work in the thermodynamic limit V → ∞.

Thirdly, although the index i appears on the left hand side of equation (32), representing

the initial node of the walk, it does not appear on the right. This means that the average

number of distinct sites visited in the large n limit does not depend on the starting node,

and therefore we can drop the index i from the left hand side of (32). In particular,

even for graphs with broad degree distributions such as scale-free graphs, the number

of distinct sites visited will be the same whether we start the walk from a hub (a node

with high degree) or a dangling end of the graph (a node with degree one) – provided

of course n is large enough.

5. The message-passing equations.

From expression (33) we see that, for a given graph, we need to calculate the quantity
kj
Rj
. Although we know the entries of the inverse R̂−1

ij (z) = δij − zaij(kikj)
−1/2, it is not

straightforward to characterize R̂jj(z). We could find the value Rj either by calculating
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limz→1Cjj(z) where Cjj(z) =
�V

k=2 u
2
k,j/(1 − zλk) or by directly inverting the matrix

R̂−1(z) = [1−zD−1/2AD−1/2]. Unfortunately both of these two methods are prohibitive

computationally, already for individual graphs of large size V and even more so if in

addition we want to average the results over an ensemble of random graphs.

Our aim, then, is to find a viable alternative method that will allow us to

characterize the value of R̂jj(z), and thus calculate limn→∞ S(n) through (32) and

(33). We draw for this on methods that have been deployed in the calculation of

sparse random matrix spectra [18]. That a connection to spectral problems should

exist is suggested by the fact that zR̂(z) = (z−1
1 − D−1/2AD−1/2)−1: up to a trivial

rescaling, R̂(z) has the structure of a resolvent (with parameter z−1) for the random

matrixD−1/2AD−1/2, and it is from such resolvents that spectral information is normally

derived, in an approach that in the statistical physics literature goes back to at least

Edwards and Jones [31]. Accordingly the two steps we will need to take mirror closely

those used to find resolvents of sparse random matrices in [18]: we first write the R̂jj(z)

as variances in a Gaussian distribution with covariance matrix R̂−1(z), and then exploit

the fact that this distribution has a graphical model structure to derive cavity equations

from which these variances can be found.

5.1. Multivariate Gaussian representation.

The first step is simple: we define a vector of random variables (x1, . . . , xV ) and assign

to this the zero mean Gaussian distribution

P (x̄) ∝ e−x̄TR̂−1(z)x̄/2 = e−x̄T (1−zD−1/2AD−1/2)x̄/2 (35)

The marginal distribution of any component of the vector, obtained by integrating P (x̄)

over all other components, is then also Gaussian:

P (xj) ∝ e−x2
j/(2vj ) (36)

with variance vj = �x2
j� = R̂jj(z). Our goal is now to calculate these marginal variances

efficiently, i.e. without a full matrix inversion.

The key property of the probability distribution (35) is that it can be written in

the form

P (x̄) =
�

i∈V
e−x2

i /2
�

(ij)∈E
ezxixj(kikj)−1/2

(37)

As this factorizes into contributions associated with the nodes and edges of the

underlying graph, it defines what is known as a graphical model [19]. On such a

graphical model, marginal distributions can be obtained using message-passing, or

cavity, equations.

5.2. Cavity equations.

For completeness, we summarize briefly the derivation of the message-passing equations,

also known as sum-product algorithm [19]. We focus on trees, i.e. graphs that do not
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contain any loops, where the equations are exact, and leave for later a discussion of the

extent to which they apply also to large random graphs. Write generally φi(xi) for the

factor in P (x̄) associated with node i and ψij(xi, xj) as the interaction term between

nodes i and j. In our case we have:

ψij(xi, xj) = ezxixj(kikj)−1/2

(38)

φi(xi) = e−x2
i /2 (39)

To calculate the marginal distribution of xj , we could imagine first removing all

edge factors ψij(xj , xi) from P (x̄), where i runs over all neighbours of j. The tree is now

split into subtrees rooted at each neighbour i, and one can define the cavity marginal of

i, νi→j(xi) as the marginal that is obtained from a (suitably renormalized) probability

distribution containing only the factors from the relevant subtree. To get the marginal

of xj , we now just need to reinstate the missing edge factors as well as the node factor

at j and integrate over the values of the nodes that we have not yet marginalized over,

namely, the neighbours i:

P (xj) ∝ φj(xj)
�

i∈∂j

�

dxi ψji(xj , xi)νi→j(xi) (40)

One can call the quantities νi→j(xi) messages sent from i to j, or cavity marginals: each

message tells node j what the marginal of its neighbour i would have been if the edge

between them had been severed.

The cavity marginals can now be obtained from an analogous relation. To get

νi→j(xi), one can think of removing all edges connecting i to its neighbours l other than

j; note that the edge connecting i to j has already been taken out in the definition of

the cavity marginal. This generates independent subtrees rooted at the neighbours l,

and the marginals at these nodes are νl→i(xl). Reinstating removed edge factors and

marginalizing over neighbours then yields

νi→j(xi) ∝ φi(xi)
�

l∈∂i\j

�

dxl ψil(xi, xl)νl→i(xl) (41)

On a tree these equations can be solved by e.g. starting at leaf nodes, where simply

νi→j(xi) ∝ φi(xi), and then sweeping through the tree in a way that calculates each

message once messages have been received from all neighbours except the intended

recipient of the message. Note that two messages are needed per edge, one in each

direction. Once all messages have been found, the marginals can be deduced from (40).

On graphs with loops, the message-passing equations (40) and (41) are no longer

exact: when we remove all edges around node, its neighbours may then still be correlated

because of loops, and we cannot factorize their joint distribution into a product of cavity

marginals. The cavity method, also known as Bethe-Peierls approximation [19], consists

in neglecting such correlations. The set of equations (41) for the cavity marginals is then

viewed as a set of fixed point equations that typically have to be iterated to convergence

(see below). Clearly the marginals we deduce in the end are approximate. Nevertheless
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the method remains useful for us because we expect the approximation to become exact

for random graphs in the limit of large V . The reason is that typical loop lengths

diverge (logarithmically) with V , so that the graphs become locally tree-like [19, 32].

The correlations that the cavity method ignores then weaken as V grows, making the

approach exact for large V .

Specializing now to our Gaussian graphical model, the cavity marginals must also

be Gaussian and we can write them as

νl→i(xl) ∝ e−x2
l /(2v

(i)
l ) (42)

which defines the cavity variances v
(i)
l . Inserting (39) and (38) into the general message

passing equation (41) and carrying out the resulting Gaussian integrals gives then

v
(j)
i = ki



ki − z2
�

l∈∂i\j

v
(i)
l

kl





−1

(43)

while for the full marginals one obtains analogously

vj = kj

�

kj − z2
�

i∈∂j

v
(j)
i

ki

�−1

(44)

These two relations are the direct analogues of Eqs. (11) and (12) in [18].

The variances vj , when calculated in the limit z → 1, are the quantity of interest

for our problem as vj = �x2
j� = Rj . They are known once the cavity variances have been

obtained by solving (43).

In practice we use the rescaled cavity variances

mi→j =
v
(j)
i

ki
(45)

as messages from node i to node j. With this definition and using (43) for z → 1 the

cavity equations are:

mi→j =



ki −
�

l∈∂i\j
ml→i





−1

(46)

We solve these by iteration according to

m
(t+1)
i→j =



ki −
�

l∈∂i\j
m

(t)
l→i





−1

(47)

where t represents a discrete iteration time step.

Starting from a given graph G, a suitably chosen convergence criterion and a

maximum iteration time Tmax, the algorithm then works as following:

(i) Initialize the messages m
(0)
i→j randomly.
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(ii) Run through all edges (ij) and find for each the updated messages m
(t+1)
i→j , m

(t+1)
j→i

from (47).

(iii) Increase t by one.

(iv) Repeat steps 2 and 3 until either convergence is reached or t = Tmax.

If convergence is reached, i.e. the preset convergence criterion is satisfied, one can collect

the results and calculate the variances vj using (44) and (45):

vj = kj

�

kj −
�

i∈∂j
mi→j

�−1

(48)

where mi→j are the converged messages.

If we identify vj = �x2
j� = Rj we can then also express directly the prefactor (33)

in the linear asymptote in the number of distinct sites visited, S(n) = Bn, as

B =
1

V �k�
�

j∈V

kj
vj

(49)

=
1

V �k�
�

j∈V

�

kj −
�

i∈∂j
mi→j

�

(50)

There is one subtlety here that we have glossed over: the variances vj are the full

marginal variances R̂jj(z), which from (26) have the form kj/[V �k�(1− z)] +Cjj(z). In

the calculation of B we need Rj = limz→1Cjj(z), where the contribution ∝ (1 − z)−1

has been removed. Where we have taken the limit z → 1 above, we therefore implicitly

mean that 1 − z needs to lie in the range 1/V ≪ 1 − z ≪ 1 where the divergent

contribution to R̂jj(z) is still small enough to be neglected compared to Cjj(z). That

it is then allowable nevertheless to set z = 1 directly in the cavity equations that we

solve is something that has to be checked numerically: we do indeed always find finite

marginals vj from converged solutions for the cavity marginals. The divergent solution

also exists as a separate fixed point, namely the trivial solution mi→j ≡ 1 of (46), but

is not accessed in our iterative solution method.

5.3. Regular graph case.

Before going on to numerical results for more general random graph ensembles, we briefly

use the expression for the topology dependent prefactor (50) to consider the particular

case of a regular graph, i.e. a graph where ∀i ∈ V we have ki = k. In the infinite graph

size limit the graph is then effectively (up to negligible long loops) a regular tree, where

each node is equivalent to all others. The quantities of interest in (46), (48) must then

be the same ∀i ∈ V: we can write ki = k, v
(j)
i = v(j), mi→j = m and vj = v. The fixed

point cavity equations (46) thus reduce to:

m =



k −
�

l∈∂i\j
m





−1

= [k − (k − 1)m]−1
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We obtain a second order equation in m:

m2(k − 1)−mk + 1 = 0 (51)

with solutions m = 1/(k − 1) or m = 1. The first solution is the one we require; the

second one is the trivial solution discussed above that gives divergent variances in (48).

From m = 1/(k − 1) one can find the cavity variances and from there the full variances

v =
k − 1

k − 2
(52)

Substituting into the expressions (49) for the prefactor B we obtain:

B =
k − 2

k − 1
(53)

This result agrees with the one derived for Bethe lattices of connectivity k [12]. This is

as expected, given that the cavity method is exact on tree graphs.

