
HAL Id: tel-01253553
https://theses.hal.science/tel-01253553

Submitted on 11 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acceleration and higher order schemes of a
characteristic solver for the solution of the neutron

transport equation in 3D axial geometries
Daniele Sciannandrone

To cite this version:
Daniele Sciannandrone. Acceleration and higher order schemes of a characteristic solver for the solution
of the neutron transport equation in 3D axial geometries. Computational Physics [physics.comp-ph].
Université Paris Sud - Paris XI, 2015. English. �NNT : 2015PA112171�. �tel-01253553�

https://theses.hal.science/tel-01253553
https://hal.archives-ouvertes.fr

Université Paris-Sud

Ecole Doctorale 534: Modélisation et Instrumentation en
Physique, Energies, Géosciences et Environnement

Laboratoire de Transport Stochastique et Déterministe (CEA Saclay)

Discipline: Physique

Thèse de doctorat

Soutenue le 14/09/2015 par

Daniele Sciannandrone

Acceleration and higher order schemes
of a characteristic solver for the solution

of the neutron transport equation
in 3D axial geometries

Directeur de thèse : M. Richard SANCHEZ Directeur de recherche (CEA Saclay)

Composition du jury :

Président du jury : Pierre DESESQUELLES Professeur (Université Paris Sud)

Rapporteurs : Jean-Concetto RAGUSA Professeur (Texas A&M University)

Piero RAVETTO Professeur (Politecnico di Torino)

Examinateurs : Simone SANTANDREA Docteur,Ingénieur (CEA Saclay)

Jean-François VIDAL Docteur,Ingénieur (CEA Cadarache)

2

3

Abstract

The topic of our research is the application of the Method of Long
Characteristics (MOC) to solve the Neutron Transport Equation in
three-dimensional axial geometries. The strength of the MOC is in its
precision and versatility. As a drawback, it requires a large amount of
computational resources. This problem is even more severe in three-
dimensional geometries, for which unknowns reach the order of tens of
billions for assembly-level calculations.

The first part of the research has dealt with the development of
optimized tracking and reconstruction techniques which take advan-
tage of the regularities of three-dimensional axial geometries. These
methods have allowed a strong reduction of the memory requirements
and a reduction of the execution time of the MOC calculation. The
convergence of the iterative scheme has been accelerated with a lower-
order transport operator (DPN) which is used for the initialization of
the solution and for solving the synthetic problem during MOC iter-
ations. The algorithms for the construction and solution of the MOC
and DPN operators have been accelerated by using shared-memory
parallel paradigms which are more suitable for standard desktop work-
ing stations. An important part of this research has been devoted
to the implementation of scheduling techniques to improve the par-
allel efficiency. The convergence of the angular quadrature formula
for three-dimensional cases is also studied. Some of these formulas
take advantage of the reduced computational costs of the treatment of
planar directions and the vertical direction to speed up the algorithm.
The verification of the MOC solver has been done by comparing results
with continuous-in-energy Monte Carlo calculations. For this purpose
a coupling of the 3D MOC solver with the Subgroup method is pro-
posed to take into account the effects of cross sections resonances. The
full calculation of a FBR assembly requires about 1h30 of execution
time with differences of few pcm with respect to the reference results.
We also propose a higher order scheme of the MOC solver based on an
axial polynomial expansion of the unknown within each mesh. This
method allows the reduction of the meshes (and unknowns) by keeping
the same precision. All the methods developed in this thesis have been
implemented in the APOLLO3 version of the neutron transport solver
TDT.

Key words: Neutron transport, method of characteristics, 3D, APOLLO3,
high-order methods, 3D tracking strategies, synthetic acceleration, par-
allel methods, quadrature formulas, multi-group equivalence.

4

5

Résumé

Le sujet de ce travail de thèse est l'application de la méthode des car-
actéristiques longues (MOC) pour résoudre l'équation du transport des
neutrons pour des géométries à trois dimensions extrudées. Les avan-
tages du MOC sont sa précision et son adaptabilité, le point faible
étant la quantité de ressources de calcul requises. Ce problème est
même plus important pour des géométries à trois dimensions ou le
nombre d'inconnues du problème est de l'ordre de la centaine de mil-
lions pour des calculs d'assemblage. La première partie de la recherche
a été dédiée au développement de techniques optimisées pour le traçage
et la reconstruction à la volée des trajectoires. Ces méthodes profi-
tent des régularités des géométries extrudées et ont permis une forte
réduction de l'empreinte mémoire et une réduction des temps de calcul
du MOC. La convergence du schéma itératif a été accélérée par un
opérateur de transport dégradé (DPN) qui est utilisé pour initialiser
les inconnues de l'algorithme itératif et pour la solution du problème
synthétique au cours des itérations MOC. Les algorithmes pour la con-
struction et la solution des opérateurs MOC et DPN ont été accélérés
en utilisant des méthodes de parallélisation à mémoire partagée qui
sont le plus adaptés pour des machines de bureau ou pour les clusters
de calcul. Une partie importante de cette recherche a été dédiée à
l'implémentation de méthodes d'équilibrage de charge pour améliorer
l'efficacité du parallèlisme. La convergence des formules de quadrature
pour des cas 3D extrudé a aussi été explorée. Certaines formules prof-
itent de couts négligeables du traitement des directions azimutales et
de la direction verticale pour accélérer l'algorithme. La validation de
l'algorithme du MOC a été faite par des comparaisons avec une solution
de référence calculée par un solveur Monte Carlo avec un traitement
continu de l'énergie. Pour cette comparaison on propose un couplage
entre le MOC et la méthode des Sous-Groupes pour prendre en compte
les effets des résonances des sections efficaces. Le calcul complet d'un
assemblage de réacteur rapide avec interface fertile/fissile nécessite de
1h30 d'exécution avec des erreurs de quelque pcm par rapport la
solution de référence. On propose aussi une approximation d'ordre
supérieur du MOC basée sur une expansion axiale polynomiale du flux
dans chaque maille. Cette méthode permet une réduction du nombre
de mailles (et d'inconnues) tout en gardant la même précision. Toutes
les méthodes développées dans ce travail de thèse ont été implémentées
dans la version APOLLO3 du solveur de transport TDT.

Mots-clés: Transport des neutrons, méthode des caractéristiques,
3D, APOLLO3, schémas d'ordre supérieur, traçage en 3D, accélération
synthétique, méthodes parallèles, formules de quadrature, équivalence
multi-groupe.

6

Acknowledgments

This Ph.D Thesis is the result of three years of researches done at the Lab-
oratoire de Transport Stochastique et Déterministe (LTSD) of the Service
d’Études de Réacteurs et des Mathématiques Appliquées (SERMA) of the
CEA of Saclay. This work would not have been possible without the support
of the people which have shared with me this experience.

First of all, I want to thank Simone Santandrea and Richard Sanchez for
having given me the possibility of learning from them, for all the discussions
and the exchange of ideas, for the opportunities they have opened to me, and
for their continuous support. I also want to thank Piero Ravetto and Jean
Ragusa for having accepted to be referees of this Thesis, and Patrick Blanc-
Tranchant and Frank Gabriel, heads of SERMA and LTSD, for making this
three-years experience actually possible.

My gratitude also goes to all the people of the SERMA for their kindness
and for their precious help, in particular to Emiliano, Andrea, Anthime, Igor,
Li, Fabien, Pietro and Remi. I want to thank Jean-François Vidal, Pascal
Archier et Jean-Marc Palau of the SPRC of the CEA Cadarache for having
shown great interest in this work and for their collaboration.

To my parents which have supported all my choices, and which have
given me the possibility of following my ambitions.

To all my Parisian friends for their sustain and for making my staying
in Paris happier, especially to Quentin and Mathilde for having been my
personal French teachers, and for having shared with me ‘la vie de coloc’.

Finally I am deeply thankful to Enrica for having turned on that shiny
light in a future often so unclear. Thank you for having been always beside
me in the most difficult moments, and thank you for having shared with me
the most important ones.

7

8

Contents

I Background 23

1 Neutron transport equation 25
1.1 Cross sections . 25

1.1.1 Microscopic cross sections 26
1.1.2 Resonances . 26
1.1.3 Secondary neutron distributions 27
1.1.4 Macroscopic cross sections 29

1.2 Steady-state Neutron Transport Equation 30
1.2.1 Boundary Conditions 31

1.3 Multi-group formalism . 32
1.4 Solution of the Neutron Transport Equation 35

1.4.1 The SN and PN approximations 37

2 Multi-group cross sections 39
2.1 Probability tables . 39
2.2 Subgroups method . 43

2.2.1 Use of probability tables in the Subgroup method . . . 45

3 MOC in 3D axial geometries 47
3.1 Method of Characteristics . 49
3.2 Geometrical description of the problem 52

II New developments 55

4 Higher order approximations for MOC 57
4.1 Definition of the polynomial basis for the flux 59
4.2 Transmission equation . 60
4.3 Angular region balance . 61
4.4 High-order MOC algorithm 63

9

10 CONTENTS

4.4.1 Computation of the escape coefficients 64

4.4.2 Generation of the interpolation table 66

4.5 Convergence acceleration methods 66

4.5.1 Synthetic Problem . 68

4.5.2 DPN approximation 69

4.5.3 Results of the DPN acceleration 70

5 Tracking strategies 73

5.1 Basic tracking strategy . 73

5.1.1 Reciprocity . 75

5.2 Treatment of GC . 75

5.2.1 Method of compound trajectories 76

5.2.2 Extension to 3D axial geometries 77

5.2.3 Boundary flux for periodic trajectories 82

5.2.4 Constant Trajectory Spacing 84

6 Optimized sweep methods 89

6.1 Chord Classification Method 90

6.1.1 Computational efficiency 92

6.1.2 Efficiency of H/V-classification 94

6.1.3 Chord Classification for M-chords 96

6.2 Trajectory storage and reconstruction 101

6.2.1 M-chords reconstruction 105

6.2.2 Effect of the axial mesh on the HSS storage 106

6.3 Results . 108

7 Parallel algorithms for MOC 113

7.1 Introduction . 113

7.2 Boundary conditions for Domain-Decomposition methods . . 115

7.3 Transport sweep parallelism 116

7.3.1 Trajectory-cut . 121

7.3.2 Load balance and scheduling 122

7.3.3 Results . 129

7.4 DPN parallelism . 130

7.5 Conclusions . 132

8 Angular quadrature formulas 135

8.1 Product-type formulas . 136

8.1.1 Polar quadrature formulas 138

8.2 Step approximation for special directions 141

CONTENTS 11

8.3 Results of the convergence analysis 142
8.4 Conclusions . 146

III Application 149

9 MOC application 151
9.1 ASTRID: a Gen IV Sodium-cooled fast reactor 152
9.2 Two-level core analysis . 153

9.2.1 Lattice calculation of a FBR assembly 154
9.3 APOLLO3® numerical scheme of the FBR assembly 155

9.3.1 Self-shielding spatial equivalence 155
9.4 Results . 156
9.5 Conclusions . 159

10 Conclusions and perspectives 165

12 CONTENTS

List of Figures

1.1 238
92U total microscopic cross section (JEFF-3.1). 27

1.2 Fission neutrons emission spectrum for 235
92U (JEFF 3.1). . . . 28

1.3 Square geometry with 1/8 symmetry. 33

1.4 Infinite lattice geometry with 1/8 symmetry. 33

1.5 Transfer matrix profile . 35

2.1 Probability table. 42

3.1 Spatial supports of the unknown flux. 53

3.2 Assembly of a Pressurized Water Reactor. 54

4.1 Escape coefficients. 67

4.2 Approximating polynomials of the escape coefficients. 67

4.3 Numerical instability of the calculation of escape coefficients. 67

4.4 DPN spatial and angular representation. 70

4.5 Geometry of a hexagonal pincell. 71

5.1 Tracking strategy for 3D axial geometries. 74

5.2 Reciprocity relations between tracking directions. 75

5.3 Periodic trajectory. 78

5.4 Compound trajectories in 3D axial geometries 80

5.5 Example of tracking strategy 83

5.6 Trajectory-spacing adaptation criteria. 85

6.1 Trajectory in a sz-plane . 93

6.2 Chord population. 97

6.3 M-chords. 98

6.4 Intersections of trajectories with horizontal planes. 98

6.5 HSS method. 103

6.6 M-chords reconstruction. 106

13

14 LIST OF FIGURES

6.7 Memory Compression Factor of HSS method. 109

6.8 Two-dimensional section of an infinite lattice configuration of
a cluster of assemblies with 2π/8 symmetry. 110

7.1 Exact boundary conditions in Domain-Decomposition. 115

7.2 Trajectory-cut . 121

7.3 Load profile for parallelism over the angles. 123

7.4 Load profile for parallelism over the trajectories. 123

7.5 Static scheduling. 125

7.6 Static self-scheduling. 128

7.7 Guided self-scheduling. 128

7.8 Parallel efficiency. 130

7.9 Example of load profile. 131

7.10 Parallel efficiency of the sweep. 131

7.11 Memory effect. 131

7.12 Speed up of the internal iteration. 131

8.1 Example of Uox/Mox pincell. 144

8.2 Convergence of quadrature formulas for the Uox/Mox pincell. 144

8.3 Convergence of quadrature formulas with horizontal and ver-
tical directions. 145

8.4 Hexagonal pincell. 146

8.5 Convergence of quadrature formulas for an heterogeneous hexag-
onal pincell. 146

8.6 Heterogeneous hexagonal assembly. 147

8.7 Convergence of quadrature formulas for a heterogeneous hexag-
onal assembly. 147

9.1 Geometry of the ASTRID reactor. 153

9.2 Geometry of the ASTRID hexagonal assembly. 154

9.3 Mesh details for the MOC+Subgroups calculation of the CFV
assembly. 158

9.4 Profile and scaling of the coupled MOC+Subgroup methods. 158

9.5 Selfshielding model: axial variation of the error on the total
absorption. 160

9.6 Selfshielding model: axial variation of the error on the ab-
sorption in G16. 160

9.7 Selfshielding model: error on the total absorption for different
groups. 160

9.8 Axial variation of group-fluxes. 161

LIST OF FIGURES 15

9.9 Absolute error on the energy groups of the absorption and
fission reaction rates for isotope 235

92U 161
9.10 Absolute error on the energy groups of the absorption and

fission reaction rates for isotope 238
92U 162

9.11 Absolute error on the energy groups of the absorption and
fission reaction rates for isotope 239

94Pu. 162
9.12 Homogenized cross sections for isotope 238

92U 163

16 LIST OF FIGURES

List of Tables

4.1 Speed up of DP1 acceleration. 71

5.1 Tracking strategies for axial geometries. 82

6.1 Memory Compression Factor for the HSS method. 110
6.2 Results of the Chord Classification method. 111
6.3 Reconstruction strategies. 111

9.1 Error on reactivity of the self-shielding model. 159

17

18 LIST OF TABLES

Introduction

The knowledge of the physical phenomena that govern the behavior of nu-
clear power plants is a key step for their design and optimization. The
nuclear reactor constitutes the component of a nuclear power plant where
neutrons collide with heavy isotopes contained in the fuel and split them
in lighter products through a fission reaction. Each fission releases about
200MeV of energy which is removed by the coolant that transfers it to
the traditional part of the power plant, generally constituted by a steam
generator, a system of turbine and electrical generator and a condenser.

Among the light products of a fission reaction there are newborn neu-
trons that start traveling through the nuclear reactor with a given probabil-
ity to trigger new fissions, and initiate a chain reaction. Other fission prod-
ucts are generally unstable charged particles that are immediately blocked
by surrounding materials because of Coulombic forces, and contribute to the
chain reaction only through neutron emission.

Not the sole fission governs the evolution of the chain reaction: the wide
set of neutron-induced nuclear reactions includes for example the absorption,
which determines the neutron removal without any newborn neutron, or the
scattering, whose sole effect is a change in the neutron direction and kinetic
energy; other reactions of interest generally determine the production of
more than one newborn neutron contributing to the chain reaction like a
fission. The balance between the neutrons produced by the ensemble of the
nuclear reactions and those removed by absorption or by leakage from the
nuclear reactor determines the evolution of the chain reaction, and must be
known with accurate precision to guarantee safety and operability of the
nuclear reactor.

The accurate knowledge of the spatial distribution of the neutrons inside
the reactor provides important information that can be exploited to improve
the efficiency of the power plants. One example may be the power distribu-
tion, which constitutes the key parameter of the thermal-hydraulics design
of the reactor. These quantities can be obtained by direct measure in exper-

19

20 LIST OF TABLES

imental or power reactors, or computed by modeling the physics governing
the nuclear reactor and solving the equations with the help of numerical
methods. This manuscript will consider only this second approach.

The behavior of neutrons inside a nuclear reactor is faithfully described
by the Neutron Transport Equation which is based on the mechanical/statistical
approach firstly introduced by Ludwig Boltzmann in 1872 in his kinetic the-
ory of gases. The use of an accurate solution of this equation for modeling
the whole reactor is still a visionary objective because of the prohibitive
costs of the calculation for such complex geometries. In addition, the cou-
pling between the neutronics1 and physical phenomena of different nature
(thermal-hydraulics, mechanics) requires these calculations to be realized for
several working conditions of the reactor. The problem is circumvented by
analyzing the core with two levels of resolution: at the lattice level, detailed
transport calculations are used for problems of reduced size, these generally
corresponding to an assembly or a cluster of assemblies. At the core level,
assemblies are considered as homogeneous regions and diffusive-like approxi-
mations of the neutron transport equation are used to represent the neutron
behavior. The physical constants of the diffusive laws are computed through
equivalence between the detailed transport solution and the coarser repre-
sentation at the core level. These constants are computed for different states
of the assemblies (e.g., temperature, burn-up, surroundings) and constitute
the parametric libraries that are actually used to perform core calculations.

Although the two-level approach, transport calculations are still com-
putationally intensive and further approximations are used to lighten their
costs. In particular, current industrial schemes rely on a two-dimensional
approximation of the lattice geometry, whereas the third dimension is gener-
ally accounted for only at core level with the diffusion approximation. Such
approach is justifiable if the composition of the geometry varies slowly with
one of the directions, which is the case of common nuclear reactor designs.
However, the need of more detailed analysis, as well as the need of study-
ing new reactor designs for improving efficiency and safety, has growth the
interest in three-dimensional transport calculations.

One of the most successful methods of resolution of the Neutron Trans-
port Equation is the Method of Characteristics (MOC), firstly proposed
by Askew [1], and later adopted for nuclear reactor analysis in several
codes [2, 3, 4, 5, 6]. The MOC uses a trajectory-based discretization of
the geometry to correctly account for transport effects. The strength of

1Neutronics: the ensemble of physical phenomena governing the interactions between
neutrons and the matter.

LIST OF TABLES 21

this method is in its applicability to any geometry, whereas the amount of
computational resources which it requires constitutes its major weakness.

Two/Three-Dimensional-Transport (TDT) is a solver of the neutron
transport equation initially conceived for two-dimensional geometries based
on the Method of Characteristics which has been firstly introduced in the
code for nuclear reactor analysis APOLLO2 developed at the Laboratoire
de Transport Stochastique et Déterministe in CEA Saclay [?]. A modern-
ized version of the solver is provided with the APOLLO3® code which is
in development in the same laboratory, and allows the treatment of three-
dimensional geometries. The treatment is limited to (right)2 cylindrical
geometries, generated by the translation of a plane surface along the normal
to the surface itself. Although cylindrical geometries can not describe a gen-
eral three-dimensional problem, they are sufficient to model the majority of
cases of practical use.

The extension of the MOC to three-dimensional geometries is limited
by its computational requirements (a realistic three-dimensional calcula-
tion may require hundreds of time the resources needed for a similar two-
dimensional calculation). In our research we concentrate on the develop-
ment of numerical methods especially conceived for a MOC solver for three-
dimensional cylindrical geometries, and implemented in the APOLLO3®

version of TDT.
This manuscript is divided in three parts. In the first part we recall the

basic concepts of the physics of interaction between neutrons and matter
by introducing the Boltzmann equation and the concept of nuclear cross
sections. In this part we will also recall the classical approximations and
models used to obtain a numerical solution of the transport equation. The
second part is dedicated to the new developments done in the MOC solver of
TDT. Several topics will be discussed with the common objective of reducing
its computational costs. The last part of this manuscript is dedicated to the
actual application of the MOC algorithm to a heterogeneous assembly of an
innovative reactor with the aim of verifying its correct implementation and
to show its applicability to realistic problems.

2In broad terms, the direction of the translation in a cylindrical geometry does not
need to be normal to the plane surface.

22 LIST OF TABLES

Part I

Background

23

Chapter 1

Neutron transport equation

The behavior of neutrons inside the reactor is faithfully described by the
Neutron transport equation (NTE). This is an integro-differential equation
obtained by imposing the balance between production and removal of neu-
trons inside an infinitesimal volume of the phase space defined by the neutron
position r in the spatial domain D, and velocity v ∈ R3. In Reactor Physics
it is common use to indicate the latter by the set of coordinates Ω ∈ S2 (S2

the unit sphere) and E ∈ R+, indicating, respectively, the direction of the
neutrons and their kinetic energy. The physics of the interaction between
neutrons and the surrounding materials is described by cross sections. This
topic will be discussed in next section, while in Sec. 1.2 we will show the
mathematical form of the steady-state NTE. Section 1.3 is dedicated to the
common multi-group approximation, while in the last section we will provide
details about the iterative scheme used to solve the NTE in the steady-state
approximation.

1.1 Cross sections

The interaction between a neutron and an isotope X can be described by
the reaction:

n+X → P + νn,

where P includes all the reaction products except neutrons, while the symbol
ν represents the number of secondary neutrons produced by the reaction.
Among reaction products there are unstable isotopes called precursors of
delayed neutrons which eventually decay by neutron emission. In steady-
state calculations the concentration of precursors and the emission of delayed

25

26 CHAPTER 1. NEUTRON TRANSPORT EQUATION

neutrons are at equilibrium, and are taken into account with a modified value
of secondary neutrons, ν.

1.1.1 Microscopic cross sections

The microscopic partial cross section of the reaction ρ between a neutron
and an isotope x is a measure of the likelihood of that reaction to happen.
It is measured in barns1 and it will be indicated with the symbol σx,ρ. It
is a nuclear property of the isotope, and it depends on the relative speed
of the incident neutron with respect to the speed of target nuclei. Since
these latter are generally assumed to be at rest, the dependence of the cross
sections can be equivalently be written as a function of the neutron kinetic
energy, E. The total microscopic cross section of an isotope is the sum of the
partial cross sections of all possible reactions, and is indicated with σx,t(E).

1.1.2 Resonances

The dependence of the cross section on the energy of the incident neutron is
strongly influenced by the resonance phenomenon: when a neutron interacts
with a target isotope, it may be captured to form an intermediate compound
nucleus. If the total available energy in the reaction (the kinetic energy of the
neutron if the target isotope is assumed at rest) exactly corresponds to the
energy required to form the compound nucleus in one of its excited states, the
probability of interaction becomes very large, and may change by orders of
magnitude for small variations of the energy of the neutron [7]. Resonances
appear only for values of the energy larger than a given threshold, which
generally corresponds to the ground state of the compound nucleus. In
Fig. 1.1 we show the total microscopic cross section of 238

92U . We can identify
three characteristic regions of the energy domain:

Thermal domain (up to a few eV) where there are no resonances and the
cross section varies regularly following the 1/v law, with v the relative
speed of the incident neutron;

Resonance domain the first resonance of 238
92U appears at 6, 67eV and

causes an abrupt increase of the cross section from tens of barns to
tens of thousands of barns. Resonances appear more frequently for
increasing values of the energy with decreasing value of the peak cross
section;

11b = 1× 10−24cm2

1.1. CROSS SECTIONS 27

Figure 1.1: Total microscopic cross section of 238
92U(JEFF-3.1). The gray

dashed lines determines the limits of resonances and continuum domains.
The orange dashed line shows the limit between resolved and unresolved
resonances.

Continuum where resonances overlap to form a continuous slowly varying
function.

We further split the resonance domain into the domain of resolved resonances
and the domain of unresolved ones. The limit between the two domains is
determined by technological limits of experimental measures: starting from
a certain energy, the spacing between two resonances becomes smaller than
the maximal resolution of the measure instruments. While for the domain
of resolved resonance we can represent the cross section as a function of the
energy, the representation of the cross section in the domain of unresolved
resonances can be expressed only by statistical laws [7].

1.1.3 Secondary neutron distributions

The angular and energy distributions of the neutrons produced by the re-
action is also described by nuclear data. The probability for a neutron that
has undergone a scattering reaction to be scattered from the volume dΩ′dE′

around (Ω, E)′ to volume dΩdE around (Ω, E) of velocity space is indicated
with px,s(E

′ → E,Ω′ ·Ω). Remark that the isotropy of the material allows
to indicate the angular dependence of the scattering probability in terms
of the cosine of the angle between the entering and exiting directions. The

28 CHAPTER 1. NEUTRON TRANSPORT EQUATION

Figure 1.2: Fission neutrons emission spectrum for 235
92U (JEFF 3.1).

scattering probability follows this normalization:

∫

S2

dΩ

∫

R+

dEpx,s(E
′ → E,Ω′ ·Ω) = 1. (1.1)

This relation imposes the probability of the incident neutron to be scattered
in any other direction and energy to be a certain event. In a similar way
we can define the energy and angular distribution of secondary neutrons for
any reaction, px,ρ. The normalization in Eq. (1.1) is also applied to the px,ρ,
while the multiplicity of the secondary neutrons is taken into account by the
quantity νx,ρ.

Concerning fission reaction, it is common to assume an isotropic angular
distribution of the secondary neutrons, while their energy distribution is
represented by the fission spectrum, χx,f (E), which provides the probability
of a neutron to be emitted with energy E (Fig. 1.2).

Legendre expansion of the transfer probability

It is customary to represent the angular dependence of the transfer proba-
bility px,ρ with an expansion on a basis of Legendre Polynomials [8] of the
scattering angle, Pk(Ω

′ ·Ω) for 0 ≤ k ≤ K. By using this representation we
can write:

px,s(E
′ → E,Ω′ ·Ω) ≈

∑

k

px,k(E
′ → E)Pk(Ω

′ ·Ω). (1.2)

1.1. CROSS SECTIONS 29

The addition theorem of the Spherical Harmonics allows to recast this ex-
pression into [9]:

px,ρ(E
′ → E,Ω′ ·Ω) ≈

∑

n

1

2k(n) + 1
pk(n)
x,ρ (E′ → E)An(Ω′)An(Ω), (1.3)

where the symbol An represents the Real Spherical Harmonic [8] whose or-
der 0 ≤ k ≤ K and degree |l| ≤ k are indicated with a single subscript
n = 1, . . . , (K + 1)2. Remark that in Eq. (1.3) we have used the function
k(n) to represent the correspondence between the numbering n of the har-
monics and their degree k. In the following we will omit this complex nota-
tion and we will indicate only the symbol k. In the following developments
we will use spherical harmonics normalized such that:

∫

S2

dΩAn(Ω)Am(Ω) = 4πδmn. (1.4)

By using Eq. (1.3) to represent the emission probability, the transfer oper-
ator (Eq. (1.13)) can be rewritten in the following form:

Hψ(r,Ω, E) =
∑

n

An(Ω)

∫

R+

dE′Σs,k(r, E
′ → E)Φn(r, E), (1.5)

where Φn(r, E) represents the nth angular moment of the flux:

Φn(r, E) =
1

4π

∫

S2

dΩAn(Ω)ψ(r,Ω, E), (1.6)

and the quantity Σs,k is defined as:

Σs,k(r, E
′ → E) =

1

2k + 1

∑

x

∑

ρ 6=f
nx(r)σx,ρ(E

′)pkx,ρ(E
′ → E). (1.7)

1.1.4 Macroscopic cross sections

The macroscopic cross section is computed by multiplying the microscopic
cross section by the atomic density nx of the target isotope and physically
represents the probability of triggering the reaction per unit path traveled
by the neutron. For reaction ρ we define the macroscopic cross section:

Σx,ρ = nxσx,ρ. (1.8)

For a heterogeneous medium with an isotopic compositionN (r) = {nx(r)}Nxx=1,
the macroscopic cross section is the sum of the macroscopic cross sections
of all Nx isotopes. In particular we define:

30 CHAPTER 1. NEUTRON TRANSPORT EQUATION

� macroscopic total cross section:

Σt(r, E) =
∑

x

∑

ρ

nx(r)σx,ρ(E);

� macroscopic transfer cross section:

Σs(r, E
′ → E,Ω′ ·Ω) =

∑

x

∑

ρ6=f
nx(r)σx,ρ(E

′)νx,ρpx,ρ(E
′ → E,Ω′ ·Ω);

� macroscopic fission production cross section:

χνΣf (r, E′ → E) =
∑

x

χx,f (E)nx(r)νfσx,f (E′).

1.2 Steady-state Neutron Transport Equation

The mathematical form of the steady-state Neutron Transport Equation
reads:

(Ω · ∇+ Σt)ψ = (Hψ) +
1

keff
(FΦ) (1.9)

where ψ(r,Ω, E) = vnN(r,Ω, E) is the neutron angular flux, which repre-
sents the number of neutrons, nN(r,Ω, v), crossing the unit surface orthog-
onal to direction of motion. The quantity Φ(r, E) is the neutron scalar flux,
defined as the integral of the angular flux over the set of angular directions:

Φ(r, E) =

∫

S2

dΩψ(r,Ω, E). (1.10)

The product of the scalar flux and a macroscopic cross section is called
reaction rate, and it identifies the total number of events triggered by the
neutrons of energy E in a given position of the space r:

Rx,ρ(r, E) = Σx,ρ(r, E)Φ(r, E). (1.11)

In Eq. (1.9) the quantity (Ω·∇+Σt) is the so-called transport operator which
describes the neutrons motion and collisions, and it will be denoted with the
symbol L. It is composed of the steady-state advection operator, (Ω·∇), and
the total removal due to interaction of neutrons with the surrounding ma-
terials, represented by the total cross section. Another important quantity
is the angular current, defined as:

J(r,Ω, E) = Ωψ(r,Ω, E). (1.12)

1.2. STEADY-STATE NEUTRON TRANSPORT EQUATION 31

The quantityH is the transfer operator which models the change of direction
and energy of neutrons due to any reaction except fission. It represents the
number of neutrons that are scattered in direction Ω and energy E from
any position of the velocity space (Ω, E)′:

Hψ(r,Ω, E) =

∫

S2

dΩ′
∫

R+

dE′Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E′,Ω′), (1.13)

The F operator is the production operator, which takes into account the
total neutrons emitted by the fission reaction:

FΦ(r,Ω, E) =
1

4π

∫

R+

dE′χνΣf (r, E,E′)Φ(r, E′). (1.14)

The keff parameter which divides the fission operator in Eq. (1.9) is the
eigenvalue introduced to impose the existence of a non-trivial solution of the
steady-state NTE. It is called effective multiplicative factor and represents
the ratio between the total production due to fission and the removal by
absorption and leakage out of the system:

keff =

∫
D dr

∫
S2 dΩ

∫
R+ dEFΦ(r,Ω, E)∫

D dr
∫
S2 dΩ

∫
R+ dE (L −H)ψ(r,Ω, E)

(1.15)

A system is said to be critical if the neutron population remains stable,
which corresponds to keff = 1. For keff > 1 the system is said to be super-
critical and it identifies a divergent chain reaction, while for sub-critical
systems (keff < 1) the chain reaction is not self-sustained2.

1.2.1 Boundary Conditions

The NTE requires the definition of boundary conditions (BC) which are
expressed in terms of the flux entering the boundary Γ of the domain D. By
denoting with n̂ the outgoing normal vector to the boundary, we write the
BC as:

ψ(r,Ω, E) = ψin, r ∈ D,Ω · n̂ < 0. (1.16)

Depending on the nature of the problem, the entering flux may assume
different forms. For vacuum BCs, for example, we impose ψin = 0.

For systems characterized by geometrical symmetries such as reflection,
rotation or translation, the solution is computed only in a portion of the do-
main, called basic domain, which represents the smallest geometrical motif

2A coherent definition of the keff should also take into account the excess of neutrons
produced by reactions other than fission. This provides a small contribution and, for
simplicity of equations, it will be not included in throughout this manuscript.

32 CHAPTER 1. NEUTRON TRANSPORT EQUATION

that reproduces the complete domain by repeated application of the sym-
metries. The basic domain is practically obtained by cutting the geometry
along its symmetry axes as shown in Fig. 1.3. The boundaries generated by
this geometry reduction are the so-called closed boundaries. The symme-
tries of the geometry are taken into account with appropriate BCs applied on
closed boundaries. These BCs are called geometrical boundary conditions,
and assume the form:

ψ(gr, gΩ, E) = ψ(r,Ω, E), r ∈ Γ,Ω · n̂ > 0. (1.17)

In this equation g(r,Ω) = (gr, gΩ) is the geometrical motion representing
the one-to-one mapping between the flux exiting the geometry in position
(r,Ω) and the entering flux in position (gr, gΩ). The explicit form of g
depends on the kind of symmetry:

Reflectional with respect to the surface with outgoing normal n̂:

g(r,Ω) = (r,Ω− 2(Ω · n̂)n̂);

Translational with period T:

g(r,Ω) = (r−T,Ω);

Rotational with rotation angle θ:

g(r,Ω) = (g(r), g(Ω)).

