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Abstract

301 words

When shifted to a stressful environment, cells are capable of complex response and
adaptations. Although the cellular response to a single stress has been studied in great detail, very
little is known when it comes to dynamically fluctuating stressful environments. In addition, in the
context of stress response, the role of cell-to-cell variability in cellular processes and more specifically
in gene expression is still unclear.

In this work, we use a systems and synthetic biology approach to investigate osmotic stress in
S. cerevisiae at the single cell level. Combining microfluidics, fluorescent microscopy and advanced
image analysis, we are able to subject cells to precise fluctuating osmolarity and monitor single-cell
temporal response.

While much previous research in gene expression heterogeneity focused on its stochastic
aspect, we consider here long-lasting differences between cells regarding expression kinetics. Using
population models and state-of-the-art statistical analysis, we manage to represent both population
and single-cell dynamics in a single concise modelling framework. This quantitative approach
capturing stable individuality in gene expression dynamics can define a form of non-genetic cellular
identity.

To improve our comprehension of the biological interpretation of such identity, we investigate
the relation between single-cell specificities in their gene expression with their phenotype and micro-
environment. We then take a lineage based perspective and find this form of identity to be partially
inherited.

Understanding the evolutionary consequences of inheritable non-genetic cellular identity
requires a better knowledge of the impact of fluctuating stress on cell proliferation. Dissecting
guantitatively the consequences of repeated stress on cell-cycle and growth gives us an overview of
the energetic and temporal consequences of repeated stress. At last, technical and theoretical
developments needed to carry this investigation further are presented. These include the use of
automated experimental design, both offline and online through real-time experimental design and
single-cell real-time control of gene expression.
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Foreword: Why engineers should study cells?

Before | begin exposing the research | undertook during these past years, | would like to share
briefly the motivation which drove me into this project. | always have been curious to understand
how things work. My first focus was on how machines works, which extended to how the physical
worlds works. Studying physics and engineering allowed me to satisfy this appetite and to grasp the
basics of how planes fly, computers compute and nuclear reactors delivers power.

Understanding how things work is my way of being more conscious of the world, it enhances
my perception of what surrounds me and therefore, is a kind of philosophical need. Many systems
designed by men might be complex, they nevertheless are well defined. Each part serves a precise
set of purposes, plays a precise role. This however is not the case in the natural world. As my
knowledge of physical objects and machines was increasing, | got interested in less domesticated
complex systems like human organizations and economics for instance and soon enough, | realized
that living things were the most complex, ill-defined and fascinating systems to be. Not only their
raw complexity (in terms of components etc.) is gigantic, but the interactions among them, which
distinguish a bag of chemical from a living thing, can only be described as vertiginous. For a long
time, | had a biased and very old-fashioned view of biology. It seemed like living systems were so far
from our understanding capacity that we would be forever limited to the collection of a series of
empirical facts while lacking this great feeling of hidden simplicity one gets when studying physics.

While studying computer science, | got interested by complex optimization problems (termed
NP hard of NP complete problems) for which computing the optimal solution is unfeasible due to the
number of possible solutions to be tested. Since the exact optimal solution is beyond reach,
heuristics or meta-heuristics methods are employed which seek at finding a “good enough” solution
in reasonable time. Interestingly, two very performant algorithms to address such problems are
inspired by natural systems. Swarm algorithms mimic how ants forage for food and genetic algorithm
how natural selection acts upon individuals. Working with these algorithms, | realized that nature’s
way of solving problems was not only incredibly efficient, but surprisingly general and versatile: when
fancy heuristics require usually much features of the problem at hands to be included in their
conception, natural algorithms can adapt rather autonomously. Also, it showed me that some
fundamental knowledge of biological system was in fact accessible, and that it was a potential source
of ground breaking innovations.