6. Simulations.

We performed numerical simulations to test the predictions from our cavity approach

for the number of distinct sites visited. We used four types of graph structures:

regular random graphs (Reg), Erdős-Rényi (ER) [33], scale-free (SF) using a preferential

attachment scheme [16] and a dedicated graph ensemble (RER) where graphs are built

starting from a k0-regular random graph, with edges then added independently with

probability p as in the ER model; if d = pV then the final average degree of such a

graph is �k� = k0 + d for large V . This graph ensemble thus interpolates between the

regular and ER cases and is similar to the one analyzed in [34, 15] with the difference that

here we start from a regular graph instead of a ring or a lattice. As for the preferential

attachment we used the following procedure: start with a graph of m0 vertices and

introduce sequentially V − m0 new vertices by attaching each of them to m already

existing nodes. The probability to pick a certain node i as one of these m neighbors

is proportional to its degree, P (ki) ∼ ki; thus high degree nodes will be more likely

to be picked and hence they will increase their degree while the graph grows. These

scheme leads to a power-law degree distribution P (k) ∼ k−γ with γ = 2.9 ± 0.1 [16];

we empirically observe this value in our simulations. We also tried other generation

methods for scale-free graphs that yield different values of γ, but as the results were

qualitatively similar to those for preferential attachment we only show the latter as

representative for our scale-free graph simulations.

For each of these graph topologies we investigated three fixed sizes V = 103, 104, 105

and different average degrees. For ER graphs we only used the giant connected

component of each graph sampled, but the average degrees we consider are large enough

(�k� ≥ 4) for this to reduce V by at most by 2%. The other types of graph have

only one connected component by construction. For each given graph we evaluated

the cavity prediction (50) from a converged solution of the cavity equations (46).

The iterative solution using (47) converged quickly, in typically around 10 iteration
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steps. We used as convergence criterion the following: convergence is reached if

max(ij)∈E |m(t+1)
i→j −m

(t)
i→j | < ǫ for y consecutive times, where we set y = 10 and ǫ = 10−5.

The results for B were averaged over 1, 000 different graph instances for V = 103, 104

and 100 instances for the bigger graphs of size V = 105.

The cavity predictions were compared against direct simulations of unbiased

random walks. Each walk starts at a randomly picked vertex and we keep track of the

number of distinct visited sites as the walk progresses, with individual steps performed

using the transition probabilities wij =
aij
ki

defined in section 2. We averaged the results

over the same graph instances as used to generate the cavity predictions. Note that

for each instance of a given graph type, only a single walk was performed starting from

a randomly chosen initial site. Note that while the cavity prediction depends only on

the topology of each graph, for the direct simulations there is an additional source of

randomness arising from the particular random walk trajectory that is obtained on a

given graph.

The issue of how the cavity predictions depend on graph size V deserves a brief

comment. We argued that the method should become exact in the limit V → ∞, and

so a priori should extrapolate our predictions for B to this limit. We found, however,

that for our relatively large graph sizes the predictions for different V agreed within the

error bars. Thus we did not perform a systematic extrapolation and simply used the

predictions for V = 104, as the largest graph size for which we could obtain a statistically

large sample (1000 graph instances) of data. The fact that already V = 103, our smallest

size, is large enough to obtain results that are essentially indistinguishable from those

for V → ∞ is consistent with findings from cavity predictions in other contexts, see

e.g. [35, 36]. An alternative approach to evaluating the cavity predictions would have

been to move from specific graph instances to solving the limiting (V → ∞) integral

equations for the distribution of messages across the graph. These equations can be read

off more or less directly from the cavity equations, see e.g. [35, 37], or obtained from

replica calculations [38] and then solved numerically using population dynamics. Given

the good agreement between the predictions for our three different V this approach

would be expected to give identical predictions, so we did not pursue it.

6.1. Simulations versus cavity predictions.

Our first task is to verify that the cavity equations do indeed correctly predict the

prefactor B for random walks on large graphs. In figure 1 we plot the average number

of sites S(n) visited for ER graphs of degree k = 4, 7 and 10. We plot S(n) versus Bn,

with B the value taken from the cavity predictions, so that the data points should lie

on the diagonal y = x if the cavity predictions are accurate. We see in figure 1 that this

is indeed the case, for graphs of size V = 104. Similar levels of agreement are obtained

for the other graph ensembles and sizes. The numerical data thus fully support our

argument that the cavity predictions will be exact for large V , and show that in fact V

does not have to be excessively large to reach good quantitative agreement between the
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predictions and direct simulations.
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Figure 1: Average number of distinct sites visited, S(n) for random walks on ER graphs

of size V = 104. S(n) is plotted against Bn with the prefactor B as predicted by the

cavity method (50), for different average degrees �k� = 4, 7, 10 as shown in the legend. In

the linear regime, before the random walk starts to saturate the graph, data points lie on

the diagonal, showing excellent agreement between predictions and direct simulations.

6.2. Dependence on graph topology.

We next look more systematically at how the prefactor B in the large n-behaviour

S(n) = Bn depends on the topology of the graphs we study. In figure 2 we report

the dependence of the cavity prediction for B on average node degree �k�, for the four

different graph ensembles we studied. We found that for each graph type a hyperbolic

fit of the form B(�k�) = �k�−c1
�k�−c2

gives a good description of the data, with the parameters

c1, c2 dependent on the graph topology but best fit values always satisfying c1 = c2 + 1.

Thus we could interpret the generic graph result as the one for a regular graph with

effective degree �k� − c2 +1. This is intriguing as it suggests that the effect of changing

the average degree is quite similar between the different graph types.

Looking at quantitative differences between graph ensembles, we observe that the

prefactor B is smallest for given connectivity (average degree) when the graph is regular.

Heterogeneity in the node degrees thus generically seems to increase the number of

distinct sites a random walk will visit, a result that seems to us non-trivial and would

be interesting to investigate as a broader conjecture: could there be a lower bound
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B ≥ (�k� − 2)/(�k� − 1)? If this were the case, one may wonder whether this is related

to the spectral gap of a given graph, which is maximal for regular random graphs

[39, 40]. Indeed the impact of the gap would appear in the numerator of the prefactor

(33) through equation (30) and by using the definition Cjj(z) =
�V

k=2 u
2
k,j/(1 − zλk).

Nonetheless the gap contribution could be balanced off by the square of the eigenvector

entries u2
k,j of the matrix R which can be of order O(1) or O(1/V ) depending on the

eigenvector localization or delocalization respectively. For instance scale-free graphs

have been shown empirically to be localized (when considering the adjacency matrix), i.e.

only a few eigenvector entries are non-zero and these correspond to the high degree nodes

[28], whereas for ER graph the amplitude of the eigenvalue entries is evenly distributed

among all the nodes; this difference can be detected for instance by calculating the

inverse participation ratio [38, 28]. In order to make a more rigorous statement one

would then need to consider these two aspects at the same time but the absence of a

general analytical characterization for either the eigenvalues or the eigenvector entries

makes this difficult.

One could also ask whether at given �k�, B is always increasing with some measure

of spread of degrees such as the variance �k2� − �k�2. For our admittedly limited choice

of graph ensembles it is certainly true that the scale-free graphs (SF), which have the

broadest degree distributions, also give the largest B. Below them are the ER graphs.

The RER graphs, finally, with their character intermediate between regular and ER,

also have prefactors B that lie between those of the ER and regular graphs.

6.3. Finite-size effects and scaling.

We can use our numerical simulation results to enquire also about finite-size effects,

describing the behaviour of S(n) on graphs of large but finite size V . Our derivation of

B and its prediction using cavity techniques was done taking a large V -limit so cannot

make statements about this regime; instead we will have to rely on physical intuition to

construct a suitable finite-size scaling ansatz.

From inspection of the numerical simulations, we can distinguish a number of time

regimes. Initially S(n) is linear in n with prefactor 1. This is greater than the large

n prediction Bn with a prefactor B < 1, because the random walker has not yet had

much opportunity to return to previous sites; in particular one has, trivially, S(1) = 1,

ignoring the starting site v0.

For larger n one finds the predicted linear growth with prefactor B < 1, i.e.

S(n) = Bn. Once Bn becomes comparable to V , a crossover to sublinear growth takes

place, and finally S(n) approaches V as the walker visits all sites for asymptotically

large n. These regimes, with the exception of the trivial small n-range, can be clearly

distinguished in figure 3, which shows results for fixed graph size V = 104 and graphs

with �k� = 4; plots for other graph sizes and average degrees look qualitatively identical.

A plausible scaling ansatz that encompasses the various regimes – again without
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Figure 2: Prefactor B predicted by cavity method as a function of average degree, for

different graph types as shown in the legend. The lines represent hyperbolic fits; see

text for details. Note that the results for Reg and RER are essentially on top of each

other, and the same is true for ER and SF.

the initial small n-piece – is

S(n, V ) = Bnf

�

Bn

V

�

(54)

where the limiting behaviour of the scaling function must be

f(x) ≈
�

1 x ≪ 1
1
x

x ≫ 1
(55)

to reproduce S(n, V ) ≈ Bn and S(n, V ) ≈ V when n is much smaller and much larger

than V , respectively.

In figure 4 we check to what extent the finite-size scaling (54) captures our

simulation data. We show results for graph sizes V = 103, 104, 105 and two values for

the average degree �k� = 4, 10. By plotting S(n)/(Bn) vs Bn/V with B predicted from

the cavity equations, we directly have a graphical representation of the scaling function

f(x). Very good agreement is seen between the three different graph sizes: these all

collapse onto the same curve, except the initial regime discussed above where S(n) ≈ n

and hence S(n)/(Bn) > 1. Beyond this we observe a plateau at S(n)/(Bn) = 1, which

in a different guise verifies our claim above that the cavity method does indeed predict

the prefactor B correctly. For x = Bn/V growing towards unity, the curves drop below



The average number of distinct sites visited by a random walker on random graphs 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

S
/V

n/V

walk
B(n/V)f(n/V)

Bn

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

S
/V

n/V

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

S
/V

n/V

walk
B(n/V)f(n/V)

Bn

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

S
/V

n/V

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

S
/V

n/V

walk
B(n/V)f(n/V)

Bn

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

S
/V

n/V

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

S
/V

n/V

walk
B(n/V)f(n/V)

Bn

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

S
/V

n/V

(d)

Figure 3: Finite size effects: we show the walker behavior by plotting S(n)/V , i.e. the

fraction of distinct sites visited, derived from direct simulations vs n/V . Results are

from averages over 1000 instances of graphs of fixed size V = 104 and average degree

�k� = 4, for different graph topologies: a) Regular; b) RER; c) ER; d) SF. The dashed

red lines show the cavity predictions Bn for the linear growth with n, a regime which

is clearer in the log-log plot insets. Beyond that one observes a slow crossover, with

S(n)/V eventually approaching unity. Solid lines show our phenomenological scaling

fits.

this plateau as expected, indicating the start of the saturation regime. Asymptotically

the scaling function f(x) then approaches 1/x, reflecting the final saturation of S(n) at

the upper bound V .