A special mention is due to infinite lattice geometries which are constituted
of an infinite repetition of an elementary geometry which coincides with the
basic domain (see Fig. 1.4).

1.3 Multi-group formalism

In the multi-group formalism the energy domain is partitioned into G energy
groups, with each group representing the values of energy E contained in the
range ∆Eg = [Eg, Eg−1]. It is common use to count groups for decreasing
values of the energy and to identify three main regions of the energy domain:

Fast groups: include groups where fission neutrons are emitted, which cor-
responds to values of energy within about 20MeV and a few keV .

1.3. MULTI-GROUP FORMALISM 33

Figure 1.3: Square geometry with
1/8 symmetry. The basic domain
(lightened) is an isosceles right tri-
angle. The lower and the diagonal
sides of the triangle are symmetry
axes.

Figure 1.4: Example of infinite lat-
tice with 1/8 symmetry. The sides
of the basic domain are all symme-
try axes. The infinite lattice is gen-
erated by repeated applications of
the symmetries.

Epithermal groups: include groups where the fission emission is negligible
but neutrons are still highly energetic with respect to the surrounding
medium;

Thermal groups: include the energy groups where the energy of the neu-
trons is comparable with the energy of the surrounding medium.

For each energy group we define the group flux as the integral of the neutron
flux within the energy group:

ψg(r,Ω) =

∫

∆Eg

dEψg(r,Ω, E). (1.18)

This quantity constitutes the unknown function of the multi-group problem.
The equations governing the exchange of particles between energy groups
are obtained by equivalence with respect to the continuous-in-energy NTE.
In practice, this is done by defining multi-group cross sections that preserve
the reaction rate over the energy group. In particular we define:

Σg
t (r,Ω) =

∫
∆Eg

dEΣt(r, E)ψ(r,Ω, E)

ψg(r,Ω)
, (1.19)

34 CHAPTER 1. NEUTRON TRANSPORT EQUATION

Σgg′
s (r,Ω,Ω′) =

∫
∆Eg

dE
∫

∆Eg′
dE′Σs(r, E

′ → E,Ω′ ·Ω)ψ(r,Ω′, E′)

ψg′(r,Ω)
,

(1.20)

χνΣgg′

f (r) =

∫
∆Eg′

dE′
∫

∆Eg
dEχνΣf (r, E,E′)Φ(r, E′)

Φg′(r)
, (1.21)

From these definitions one can see that formally the equivalent multi-group
total and transfer cross sections also depend on the angular variable, which
is undesired because it increases the complexity of the treatment of cross
sections, and also increases the memory required for their storage. This
angular dependence does not appear in the multi-group macroscopic fission
cross section since the fission reaction rate is an isotropic quantity and is
naturally weighted by the scalar flux. The same property holds for the
isotropic component of the scattering if we assume the Legendre expansion
discussed in Sec. 1.1.3. Also remark that the definition of the equivalent cross
sections requires the knowledge of the flux inside the energy group, which
is unfortunately the unknown function we ought to compute. However, the
group flux in Eqs. (1.19)-(1.21) acts as a weight function, which implies
that for a sufficiently fine energy mesh it can be substituted by a lower
order approximation without incurring in large errors. The multi-group
equivalence is usually performed using a reference scalar flux as weighting
function (details about the calculation of the group flux are provided in
Ch. 2). By making these assumptions the multi-group version of the NTE
reads:

(Ω · ∇+ Σg
t)ψ

g(r,Ω) =
∑

g′

∫

S2

dΩΣgg′
s (r,Ω′ ·Ω)ψg

′
(r,Ω′)+

+
1

keff

∑

g′

χνΣgg′

f (r)

4π
Φg′(r). (1.22)

Remark from this equation that the flux in each energy group is coupled
to the fluxes of other groups through the transfer and the fission operators,
while the transport operator only depends on the group considered (i.e.,
the multi-group transport operator is diagonal). The coupling between the
equations can be studied by analyzing the profile of the transfer and fission

matrices Σs = mat{Σgg′
s } and Σf = mat{χνΣgg′

f }. The fission matrix con-
stitutes a strong coupling between thermal and fast groups since the fission

1.4. SOLUTION OF THE NEUTRON TRANSPORT EQUATION 35

Figure 1.5: Non-zero profile of a typical transfer matrix for a 281 groups
energy discretization.

neutrons are emitted in the fast groups (Fig. 1.2) while fission reactions may
happen in the whole energy spectrum. Concerning the transfer matrix, re-
actions involving a neutron with large kinetic energy force the neutron to
slow down while a gain in energy is unlikely. It follows that for fast energy
groups the matrix is lower triangular. The triangular profile however is pro-
gressively lost for decreasing values of energy as it is shown in Fig. 1.5. This
happens because at low energies neutrons form an equilibrium with the sur-
rounding media, and they can as well loose or gain energy after a scattering
reaction. The probability for the neutron to gain energy is usually referred
to as the upscattering probability.

1.4 Numerical solution of the steady-state neu-
tron transport equation

The numerical solution of the NTE is obtained using a nested iterative al-
gorithm to solve simultaneously the criticality problem and the multi-group
equations. The outermost part of the algorithm uses the power iteration
method [10] to obtain the solution and the eigenvalue of the criticality prob-
lem. By denoting with superscript e the index of the iteration, and with ~ψ
and ~Φ the vectors of the multi-group fluxes, the iterative version of Eq. (1.22)

36 CHAPTER 1. NEUTRON TRANSPORT EQUATION

is:

(L −H) ~ψe+1(r,Ω) =
1

keeff
F~Φe(r). (1.23)

The iterative procedure starts with an initial guess of Φ0(r) and k0
eff , and

consists in repeatedly solving Eq. (1.23) until convergence is reached for
both unknowns. An estimation of the keff at each iteration can be derived
from equation Eq. (1.15) by substituting Eq. (1.23) in the expression for the
total removals:

ke+1
eff = keeff

∑
g

∫
D drFΦe+1

g (r)

∑
g

∫
D drFΦe

g(r)
. (1.24)

Each step of the iterative procedure requires the solution of the slowing down
problem (Eq. (1.22)) for the fixed fission source computed at the previous
iteration. The triangular profile of the transfer matrix for fast energy groups
allows a direct inversion of the multi-group equations by subsequently solv-
ing mono-group problems, while a Gauss-Seidel method is used to invert the
non triangular range of the matrix. The iterations for the calculation of the
keff are commonly called external (or outer) iterations, while the iterations
of the multi-group problem are generally referred to as thermal iterations.

The solution of the one-group problem requires to iterate over the in-
group flux, which appears in the transport term and in the transfer integral.
The iterative formulation of the in-group transport equation reads:

(Ω · ∇+ Σg
t)ψ

it+1(r,Ω) =

∫

S2

dΩΣgg
s (r,Ω′ ·Ω)ψit(r,Ω′)+Sg(r,Ω), (1.25)

where it is the index of the so-called internal iteration (to lighten the no-
tation the g superscript has been omitted in the definition of the in-group
flux). The external source Sg includes the transfer contributions from other
energy groups and the fission term at the respective thermal (index th) and
external (index e) iterations:

Sg(r,Ω) =
∑

g′<g

∫

S2

dΩΣgg′
s (r,Ω′ ·Ω)ψth+1(r,Ω′)+

+
∑

g′>g

∫

S2

dΩΣgg′
s (r,Ω′ ·Ω)ψth(r,Ω′)+

+
1

keeff

∑

g′

χνΣgg′

f (r)

4π
Φe(r). (1.26)

1.4. SOLUTION OF THE NEUTRON TRANSPORT EQUATION 37

Each internal iteration requires the inversion of the mono-energetic transport
operator to obtain a new guess for the in-group angular flux. In Ch.3 we
will see how this is done using the Method of Characteristics.

1.4.1 The SN and PN approximations

The common representations of the angular variable used to obtain a nu-
merical solution of the NTE are the SN and PN approximations. To better
understand some properties of the two approximations, in this paragraph
a matrix notation is used to indicate the angular discretization. In this
context it is useful to rewrite Eq. (1.5) in terms of the vectors3 ~A(Ω) =
{An(Ω), k(n) ≤ K)} and ~Φ(r, E) = {Φn(r, E), k(n) ≤ K)}, representing,
respectively, the set of (K+1)2 Spherical Harmonics and (K+1)2 moments
of the flux (Eq. (1.6)) required for a Kth order expansion of the transfer
probability (see Sec. 1.1.3):

Hψ = ~Aᵀ Σs
~Φ, (1.27)

with

Σs(r, E) = diag

(∫

R+

dEΣs,k(r, E
′ → E)?

)
. (1.28)

The fission operator (Eq. (1.14)) can be written in a similar fashion:

FΦ = ~Aᵀ Σf
~Φ, (1.29)

where this time Σf (r, E) is a matrix whose sole non-zero value corresponds
to the first term of the diagonal.

The PN approximation is a projective method where the angular flux is
represented on the basis ~A(Ω) of the (N + 1)2 Spherical Harmonics up to
the Nth degree:

ψ(r, E,Ω) ≈ ~Φᵀ(r, E) ~A(Ω). (1.30)

By defining the projector:

~P =
1

4π

∫

S2

dΩ ~A(Ω)?, (1.31)

the PN approximation proceeds by applying Pn to the NTE (Eq. (1.9)),
obtaining

LPN
~Φ(r, E) = Σs

~Φ(r, E) +
1

keff
Σf

~Φ(r, E). (1.32)

3Column vectors.

38 CHAPTER 1. NEUTRON TRANSPORT EQUATION

Because of the orthogonality of the Spherical Harmonics (Eq. (1.4)), this
procedure diagonalizes both transfer and fission operators, whereas the op-
erator LPN couples each moment of the flux to other six moments [11].

In the SN approximation, differently, the NTE is evaluated for a set of
discrete directions {Ωj}NΩ

j=1, while a quadrature formula SN = {(ωj ,Ωj)}NΩ
j=1

is used to approximate angular integrals. In particular the moments of the
flux read:

~Φ(r, E) =
1

4π

∫

S2

dΩ ~A(Ω)ψ(r,Ω, E) ≈
NΩ∑

j=1

ωj ~A(Ωj)ψ(r,Ωj , E) ≡ AW~ψ,

(1.33)
where ~ψ = {ψ(Ωj)}NΩ

j=1 is the angular flux evaluated at the discrete direc-
tions, W is the NΩ × NΩ diagonal matrix containing the weights of the
quadrature formula, and A is the M × NΩ matrix whose columns are the
spherical harmonics evaluated at the discrete directions. Here we have in-
dicated with M the total number of moments of the flux considered for the
expansion. A system of equations similar to Eq. (1.32) can be written for
the SN method:

LSN
~ψ(r, E) = Aᵀ ΣsAW~ψ(r, E) +

1

keff
Aᵀ ΣfAW~ψ(r, E). (1.34)

Differently from the PN approximation, the transport operator in the SN
approximation is diagonalized using the basis associated to the NΩ directions
of the quadrature formula:

LSN = diag(Ωj · ∇+ Σt). (1.35)

Instead, both transfer and fission operators couple all the values of the an-
gular flux through the angular quadrature formula and the Spherical Har-
monics. Because of the diagonality of the transport operator, the SN ap-
proximation is often used for the inversion of the mono-group problem in
Eq. (1.25). However, it is interesting to note that the SN approximation
suffers of some problems, the most known is the ray-effect which appears
in highly absorbing media with localized sources, and is due to the fact
that the SN approximation constraints the streaming of neutrons in fixed
directions [12]. In the literature we can find several attempts to mitigate
the ray-effect deriving SN-like equations [13, 14], and it is still an actual
topic. The ray-effect may introduce errors in cases such as shielding prob-
lems, but it mildly concerns nuclear reactor physics because sources are well
distributed [15].

Chapter 2

Multi-group cross sections

This chapter is dedicated to the generation of multi-group equivalent cross
sections, a fundamental step for correctly take into account the effects of
selfshielding which derive from the presence of resonances in the cross sec-
tions. In particular, in 2.2 we describe the Subgroups method [16], which
has shown to be a robust method for computing selfshielded cross sections.
This method relies on Probability tables to approximate the coupling be-
tween the energy and spatial variables. For completeness, in Sec. 2.1 we
recall the basic concepts of Probability tables and how these are computed
in the CALENDF code [17].

2.1 Probability tables

The probability tables are used to approximate energy averages of the form:

〈f〉g =
1

∆Eg

∫

∆Eg

dEf [σt(E)] , (2.1)

where f is a function which depends on the energy only through of the
microscopic total cross section σt.

By indicating with Sg the set of values of the total cross section in the
group g, Sg = {σt(E), E ∈ ∆Eg}, the Riemann integral over the energy in
Eq. (2.1) is recast in terms of Lebesgue integral over Sg:

〈f〉g =
1

∆Eg

∫

∆Eg

dEf [σt(E)]

∫

Sg
dσtδ(σt − σt(E)) =

=

∫

Sg
dσtf(σt)

∫

∆Eg

dEδ(σt − σt(E))

∆Eg
≡
∫

Sg
dσtf(σt)p(σt), (2.2)

39

40 CHAPTER 2. MULTI-GROUP CROSS SECTIONS

where δ is the Dirac function and the quantity p(σt)dσt is a probability
density function which provides a measure of the likelihood of a given cross
section to be found in the energy range ∆Eg.

A probability table is a set of weights and abscissas QK = {pk, σt,k}Kk
which approximate the Lebesgue integral in Eq. (2.2) with a finite sum:

∫

Sg
dσtf(σt)p(σt) ≈

∑

k

pkf(σt,k). (2.3)

In the classical approach [18], the domain Sg is partitioned in K subdomains
∆Sk and the following definition for the weights is used:

pk =
1

∆Eg

∫

∆E
dEΘk [σt(E)] , (2.4)

with Θk the indication function of the total cross section within the kth
subdomain:

Θk [σt(E)] =

{
1, σt(E) ∈ ∆Sk
0, elsewhere

(2.5)

A comparison with Eq. (2.2) shows that the weights in Eq. (2.4) can be
obtained by assuming a piecewise approximation of f(σt) within the energy
group. The abscissas in this case are generally chosen using a mid-point
rule, or by using the average abscissa within the kth subdomain:

σt,k =
1

∆Eg

∫

∆E
dEΘk [σt(E)]σt(E). (2.6)

A more general approach has been introduced by Pierre Ribon [18], and
it is the one used in the CALENDF code [17]. In this approach Gaussian
quadratures are used to approximate the energy integrals. These are ob-
tained by imposing the set of weights and abscissas to exactly integrate a
set of 2K polynomials of the total cross section, which entails:

Mh =
1

ωg

∫

∆Eg

dEσht (E) =
∑

k

σht,k pk, (2.7)

where h is the degree of the polynomial such that 1−K ≤ h ≤ K (see [18]
for details about the choice of the degree of polynomials), and k = 1, . . . ,K
indicates the kth couple of weight and abscissa of the probability table. The
quantity Mh is the hth moment of the total cross section, and is computed
using the point-wise representation provided by nuclear data libraries [19].
The order K of the probability table is chosen by imposing a convergence

2.1. PROBABILITY TABLES 41

criteria on the calculation of higher order moments of the total cross section.
In other words, for a probability table of order K, the moments of order K+1
and −K are computed using the point-wise representation of the total cross
section, and are compared with the approximated values computed with the
probability table. If the error is larger than a given tolerance, the order of
the probability table is increased to K + 1, and so on until convergence.

The concept of probability tables can be extended in order to approx-
imate averages of functions which depend on the energy through multiple
cross sections. This is the case, for example, of the calculation of reac-
tion rates for partial reactions, or rather the case of a mixture of isotopes.
Let us limit the analysis to the calculation of reactions rates while we refer
the reader to [18, 17, 7] for an in-depth discussion about the generation of
probability tables. The average reaction rate over an energy group has the
form:

〈σρf〉g =
1

∆Eg

∫

∆Eg

dE σρ(E)f [σt(E)] =

=

∫

Sg
dσtf(σt)

∫

Sg,ρ
dσρσρp(σρ, σt), (2.8)

where the definition of p(σρ, σt)dσρdσt naturally follows from the one in
Eq. (2.2):

p(σρ, σt) =
1

∆Eg

∫

∆Eg

dEδ(σt − σt(E))δ(σρ − σρ(E)), (2.9)

and it represents the density of probability for having simultaneously σt = σt(E)
and σρ = σρ(E). The integral in Eq. (2.8) can be recast into:

〈σρf〉g =

∫

Sg
dσtf(σt)p(σt)

∫

Sg,ρ
dσρσρpρ(σρ, σt). (2.10)

where we have used the quantity pρ(σρ, σt) = p(σρ, σt)/p(σt), representing
the conditional probability of σρ for a given σt. By using the QK quadrature
formula to approximate Eq. (2.10) we write:

〈σρf〉g ≈
∑

k

pkf(σt,k)σρ,k, (2.11)

with σρ,k the partial cross section averaged with respect to the conditional
probability with respect to σt,k:

σρ,k =

∫

Sg,ρ
dσρσρpρ(σρ, σt,k). (2.12)

42 CHAPTER 2. MULTI-GROUP CROSS SECTIONS

Figure 2.1: Graphical representation of Probability Tables. The function
represents the total cross section σt as a function of the energy E. The
symbol Sg represents the image of the energy group ∆Eg through the total
cross section σt(E). In the standard approach (Eq. (2.4)), Sg is partitioned
in sub-domains ∆Sk (different colors), with associated probability pk cor-
responding to the inverse image of ∆Sk. The CALENDF approach uses
Gaussian formulas to exactly integrate polynomials of the total cross sec-
tion.

In this form, the problem reduces to seek for the K values of σρ,k which
better approximate the reaction rate integral. The CALENDF approach is
to impose the exact integration of K co-moments of the total and partial
cross sections:

Ph =
1

∆Eg

∫

∆Eg

dEσρ(E)σht (E) =
∑

k

σρ,kσ
h
t,k pk,

for − K

2
≤ h ≤ K

2
− 1. (2.13)

The quadrature points for the partial cross sections are found for all reactions
of interest for neutronic calculations. A probability table of order K of a
given isotope takes the form of a the set of K n-tuple containing the weights
and the nodes for the calculation of energy averages of all reactions:

PT K = {{σρ,k}ρ, pk, σt,k}Kk=1. (2.14)

2.2. SUBGROUPS METHOD 43

2.2 Subgroups method

The multi-group approximation used for the solution of the transport equa-
tion (see Sec. 1.3) requires a correct definition of multi-group cross sec-
tions. An exact equivalence can be obtained by imposing the conservation
of the macroscopic reaction rates for each energy group, as described by
Eqs. (1.19)-(1.21). However, this approach requires the knowledge of the
neutron flux inside the energy group, which is the unknown function that
we want to compute. The problem is circumvented by substituting the real
flux with an approximated solution, and by using a sufficiently refined en-
ergy mesh. The author in [7] analyzes the discretization error introduced
by the multi-group equivalence for several approximations of the transport
equation. Here, we briefly discuss the Subgroup method [20] which is one of
the methods used in APOLLO3® for the calculation of multi-group cross
sections.

In the Subgroup method the multi-group cross section of a given reaction
ρ and isotope x for group g is computed imposing the following equivalence
relation:

σgρ,x(r) ≈ < σρ,x(E)Φ(r, E) >g
< Φ(r, E) >g

, (2.15)

where the scalar flux, Φ, is the solution of a slowing-down problem under
some simplification hypotheses, and the brackets indicate the average oper-
ation over the energy group g:

< f(E) >g=
1

∆Eg

∫

∆Eg

dEf(E). (2.16)

The first approximation used by the Subgroup consists in treating the fine
structure of the cross sections only for one isotope at time, while group-
averaged cross sections are used for other isotopes. The isotopes are pro-
cessed iteratively to update the values of the multi-group cross sections
until a consistent set is obtained. This approach introduces errors on the
estimation of the multi-group cross sections whenever resonances of different
isotopes overlap [21]. However, for sufficiently fine energy meshes the reso-
nance overlapping is reduced and the error introduced is small [7]. An addi-
tional approximation is applied on the treatment of the transfer probabilities
and the emission spectra. In the Subgroup method, these are assumed to
be constant within each energy group, while the detailed treatment of the
energy variable is reserved to the sole cross sections. This assumption is ac-
ceptable for sufficiently refined energy meshes, since the major contribution
to the in-group emission is due to the transfer from other groups. Under

44 CHAPTER 2. MULTI-GROUP CROSS SECTIONS

these hypotheses, and by assuming an isotropic law for the scattering, the
slowing-down equation of group g for the unknown in-group flux ψ is written
as follows:

[Ω · ∇+ Σg(r, E)]ψ(r,Ω, E) = Ny(r)pgg0,y < σs,y(E)Φ(r, E) >g ∆Eg+

+
∑

x 6=y
Nx(r)pgg0,xσ

g
s,x(r) < Φ(r, E) >g ∆Eg +Qg(r). (2.17)

In the last equation we used Eq. (2.16) to rewrite the reaction rates in
terms of group-averaged values. The total cross section, Σg(r, E), takes into
account the isotope which is being considered (subscript y) and background
isotopes:

Σg(r, E) = Ny(r)σt,y(E) +
∑

x 6=y
Nx(r)σgt,x(r); (2.18)

while the quantity Qg includes the contributions of the transfer from other
energy groups and the fission source:

Qg(r) =
∑

g′ 6=g
x

pgg
′

0,xNx(r)σg
′
x (r)Φg′(r) +

1

keff

∑

g′,x

χgxνNx(r)σg
′

f,x(r)Φg′(r).

(2.19)
Remark that in the definition of Qg we have assumed the multi-group cross
sections for other energy groups and for the fission reaction to be known,
which allows rewriting the reaction rates in terms of multi-group fluxes,
defined as:

Φg(r) =

∫

∆Eg

dEΦ(r, E). (2.20)

The values of the transfer probability, pgg
′

0,x, and of the fission emission spec-
trum, χgx, are those provided by nuclear data libraries [19].

By denoting by K the inverse transport operator integrated over the
angular variable:

K(r, E) =

∫

S2

dΩ [Ω · ∇+ Σg(r, E)]−1 , (2.21)

and by qg the total emission density:

qg(r) = Ny(r)pgg0,y < σs,y(E)Φ(r, E) >g ∆Eg+

+
∑

x 6=y
Nx(r)pgg0,xσ

g
s,x(r) < Φ(r, E) >g ∆Eg +Qg(r), (2.22)

the in-group scalar flux used for the equivalence is written as:

Φ(r, E) = K(r, E)qg(r). (2.23)

2.2. SUBGROUPS METHOD 45

2.2.1 Use of probability tables in the Subgroup method

In the previous section we have seen that, under some simplifications, the
scalar flux inside the gth energy group can be written as the product of the
continuous-in-energy inverse transport operator K and a constant emission
density qg. From the definition of the total cross section (Eq. (2.18)) we can
see that K depends on the energy only through the microscopic total cross
section of the isotope which is being treated, σt,y. Such property allows
the use of Probability Tables (see Sec. 2.1) to compute the averaged values
of the flux and of the reaction rates. By using Eq. (2.3) and Eq. (2.11)1

together with Eq. (2.23) we can write:

< Φ(r, E) >g =
∑

k

pkK(r, σt,k)q
g(r), (2.24)

< σρ,y(E)Φ(r, E) >g =
∑

k

σρ,kpkK(r, σt,k)q
g(r). (2.25)

By substituting these expression in Eq. (2.22) we obtain:

qg(r) = Ny(r)pgg0,y∆Eg
∑

k

σρ,kpkK(r, σt,k)q
g(r)+

+
∑

x 6=y
Nx(r)pgg0,xσ

g
s,x(r)∆Eg

∑

k

pkK(r, σt,k)q
g(r) +Qg(r). (2.26)

Provided the values of the external source, Qg, and an expression for the
inverse transport operator, Eq. (2.26) can be solved for the unknown total
emission density qg. Finally, this quantity is used to compute the multi-
group cross sections of the isotope which is being treated:

σgρ,x(r) ≈
∑

k σρ,kpkK(r, σt,k)q
g(r)∑

k pkK(r, σt,k)qg(r)
, (2.27)

where again Eq. (2.3) and Eq. (2.11) have been used in Eq. (2.15) to ap-
proximate the energy averages. Remark that this definition is a non-linear
function of the external source, which in turn depends on the values of the
background selfshielded isotopes. This non-linearity requires an iterative so-
lution to converge on both selfshielded cross sections and the external source.
Remark also that, although the continuous-in-energy microscopic cross sec-
tion is a function of the sole isotope, the multi-group equivalence introduces
a spatial dependence of the cross sections which has to be correctly taken
into account in actual calculations.

1For simplicity of notation the symbol ∼ is omitted.

46 CHAPTER 2. MULTI-GROUP CROSS SECTIONS

Chapter 3

The Method of
Characteristics for
three-dimensional axial
geometries

The Method of Characteristics (MOC) is one of the most successful methods
for solving the Neutron Transport Equation. It makes use of the solution
of the NTE along characteristic lines to compute the angular and spatial
variation of the angular flux within the problem geometry.

The MOC has been firstly proposed by Askew [1], and later adopted for
nuclear reactor analysis in several codes [2, 3, 4, 5, 6]. Although MOC can
be applied to arbitrary geometries, it requires a large amount of compu-
tational resources to solve the transport equation along each characteristic
line, a fact that has historically limited its application to two-dimensional
problems. Nonetheless, the growing interest for accurate transport solutions
for improved reactor safety and fuel-cycle, as well as the increasing compu-
tational power of modern architectures, have raised the interest in three-
dimensional transport calculations based on MOC. The literature about
this topic is vast and includes several solutions which differ from each other
mainly for the representation basis used for the angular flux, and for the
type of three-dimensional geometries to which these methods apply.

A first class of methods are the so-called fusion methods which are ap-
plied to treat the special case of axial geometries1. Fusion methods solve

1Recall that for axial geometries we intend those systems generated by the finite trans-

47

48 CHAPTER 3. MOC IN 3D AXIAL GEOMETRIES

a system of coupled two-dimensional problems representing different axial
nodes of the geometry. In these methods, the two-dimensional solution is
often obtained through MOC calculations, whereas different approximations
are proposed for the axial coupling. The Korean code DeCART firstly used a
low-order Diffusion (CMFD) approximation for coupling the axial nodes [22]
and then moved to a higher-order approximation (SPN) to improve its accu-
racy [23]. In the French code MICADO the MOC is used either for solving
the two-dimensional problems and the one-dimensional problems coupling
the axial nodes [24].

Another class of methods are those based on the Short Characteristics
(SC) formulation. In these methods the problem geometry is divided in
sub-domains, and a surface representation is introduced for the angular flux
crossing the sub-domain boundaries. In the SC formulation, the characteris-
tic lines are used to compute the coefficients coupling the surface fluxes and
the volume sources inside each sub-domain. The advantage of this approach
is that the coefficients are computed only once and for a relatively small set
of unknowns, making this method computationally attractive. However, for
highly heterogeneous problems, a good spatial convergence is reached only
for a highly refined surface representation of the angular flux. The French
code IDT of APOLLO3® uses the SC approach for three-dimensional ge-
ometries composed of heterogeneous prismatic sub-domains [25, 26].

In the last class of methods for the solution of three-dimensional prob-
lems with MOC we include those based on the Long Characteristics (LC)
approach. In this approach, the angular flux is represented along a finite
number of characteristics lines crossing the whole problem geometry and
no further approximation is done on the shape of the angular flux. A first
example of application of LC MOC to 3D geometries is found in the code
MCCG3D developed in 1998 by I. Suslov [27]. In this code, the geome-
try description is limited to axial geometries. Differently, the MCI module
of the code DRAGON has been developed by Wu and Roy in 2003 [28]
for solving the NTE with MOC in arbitrary three-dimensional geometries.
The price to pay for such a general geometry description is the increased
memory and time requirements of the solver. A similar approach is also
used in the code MPACT [29]. The approach used in the MMOC solver
developed by Liu and Wu is based on a discretization of the geometry in
cubic heterogeneous pixels. Modular tracking strategies are used to gener-
ate global trajectories from the trajectories tracked in each pixel [30]. The
code MOCK-3D applies LC MOC to Cartesian meshes with homogeneous

lation of a plane surface along an axis perpendicular to the surface itself

3.1. METHOD OF CHARACTERISTICS 49

regions [31].
The methods developed in our research have been used to extend the

functionalities of the APOLLO3® version of TDT. This is a numerical code
based on the LC Method of Characteristics (MOC) and/or Collision Prob-
ability (CP) designed to solve the mono-group transport equation for 2D
dimensional unstructured meshes. The new methods have been developed
to allow TDT to solve the transport equation for three-dimensional axial
geometries using LC MOC. In the following section we will introduce the
MOC as a numerical method to solve the mono-group transport equation,
while Sec. 3.2 is dedicated to the geometrical description of the problems we
want to solve.

3.1 Method of Characteristics

In Sec. 1.4 we have seen that the multigroup problem is solved using an
algorithm with nested iterations. The innermost level of iteration requires
the solution of a fixed source mono-group transport problem:

{
[Ω · ∇+ Σ(r)]ψ(r,Ω) = q(r,Ω), r ∈ D,Ω ∈ S2

ψ(r,Ω) = ψin r ∈ Γ,Ω · n̂ < 0
(3.1)

where n̂ is the outgoing normal to the boundary (Γ) of the geometrical do-
main (D), and q is the fixed source representing the in-group self-scattering,
the transfer from other groups, and the fission source (see Eq. (1.25)).

The Method of Characteristics is a method for solving first order par-
tial differential equations and is applied to solve Eq. (3.1). The method
uses parametric curves called characteristics to rewrite the partial differen-
tial equation as an ordinary differential equation. In the case of the neutron
transport equation these characteristics are straight lines with direction par-
allel to Ω, with Ω any angle in S2. The parametric form of the characteristic
can be written as follow:

t(t) = tb + tΩ, t ∈ [0, L], (3.2)

where tb indicates a generic position on the boundary with outgoing normal
n̂ for which Ω · n̂ < 0. This indicates the entering point of the trajectory
in the domain, while t(L) indicates its exiting point. The ordinary form of
Eq. (3.1) reads: 




d

dt
ψ(t) + Σ(t)ψ(t) = q(t),

ψ(tb) = ψin
(3.3)

50 CHAPTER 3. MOC IN 3D AXIAL GEOMETRIES

and its solution can be written in the following closed form:

ψ(t) = ψ(tb)T (tb, t) +

∫ t

0
dt′q(t′)T (t′, t). (3.4)

In this equation for simplicity of notation we have used the symbol t′ instead
of t(t′) to represent the coordinate on the trajectory with parametric depen-
dence on the integration variable t′. The symbol ψ(tb) indicates the value of
the entering flux provided by boundary conditions, while the symbol T (t, t′)
indicates the transmission coefficient:

T (t′, t) = exp
[
−τ(t, t′)

]
. (3.5)

Here we have used the symbol τ to indicate the optical length between the
points t′ and t on the trajectory:

τ(t′, t) =

∫ t

t′
dt′′Σ(t′′). (3.6)

The transmission coefficient indicates the probability of a neutron emitted
in position t to reach point t′ without interacting with the surrounding
medium, and it decreases for increasing values of the optical length.

The solution of the fixed source transport problem with the Method of
Characteristics is obtained by evaluating Eq. (3.4) for all the characteristics
lines spanning the phase space.

Source representation

In the Method of Characteristics the flux in the source term is represented on
a support which differs from that of trajectories. For what concerns the an-
gular variable, the Legendre expansion of the scattering term (see Sec. 1.1.3)
naturally leads to a Spherical Harmonic expansion of the flux. The calcu-
lation of the flux moments is done by applying the SN approximation: the
angular flux is evaluated for discrete directions, and a quadrature formula is
used to update the flux moments. The solution with MOC therefore requires
the evaluation of the angular flux along characteristic lines parallel to the
directions contained in the SN quadrature formula.

The spatial dependence of the flux moments is generally represented by
partitioning the geometry in non-overlapping regionsDr such thatD = ∪rDr,
and in surfaces Γα delimiting these regions (see fig. 3.1(a)). A local basis is
then used to represent the flux moments as function of region and surface
values. The common step approximation, for example, assumes constant

3.1. METHOD OF CHARACTERISTICS 51

values of the flux moments inside each region. The region-averaged flux is
computed by integrating the angular flux along the characteristic lines that
cross the region. This topic will be discussed in detail in Chapter 4.