As | learned more on current biology, | realized this classic field of study was undergoing a
profound revolution. Mathematics and quantification were slowly but steadily revealing principles in
biological processes and new experimental techniques were probing the inner working of living
systems always further. Although being a complete layman in biology, | realized my skills in
guantitative analysis could be applied to the study of biological systems. | was also pleased to see
that biological experimentation can benefits from crafting and hacking which are among my favorite
activities. It is not without difficulty that | learned biology from scratch. But learning the basics while
reading the latest research has an interesting consequence: it allows avoiding many unlearning steps
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Effects of repeated osmotic stress on gene expression and growth

related to the fact textbooks and school programs are rapidly outdated by recent findings (just think
of how many unlearning a student in physics is subjected to). In an interdisciplinary endeavor, such
as understanding a cell, | think it is essential not only to discuss a common problem among different
experts, but for all collaborators to learn from each other field and if possible, have hands on
practice. From my experience of diving into biology, | would say that besides the hardships, there is
not a single day where | regret it, for every difficulty is well paid off by the enlightenment the study
of cells brings me.

More generally, as an engineer, my purpose is also to interact with the world, to modify, to
design tools and systems. Acting upon complex systems is a delicate endeavor; a good design should
not require more energy than necessary and must avoid unforeseen consequences. In order to do
that, engineers use top down design principles which are challenged by how evolution has shaped
living systems. Evolution works rather bottom-up, generating diversity which is most of the time
useless or even harmful, until it somehow stumbles upon some improvement. Natural systems can
also be made adaptable, which is a fairly rare property in the realm of machines. At last, many of the
current engineering challenges have to do with life cycle management of products, seeking
environmentally compatible alternatives to common products. In this respect, all the natural cycles
(oxygen, water, carbon etc.) constitute the best examples to get inspiration from. By studying
biology, engineers can learn new design principles; they can adapt natural tools to find other
solutions. For all these reasons engineers can both participate to the current revolution in Biology
and benefit from this knowledge to improve traditional engineering.
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General Introduction

General introduction

In this section the model organism used for this project will be presented briefly. This
description aims at sharing a conception of what a cell is and does from the point of view of a
physicist or engineer.

Saccharomyces cerevisiae is a species of yeast which can be naturally found on mature grape
fruits among other environments. It is a unicellular organism which can be probably considered as
the first microbe which has been domesticated by mankind (although unconsciously and in an
unspecific manner at first since the proper isolation of this species occurred during the XIX™ century).
Its role in bread, wine or beer making (thanks to fermentation) explains why it was already used in
ancient times. It was probably domesticated separately in various regions of the globe whereas when
it comes to winemaking, it seemingly originated from Mesopotamia around 10 000 years ago and its
evolution has been coupled to human’s since (1). Its significant contributions to humanity explain
why it is also called Baker’s yeast or Brewer’s yeast. Not surprisingly, baker’s yeast is one of the most
common model organisms in Biology. Accordingly, there is a significant amount of literature available
on S. cerevisiae describing decades of research on countless aspects of this yeast. As of today it is still
a model organism of choice for new fields of studies (2). Readers unfamiliar with budding yeast (as it
is also called) can refer to a short presentation in Annex 2 which also mentions some advantages of
using this organism in research.

We will now present briefly cells in general and baker’s yeast in particular through an engineer
perspective: that is, comparing cells to machines. Such description rely on many estimated of
measured values which, when applicable, will be referenced through their Bio Numbers IDentifiers
(BNID)". A cell can be very crudely described as a tiny bag (or bubble) made out of fat (a bi-lipid layer)
which encloses a bunch of chemicals. For a yeast cell, we speak of a 4 um diameter object (BNID
108258). To be even blunter, a yeast cell composition is roughly water (60% of mass) and
C:H161:0056:Ng.16 (BNID 103689, 101801 and (3)). This very rude chemical description exemplifies the
role of the observation scale one can take when looking at cells. Now that molecular biology made it
possible to think precisely of each of the molecules composing a cell and that super resolution
imaging allows for single molecule dynamic in vivo measurements, a cell never seemed so big and
complex.

At the molecular level, this bag of chemical hosts an incredible amount of chemical reactions.
Metabolism, which accounts for a large part of the normal day to day chemical life of cells, is a ballet
featuring 584 types of dancers (metabolites) involved in 1175 choreographies (chemical reactions)
(BNID 100647). Several molecules play special roles in generating this busy chemical activity.
Enzymes for instance are molecules which act as catalyzers. This means they somehow channel

! Measuring or estimating any biological quantity is usually a very difficult task but we will not quote all the
studies were these numbers come from, but instead their Bio Numbers identifier will be provided. This is
intended both for readability and because we would like to highlight the importance of the “bionumbers”
initiative (http://bionumbers.hms.harvard.edu/) which is a great tool to rapidly put a number, however crude it
is, on many aspects of biology.