More surprising, and not required by our ansatz per se, is that we see in figure

4 good collapse also between graphs of different average degree: using Bn/V as the

argument of the scaling function seems sufficient to absorb all the variation with �k�,
without further changes in f(x). The only exception is provided by the scale free graphs,

which we discuss in more detail below.

Encouraged by the good agreement of the numerical data with the ansatz (54), we

attempt to find simple fits to the scaling function f(x). The simulation data show that

the crossover starts off with a roughly exponential departure from the small x-plateau
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f(x) ≈ 1, which suggests a scaling function of the form f(x) = a/ln(b+ (ea − b)eax),

where a and b are fitting parameters. Figure 4 shows that this form fits the data

extremely well, and except for the scale-free graphs the fits can be performed even with

fixed b = 1, leaving a single fit parameter.

We comment finally in more detail on the case of SF graphs. Here we see that

the data in figure 4 do not collapse perfectly for different V in the intermediate regime

where x = Bn/V is order unity or somewhat smaller. In addition, the crossover in f(x)

is slower, with f(x) lower in the crossover region than for the other three graph types.

We conjecture that both of these effects are due to the presence of many small loops

in SF graphs, for example triangles (loops of length 3). To support this hypothesis, we

calculated the average number of triangles present in the different types of graph, taking

averages over 100 graph instances of size V = 103. We found results in the same range

for Reg, ER and RER graphs, where the average percentage of nodes that are part of

at least one triangle does not exceed 2%, 7% and 37% for �k� = 4, 6, 10 whereas for

SF graphs the relevant fractions of nodes reach 9%, 24% and 51% for the same average

degrees. These results confirm that SF graphs generated via preferential attachment

contain a higher number of short loops than the other topologies. In fact it has been

shown by spectral arguments [28] that, even though the fraction of nodes in triangles

will tend to zero for V → ∞, the growth rate of the number of loops of length l ≥ 4

exceeds all polynomial growth rates, thus these graphs do not become locally treelike

for large V . Therefore it is somewhat surprising that the cavity predictions for B are

quantitatively accurate even for SF graphs.

7. Conclusions.

We have presented an analytical expression for the topology dependent prefactor B

governing the linear regime for the average number of distinct sites S(n) visited by a

long (large n) random walk on a large random graph. We adapted the general results

derived for S(n) in terms of generating functions, as used to study d-dimensional lattices,

to the case of random networks. We then combined message-passing techniques and the

properties of Gaussian multivariate distributions to derive an expression for B that

is valid for locally tree-like graph structures, and found good agreements between the

theoretical predictions and direct numerical simulations. An intriguing feature of the

results is that at fixed average degree �k�, B seems smallest for regular graphs and

increases with the width of the degree distribution, and one may conjecture that the

regular graph result B = (k − 2)/(k − 1) is in fact a lower bound.

We analysed finite-size effects for S(n, V ) and proposed a simple scaling ansatz to

capture these. Apart from a trivial small n-regime, one finds a linear regime S ≈ Bn

with prefactor B in accord with our predictions; an asymptotic regime Bn ≫ V where

the random walk saturates and S → V ; and a crossover in between. Our data provides

excellent support for the scaling description, except possibly for SF graphs built via

preferential attachment, and we were able to provide a simple two-parameter (in fact
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Figure 4: Finite-size scaling of number of distinct sites visited, showing y = S(n)/(Bn)

versus x = Bn/V . Data from direct simulations (symbols), with B predicted from the

cavity equations, are shown for graphs of sizes V = 103, 104, 105 and average degrees

�k� = 4, 10. The graph topologies are: (a) Regular; (b) RER; (c) ER; (d) SF. Very good

collapse onto a master curve y = f(x) is seen between the different average degrees

and – in (a,b,c) – also different V . The initial plateau at y = 1 shows the agreement

between direct simulations and cavity predictions. For larger x saturation sets in, with

f(x) ≈ 1/x asyptotically (dotted black line).

often one-parameter) fit for the scaling function.

The accurate results we obtained using message-passing techniques may open new

perspectives in the analysis of random walks on networks. The cavity method we applied

to study random walks on networks could be considered as a valid alternative tool to

analyse other types of quantities related to this problem. For instance one could develop

further the model by considering a set of N independent random walkers over a random

network and studying the behavior of the average number of distinct or common visited

sites, as has been done in the case of lattices [7, 8, 41]. This could give insights into

the occupancy statistics of packet-switched networks where packets of data move by

independently hopping along nodes to transmit informations between users. The general

character of our analysis suggests to us that it should be feasible to adapt it to the study
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of this or similar types of questions that arise in the study of random walks on networks.
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Appendices

A. The graph representation of the Gaussian covariate distribution.

We can rewrite the joint distribution (35) using R̂−1
ij (z) = δij − z

aij√
kikj

. In this way we

can separate the node and edge contributions respectively to obtain a graphical model

representation:

P (x̄) ∼ e−x̄T R̂−1(z)x̄/2

= exp

�

−
�

i

xi[R̂
−1(z)x̄]i/2

�

= exp

�

−
�

i

xi[
�

j

R̂−1
ij (z)xj ]/2

�

= exp

�

−
�

i

xi[
�

j

(δij − z
aij

�

kikj
)xj]/2

�

= exp

�

−
�

i

xi[xi − z
�

j∈∂i

xj
�

kikj
]/2

�

= exp

�

−
�

i

�

1

2
x2
i −

1

2
zxi

�

j∈∂i

xj
�

kikj

��

=
�

i∈V
e−

1
2
x2
i

�

(ij)∈E
e
z

xixj√
kikj (56)

B. Regular graph case.

We calculate an exact expression for the topology dependent prefactor in the case of a

regular graph. Using ki = k, v
(j)
i = v(j), mi→j = m, vj = v, (48) and (51) we get:

v = k [k −
�

k∈∂i
m]−1

= k [k − km]−1
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= k

�

k

�

1− 1

k − 1

��−1

= k
k − 1

k(k − 2)
(57)

We substitute into the expressions (49) for the prefactor B to obtain:

B =
1

V k

�

j∈V

k

v

=
1

V k

V k(k − 2)

k − 1

=
k − 2

k − 1
(58)

Therefore the large time limit of the average number of distinct sites of a random walk

on a k-regular graph is:

lim
n→∞

S(n) =

�

k − 2

k − 1

�

n (59)
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[38] Kühn R. Spectra of sparse random matrices. Journal of Physics A: Mathematical and Theoretical,

41(29):295002, 2008.

[39] Alon N. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[40] Nilli A. On the second eigenvalue of a graph. Discrete Mathematics, 91(2):207–210, 1991.

[41] Majumdar S N and Tamm M V. Number of common sites visited by n random walkers. Physical

Review E, 86(2):021135, 2012.



A matrix product algorithm for stochastic dynamics on locally tree-like graphs

Thomas Barthel,1, 2 Caterina De Bacco,2 and Silvio Franz2

1Department of Physics, Duke University, Durham, NC 27708, USA
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We describe and demonstrate an algorithm for the efficient simulation of generic stochastic dy-
namics of classical degrees of freedom defined on the vertices of a locally tree-like graph. Networks
with cycles are treated in the framework of the cavity method. Such models correspond for example
to spin-glass systems, Boolean networks, neural networks, or other technological, biological, and
social networks. Building upon ideas from quantum many-body theory, the algorithm is based on
a matrix product approximation of the so-called edge messages – conditional probabilities of ver-
tex variable trajectories. The matrix product edge messages (MPEM) are constructed recursively.
Computation costs and precision can be tuned by controlling the matrix dimensions of the MPEM
in truncations. In contrast to Monte Carlo simulations, the approach has a better error scaling
and works for both, single instances as well as the thermodynamic limit. As we demonstrate at
the example of Glauber dynamics, due to the absence of cancellation effects, observables with small
expectation values can be evaluated reliably, allowing for the study of decay processes and temporal
correlations.

PACS numbers: 64.60.aq, 02.50.-r, 02.70.-c

Introduction. – In the last years, we have seen increased
efforts of statistical physicists to tackle stochastic dynam-
ical processes in networks in order to study various phe-
nomena [1, 2] such as ordering processes, the spreading
of epidemics and opinions, synchronization, collective be-
havior in social networks, stability under perturbations,
or avalanche dynamics.

A drastic simplification can be achieved when short cy-
cles in the network, defined by interaction terms, are very
rare. This is the case for locally tree-like graphs such as
random regular graphs, Erdős-Rény graphs, and Gilbert
graphs. For such random graphs with N vertices, al-
most all cycles have length � logN such that their effect
is negligible in the thermodynamic limit [3]. For static
problems, this has been exploited in the so-called cavity
method [4], where conditional nearest-neighbor proba-
bilities are computed iteratively within the Bethe-Peierls
approximation. The method was very successfully ap-
plied to study for example equilibrium properties of spin
glasses [4], computationally hard satisfiability problems
[5, 6], and random matrix ensembles [7].

This big success has motivated the generalization of
the cavity method to dynamical problems [8, 9], which is
known as the dynamic cavity method or dynamic be-
lief propagation. As the number of possible trajecto-
ries and, hence, the computational complexity increase
exponentially in time, applications have however been
quite restricted to either very short times [8, 10], ori-
ented graphs [8], or unidirectional dynamics with local
absorbing states [9, 11–13]. In the latter case, one can
exploit that vertex trajectories can be parametrized by
a few switching times. Another idea has been to ne-
glect temporal correlations completely as in the one-step
method [8, 14–16] or to retain only some Δt = 1 corre-

lations as in the 1-step Markov ansatz [17]. While this
works well sometimes for stationary states at high tem-
peratures, such approximations are usually quite severe
for short to intermediate times or low temperatures.