Trajectory-based spatial discretization

A numerical version of the MOC requires a suitable representation of the
angular flux which allows the solution of the transmission equation along the
characteristics lines. Different approaches exist: in the short characteristics
approach the angular flux is represented on the surfaces delimiting macro-
regions, and the transmission equation is finely integrated to compute coeffi-
cients which couple the volume and surface values. This approximation may
be affected by numerical diffusion problems for optically-thin macro-regions.
The long characteristics approach conversely partitions the geometry in par-
allel bands that cover the system from boundary to boundary – this is the
approach used by TDT and the only considered throughout this manuscript.
In his work [32] Fevotte explores different representations of the angular flux
within each band, pointing out the advantages and disadvantages of each ap-
proximation. In the present work we will use a rectangular integration rule
for the spatial variable: the geometry is divided in ‘tubes’ whose axes are
the characteristic lines. The angular flux is assumed to evolve as Eq. (3.4)
along the tube axis, while it is assumed to be constant on its cross sectional
area ∆t (see fig. 3.1(b)). Under this assumption, the spatial integral over
one region Dr is approximated with the following expression:

∫

Dr
drw(r)ψ(r,Ω) ≈

∑

t‖Ω
t∩Dr

∆t

∫ tout

tin

dtw(t)ψ(t), (3.7)

where t ∩ Dr is the set of trajectories that cross the region, and w is a
weight function. Such method makes a zeroth order approximation of the
region boundaries and therefore is not appropriate for surface integrals [33].
However, it has the advantage of precisely estimating integrals over the
component of the surface perpendicular to the trajectory:

∫

Γα

dr(Ω · n̂)w(r)ψ(r,Ω) ≈
∑

t‖Ω
t∩Γα

∆t
(Ω · n̂)

|Ω · n̂| w(tαt)ψ(tαt), (3.8)

where t ∩ Γα is the set of trajectories crossing the surface and tαt is the
point at which trajectory t intersects the surface. Such property is desirable

52 CHAPTER 3. MOC IN 3D AXIAL GEOMETRIES

for the correct integration of the boundary angular currents as we will see
in Chapter 4. This approach has also the advantage that the integration
weight ∆t only depends on the trajectory, while for more accurate methods
it requires to be dependent on the single intersection [32, 33].

It is important to remark that the trajectory-based discretization of the
geometry introduces a parametric dependence of spatial integrals with re-
spect to the tracking angle. This dependence is found, for example, in the
calculation of the region volumes. We talk about angular volumes when we
refer to the numerical volumes computed using the trajectories with a given
direction:

Vr(Ω) =
∑

t‖Ω
t∩Dr

∆tlt. (3.9)

In this equation we have indicated with lt the length of the intersection of the
trajectory t with region Dr. The dependence on the angle here is introduced
by the fact that a finite number of trajectories is used to estimate the spatial
integral. Clearly, this dependence disappears for sufficiently small trajectory
spacing. Angle-independent estimates of spatial integrals can be obtained
by averaging over the angular variable.

3.2 Geometrical description of the problem

A detailed description of the reactor geometry and of the material compo-
sition is required to obtain an accurate solution of the neutron transport
equation. However, reactor designs are often characterized by complex het-
erogeneous geometries whose description is rather complicated (see Fig. 3.2).
The methods that have been developed in our research are intended to solve
the transport equation in what we call axial geometries. These are three-
dimensional right cylinders generated by the finite movement of an arbitrary
plane surface (2D section) along an axis perpendicular to the surface itself (z-
axis) . We simplify the analysis by assuming a partitioning of the geometry
with Cartesian axial meshes. These are meshes generated by the Cartesian
product of an unstructured two-dimensional mesh, D2D = {Dr2D}, used for
the 2D section, and a mono-dimensional mesh, ~H = {∆hrZ}, for the z-
axis. Under these assumptions, each three-dimensional region is univocally
identified by the Cartesian coordinates (r2D, rZ).

Although these geometries are not general, they allow the treatment of
the majority of cases encountered in reactor physics (e.g., reactor assembly)
without the burden deriving from the generalization to arbitrary geometries.

3.2. GEOMETRICAL DESCRIPTION OF THE PROBLEM 53

(a) Partitioning in surfaces and regions. (b) Trajectory-based discretization.

Figure 3.1: Graphical representation of the different supports used for the
spatial representation of the unknown flux. Fig. (a) shows an arbitrary
partitioning of the geometry in sets of regions and surfaces used to represent
the flux moments. Fig. (b) shows the trajectory-based discretization used
by the Method of Characteristics. The space is partitioned in ‘tubes’ whose
axes are the characteristic lines parallel to Ωj . The angular flux along the
characteristic lines follows the transmission equation, while an uniform value
is assumed on the cross sectional area of each tube. The discretization is
applied for all the directions in the SN quadrature formula.

Material composition

The variation of isotopic concentration during the reactor life caused by
the transmutation of nuclei (e.g., depletion of 235

92U and increase of fission
products due to fission reactions), or the ‘artificial’ variation of the cross
sections introduced by the multigroup equivalence (see 2.27) are some of the
effects that may induce a spatial variation of the cross sections. The common
approximation applied in neutronics calculation is to partition the problem
geometry into homogeneous regions, that is regions with constant value of
the cross section. The partitioning must be chosen in order to correctly take
into account the effects described above.

54 CHAPTER 3. MOC IN 3D AXIAL GEOMETRIES

Figure 3.2: Assembly of a Pressurized Water Reactor.

Part II

New developments

55

Chapter 4

Higher order approximations
for MOC

In Chapter 3 we have introduced the Method of Characteristics as a method
for the solution of the neutron transport equation. We have seen that this
method uses the transmission equation to compute the angular flux along
straight characteristic lines crossing the problem geometry. We have also
underlined that a different support is used to represent the spatial and an-
gular dependence of the unknown flux appearing in the source term. The
projection of the ‘trajectory’ flux onto the ‘source’ flux is done by using
the SN quadrature formula for the angular integration, and the ‘tube’ dis-
cretization of the geometry to approximate spatial integrals. In this chapter
we discuss different spatial representations of the moment of the flux and we
then derive the equations for a polynomial expansion of the flux moments
along the axial direction. The actual implementation of the higher-order
MOC algorithm is detailed in the last section of this chapter.

The classical approximation used in the Method of Characteristics is the
so-called step approximation, which assumes a partitioning of the geome-
try into homogeneous regions, and a constant-per-region spatial represen-
tation of the flux moments. These latter are obtained by integrating the
angular flux over the trajectories that cross each region and by computing
region-averaged values. The step approximation makes a zeroth order ap-
proximation of the space and, albeit it is a convergent scheme, it shows slow
convergence rates. This obliges the use of refined meshes which translates
into increased computational costs of the calculations. Higher order meth-
ods are used to overcome this problem by assuming a more detailed spatial
representation of the unknown fluxes, such as a polynomial volume expan-

57

58 CHAPTER 4. HIGHER ORDER APPROXIMATIONS FOR MOC

sion. By using higher order methods the number of meshes can be reduced
without impacting the accuracy of the solution. The extent of such reduc-
tion depends on how faithfully the chosen representation describes the real
solution. As a drawback, the implementation of higher order schemes always
constitutes an overhead if the number of meshes is kept constant. This is due
to the increased number of unknowns per mesh, and to the increased com-
putational complexity of the equations to solve. The efficiency of a higher
order method in terms of computational performances is always a trade-off
between the increased complexity of the algorithms and the reduced number
of unknowns required for the solution to converge.

In the literature we can find several works dedicated to the derivation of
higher order schemes for the Method of Characteristics, most of them ap-
plied to two-dimensional geometries. In [3, 34] the authors use a Cartesian
linear polynomial basis to represent the spatial variation of the volume fluxes
in two-dimensional unstructured meshes. The spatial components of the flux
are computed by projecting the flux along the characteristic onto the linear
basis used for the flux expansion. A similar approach is also used in [35]
where the authors extend the method to polynomials up to the fourth order.
These works show that a linear source expansion performs better than the
step approximation, whereas the improved precision of higher order expan-
sions is not sufficient to justify the increased complexity of the algorithms.
What we observe in general is that volume expansions perform efficiently
for regions with small heterogeneities (e.g., reflector), while they provide
small advantages in highly heterogeneous regions (e.g., PWR assembly).
Differently from polynomial volume expansions, the Linear Surface Char-
acteristics scheme represents the spatial variation of the fluxes by linearly
interpolating between surface-averaged values. This method has shown bet-
ter convergence rates as compared to the step-MOC approximation in cases
such as PWR assemblies [33]. An extension of the LS to 3D cases is also
possible, but it has not been developed since for the cases treated in our
research it does not provide important advantages. Concerning the higher
order methods for three-dimensional geometries, in [36] the authors describe
an arbitrarily high-order scheme which only applies to tetrahedral geome-
tries, while a linear volume expansion of the source is used in [37] to solve
three-dimensional problems in axial geometries with arbitrary unstructured
2D section.

In the following sections we derive the equations for a higher order ap-
proximation of the Method of Characteristics based on a generic polynomial
expansion of the volume flux along the axial direction. The choice of this
approximation is based on the fact that for most of nuclear applications

4.1. DEFINITION OF THE POLYNOMIAL BASIS FOR THE FLUX 59

the material composition is less heterogeneous along the axial direction so
that polynomial expansions can effectively catch the large spatial gradients
and allow a coarser discretization of the axial mesh. We will also propose a
different method for computing the spatial components of the flux: instead
of directly projecting the transmission equation onto the spatial basis, we
impose balance-like equations over each region and solve them by using the
net currents computed with the characteristics. Due to the timing of our
research, the actual implementation of these methods have not been com-
pleted, and the actual calculations shown throughout this manuscript will
be provided for the step-MOC approximation only.

4.1 Definition of the polynomial basis for the flux

In the derivation of our higher order scheme, we assume the geometry to be
partitioned in homogeneous regions Dr, and the moments of the flux in each
region to be represented on the local polynomial basis

~P (ζr) = {ζpr , 0 ≤ p ≤ Np}, (4.1)

where ζr = z− z̄r, ζr ∈ [−∆hr/2,∆hr/2] is the local coordinate defined with
respect to the center of the axial mesh, z̄r, while Np is the maximum order
chosen for the polynomial expansion. Under this assumption, the source can
be written as:

q(r,Ω) =
∑

r

Θr(r)~P (ζr) · ~qr(Ω), (4.2)

with Θr the characteristic function of the region r. The symbol ~qr(Ω) rep-
resents the spatial components of the angular source for direction Ω, and
includes the contributions of the in-group flux moments, ~Φrn, and of the
external source ~Srn:

~qr(Ω) =
∑

n

An(Ω)
[
Σrn

~Φrn + ~Srn

]
(4.3)

with Σrn the macroscopic transfer cross section of order n. The explicit
expression for ~Φrn reads:

~Φrn =
P−1

4πVr

∫

S2

dΩAn(Ω)

∫

Dr
dr~P (ζr)ψ(r,Ω), (4.4)

where Vr is the region volume, and P is the matrix defined as:

P =
1

Vr

∫

Dr
dr~P (ζr)⊗ ~P (ζr). (4.5)

60 CHAPTER 4. HIGHER ORDER APPROXIMATIONS FOR MOC

The P matrix is symmetric with elements:

Ppp′ =

{
(∆h/2)p+p

′

p+p′+1 for p+ p′ even

0 for p+ p′ odd
(4.6)

This expression is true only in case of exact spatial integration. However,
the trajectory-based discretization of the geometry introduces spatial inte-
gration errors, as well as a parametric dependence of the spatial integrals
with respect to the angular variable. To take into account these effects, the
matrix P is computed by integrating Eq. (4.5) along the characteristic lines
crossing the region Dr. The same approximation is applied to compute the
angular volumes. This produces angle-dependent quantities which we will
indicate with symbols Pj and Vrj .

4.2 Transmission equation

We derive now the expression for the transmission equation under the hy-
pothesis of polynomial expansion of the source described above. We consider
one single intersection (hereafter chord) of the trajectory with a homoge-
neous region, and assume the entering flux, ψin, to be known. This latter
corresponds to the flux obtained by the boundary conditions for the first
chord of the trajectory, or to the exiting flux of the previous chord.

Let us consider the chord i with direction Ωj entering the homogeneous
region from the point with global axial coordinate zini . By denoting with µj
the cosine of the polar component of Ωj , defined with respect to the z-axis,
and by t ∈ [0, li] the local coordinate along the trajectory, the coordinate of
the polynomial basis, ζr, is written as:

ζr = zini + µjt− z̄r. (4.7)

By substituting this last expression in Eq. (4.2) we can write the external
source as a function of the local coordinate of the trajectory:

q(t) = ~Lᵀ(t)T~qrj , (4.8)

where ~qrj is the angular emission density (Eq. (4.3)) in direction Ωj , and ~L
is the basis of the powers of the trajectory coordinate:

~L(t) = {tk, 0 ≤ k ≤ Np}. (4.9)

4.3. ANGULAR REGION BALANCE 61

The quantity T is a (Np + 1) × (Np + 1) matrix providing the coordinate

transformation from the basis ~P (ζ) to ~L(t), and has elements Tkp equal to:

Tkp =

(
p

k

)
µkj (z

in
i − z̄r)p−k. (4.10)

The T matrix is characteristic of each intersection, since it depends on the
entering point, length, and direction of the chord. By substituting Eq. (4.8)
into the transmission equation (Eq. (3.4)) we obtain:

ψ(t) = ψin exp (−τ) + ~Eᵀ(t, τ)T
~qrj
Σr
, (4.11)

where τ = Σrt is the optical length and ~E are the escape coefficients, which
we write in the following form:

~E(t, τ) = {tkFk(τ), 0 ≤ k ≤ Np},with (4.12)

Fk(τ) =
1

τk

∫ τ

0
dτ ′(τ ′)k exp(τ ′ − τ). (4.13)

The evaluation of Eq. (4.11) for t = li provides the value of the exiting flux
which is used as entering flux for the next chord. The computation of the
escape coefficients and their properties will be detailed in Sec. 4.4.1.

4.3 Angular region balance

The calculation of the spatial components of the flux is done by applying
the SN approximation (see Sec. 1.4.1) to obtain a discretized version of
Eq. (4.4):

~Φrn ≈
∑

j

ωjP
−1
j An(Ωj)~Ψrj , (4.14)

where we have defined with the symbol ~Ψrj the projections of the angular

flux onto the basis defined by ~P :

~Ψrj =
1

Vrj

∫

Dr
dr~P (ζr)ψ(r,Ωj). (4.15)

This quantity is usually computed by directly using Eq. (4.11) as expression
for the flux along the trajectories crossing the region [37, 35]. Here we use
an different approach which consists in directly projecting Eq. (3.1) onto the
basis defined by ~P . For region Dr with boundaries Γr we obtain:

∆ ~Jrj −
1

Vrj

∫

Dr
drψ(r,Ωj)Ωj · êz

∂

∂z
~P + Σr

~Ψrj = Pj~qrj , (4.16)

62 CHAPTER 4. HIGHER ORDER APPROXIMATIONS FOR MOC

where we have used the divergence theorem in order to write the angular
balance in terms of components of the net currents:

∆ ~Jrj =
1

Vr

∫

Γr

drΩj · n̂~Pjψ(r,Ωj). (4.17)

Remark now that the following identity holds for each polynomial Pm of the
~P basis:

∂Pp
∂z

= pPp−1. (4.18)

This property allows recasting the integral in Eq. (4.16) as a function of the
lower-order components of the angular flux:

Crj
~Ψrj = Pj~qrj −∆ ~Jrj , (4.19)

where the matrix C is defined as:

Crj
~P : diag(Σr)~P −Ωj · êz

∂

∂z
~P . (4.20)

The C matrix is lower triangular, thus its inversion becomes straightforward
by starting solving for the zeroth spatial moment, and subsequently solving
for higher order modes up to the Npth order. The inversion of Eq. (4.19)
requires the knowledge of the moments of the net currents represented by
Eq. (4.17). This quantity is computed using the values of the angular flux
obtained by the trajectory discretization. By applying Eq. (3.8) we obtain:

∆ ~Jrj ≈
1

Vrj

∑

t‖Ω
t∩Dr

∆t

{
~P [ζr(t

+
t)]ψ(t+t)− ~P [ζr(t

−
t)]ψ(t−t)

}
. (4.21)

In last equation we have rearranged the contributions for exiting and en-
tering surfaces in terms of the difference between the values at the exiting
(t+t) and entering (t−t) points of all the trajectories crossing the region (de-
noted with t ∩Dr). The notation ζr(t

±
t) is used to indicate the value of the

coordinate of the polynomial basis associated to these points.

4.4. HIGH-ORDER MOC ALGORITHM 63

4.4 High-order MOC algorithm

The pseudo-code in Algorithm 1 shows the basic steps of the MOC iteration.
The iterative problem in Eq. (1.25) is solved by representing the unknown
flux on the set of the spatial and angular moments of the flux, Φnrp. The
dimension of the vector containing the flux moments is the product of the
number of angular moments (K+1)2 (see Sec. 1.1.3), the number of meshes
Nr, and the number of axial polynomial components Np.

Source calculation

At each iteration the source is computed with equation Eq. (4.3) using the
flux moments at the previous iteration, the set of cross sections (Σr and
Σrn) for each region and anisotropy order, and the fixed external source of
each region, anisotropy and order of the polynomial expansion (Snrp).

Trajectory sweep

Subsequently, the transmission equation is solved for the trajectories span-
ning the geometry for all the angles in the SN formula. At the beginning of
each trajectory the flux is computed using the value provided by the bound-
ary conditions. Then, Eq. (4.11) is solved for each chord composing the
trajectory. For each chord, the net current for all the spatial components
(subscript p) is computed and accumulated into ∆Jrjp using Eq. (4.21). The
dimensions of ∆Jrjp are those of the total number of regions, times the order
of the polynomial expansion, times the angles in the quadrature formula.

The solution of the transmission equation for all the trajectories is tradi-
tionally called trajectory sweep. The computational costs of the trajectory
sweep linearly depend on the total number of chords, Nχ

1, and grow with
the order of the polynomial expansion due to the operations required to
solve the transmission equation, and to the number of chord-dependent co-
efficients that have to be computed. These include the chord length (li), re-
gion number (ri), axial coordinate (zini), and escape coefficients (~Ei). Some
of these can be easily computed on-the-fly (e.,g., zini), while others, like the
chord length, have to be pre-computed and stored, increasing memory costs.
We denote by symbol T the tracking data containing the set of coefficients
for all the Nχ intersections.

1Here and throughout this manuscript the symbol Nχ indicates the number of crossed
regions.

64 CHAPTER 4. HIGHER ORDER APPROXIMATIONS FOR MOC

Angular balance and flux calculation

Once all the trajectories are swept Eq. (4.19) is solved to obtain the spatial
components of the angular flux. A new estimation of Φnrp is computed using
Eq. (4.14) and compared with the previous value to check for convergence.

4.4.1 Computation of the escape coefficients

The escape coefficients can be directly computed by numerically integrating
Eq. (4.13). However, this is a costly numerical operation and is unwanted,
especially if this has to be done on-the-fly for each chord. Alternatively
these coefficients can be pre-computed and stored, but this strongly impacts
the memory requirements since we have to store Np × Nχ elements. The
factorization shown in Eq. (4.12) allows computing the escape coefficients by
taking the product of the powers of the chord length and a factor Fk which
depends only on the optical length τ (see Fig. 4.1). A good compromise is
to pre-compute Fk factors to generate tables which are linearly interpolated
on-the-fly. This still requires the storage of Np tables, each one containing
Nint interpolation points.

The problem can be mitigated by remarking that the following recursive
relation holds for the Fk coefficients, obtained by integration by parts of
Eq. (4.13):

Fk(τ) = 1− k

τ
Fk−1(τ), for k > 0, F0(τ) = 1− exp(−τ). (4.22)

The direct application of this relation, however, is affected by numerical
instabilities due to the division by τ , which in voided region and for vanishing
chords can be very small (∼ 10−12). A more stable approach is to start from
the highest order (equal to Np) and use the reciprocity relation backwards.
In this way only one table for the highest order is computed while the lower
order coefficients are obtained on-the-fly through the backward recursive
relation:

Fk(τ) =
τ

k + 1
[1− Fk+1(τ)] . (4.23)

The absolute error between the forward and backward calculation of the Fk
coefficients is shown in Fig. 4.3 for small values of τ up to order k = 4.
Remark that the forward approach may produce completely wrong values
of the Fk coefficients.

4.4. HIGH-ORDER MOC ALGORITHM 65

Input: Σr,Σrn,Snrp,T ,SN
Output: φnrp
// Initialization

φnrp ← φ
(0)
nrp;

while φnrp NOT converged do
// One iteration

// Angular emission density for all j directions

qjrp ← // Eq. (4.3) ;

for Ωj ∈ SN do // Trajectory sweep

for all trajectories ‖ Ωj do
// Boundary flux

ψ− ← ψin;
for chords in trajectory do

// Coordinate transformation coefficients

Ti ← T(zini ,Ωj) // Eq. (4.10);
// Escape coefficients

Ei ← E(li, τi) // Eq. (4.12);
// Exiting flux

ψ+ ← ψ(ψ−,Ti, Ei) // Eq. (4.11);
// Net currents

Cumulate ∆Jjrp // Eq. (4.21);
// Entering flux for next chord

ψ− ← ψ+;

end

end

end

// Region-averaged angular fluxes

Ψjrp ← // Eq. (4.19);
// Update moments

φnrp ← // Eq. (4.14);

end
Algorithm 1: Pseudo-code describing the MOC algorithm for the solution
of the mono-group transport equation. The unknown fluxes for all the
regions (r), anisotropy order (n) and order of the polynomial expansion
(p), are computed with an iterative scheme. At each iteration the angular
emission density is computed with the last available estimation of the flux
moments. Then the fixed source problem is solved for all the trajectories
crossing the geometry for the directions in the SN quadrature formula.
At each intersection the exiting flux is computed using the coefficients T
and E computed with the tracking data (T). The net current of each
chord is then accumulated into ∆J . Once all trajectories are swept, the
higher-order region balance is solved to obtain the spatial components of
the angular flux, which are finally used to compute the angular moments
of the flux.

66 CHAPTER 4. HIGHER ORDER APPROXIMATIONS FOR MOC

Computational costs

A total number of 4×Np + 2 operations is required to compute the escape
coefficients using the strategy just discussed. Two operations are required
for the linear interpolation of the coefficient Fk of highest order, while two
operations are required to solve Eq. (4.23) for each lower-order term (down
to 0). Finally, 2×Np operations are needed to compute the Np powers of the
chord length, and for the construction of the escape coefficients (Eq. (4.12)).

4.4.2 Generation of the interpolation table

The generation of the interpolation table for the Fk coefficient of highest
order can be done using the forward recursive relation for large values of τ ,
for which no numerical instabilities occur. For small τ these coefficients can
be computed using the following relation:

Fk =
∑

i=1

(−1)i−1k!

(k + i)!
τ i. (4.24)

This is obtained by expressing Fk with the recursive relation in Eq. (4.22)
and by assuming a polynomial expansion of the exponential function around 0.
In fig. 4.2 we show the approximating functions for the F4 coefficient for
varying degree of the approximated polynomial.

4.5 Convergence acceleration methods

The sole use of the Method of Characteristics for the iterative solution of the
criticality and of the multi-group problems may show low convergence rates
and excessive execution times. Accelerations techniques are methods used
to speed up the convergence of the iterative solution. These techniques are
generally based on the use of a lower order transport operator to compute
a corrective factor which is applied to the unconverged solution to obtain a
better estimation of the actual solution. The Group Rebalancing method,
for example, is one of the acceleration techniques used in the MCI module of
DRAGON [28]. It makes use of a global balance over the whole geometry to
compute group-dependent corrective factors satisfying the zero-dimensional
multi-group problem. This method helps reducing the number of outer iter-
ations but it does not take into account local spatial effects. Instead, the Self
Collision Rebalancing method (SCR), also used in MCI, solves the multi-
group problem for each spatial region by neglecting the contribution of the
entering currents, but including that of the volume (isotropic) sources [38].

4.5. CONVERGENCE ACCELERATION METHODS 67

Figure 4.1: First 5 Fk coefficients as
function of the optical length (τ).

Figure 4.2: First 15 approximating
polynomials of the F4 function.

Figure 4.3: Absolute error between the backward
and forward calculation of the Fk for small τ . The
oscillations are due to numerical errors.

68 CHAPTER 4. HIGHER ORDER APPROXIMATIONS FOR MOC

The Algebraic Collapsing Acceleration method has been firstly proposed
by Khalil in 1988 [39] for mono-dimensional transport, and then applied
to three-dimensional MOC first by Suslov [40] in MCCG3D, and then by
Le Tellier and Hébert in MCI [41]. In this acceleration technique, the cou-
pling between the currents exiting and entering each region is approximated
through an average transmission coefficient computed by summing up the
contributions of all the chords crossing that region. Another common ac-
celeration technique is the CMFD method, which uses the fine transport
solution to impose the equivalence with a diffusion operator on coarse regu-
lar spatial meshes (Cartesian in general). The diffusive problem is solved to
obtain multiplicative correction factors for the fine transport solution [42].

The acceleration method proposed for TDT is an extension to 3D ax-
ial geometries of the DPN synthetic acceleration method, which has been
already successfully applied to 2D geometries [43]. In this approximation,
a piecewise constant surface basis is used to represent the spatial variation
of the angular flux, while a double Harmonic expansion (for the directions
entering and exiting one surface) is assumed for the angular variable. This
lower-order approximation is applied to solve the synthetic problem to ob-
tain the corrective factor to apply to the unconverged solution. In the next
section we will derive the synthetic problem, whereas in the following section
we will recall the DPN equations.

4.5.1 Synthetic Problem

The synthetic problem is obtained by rewriting the iterative version of the
transport equation (Eq. (1.25) and Eq. (1.26)) for the error with respect to
its converged solution. The synthetic problem can be derived for the three
nested algorithms used for the iterative solution of the criticality (external),
slowing-down (thermal), and self-scattering (internal) problems. We will
write the synthetic problem for the it internal iteration, although it can be
easily rewritten for thermal and external iterations. By indicating with it
the index of the iteration, the general form of the of the iterative problem
reads:

LΦ(it+1/2) = HΦ(it+1/2) + S, (4.25)

where Φ represents the group-flux, L is the transport operator, and H the
self-scattering operator. The transfer and fission sources are represented by
S. By denoting with Φ(∞) the converged solution of Eq. (1.25), the synthetic
problem is set by subtracting Eq. (1.25) to its converged form:

(L −H)δΦ = H∆Φ, (4.26)

4.5. CONVERGENCE ACCELERATION METHODS 69

where δΦ = Φ(∞) −Φ(it) is the unknown function of the synthetic problem,
and ∆Φ = Φ(it+1/2)−Φ(it) is the iteration error, acting as non-homogeneous
source of the synthetic problem. By solving Eq. (4.26) we obtain an estima-
tion of the group-flux for the next iteration:

Φ(it+1) ≡ Φ(∞) = Φ(it+1/2) + δΦ. (4.27)

Remark that the complexity of the solution of the synthetic problem
is equivalent to that of the original iterative problem. It is therefore not
advantageous to solve it with the MOC approximation. Instead, a lower
order operator can be used. This strategy accelerates the iterative solution
since the solution of the lower order operator has smaller computational
costs and it helps converging faster on lower order modes.

4.5.2 DPN approximation

The diagonal transport operator L in Eq. (4.26) is inverted with a lower order
transport-consistent DPN approximation [43]. In such approximation the
cell boundaries are decomposed into surfaces, α, having a spatially constant
representation of surface fluxes. The angular variable is approximated with a
double spherical harmonics expansion, for the directions entering and exiting
each surface. The volume flux is represented with step functions and with the
usual spherical harmonics expansion. By invoking the transmission equation
and the cell balance for the unknown surface fluxes, Φν

α± , and volume fluxes,
Φν
r , we obtain a system of coupled equations [43]:





∑
µ
Aνµ
α+Φµ

α+ =
∑
β,µ

T νµαβΦµ
β− + Vr

∑
µ
Eνµαr q

µ
r

∑
µ,α

Aνµ
α+

(
Φµ
α+ − sνsµΦµ

α−

)
+ Σt,rVrΦ

µ
r = Vr

∑
µ
Bνµ
r qµr

(4.28)

where sµ and sν take into account the parity of the spherical harmonics, and
the external source is computed using the iteration error as in Eq. (4.26).
The definition of the coefficients A, B, T and E can be found in [44].

To impose consistency of the DPN approximation, the DPN coefficients
for all the energy groups are computed using the tracking T used for the
transport sweep.

In our implementation, the lower order DPN operator is also used to
initialize the fluxes for the actual multi-group transport calculation. This
strategy allows a faster convergence on diffusive modes and leaves to the
MOC solver the task to converge on higher order modes.

70 CHAPTER 4. HIGHER ORDER APPROXIMATIONS FOR MOC

Figure 4.4: Sketch of the approximations done in the DPN approximation.
The angular flux is represented on constant spatial basis of regions, r, and
surfaces, α/β. The coupling coefficients between surface and volume fluxes
are computed using the MOC trajectories.

4.5.3 Results of the DPN acceleration

The DPN synthetic acceleration discussed above has been tested on a sim-
ple problem constituted by a hexagonal cell whose 2D section is shown in
Fig. 4.5, and whose axial composition is heterogeneous. The criticality prob-
lem has been solved using three strategies. In case A no acceleration is used
and the convergence is obtained only using free MOC iterations. In case
B the DP1 acceleration is used for both internal and external iterations,
whereas case C also includes the initialization of the first guess solution us-
ing the DP1 operator. Results of the analysis are shown in Tab. 4.1. These
results show that the sole use of the MOC requires far more iterations (ex-
ternal and internal) and computational time with respect to the accelerated
cases. Remark also the time gain obtained by initializing the iterative solu-
tion using the DPN operator.

4.5. CONVERGENCE ACCELERATION METHODS 71

Figure 4.5: Triangular pincell representing the basic 2D section of an infinite
hexagonal lattice configuration. Along the axial direction the composition of
the fuel varies: fissile material composes the lower part, while fertile material
composes the upper part.

Externals Internals Time (sec) Speed Up

Case A 12 150646 40474 −
Case B 7 13776 3825 10.6
Case C 5 9840 2720 14.9

Table 4.1: Results of the application of the DP1 acceleration for the test
case in Fig. 4.5. Case A is the case where only MOC free iterations are
used. Case B uses the DP1 synthetic acceleration of internals and external
iterations. Case C also includes the initialization of the first guess solution
using the DP1 solution of the multi-group problem.

72 CHAPTER 4. HIGHER ORDER APPROXIMATIONS FOR MOC

Chapter 5

Tracking strategies

This chapter is dedicated to the tracking techniques that have been imple-
mented in the MOC solver TDT. This solver is capable of tracking trajec-
tories in two-dimensional unstructured meshes of any kind by using the so-
called method of compound trajectories, which allows the treatment of the
geometrical symmetries without applying any approximation on the bound-
ary fluxes. The tracking techniques discussed in this chapter provide an
extension of the method of compound trajectories to 3D axial geometries
and have been published in an international journal [45]. In the following
section we will show how two-dimensional tracking techniques can be used to
treat three-dimensional domains. Then, we will introduce the method of the
compound trajectories and how this has been extended to 3D cases. In par-
ticular, we will introduce the concept of periodic trajectories: trajectories
that allow the exact treatment of symmetries in infinite lattice domains.
In the last section we also describe a method to assure constant spacing
between trajectories during tracking. This property allows a reduction of
operations needed to compute spatial integrals.

5.1 Basic tracking strategy

The Method of Characteristics makes use of a trajectory-based discretiza-
tion of the geometry to solve the mono-group transport equation. For each
direction Ω ∈ SN a set of trajectories is built in order to cover the problem
geometry. We denote by ϕ and θ respectively the azimuthal and the polar
angles of Ω. In the following we will discuss about specialized methods for
tracking in 3D axial geometries. We limit our analysis to systems that can
be described by the product of a 2D unstructured mesh, D2D, and a 1D

73

74 CHAPTER 5. TRACKING STRATEGIES

(a) (b) (c)

Figure 5.1: Tracking strategy for 3D axial geometries. On the left the
original geometry composed of the 2D section extruded along z. The tracking
is done first by considering the 2D section and tracking 2D trajectories with
spacing ∆r (center). Each 2D trajectory is used to generate an sz-plane,
which represent an axial cut of the geometry. The actual 3D trajectories are
tracked on each sz-plane with spacing ∆s (figure on the right).

axial mesh, ~H = {∆hrZ} for rZ = 1, . . . NZ (fig. 5.1(c)). We assume D2D to
be partitioned into homogeneous regions, Dr2D .