Page | 15



Effects of repeated osmotic stress on gene expression and growth

chemical reactions without being transformed themselves. In the other hand, metabolites are
transformed one into another. The most fundamental characteristic of cells is their ability to
replicate. A cell imports from its environment several molecules such as sugars or oxygen which will
be used to increase its metabolites pools. From metabolites pools, a cell will, among other things,
produce more cells. Several metabolites can be considered final in the sense they cannot be
converted anymore. These are therefore considered as waste from the cellular perspective and will
usually be released in the environment. When we consider cellular metabolism as a process which
takes inputs, creates products and waste, we can see cells as microscopic factories. Interestingly,
when compared to actual factories, cells appear as very efficient ones. In fact, metabolites pools (i.e.
intermediate stocks) are maintained at very low levels but are renewed completely in a matter of
seconds (BNID 109701). Minimizing intermediate stocks is a founding concept in lean manufacturing
which is advocated by many as the most efficient manufacturing organization. In actual factories,
achieving such an efficient production pipeline requires specific coordination mechanisms. In cells
such coordination is achieved through two sets of mechanisms. In one hand, several cellular
components are capable of information processing and actively coordinate cellular activity. In the
other hand, physical constrains along with economic considerations of the cellular context impose
indirect co-regulations.

Gene expression and cellular information processing

In yeast as in any cell, a large part of the cellular dry mass (40 to 50%, BNID 108200) is
accounted as proteins. For simplicity, we can consider proteins as macromolecules composed of
chains of elementary building block molecules (amino acids). Thanks to dedicated molecular
machinery, cells can synthesize proteins from amino acids and breakdown existing proteins into
these building blocks again. The synthesis of a given functional protein requires a precise sequence of
amino acids to be assembled. The blueprint for a protein is stored in a coded form within the famous
DNA molecule which comprises on a single molecule thousands of blueprints which are called genes.
The information about the production of a given gene which is stored in DNA is first copied
(transcribed) into another molecule: mRNA. It is this copy of the genetic information which is actually
used as a template to produce proteins having a sequence of amino acids determined by the gene
(4). Overall we speak of gene expression to describe the production of proteins from genes.

Proteins in turn serve a multitude of functions for the cell and can be compared to actuators
and operators in a regular factory. In Figure 1 we report a synthetic representation of baker’s yeast
proteome (i.e. the ensemble of all its proteins) where both abundance and function of most proteins
are represented. The different panels allow us to progressively zoom in and out from the functional
territories composing the proteome. To some extent, this representation of the proteome shows
how cells invest their matter (and energy) in various processes. In particular, proteins play a primal
role in driving or channeling the countless metabolic reactions which allow matter and energy
transformation. Accordingly, a major portion of proteins is mainly dedicated to anabolism and
catabolism with a roughly equivalent investment in these complementary aspects of metabolism
(represented in orange/brown in Figure 1). The second largest functional territory of the proteome
(depicted in blue in Figure 1) concerns genetic information processing and includes proteins which
are involved in gene expression (e.g. synthesizing proteins from genes).
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Proteins are the main actuators of cellular processes, and accordingly, regulation of cellular
activity can be achieved by modulating the level of expression of genes into proteins. For instance,
the increased expression of a gene encoding an enzyme can change the rate at which a metabolic
reaction is performed. Yet coordination itself results from the cellular capacity to store, acquire,
transmit and process information. A cell is not only a microscopic factory but can also act as a
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Figure 1 - Voronoi representation of S. cerevisiae proteome. Abundancy of proteins was measured by mass spectrometry
(data from (32)) and visualization is described in (73). The area of the Voronoi regions correspond to protein abundance
and their position in the diagram to how related the corresponding proteins are (based on KEGG pathway database).
Panels show different levels of abstraction from global functional classes to the protein names themselves.