In this paper, we present an efficient novel algorithm
for the solution of the parallel dynamic cavity equations
for generic (locally tree-like) graphs and generic bidirec-
tional dynamics. The central objects in the dynamic cav-
ity method are conditional probabilities for vertex trajec-
tories of nearest neighbors – the so-called edge messages.
As temporal correlations are decaying in time and/or
time difference |t − t�|, we can approximate each edge
message by a matrix product, i.e., there is one matrix
for every edge, edge state, and time step, encoding the
temporal correlations in the corresponding part of the
evolution. It turns out that the dimensions of these ma-
trices do not have to be increased exponentially in time.
One can obtain quasi-exact results with much smaller
matrix dimensions. Computation costs and precision can
be tuned by controlling the dimensions in truncations.
The idea of exploiting the decay of temporal correla-
tions to approximate edge messages in matrix product
form is in analogy with the use of matrix product states
[18–22] for the simulation of strongly correlated, mostly
one-dimensional, quantum many-body systems. These
have been used very successfully in algorithms like the
density-matrix renormalization group [23, 24] to compute
for example quantum ground-state properties, often with
machine precision [25]. Besides lifting the restrictions of
the aforementioned approaches, the matrix product edge-
message (MPEM) algorithm can also outperform Monte
Carlo simulations (MC) of the dynamics in important re-
spects. In particular, besides allowing for the simulation
of single instances, alternatively, one can work directly in
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the thermodynamic limit. Perhaps more importantly, it
has a favorable error scaling. While statistical errors in
MC decay very slowly with the number of samples Ns as
1/
√
Ns, MPEM yields also observables with absolutely

small expectation values with very good precision which
is essential for the study of decay processes and temporal
correlations.
The dynamic cavity method. – Let σt

i denote the state
of vertex i at time step t, and σt := (σt

1,σ
t
2, . . . ) the

state of the full system at time t. Given the state prob-
abilities P (σt) for time t, we evolve to the next time
step, P (σt+1) =

�
σt W (σt+1|σt)P (σt), by applying the

stochastic transition matrixW . As vertex i interacts only
with its nearest neighbors j ∈ ∂i, the probability for σt+1

i

only depends on the states σt
j of these vertices at the pre-

vious time step such that the global transition matrix W
is a product of local transition matrices wi,

W (σt+1|σt) =
�

i

wi(σ
t+1
i |σt

∂i). (1)

Here
�

σi
wi(σi|σ�

∂i) = 1, and σt
∂i is the state of the

nearest neighbors of vertex i at time t. In the cavity
method [4, 8, 9], one neglects cycles of the (locally tree-
like) graph according to the Bethe-Peierls approximation
to reduce this computationally complex evolution to the
dynamic cavity equation [8, 9]

µi→j(σ̄
t+1
i |σ̄t

j) =
�

{σ̄t
k}k∈∂i\{j}

pi(σ
0
i )
� t�

s=0

wi(σ
s+1
i |σs

∂i)
�

×
� �

k∈∂i\{j}
µk→i(σ̄

t
k|σ̄t−1

i )
�

(2)

which only involves the so-called edge messages µ for the
edges of a single vertex i. For simplicity, we have assumed
that vertices are uncorrelated in the initial state such that
P (σ0) =

�
i pi(σ

0
i ). The edge messages µi→j(σ̄

t
i |σ̄t−1

j ) in
the dynamic cavity equation (2) are conditional probabil-
ities for the trajectories σ̄t

i := (σ0
i ,σ

1
i , . . . ,σ

t
i) and σ̄t−1

j

on edge (i, j). Specifically, if we consider a tree graph
and cut off everything “right” of vertex j as indicated
in Figure 1 by the dashed line, µi→j(σ̄

t
i |σ̄t−1

j ) denotes

the conditional probability of a trajectory σ̄t
i on vertex i,

given the trajectory σ̄t−1
j on vertex j. Eq. (2) constructs

µi→j(σ̄
t+1
i |σ̄t

j) out of the edge messages µk→i(σ̄
t
k|σ̄t−1

i )
of the previous time step. This is exact for tree graphs
and covers locally tree-like graphs in the Bethe-Peierls

∂i

i j

Figure 1: (Color online) Part of a locally tree-like interaction
graph with vertex degrees z = 3.

approximation. Although we have gained a lot in the
sense that the computational complexity is now linear in
the system size, it is still exponential in time t, if we were
to encode the edge messages without any approximation.
Canonical from of an MPEM. – To circumvent this

exponential increase of computation costs, we can exploit
the decay of temporal correlations and approximate the
exact edge message by a matrix product

µi→j(σ̄
t
i |σ̄t−1

j ) = A
(0)
i→j(σ

0
j )
� t−1�

s=1

A
(s)
i→j(σ

s−1
i |σs

j )
�

×A
(t)
i→j(σ

t−1
i )A

(t+1)
i→j (σt

i). (3)

The particular choice of assigning vertex variables {σs
i }

and {σs
j} to the Ms ×Ms+1 matrices A

(s)
i→j(σ

s−1
i |σs

j ) oc-
curring in the matrix product (3), is advantageous for the
implementation of the recursion relation (2) for MPEMs
as will become clear in the following. In order for the
matrix product to yield a scalar, we set M0 = Mt+2 = 1.
MPEM evolution. – The time-evolution starts at t = 0

with µi→j(σ
0
i ) = pi(σ

0
i ). Using the dynamic cavity equa-

tion (2), we iteratively build matrix product approxima-
tions for edge messages for time t+1 from those for time
t. It is simple to insert the matrix product ansatz (3)
for the edge messages in the dynamic cavity equation,
but not trivial to bring the resulting edge message again
into the canonical MPEM form as required for the sub-
sequent evolution step. The specific assignment of the
vertex variables to matrices in Eq. (3) has been chosen
such that all contractions (products and sums over ver-
tex variables) occurring in the cavity equation are time-
local in the sense that, given MPEMs µk→i(σ̄

t
k|σ̄t−1

i ) in
canonical form for all neighbors k ∈ ∂i\{j}, the resulting
µi→j(σ̄

t+1
k |σ̄t

i) can be written in (non-canonical) matrix
product form as

µi→j(σ̄
t+1
i |σ̄t

j) = C
(0)
i→j(σ

0
i )
� t+1�

s=1

C
(s)
i→j(σ

s
i |σs−1

j )
�
. (4)

As depicted in Figure 2b, the tensors C
(s)
i→j for 1 ≤ s ≤ t

are obtained by contracting a local transition matrix

wi(σ
s
i |σs−1

∂i ) with tensors A
(s)
k→i from the time-t MPEMs.

This contraction entails a sum over the z − 1 common
indices σs−1

k , where z = |∂i| is the vertex degree. As-
suming for the simplicity of notation that the matrix di-
mensions Ms for all time-t MPEMs are identical, the re-

sulting matrices C
(s)
i→j(σ

s
i |σs−1

j ) =
�

σs−1
∂i\{j}

wi(σ
s
i |σs−1

∂i )

×
��

k∈∂i\{j} A
(s)
k→i(σ

s−1
k |σs

i )
�
have left and right indices

of dimensions M̄s = (Ms)
z−1 and M̄s+1 = (Ms+1)

z−1,
respectively. The contraction for tensor C(t+1) is very

similar and C
(0)
i→j(σ

0
i ) = pi(σ

0
i )
��

k∈∂i\{j} A
(0)
k→i(σ

0
i )
�
.

MPEM truncation. – In preparation for the next time
step, we now need to bring the evolved edge message (4)
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(a)

µi→j(σ̄
t
i |σ̄

t−1
j ) = A

(0)
i→j A

(1)
i→j A

(2)
i→j A

(t−1)
i→j A

(t)
i→j A

(t+1)
i→j

σ0
j σ0

i σ1
j σ1

i σ2
j σt−2

i σt−1
j σt−1

i σt
i

(c)

P (σt
i , σ

t
j) =

A
(0)
j→i A

(1)
j→i A

(2)
j→i A

(t−1)
j→i A

(t)
j→i A

(t+1)
j→i

A
(0)
i→j A

(1)
i→j A

(2)
i→j A

(t−1)
i→j A

(t)
i→j A

(t+1)
i→j

σt
j

σt
i

(b)

C
(s)
i→j =

σs
i σs−1

j

a b wi

σs
i σs−1

j

A
(s)
k1→i

σs−1
k1

σs
i

a1 b1 A
(s)
kz−1→i

σs−1
kz−1

σs
i

az−1 bz−1

Figure 2: (Color online) (a) Graphical representation of a matrix product edge message in canonical form (3). Connecting
lines indicate summations over indices. (b) For each time step (2), tensors of the evolved matrix product µi→j(σ̄

t+1
i |σ̄t

j) in
Eq. (4) are built by contracting the local transition matrix wi with MPEM tensors of messages µk→i, incident to vertex i,
where k ∈ ∂i \ {j} = {k1, . . . , kz−1}, and a := (a1, . . . , az−1). (c) Evaluation of probabilities P (σt

i ,σ
t
j) as in Eq. (8).

back into canonical form (3). Furthermore, we need to
introduce a controlled approximation that reduces the
matrix dimensions because they would otherwise grow
exponentially in time. Both, a reordering of the vertex
variables σs

i and σs
j in the matrix product (4) and a con-

trolled truncation of matrix dimensions can be achieved
by sweeping through the matrix product and doing cer-
tain singular value decompositions (SVD) [26] of the ten-
sors.
Let us shortly explain the notion of truncations at the

example of a matrix product γ(n) := An0
0 An1

1 · · ·Ant
t ,

where Ans
s is an Ms×Ms+1 matrix and M0 = Mt+1 = 1.

In order to reduce in a controlled way, e.g., the left matrix
dimension Mu of Anu

u , we suggest to do an SVD of the
matrix product such that

γ(n) =: ΓnL,nR
=

Mu�

k=1

YnL,kλkZk,nR
(5)

where we have grouped the variables to nL :=
(n0, . . . , nu−1) and nR := (nu, . . . , nt). Y and Z are iso-
metric matrices; Y †Y = � and ZZ† = �. Now, truncat-
ing some of the singular values λ1 ≥ λ2 ≥ · · · ≥ λMu ≥ 0,
such that only the M �

u largest are retained, we obtain the
controlled approximation

γtrunc(n) :=
�

k≤M �
u

YnL,kλkZk,nR

with error �γ − γtrunc�2 =
�

k>M �
u

λ2
k. (6)

Note that this truncation scheme guarantees the mini-

mum possible two-norm loss �Δγ� ≡
��

n Δγ2(n)
�1/2

for the given new matrix dimension M �
u.

While it seems very desirable to discard unimportant
information and control the growth of computation cost
through such truncations, the SVD (5) appears to be an
insurmountable task. Assuming that each variable ns can
take d different values and that 2u ≤ t+1, the cost for the
SVD would scale exponentially in time like dt+u+1 [26].
However, the beauty of matrix products is that such an

SVD can in fact be done sequentially with linear costs of
order tdM3 (M := maxs Ms) as follows. First, we do an
exact transformation of the matrix product to bring it to
the form γ(n) = Y n0

0 · · ·Y nu−1

u−1 Ãnu
u Z

nu+1

u+1 · · ·Znt
t , where

tensors Ys and Zs obey the left and right orthonormality
constraints

�

n

(Y n
s )†Y n

s = � and
�

n

Zn
s (Z

n
s )

† = �, (7)

respectively. This is achieved through a sequence of
SVDs. It starts with the SVD An0

0 =: Y n0
0 Λ0V0,

where Λ0 is a diagonal matrix of singular values, V0

is isometric according to V0V
†
0 = � and Y0 obeys

Eq. (7). The sweep continues with the SVD Λ0V0A
n1
1 =:

Y n1
1 Λ1V1 and so on until the computation of Yu−1.