For these geometries tracking can be done in two phases. First we fillD2D

with 2D trajectories with direction ϕ. Such operation is done by projecting
the boundaries of D2D in the direction perpendicular to ϕ, and by dividing
such projection in segments of length ∆r. Trajectories are then tracked
starting from the middle points of these segments until they exit from the
system. By s ∈ [0, L2D] we denote the coordinate of a 2D trajectory defined
with respect to its entering point on the 2D section boundaries, and by
~s = {si2D} the coordinates of the intersections with 2D region boundaries.
In the second phase of the tracking, we use each 2D trajectory as support
to build the actual 3D ones. By taking the product of the set ~s of 2D
intersections and the axial mesh ~H, we obtain a Cartesian mesh (hereafter
sz-plane) describing an axial section of the 3D geometry (Fig. 5.1(c)). The
boundaries of each sz-plane are projected in the direction perpendicular to
θ. As for the 2D case, such projection is divided in segments of length ∆s
defining the starting point of 3D trajectories. Hence, the cross-sectional area
associated to each trajectory is equal to ∆t = ∆r∆s.

5.2. TREATMENT OF GC 75

Figure 5.2: Reciprocity relations between tracking directions. Direction Ω
belongs to the upper unit sphere and it is concordant with the coordinate
of the 2D trajectory (s in the figure). Directions gπ|z(Ω) are obtained by
π rotation of Ω around the z-axis, that is by running the 2D trajectory in
backward direction. The directions of the lower unit sphere are obtained by
sweeping the 3D trajectories backwards.

5.1.1 Reciprocity

A trajectory in the Ω direction can be swept backward to obtain contribu-
tions for the direction −Ω. By exploiting this property we can track only
for the directions Ω ∈ S2

up (i.e., the directions of the upper unit sphere),
and obtain the remaining directions by backward sweep. This approach re-
quires both directions Ω and −Ω to be contained in the SN quadrature set.
Similarly, we can halve the size of the 2D tracking by noticing that a 2D
trajectory with angle ϕ is identical to the trajectory with angle ϕ′ = ϕ+ π
swept in backward direction. To exploit this symmetry, the tracking of the
3D upward directions in each sz-plane is done by running the 2D trajectory
forwards and backwards. In other words, by denoting with s the coordinate
of the 2D trajectory, the tracking in each sz-plane is done for the directions
Ω ∈ S2

up such that Ω · s > 0, and for directions such that Ω · s < 0. This
tracking strategy requires both directions Ω and gπ|z(Ω), obtained by ro-
tation of Ω through π radians around the z-axis, to be contained in the
quadrature set (see Fig. 5.2).

5.2 Exact treatment of symmetries

Some systems are characterized by symmetries such as invariance with re-
spect to planar reflection (see Sec. 1.2.1). When these symmetries exist, we
limit the track to only a portion of the domain, called basic domain, repre-

76 CHAPTER 5. TRACKING STRATEGIES

senting the generator of D under the action of the symmetries. The symme-
tries are taken into account by imposing the so-called geometrical boundary
conditions (hereafter GC) on the interfaces generated by such domain re-
duction. In the following we will refer to these portions of the boundaries as
closed boundaries, while the other boundaries will be denoted as open. GC
are of the form:

ψ−(r,Ω) = ψ+(g−1r, g−1Ω), r ∈ Γclosed (5.1)

The function g is the geometrical motion representing the symmetry, and
provides the mapping between the flux entering the basic domain in position
(r,Ω) and the flux exiting from position (g−1r, g−1Ω).

5.2.1 Method of compound trajectories

The method of compound trajectories has been introduced in [46] to exactly
treat geometrical boundary conditions in 2D geometries. It consists in track-
ing so that when a trajectory leaves the domain from a point of a closed
boundary, (r,Ω), there is always another trajectory entering the domain
in position (gr, gΩ). In practice this is done by tracking each trajectory
starting from an open boundary and by following its path until another
boundary is reached. If such boundary is closed, the geometrical motion is
applied to put the trajectory back into the basic domain and to continue
its path. Conversely, the trajectory terminates if the crossed boundary is
open. This technique generates compound trajectories containing one or
more sub-trajectories with different angles. Since the continuity of the flux
between two sub-trajectories is assured by Eq. (5.1), the sub-trajectories
belonging to a compound can be swept consecutively starting from the open
boundary, and by using the flux leaving a sub-trajectory as the entering flux
for the following one. Remark that such method requires all the directions
obtained by geometrical motion to be contained in the quadrature set. To
impose such constraint, the quadrature formula is built in the basic angular
domain and extended to the whole sphere by application of the symmetries.
By basic angular domain we mean the generator of S2 under the action of
the geometrical motions. For some cases, the construction of the quadra-
ture formula in the basic angular domain does not guarantee the reciprocity
relation. These cases include all geometries with azimuthal symmetry un-
der rotation of 2π/N with N odd. This undesired behavior is eliminated
by building the quadrature formula in the angular domain π/N , and by
extending it to 2π by N applications of the rotation GC, and by applying
the reciprocity condition [46]. Remark also that when we track trajectories

5.2. TREATMENT OF GC 77

with one direction, we partially cover the domain also for those directions
obtained by application of the geometrical motions. Special care is thus
needed in order to complete the domain without repeating trajectories.

The current version of TDT already makes use of the method of com-
pounds to track trajectories in arbitrary two-dimensional geometries with
geometrical boundary conditions. A detailed analysis of the treatment of
GC for 2D geometries goes beyond the scope of this manuscript and we re-
fer the interested reader to [46] for a complete review. In the following we
will provide the extension of this method to 3D axial geometries.

Periodic trajectories

A mention is due for the treatment of infinite lattice configurations for which
the basic domain has only closed boundaries. In these cases, we can find
particular trajectories, called periodic trajectories, which have the property
of mapping onto themselves after repeated applications of the GC (Fig. 5.3).
In [46] the authors analyze 2D infinite lattice configurations of rectangular
and hexagonal geometries, and identify the conditions for which the peri-
odicity condition is satisfied. In particular they find that the periodicity
condition for a given geometrical configuration only depends on the trajec-
tory angle. For a rectangle of sides a and b, for example, the periodicity
condition for translation GCs reads:

ϕc = tg−1
(ma
nb

)
,m, n ∈ N. (5.2)

Remark from this expression that cyclic angles can be arbitrarily chosen by
finding suitable values of m and n. The choice of this pair of integers also
determines the period of the trajectory which for the rectangular case is:

L2D =
√

(ma)2 + (nb)2, m, n coprimes. (5.3)

It is important to remark that all parallel periodic trajectories share the
same period. The analysis done in [46] shows that, for any 2D lattice con-
figuration, the cyclic angle and the trajectory period only depend on the
choice of the pair of integers (n,m).

5.2.2 Extension to 3D axial geometries

The method of compound trajectories developed for 2D geometries can be
applied for tracking in 3D axial geometries. Let D be the 3D axial basic
domain with boundaries Γ. The surfaces composing Γ can be either vertical

78 CHAPTER 5. TRACKING STRATEGIES

3

1

2

4

5

6

7

8

t

9 10

Figure 5.3: Periodic trajectory in a square geometry with 1/8 symmetry
(image taken from [46]).

or horizontal depending if they are respectively perpendicular or parallel to
the 2D section. GC applied on vertical surfaces are constant along the z-
axis and can only affect the two-dimensional components of the trajectory,
(r2D, ϕ). Conversely, GC on horizontal surfaces may only affect the polar
angle and the z-coordinate. By consequence, these boundary conditions can
be treated separately in the two tracking phases described in Sec. 5.1. When
the 2D section is considered, only boundary conditions applied on the verti-
cal surfaces are taken into account, which allows the use of the 2D tracking
techniques already developed in [46]. These methods can be applied to any
kind of 2D geometry and geometrical boundary condition, and generate the
minimum set of 2D compound trajectories covering the domain for the az-
imuthal directions ϕ ∈ [0, 2π], avoiding repetition due to the equivalence
between directions ϕ and ϕ + π. The tracking phase proceeds as usual by
considering each 2D compound trajectory for the construction of the asso-
ciated sz-plane. The 3D trajectories are then tracked in upward direction
(Ω ∈ S2

up) by running the 2D trajectory forwards and backwards to obtain
the directions Ω with ϕ ∈ [0, π], and those obtained by π rotation around
the z-axis, gπ|z(Ω). Unlike the fully open case, the sz-plane is now composed

5.2. TREATMENT OF GC 79

of sub-planes with varying azimuthal direction obtained by the product of
the 2D sub-trajectories with the axial mesh. The boundary conditions ap-
plied on the vertical surfaces, however, guarantee the continuity of the flux
across the interfaces between sub-planes. This property allows to ‘unfold’
the sub-planes, and to track 3D trajectories as if the sz-plane were a con-
tinuous Cartesian rectangular domain (see Fig. 5.4).

Remark from Fig. 5.2 that the direction obtained by reflection of Ω with
respect to the horizontal plane is equivalent to direction gπ|z(Ω) because of
the reciprocity condition. Therefore, when reflective GCs are applied on the
horizontal surfaces, a trajectory with initial direction Ω may be reflected
and partially cover the sz-plane for directions gπ|z(Ω). In order to avoid
repetitions we need to consider the boundary conditions applied on each sz-
plane. The top and bottom sides directly inherit boundary conditions from
the respective horizontal planes. These can be either open boundaries, or
closed boundaries with reflective or translation GC. The boundary condi-
tions on the left and right sides require more discussion. In fact, we have
seen that the 2D trajectories generated with the method of compounds enter
and exit the geometry through open boundaries; in these cases the left and
right boundaries of the sz-plane are open. Contrarily, when the 2D section
is only delimited by closed boundaries, 2D trajectories are tracked in order
to satisfy the periodicity condition which is of the form:

ψ(s) = ψ(s+ nL2D), n ∈ Z, (5.4)

with L2D the period of the 2D trajectory. This condition formally corre-
sponds to a translation, which means that whenever a 3D trajectory crosses
the vertical boundaries of the sz-plane, it is put back inside the domain
by applying the transformation g(s) = s ± L2D, with sign that depends on
whether the crossed boundary is the left (+) or the right one (-). In the
following section we will provide the details of the tracking strategy for all
combinations of boundary conditions applied on the sides of the sz-planes.

Treatment of GC in 3D Axial Geometries

Here we describe the tracking techniques for several configurations of bound-
ary conditions that can be applied on sz-planes of width L2D and height H.
In this section we will call right trajectories the 3D trajectories with direction
Ω ∈ S2

up obtained by sweeping the 2D trajectory in the forward direction
(Ω ·s > 0, s being the coordinate of the 2D trajectory). In a similar way, we
will call left trajectories those with direction Ω ∈ S2

up such that Ω · s < 0.

80 CHAPTER 5. TRACKING STRATEGIES

Figure 5.4: On the left one 2D compound trajectory entering the geometry
in s = 0 and exiting in s = L2D after having bounced on the lower bound-
ary. On the right the sz-plane with the 3D trajectory. The dashed line in
the figure shows the limit between the two 2D sub-trajectories: the geomet-
rical boundary conditions on vertical surfaces assures continuity of the 3D
trajectory in the sz-plane.

For simplicity of notation we will indicate with symbol ϑ ∈ [0, 2π] the angle
between the 3D trajectory and the positive direction of the 2D trajectory
(see fig. 5.4). In this framework, ϑr ∈ [0, π/2] is the ϑ angle for right trajec-
tories, while left trajectories have angle ϑl ∈ [π/2, π] with ϑl = π − ϑr. We
will also denote with s⊥ the axis with direction ϑr/l − π/2 and zero on the
origin of the sz-plane, and by L the portion of s⊥ to track for right (LR) and
left (LL) trajectories (see fig. 5.5). Remark also that, because of reciprocity,
the trajectories with angle ϑ+ π are equivalent to trajectories with angle ϑ
swept in backward direction (denoted with symbol ϑ̂).

The first case is the case where all the boundaries are open. Right tra-
jectories are obtained starting from the projection of the boundaries on s⊥:
LR = [−H cosϑr, L2D sinϑr]. The resulting trajectories enter the domain
either from the left or from the bottom boundaries. Left trajectories are
tracked in the same way resulting in LL = [0, L2D cosϑr + H sinϑr]. In
the second case considered the vertical surfaces have translation GC, while
horizontal surfaces are considered as open. In this case the tracking length
for right trajectories is LR = [0, L2D sinϑr], while for left trajectories it
corresponds to LL = [0, L2D sinϑr].

For geometries with up/down symmetry (Fig. 5.5), one of the horizontal

5.2. TREATMENT OF GC 81

boundaries is characterized by reflective GC. For simplicity we assume this
boundary to be the upper one. In such case LR = [−H cosϑr, L2D sinϑr] as
for the previous case. However, one must notice that due to the reflection
on the upper boundary, right trajectories include sub-trajectories with di-
rection 2π− ϑr. These coincide with left trajectories because of reciprocity.
Therefore, the tracking length for left trajectories differs from the open case
and results being LL = [0, H cosϑr], which corresponds to the portion of
the domain not covered by the tracking of right trajectories. For up/down
symmetry with translation GC on the vertical sides, we only have to track
right trajectories from the portion LR = [0, L2D sinϑr] of s⊥, while no left
trajectories are tracked since all right trajectories will eventually ‘bounce’ on
the upper surface and re-enter the domain in the left (backward) direction.

If the upper and lower sides of the sz-plane are characterized by trans-
lation GC, and the vertical sides are open, the tracking lengths are LR =
[−H cosϑr, 0] and LL = [L2D sinϑr, L2D sinϑr+H cosϑr]. Finally, when up-
per and lower boundaries are reflective, and the vertical surfaces are open,
right trajectories are tracked in the portion LR = [−H cosϑr, 0]. For this
case the tracking length for left trajectories has a complicate expression.
An easier solution can be obtained by exploiting the reciprocity condition,
and by tracking left trajectories in the opposite direction. In this case the
tracking length for opposite left trajectories is L̂L = [−H cosϑr, 0].

When Γ is only composed of closed boundaries, it is still possible to seek
for 3D periodic trajectories. We have seen in Sec. 5.2.1 that the method of
compounds for 2D geometries generates a set of cyclic angles ϕc and periodic
2D trajectories with period L2D(ϕc) which depends only on the value of ϕc.
The associated sz-planes are rectangles of height H and length L2D(ϕc) with
translation boundary conditions on the vertical sides. In this configuration,
cyclic polar angles are defined as follows [46]:

tan(ϑc) =
mfzH

nL2D(ϕc)
, (5.5)

whit period:

Lc =
√

(mfzH)2 + (nL2D(ϕc))2. (5.6)

In these equations m,n ∈ Z are coprimes and define the periodicity of the
trajectory. The fz parameter takes into account the boundary conditions
applied on the top and bottom surfaces of the geometry:

fz =

{
1, Translation
2, Reflection

(5.7)

82 CHAPTER 5. TRACKING STRATEGIES

s
z Open Translation

Open
LR [−H cosϑr, L2D sinϑr] [0, L2D sinϑr]
LL [0, L2D cosϑr +H sinϑr] [0, L2D sinϑr]

One Refl.
LR [−H cosϑr, L2D sinϑr] [−H cosϑr, L2D sinϑr]
LL [0, H cosϑr] [∅]

Transl.
LR [−H cosϑr, 0] [0, L2D sinϑr/n]
LL [L2D sinϑr, L2D sinϑr +H cosϑr] [0, L2D sinϑr/n]

Two Refl.
LR [−H cosϑr, 0] [0, L2D sinϑr/n]
LL [−H cosϑr, 0]? [∅]

? values are tracked for the opposite left angle ϑ̂l.

Table 5.1: Tracking length, LR/L, in the sz-plane for different configurations
of geometrical boundary conditions. On the s-axis only open or translation
conditions are possible. Along the axial direction all possible combinations
of open, reflective and translation conditions are considered.

For full translation we track for both right and left trajectories on the portion
L = [0, L2D sinϑc/n], while for reflection only right trajectories are tracked
in the segment L = [0, L2D sinϑr/n].

From Eq. (5.5) we can see that values of tan(ϑc) are dense in R. The same
property holds true for ϕc [46]. By consequence, we can always construct
an angular quadrature formula Scn of cyclic angles Ωc = (ϕc, θc) arbitrarily
close to an optimal SN set. However, an accurate value of cyclic angles
requires both m and n to be large, increasing the length of the trajectory.
Generally, such effect does not impact the total size of the tracking since this
is always built to cover the whole geometry without repetitions. However, it
may happen that, for sufficiently long periods, the tracking length is smaller
than the actual trajectory spacing. For these cases, the latter is adjusted
to fit in the tracking length, resulting in an increase of the tracking size.
Tab. 5.1 summarize the tracking techniques for the set of GC considered in
this section.

5.2.3 Boundary flux for periodic trajectories

In the previous section we have seen that, as for the 2D case, it is possible
to seek for periodic trajectories for completely closed 3D domains. These
trajectories can be exploited to directly retrieve the unknown fluxes entering

5.2. TREATMENT OF GC 83

Figure 5.5: Tracking strategy for open boundary conditions (thick dotted
lines) on the vertical sides, and up/down symmetry on the top horizontal
surface (thick double line). Trajectories in the right direction (red) are
tracked from LR and partially cover the domain also for left trajectories
(green) due to the reflection on the top surface. Left trajectories are tracked
in order to avoid repetition.

84 CHAPTER 5. TRACKING STRATEGIES

the boundaries. By imposing the periodicity condition to the integral form
of the transport equation for a trajectory with period Lc we obtain:

ψ− =

Lc∫
0

dt′q(t′)e−τ(t′,Lc)

1− e−τ(0,Lc)
, (5.8)

where t ∈ [0, Lc] is the local coordinate along the trajectory and τ(t1, t2)
is the total optical length between points t1 and t2 of the trajectory. The
solution of the last equation requires an additional transport sweep, since
we need to collect the contributions of the angular sources along the whole
trajectory. However, we can exploit the continuity condition to write the
integral form of the transport equation for the incoming boundary flux with
respect to the flux at position t? < Lc:

ψ− ≡ ψ(Lc) = ψ(t?)e−τ(t?,Lc) +

Lc∫

t?

dt′q(t′)e−τ(t′,Lc). (5.9)

From the last equation we can see that the contribution of ψ(t?) becomes
negligible for τ(t?, Lc)� 0. Therefore, the boundary flux can be computed
with arbitrary precision by sweeping the trajectories only for t > t? and by
setting ψ(t?) = 0, where t? is defined such that τ(t?, Lc) > τcut. Remark
that with this approach we only have to sweep part of the trajectory to
obtain the boundary fluxes, resulting in a speed up of the calculations. In
particular, for very long trajectories the speed up asymptotically tends to a
factor 2.

5.2.4 Constant Trajectory Spacing

The cross sectional area associated to each 3D trajectory defines the spatial
integration weight (∆t = ∆r∆s) used to compute the region integrated
leakage term (Eq. (4.21)). The cost of the calculation of such integral is due
to the calculation of the net current and to the multiplication by the spatial
weight, and linearly increases with the number of trajectories that cross the
region. The multiplication by the spatial weight can be avoided by imposing
a constant value of the spatial weights associated to the chords that cross
each region. This allows to move out from the sum the spatial weight and
to rewrite the integral in the following optimized form:

∆ ~Jrj ≈
∆t

Vr

∑

t‖Ω
t∩Dr

{
~Pr[ζ(t+t)]ψ(t+t)− ~Pr[ζ(t−t)]ψ(t−t)

}
. (5.10)

5.2. TREATMENT OF GC 85

a

b

c

L1
L2

L3

L4

B
A

C
D

E

F

∆r
ϕ

Figure 5.6: Different methods of spatial weight adaptation. The basic do-
main (gray) is a 1/8 geometry with one open boundary (dashed). Reflective
boundary conditions are applied on the other boundaries (black solid lines).
Li is the projection of the open boundary on the axis perpendicular to the
trajectories. ∆r is the reference value of trajectory spacing. For simplicity
of representation the adaptation methods are shown on the complete ge-
ometry although these are applied only on the basic domain. a) Standard
Compound-Trajectory [46]: the weight is adapted for each Li; this results in
trajectory-dependent spatial weights (different colors). b) Constant weight.
c) Modified adaptation criteria: the weight is adapted to the whole projec-
tion, resulting in constant-per-angle spatial weights.

86 CHAPTER 5. TRACKING STRATEGIES

A constant spatial weight can be imposed by tracking trajectories with
constant spacing. However, a crude application of constant spacing may
produce an incomplete tracking, especially when applied together with the
method of compound trajectories. To understand this phenomenon we need
to recall the basic steps of the method of compound trajectories. We will
take Fig. 5.6 as a practical example, while a complete treatment of 2D ge-
ometries can be found in [46]. The figure shows the basic domain (in grey)
of a 2D square open geometry with one-eight symmetry. In the same fig-
ure, the symmetry boundary conditions are applied repeatedly in order to
complete the geometry in the domain [0, π]. This is done only to simplify
the representation of the tracking strategy: in the figure, consider the open
boundary DC, symmetric of BC with respect to AC, and its projection in
the direction orthogonal to ϕ (L2). This projection is equivalent to the one
obtained by projecting BC in the direction orthogonal to the symmetric
of ϕ with respect to AC. By keeping this in mind, the tracking technique
for compound trajectories proceeds as follows: first the basic direction ϕ is
considered and trajectories are tracked from the tracking length L1, corre-
sponding to the projection of the open boundary in the direction orthogonal
to ϕ. Then, tracking moves to angle gϕ obtained by applying the reflection
(g) to the basic angle ϕ, and trajectories are tracked from the projection
L2. This procedure follows until the domain [0, π] is completed. By using
a constant spacing for all tracking lengths (case b in figure), the resulting
tracking may be incomplete and even miss important parts of the system
(missing part in L2). To avoid this problem the standard method consists in
adjusting the trajectory spacing to be divisor of each tracking length. In this
way, however, the spacing between trajectories becomes dependent on the
initial tracking angle (case ‘a’ in Fig. 5.6). Now, recall that one trajectory
may change its direction depending on the boundary surfaces crossed along
its path (Section 5.2.1). Therefore, it is easy to imagine that the trajectories
crossing a region for a given angle may have been generated by geometrical
motion of trajectories with different initial angle, preventing the use of the
optimized formula in Eq. (5.10). A different approach is to use a general-
ized adaptation criteria: instead of adjusting the spacing with respect to the
tracking length for a given angle, the spacing is adjusted with respect to the
projection of the complete geometry:

LTOT =
⋃

n

Lgnϕ = k∆r, k ∈ N. (5.11)

In this expression, the geometrical motion is applied in order to obtain the
projection of the full open boundary onto the direction perpendicular to

5.2. TREATMENT OF GC 87

ϕ. Because of the periodicity of the symmetry group, the projection of the
total boundary is equal for all the angles generated by geometrical motion
of ϕ. Therefore, by adapting the trajectory spacing to the total projection
we assure a constant weight for all the trajectories with the same angle, as
well as a regular tracking (method c in Fig. 5.6). Compared to the standard
adaptation method (case a), this new strategy never takes into account the
discontinuities of the geometry boundaries, introducing an additional error
in the spatial integration. However, such error is of the same nature of
the one introduced by not adapting the tracking to all the discontinuities
internal to the domain.

Unfortunately, this approach can not be completely extended to the
adaptation of ∆s for all those trajectories with same angle Ω. The difficulty
lies in the fact that, in general, 2D trajectories with same azimuthal direction
have different length, and it is impossible to find a ∆s divisor of all these
lengths. However, if the 2D section of the domain is characterized only by
exact boundary conditions, the length of the trajectory depends only on the
azimuthal angle ϕ. For these cases a unique ∆s can be found and constant
spacing is possible without approximation of the geometry. For open cases,
a constant spacing can be still be applied by accepting the integration error
derived of ‘missing’ trajectories. This error can be reduced by tracking so
that the missing parts corresponds to peripheral outgoing trajectories.

88 CHAPTER 5. TRACKING STRATEGIES

Chapter 6

Optimized methods for the
trajectory sweep

The application of the MOC algorithm for actual calculations in three-
dimensional geometries is mainly limited by its computational costs. In
particular, we have seen in Chapter 4 that the cost of the MOC is mainly
due to the memory required for trajectory data, and due to the number of
operations required to solve the transmission equation along the characteris-
tic lines. In three-dimensional geometries, the number of intersections for a
relatively small problem can be of the order of some hundreds of millions, an
amount which already challenges standard workstations in terms of memory
usage, and which requires several hours of calculation.

In this chapter we describe in detail some tracking methods that have
been implemented in TDT to accelerate its execution and reduce its memory
needs. These methods strongly exploit the regularities that can be found in
Cartesian axial geometries, for which each sz-plane is Cartesian. Optimized
tracking techniques for these geometries are mentioned in [47] and in [48] but
no detail is provided. The chord classification method has been developed
to reduce both memory and computational costs of the sweep algorithm. In
this method we recognize chords with same length to avoid their storage.
A similar categorization is applied to pre-compute escape coefficients for
recognized optical lengths, and reduce the costs of the trajectory sweep.

An alternative storage method for trajectories is also proposed. In
this approach, trajectories in each sz-plane are represented by sequences
of crossed surfaces. This representation allows a fast reconstruction of the
trajectories, and a reduction of the memory requirements.

The treatment of these techniques and some results have been subject

89

90 CHAPTER 6. OPTIMIZED SWEEP METHODS

of a publication in an international conference [49], and in an international
journal [45].

6.1 Chord Classification Method

The sweep algorithm requires, among other data, the knowledge of the chord
length associated to each intersection of the trajectories with the geometry.
Chord lengths are generally stored in records of the type:

Ct = {li, 1 ≤ i ≤ N t
χ}. (6.1)

Each record contains the chord lengths of all the N t
χ intersections of each

trajectory, ordered according to the actual sequence of regions crossed along
the trajectory path. This kind of storage is well suited for the trajectory
sweep because it naturally follows the order of solution of the transmission
equation, allowing an optimal data access (see Sec. 6.1.1 for details): at the
ith intersection the ith chord length is loaded to compute the associated
optical length and escape coefficients; then, Eq. (4.11) is solved to obtain
the exiting flux and to proceed to the treatment of the next intersection.
The computational costs associated to this strategy linearly increase with
the number of intersections: on one side because of the memory required to
store the chord lengths, and on the other because of the operations required
to compute the escape coefficients.

Remark that the storage format in Eq. (6.1) requires the chord lengths
to be stored for each intersection, regardless of the fact that this information
is actually required. This storage is therefore well suited whenever the chord
lengths cannot be estimated a priori, which is the case of completely unstruc-
tured meshes. However, the axial regularity of 3D axial geometries allows
identifying recognized types of chords that share the same chord length
(chord-classes). The idea of the Chord Classification Method is to identify
the set of chord classes representative of the whole set of chords. A similar
approach is used to classify escape coefficients, ~Ei in Eq. (4.12), which only
depend on the macroscopic cross section and chord length. The advantages
are twofold:

� Reduction of the number of chords that have to be stored;

� Reduction of the number of escape coefficients that have to be com-
puted for the sweep.

6.1. CHORD CLASSIFICATION METHOD 91

The definition of the classes is done according to some geometrical prop-
erty of the chord. A first classification criteria is the kind of surfaces delim-
iting the chord: a H-chord enters and exits the homogeneous region through
two horizontal surfaces (Fig. 6.1). Each H-chord has length:

lh(rZ , ϑ) =
∆hrZ
sinϑ

, (6.2)

where ∆hrZ represents the height of the rZ-th axial node. According to
the last definition, the number of H-chord classes is equal to the number of
axial meshes times the number of polar directions in the quadrature formula.
Concerning the escape coefficients, these are function of both the chord
length and the optical length. The latter can be computed by taking into
account the dependence of the cross section on the 2D region number, so we
can write:

τh(r2D, rZ , ϑ) = lh(rZ , ϑ)Σ(r2D, rZ). (6.3)

By consequence the escape coefficient of polynomial order k (Eq. (4.12)) for
H-chords can be expressed with the following relation:

Ek,h(r2D, rZ , ϑ) = lkh(rZ , ϑ)Fk(τh). (6.4)

The number of H-classes for escape coefficients is equal to the number of 3D
regions times the number of polar angles in the quadrature formula.

Similarly to H-chords, V-chords (Fig. 6.1) enter and exit the homo-
geneous region through vertical surfaces. Given their projection on the
2D-plane (∆si), chord length, optical length and escape coefficients result
in:

lv(i2D, ϑ) = ∆si2D/ cosϑ, (6.5)

τv(i2D, rZ , ϑ) = lv(i2D, ϑ)Σ(R2D(i2D), rZ), (6.6)

Ek,v(i2D, rZ , ϑ) = lkvFk(τv). (6.7)

In these equations R2D represents the mapping between the local number-
ing of chords along the 2D track (i2D) and the absolute order number of the
2D region (r2D). The number of V-classes for chord lengths is equal to the
number of intersections of 2D trajectories with the 2D section of the geom-
etry times the number of polar angles in the quadrature formula, whereas
for escape coefficient this number is also multiplied by the number of axial
planes to take into account the dependence on the cross section.

Finally, chords delimited by two different kind of surfaces are those of the
mixed type (M-chords). Their length depends on the points of intersection

92 CHAPTER 6. OPTIMIZED SWEEP METHODS

of the trajectory with the vertical and the horizontal surfaces, thus are more
difficult to classify. We will discuss the details of the classification techniques
for M-chords in Sec. 6.1.3.

Depending on the classification strategy, H/V/M chords can be either
considered as recognized or unrecognized. The difference between the two
cases is the storage method and the way the escape coefficients are com-
puted: for recognized chords, chord lengths and escape coefficients are re-
trieved using the respective class parameters (e.g., chord type, region num-
ber, direction). Differently, unrecognized chords are stored using the stan-
dard (sequential) storage method, and the associated escape coefficients are
computed using the strategy described in Sec. 4.4.1. Clearly, the size of
the standard record is reduced to the sole number of unrecognized chords
contained in each trajectory:

C?t = {li, 1 ≤ i ≤ N t
NR}. (6.8)

When classification is applied, a two bit information is assigned to each chord
to identify the chord type: H-chord, V-chord, M-chord or unrecognized type.
~E-classes are created before the in-group iterations using the mono-group
macroscopic cross sections and using chord lengths of each class. In par-
ticular, M-chords are directly retrieved from stored values (see Eq. (6.14)),
while H/V-chords are computed using the 2D tracking, the z-mesh and pre-
computed values of the trigonometric functions (Eq. (6.2) and Eq. (6.5)).
For each chord swept, the escape coefficient is either computed on-the-fly
using the method described in Sec. 4.4.1 (unrecognized chords), or loaded
from pre-computed values (recognized).

6.1.1 Computational efficiency

Some remarks are due concerning the computational efficiency of the classi-
fication method. We have seen that thanks to this method we can reduce the
number of operations required during the trajectory sweep by pre-computing
the escape coefficients for each class and by retrieving their values using class
identifiers (e.g., chord type, direction, axial node,...). An estimation of this
reduction is provided by the Chord Classification Efficiency (CCE), defined
as the average number of chords per class. By denoting with index cls a
generic class (e.g., escape coefficient for the H-chord with polar angle θ in
region (r2D, rZ)), and by N cls

χ the number of intersections belonging the cls
class, the CCE is defined as:

CCE =

∑
clsN

cls
χ

Ncls
. (6.9)

6.1. CHORD CLASSIFICATION METHOD 93

Figure 6.1: One trajectory in the sz-plane. Chords in red are M-chords,
while H-chords and V-chords are showed respectively in green and blue.
The s⊥ is the axis perpendicular to the trajectory and passing through the
zero of the sz-plane. The figure also shows V-chords and H-chords belonging
to the same class.

In this equation the sum runs over the Ncls classes used for representing
the whole set of intersections (unrecognized chords count as belonging to a
unique class).

Although the CCE provides an estimation of the floating point oper-
ations avoided for the computation of escape coefficients, the actual com-
putational efficiency of the method should also take into account the time
required for the memory accesses. This quantity can be hardly estimated
a priori because it strongly depends on the data size and on the access
pattern. To understand the phenomena we need an insight of the actual
memory architecture. A detailed analysis can be found in ??.

In general, the total memory is separated in two or more levels ordered
hierarchically with respect to the proximity to the CPU. The first level of
memory (cache) is a low-latency/low-capacity memory used by the CPU to
perform the actual calculations. This memory contains local copies of the
actual data contained in higher levels (main memory), which are character-
ized by larger capacity but higher latency (about 10− 20 times larger than
cache latency). When the CPU performs an operation on a piece of data, it
looks for it inside the first level of memory. If the data is already present,
the access to data is practically immediate, and we talk about a cache hit.
Contrarily, a cache miss happens when the data is not found, and it must be

94 CHAPTER 6. OPTIMIZED SWEEP METHODS

copied from higher levels. Clearly this entails a threshold effect, called cache
effect, for which the performances of an algorithm abruptly fall whenever the
size of the processed data is larger than the size of the cache. For large data
the access pattern is also fundamental for determining the average access
latency. In fact, to reduce the number of accesses to the main memory, data
is generally copied per contiguous blocks. A sequential access is clearly the
optimal access pattern for large data since it produces only one cache miss
per block. Contrarily, if the access is random the number of cache misses is
likely to increase, with consequent reduction of performances.