computer. Many different molecular mechanisms compose the bits and functions which allow cells
to deal with information.
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Besides the basic role of DNA as a recipe book for gene expression to cook any protein, it is
important to grasp the information processing capability that is carried by proteins, RNAs and DNA.
In fact, several proteins or other molecules can directly affect the level of expression of specific
genes. Such elements are generically called transcription factors. Because some genes express
proteins which in turn affect the expression of other genes (or of themselves), complex expression
patterns can emerge. Therefore, it is the interaction of genes upon each other through
transcriptional regulation which allows complex information processing in cells which are deprived of
brains or nervous systems. All these interactions form what are called gene regulatory networks
(GRN) where genes are nodes and interactions are edges. Figure 2 reproduces a recently estimated
(partial) regulatory network in S. cerevisiae. Such visualization helps us assessing the level of
interaction between genes and functional clusters of genes. It also gives some feeling of the task at
hand to rigorously reconstruct and study such a network.

Secretion &
vesicle
transport

-t e,

*
oo

.
:

% o "Cell polarity &
* morphogenesis

DNA replication
& repair

Figure 2 — Partially reconstructed gene regulatory network of S. cerevisiae based on double mutant fitness screening and
gene interaction similarity. Figure from (157). White dots represent genes and edges are estimated interactions. Colors
code for functions associated to some genes.

In addition to these classic genetic interactions, where gene expression is regulated at the level
of transcription, other additional regulatory mechanisms can alter either the production of a protein
or the activity of it. In post-transcriptional regulation mechanisms, the production of a given protein
is regulated after mRNA has been transcribed (e.g. mRNA processing and regulation, translation
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General Introduction

regulation etc.). Also, epigenetic mechanisms allow many other layers of regulation (both gene
specific and non-specific).

Besides gene expression control, a protein’s activity can be further regulated through
molecular signals or marks. Indeed, some proteins can exist in active or inactive states with the
transition from a state to another depending on the presence or absence of a specific chemical
group. For example, phosphorylation is a common molecular signal which can condition protein’s
activity to the addition or removal of a phosphate group. In practice, both regulation based on gene
expression and activity modifications can act upon each other (e.g. with transcription factor needing
phosphorylation or genes expressing phosphorylation modifiers such as phosphatases).

Taken together, all these regulation mechanisms allow cells to actively sense and process
internal and external stimuli and respond by modifying their protein content or proteins’ activity.
Importantly, regulation is inherently a dynamic event. A given internal or external information is
acquired, processed and eventually leads to a reaction. Because different regulation mechanisms
affect cellular processes by different means, their action have different kinetics. For example,
whereas regulation undertaken by means of gene expression require minutes to hours to become
effective (as producing functional proteins requires many biochemical steps), changing a
phosphorylation state can be done in less than a second. Accordingly, cellular information processing
is a dynamic process, the study of which requires specific experimental and analytical tools as it will
be described later.

Cellular economics, physical constrains and indirect regulation of cellular activity

Cells are constantly out of thermodynamic equilibrium. This requires a constant exchange of
energy and matter with the environment. Such lack of equilibrium is the driving force of many
biochemical reactions occurring in cells. For instance, ATP to ADP conversion would not provide any
energy if cells were at equilibrium (3). Because a cell is out of thermodynamic equilibrium, chemical
kinetics can be affected not only by the concentrations of the species at play, but also by their
immediate molecular context®. Yet, although cells are considered as open systems in thermodynamic
terms, they are nevertheless bounded systems in many respects. Their volumes and mass are finite
so is their maximum exchanges rates with their environments. Among all reactants, some molecules
appear to be ubiquitous as they are involved in a very large number of reactions. Although usually
present in important amounts, their supply is still finite. Accordingly, reactions are effectively
competing for such molecules which we can compare to cellular currencies.

The most famous currency molecule is probably ATP which acts as a carrier of chemical energy.
Because the supply of energy (power) is finite, along with the available pool of energy carrier, a cell
needs to balance energy production and consumption dynamically. This imposes particular
constrains on cellular activity leading to indirect regulations of cellular activity. For instance, if a cell
initiates a highly ATP intensive process, it can affect the rate at which other ATP consuming reactions
happen. There are other important chemical currencies in cells: redox potential is carried by
(NAD/NADH), phosphate, methyl or acetyl groups are also available in limited supply.