Analogously, we do a second sequence of SVDs start-
ing from the right and ending with A

nu+1

u+1 Uu+2Λu+2 =:
Uu+1Λu+1Z

nu+1

u+1 and, finally, define the central tensor

as Ãnu
u := Λu−1Vu−1A

nu
u Uu+1Λu+1. After this some-

what laborious preparation, we can do the actual trunca-
tion, based on the SVD Ãnu

u =: UuΛZ
nu
u with the same

singular values λ1 ≥ · · · ≥ λMu
as in Eq. (5). With

the Mu × M �
u matrix [Λtrunc]kk� := δkk�λk, the trun-

cated matrix product (6) takes the form γtrunc(n) =
Y n0
0 · · ·Y nu−2

u−2 (Y
nu−1

u−1 UuΛtrunc)Z
nu
u · · ·Znt

t .

With this tool in hand, we can now truncate the
evolved edge message (4) and bring it back into canon-
ical form (3). In a first sweep from right (s = t + 1)
to left (s = 0), using SVDs, we can sequentially im-
pose the right orthonormality constraints [see Eq. (7)]
on the C-tensors. In a subsequent sweep from left
to right, again based on SVDs, we can now truncate
the tensors to decrease bond dimensions from M̄s to
something smaller. What is left, is to reorder the in-
dices {σs

i } and {σs
j} of the vertex variables. In a

sweep from right to left, we go from the variable assign-
ment (σ0

i )(σ
1
i |σ0

j ) . . . (σ
t+1
i |σt

j) in the truncated and or-

thonormalized version C̃
(0)
i→j(σ

0
i )

�t+1
s=1 C̃

(s)
i→j(σ

s
i |σs−1

j ) of

the MPEM (4) to the assignment (σ0
i σ

0
j ) . . . (σ

t
i |σt

j)(σ
t+1
i )
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Figure 3: (Color online) (a) Magnetization and, (b), connected temporal correlations for Glauber dynamics on z = 3 random
regular graphs of different sizes for MC and in the thermodynamic limit for the MPEM and 1-step Markov approaches. Because
of odd-even effects in the dynamics, only even time steps are shown. For MC (with Ns samples), the errors of the magnetization
[lower panels in (a)] are quantified by the standard deviation of the magnetization, i.e., under ignorance of remaining finite-size
effects. For MPEM and 1-step Markov, errors are quantified by the deviation from the result of the most precise (quasi-exact)
MPEM simulation (truncation threshold λtrunc = 10−6 for β = 1 and λtrunc = 10−7 for β = 1/4). In plot (b), the three MPEM
curves for λtrunc = 10−4, 10−5, 10−6 overlap up to time t = 24.

in the matrix product

µi→j(σ̄
t+1
i |σ̄t

j)
trunc≈

� t�

s=0

D
(s)
i→j(σ

s
i |σs

j )
�
D

(t+1)
i→j (σt+1

i ).

At the right boundary, we start with an SVD and

controlled truncation C̃
(t+1)
i→j (σt+1

i |σt
j) ≈: U (t+1)(σt

j)

×Λ
(t+1)
truncD

(t+1)
i→j (σt+1

i ), and continue with C̃
(t)
i→j(σ

t
i |σt−1

j )

×U (t+1)(σt
j)Λ

(t+1)
trunc ≈: U (t)(σt−1

j )Λ
(t)
truncD

(t)
i→j(σ

t
i |σt

j) and
so on until ending at s = 0. In an analogous final
sweep from left to right, we change to the canonical vari-
able assignment (σ0

j )(σ
0
i |σ1

j ) . . . (σ
t−1
i |σt

j)(σ
t
i)(σ

t+1
i ) as in

Eq. (3). After executing these steps for all edge messages,
the next evolution step from t+ 1 to t+ 2 can follow.
Evaluation of observables. – The joint probability of

trajectories σ̄t
i and σ̄t−1

j for the vertices of an edge (i, j)
is given by the product of the two corresponding edge
messages. After marginalization, one obtains for example
the probability for the edge state (σt

i ,σ
t
j) at time t as

P (σt
i ,σ

t
j) =

�

σ̄t−1
i ,σ̄t−1

j

µi→j(σ̄
t
i |σ̄t−1

j )µj→i(σ̄
t
j |σ̄t−1

i ). (8)

In the MPEM approach, this can be evaluated efficiently,
as indicated in Figure 2c, by executing the contractions
sequentially from left (s = 0) to right (s = t − 1). Simi-
larly, one can for example also compute temporal corre-
lators �σt

iσ
s
i � from probabilities P (σt

i ,σ
s
i ).

Exemplary application. – Figure 3 compares the sim-
ulation of Glauber dynamics [27] using our MPEM al-
gorithm to MC simulations and to the 1-step Markov

approximation [17]. Specifically, we have Ising spins in-
teracting ferromagnetically on z = 3 random regular
graphs, with local transition matrices wi(σ

t+1
i |σt

∂i) =
exp(β

�
j∈∂i σ

t+1
i σt

j)/Z. In the initial state, all spins

have magnetization �σ0
i � = 1/2, i.e., pi(↑) = 3/4. Be-

sides being applicable for single instances of finite graphs,
the MPEM approach gives also direct access to the ther-
modynamic limit. For disordered systems this can be
done in a population dynamics scheme. The homoge-
neous case, considered here, is particularly simple as all
edges of the graph are equivalent in the thermodynamic
limit. Hence, one can work with a single MPEM. Fig-
ure 3a shows the evolution of the magnetization. In
the ferromagnetic phase (β = 1), it approaches a fi-
nite equilibrium value, whereas it decays to zero in the
paramagnetic phase (β = 1/4). As shown for β = 1,
MC simulations contain finite size effects which become
small for the system with 2048 sites. MC errors decrease
slowly when increasing the number of samples Ns as
1/

√
Ns. This is problematic for observables with small

absolute values where cancellation effects make it diffi-
cult to get a precise estimate. This is, e.g., apparent
in the magnetization decay for β = 1/4 which, in con-
trast, is very precisely captured with MPEM. In these
simulations, we control the MPEM precision by keeping
only singular values λk above a threshold, specified by
λk/

�
k� λk� > λtrunc. Decreasing λtrunc, increases preci-

sion and computation costs. The 1-step Markov approxi-
mation [17] is not suited to handle temporal correlations.
At long times it performs well for β = 1/4 and fairly
good for β = 1, but deviates rather strongly at earlier
times. Figure 3a shows the connected temporal correla-
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tion function �σt
iσ

s
i �− �σt

i��σs
i � for β = 1 as a function of

t−s for several times. Its decay behavior can be difficult
to impossible to capture with MC. In the example, MC
deviations are often orders of magnitude above those of
the numerically cheaper MPEM simulations.
Conclusion. – The novel MPEM algorithm, based on

matrix product approximations of edge messages allows
for an efficient and precise solution of the dynamic cav-
ity equations. Besides lifting restrictions of earlier ap-
proaches, mentioned in the introduction, it gives direct
access to the thermodynamic limit, and its error scaling
is favorable to that of MC simulations. We think that it
is a very valuable tool, particularly, as it yields tempo-
ral correlations and other decaying observables with un-
precedented precision and gives access to low-probability
events. This opens a new door for the study of diverse
dynamic processes and inference or dynamic optimiza-
tion problems for physical, technological, biological, and
social networks.
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Rare event statistics for random walks on complex networks are investigated using the large deviations for-
malism. Within this formalism, rare events are realized as typical events in a suitably deformed path-ensemble,
and their statistics can be studied in terms of spectral properties of a deformed Markov transition matrix. We
observe two different types of phase transition in such systems: (i) rare events which are singled out for suffi-
ciently large values of the deformation parameter may correspond to localized modes of the deformed transition
matrix; (ii) “mode-switching transitions” may occur as the deformation parameter is varied. Details depend on
the nature of the observable for which the rare event statistics is studied, as well as on the underlying graph
ensemble. In the present letter we report on the statistics of the average degree of the nodes visited along a
random walk trajectory in Erdős-Rényi networks. Large deviations rate functions and localization properties are
studied numerically. For observables of the type considered here, we also derive an analytical approximation
for the Legendre transform of the large-deviations rate function, which is valid in the large connectivity limit. It
is found to agree well with simulations.

Random walks are dynamical processes widely used to an-
alyze, organize or perform important tasks on networks such
as searches [1, 2], routing or data transport [3–5]. Their pop-
ularity is due to their cheap implementation, as they rely only
on local information, such as the state of the neighborhood
of a given node of the network. This ensures network scala-
bility and allows fast data transmission without the need for
large storage facilities at nodes, such as big routing tables in
communication networks. These features make random walks
an efficient tool to explore networks characterized by a high
cost of information. Examples are sensor networks [6] where
many signaling packets are needed to acquire wider networks
status information. In peer-to-peer networks the absence of a
central server storing file locations requires users to perform
repeated local searches in order to find a file to download, and
various random walk strategies have been proposed as a scal-
able method [7–9] in this context. Less attention has been paid
to characterize rare events associated with random walks on
networks. Yet the occurrence of a rare event can have severe
consequences. In hide-and-seek games for instance [10], rare
events represent situations where the seeker finds either most
(or unusually many) of the hidden targets, or conversely none
(or unusually few). In the context of cyber-security, where
one is concerned with worms and viruses performing ran-
dom walks through a network, a rare event would correspond
to a situation where unusually many sensible nodes are suc-
cessfully attacked and infected, which may have catastrophic
consequences for the integrity of an entire IT infrastructure.
Characterizing the statistics of rare events for random walks
in complex networks and its dependence on network topology
is thus a problem of considerable technological importance. A
variant of this problem was recently analyzed for biased ran-
dom walks in complex networks [11]. That paper addressed
rare fluctuations in single node occupancy for an ensemble
of independent (biased) walkers in the stationary state of the

system. By contrast, our interest here is in rare event statis-
tics of path averages, or equivalently of time integrated vari-
ables. Rare event statistics of this type has been looked at for
instance in the context of kinetically constrained models of
glassy relaxation [12]; relations to constrained ensembles of
trajectories were explored in [13] for Glauber dynamics in the
1d Ising chain. While these studies were primarily concerned
with the use of large deviations theory as a tool to explore dy-
namical phase transitions in homogeneous systems, our focus
here is on the interplay between rare event statistics and the
heterogeneity of the underlying system.