In the light of this, we can give an heuristic analysis of the performances
of the classification method: from the one hand, the application of this
method reduces the total data size and the number of operations; on the
other hand, it adds randomness to the data access, increasing the execution
time. The overall efficiency is therefore a trade-off between these effects and,
in general, large CCE are required to see the benefits of the classification
methods on the execution time.

6.1.2 Efficiency of H/V-classification

The definition of CCE in Eq. (6.9) provides a global estimation of the number
of operations avoided by applying a partitioning of the set of chords into
classes defined by some class parameters (e.g., chord type, region,..). In
a similar way, we can define partial CCEs for subset of classes (e.g., only
H-chords). This allows measuring the efficiency of the single classification
strategy.

A detailed analysis of the efficiency of the chord classification method
cannot be easily carried out: the main difficulty is to predict the popula-
tion of intersections of 2D trajectories with the section of the axial geom-
etry. Here we provide a simplified analysis of the efficiency of the H/V-
classification methods in a rectangle R of height ∆h and width ∆s̃, repre-
senting one region in the sz-plane crossed by a set of parallel trajectories of
direction ϑ. We assume ∆s̃ to be a characteristic parameter of the 2D chord
population (e.g., average 2D chord), and analyze the CCE for varying ∆h,
representing a characteristic length of the z-mesh. We will also assume the
trajectory spacing ∆s (see Sec. 5.1) to be sufficiently small to correctly catch
the boundary discontinuities. These assumptions do not correspond to the
actual TDT implementation, which, instead, uses global tracking techniques
(i.e., without taking into account region discontinuities) in unstructured 2D
meshes. However, this simplified analysis still allows to catch the main pa-
rameters that influence the classification efficiency.

6.1. CHORD CLASSIFICATION METHOD 95

Let us consider the class v of V-chords of direction ϑ crossing rectangle
R. The total number of chords belonging to this class can be computed with
the following expression:

Nv
χ =

{
∆s̃ cosϑ

∆s (tanϑ? − tanϑ) , 0 ≤ ϑ < ϑ?

0, ϑ? ≤ ϑ ≤ π/2. (6.10)

In this equation we have introduced the quantity tanϑ?, indicating the aspect
ratio of the region:

tanϑ? =
∆h

∆s̃
. (6.11)

The number of V-chords assumes a maximum for small ϑ, while it goes down
to zero for ϑ = ϑ?. The partial CCE of this class is therefore optimal for
horizontal directions and falls to 11 at ϑ ∼ ϑ?.

A similar analysis can be done for H-chords. The total number of inter-
sections in this case is:

Nh
χ =

{
∆s̃ sinϑ

∆s

(
1− tanϑ?

tanϑ

)
, ϑ? < ϑ ≤ π/2

0, 0 ≤ ϑ ≤ ϑ?. (6.12)

The CCE for H-chords has a symmetric behavior with respect to the V-
classification, having a maximum for vertical directions and decreasing for
ϑ → ϑ?. Concerning M-chords, we can derive the total number of chords
with the following expression:

Nm
χ =

{
∆s̃ sinϑ

∆s , 0 ≤ ϑ < ϑ?
∆h cosϑ

∆s , ϑ? ≤ ϑ ≤ π/2 (6.13)

The efficiency of the M-classification will be not considered in this section
and it will be treated later.

We stress out that the values of N
h/v/m
χ are only an estimation of the

number of trajectories crossing the actual region. In fact, TDT uses global
tracking techniques in unstructured meshes without taking into account re-
gion discontinuities. The actual number of trajectories crossing a sz-plane

tends to N
h/v/m
χ only for sufficiently small values of ∆s. What it is im-

portant to note from these equations is that the distribution of the chords
depends both on the trajectory direction and on the aspect ratio. In the
MOC the first dependence is hidden by the fact that trajectories are tracked
for all the angles required to span the direction space. The dependence on

1When there is no chords belonging to a given class, the pre-computation of the escape
coefficient for that class is not done.

96 CHAPTER 6. OPTIMIZED SWEEP METHODS

the aspect ratio, in contrast, has a greater impact on the chord population:
for decreasing values ϑ? for example, the range of existence of V-chords is
progressively reduced, while that of H-chords becomes larger. The opposite
is true for large values of the aspect ratio. This behavior is confirmed by the
results shown in Fig. 6.2, showing the chord population in an infinite lattice
configuration. Calculations are performed for varying values of the mesh
height ∆h, and by keeping a constant number of tracking angles. In this
configuration, the number of H/V-classes is kept constant, so that a direct
relation exists between the CCE of H/V-classification and the H/V-chords
population. Results show that the CCE reaches a minimum for values of the
aspect ratio close to unity, while it increases for very large and very small
values.

In typical reactor configurations, the average 2D chord is small as com-
pared to the axial mesh (0.3 cm for case in Fig. 6.2). This is due to the fact
that the majority of heterogeneities are found on the 2D section, whereas the
axial composition is more homogeneous. This implies that the classification
method is most likely to ‘work’ on the right side of the minimum shown in
Fig. 6.2. Improvements of the efficiency of the classification method can be
obtained if the size of the axial mesh is increased. This behavior puts in
evidence the synergy between the application of the classification method,
and the use of higher order expansion of the axial flux, which allows for the
use of wider axial meshes.

6.1.3 Chord Classification for M-chords

Chords of the mixed type can not be grouped in a finite number of classes
because the length depends on the intersections of each trajectory with the
delimiting surfaces. However, we can still group these chords according to
the crossed vertical surface and the direction of the trajectory (see Fig. 6.3).
Within this macro-class, a M-class is defined by the chord length itself with
ml its unique identifier:

lm(Ω,Γv,ml) = l. (6.14)

When a M-chord is found during the tracking phase, its value is compared
to the values of M-chords having the same direction Ω and impacting the
same vertical surface Γv. If there is no corresponding class (within a given
tolerance), then a new one is created. Concerning the classification of escape
coefficients, notice that, given the surface Γv and the direction Ω, the re-
gion order number can be directly retrieved through the mapping R(Ω,Γv).

6.1. CHORD CLASSIFICATION METHOD 97

Figure 6.2: Chord population in a infinite lattice configuration of an axial
geometry composed of the 2D section shown in Fig. 6.8 and height ∆h. The
figure shows the distribution of chords for varying values of ∆h. Chords
are classified only according to the type of delimiting surface (H/V/M) and
no distinction is done between chords having different tracking angles. The
symbol < ∆s > denotes the average chord length of the trajectories crossing
the 2D section.

Therefore, the number of τm-classes and of Ek,m-classes equals the number
of M-classes:

τm(Ω,Γv,ml) = Σ(R(Ω,Γv))lm(Ω,Γv,m) (6.15)

Ek,m(Ω,Γv,ml) = lkmFk(τm). (6.16)

While for H-chords and V-chords the region number and the trajectory
direction are sufficient to identify the class, a M-chord still requires a unique
identifier (ml in Eq. (6.14)) which depends on the chord itself. This infor-
mation is stored using a sequential storage for the M t

m chords belonging to
trajectory t:

Mt = {mim , 1 ≤ im ≤ N t
m}. (6.17)

This makes the M-classification always disadvantageous in terms of mem-
ory usage. However, this method may provide an advantage in terms of
operations since Ek,m have to be evaluated only for a reduced number of
chords.

Analysis and Optimization of M-classification for Infinite Lattice
Calculations

In this section we analyze the M-classification method for the case of a prism
with rectangular basis of sides a and b, height H and translation boundary

98 CHAPTER 6. OPTIMIZED SWEEP METHODS

Figure 6.3: M-chords (black solid lines) belonging to the same class. The
three black points on the horizontal surface share the same distance from
the vertical surface (in grey).

x

y
Γv

γϕ

∆r̃

∆s̃

êϕ

êr

Figure 6.4: Points of intersection (black dots) of 3D trajectories with a hor-
izontal plane. ∆r̃: spacing between two 2D tracks (red lines) of azimuthal
angle ϕ. ∆s̃: spacing between two 3D trajectories lying on the same 2D
track. γ: inclination of the projection of the vertical plane Γv on the hori-
zontal surface.

6.1. CHORD CLASSIFICATION METHOD 99

conditions on all surfaces. At the same time we will investigate whether the
M-classification can be improved by modifying some tracking parameters
such as the trajectory spacing or periodicity. For the case considered, the
periodic 2D trajectories are tracked from the horizontal side of the rectan-
gular section (x-axis) with direction, period and spacing [46]:

tanϕ =
m2db

n2da
, L2D =

n2da

cosϕ
, ∆r =

a sinϕ

m2dk2d
, (6.18)

where the pairs (n2d,m2d) are integers representing the horizontal and ver-
tical periodicity of the trajectory, and k2d ∈ N is suitably chosen so that ∆r
is close to a reference value. Periodic 3D trajectories are then tracked from
the bottom of the sz-planes. The expressions for polar angles are similar to
the 2D case:

tanϑ =
m3dH

n3dL2D
, Lc =

n3dL2D

cosϑ
, ∆s =

L2D sinϑ

m3dk3d
. (6.19)

This tracking technique generates trajectories starting from the bottom sur-
face of the geometry.

Let P be the intersection of a trajectory with the horizontal surface
Γh, and Γv be the target vertical surface. According to the definition in
Eq. (6.14), the distance between P and Γv also determines the chord class
(Fig. 6.3). Consider now the regular grid generated by the intersections of
an infinite set of trajectories with spacing ∆r and ∆s, and let P be the
vector connecting two generic points of the grid:

P(k, h) = k∆r̃ êr + h∆s̃ êϕ, k, h ∈ Z. (6.20)

In last equation, k and h represent discrete movements respectively along
the êr and the êϕ directions (Fig. 6.1.3), while ∆r̃ = ∆r/ sinϕ and ∆r̃ =
∆s/ sinϑ represent the spacing on the horizontal plane. Consider now a
vertical surface with orientation γ. We want to find the points on the grid
that have the same distance from the target vertical surface. In other terms,
find (k, h) solutions of:

P(k, h) ‖ Sv. (6.21)

The pair (k, h)basic is the particular solution of Eq. (6.21) with k and h
coprimes. The value ‖P(k, h)basic‖ is an index of the efficiency of the clas-
sification method as it represents the minimal distance between two chords
belonging to the same class. The efficiency of the classification method
clearly depends on the orientation of the target vertical surface. For sur-
faces with γ = 0 the tracking method includes by construction the solution

100 CHAPTER 6. OPTIMIZED SWEEP METHODS

(k, h)basic = (1, 0) which is optimal. In addition, we want to optimize for
surfaces with γ = π/2 obtaining:

∆s̃ cosϕ

∆r̃
=
k2dn2dm2d

k3dm3d
=
k?

h?
; k?, h? ∈ Z; k?, h? coprimes. (6.22)

For this case, the distance ‖P(k?, h?)basic‖ is proportional to k?. Therefore,
the chord classification efficiency can be improved by choosing values of the
tracking parameters that satisfy Eq. (6.22) with minimum value of k?.

Until now we have considered an infinite grid of intersections of regularly
spaced parallel trajectories. In practice, when geometrical motion bound-
ary conditions are applied, trajectories undergo several geometrical motions
and repeatedly cross the same horizontal surface before exiting the domain.
Such approach does not assures regularity of the grid. Indeed, every time
boundary conditions are applied to the trajectories, the resulting grid of
intersections is shifted with respect to the original one, generating new M-
classes. Such behavior can be avoided by imposing invariance of the grid
with respect to the geometrical motion g:

g [P(k, h)] = P(k′, h′); k, h, k′, h′ ∈ Z. (6.23)

For gx(v) = v − aêx, representing the translation applied to trajectories
crossing the vertical sides of the 2D section, the solution of Eq. (6.23) re-
quires a = kx∆r̃ with kx ∈ N. This condition is satisfied by construction
since kx = k2dm2d ∈ N (see Eqs. (6.18)). The geometrical transformation for
the translation on the horizontal sides of the 2D section is gy(v) = v− bêy,
and provides:

b

∆r̃ tanϕ
= k2dn2d = ky, ky ∈ N (6.24)

b

∆s̃ sinϕ
=
m3dk3d

m2d
= hy, hy ∈ N (6.25)

In last two equations we used Eqs. (6.18) and (6.19) for trajectory spacing
and tracking angles. The solution of Eq. (6.24) is included by construction,
while Eq. (6.25) is satisfied only for particular values of (m3d, k3d,m2d).
In our implementation, polar cyclic angles are chosen by assuming m3d =
j3dm2d with j3d integer. This simplification assures Eq. (6.25) to be satisfied
for any value of tracking parameters.

Finally, we consider the effect of boundary conditions applied on the top
and bottom surfaces of the geometry. In case of translation, a 3D trajectory
reaching the top surface is put back into the basic domain on a point lying

6.2. TRAJECTORY STORAGE AND RECONSTRUCTION 101

on the bottom side of the geometry. The action of the translation does not
guarantee that the new point belongs to the original grid. We need to impose
the grid to be invariant to the geometrical motion gz(v) = v − H cot θêϕ,
which leads to

H cot θ

∆s̃
= n3dk3d = kz, kz ∈ N, (6.26)

which is already satisfied since both n3d and k3d are integers.

Notice that, according to Eq. (6.14), classification is done for chord with
same angle and chord length. Therefore, we only have to concern about
translation boundary conditions, or composition of geometrical motions re-
sulting in a translation. By consequence, the analysis done in this section
can be easily extended to 1/4 and 1/8 symmetries on the 2D section by
making the substitutions a→ 2a and b→ 2b. The substitution H → 2H is
done for taking into account reflective axial conditions.

6.2 Trajectory storage and reconstruction

In the previous section we developed a method for the reduction of the mem-
ory needed for the storage of chord lengths. Another important contribution
to the memory is the sequence of region order numbers, ri, crossed by the
trajectories:

Rt = {ri, 1 ≤ i ≤ N t
χ}. (6.27)

An alternative method has been implemented to further compress trajectory
data. As for the chord classification, this method relies on the regularities
of axial geometries, in particular on the fact that sz-planes are Cartesian.
Trajectories in sz-planes can cross either a vertical or a horizontal surface:
crossing a horizontal surface means a change of the z-region coordinate while
the 2D-region order number remains unchanged; the opposite is true for
vertical surfaces. By consequence, given the direction of the trajectory, the
coordinates on the sz-plane of its first region, and the type of surfaces crossed
during its path, the sequence of crossed regions is univocally determined.
In Fig. 6.5 for example trajectory t2 starts from local coordinates (1, 1) and
crosses 2 vertical surfaces before crossing a horizontal one. The z-coordinate
of the first 2 chords remains unchanged while only the s-coordinate varies.

For each sz-plane, the quantity R2D provides the correspondence be-
tween the local 2D chord number (i2D) and the 2D region number (r2D).
This quantity is common for all 3D trajectories built from the same 2D
track. Notice that, in case of 2D cyclic domain, local 2D chord numbering

102 CHAPTER 6. OPTIMIZED SWEEP METHODS

is periodic by translation (see Eq. (5.4)). Similarly, Rz provides the corre-
spondence between the local z-numbering (iz, invariant to translation) and
the actual z-region number (rz). This is common to all 3D trajectories.

The new method requires additional operations for the trajectory recon-
struction but it allows reducing considerably the tracking size. In fact, the
sequence of hit surfaces (hereafter HSS) can be stored in a compact record:

HSSt = {±nj , 1 ≤ j ≤ N t
seq}, (6.28)

where the sign is used to identify the kind of surface (horizontal or vertical),
the integer n defines the number of consecutive surfaces of that kind crossed
by the trajectory, and N t

seq is the total number of sequences of the trajectory.
If we reconsider the example of trajectory t2 in Fig. 6.5, the HSS record is
composed of N t

seq = 5 elements: HSS2 = {−2, 1,−3, 1 − 2}, and describes
the first sequence of 2 vertical surfaces, the horizontal surface, and so on
until the trajectory exits the sz-plane. The standard storage (Eq. (6.27)) for
the same trajectory requires 8 elements corresponding to the total number
of intersections. The Memory Compression Factor (MCF) of the HSS
method is defined as:

MCFHSS =

∑
tN

t
χ∑

t(N
t
seq + 4)

, (6.29)

where N t
χ is the number of region crossed by trajectory t, N t

seq the number
of sequences of crossed surfaces, while the four additional data represent the
coordinates of the first and last crossed regions (for forward and backward
reconstruction). The maximal dimension which can be assumed by the
HSS descriptor is N t

χ + 5, containing all the N t
χ + 1 surfaces delimiting the

trajectory and the coordinates of the first and last regions. This condition
however is unlikely to happen so that we can safely assume that the HSS
storage is always advantageous in terms of MCF . The MCF is hardly
estimated a priori because the number of sequences, N t

seq, can vary from
trajectory to trajectory (see t1 and t2 in Fig. 6.5). However, from the analysis
provided in Sec. 6.2.2 it results that the MCF strongly depends on the
aspect ratio (width/height) of the regions.

The HSS storage method is well suited for the Chord Classification
method. In fact, a set of nj surfaces of the same kind (horizontal for exam-
ple) defines nj − 1 recognized chords (H-chords). This information can be
used together with other class parameters (e.g., trajectory direction) to iden-
tify the chord class and to retrieve the respective values of chord length and
escape coefficients. Remark that the presence of two sequences of surfaces of

6.2. TRAJECTORY STORAGE AND RECONSTRUCTION 103

Figure 6.5: The figure shows two trajectories crossing vertical (blue) and
horizontal (red) surfaces in the sz-plane. The principal axes indicate the
local numbering on the sz-plane, while the secondary vertical axis show the
actual numbering of z-regions in case of reflective boundary conditions. The
HSS descriptor for t1 is composed of only one element (HSS1 = {−7})
indicating the 7 vertical surfaces crossed by trajectory. Instead, 5 elements
are required for trajectory t2: HSS2 = {−2, 1,−3, 1,−2}. The reconstruc-
tion starts from the coordinates of the first region, (1, 1), and proceeds by
subsequently processing the entries of the HSS descriptor. For trajectory
t2 the first entry indicates that 2 vertical surfaces are crossed, implying the
existence of 1 V-chord followed by a joining M-chord. Similarly, the second
entry indicates the presence of 0 H-chords, and a joining M-chord. Remark
that for the last entry of the HSS no joining chords are required.

different type in the HSS record entails the existence of a joining M-chord
which has to be correctly accounted during the reconstruction. Trajectory
t2 in Fig. 6.5 provides an example of reconstruction using the HSS storage
while Alg. 2 shows the pseudo-code used for the reconstruction.

Forward/backward reconstruction

The sweep algorithm in Alg. 1 shows that the solution of the transmission
equation only requires data (e.g., escape coefficient) of the chord which is
being swept. For this reason, reconstruction and sweep can be done simul-
taneously with a negligible impact on the memory. However, since the same
trajectory is used twice for the forward and backward sweeps, it can be
computationally advantageous to keep the trajectory on a temporary buffer

104 CHAPTER 6. OPTIMIZED SWEEP METHODS

Input: Σ,C?t ,HSSt,i
ini
2D,iiniz ,R2D,Rz,Mt,Ek,v,Ek,h,Ek,m

Output: Rt,Et
r1 ← (R2D(iini2D),Rz(iiniz));
for all j elements in HSS do

// n← HSSt(j)
if n < 0 then // ABS(n) vertical surfaces

for (ABS(n)-1) V-chords do
Update local s-coordinate i2D;
ri ← (R2D(i2D),Rz(iz));
if recognized then

Ek,i ← Ek,v;
else // Standard strategy

Update iNR; l← C?t (iNR); τ = lΣ; Ek,i = lkFk(τ);
end

end
// 1 M-chord (V→H)

Update local s-coordinate i2D;
ri ← (R2D(i2D),Rz(iz));
// Get escape coefficient for M-chords

if recognized then
Update im; m←Mt(im); Ek,i ← Ek,m(m);

else // Standard strategy

else // n horizontal surfaces

for (ABS(n)-1) H-chords do
Update local z-coordinate iz;
ri ← (R2D(i2D),Rz(iz));
if recognized then

Ek,i ← Ek,h;
else // Standard strategy

end
// 1 M-chord (H→V)

Update local z-coordinate iz;
ri ← (R2D(i2D),Rz(iz));
// Get escape coefficient for M-chords (as above)

end

end
Algorithm 2: Reconstruction of region sequence, Rt = {ri}, and escape
coefficients, Et = {Ek,i}, of trajectory t with HSS storage and Chord
Classification methods. For simplicity of visualization, repeated blocks are
not shown. Ek,r: pre-computed escape coefficients for recognized chords
(r = h/v/m); Mt: addresses of M-chords (accessed through im); C?t : un-
recognized chord lengths (accessed through iNR); i2D,iz: local coordinates
in the Cartesian plane; R2D,Rz: mappings (invariant to translation) from
local coordinates to the absolute order number of the 3D regions; iini2D and
iiniz are the local coordinates of the first chord of the trajectory.

6.2. TRAJECTORY STORAGE AND RECONSTRUCTION 105

and sweep it backwards avoiding its reconstruction. This constitutes a small
overhead in terms of memory requirements.

6.2.1 M-chords reconstruction

The storage of M-chords can be completely avoided if the HSS storage and
H/V-classification methods are used. In fact, we can find relations between
the chord lengths which allow to compute on-the-fly the M-chord lengths
during the reconstruction of region sequence.

We will take the Fig. 6.6 as practical example to explain the method.
In the figure you can see that the length of a generic H-chord crossed by n
vertical surfaces (macro H-chord) can be written as the sum of two M-chords
(the first and last ends of the macro H-chord) plus the length of the n − 1
V-chords generated by the intersections with these surfaces:

lh = l1m + l2m +
∑

v

lv. (6.30)

Here for simplicity we have used the symbol
∑

v to include all the V-chords
comprised in the macro H-chord. Similarly, the length of a macro V-chord
crossed by multiple horizontal surfaces can be expressed as the sum of two
M-chords and the respective set of H-chords. By using the notation in the
figure we can write:

lv = l2m + l3m +
∑

h

lh. (6.31)

Since the lengths of H-chords and V-chords are all known (see beginning of
Sec. 6.1), it is sufficient to know one single value of M-chord to determine
the value of the others. These relations can be used during the trajectory re-
construction to compute the values of the M-chords on-the-fly. This method
does not allow, however, to pre-compute the escape coefficients, that have
to be evaluated for each M-chord as they were treated as unrecognized.

In practice, for each trajectory, only the value l0m is stored. This repre-
sents the length of the missing M-chord which joins the beginning of the tra-
jectory: (a) with the previous vertical surface, if the first surface is horizon-
tal; (b) with the previous horizontal surface, in the other case (see Fig. 6.6).
During reconstruction, when a set of horizontal (vertical) surfaces is crossed,
the sum of H-chords (V-chords) is accumulated on-the-fly. When a M-chord
is found, its length is computed using Eq. (6.31) or Eq. (6.30) depending
on whether the last surface is vertical or horizontal. In the first case, the
macro V-chord is the one corresponding to the s coordinate of the M-chord,
while for the other case the macro H-chord is the one corresponding to its z

106 CHAPTER 6. OPTIMIZED SWEEP METHODS

Figure 6.6: A trajectory in the sz-plane: lv, lh are the V-chord and the
H-chord for a given s-coordinate and z-coordinate; l1m,l2m,l3m are three M-
chords composing the trajectory; l0m is the M-chord joining the beginning
of the trajectory crossing a surface of a given type (horizontal in this case)
with the previous surface of the other type (in this case vertical).

coordinate. The pseudo-code in Alg. 3 shows a simplified version of Alg. 2
containing only the details required for the M-chord reconstruction. Remark
that, while the standard algorithm only requires escape coefficients for the
H/V-classes, the algorithm for the M-chord reconstruction also requires the
knowledge of the H/V-chord lengths, which can be either computed on-
the-fly or retrieved from pre-computed values. This last strategy constitute
an overhead in terms of memory usage, whereas the calculation on-the-fly
requires one additional operation.

6.2.2 Effect of the axial mesh on the HSS storage

As we have seen in the previous section, the HSS method stores the se-
quence of crossed region as the sequence of relative displacements along the
axis of the (Cartesian) sz-planes. The smaller the number of ‘switches’ from
vertical to horizontal surfaces, the higher the memory compression factor
of the HSS. This can be seen, for example, by comparing the HSS de-
scriptors for trajectories t1 and t2 in Fig. 6.5. A HSS descriptor of reduced
size also reduces the complexity of the reconstruction algorithm (Alg. 2),
and favors its serialization. As for the classification method (see Sec. 6.1.2),

6.2. TRAJECTORY STORAGE AND RECONSTRUCTION 107

Input: l0m,t,lv,lh,HSSt,i
ini
2D,iiniz

Output: lmi
l← l0m;
for all j elements in HSS do

// n← HSSt(j)
if n < 0 then // ABS(n) vertical surfaces

for (ABS(n)-1) V-chords do
Update local s-coordinate i2D;
l = l + lv;

end
// 1 M-chord (V→H)

Update local s-coordinate i2D;
lim ← l = lh − l;

else // n horizontal surfaces

for (ABS(n)-1) H-chords do
Update local z-coordinate iz;
l = l + lh;

end
// 1 M-chord (H→V)

Update local z-coordinate iz;
lim ← l = lv − l;

end

end

Algorithm 3: Reconstruction of M-chords. Starting from the value l0m
(see Fig. 6.6), the sequence of M-chords is rebuilt using the HSS storage.
For each sequence of surfaces, the values of H/V-chords are accumulated
on the local variable t, which is in turn used to compute the value of the
joining M-chord.

108 CHAPTER 6. OPTIMIZED SWEEP METHODS

the efficiency of the HSS storage can be correlated to the aspect ratio of
the meshes composing the sz-planes. This dependence is easily explained.
Take for example the case of ‘tall’ meshes (see first axial node in Fig. 6.5):
in such configuration a trajectory will most likely cross multiple vertical
surfaces before running in a horizontal one. Irrespective of the number of
crossed regions, the HSS descriptor always requires two entries to describe
this sequence (the number of vertical surfaces and the horizontal surface);
conversely, the size of the standard storage grows with the number of inter-
sections. The symmetric situation happens for small values of the aspect
ratio, for which it is more likely that the trajectories cross multiple horizon-
tal surfaces before crossing a vertical one. The most unfavorable condition
corresponds to the case of ‘square’ meshes (unitary aspect ratio), for which
trajectories have in average the same chance to run into horizontal or verti-
cal surfaces, increasing the size of the HSS storage. This heuristic analysis
is confirmed by the results shown in Fig. 6.7(a), which shows the MCF for
the infinite lattice configuration shown in Fig. 6.8. Results are provided for
a fixed number of tracking angles, and varying height of the axial mesh. The
MCF in the figure has a minimum (> 1) for values of the aspect ratio close
to unity, while it drastically increases for very large or very small values of
the mesh height. As already noticed in Sec. 6.1.2, actual calculations are
generally performed for values of aspect ratio larger than unity. This, again,
shows the synergy between the efficiency of the MCF and the polynomial
expansion of the source along the axial direction, which allows using coarser
axial meshes.

Concerning the dependence of the MCF with respect to the number of
the tracking angles, we can make the same argumentation done is Sec. 6.1.2:
although the actual sequence of crossed surfaces depends on the trajectory
direction, this dependence is weakened by the fact that in MOC trajectories
are built in order to span the unit sphere. The variation of the MCF
with respect to the number of tracking angles is shown in Fig. 6.7(b). The
figure shows the results for the test case in Fig. 6.8 for two values of aspect
ratio. The numerical results confirm the weak dependence of the MCF with
respect to the number of polar angles in the SN quadrature formula.

6.3 Results

The methods discussed in this chapter have been tested on a geometry whose
2D section is shown in Fig. 6.8 and for varying heights of the axial mesh
with respect to the average 2D chord (∼ 0.3 cm). For the case SMALLTG the

6.3. RESULTS 109

(a) MCF with respect to the average aspect
ratio ∆h/ 〈∆s〉.

(b) MCF with respect to the
number of polar tracking an-
gles. Black squares: ∆h/ 〈∆s〉 = 1;
Black triangles: ∆h/ 〈∆s〉 = 8.

Figure 6.7: Memory Compression Factor (MCF) of the HSS storage
method with respect to some tracking parameters. The black dashed line
represents MCF = 1.

axial mesh is uniformly divided in 15 bins of height 0.01 cm. In case UNITTG

the height of each axial bin is equal to the average chord (0.3 cm) and the
axial mesh is composed of 50 uniform bins. In the LARGETG case, the axial
mesh is composed of 5 bins of height 3 cm. The calculations have been done
using only the step-MOC approximation of the source.

All cases use the same product quadrature formula composed of 16 az-
imuthal direction and 6 polar directions. The reference trajectory spacing
is also common to all cases and it is about 0.05 cm for 2D trajectories and
0.1 cm for trajectories on the sz-planes. In Tab. 6.1 are shown the total
number of chords and the MCFHSS as defined in Eq. (6.29). As already
discussed, the efficiency of the HSS method is minimal for unitary values of
the aspect ratio. The performances of the sweep algorithm in term of com-
putational time and memory are shown in Tab. 6.2. Remark that the Chord
Classification method is effective for the classification of the H/V-chords
whereas the classification of M-chords actually constitutes an overhead. The
reason of this overhead derives from the additional memory required for the
M-chord classification and to the low classification efficiency of the method.
Remark, in fact, the small global CCE gain obtained by applying the M-
classification. From the same table you can also see that the speed up due
to the H/V-classification is larger for the SMALLTG and LARGETG cases due
to the higher CCE.

110 CHAPTER 6. OPTIMIZED SWEEP METHODS

Figure 6.8: Two-dimensional section of an infinite lattice configuration of a
cluster of assemblies with 2π/8 symmetry.

SMALLTG UNITTG LARGETG

Chords 62M 102M 581M
MCFHSS 12.8 1.9 5.6

Table 6.1: Total number of intersections (M stands for millions) and Memory
Compression Factor due to the HSS method for the three cases considered.

6.3. RESULTS 111

MEM (GB) CCE Time inner (sec)

SMALLTG

C0 0.57 1 531
C1 0.45 12.7 459
C2 2.4 14.5 662

UNITTG

C0 0.8 1 878
C1 0.7 1.9 857
C2 2.7 2.2 1464

LARGETG

C0 2.8 1 3470
C1 1.1 5.5 2583
C2 3.3 7.7 3568

Table 6.2: Memory required for the sweep, Chord Classification Efficiency
and execution time of one inner iteration for the three cases considered and
for varying classification strategies. C0: no classification applied. C1: only
H/V-classification applied. C2: H/V/M-classification.

M1 M2 M2/M1 overhead

SMALLTG 398 475 +20%
UNITTG 881 1231 +40%
LARGETG 2279 3023 +32%

Table 6.3: Execution time (in seconds) of one internal iteration for the three
cases considered and varying reconstruction strategy. In M1 the trajectory is
reconstructed and stored on a temporary buffer for backward/forward sweep.
In M2 the trajectory is rebuilt and swept separately for the two directions,
avoiding the additional buffer. The last column shows the overhead due to
the additional reconstruction required for the backward sweep.

112 CHAPTER 6. OPTIMIZED SWEEP METHODS

In Tab. 6.3 we show the results of different reconstruction strategies un-
der the step-MOC approximation of the source. In case M1 the trajectory is
reconstructed and kept on a temporary buffer for forward/backward sweep,
while in case M2 the reconstruction is done twice for the forward and back-
ward directions. The advantage of this last option is that it does not require
any additional buffer during the trajectory sweep. The time overhead of the
M2 strategy is a measure of the time required for the trajectory reconstruc-
tion. Remark its dependence with respect to the MCFHSS (see Tab. 6.1),
being larger for small MCFHSS and decreasing for increasing compression
factors. These results confirm the discussion about the efficiency of recon-
struction done in Sec. 6.2.2.

Remark that the relative cost of the reconstruction should, in princi-
ple, decrease for higher order expansion of the source due to i) the addi-
tional floating point operations required for the transmission equation (see
Sec. 4.4), ii) the reduced costs of reconstruction due to a coarser discretiza-
tion of the axial mesh. For these cases the M2 strategy becomes more at-
tractive due to the reduced memory requirements.

Chapter 7

Parallel algorithms for the
Method of Characteristics

7.1 Introduction

The last decades have seen a drastic change of the architecture of comput-
ers. The main reason of this change is the fact that the single processing
units have reached the peak performances imposed by current technologies.
To compensate this lack of growth, modern computers have multiple inde-
pendent computing units which inter-communicate through different levels
of memory [50]. By consequence, the numerical methods and the program-
ming paradigms are also evolving in order to take advantage of these new
architectures.

Concerning the programming paradigms, two are the most trending stan-
dards. The shared memory paradigm is conceived mostly for multi-core ar-
chitectures, in which the cores share the same main memory. This paradigm
assumes that all the data can be accessed at the same time by the threads1

without too much concern about data locality. Simultaneous I/O opera-
tions on the same memory are called race conditions and must be carefully
considered in shared-memory parallel execution. Only-read race conditions
constitute a minor problem since they may only determine an increased
memory latency. On the contrary, particular care is required on the shared
variables whose values are modified during the parallel execution by the dif-
ferent threads. Simultaneous writing-after-reading or reading-after-writing
of the same variable, for example, may invalidate the algorithms if not cor-
rectly considered. Contrarily from shared memory, the distributed memory

1Threads: sequences of tasks executed in parallel.

113

114 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

paradigm assumes that each computing unit has its own copy of data to pro-
cess, and communications between the units must be explicitly provided in
‘synchronization’ points. The distributed memory paradigm is more adapted
to architectures such as computer clusters for which data locality and com-
munications are important. In our research we only concentrated on shared
memory paradigms which are better suited to solve problems of medium size
(e.g., assembly, cluster of assemblies) on standard desktop working stations.
Our developments have been done using the OpenMP libraries [51].

The application of parallel programming methods for neutron transport
is a current topic in applied research. One classical approach is the paral-
lelization of the solution of the multi-group problem (see Sec. 1.3) which is
done by treating the mono-group problems independently. This approach
is not compatible with the standard Gauss-Seidel algorithm which, instead,
couples the unknown group-flux with all the fluxes of faster groups (see
Sec. 1.4). The independence between group fluxes can be imposed, for ex-
ample, by substituting the Gauss-Siedel algorithm with a Gauss-Jacobi. Al-
though this approach theoretically determines a deterioration of the conver-
gence rate of the multi-group problem, the use of a low order approximation
to accelerate the MOC calculation has shown stabilizing properties. This is,
for example, the strategy adopted in [42] where a non-linear Coarse Mesh Fi-
nite Difference (CMDF) approximation is used to accelerate the multi-group
MOC solution computed withe Gauss-Jacobi algorithm. In this paper the
authors show that the convergence of the algorithm is only determined by the
convergence of the CMFD acceleration, whereas the stability of the multi-
group solution is not affected by the use of the Gauss-Jacobi algorithm. It
is reasonable to expect that similar results can be obtained by applying al-
ternative acceleration methods, such as the synthetic DPN acceleration [43].
This method, however, has not been implemented and results will not be
shown.

An alternative method used in the MOC is to keep the Gauss-Seidel
scheme and to parallelize the transport sweep for each mono-group problem.
This is the approach which we have chosen to explore in our research and it
will be detailed in Sec. 7.3.

The last class of parallel methods considered are the so-called domain-
decomposition methods. These techniques are based on the partitioning
of the spatial domain in sub-domains which are treated independently by
different threads. Domain-decomposition methods are particularly adapted
to solve large problems on clusters of computers. The reason is that each
thread only requires to access data of its associated sub-domain, while data
for other sub-domains can be stored elsewhere [26]. The coupling between

7.2. BOUNDARY CONDITIONS FORDOMAIN-DECOMPOSITIONMETHODS115

Figure 7.1: Domain-decomposition with trajectory-coherent boundary con-
ditions. Entering fluxes are computed with auxiliary trajectories (red), ob-
tained by backward prolongation of the actual trajectories (black) in the
neighbor domains.

the sub-domains is imposed by additional boundary conditions applied on
the boundaries of each sub-domain. These boundary conditions provide an
expression of the fluxes entering each sub-domain as a function of the fluxes
of neighbors, and must be computed and communicated among threads at
each iteration. In Sec. 7.2 we discuss the approximations introduced by
these additional conditions and we propose a method to exactly treat the
coupling between sub-domains.

7.2 Boundary conditions for Domain-Decomposition
methods

The definition of additional boundary conditions in domain-decomposition
methods may introduce errors in the MOC solution. This is due to the
fact that the representation basis used for the boundary fluxes generally
differs from that provided by the trajectories. In the short characteristics
approach, for example, the trajectory-flux exiting a sub-domain is projected
on a spatial basis of the sub-domain boundaries, and then used as entering
flux for the trajectories crossing the neighbor domain [26]. This approach re-

116 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

duces the quality of the solution, since it introduces numerical diffusion. An
alternative method to define trajectory-coherent boundary conditions with
arbitrary precision has been considered, but its implementation has been
postponed to favor the parallelization of the transport sweep, which results
more useful in relatively small cases (e.g., assembly or cluster of assemblies).
In this alternative approach, the boundary fluxes are computed using aux-
iliary trajectories obtained by backward prolongation of the trajectories of
each sub-domain in the neighbor domains (see Fig. 7.1). The transmission
equation is then used to compute the flux of trajectory t entering the sub-
domain α in position tα−t :

ψ(tα−t) = ψ(t?t)e
−τ(t?t ,t

α−
t) +

tαin∫

t?t

dt′q(t′)e−τ(t′,tα−t). (7.1)

This equation requires the value of the angular flux, ψ(t?t), entering the
auxiliary trajectory, and the sources, q′, belonging to the neighbor sub-
domains. Concerning the first term, one must notice that its contribution
to the entering flux, ψ(tα−t), becomes negligible for sufficiently large aux-
iliary trajectories (large τ(t?t , t

α−
t)). However, the length of the auxiliary

trajectories also determines the extent of the coupling between the fluxes of
a sub-domain and those of neighbor sub-domains, a fact that increases the
amount of data that must be transferred among threads at each iteration.
A compromise solution can be obtained by representing the entering flux of
auxiliary trajectories with a coarse surface-based spatial representation, and
by reducing the length of auxiliary trajectories.

To assure global consistency of the trajectory discretization, the auxil-
iary trajectories of one sub-domain must coincide with those of neighbors
domains. This can be done by applying global tracking techniques to the
whole geometry, and by cutting trajectories when they cross sub-domains.
Alternatively, a modular ray-tracing method [30, 32, 52] can be applied. It
consists in tracking special trajectories in typed sub-domains such that there
is always a correspondence between one trajectory exiting one sub-domain
and another entering its neighbor.

7.3 Transport sweep parallelism

The sweeping operation is one of the most resource consuming operation in
MOC. This is especially true when the MOC is applied to three-dimensional
geometries for which the number of intersections may easily reach the order

7.3. TRANSPORT SWEEP PARALLELISM 117

of tens of billions. A speed up of the MOC algorithm can be obtained by
parallelizing the sweep operation. In Alg. 4 we show a modified version of
Alg. 1 describing the main steps of the inversion of the fixed-source prob-
lem with the MOC, including details of the implementation of method of
compound trajectories (see Sec. 5.2.1), and of the trajectory reconstruction
(see Sec. 6.2). The trajectory sweep computes the region-integrated value
of the net angular current, ∆Jjrp, by accumulating the contributions of the
intersections of all the trajectories crossing the problem geometry for all the
angles contained in the SN quadrature formula. The sweep of one single
trajectory is naturally sequential since the exiting flux of each intersection
directly depends on the exiting flux of the previous one. Differently, sep-
arate trajectories can be swept simultaneously since they only depend on
the angular emission density, q, which has fixed value at each iteration. It
is however important to notice from Alg. 4 that all trajectories access and
modify the region-integrated angular net currents, ∆Jjrp, to compute the
sum in Eq. (4.21). This operation may rise race conditions since multiple
trajectories may simultaneously cross the same region during the parallel
execution. In this case all trajectories would read the same value of ∆Jjrp
and overwrite it with an updated value which, despite of the order of the
writing operations, would miss the contributions of all the trajectories but
one (the last executed). This is a typical problem of parallel algorithms and
can be solved in three ways:

Data parallelism : it consists in arranging the parallel tasks so that all
parallel I/O operations are done on independent data. This method
does not require additional memory and operations, making the par-
allelism optimal.

Data duplication : it consists in creating a private copy of the shared data
for each working thread. Each thread accesses sequentially to its own
copy preventing the appearance of race conditions. This method re-
quires additional memory as well as additional operations and synchro-
nizations for gathering the partial results computed by each thread.

Mutual exclusion : in this method simultaneous I/O operations are avoided
by blocking the access to data when this is being modified by another
thread. This method does not require additional memory, but slows
down the algorithm since each I/O operation require additional run-
time verification of the memory status.

In literature we find an attempt to apply the method of mutual exclusion
to the MOC but it has shown very poor performances [53], and it will not

118 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

be discussed any further.

The data parallelism strategy requires the definition of groups of tra-
jectories that independently access separate values of the region-integrated
angular net currents, which depend on the region order number, r, and of the
trajectory direction, Ωj . Global tracking techniques in unstructured meshes
prevent a simple definition of groups of trajectories crossing separate subsets
of regions. Differently, trajectories with different directions access separate
values of ∆Jjrp and can be therefore swept in parallel. This strategy theo-
retically generates N (the number of angles in the SN quadrature formula)
groups of independent tasks.

It is however important to notice that the application of the method of
compound trajectories (see Sec. 5.2.1) slightly complicates the parallelization
over the angles. In fact, in this method one compound trajectory may change
its direction when it crosses a closed boundary. Therefore, the sweep of a
trajectory with initial angle Ωj may require to access data for all the angles
obtained by application of the geometrical motions to the initial angle. In
other words, geometrical boundary conditions couple the sweep of all the
trajectories whose initial direction is included in the set

S(Ω̂j) = {gn(Ω̂j), 0 ≤ n < G},

obtained by G− 1 applications of the geometrical motion to the basic angle
Ω̂j ∈ SbasicN , with G being the order of the cyclic group of symmetry (gG

the identity transformation), and SbasicN being the set of angles of the SN
quadrature formula contained in the basic angular domain (see Sec. 5.2.1).
In the light of this, the data parallelization of the trajectory sweep can
be done by grouping the trajectories with respect to the basic angles Ω̂j .
This strategy, however, deteriorates the degree of parallelism2, since the
number of independent tasks reduces to N/G. As a practical example let us
consider a typical SN product quadrature formula with 48 azimuthal angles
in [0, 2π], and 8 polar angles in [0, π]. In a fully open case the number of
independent tasks corresponds to 384, which largely suffices to parallelize
the sweep operation on standard working stations. However, if we consider
an infinite lattice configuration with, for example, 2π/8 symmetry over the
azimuthal component, and reflective boundary conditions along the axial
direction, we must divide the number of directions by a factor 16, which
corresponds to the number of angles connected by the symmetry conditions.
This reduces the degree of parallelism to only 24 independent tasks.

2Degree of parallelism: maximum number of tasks that can be executed in parallel

7.3. TRANSPORT SWEEP PARALLELISM 119

The reduced degree of parallelism imposed by the parallelization over
the basic angles can be mitigated by keeping the separation of the trajecto-
ries, and by duplicating the region-integrated net currents for each thread
to avoid race conditions. This approach, however, requires additional op-
erations at the end of the trajectory sweep in order to sum up the partial
contributions of each thread. The implementation of this strategy is shown
in the pseudo-code in Alg. 5. Remark the use of private ∆Jqjrp and the
presence of the reduction block summing up their contribution after the
trajectory sweep.

Input: Σr,Σrn,qjrp,T ,SN
Output: φnrp
forall the Ω̂j ∈ Sbasicn do

forall the compound trajectories ‖ g(Ω̂j) do
TrajRebuild(Tt) // Alg. 2;
ψ− ← ψin ; // Boundary flux

for i chords in trajectory do
// Exiting flux

ψ+ ← // Eq. (4.11);
// Net currents

∆Jjrp = ∆Jjrp + ωt∆ψip // Eq. (4.21);
// Entering flux for next chord

ψ− ← ψ+;

end

end

end
// Region-averaged angular fluxes

Ψjrp ← // Eq. (4.19);
// Update moments

φnrp ← // Eq. (4.14);

Algorithm 4: Modified version of Alg. 1 showing the inversion of the fixed
source problem. The algorithm also includes the details of the method of
compound trajectories and of the trajectory reconstruction discussed, re-
spectively, in Sec. 5.2.1 and Sec. 6.2. The algorithm computes the net
currents for all regions (r), angles (j) and order of the polynomial expan-
sion (p), by accumulating the contribution of each intersection, ∆ψip, into
∆Jjrp. The symbol SbasicN represent the directions of the SN quadrature
formula contained in the basic angular domain.

120 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

Input: Σr,Σrn,qjrp,T ,SN
Output: φnrp
q ← GetThreadNum();
forall trajectories in parallel do

TrajRebuild(Tt) // Alg. 2;
ψ− ← ψin ; // Boundary flux

for i chords in trajectory do
// Exiting flux

ψ+ ← // Eq. (4.11);
// Net currents

∆Jqjrp = ∆Jqjrp + ωt∆ψip // Eq. (4.21);

// Entering flux for next chord

ψ− ← ψ+;

end

end
// Reduction

∆Jjrp =
Q∑
q=1

∆Jqjrp

// Region-averaged angular fluxes

Ψjrp ← // Eq. (4.19);
// Update moments

φnrp ← // Eq. (4.14);

Algorithm 5: Modified version of Alg. 4 in which the parallelism is done
over the single trajectories and the private copies of integrated net currents
are used to avoid race conditions. The reduction block is introduced to
sum up the contributions of all Q threads. The GetThreadNum function
provides the order number q of the thread.

7.3. TRANSPORT SWEEP PARALLELISM 121

Figure 7.2: Graphical representation of the trajectory-cut. The single cyclic
trajectory is divided in three sub-trajectories with entering points 0, t1 and
t2. The flux entering each sub-trajectory is obtained by solving the trans-
mission equation respectively from the coordinates t?, t?1 and t?2 (modified
version of an image taken from [46].)

7.3.1 Trajectory-cut

In infinite lattice configurations it may happen that the trajectory period
(see Sec. 5.2.1 and Sec. 5.2.2) becomes so large that few trajectories suf-
fice to cover the whole problem geometry for a given basic angle. In these
cases the parallelization of the sweep algorithm over the trajectories slightly
contributes to the increase of the degree of parallelism. The number of inde-
pendent tasks can be increased by dividing the single trajectory in multiple
sub-trajectories. The entering flux of each sub-trajectory can be computed
with arbitrary precision by writing the integral form of the transport equa-
tion from a point t?st of the trajectory to the point tst > t?st representing the
entering point of the (st)th sub-trajectory (see Fig. 7.2):

ψ(tst) = ψ(t?st)e
−τ(t?st,tst) +

tst∫

t?st

dt′q(t′)e−τ(t′,tst). (7.2)

As already noticed in previous sections, the contribution of ψ(t?st) to ψ(tst)
can be neglected for a sufficiently large total optical length τ(t?st, tst). This
last equation has to be solved for each sub-trajectory generated by the

122 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

trajectory-cut, which entails that additional operations are needed for the
trajectory sweep. These generally correspond to the operations required for
sweeping some tens of chords, which is an acceptable cost if compared to
that of the sweep of the whole trajectory (∼ 105 chords), and if we consider
the enhancement of the degree of parallelism that can be obtained.

Remark that the trajectory-cut can be also applied to fine-tune the load
balance among different threads. In the next sections we will see that this
is fundamental to obtain an efficient parallel execution.

7.3.2 Load balance and scheduling

A drawback of the parallelization of the sweep algorithm is constituted by
the non-uniform distribution of the computational cost of the sweep among
the independent tasks. The variability of the cost of each task is deter-
mined by varying number of intersections composing each trajectory (see
Sec. 4.4), and by the varying computational complexity of the reconstruc-
tion algorithm (see Sec. 6.2). Fig. 7.3 shows the load profile of the 9 tasks
generated by grouping the independent angles of a 36 × 6 product quadra-
ture formula applied to an infinite hexagonal lattice with 2π/12 azimuthal
symmetry and axial reflection. Similarly, Fig. 7.4 shows the profile obtained
by keeping the trajectories as separate tasks. Both cases underline the typ-
ical non-homogeneous distribution of the load of the sweep algorithm. Such
non-uniform distribution may determine a deterioration of the parallel per-
formances of the algorithm, since some threads may finish to execute their
tasks before the others, and become idle until all threads terminate. In this
situation, the actual execution time corresponds to the time required by the
most loaded thread to execute its tasks, which is clearly larger than the ideal
case for which the total load is evenly distributed among the threads.

The tasks executed by each thread during the parallel execution are
determined by the scheduling strategies. When the number of threads is
smaller than the number of tasks, adapted scheduling strategies can be used
to distribute the tasks in order to balance the parallel execution and improve
the parallel efficiency. This will be the subject of discussion of the next two
paragraphs. The first one is dedicated to the scheduling strategies available
with the OpenMP directives, while the second paragraph is dedicated to other
custom scheduling strategies that have been developed in TDT.

7.3. TRANSPORT SWEEP PARALLELISM 123

Figure 7.3: Load profile (normalized to the average load) of the tasks gener-
ated by grouping trajectories with respect to the basic tracking angle. The
case corresponds to a hexagonal lattice configuration with 2π/12 azimuthal
symmetry and axial reflection. A 36×6 product quadrature formula is used.

Figure 7.4: Load profile (normalized to the average load) of the same case
in Fig. 7.3 obtained by keeping the trajectories as separate tasks. Different
colors identify trajectories with the same angle.

124 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

OpenMP scheduling strategies

The OpenMP libraries already provide several possibilities to schedule the
parallel execution of a set of tasks. The native OpenMP scheduling strategies
can be mainly divided in two classes: STATIC and DYNAMIC. In the static
scheduling strategies the iteration space (the set of elementary tasks) is
divided in CHUNKS of fixed size and assigned to the threads prior to the actual
execution. Each thread can therefore execute the tasks without concerning
about other threads. A drawback of the static scheduling is that it does not
take into account the effective execution time of the chunks. Therefore, the
static strategy is not appropriate for non-uniform load profile, since some
chunks may be more loaded than others (see Fig. 7.5).

Differently, in dynamic scheduling the tasks are assigned to the threads
at runtime: when a thread terminates the execution of its current task, the
scheduler assigns it a new task, if any. The dynamic scheduling adds an over-
head to the parallel execution since the availability of tasks and threads must
be determined at runtime and requires additional synchronizations between
threads. This overhead increases with the number of tasks because of the
larger number of synchronizations. To avoid excessive overhead OpenMP
libraries allow grouping the tasks in chunks of equal size. For a large num-
ber of tasks, the degree of unbalance resulting from the dynamic scheduling
is mainly due to the last executed tasks. The GUIDED scheduling strategy
of OpenMP libraries exploits this property and divides the iteration space
in chunks of non-uniform size, following a geometric series [51]. Largest
tasks are the first assigned, whereas smallest tasks are used to reduce the
unbalance at the end of the execution.

Self-scheduling strategies

The OpenMP scheduling strategies allow a good improvement of the parallel
performance of the sweep algorithm. However, the choice of the optimal
strategy often requires the tuning of the scheduling parameters such as the
chunk size. In addition, none of the strategies listed above take into account
the actual load profile of the tasks which can be computed, for example,
at runtime. Alternatively, this can be estimated prior the execution by
assuming a linear dependence with respect to the number of chords of the
trajectory. Such approximation does not take into account the cost of the
reconstruction, whose variation among trajectories maybe not negligible (see
Sec. 6.3). A first method to include the load profile without changing the
implementation of Alg. 5 is to sort trajectories for decreasing values of the

7.3. TRANSPORT SWEEP PARALLELISM 125

Figure 7.5: Static scheduling of the 89 tasks in Fig. 7.4 using 9 threads. The
iteration space is divided in chunks containing the same number of tasks.
With this strategy some threads have more work than other reducing the
efficiency of the parallel execution.

load, and to use a dynamic scheduling.

To better manage the scheduling and avoid manual tuning, an alterna-
tive version of the algorithm has been implemented (see Alg. (6)). A similar
technique is mentioned in [54] but little detail is provided. In our imple-
mentation the function GetTask() takes as input a schedule map S and the
thread identifier, and it returns a contiguous chunk of the iteration space
(a task) which is executed by the thread. This operation is performed by
all the working threads until no tasks are left. Contrarily to Alg. 5, the
new implementation allows the definition of tasks of varying size, providing
an additional degree of freedom for the scheduling. Remark that the time
required to sweep the trajectories depends only on the tracking. Therefore
this information, as well as the schedule map, has to be computed only once,
and can be reused for all iterations and for all the energy groups.

The schedule map S is constituted by a number of pools equal to the
number of working threads, each pool containing the set of tasks that have
to be executed. For a static scheduling, each thread executes the tasks con-
tained in its pool and becomes idle when no tasks are left. Alternatively,
a dynamic reallocation of tasks is possible: whenever a thread finishes its
scheduled jobs, it is allowed to ‘steal’ tasks from other pools. This option
requires additional synchronizations between threads to avoid the simul-
taneous execution of the same task, thus introducing an overhead to the

126 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

calculation.
The number of tasks contained in each pool may vary depending on the

schedule strategy. For the ONETASK option, each pool is constituted of one
task containing a number of trajectories such that the total weight of the
task, ω(Task), is equal to the optimal weight computed by summing up the
weights, ω(t), of the single elementary tasks of the iteration space and by
dividing it by the number of threads (Q):

ωopt =

∑
t ω(t)

Q
. (7.3)

In Fig. 7.6 we show the tasks generated by applying the ONETASK strategy
to the iteration space in Fig. 7.4. Remark the difference between the tasks
in the ONETASK strategy and the equivalent static strategy of the OpenMP
libraries (Fig. 7.5). This strategy has the advantage to generate the mini-
mum number of tasks, and to execute statically. However, if for any reason
the load is not balanced, this strategy introduces a systematic loss of effi-
ciency at each execution of the sweep algorithm. This might be caused, for
example, by the discrete nature of the load profile, which does not allow to
define an integer number of tasks having total weight equal to ωopt. The
trajectory-cut discussed in the previous section can be used to fine-tune the
scheduling but it has not been implemented. The load unbalance of the
ONETASK strategy can be also due to a wrong estimation of the load of each
elementary task.

To avoid these effects of unbalance, the SELFGUIDED strategy applies a
further partitioning of the tasks and a dynamic scheduling. In such method
the iteration space is first divided in macrotasks with weights approximately
equal to ωopt (Eq. (7.3)). Each macrotask is assigned to a pool and is then
further split in NS tasks such that the sth task in the pool takes an α < 1
fraction of the remaining work (see Fig. 7.7):

ωs = ωlefts α, ωs > ωmin, (7.4)

with ωleft1 = ωopt, and ωlefts+1 = ωlefts −ωs. In this way, the first tasks that are
executed by each thread are those with most of the load, while last tasks are
much smaller and are used to balance the parallel execution thanks to their
dynamic reallocation. By noticing that ωlefts = ωlefts−1(1 − α), and imposing
ωNS = ωmin, the number of tasks is:

NS = 1 +
log
(
ωmin
ωoptα

)

log (1− α)
. (7.5)

7.3. TRANSPORT SWEEP PARALLELISM 127

This expression is valid under the hypothesis of continuous load profile and
assuming a real value of NS . However, since NS ∈ N, and because of the
discrete nature of the load profile, the actual number of tasks has to be
adjusted during the construction of the schedule map. This number never
exceeds the value N̄S obtained by rounding up NS to the next integer.

Input: Σr,Σrn,qjrp,T ,SN ,S
Output: φnrp
while Job Not Done do

q ← GetThreadNum();
Task ← GetTask (q,S);
for trajectories in Task do

TrajRebuild(Tt) // Alg. 2;
ψ− ← ψin ; // Boundary flux

for i chords in trajectory do
// Exiting flux

ψ+ ← // Eq. (4.11);
// Net currents

∆Jqjrp = ∆Jqjrp + ωt∆ψip // Eq. (4.21);

// Entering flux for next chord

ψ− ← ψ+;

end

end

end
// Reduction

∆Jjrp =
Q∑
q=1

∆Jqjrp

// Region-averaged angular fluxes

Ψjrp ← // Eq. (4.19);
// Update moments

φnrp ← // Eq. (4.14);

Algorithm 6: Alternative version of the trajectory sweep with manual
scheduling. The symbol S represents the schedule map of the tracking.
The GetTask() function manage the scheduling and provide the group of
trajectories that have to be swept by each thread.

128 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

Figure 7.6: ONETASK scheduling of the 89 tasks in Fig. 7.4 using 9 threads.
The iteration space is divided in 9 tasks having approximately the same
cost. Remark the difference with the static scheduling in Fig. 7.5

Figure 7.7: SELFGUIDED scheduling of the 89 tasks in Fig. 7.4 using 9 threads.
The iteration space is divided in macro-tasks with approximately the same
cost (different colors). Each macro-task is further split in tasks with non-
uniform weight (different patterns): larger tasks are the ones that are firstly
executed, while small tasks are reallocated dynamically to balance the exe-
cution.

7.3. TRANSPORT SWEEP PARALLELISM 129

7.3.3 Results

We tested the parallel methods of the sweep algorithm on a test case repre-
senting the assembly shown in Chapter 9. The methods have been compared
using the parallel efficiency, defined as the ratio between the ideal and the
actual execution time of the parallel calculation, T‖. The ideal execution
time corresponds to the time required for a serial execution, T1, divided
by the number of threads, Q, used for the parallel execution. The parallel
efficiency then reads:

ε‖ =
T1

T‖Q
. (7.6)

Figure 7.8 shows the efficiency of the parallel execution of the tasks
shown in Fig. 7.3, using the static and dynamic scheduling strategies pro-
vided by OpenMP libraries. Data parallelism over the basic angles is used
in this case, which entails that no memory duplication is required, nor any
additional operations for reduction. Tests have be done with a number of
threads up to 9, which represents the maximal number of threads that can
be used for such an iteration space. Results show that the efficiency of the
parallelism deteriorates for increasing number of threads. This is mainly
due to the load unbalance deriving from the non-uniform distribution of the
load. The figure shows that there is no important difference between the use
of the static and the dynamic scheduling, especially for a number of threads
comparable with the number of tasks. This behavior is easily explained since
the effect of the scheduling strategies becomes important only for a number
of tasks sufficiently larger than the number of threads.

In Fig. 7.10 we show the parallel efficiency of the sweep algorithm for
varying scheduling strategies applied to the load profile in Fig. 7.9. The
figure only shows the time required for the sweep while the reduction time
is neglected in order to underline the effect of scheduling strategies. Tests
have been done on a a Xeon E5-2680@2.8 GHz, which is composed of 2
CPUs sharing their memory, each CPU having 10 cores. The figure shows
that OpenMP DYNAMIC, SELFGUIDED and ONETASK have similar performances
with a parallel efficiency linearly decreasing with the number of threads and
reaching a value of 0.5 for 20 threads. Contrarily, the OpenMP STATIC

strategy has a non-uniform scaling with a parallel efficiency immediately
decreasing to less than 0.5 for 3 threads and reaching a value of 0.25 for 20
threads.

The linear decreasing of the parallel efficiency for the most performing
strategies is due to the overheads of the parallel execution, which include
memory duplication, additional memory accesses and synchronizations. The

130 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

Figure 7.8: Parallel efficiency of OpenMP STATIC (circles) and DYNAMIC

(crosses) strategies for the parallel execution of the case in Fig. 7.3 using
data parallelism over the basic angles.

loss of efficiency from 10 to 11 threads underlines the loss due to communi-
cation latency. In the 10-threaded execution, in fact, all the cores involved
in the calculation are allocated on the same CPU and have equal access time
to the main memory. Differently, for a parallel execution with 11 threads,
one of the cores is allocated in the other CPU for which the communication
time is larger. Another effect of the memory is shown in Fig. 7.11 which un-
derlines the effects of different memory allocation strategies: in one case the
memory used by threads is allocated in the shared memory, whereas in the
second case the memory is private to each thread. The second case performs
better since it requires less synchronizations of the memory. The Fig. 7.12
shows the speed up of the whole internal iteration for different strategies.
The best results are obtained using the SELFGUIDED strategy which provides
a speed up close to 10 for a 20-threaded execution.

7.4 DPN parallelism

In an accelerated MOC solution an important part of the execution time
is due to the construction and solution of DPN operator used for the syn-
thetic problem (see Sec. 4.5). To further speed up the whole algorithm we
considered the application of parallel paradigms to the DPN operator.

As we have already anticipated in Sec. 4.5.2, the transport-coherent DPN

operator is built by using the same trajectories used for the MOC calcula-
tion. This operation has to be done for all the energy groups and can be
parallelized by assigning an equal number of groups to each thread. This
strategy has multiple advantages. It does not require any memory dupli-

7.4. DPN PARALLELISM 131

Figure 7.9: Load profile (normalized
to the average task load) used for
testing different scheduling strate-
gies (Fig. 7.10). It corresponds to
the case in Chapter 9.

Figure 7.10: Parallel efficiency
of the sweep algorithm (no re-
duction included) applied to the
load profile in Fig. 7.9 for dif-
ferent scheduling strategies. Cir-
cles: OpenMP DYNAMIC scheduling
with unitary chunk size. Diamonds:
SELFGUIDED. Crosses: ONETASK. Tri-
angles: OpenMP STATIC.

Figure 7.11: Effect of the memory
on the execution time of the inter-
nal iteration. Circles indicate the
efficiency by using global variables.
Squares indicate the case where the
memory is private to the thread (less
memory synchronizations).

Figure 7.12: Speed up of the inter-
nal iteration corresponding to the
load profile in Fig. 7.9 for dif-
ferent scheduling strategies. Cir-
cles: OpenMP DYNAMIC scheduling
with unitary chunk size. Diamonds:
SELFGUIDED. Crosses: ONETASK. Tri-
angles: OpenMP STATIC. Dashed
line: ideal scaling.

132 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

cation because all writing operations are performed on independent zones
of memory. Also, this strategy produces a naturally balanced parallel ex-
ecution since the cost of the construction only depends on the size of the
tracking, which is equal for all the energy groups. Finally, this strategy pro-
vides a good degree of parallelism since in standard calculations the number
of groups easily reaches the order of some hundreds.

The parallelization of the solution of the DPN system is a topic that
has not been addressed although it should provide a good reduction of the
execution time.

7.5 Conclusions

In this chapter we have discussed several strategies for the parallelization of
the Method of the Characteristics. In our research we have concentrated
mostly on the parallelization of the sweep algorithm which is the most
resource-demanding task of the MOC. The difficulties in applying these
techniques are of different nature. From one side, the sweep algorithm ac-
cesses simultaneously to the shared values of the net currents which may
introduce race conditions and invalidate the results of the algorithm. To
avoid these problems we adopted two different approaches: the data par-
allelism over the basic tracking angles automatically avoids these problems
since the parallel tasks access separate values of the net currents and allow
a parallelism without additional overhead. Unfortunately, the number of
independent tasks generated by the data parallelism is generally small and
does not allow the execution with a large number of threads. This strategy is
therefore better suited for small cases, and for multi-core architectures with
a relatively small number of cores. Alternatively, the parallelization over the
trajectories has been implemented to allow a higher degree of parallelism,
but it requires additional memory to avoid race conditions, and additional
operations for the reduction. The second major problem of the parallel ex-
ecution of the sweep derives from the non-uniform distribution of the load
among the tasks. Such non-uniformity may generate load unbalance between
threads and deteriorate the parallel efficiency. To mitigate this effect we de-
veloped and tested different scheduling strategies. Results have shown a
well-balanced distribution of the load with the parallel efficiency decreasing
linearly with the number of threads due to parallel overheads. Among the
scheduling strategies, the custom SELFGUIDED and ONETASK strategies have
shown slightly better performances with respect to the OpenMP DYNAMIC

scheduling. Some results of the parallel performances of TDT have been

7.5. CONCLUSIONS 133

subject of a publication in an international conference [55]
Alternative parallel strategies have been also considered but their imple-

mentation has not been done. In particular, the trajectory-cut can be used
to split large tasks and increase the degree of parallelism and the efficiency
of scheduling strategies.

For optically large cases (e.g., core-level calculations), an alternative
domain-decomposition method has been proposed for which the effect of
neighbor sub-domains is taken into account with trajectory-coherent bound-
ary conditions that do not introduce any additional approximation on the
values of boundary fluxes. The drawback of this method is that it is based
on the overlapping of sub-domains and it requires additional memory (and
communication time) as compared to other domain-decomposition methods
for which boundary conditions have a surface-based representation.

134 CHAPTER 7. PARALLEL ALGORITHMS FOR MOC

Chapter 8

Angular quadrature formulas

The MOC uses the SN quadrature formula to compute the angular moments
of the flux:

Φn =
1

4π

∫

S2

dΩAn(Ω)ψ(Ω) ≈
∑

j

ωjAn(Ωj)ψ(Ωj). (8.1)

The order of the angular quadrature formula determines the number of di-
rections required to approximate Eq. (8.1) and, by consequence, the number
of trajectories that have to be tracked and swept. The choice of the quadra-
ture set is therefore important in determining both memory and time re-
quirements of the MOC algorithm.

In general, quadrature formulas are built to exactly integrate a finite
set of functions used as representation basis of the integrand function. A
quadrature formula is then more accurate if the integrand function can be
expanded into this basis with a small residual.