In the present Letter we use large deviations theory to study
rare events statistics for path averages of observables asso-
ciated with sites visited along trajectories of random walks.
Within this formalism, rare events are realized as typical
events in a suitably deformed path-ensemble [12, 14]. Their
statistics can be studied in terms of spectral properties of a de-
formed version of the Markov transition matrix for the orig-
inal random walk model, the relevant information being ex-
tracted from the algebraically largest eigenvalue of the de-
formed transition matrix. Such deformation may direct ran-
dom walks to subsets of a network with vertices of either
atypically high or atypically low coordination. It also ampli-
fies the heterogeneity of transition matrix elements for large
values of the deformation parameter and we observe that, as
a consequence, the eigenvector corresponding to the largest
eigenvalue of the deformed transition matrix may exhibit a lo-
calization transition, indicating that rare large fluctuations of
path averages are typically realized by trajectories that remain
localized on small subsets of the network. Within localized
phases, we also encounter a second type of dynamical phase
transition related to switching between modes as the defor-
mation parameter used to select rare events is varied. Our
methods allow us to study the role that network topology and
heterogeneity play in selecting these special paths, as well as
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to infer properties of paths actually selected to realize extreme
events.
The model. We consider a complex network with adja-

cency matrix A, with entries ai j = 1 if the edge (i j) exists,
ai j = 0 otherwise. The transition matrix W of an unbiased
random walk has entries Wi j = ai j/k j where k j is the degree
of node j and Wi j is the probability of a transition from j to i.

Writing iℓ = (i0, i1, · · · , iℓ) a path of length ℓ, quantities of
interest are empirical path-averages of the form

φ̂ℓ =
1
ℓ

ℓ
�

t=1

ξit , (1)

where the ξi are quenched random variables associated with
the vertices i = 1, . . . ,N of the graph, which could be inde-
pendent of, be correlated with, or be deterministic functions
of the degrees ki of the vertices. It is expected that the φ̂ℓ are
for large ℓ sharply peaked about their mean

φ̄ℓ =
1
ℓ

�

iℓ

P(iℓ)
ℓ

�

t=1

ξit =

�

1
ℓ

ℓ
�

t=1

ξit

�

(2)

where P(il) denotes the probability of the path il.
The average (2) can be obtained from the cumulant generat-

ing function ψℓ(s) = ℓ−1 ln
�

iℓ P(iℓ) es
�ℓ

t=1 ξit as φ̄ℓ = ψ′ℓ(s)|s=0.
Here, we are interested in rare events, for which the empiri-
cal averages φ̂ℓ take values φ which differ significantly from
their mean φ̄ℓ. Large deviations theory predicts that for ℓ ≫ 1
the probability density P(φ) for such an event scales exponen-
tially with path-length ℓ, P(φ) ∼ e−ℓI(φ), with a rate function
I(φ) which, according to the Gärtner-Ellis theorem [14] is ob-
tained as a Legendre transform I(φ) = sups{sφ − ψ(s)} of the
limiting cumulant generating function ψ(s) = limℓ→∞ ψℓ(s),
provided that this limit exists and that it is differentiable. We
shall see that the second condition may be violated, and that
the derivative ψ′(s) may develop discontinuities at certain s-
values, entailing that we observe regions where I(φ) is strictly
linear and only represents the convex hull of the true rate func-
tion [14].

In order to evaluate ψℓ(s), we express path probabilities us-
ing the Markov transition matrix W and a distribution p0 =
(p0(i0)) of initial conditions as P(iℓ) =

��ℓ
t=1 Witit−1

�

p(i0),
entailing that ψℓ(s) can be evaluated in terms of a de-
formed transition matrix W(s) =

�

esξi Wi j
�

as ψℓ(s) =
ℓ−1 ln

�

iℓ ,i0[W
ℓ(s)]iℓi0 p(i0). Using a spectral decomposition of

the deformed transition matrix one can write this as

ψℓ(s) = ln λ1+
1
ℓ

ln
�

(1, v1
��

w1, p0
�

+

�

α(�1)

�

λα

λ1

�ℓ

(1, vα
��

wα, p0
�

�

.

(3)
Here the λα are eigenvalues of W(s), the vα and wα are the
corresponding right and left eigenvectors, 1 = (1, . . . , 1), and
the bracket notation (·, ·) is used to denote an inner prod-
uct. Eigenvalues are taken to be sorted in decreasing order
λ1 ≥ |λ2| ≥ |λ3| · · · ≥ λN , with the first inequality being a

consequence of the Perron-Frobenius theorem [15]. This con-
cludes the general framework. For the remainder of this Let-
ter, we will restrict our attention to the case where ξi = f (ki).

For long paths, the value of the cumulant generating func-
tion is dominated by the leading eigenvalue λ1 = λ1(s) of the
transition matrix W(s), so ψ(s) = log λ1(s). In the s = 0 case,
the eigenvalue problem is trivial, as the column-stochasticity
of the transition matrix yields a left eigenvector wi ≡ 1 corre-
sponding to the maximal eigenvalue λ1 = 1. The associated
right eigenvector is vi ∝ ki. For nonzero s, such closed form
expressions are in general not known. Performing a direct
matrix diagonalization is quite daunting for large system sizes
N, even if one exploits methods that calculates only the first
eigenvalue [16]. Hence we are interested in fast viable approx-
imations. Here we describe one such approximation expected
to be valid for networks in which vertex degrees are typically
large.
Degree-based approximation. We start by considering the

left eigenvectorsw instead of the right eigenvectors, for which
the eigenvalue equation can be written as

λwj =
1
k j

�

i∈∂ j

wi es f (ki) . (4)

This system of equations can be simplified by considering
a degree-based approximation for the first eigenvector, where
one assumes that the values of wi only depend on the degree
of the node i: wi = w(ki). If the average degree is large enough
and the degree distribution is not too heterogeneous, we can
write the eigenvalue equation (4) by appeal to the law of large
numbers as

λ1(s)w(k) =
�

k′
P(k′|k)w(k′) es f (k

′) (5)

where P(k′|k) is the probability for the neighbor of a node of
degree k to have degree k′.

In an Erdős-Rényi (ER) ensemble [17], and more gener-
ally in any configuration model ensemble, we have P(k′|k) =
P(k′) k′

�k� . In this case the right-hand side of (5) does not depend
on k and the w(k) are in fact k-independent. The eigenvalue
equation then simplifies to

λ1(s) =
�

k
�k�

es f (k)
�

, (6)

where the average is over the degree distribution P(k). This
approximation yields excellent results for large mean connec-
tivities c = �k� on ER graphs, and more generally for configu-
ration models without low degree nodes. This is illustrated in
figure 1, where we plot a comparison with numerical simula-
tions for ER graphs with c = 30. In figure 1 and throughout
the remainder of the paper simulation results are obtained as
averages over 1000 samples.
Eigenvector localization. Because of the heterogeneity of

the underlying system, one finds the random walk transition
matrix to exhibit localized states, both for fast and slow relax-
ation modes [18], even in the undeformed system, although
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FIG. 1. (Colour online) Cumulant generating function ψ(s) for ER
networks with c = 30 and f (ki) = ki/c, comparing the large-degree
approximation (6) (blue line) with results of a numerical simulation
(green line). The inset shows the corresponding rate functions.

the eigenvector corresponding to the largest eigenvalue (the
equilibrium distribution) is typically delocalized. However,
given the nature of the deformed transition matrix, one expects
the deformed random walk for large |s| to be localized around
vertices where s f (ki) is very large; hence we anticipate that in
the deformed system, even the eigenvector corresponding to
the largest eigenvalue may become localized for sufficiently
large |s|. In order to investigate this effect quantitatively we
look at the inverse participation ratio of the eigenvector corre-
sponding to the largest eigenvalue λ1 of W(s). Denoting by vi
its i-th component, we have

IPR[v] =
�

i v4
i

�

�

i v2
i

�2 (7)

One expects IPR[v] ∼ N−1 for a delocalized vector, whereas
IPR[v] = O(1) if v is localized.
Results on random graphs. We performed numerical sim-

ulations to evaluate λ1(s) and the IPR[v1(s)] for several types
of network, defined by their random graph topology. In the
present letter we restrict ourselves to discussing results for
ER networks. We found that other network ensembles such
as scale-free random graphs give qualitatively similar results;
we will report on these in an extended version of this letter.

We looked at various examples for the function f (ki) but
in the present letter we only report results for the normal-
ized degree f (ki) = ki/c; other deterministic types of degree-
dependent functions exhibit similar behavior, thus focusing
on the normalized degree is sufficient to capture the impor-
tant aspects of this problem. We restrict our simulations to the
largest (giant) component of the graphs, in order to prevent
spurious effects of isolated nodes or small disconnected clus-
ters (e.g. dimers) dominating λ1(s) and the IPR for negative s,
as these would represent trivial instances of rare events, where
a walker starts, and is thus stuck on a small disconnected com-
ponent of the graph. From here on, the network size given

must be understood as the size of the networks from which
the giant component is extracted.

Fig. 2 shows the existence of two localized regimes for suf-
ficiently large values of |s|, with IPRs on the localized side of
both transitions increasing with system size. Results can be
understood, as for large |s| the deformed random walk is nat-
urally attracted to the nodes with the largest (resp. smallest)
degrees for positive (resp. negative) s. Thus for large nega-
tive s the deformed walk tends to be concentrated at the end
of the longest dangling chain, whereas for large positive s it
will be concentrated at the site with the largest available co-
ordination. On an ER network where the large-degree tail of
the degree distribution decays very fast, such a high degree
vertex is likely to be connected to vertices whose degrees are
lower, even significantly lower, than that of the highest degree
vertex in the network, which leads to IPRs approaching 1 in
the large N limit. Conversely, for negative s, the deformed
random walk will be attracted to the ends of dangling chains
in the network, with the probability of escape from a chain
decreasing with its length (with the length of the longest dan-
gling chain increasing with system size). This can explain
that IPRs initially saturate at 1/2 for large systems. Only upon
further decreasing s to more negative values will the asym-
metry of the deformed transition matrices, to and away from
the end of a dangling chain, induce that further weight of the
dominant eigenvector to become concentrated on the end-site,
leading to a further increase of the IPR.
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FIG. 2. IPR[v] as a function of the deformation parameter s for ER
graphs with c = 6, and f (ki) = ki/c. The inset exhibits the N−1-
scaling of IPRs for 4 different values of the deformation parameter s,
chosen in pairs on either side of two localization transitions, one at
negative, and one at positive s.