In the case of neutron transport, numerous papers are dedicated to the
research of optimal quadrature formulas. Clearly these formulas depend on
the problem considered. Some quadrature sets, for example, are built in
order to reduce the so-called ray-effect, which mostly affects problems with
highly absorbing media and localized sources [13, 14]. Other quadrature sets
are built in order to preserve the invariance of the solution to rotations and
symmetries, such as the Level Symmetric quadrature set [9], or quadrature
sets containing the symmetries of platonic solids. The most used quadrature
sets for 2D transport calculations with the MOC are product-type quadra-
ture formulas, for which the representation basis of the direction Ω is ob-
tained by the tensor product of two mono-dimensional bases of the azimuthal
and polar angles. Generally, a uniform rectangle formula is used for the az-
imuthal component. This formula is characterized by constant weights and

135

136 CHAPTER 8. ANGULAR QUADRATURE FORMULAS

uniformly distributed nodes, and is optimized to integrate functions that are
periodic over ϕ ∈ [0, 2π]. Concerning the polar variable, the usual choice
is a high-order quadrature formula such as the Gauss-Legendre formula [8].
This choice is justified by the fact in 2D cases the angular flux is a smooth
function of the polar variable. A very successful approach is the one firstly
introduced in [56], and then generalized in [46], which computes the weights
and nodes of the polar quadrature formula by minimizing the integration
error of Bickley-Naylor functions. These functions are the exact solution of
2D transport in a medium with no scattering for a line source [46, 57].

In 3D axial geometries, a separation of the azimuthal and the polar vari-
ables is a natural choice due to the cylindrical structure of the geometry. For
this reason we limit our research only to product-type quadrature formulas.
In the next section, we will briefly recall the construction of product-type
quadrature sets, and we will provide details of the polar formulas that have
been implemented in TDT. A particular attention is given to high-order po-
lar sets that include directions θ = 0, θ = π, or θ = π/2, which correspond
to the vertical and horizontal directions. These ‘special’ directions are par-
ticularly attractive from the computational point of view since the cost of
their sweep is negligible as compared to that of other ‘standard’ directions.
In Sec. 8.2 we provide the details of the specialized sweep algorithms for the
horizontal and vertical directions for the step-MOC approximation. The
generalization of these methods to higher order expansions of the source has
not been carried out. The last section of this chapter is dedicated to conver-
gence tests of these quadrature formulas in typical reactor configurations.

8.1 Product-type formulas

Product-type formulas approximate two-dimensional integrals using two sep-
arates mono-dimensional quadrature sets for the integration variables. We
define then the azimuthal quadrature set of order M ,

SϕM = {(ωϕi , ϕi), 1 ≤ i ≤M},

as the set of weights, ωϕi , and nodes, ϕi, approximating the integral of a
generic function of the azimuthal variable, f(ϕ):

1

2π

∫

(2π)
dϕf(ϕ) ≈

M∑

i=1

ωϕi f(ϕi). (8.2)

8.1. PRODUCT-TYPE FORMULAS 137

With a similar notation, we define the polar quadrature set of order N , SθN ,
by the approximating integral:

1

2

∫ π

0
dθ sin(θ)g(θ) ≈

N∑

j=1

ωθj g(θj). (8.3)

The product quadrature formula of order M × N for the two-dimensional
variable Ω used in Eq. (8.1) is obtained by taking the tensor product of the
two mono-dimensional quadrature sets SϕM and SθN . The resulting nodes
and weights are respectively Ωij = (ϕi, θj) and ωij = ωϕωθj :

SM×N = SϕM ⊗ SθN = {(Ωij , ωij); 1 ≤ i ≤M, 1 ≤ j ≤ N}. (8.4)

When the polar quadrature formula includes the endpoints of the integration
interval (subscript v), the directions Ωiv coincides with the vertical direc-
tions (up/down). Remark from the definition in Eq. (8.4), and by using
the normalization condition of the azimuthal formula (Eq. (8.2)), that the
weight associated to the vertical direction coincides with ωθv .

Reciprocity and symmetries

The construction of the angular quadrature set must obey to the reciprocity
condition in order to preserve the forward/backward symmetry of the Trans-
port Equation in a pure absorbing medium. This is done by defining the
quadrature formula only for the directions in the upper unit sphere and by
extending it to the whole set by imposing the reciprocity. This requires that
if Ω = (ϕ, θ) ∈ SN than also −Ω = (ϕ+ π, π − θ) is in the quadrature set.
The symmetry also requires the weights associated to opposite directions to
be equal.

In the TDT implementation, the construction of the azimuthal quadra-
ture formula is done in for the angles ϕ ∈ [0, π] and then extended to the
whole azimuthal space by imposing reciprocity to obtain directions ϕ + π.
When the geometry is characterized by axial symmetries, the azimuthal for-
mula is built in the basic angular domain, ∆ϕb, and then extended to [0, π]
by repeated application of the geometrical motions (see Sec. 5.2). Con-
cerning the polar quadrature set, we always impose the symmetry of the
quadrature formula with respect to the horizontal direction (θ = π/2) to
obtain the direction π − θ required by reciprocity. This condition already
takes into account both reflective and translational boundary conditions on
the horizontal planes and does not require additional restrictions.

138 CHAPTER 8. ANGULAR QUADRATURE FORMULAS

8.1.1 Polar quadrature formulas

We focused our research on the convergence analysis of different types of
polar quadrature formulas. These quadrature sets are built in order to
satisfy Eq. (8.3). For some quadrature sets, it is useful to rewrite this last
integral applying the change of variables µ = cos(θ) ∈ [−1, 1], which gives:

1

2

∫ 1

−1
dµg(µ) ≈

N∑

j=1

ωθj g(µj). (8.5)

Uniform step and trapezoidal sets

These are quadratures belonging to the family of Newton-Cotes formulas, for
which the integrand function is approximated with interpolation rules [58].
For these kind of formulas the integration interval is divided into bins of
equal size, and, for each bin, a constant (step) or a linear (trapezoidal)
representation of the integrand is used. In the UT set (Uniform Theta)
the integrand is assumed to be constant within the bins of size ∆θ = π/N ,
with N the order of the quadrature set. The nodes are chosen with the
mid-point rule, whereas the weights are computed by substituting the step
approximation of the integrand in Eq. (8.3):

ωUTj =
1

2
{cos[j∆θ]− cos[(j − 1)∆θ]}. (8.6)

The UM (Uniform Mu) applies the same approximation to Eq. (8.5) to
represent the variation of the integrand within the bins of size ∆µ = 2/N .
The weights of the UM formula are constant and equal to ωUMj = 1/N . The
TM and TT sets are built using a linear interpolation rule between the
values of the integrand evaluated at the N +1 endpoints of the intervals ∆µ
(TM set), and ∆θ (TT set). In the first case, the weights correspond to the
standard trapezoidal rule [58], whereas for the case of the TT formula they
assume the following expression:

ωTTj =
1

2∆θ

{
∆θ − sin(∆θ), j = 0, j = N
2 sin(θj)− sin(θj−1)− sin(θj+1), 1 ≤ j ≤ N − 1

(8.7)

All these quadrature sets are symmetric with respect to the horizontal di-
rection, as required by the reciprocity constraints. For odd values of N the
UM and UT sets contain the horizontal direction, whereas for trapezoidal
rules the horizontal direction is included for even values of N . Remark that
trapezoidal rules also contain the vertical direction.

8.1. PRODUCT-TYPE FORMULAS 139

Gauss-Legendre and Gauss-Lobatto sets

The polar integral in Eq. (8.5) can be approximated using Gauss-Legendre
formulas (GL). These are well known formulas which guarantee an exact
integration of polynomials of the integration variable (i.e., µ) up to order
2N − 1, with N the order of the quadrature set. Hence, GL formulas are
optimal to integrate regular functions, since these are well approximated by
the polynomial basis.

The Gauss-Lobatto (GLob) quadrature set is a modified version of the
GL set which contains also the endpoints of the integration interval [58].
These formulas have a reduced precision with respect to the classic GL
set, since they guarantee exact integration only for polynomials up to order
2N − 3. However, the endpoints of the integration integral correspond to
the vertical directions, for which the cost of the solution of the transport
equation is negligible, as compared to that of ‘internal’ points (see Sec. 8.2).
A ‘fair’ comparison of the two sets can be done by considering only the
internal points of the two quadrature sets. With this adjustment, the actual
order of the GLob set increases to 2(N + 2) − 3, making it theoretically
advantageous with respect to the GL set.

Both GL and GLob sets satisfy the symmetry with respect to θ = π/2.
Also, both sets contain the horizontal direction for odd values of N .

Clenshaw-Curtis set

In the Clenshaw-Curtis (CC) formula the integral in Eq. (8.3) is solved
analytically by assuming a truncated cosine expansion of the integrand,
while the coefficients of this expansion are approximated using a trapezoidal
formula [59]. These quadrature sets show very good convergence rate and
outperform GL sets for periodic irregular functions [60]. The nodes of the
CC set are those of the TT formula and are, therefore, evenly distributed
in [0, π], and symmetric with respect to θ = π/2. They also include the
vertical and, for even orders, the horizontal directions.

Minimized Bickley set

MB formulas [46] are built by minimizing the integration error with respect
to the Bickley-Naylor function of third order:

Ki3(τ) =

∫ π/2

0
dθ sin2 θ exp

(
− τ

sin θ

)
. (8.8)

140 CHAPTER 8. ANGULAR QUADRATURE FORMULAS

The Bickley-Naylor function represents the exact solution of the neutron
transport equation for a line source along the axial direction and no scat-
tering [57]. In Eq. (8.8) τ is the projection of the optical length on the
xy-plane.

The quadrature set is obtained by non-linear minimization of the func-
tional [46]:

F (~ω, ~θ; τmax) =

∫ τmax

0


 2

π
Ki3(τ)−

∑
j ωj sin2 θj exp

(
− τ

sin θj

)

∑
j ωj




2

dτ, (8.9)

representing the integration error introduced by using the quadrature for-
mula composed of the weights ωj and nodes θj so that θj ∈ [0, π/2] and∑

j ωj = 1. In Eq. (8.9) τmax has a fixed value (e.g., the average/maximal
2D chord). Remark that the definition of the functional in Eq. (8.9) is in-
variant with respect to the normalization chosen for the weights. Therefore,
its minimization can be done without considering the condition

∑
j ωj = 1.

This condition is imposed only once the optimal set is found, by applying
the same scaling factor, 1/

∑
j ωj , to the set of optimal weights.

The minimization of the functional is done using the gradient descent
algorithm [61] for which the minimum is sought following the negative di-
rection of the gradient of the functional with respect to the free parameters
ωk and θk:

− ∂F

∂ωk
=

∫ τmax

0

K(~ω, ~θ, τ)
(∑

j ωj

)2


sin2 θk exp

(
− τ

sin θk

)∑

j

ωj+

−
∑

j

ωj sin2 θj exp

(
− τ

sin θj

)
 dτ, (8.10)

− ∂F
∂θk

=

∫ τmax

0

K(~ω, ~θ, τ)∑
j ωj

ωk cos θk(τ+2 sin θk) exp

(
− τ

sin θk

)
dτ, (8.11)

where the following definition has been used for the K function:

K(~ω, ~θ, τ) = 2


 2

π
Ki3(τ)−

∑
j ωj sin2 θj exp

(
− τ

sin θj

)

∑
j ωj


 . (8.12)

8.2. STEP APPROXIMATION FOR SPECIAL DIRECTIONS 141

In the standard approach the minimization is done by assuming 2N free
parameters representing the weights and the nodes of the quadrature set.
The minimization algorithm can be modified in order to impose the existence
of particular directions in the quadrature set. This allows, for example, to
build quadrature sets containing the vertical and the horizontal directions.
In these cases, the special directions are fixed parameter whereas only their
associated weights are used for the minimization.

Since the MB formula is sought only for values of θ ∈ [0, π/2], an ex-
tension to the whole polar integration interval is required. This is done by
imposing the symmetry of the quadrature set with respect to the horizontal
direction. Remark that, if the horizontal direction is included, its weight
must be doubled to take into account the up/down symmetry.

8.2 Step approximation for special directions

In axial geometries horizontal and vertical directions are particularly at-
tractive in terms of cost of the sweep. Vertical directions are those that
are parallel to the axial mesh, ~H (see Sec. 3.2). Geometrically speaking, all
vertical trajectories are equals, and the set of intersection within the domain
clearly coincides with the axial mesh. This allows the treatment of the ver-
tical direction without additional memory. The leakage term in Eq. (4.21)
for the step approximation is exactly integrated if

∆Jrv = Ar2D∆ψrv, (8.13)

where Ar2D is the area of the 2D region, and ψrv is obtained by sweeping
only one vertical trajectory for each 2D region in the upward and downward
directions. When geometrical boundary conditions are applied, we only have
to consider those applied on the horizontal boundaries. In some special cases
(double reflection or translation), vertical sweep can be done with periodic
trajectories even if the geometry is not completely closed. The cost of the
algorithm corresponds to the operations needed to solve the transmission
equation for NZ ×N2D chords, NZ being the number of subdivisions along
the axial direction, and N2D the number of regions of the 2D section.

Horizontal trajectories are those parallel to the 2D section. In axial
geometries a translation along the axial direction of a horizontal trajectory
does not change the number of intersections within the 3D domain. The
sequence of chord lengths and crossed regions on the 2D mesh are also
invariant. Remark also that horizontal trajectories coincide with the 2D
trajectories used for the construction (and reconstruction) of the actual 3D

142 CHAPTER 8. ANGULAR QUADRATURE FORMULAS

trajectories. This implies that no additional memory is required to store
trajectories for the horizontal directions. In terms of contribution to the
leakage term in the region-balance, parallel horizontal trajectories within
the same axial mesh are equals, which allows to simplify the leakage term
with the following:

∆Jrh ≈
∑

t‖Ωh
t∈Dr

∆2D
t ∆ψt, (8.14)

where ∆2D
t = ∆hrz∆r is the weight of the associated to 2D directions, which

correspond to the height of the axial node, ∆hrz , times the spacing, ∆r, be-
tween 2D trajectories. By using this simplified equation, the leakage term
for the horizontal direction can be obtained by sweeping the set of 2D tra-
jectories for each axial node. As for vertical trajectories, an exact treatment
of geometrical boundary conditions can be done by taking into account the
conditions applied on the vertical surfaces. If all the vertical surfaces are
characterized by geometrical boundary conditions, then the treatment of the
horizontal direction is done using periodic trajectories.

8.3 Results of the convergence analysis

The quadrature formulas implemented in TDT have been tested on het-
erogeneous cases which can be typically encountered in actual reactor con-
figurations. These analyses have been carried out by considering the error
committed in the estimation of the keff by employing a given quadrature
set, as compared to a reference value. For an actual validation of the solver,
a true reference value should be used, such as the value provided by a Monte
Carlo simulation [62]. However, in this section we are only concerned with
the errors introduced by employing a quadrature formula for the estimation
of the angular integrals. Is therefore out of scope to compare the perfor-
mances of quadrature formulas using the Monte Carlo simulation. Instead,
the comparisons are done by assuming that all quadrature sets converge to
the same value, and by taking this value as a reference for the error esti-
mate. In particular, reference values are computed using a GL set of high
order (∼ 30) for the polar integration. In order to single out only the effects
of the polar integration, the comparisons are done by keeping the same az-
imuthal formula and by only varying the type and the degree of the polar
set. The azimuthal quadrature formula employed is a uniform quadrature
set with equally spaced nodes, which is the common choice for 2D MOC
calculations [46]. Some of these results have been subject of a publication

8.3. RESULTS OF THE CONVERGENCE ANALYSIS 143

in a international conference [63] and in an international journal [45].
The first case considered is a three-dimensional fuel cell in an infinite

lattice configuration whose elementary geometry is described in Fig. 8.1.
This case is characterized by homogeneous axial composition of the clad
and of the moderator, and a heterogeneous composition of the fuel. The
latter is constituted of enriched Uranium oxides (Uox) in its lower part, and
by a mixture of depleted Uranium and other fissile isotopes (Mox) in the
upper part. Since both Uox and Mox have similar nuclear properties, the
presence of the Uox/Mox heterogeneity mildly perturbs a problem which,
otherwise, would be two-dimensional. We expect therefore convergence rates
similar to those obtained in 2D cases, for which the most performing sets
are GL and MB [46]. This reasoning is confirmed by the numerical results
shown in Figs. 8.2(a) and 8.2(b), which show the error on the reactivity for
several quadrature formulas. To make a fair comparison between formulas
with vertical and horizontal directions, results are plotted with respect to
the number of 3D angles in the polar quadrature formula, that is by not
counting these special directions. Results show that, in general, high order
quadrature formulas perform better than Newton-Cotes formulas, a fact
that is explained by the regularity of the angular flux. A surprising result
concerns the convergence rate of the GLob set. In fact, as we have seen in the
previous section, this quadrature set theoretically integrates polynomials up
to order 2N + 1, if N is the number of 3D angles. Conversely, an equivalent
GL quadrature exactly integrates polynomials up to the order 2N−1, which
makes it less advantageous from the computational point of view. However,
this theoretical result is not confirmed by the numerical simulations which
show that far more angles are required for the GLob set to attain an accuracy
similar to that of the GL quadrature. In Fig. 8.3(a) we compare the error on
the reactivity of GL and GLob sets with respect to the maximum order of the
integrating polynomial. The figure shows that, although both sets exhibit a
similar convergence rate, the presence of the vertical direction in the GLob
set introduces a bias which distances the solution from the converged value.
A similar bias is found whenever the horizontal direction is included in the
quadrature set, as it can be seen by comparing the convergence series of odd
and even orders of the same quadrature set (see Figs. 8.3(a) and 8.3(b)). The
nature of this bias has not been understood and requires more research.

In the second configuration, the 2D section of the geometry is the tri-
angular domain in Fig. 8.4, representing the basic domain of an infinite
hexagonal lattice configuration with π/6 symmetry. The axial composition
of materials is homogeneous for the clad and for the coolant, whereas the
fuel is composed of stacked fissile and fertile materials. Differently from

144 CHAPTER 8. ANGULAR QUADRATURE FORMULAS

Figure 8.1: Geometrical description of the Uox/Mox pincell (Uox: lower
part, Mox: upper part).

(a) Newton-Cotes formulas. Green: UT set;
red: TT set of even order (with vertical
and horizontal directions); cyan: UM; yel-
low: TM set of even order (with horizontal
and vertical directions).

(b) Cyan circles: GLob of even order (with
vertical direction); red circles: CC of odd
order (with vertical direction); violet trian-
gles: MB set (with horizontal and vertical
directions); green triangles: MB set; yellow
circles: GL set of odd order (with horizontal
direction); green circles: UT set.

Figure 8.2: Convergence series of quadrature formulas for the case in Fig. 8.1.
Fig. (a) shows Newton-Cotes formulas: sets with uniformly distributed θ
angles converge faster than those with uniformly distributed µ. Fig. (b)
shows the convergence of high order formulas. The UT set (green circles) is
shown in both figures as reference.

8.3. RESULTS OF THE CONVERGENCE ANALYSIS 145

(a) Convergence series with respect to the
theoretical order of Gaussian formulas. Cir-
cles: GL sets of odd (yellow) and even (red)
order. Triangles: GLob sets of odd (green)
and even (cyan) order.

(b) Convergence series of GL (yellow) and
GC (red) sets with respect to the order of
the polar quadrature. The horizontal direc-
tion belongs to the quadrature for odd or-
ders of the GL set, and for even orders of
the CC set.

Figure 8.3: A bias appears when the vertical and horizontal directions are
considered. The comparison between the GL and GLob sets in Fig. (a)
shows the bias introduced by the vertical direction. Fig. (b) underlines the
effect of the horizontal direction. An alternate convergence series is obtained
by switching between even and odd orders of the quadrature formulas.

the previous case, the heterogeneity along the axial direction constitutes a
strong perturbation of the angular flux, since the nuclear properties of the
fertile and fissile mixtures are substantially different. In such configuration,
the majority of neutrons is emitted by the fissions produced in the lower
part of the fuel, whereas the fertile zone behaves more as an absorbent. In
Fig. 8.5 we show the error on the reactivity for some polar quadrature sets.
The behavior of quadrature formulas is similar to that exhibited for the
previous case: GL sets are the most accurate sets, followed by the CC set,
whereas the uniform set converges more slowly.

An important remark is due for the MB set. We cross-compare Fig. 8.2(b)
and Fig. 8.5 by taking the GL set as reference. This comparison shows that
the MB set exhibits a good convergence rate in the case of Uox/Mox transi-
tion, whereas its accuracy deteriorates in the fissile/fertile case. The reason
of such deterioration derives from the fact that MB sets are built by min-
imizing the integration error with respect to the two-dimensional solution.
This is an acceptable approximation for mild axial heterogeneities but it
breaks down if strong axial heterogeneities are introduced.

Finally, the Fig. 8.7 shows the convergence rates and errors of GL, CC,

146 CHAPTER 8. ANGULAR QUADRATURE FORMULAS

Figure 8.4: Triangular pincell
representing the basic 2D section
of an infinite hexagonal lattice
configuration. Along the axial
direction the composition of the
fuel varies: fissile material com-
poses the lower part, while fer-
tile material composes the upper
part.

Figure 8.5: Converge series of quadra-
ture formulas for case in Fig. 8.4. Yel-
low circles: GL set of even order; red
circles: GL set of odd order (with
horizontal); violet triangles: MB set;
green circles: UT set; navy circles:
CC set of odd order (with vertical);
cyan circles: GLob of even order (with
vertical).

GLob, and MB formulas for the hexagonal assembly whose 2D section is
shown in Fig. 8.6. The axial composition of the fuel materials is the same of
the previous case (Fig. 8.4) while other material are axially homogeneous.
The figure shows that quadrature formulas in this case behave similarly as
the previous case.

8.4 Conclusions

The convergence analysis done in this chapter has shown that product-type
quadrature formulas with low order azimuthal quadrature formulas and high
order polar quadrature sets are an optimal choice for typical reactor con-
figurations. In particular, the classical Gauss-Legendre sets have shown the
best results: a polar formula of sixth order generally suffices to obtain a
converged solution. The Clenshaw-Curtis formula has also shown good con-
vergence rate and might be appropriate for cases with more severe hetero-
geneities. Concerning the Minimized Bickley, results show that the accuracy
of the formula deteriorates in cases with strong axial heterogeneities.

In this chapter we have also explored the convergence rate of quadrature
formulas containing the vertical and horizontal directions. We explored

8.4. CONCLUSIONS 147

Figure 8.6: Section of an as-
sembly in a infinite hexago-
nal lattice configuration. Ax-
ial composition of fuel as for
Fig. 8.4.

Figure 8.7: Converge series of quadrature
formulas for case in Fig. 8.6. Yellow: GL
set; violet: MB set; red: CC set; cyan:
GLob.

these formulas because the computational cost of the associated sweep is
negligible, as compared to that of the ‘3D angles’. The numerical results
show that these directions introduce a bias in the solution which has not
been explained yet. Further research is required on this topic.

148 CHAPTER 8. ANGULAR QUADRATURE FORMULAS

Part III

Application

149

Chapter 9

Application and verification
of the MOC

The methods discussed throughout this manuscript have been implemented
in the APOLLO3® version of TDT, developed at the Laboratoire de Trans-
port Stochastique et Déterministe (LTSD) of the CEA of Saclay. In this
chapter we propose an actual application of the solver with the aim, on
the one hand, of verifying its correct implementation, and, on the other
hand, of showing its usefulness for the design of innovative reactor designs.
This study has been done in collaboration with the Service de Physique des
Réacteurs et du Cycle (SPRC) of the CEA of Cadarache, which is in charge
of defining a calculation scheme for the ASTRID project.

The chosen case is a heterogeneous three-dimensional case representing
one assembly of the innovative Fast Breeder Reactor ASTRID, developed
at the CEA in France. The verification has been carried out by comparing
the APOLLO3® results with a reference Monte Carlo calculation obtained
with the TRIPOLI4 code, also developed at the LTSD.

This chapter is structured as follows. In the first section we will briefly
describe the ASTRID project, its goals and the design solutions proposed
to achieve these goals. We will then recall the two-levels scheme classically
used for core analysis and we will then provide the details of the model
used for the assembly-level calculation. An important point for the correct
calculation of the case proposed is the generation of the multi-group cross
sections, which is done with the self-shielding model. The coupling between
the MOC and the self-shielding will be subject of discussion of Sec. 9.3.1.
The results and discussion of the APOLLO3®/Tripoli4 comparisons will be
provided in the last sections of this chapter.

151

152 CHAPTER 9. MOC APPLICATION

9.1 ASTRID: a Gen IV Sodium-cooled fast reac-
tor

Fast reactors differ from the standard thermal reactors mainly for their neu-
tron energy spectrum, which is characterized by a larger population of highly
energetic neutrons (∼ 1MeV). The objective of fast reactors is to use fast
neutrons to transmute the hardly fissile 238

92U isotope in 239
94Pu which, instead,

can be easily fissioned. The goal of such design is clearly to better exploit
the primary source (precisely Uranium) to keep the economic feasibility of
nuclear power. The fast energy spectrum also facilitates the transmutation
of minor actinides in order to reduce the activation and decay time of spent
fuel.

As a drawback, fast reactors are more concerned about stability of the
nuclear reaction as compared to thermal reactor designs. In particular, old
fast reactor designs suffered of the so-called void effect : a positive reactivity
insertion (positive feedback on the chain reaction) in case of reduction of
the coolant density. This effect led to a reduced operability of the reactor
due to safety reasons.

ASTRID is a project of innovative Sodium-cooled Fast Breeder Reactor
led by the CEA [64]. It is part of the Gen IV reactors whose objectives are
the improvement of the safety and operability of nuclear reactors, as well as
the improvement of the fuel-cycle for durable and economic solutions. One
of the goals of ASTRID is the reduction of the above-noted void effect with-
out compromising the performances of the reactor in terms of power density
and burnup [65]. The solution proposed in ASTRID is the introduction of
axial heterogeneities in order to maximize the neutron leakage from the fis-
sile zones in case of reduction of the the Sodium density due, for example,
to a temperature increase. An axial cut of the ASTRID core is shown in
Fig. 9.1(b), while Fig. 9.1(a) shows its two-dimensional section. Remark
the presence of the large Sodium plenum at the top of the reactor, and the
absorbing protection behind him. In nominal condition, the plenum acts as
a reflector and keeps neutrons inside the core, stabilizing the chain reaction.
In ‘accidental’ transients, the temperature of the plenum increases deter-
mining a reduction of its density. In these conditions the plenum partially
loses its reflective properties, increasing the leakages towards the absorbing
neutron protection, thus reducing the reactivity insertion. The fertile lay-
ers increase the curvature of the flux at the upper fissile/plenum interface,
further increasing the neutron leakage.

This solution totally differs from old reactor designs which are charac-

9.2. TWO-LEVEL CORE ANALYSIS 153

(a) Two-dimensional section. (b) Axial section.

Figure 9.1: Geometry of the ASTRID reactor.

terized by a more homogeneous axial composition. In these problems the
classic two-dimensional approximation of the transport may introduce sub-
stantial errors and it should be avoided, or at least carefully tested with
respect to a 3D reference calculation.

9.2 Two-level core analysis

The two-level approach is the classic method used for reactor analysis. In
consists in studying the neutronic behavior of the reactor at two different
scales:

Lattice level (O(10cm)) at this level the material heterogeneities intro-
duce transport effects that have to be correctly accounted for. A fine-
energy (O(102) → O(103) groups) transport solution with accurate
geometry description and approximate boundary conditions (infinite
lattice) are used at this level.

Core level (O(1m)) at this scale transport effects become less important
and the neutron distribution assumes a diffusive behavior. Generally
a coarse-group (O(10) groups), coarse-mesh transport calculation of
the whole core is done [66].

The homogeneous parameters used at the core level are computed through
flux-weighted averages except for the rodded assembly for which an equiva-
lence in reactivity is performed [67].

154 CHAPTER 9. MOC APPLICATION

(a) Two-dimensional section. (b) Axial section.

Figure 9.2: Geometry of the CFV assembly. Different colors represent the
coarse mesh used for the two-level scheme. Radially, the last row of fuel
pins is kept separated from the inner pins. Axially, the fertile (upper) and
the fissile (lower) zones are also separated.

9.2.1 Lattice calculation of a FBR assembly

The problem considered is representative of an assembly of the ASTRID
CFV (French acronym for Low Void Effect Core) core. It is constituted by
an infinite lattice configuration of a prism whose two-dimensional section is
shown in Fig. 9.2(a). The axial heterogeneities have been modeled by as-
suming an infinite stack of layers of fertile and fissile materials with reflective
boundary conditions. Fig. 9.2(b) shows an axial cut of the assembly.

A detailed solution of this problem has been obtained in order to apply
the two-level equivalence and to compute the diffusive parameters used at
the core level. The coarse mesh used for the energy representation is a 33
groups energy mesh. Spatially, the homogenization is done by separating
the fuel in two zones: the peripheral zone including the last row of fuel pins,
and the internal zone which includes the other fuel pins (different colors in
Fig. 9.2(a)). Axially, values are homogenized by separating the fissile and
the fertile zones as shown in Fig. 9.2(b).

Monte Carlo reference solution

The verification of the APOLLO3® scheme has been done by making com-
parisons with a continuous-in-energy Monte Carlo reference solution com-

9.3. APOLLO3® NUMERICAL SCHEME OF THE FBR ASSEMBLY155

puted with Tripoli4 [62]. The Monte Carlo method uses a statistical ap-
proach to simulate the path traveled by the neutrons and their interaction
with the matter (e.g., fission reaction, scattering, etc.) without making any
approximation of the physics of the interaction and of the geometry. About
one week calculation on 6-cores Intel Xeon X5650 has been required to ob-
tain a solution with acceptable statistical errors (O(10−5) on reactivity and
O(10−3) for the energy and spatial distributions of reaction rates).

9.3 APOLLO3® numerical scheme of the FBR as-
sembly

The detailed solution of the CFV assembly has been obtained using the
3D MOC solver of TDT developed throughout our research. The ECCO
1968 groups discretization of the energy is used for the multi-group calcula-
tion [68]. This energy mesh is conceived to correctly take into account the
resonance effects for the whole energy domain (up to 20MeV). The multi-
group cross sections have been computed using the Subgroups method (see
Sec. 2.2) of the AUTOP module of APOLLO3®. This method uses the
2D Collision Probability [7] solver of TDT to invert the transport operator
for the quadrature points of the Probability Tables (see Sec. 2.1) in a fixed
source problem. To take into account three-dimensional effects, the fixed
source of the 2D Subgroups method is directly provided by the 3D MOC
solution applying a 2D/3D equivalence. The mutual coupling between the
MOC and the Subgroups solutions, and the nonlinearities introduced by
the multi-group equivalence (see Sec. 2.2) require an iterative solution to
converge on both multi-group fluxes and cross sections. The results of this
calculation have been subject of a publication in an international confer-
ence [55].

9.3.1 Self-shielding spatial equivalence

The equivalence between the two-dimensional Subgroup method and the
3D MOC is done by partitioning the 3D geometry in NS axial nodes (see
Fig. 9.3(b)) and by integrating the slowing down equation (Eq. (2.17)) along
the axial direction. To perform this operation we assume a homogeneous
axial composition of the materials within each node. We obtain NS modified
equations which differ from the original in the definition of the external
source:

qζext(r⊥) =

∫

∆zζ
dzqext(r)− ∆Jζg (r⊥)

∆Eg
. (9.1)

156 CHAPTER 9. MOC APPLICATION

The first term in this equation is the integral of the external source in the
ζth axial node of height ∆hζ , while the term ∆Jζg /∆Eg identifies the group-
averaged net axial current:

∆Jζg (r⊥) =
1

4π

∫

4π
dΩΩ · n(z±)ψg(r⊥, z

±). (9.2)

In the last equation we used z± to indicate the coordinates at the top (+)
and the bottom (-) of the axial node, while n(z±) indicates the outgoing
normal to the respective surfaces. The volume integral in Eq. (9.1) as well
as the contribution of the net axial currents are computed using the values
of the flux provided by the three-dimensional MOC solver. Remark that
with this formulation we have neglected the energy dependence of the axial
leakages within the energy group and used energy averaged values.

9.4 Results

The 3D Step-MOC solution has been computed for the geometry with two-
dimensional section shown in Fig. 9.3(a), representing one twelve of the
full complete assembly and composed of 115 radial regions. Axially, the
geometry is divided in 30 planes with varying mesh size (see Fig. 9.3(b)).
This last figure also shows the different configurations used for the self-
shielding model. In configuration A, only two sets of multi-group cross
sections are computed: one for the fertile zone, the other for the fissile
zone. In configuration B, two additional self-shielding zones are added at
the fertile/fissile interface. Concerning the representation of the scattering,
a P3 approximation is used, which entails that 16 moments are required for
each one of the 115 × 30 regions used for the spatial representation. The
total number of unknowns of the problem is thus about 110 millions if the
1968-groups discretization of the energy is accounted for.