From the values of λ1(s) we also derived the large devia-
tion rate functions for path averages of the normalized degree
f (ki) = ki/c, for various systems sizes and average connec-
tivities. In fig. 3 we report I(φ) for an ER network at a low
connectivity of c = 3. While the right branch of I(φ) is for
large N well approximated by a parabola, our results show
the emergence of a linear region on the left branch, which



4

becomes more pronounced as the system size is increased.
This is a signature of a non-differentiable point of ψ(s) at
a point s∗ estimated to be at s∗ = −0.060 ± 0.002: at this
point the Gärtner-Ellis theorem cannot be used to evaluate the
rate function, and the linear branch only represents the con-
vex envelope of the true I(φ) [14]. The latter can either coin-
cide with its convex envelope, or it can indeed be non-convex.
However this information cannot be accessed by the theorem.
The emergence of a jump-discontinuity in ψ′(s) is due to a
level crossing of the two largest eigenvalues, where the system
switches between two modes that correspond to the largest
eigenvalue on either side of s∗. In finite systems the crossing
is an ‘avoided crossing’ due to level repulsion, but the two
largest eigenvalues become asymptotically degenerate at s∗ in
the N → ∞ limit, leading to a divergence of the correlation
length ξ(s) = [ln(λ1(s)/λ2(s)]−1 at s∗, in close analogy with
phenomenology of second order phase transitions, the diver-
gence being logarithmic in N in the present case.
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FIG. 3. Rate function I(φ) for ER graphs with c = 3, and f (ki) = ki/c
for system sizes ranging from N = 100 to N = 6400. In the inset,
we show ψ(s) in the vicinity of the non-differentiable point. For the
largest system size, a linear fit of the convex envelope of the left
branch and a quadratic fit of the right branch of I(φ) are shown as
well.

Conclusions and future perspectives. In this Letter we
have analyzed rare events statistics for path averages of ob-
servables associated with sites visited along random walk tra-
jectories on complex networks. Results are obtained by look-
ing at spectral properties of suitably deformed transition ma-
trices. The main outcome of our analysis is the possible emer-
gence of two types of dynamical phase transitions in low mean
degree systems: localization transitions which entail that large
deviations from typical values of path averages may be real-
ized by localized modes of a deformed transition matrix, and
mode-switching transitions signifying that the modes (eigen-
vectors) in terms of which large deviations are typically real-
ized may switch as the deformation parameter s and thus the
actual scale of large deviations are varied. Results of numer-
ical simulations consistently support these claims. We also
developed an analytical approximation valid for networks in

which degrees are typically large.
Our work opens up the perspective to study a broad range of

further interesting problems. On a technical level, one would
want to implement more powerful techniques, such as derived
in [19], to obtain the largest eigenvalue in the present problem
class for larger system sizes. Then there is clearly the need
to systematically study the dependence of the phenomena re-
ported here on the degree statistics, and on the nature of the
observables for which path averages are looked at. We have
gone some way in this direction and will report results in an
extended version of the present paper. In particular one might
wish to look at observables which, rather then being determin-
istic functions of the degree, are only statistically correlated
with the degree, or at observables taking values on edges be-
tween nodes [13, 14]. This could be of interest in applications
such as traffic or information flows on networks subject to ca-
pacity constraints on edges. Moreover, given the nature of the
mode-switching transition observed in the present letter, it is
clearly conceivable that several such transitions could be ob-
served in a single system, depending of course on the nature
of the observables studied and on the topological properties of
the underlying networks. Finally, critical phenomena associ-
ated with the localization transition and with mode-switching
transitions also deserve further study. We believe that this list
could go on.

This work was supported by the Marie Curie Training Net-
work NETADIS (FP7, grant 290038).
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We propose a new look at the heat bath for two Brownian particles, in which the heat bath as a ‘system’ is both
perturbed and sensed by the Brownian particles. Non-local thermal fluctuation give rise to bath-mediated static
forces between the particles. Based on the general sum-rule of the linear response theory, we derive an explicit
relation linking these forces to the friction kernel describing the particles’ dynamics. The relation is analytically
confirmed in the case of two solvable models and could be experimentally challenged. Our results point out that
the inclusion of the environment as a part of the whole system is important for micron- or nano-scale physics.
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Introduction — Known as the thermal Casimir interactions
[1] or the Asakura-Oosawa interactions [2], a fluctuating en-
vironment can mediate static forces between the objects con-
stituting its borders. Through a unique combination of the
generalized Langevin equation and the linear response theory,
we uncover a link between such interactions and the corre-
lated Brownian motions with memory, both of which reflect
the spatiotemporal non-locality of the heat bath.

The more fine details of Brownian motion are experimen-
tally revealed, the more deviations from the idealized Wiener
process are found (see, for example, [3]). When two Brow-
nian particles are trapped close to each other in a heat bath
(see Fig.1), the random forces on those objects are no more
independent noises but should be correlated. Based on the
projection methods [4–6] we expect the generalized Langevin
equations to apply [7–10]:

MJ
d2XJ(t)
dt2

= −
∂U
∂XJ
−

2
�

J′=1

� t

0
KJ,J′(t− τ)

dXJ′(τ)
dτ

dτ+ ǫJ(t), (1)

where XJ (J = 1 and 2) are the position of the Brownian par-
ticles with the mass being MJ , and KJ,J′(s) and ǫJ(t) are, re-
spectively, the friction kernel and the random force. U(X1, X2)
is the static interaction potential between the Brownian parti-
cles. If the environment of the Brownian particles at the initial
time t = 0 is in canonical equilibrium at temperature T , the
noise and the frictional kernel should satisfy the fluctuation-
dissipation (FD) relation of the second kind with the Onsager
symmetries [7, 11]:

�ǫJ(t)ǫJ′ (t′)� = kBT KJ,J′(t − t′), (2)

KJ,J′(s) = KJ′,J(s) = KJ,J′(−s), (3)

where J and J′ are either 1 or 2 independently. This model
(1) is a pivotal benchmark model for the correlated Brownian
motion, although the actual Brownian motions could be more
complicated (see, for example, [3, 12]). But “the physical

J=1 J=2

FIG. 1. Two Brownian particles (filled disks, J = 1 and J = 2)
are trapped by an external potential, such as through optical traps
(vertical cones), and interact through both the direct and the heat
bath-mediated interactions.

meaning of the random force autocorrelation function is in this
case far from clear...” even now and “A proper derivation of
the effective potential could be of great help in clarifying this
last point” [10]. In addition to the bare potential U0(X1, X2)
independent of the heat bath, the potential U, which is in fact
the free energy as function of XJ, may contain a bath-mediated
interaction potential Ub(X1, X2) so that

U(X1, X2) = U0(X1, X2) + Ub(X1, X2). (4)

In this Letter we propose the relation

K1,2(0) = −
∂

∂X1

∂

∂X2
Ub(X1, X2), (5)

where the both sides of this relation should be evaluated at the
equilibrium positions of the Brownian particles, XJ = �XJ�eq.

This relation implies that the bath-mediated static interaction
is always correlated with the frictional one. Our approach is
to regard the heat bath as the weakly non-equilibrium system
which is both perturbed and sensed by the mesoscopic Brow-
nian particles. From this point of view (5) is deduced from so
called ‘general sum-rule theorem’ [13] of the linear response
theory of non-equilibrium statistical mechanics [14]. While
the FD relation of the second kind (2) is well known as an
outcome of this theory, the other aspects have not been fully
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explored. Below we give a general argument supporting (5),
and then give two analytically solvable examples for which
the claim holds exactly.
General argument — While the spatial dimensionality is

not restrictive in the following argument, we will use the no-
tations as if the space were one-dimensional. Suppose we ob-
serve the force F1,2 on the J = 1 particle as we move the
J = 2 particle from �X2�eq at t = −∞ to X2(t) at t. Due to the
small perturbation X2(t)−�X2�eq, the average force at that time,
�F1,2�t, is deviated from its its equilibrium value, �F1,2�eq. The
linear response theory relates these two through the response
function, Φ1,2(s) as

�

F1,2
�

t−
�

F1,2
�

eq.=

� t

−∞

Φ1,2(t − τ) (X2(τ) − �X2�eq)dτ. (6)

(Within the linear theory the force is always measured at X1 =

�X1�eq.) The complex admittance χ1,2(ω) = χ ′1,2(ω)+ iχ ′′1,2(ω)
is defined as the Fourier-Laplace transformation of Φ1,2(s) :

χ1,2(ω) =
�

+∞

0
eiωs−εsΦ1,2(s)ds, (7)

where ε is a positive infinitesimal number (i.e., +0). If
χ1,2(∞) = 0, which is the case in the present , the causality
of Φ1,2(t), or the analyticity of χ1,2(ω) in the upper half com-
plex plane of ω, impose the general sum rule [13],

P

�

+∞

−∞

χ ′′1,2(ω)

ω

dω
π
= χ ′1,2(0), (8)

where P on the left hand side (l.h.s.) denotes to take the prin-
cipal value of the integral across ω = 0. The significance of
(8) is that it relates the dissipative quantity (l.h.s.) and the re-
versible static response (right hand side (r.h.s.)) of the system.

Now we suppose, along the thought of Onsager’s mean re-
gression hypothesis [15], that the response of the heat bath to
the fluctuating Brownian particles, which underlies (1), is es-
sentially the same as the response to externally specified per-
turbations described by (6). Thus the comparison of (6) with
(1) gives

Φ1,2(t) = −
dK1,2(t)

dt
, (9)

or, in other words, K1,2 is the relaxation function correspond-
ing to Φ1,2. With this linkage between the Langevin descrip-
tion and the linear response theory, the static reversible re-
sponse χ′1,2(0) of the force �F1,2� − �F1,2�eq to the static dis-
placement X2 − �X2�eq can be identified with the r.h.s. of (5).
As for the l.h.s. of (8), we can show by (9) and (7) that it is
equal to K1,2(0). The argument presented here is to be tested
both analytically/numerically and experimentally. At least for
the two models presented below the claim (5) is analytically
confirmed.
Solvable model I: Hamiltonian system— As the first ex-

ample that confirms the relation (5) we take up a Hamilto-
nian model inspired by the classic model of Zwanzig [8], see

Fig. 2(a). Instead of a single Brownian particle [8] we put the
two Brownian particles with masses MJ (J = 1, 2) which in-
teract with the ‘bath’ consisting of light mass ‘gas’ particles.
While Fig. 2(a) gives the general idea, the solvable model is
limited to the one-dimensional space. Each gas particle, e.g.
i-th one, has a mass mi (≪ MJ) and is linked to at least one of
the Brownian particles, J = 1 or 2, through Hookean springs
of the spring constant miω

2
i,J(> 0) and the natural length, ℓi,J.

In Fig. 2(a) these links are represented by the dashed lines.
The Hamiltonian of this purely mechanical model consists of
three parts, H = HB + Hb + HbB, with

HB =
P2

1

2M1
+

P2
2

2M2
+ U0(X1, X2), (10)

Hb =
�

i

p2
i

2mi
, HbB =

�

i

mi

2

2
�

J=1

ω2
i,J(qi − XJ − ℓi,J)2,

(11)
where the pairs (XJ, PJ =MJ dXJ/dt) and (xi, pi =mi dxi/dt)
denote, respectively, the positions and momenta of the heavy
(J) and light (i) particles. The Brownian particles obey the
following dynamics :

MJ
d2XJ

dt2
= −
∂U0

∂XJ
+

�

i

miω
2
i,J(qi − XJ − ℓi,J). (12)

(a)

(b)

FIG. 2. (a) Hamiltonian model of two Brownian particles which is
analytically solvable for one dimensional space with harmonic cou-
pling. Each light mass particle (thick dot) is linked to at least one of
the Brownian particles (filled disks) with Hookean springs (dashed
lines). (b) Langevin model of two Brownian particles. Unlike the
Hamiltonian model, each light mass particle receives the random
force and frictional force from the background (shaded zone) and
its inertia is ignored.
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Given the initial values of (qi, pi) at t = 0, the Hamilton
equations for (qi(t), pi(t)), which reads

mi
d2qi
dt2
= −mi

2
�

J=1

ω2
i,J(qi − XJ(t) − ℓi,J), (13)

can be solved in supposing that the histories of XJ(s) (J =
1 and 2) for 0 ≤ s ≤ t are given. In order to assure the compat-
ibility with the initial canonical equilibrium of the heat bath,
we assume the vanishing initial velocity for the Brownian par-
ticles, dXJ/dt|t=0 = 0. Substituting each qi in (12) by its for-
mal solution thus obtained, the dynamics of XJ(t) is rigorously
reduced to (1), where the friction kernels KJ,J′(s) are

KJ,J′(s) =
�

i

miω
2
i,Jω

2
i,J′

ω̃2
i

cos(ω̃i s), (14)

and the noise term ǫJ(t) is

ǫJ(t) ≡
�

i

miω
2
i,J

�

q̃i(0) cos(ω̃it) +
dq̃i(0)
dt

sin(ω̃it)
ω̃i

�

, (15)

with ω̃2
i ≡ ω

2
i,1 + ω

2
i,2 and

q̃i(t) ≡ qi(t) −
2

�

J=1

ω2
i,J

ω̃i
[ℓi,J + XJ(t)]. (16)

To our knowledge this is the first concrete model that demon-
strates (1). Only those gas particles linked to the both Brow-
nian particles satisfy ω2

i,1ω
2
i,2 > 0 and contribute to K1,2(s).

While the generalized Langevin form (1) holds for an indi-
vidual realization without any ensemble average, the statis-
tics of ǫJ(t) must be specified. We assume that at t = 0
the bath variables q̃i(0) and p̃i(0) (=pi(0) because we defined
dXJ/dt|t=0 = 0) belong to the canonical ensemble of a tem-
perature T with the weight ∝ exp(−(Hb + HbB)/kBT ). Then
the noises ǫJ(t) satisfy the FD relation of the second kind (2).
and the Onsager symmetries (3).

In this solvable model, the heat bath-mediated static poten-
tial Ub which supplements U0 to make U = U0 + Ub is found
to be

Ub(X1 − X2) =
kb
2

(X1 − X2−Lb)2, (17)

where

kb =
�

i

miω
2
i,1ω

2
i,2

ω̃2
i

, Lb =
1
kb

�

i

miω
2
i,1ω

2
i,2(ℓi,1 − ℓi,2)

ω̃2
i

.

(18)
Note that Ub depends on X1 and X2 only through X1 −X2, that
is, it possesses the translational symmetry (see later). While
this form appears in the course of deriving (1), its origin can
be simply understood from the following identity:

HbB =
�

i

miω̃
2
i

2
q̃2
i + Ub(X1 − X2). (19)

Finally, our claim (5) is confirmed by (14) for K1,2(0) and by
(17) and (18) for the U ′′b (X) = kb. In the standard language of
the linear response theory, the ‘displacement’ A conjugate to
the external parameter X2(t)−�X2�eq is A =

�

i miω
2
i,2(qi−X2−

ℓi,2) and the flux as the response is B =
�

i miω
2
i,1(qi−X1−ℓi,1)

[14]. Direct calculation gives χ1,2(ω) =
�

i(miω
2
i,1ω

2
i,2)/[ω̃2

i −

(ω + iε)2].
A remark is in order about the translational symmetry of

Ub(X). In the original Zwanzig model [8], the factor corre-
sponding to qi − XJ − ℓi,J in (11) was qi − ciXJ with an ar-
bitrary constant ci and the natural length ℓi,J set to be zero
arbitrarily. In order that the momentum in the heat bath is lo-
cally conserved around two Brownian particles, we needed to
set ci = 1 and explicitly introduce the natural length ℓi,J, es-
pecially for those gas particles which are coupled to the both
Brownian particles, i.e. with ω2

i,1ω
2
i,2 > 0. We note that the

so-called dissipative particle dynamics modeling [16–18] also
respects the local momentum conservation.
Solvable model II: Langevin system.— The second example

that confirms the relation (5) is constructed by modifying the
first one, see Fig. 2(b). There, we replace the Hamiltonian
evolution of each light mass particle (13) by the over-damped
stochastic evolution governed by the Langevin equation;

0 = −γi
dqi
dt
+ ξi(t) − mi

2
�

J=1

ω2
i,J(qi − ℓi,J − XJ(t)), (20)

where γi is the friction constant with which the i-th gas par-
ticle is coupled to a ‘outer’-heat bath of the temperature T.
ξi(t) is the Gaussian white random force from the outer-heat
bath obeying �ξi(t)� = 0, and �ξi(t)ξi′ (t′)� =2γikBTδ(t − t′)δi,i′ .
This outer-heat bath may represent those degrees of freedom
of the whole heat bath which are not directly coupled to the
Brownian particles, while the variables (qi, pi) represent those
freedom of our primary interest as the ‘system’. (Similar idea
has already been proposed in different contexts, see [19] §6.3
and §7.1, and also [20–22].) Integrating (20) for qi(t) and sub-
stituting the result into the r.h.s. of (12), we again obtain (1)
and (2) with the same bath-mediated static potential as before,
i.e., Ub defined by (17) and (18). (In this over-damped model,
miω

2
i,J simply represents the spring constant between the i-th

light mass and the J-th Brownian particle.) The friction kernel
and the noise term of the present model are, however, differ-
ent: instead of (14) and (15), they read, respectively,

KJ,J′(s) =
�

i

miω
2
i,Jω

2
i,J′

ω̃2
i

e−
|s|
τi , (21)

ǫJ(t) =
�

i

miω
2
i,J

� ∞

0

e−
s
τi

γi
ξi(t − s)ds, (22)

where τi = γi/(miω̃
2
i ). Because the form of K1,2(0) as well as

Ub(X) are unchanged from the first model, our claim (5) is
again confirmed.
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Discussion : Implication of (5) — Being consistent with
this relation, no bath-mediated interactions appeared in the
phenomenological approaches [23–25] where the Stokesian
fluid model is supplemented by the thermal random forces sat-
isfying the FD relation, because the bath had no memory.

The above solvable models, though being artificial, repre-
sent certain non-local aspects of the more realistic heat baths.
The cross frictional kernel K1,2(s) and the bath mediated po-
tential Ub(X) are generated by those microscopic degrees of
freedom which couple to both the Brownian particles. This
picture is reminiscent of the quantum system interacting with
electromagnetic fields (see, for example, [26]).

From operational point of view, the relation (5) implies that
we cannot control the friction kernels or friction coefficients
without changing the bath-mediated interaction between the
Brownian particles. As a demonstration, if all the ωi,J of the
light particles are changed by a multiplicative factor λ, i.e.
ωi,J �→ λωi,J, then both KJ,J′(s) and Ub(X) should be changed
to λ2KJ,J′(λs) and λ2Ub(X), respectively.

Especially about the work W of operations, (5) implies that
the work WK to change the off-diagonal friction kernel K1,2

cannot be isolated from the work WU to change the bath-
mediated interaction potential, Ub. In the above solvable mod-
els, the total work, W = WK +WU , to change the parameters,
{ωi,J}, can be given as the Stieltjes integrals along the time-
evolution of the whole degrees of freedom:

W =
�

i

2
�

J=1

�

Γ

∂HbB

∂ωi,J
dωi,J(t), (23)

where
�

Γ
indicates to integrate along the process where all the

dynamical variables pi′ , q̃i′ and XJ in the integrals evolves ac-
cording to the system’s dynamics under time dependent pa-
rameters {ωi,J}. The operational inseparability of the work
into WK and WU justifies the fact that, on the level of the
stochastic energetics [19], we could not access the work to
change the friction coefficients. On the microscopic level,
however, the above models allow to identify WK : First WU

is given by the above framework [19]:

WU =
�

i

2
�

J=1

�

Γ

∂Ub

∂ωi,J
dωi,J(t), (24)

becauseU0 does not depend onωi,J.Combining (24) with (23)
as well as the identity (19), the kinetic part of the work, WK ,

is found to be

WK =
�

i

2
�

J=1

�

Γ

∂

∂ωi,J















�

i′

mi′ω̃
2
i′

2
q̃2
i′















dωi,J(t), (25)

where q̃i are defined in (16). The result again shows that, un-
less we have an access to the microscopic fluctuations in the
heat bath, WK is not measurable.

In conclusion we propose, with supporting examples, that a
bath-mediated effective potential between the Brownian parti-
cles, Ub, should accompany the off-diagonal frictional mem-
ory kernel, K1,2(s), with a particular relation (5) due to the
general sum rule of the linear response theory. This relation
should be tested experimentally and/or numerically on the one
hand, and the generalization to other models [3, 12] should
be explored on the other hand. For example, in the reaction
dynamics of protein molecules or of colloidal particles, non-
local fluctuations of the solvent may play important roles both
kinetically and statically. The consciousness of the environ-
ment as a part of the whole system is important not only in the
ecology but also at the micron- or nano-scale physics.
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