Concerning the trajectory discretization, the MOC calculation has been
performed using a product quadrature formula composed of a 48 angles uni-
form set, and a 7 angles Gauss-Legendre set for, respectively, the azimuthal
and the polar components. The trajectory spacing used is about 0.05cm,
which generates a total number of intersections of about 75 millions. Con-
cerning the memory requirements of the tracking, the HSS storage has
allowed a reduction of a factor 3.5 of the memory required to store the 75
millions identifiers of the crossed regions. The Chord Classification method,
similarly, has allowed a reduction of the stored chord lengths by a factor 3.5.

The MOC algorithm is accelerated with a DP1 synthetic acceleration,
which requires the calculation and storage of the coefficients coupling all the

9.4. RESULTS 157

50 millions unknown surface moments for all the 1968 energy groups. For
this calculation the total number amounts to 3.7 billions. The solution of the
DP1 system is done with a stabilized bi-conjugated gradient method [43, 10].

The serial execution of the complete calculation requires about 6 hours
on a Xeon E5-2680@2.8 GHz. The Fig. 9.4(a) shows how the execution time
is distributed among the different parts of the algorithm. The most time-
consuming task is the MOC iteration which takes about 50% of the total
execution time. Other time-consuming tasks are the construction of the
DP1 coefficients (20%), the solution of the DP1 operator for the acceleration
(11%), and the calculation of the CP coefficients (6%).

The majority of the algorithm has been parallelized using the methods
described in this manuscript. Parallel directives are also used for the calcu-
lation of the CP coefficients, while about 13% of the algorithm is still serial
(DP1 solution mainly). An ideal parallel execution of the algorithm would
obtain a speed up following the law of Amdahl:

Speed Up =
1

0.13 + 0.87/Q
, (9.3)

where 0.13 and 0.87 represent the fractions of, respectively, the serial and the
parallelized part of the algorithm, while Q indicates the number of threads.
According to this law, the maximum speed up achievable is of a factor 7.7.
The Fig. 9.4(b) shows the speed up of the calculation for a varying number
of threads up to 20. The figure shows that the parallel execution allows a
reduction of the execution time with a speed up of about 4, but it is still far
from the ideal case. The loss of efficiency is due to the parallel overheads
discussed in Chapter 7. The minimum total calculation time si of 1h30 and
it is obtained for a 20-threaded execution applying the SELFGUIDED strategy
for the sweep.

The Tab. 9.1 shows the convergence of the self-shielding models. In
the NOAUTOP no self-shielding model is used and group-averaged cross sec-
tions are used. The absolute error on the reactivity with respect to the
Monte Carlo reference solution is about 3500PCM , while the application
of the self-shielding model bring the error within the Monte-Carlo statisti-
cal error. Remark that no difference in the solution is obtained when the
self-shielding model is refined, showing the convergence of the self-shielding
model. Figs. 9.5 to 9.7 show the error on the total absorption reaction rate
in the fuel with and without applying the self-shielding model. The error is
computed by normalizing the APOLLO3® solution and the Tripoli4 solution
to the total integrated value of absorption. In particular Figs. 9.6 and 9.5
show the axial variation of the error while Fig. 9.7 shows the error for the 33

158 CHAPTER 9. MOC APPLICATION

(a) Radial mesh. (b) Axial mesh.

Figure 9.3: The figures show the mesh used for the calculations. In Fig. (a)
we show the radial mesh of the hexagonal lattice with 2π/12 symmetry.
Fig. (b) represents the axial mesh: colored areas represent different self-
shielding zones, while thin black lines represent the axial discretization used
for the MOC calculation. Case A and B identify the two configurations used
for the self-shielding calculation. The arrows are used to represent the axial
leakages computed with Eq. (9.2) (omitted in configuration B for simplicity
of representation).

(a) Serial profile. (b) Speed up.

Figure 9.4: The fig. (a) shows how the execution time is distributed among
the different tasks for the calculation of the assembly in Fig. 9.3. The
Fig. (b) shows the speed up obtained with a parallel execution for a number
of threads up to 20.

9.5. CONCLUSIONS 159

NOSS A B B+Leak

∆ρ (PCM)a -3480 -1 -1 -1

Table 9.1: Error on reactivity for different self-shielding configurations (see
Fig. 9.3(b)). NOSS: no self-shielding model is applied. A: configuration A
with MOC sources and no leakages. B: configuration B with MOC sources
and no axial leakages. B+Leak: configuration B with MOC sources and
axial leakages. a Reference values are obtained by a Tripoli4 Monte-Carlo
simulation which provides ρ = 13872±4 PCM in one week calculation using
6 cores on a Xeon X5650@2.67 GHz.

energy groups. Remark on these figures the strong effect of the self-shielding
on both the energy and the axial variations of the error.

The axial distribution of the flux inside the fuel is shown in Fig. 9.8.
The figure shows the comparison between the APOLLO3® and Tripoli4
fluxes for a thermal group and for a fast group. Results show a very good
agreement between the two solutions. Remark the strong axial gradient of
the flux which has required the 30-planes discretization of the axial direction.

In Figs. 9.9 to 9.11 we show the absolute error on the absorption and
the fission reaction rates of the 235

92U , 238
92U , and 239

94Pu isotopes in the four
homogenization zones (fertile/fissile, peripheral/internal fuel pins). Com-
parisons with Tripoli4 are done by normalizing the distributions to the total
absorption reaction rate.

In Fig. 9.12 we show the axial variation of the homogenized cross sec-
tions of the 238

92U isotope for different energy groups. These cross sections
represent the parameters that are used at the core-level. Remark that the
homogenized cross sections for some energy groups have a non-negligible
axial variation. This artificial variation derives from the homogenization
process over the coarse energy mesh which is applied to impose the conser-
vation of the reaction rates. By consequence, core-level calculations should
take into account these axial variations to obtain conservative results.

9.5 Conclusions

The problem analyzed in this chapter is representative of the actual ge-
ometry of an assembly of the ASTRID reactor containing both radial and
axial heterogeneities. This problem has been solved using a 3D fine-group
MOC calculation coupled with a 2D Subgroups method, and by using a

160 CHAPTER 9. MOC APPLICATION

Figure 9.5: Axial variation in the fuel
of the absolute error on the total absorp-
tion integrated over the energy domain.
Cyan: NOAUTOP. Black: configuration A
(Fig. 9.3(b)).

Figure 9.6: Axial variation in the fuel of the
absolute error on the total absorption in the
16th energy group. Cyan: NOAUTOP. Black:
configuration A (Fig. 9.3(b)).

Figure 9.7: Absolute error of the total absorp-
tion in the fuel for the 33 energy groups. Val-
ues are axially integrated. Cyan: NOAUTOP.
Black: configuration A (Fig. 9.3(b)).

9.5. CONCLUSIONS 161

Figure 9.8: Axial distribution of the flux for a thermal (red) and a fast
(cyan) group inside the fuel-pin. The figure also shows the reference Monte
Carlo solution with associated error bars.

(a) Internal radial zone, fertile layer. (b) Internal radial zone, fissile layer.

(c) Peripheral radial zone, fertile layer. (d) Peripheral radial zone, fissile layer.

Figure 9.9: Absolute error on the energy groups of the absorption (cyan)
and fission (red) reaction rates for isotope 235

92U .

162 CHAPTER 9. MOC APPLICATION

(a) Internal radial zone, fertile layer. (b) Internal radial zone, fissile layer.

(c) Peripheral radial zone, fertile layer. (d) Peripheral radial zone, fissile layer.

Figure 9.10: Absolute error on the energy groups of the absorption (cyan)
and fission (red) reaction rates for isotope 238

92U .

(a) Internal radial zone. (b) Peripheral radial zone.

Figure 9.11: Absolute error on the energy groups of the absorption (cyan)
and fission (red) reaction rates for isotope 239

94Pu.

9.5. CONCLUSIONS 163

(a) Group 5. (b) Group 10.

(c) Group 16. (d) Group 29.

Figure 9.12: Axial variation of homogenized absorption cross sections of
238
92U in the internal fuel pins.

164 CHAPTER 9. MOC APPLICATION

continuous-in-energy Monte Carlo simulation as reference solution.
Comparisons between the APOLLO3® and Tripoli4 solutions have shown

a very good agreement and allowed the verification of the 3D MOC solver
and of the self-shielding model. From the computational point of view, the
APOLLO3® scheme requires about 1h30′ of calculation on a 20-threaded
parallel execution, whereas an acceptable convergence of the Tripoli4 simula-
tion requires about one week calculation on a 6-threaded execution, showing
the computational advantages of the APOLLO3® scheme.

The relatively small execution time and the precision of the APOLLO3®

scheme make it and adapted tool for the study of innovative reactor designs.
Similar verification are currently done at the SPRC laboratory of the CEA of
Cadarache, for example, by considering the actual geometry and composition
of a full assembly.

The MOC calculation time can be further reduced by applying the poly-
nomial expansion of the source discussed in Chapter 4. The results provided
by the step approximation, in fact, show a regular axial variation of the solu-
tion which can be easily represented by polynomial functions. This option,
however, has not been developed yet in APOLLO3® but it is a must for
future works.

Chapter 10

Conclusions and perspectives

The objective of our research has been the implementation of a three-
dimensional solver of the neutron transport equation based on the Method
of Characteristics. This method solves the integral form of the transport
equation along characteristics lines covering the problem geometry for the
set of discrete directions belonging to an angular quadrature formula.

The majority of the methods discussed throughout this manuscript have
been implemented in the nuclear reactor analysis code APOLLO3®, de-
veloped at the SERMA in CEA of Salcay. This is a new generation code
designed for industrial calculations of nuclear reactors. In particular, the
new methods have been implemented in the TDT solver, which provides
the solution of the neutron transport equation using the multi-group dis-
cretization of the energy variable, and either a two-dimensional Method of
Characteristics or a Collision Probability method for the treatment of the
spatial and angular variables.

The first step towards the solution of a three-dimensional neutron trans-
port has been the extension of the two-dimensional step-MOC approxima-
tion of TDT for the treatment of Cartesian axial geometries. These are
geometries generated by the Cartesian product of a two-dimensional generic
mesh and a mono-dimensional mesh. These represent, respectively, the sec-
tion and the axis of the three-dimensional geometry. Although this de-
scription limits the application of the MOC to a reduced class of three-
dimensional problems, it is sufficient to treat the majority of problems of
reactor analysis.

The application of the MOC to these geometries has required the ex-
tension of the tracking strategies already developed for two-dimensional ge-
ometries. Special efforts have been done to extend the method of compound

165

166 CHAPTER 10. CONCLUSIONS AND PERSPECTIVES

trajectories to three-dimensional cases. This method allows an exact treat-
ment of the so-called geometrical boundary conditions, that are conditions
used to describe the symmetries of the geometry. This is an important step
since a broad class of problems solved in reactor analysis is represented by
infinite lattice calculations, for which the geometry is constituted by an infi-
nite repetition of an elementary geometry. For these cases, we extended the
tracking strategies in order to generate three-dimensional periodic trajecto-
ries.

To speed up the convergence of the MOC we also developed a three-
dimensional synthetic acceleration method based on the DPN spatial and
angular representation of the neutron flux. This acceleration technique uses
the difference between two MOC iterations as non-homogeneous source of an
equivalent problem. The unknown of the synthetic problem is the additive
correction factor that has to be applied to the MOC iteration to reduce the
error with respect to its converged solution. This method has shown speed
up of roughly a factor 10 with respect to the solution obtained using only
free MOC iterations.

One of the main problems encountered in the application of the MOC
to three-dimensional geometries is the large amount of resources required
to store the intersections (chords) composing the trajectories. This is a
relatively small problem in two-dimensional geometries for which the num-
ber of chords can be of the order of some hundreds of thousands, but it
becomes critical in three-dimensional cases where it can easily increase by
two or three orders of magnitude. The number of intersections also di-
rectly impacts the MOC execution time, since this is mostly determined by
the operations required to solve the integral form of the transport equation
for each chord. Hence, specialized methods have been developed to reduce
both memory and time requirements of the MOC. These methods strongly
exploit the regularities of Cartesian axial geometries. The Chord Classifi-
cation method identifies and groups together chords that share the same
length. In this way, a reduced number of chords has to be actually stored.
In addition, this method allows the pre-calculation of transmission coeffi-
cients used for the trajectory sweep, avoiding to perform this calculation for
each chord. The chord classification method has shown to be very effective
in reducing the MOC memory requirements, also providing a good reduc-
tion of the execution time (of the order of some tens of percentage). An
alternative storage method has been also implemented to further compress
the tracking data. In this method trajectories are represented by the se-
quence of relative displacements along the Cartesian sz-planes generated by
the two-dimensional trajectories used for tracking and the axial mesh. This

167

method allows a strong reduction of the memory needed for storing regions
sequences (about factor 5/10), but it requires additional operations for the
trajectory reconstruction (some tens of percentage of the time required for
the trajectory sweep). Both Chord Classification and HSS storage methods
have determined a strong reduction of the memory requirements of tracking
data, allowing the treatment of relatively large cases on standard desktop
machines.

To take full advantage of the parallel architecture of modern CPU, we
applied parallel programming methods to the trajectory sweep. In this
framework we tested different solutions. The parallelism over the track-
ing angles has the advantage of not requiring any additional operation and
memory with respect to the serial algorithm, but is limited in degree of par-
allelism and efficiency because of the reduced number of tasks and of their
non-uniform load profile. To improve the degree of parallelism, the sweep
operation has been done over the trajectories, which has allowed an increase
of the number of tasks that can be executed independently. As a drawback,
this method requires additional memory to avoid concurrent I/O operations
(race conditions). Also it requires additional operations for the so-called
reduction operation, which gathers the partial contributions computed by
each thread. An important part of the research has also been dedicated to
balance the sweep operation to avoid thread idleness. For this purpose differ-
ent scheduling strategies have been tested, and custom scheduling strategies
have been implemented in order to take into account the actual load profile.
These scheduling strategies allow a self-scheduling of the algorithm without
any external tuning. In particular, a static strategy has been developed
which provides good scaling with the minimum number of tasks. Static
strategies with appropriate ordering of tasks also reduce the number of an-
gles swept by each thread, which is advantageous for limiting the costs of the
reduction operation and to reduce memory duplication. Parallel strategies
have also been applied to speed up the calculation of the DPN coefficients.
In this case, data parallelism over the energy groups is an optimal strategy
since it does not require any memory duplication, and it assures an uniform
distribution of the load. The ensemble of the parallel strategies has allowed
a speed up of a factor 4 for a 20-threaded calculation of a reactor assembly.
The scaling is limited by the parallel overheads such as memory duplication
and synchronizations.

Another subject tackled in this Ph.D. thesis has been the research of
adapted quadrature formulas for three-dimensional axial geometries. The
research has been focused on high order polar quadrature formulas with
particular attention to quadrature sets containing the horizontal and the

168 CHAPTER 10. CONCLUSIONS AND PERSPECTIVES

vertical directions. This last choice derives from the fact that the computa-
tional cost of the sweep for these special directions is negligible with respect
to that of standard directions. Results have shown that, even for heteroge-
neous cases, high order quadrature formulas have a better convergence rate
than lower order ones. Differently, Bickley quadratures show poor conver-
gence for heterogeneous cases, while they provide good results for quasi-2D
cases. Results have also shown that the use of the horizontal and verti-
cal directions adds a bias in the solution while keeping similar convergence
rates. The origin of this bias has not been identified and requires further
investigation.

The application of the MOC to physical cases requires the definition of
multi-group cross sections that correctly take into account the self-shielding
effects deriving from resonances. Part of the research has been dedicated
to the coupling between the MOC and the Subgroup method for a on-line
calculation of both multi-group cross sections and multi-group fluxes. The
coupling has been done by applying a spatial equivalence between the three-
dimensional MOC and the two-dimensional Collision Probability method
used in the Subgroups method.

The verification of the step-MOC algorithm and of the self-shielding
model has been done through comparisons with a reference calculation com-
puted with the Tripoli4 continuous-in-energy Monte Carlo solver. The prob-
lem considered for this verification is a three-dimensional assembly in infinite
lattice configuration representing a detail of the Gen IV sodium-cooled fast
breeder reactor ASTRID. Results have shown that the approximated de-
scription of the space introduced by the 2D/3D self-shielding equivalence is
sufficient to catch the main resonance effects. The effective multiplicative
factor obtained with the step-MOC solution is within the Monte-Carlo sta-
tistical error (4 PCM). The main source of error appears to derive from the
multi-group discretization, whereas spatial effects are correctly accounted
for.

Thanks to the developments done during our research, the TDT solver
of APOLLO3® is now capable of solving the neutron transport equation in
three-dimensional axial geometries with reasonable computational require-
ments (few GB of memory and some hours of calculation), and small errors
with respect to Monte Carlo reference solutions. These latter generally re-
quire far larger execution times (days of calculations) which make the 3D
MOC still advantageous in an industrial contest.

The methods developed throughout our research have been subject of
three publications in international conferences [63, 49, 55], and of one pub-
lication in an international journal [45].

169

Because of limited timing of our research, some of the methods dis-
cussed in this manuscript have not been implemented and tested in the
APOLLO3® version of TDT. A development which seems fundamental to
speed up of the MOC solver is the polynomial expansion of the source along
the axial direction. In fact, most of the problems encountered in industrial
calculations are characterized by mild heterogeneities along the axial direc-
tion. By consequence, the axial variation of the solution is a regular function
which can be faithfully described by a polynomial representation, allowing
a reduction of meshes required for the spatial convergence of the numerical
solution. A similar representation is also possible for the DPN approxima-
tion used for the acceleration of the MOC solver but its derivation has not
been explicitly carried out.

Concerning the parallelism, alternative strategies have been also pro-
posed to further improve the scaling of the MOC for a large number of
threads. These go from a domain-decomposition method with exact bound-
ary conditions for the calculation of optically large problems, to the applica-
tion of hybrid Gauss-Seidel/Gauss-Jacobi algorithms for the parallelization
of the multi-group problem. This latter can be determining for the speed
up of cases with a fine-group discretization of the energy.

170 CHAPTER 10. CONCLUSIONS AND PERSPECTIVES

Bibliography

[1] J. Askew, A characteristics formulation of the neutron transport equa-
tion in complicated geometries, Tech. rep., UK Atomic Energy Estabil-
ishment (1972).

[2] M. Halsall, CACTUS, a characteristics solution to the neutron trans-
port equations in complicated geometries, Tech. rep., UKAEA Atomic
Energy Establishment, Winfrith (United Kingdom) (1980).

[3] R. Ferrer, J. Rhodes, K. Smith, Linear source approximation in
CASMO5, in: PHYSOR , Knoxville (TN), 2012.

[4] W. Boyd, S. Shaner, L. Li, B. Forget, K. Smith, The OpenMOC method
of characteristics neutral particle transport code, Annals of Nuclear
Energy 68 (2014) 43–52.

[5] R. Roy, The cyclic characteristic method, in: International conference
Physics of Nuclear Science and Technology, 1998.

[6] R. Sanchez, I. Zmijarevic, M. Coste-Delclaux, E. Masiello, S. Santan-
drea, E. Martinolli, L. Villate, N. Schwartz, N. Guler, APOLLO2 year
2010, Nucl. Eng. and Technology 42 (2010) 474–499.

[7] P. Mosca, Conception et développement d’un mailleur énergétique
adaptatif pour la génération des bibliotéques multigroupes des codes
de transport, Ph.D. thesis, Paris-Sud 11 (2009).

[8] A. Abramowitz, I. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965.

[9] E. E. Lewis, W. F. Miller, Computational Methods of Neutron Trans-
port Theory, 1985.

[10] Y. Saad, Numerical methods for large eigenvalue problems, 2011.

171

172 BIBLIOGRAPHY

[11] G. B. Arfken, H. J. Weber, F. E. Harris, Mathematical Methods for
Physicists, Accademic Press, 2012.

[12] K. Lathrop, Ray effects in discrete ordinates equations, Nuclear Science
and Engineering 32 (1968) 357.

[13] R. Sanchez, J. Ragusa, On the construction of Galerking angular
quadratures, Nuclear Science and Engineering 169 (2011) 133–154.

[14] C. D. Ahrens, Derivation of new 3D dicrete ordinate equations, in:
PHYSOR , Knoxville (TN), 2012.

[15] R. Sanchez, Prospects in deterministic three-dimensional whole-core
transport calculations, Nuclear Engineering and Technology 44 (2012)
113–150.

[16] G. Rimpault, M. Grimstone, Validation of new sub-group algorithms for
resonance self shielding in heterogeneous structures, in: Topical Meet-
ing on Advances in Nuclear En-gineering Computation and Radiation
Shielding, Santa Fe, New Mexico, April 9-13,, 1989.

[17] P. Ribon, J.-C. Sublet, M. Coste-Delclaux, CALENDF-2002: User man-
ual, Technical Report CEA-R-6020, CEA (2003).

[18] P. Ribon, J.-M. Maillard, Les tables de probabilite: application au
traitement des sections efficaces pour la neutronique, Technical Report
CEA-N-2485, CEA (1986).

[19] M. Herman, ENDF-6 data formats and procedures for the evaluated
nuclear data file ENDF-VII, Cross Section Evaluation Working Group
(2005).

[20] L. Lei-Mao, Subgroup method in the APOLLO3 selfshielding calcula-
tions, Technical Report RT/11-5242, CEA (2011).

[21] M. L. Williams, Correction of multigroup cross sections for resolved
resonance interference in mixed absorbers, Nuclear Science and Engi-
neering 83 (1983) 9–37.

[22] J. Y. Cho, H. G. Joo, Solution of the C5G7MOX benchmark three-
dimensional extension problems by the decart direct whole core calcu-
lation code, Progress in Nuclear Energy 48 (5) (2006) 456 – 466.

BIBLIOGRAPHY 173

[23] J. Cho, K. Kim, C. Lee, S. Zee, H. Joo, Axial SPN and radial MOC
coupled whole core transport calculation, Journal of Nuclear Science
and Technology 44 (2007) 1156–1171.

[24] F. Févotte, B. Lathuilière, Micado: Parallel implementation of a 2D-1D
iterative algorithm for the 3D neutron transport problem in prismatic
geometries, in: M&C, Sun Valley (ID), 2013.

[25] I. Zmijarevic, Résolution de l’équation de transport par des méthodes
nodales et des caractéristiques dans les domaines à trois dimensions,
Ph.D. thesis, Université de Provence Aix-Marseille I (1998).

[26] R. Lenain, E. Masiello, F. Damian, R. Sanchez, Domain-decomposition
method for 2D and 3D transport calculations using hybrid
MPI/OpenMP parallelism, in: M&C, SNA + Monte Carlo, Nashville
(TN), 2015.

[27] I. Suslov, MCCG3D - 3D discrete-ordinates transport code for unstruc-
tured grid. state of the art and future development, in: Proceedings of
Seminar ”Neutronics-96”, Obninsk, Russia, 1998, p. 162.

[28] G. Wu, R. Roy, A new characteristics algorithm for 3D transport cal-
culations, Annals of Nuclear Energy 30 (1) (2003) 1 – 16.

[29] B. Kochunas, B. Collins, D. Jabaay, T. J. Downar, W. R. Martin,
Overview of development and design of MPACT: Michigan parallel
characteristics transport code, American Nuclear Society - ANS; La
Grange Park (United States), 2013.

[30] Z. Liu, H. Wu, L. Cao, Q. Chen, Y. Li, A new three-dimensional method
of characteristics for the neutron transport calculation, Annals of Nu-
clear Energy 38 (2011) 447–454.

[31] J. B. Taylor, D. Knott, A. J. Baratta, A method of characteristics
solution to the oecd/nea 3D neutron transport benchmark problem, in:
M&C, SNA, Monterey (CA), 2007.

[32] J. F. Fevotte, Techniques de traçage pour la méthode des car-
actéristiques appliquée à la résolution de l’ équation du transport des
neutrons en domaines multi-dimensionnels, Ph.D. thesis, Paris-Sud 11
(2009).

174 BIBLIOGRAPHY

[33] S. Santandrea, J. Jaboulay, P. Bellier, F. Fevotte, H. Golfier, Improve-
ment and validation of the linear surface characteristics scheme, Annals
of Nuclear Energy 36 (2009) 46–59.

[34] R. Ferrer, J. Rhodes, Extension of linear source MOC method to
anisotropic scattering in CASMO5, in: PHYSOR , Kyoto (JP), 2014.

[35] E. Masiello, R. Clemente, S. Santandrea, Higher-order method of char-
acteristic for 2-D unstructured meshes, in: M&C, Saratoga Springs,
New York, 2009.

[36] R. M. Ferrer, Y. Y. Azmy, A robust arbitrarily high order transport
method of the characteristic type for unstructured tetrahedral grids,
in: M&C, Saratoga Springs, New York, 2009.

[37] X. M. Chai, K. Wang, The linear source approximation in three dimen-
sion characteristics method, in: M&C, Saratoga Springs, New York,
2009.

[38] G. Wu, R. Roy, Acceleration techniques for trajectory-based determin-
istic 3d transport solvers, Annals of Nuclear Energy 30 (5) (2003) 567
– 583.

[39] H. Khalil, Effectiveness of a consistently formulated diffusion synthetic
acceleration differencing approach, Nuclear Science and Engineering 98
(1988) 226–243.

[40] I. R. Suslov, An algebraic collapsing acceleration in long characteris-
tic transport theory, in: Proc. 11th Symp. Atomic Energy Research,
Csopak, Hungary, 2001, p. 162.

[41] R. Le Tellier, A. Hébert, An improved algebraic collapsing accelera-
tion with general boundary conditions for the characteristics method,
Nuclear Science and Engineering 156 (2007) 121–138.

[42] L. Li, K. Smith, B. Forget, A low order non linear transport acceleration
scheme for the method of the characteristic, in: PHYSOR , Kyoto (JP),
2014.

[43] S. Santandrea, R. Sanchez, Analysis and improvement of the DPN ac-
celeration technique for the method of characteristics in unstructured
meshes, Annals of Nuclear Energy 32 (2005) 163–193.

BIBLIOGRAPHY 175

[44] S. Santandrea, R. Sanchez, Acceleration techniques for the characteris-
tic method in unstructured meshes, Ann. Nucl. Energy 29 (2002) 323–
352.

[45] D. Sciannandrone, S. Santandrea, R. Sanchez, Optimized tracking
strategies for step MOC calculations in extruded 3D axial geometries,
Annals of Nuclear Energy.

[46] R. Sanchez, L. Mao, S. Santandrea, Treatment of boundary conditions
in trajectory-based deterministic transport methods, Nucl. Sci. Eng.
140 (2002) 23–50.

[47] R. Le Tellier, G. Marleau, M. Dahmani, A. Hébert, Improvements of
the reactivity devices modeling for the advanced {CANDU} reactor,
Annals of Nuclear Energy 35 (5) (2008) 868 – 876.

[48] I. Suslov, Improvements in the long characteristics method and their
efficiency for deep penetration calculations, Progress in Nuclear Energy
39 (2001) 223 – 242.

[49] D. Sciannandrone, S. Santandrea, Tracking strategies in 3D axial ge-
ometries for a MOC solver, in: SNA + MC, Paris, 2013.

[50] U. Drepper, What every programmer should know about memory
(November 2007).
URL http://www.akkadia.org/drepper/cpumemory.pdf

[51] OpenMP Architecture Review Board, OpenMP application program
interface version 3.0 (2008).

[52] L. Naymeh, Analyse et développement d’un schéma de discrétisation
numérique de l’équation du transport des neutrons en géométrie tridi-
mensionelle, Ph.D. thesis, Paris-Sud 11 (2014).

[53] W. Boyd, K. Smith, B. Forget, Parallel performance results for the
OpenMOC method of characteristic code on multi-core platforms, in:
PHYSOR , Kyoto (JP), 2014.

[54] M. Dahmani, G. J. Wu, R. Roy, J. Koclas, Development and paralleliza-
tion of the three-dimensional characteristics solver MCI of DRAGON,
in: Physor, Seoul (KR), 2002.

[55] D. Sciannandrone, S. Santandrea, R. Sanchez, L. Lei-Mao, J.-F. Vi-
dal, P. Archier, J.-M. Palau, Coupled fine-group three-dimensional flux

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf

176 BIBLIOGRAPHY

calculation and subgroups method for a fbr hexagonal assembly with
the APOLLO3® core physics analysis code, in: M&C, SNA + Monte
Carlo, Nashville (TN), 2015.

[56] A. Leonard, C. McDaniel, Optimal polar angles and weights for the
characteristics method, Trans. Am. Nucl. Soc. 73 (1995) 172.

[57] A. Yamamoto, M. Tabuchi, N. Sugimura, Derivation of optimum polar
angle quadrature set for the method of characteristics based on approx-
imation error for the bickley function, Journal of Nuclear Science and
Technology 44 (2007) 129–136.

[58] P. Davis, P. Rabinowitz, Methods of numerical integration, Academic
Press, 1975.

[59] C. Clenshaw, A. Curtis, A method for numerical integration on an
automatic computer, Numerische Mathematik 2 (1960) 197–205.

[60] L. N. Trefethen, Is gauss quadrature better than Clenshaw-Curtis?,
SIAM Rev. 50 (2008) 67–87.

[61] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numer-
ical Recipes 3rd Edition: The Art of Scientific Computing, Cambridge
University Press, 2007.

[62] J. Both, et al., A survey of TRIPOLI-4, in: Proceedings of the 8th In-
ternational Conference on Radiation Shielding, Arlington, Texas, 1994.

[63] D. Sciannandrone, S. Santandrea, R. Sanchez, Angular quadrature for-
mulas for step-MOC calculations in three-dimensional axial geometries,
in: PHYTRA3, Tètouan, Morocco, 2014.

[64] L. C. Pierre, J.-F. Sauvage, J.-P. Serpantie, Sodium-cooled fast reactors:
the astrid plant project, in: ICAPP, Nice (FR), 2011.

[65] P. Sciora, D. Blanchet, L. Buiron, B. Fontaine, M. Vanier, F. Varaine,
C. Venard, Low voided effect core design applied on 2400 MWth SFR
reactor, in: ICAPP, Nice (FR), 2011.

[66] J.-Y. Moller, J.-J. Lautard, MINARET, a deterministic neutron trans-
port solver for nuclear core calculations, in: M&C, Rio de Janeiro (BR),
2011.

BIBLIOGRAPHY 177

[67] G. Rimpault, D. Plisson, J. Tommasi, R. Jacqmin, The ERANOS code
and data system for fast reactor neutronic analyses, in: PHYSOR, Seoul
(SKR), 2002.

[68] G. Rimpault, Y. Peneliau, J. Vidal, S. Mirotta, A. Gandini, In
depth uncertainty estimation of the neutron compuational tools, in:
PHYSOR, Kyoto (JP), 2014.

	I Background
	Neutron transport equation
	Cross sections
	Microscopic cross sections
	Resonances
	Secondary neutron distributions
	Macroscopic cross sections

	Steady-state Neutron Transport Equation
	Boundary Conditions

	Multi-group formalism
	Solution of the Neutron Transport Equation
	The SN and PN approximations

	Multi-group cross sections
	Probability tables
	Subgroups method
	Use of probability tables in the Subgroup method

	MOC in 3D axial geometries
	Method of Characteristics
	Geometrical description of the problem

	II New developments
	Higher order approximations for MOC
	Definition of the polynomial basis for the flux
	Transmission equation
	Angular region balance
	High-order MOC algorithm
	Computation of the escape coefficients
	Generation of the interpolation table

	Convergence acceleration methods
	Synthetic Problem
	DPN approximation
	Results of the DPN acceleration

	Tracking strategies
	Basic tracking strategy
	Reciprocity

	Treatment of GC
	Method of compound trajectories
	Extension to 3D axial geometries
	Boundary flux for periodic trajectories
	Constant Trajectory Spacing

	Optimized sweep methods
	Chord Classification Method
	Computational efficiency
	Efficiency of H/V-classification
	Chord Classification for M-chords

	Trajectory storage and reconstruction
	M-chords reconstruction
	Effect of the axial mesh on the HSS storage

	Results

	Parallel algorithms for MOC
	Introduction
	Boundary conditions for Domain-Decomposition methods
	Transport sweep parallelism
	Trajectory-cut
	Load balance and scheduling
	Results

	DPN parallelism
	Conclusions

	Angular quadrature formulas
	Product-type formulas
	Polar quadrature formulas

	Step approximation for special directions
	Results of the convergence analysis
	Conclusions

	III Application
	MOC application
	ASTRID: a Gen IV Sodium-cooled fast reactor
	Two-level core analysis
	Lattice calculation of a FBR assembly

	APOLLO3® numerical scheme of the FBR assembly
	Self-shielding spatial equivalence

	Results
	Conclusions

	Conclusions and perspectives