* This is particularly true for redox reactions which can have spatially dependent reaction propensity even
inside the same cellular compartment, unlike acid base reactions where water enforces a constant pH within an
organelle.
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This effect of cellular economics goes beyond metabolic reactions as it applies to any resource
which is shared by molecules and processes. The pool of available ribosomes is a resource shared by
many different mRNA, the same goes with RNA polymerase which is shared by genes and
transcription factors. Lipid membranes are also a limited supply of real estate for the many
membrane proteins. In all these cases, we see the same pattern where elementary processes rely on
a pool large enough so it can be considered constant for any individual step. Yet the sum of such
elementary processes impacting this pool will have important consequences.

The effects of cellular economics have been increasingly recognized and characterized (5-7).
Some studies have proposed solutions to mitigate such effects (8, 9) in artificial genetic construct
when others considered the implications of cellular economics on natural phenomena such as the
shift from efficient to inefficient glycolysis with increasing growth rates (10). Many pools of shared
resources are importantly affected by cell divisions and cell growth. Accordingly, the emerging
picture of resource allocation in cells reveals also the indirect influence of cellular growth on gene
expression (11, 12). In consequence, it appears that GRN both affect and are affected by physical and
economical constrains. In a given cellular context, those constrains can be the basis for indirect
regulation among processes.

As it was described, active coordination mechanisms can be represented as complex networks
of molecular regulatory processes and are dynamic in essence. An inclusive representation of cellular
regulation and information processing would require the cellular context to be also taken into
account. Defining some form of augmented GRN would require all active regulatory components,
interactions and interconnected layers of regulation to be embedded in a defined cellular context.

In this general introduction we presented from a general perspective some aspects of cellular
activity which are of particular interest for the research which will be presented in this thesis. In
particular, we depicted partly the raw complexity of cellular activity at the molecular level and
highlighted the role of gene expression in coordinating many processes. Gene expression regulation
is achieved through active and dynamic information processing molecular mechanisms involving
many components and centered on gene regulatory networks. At last, resource allocation and
cellular economics impose additional levels of regulation such as passive interplays between
simultaneous processes and in particular with cellular proliferation.
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l. Introduction

1. Dealing with variability and time scale in gene expression

To a physicist, a cell appears as a complex and dynamical object. As we have seen, a cell has
the capacity to perform hundreds of biochemical reactions. At the same time, a cell processes
information about its internal state and its environment so as to coordinate and modulate its activity.
Although cells divide into genetically identical cells, there are measurable differences between cells
overall. Cell-to-cell variability can be easily observed in terms of cellular physiology (cells having
different shapes or size for instance) but can also affect information processing and gene expression.
In the following section, we present an overview of the known characteristics of variability regarding
gene expression.

a. Twins are not identical

Stochastic gene expression

It is known that a certain number of cellular processes are subjected to some inherent
randomness which is related to the dynamics of biochemical reactions. In particular, gene expression
is noisy because in many cases, due to the small number of reactants (a few transcription factors per
cell and a single promoter), the typical homogeneous and well stirred assumptions required to derive
classical chemical dynamics cannot hold anymore. In fact, when reactants are in such small
concentration, a transcription event becomes a fairly unlikely event and the time distribution
between successive events is more properly described by a stochastic process than a traditional
chemical kinetic differential equation.

Experimental evidence of gene expression stochasticity has been given in E. coli and S.
cerevisiae by using dual reporter constructs (13, 14): two identical promoters driving the expression
of fluorescent proteins which are extremely similar in their DNA and amino-acid sequences (so as to
avoid systematic bias in the expression of one of the proteins) and are located in similar loci (in order
to ensure a similar genetic context3). Yet the two proteins of a dual reporter system have a different
fluorescent spectrum. We report here results from Raser and O’Shea on dual reporters in yeast: in
Figure 3 A. we can see cells showing different mixtures of red (color coded for YFP) and green (color
coded for CFP). This allows single-cell quantification of the expression of each part of the dual
reporter as reported on the plot of Figure 3 B where each cell is represented by a dot. The color of
the dot represents cells from different time points from the start of the induction of the PHO5
promoter. If gene expression was deterministic, the two reporters would have the same expression
level and all dots should fall along the YFP=CFP line (up to measurement errors). The fact that many
cells indeed are away from the bisector means they are more green (in reality cyan) or red (in reality
yellow) than what would be expected if both fluorescent proteins had the same concentration. In
fact, the variability in protein concentrations can be decomposed in two contributions:

* Because of epigenetic effects or transcription machinery effects like RNA Pol Il recycling, different repartition
of the two reporters along DNA can yield in theory different level of coupling or covariance between the two
reporters’ expression. For the example in S. cerevisiae used here from (14), diploid strains were constructed
with two homologous chromosomes bearing each a reporter inserted at the same locus (LEU).
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* The intrinsic component represents the deviation from the situation YFP=CFP. Intrinsic
noise originates from the fact that within the same cell and genetic context, the two
promoters have not been transcribed equally due to stochastic transcription events.

* The extrinsic component represents the fact that some cells are globally brighter than
others, regardless of the proportion of yellow and cyan. This in turns originates from
cell-to-cell differences in gene expression which are equally affecting both promoters
within a same cell.

In Figure 3 Cis represented the fact that both the global level of noise and their decomposition
between intrinsic and extrinsic components change with the overall level of expression. Although
hardly observable on the figure, the intrinsic noise decrease with the average expression level is
consistent with the interpretation of stochastic transcription events. Interestingly, characteristics of
gene expression stochasticity in S. cerevisiae differ among promoters. It led to the formulation where
intrinsic noise may also arises from chromatin modifications at the promoter region (which renders
the gene accessible or inaccessible in a stochastic fashion). This is now called the bursty type of
intrinsic noise compared to the typical noise which seems to originate from the binding kinetics of a
transcription factor which is called Poisson noise”.
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Figure 3 — Decomposition of gene expression noise into intrinsic and extrinsic compoents. A. Microscopy image of the
dual reporter fluorescence and sketch of the construct. B. CFP vs YFP fluorescence intensity measured in different cells at
various time of induction. C. Decomposition of the overall variabiity into extrinsic and intrinsic componends at different
levels of induction. Figure reproduced from (14).

At the promoter level, it was mentioned that various kinetics could exists: Highly stochastic
fluctuations happen in genes which are low expressed and for which there are few transcription
factors leading to Poisson distribution; in both prokaryotes (15) and eukaryotes (16), expression can
also come in stochastic bursts and display a large range of possible kinetics; at last, promoters of
house-keeping genes and other essential genes are usually constitutively’ expressed and display
Poisson kinetics. Although stochastic gene expression is sometimes represented with simple
distributions like Poisson, the reality of transcription at the molecular level depends on many factors
(e.g. chromatin dynamics, transcription factor specific properties, promoter sequence affinity,
transcription machinery recycling etc.). Many of such factors can also fluctuate both in a gene-

* This is because uncorrelated transcription event occurring at a constant probability follow a Poisson
distribution.

> It should be noted that so-called constitutive promoters do not usually lead to constant levels of proteins as
they tend to depend on growth rate or cell-cycle for instance (159).
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specific and unspecific manner, possibly affecting stochastic properties of transcription. This makes it
very difficult to cast all endogenous promoters in a single stochastic framework where a comparison
would make sense. It also explains important differences between strains and organisms. In yeast, it
seems that gene-specific characteristics dominate over genome-wide rules (17). This in turn means
that global trend cannot be easily formulated for intrinsic noise, besides loose bounds as depicted in
Figure 4 from Sanchez.
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Figure 4 - Simulation of possible promoter characteristics when noise is gene specific (as it is
the case for S. cerevisiae). Burst size is the average quantity of mRNA produced during a
transcription event and mean expression is the time-averaged level of expression. Figure
from (17).

Since founding experiments on gene expression variability using dual reporters, there has been
a lot of subsequent studies which investigated the biological impact and relevance of noise for
biological processes. An interesting review of nearly two decades of studies of gene expression noise
can be found in (18). Among various situations described in this review are those where fluctuating
variability leads to phenotypic bet hedging within a clonal population of unicellular organisms. In
multicellular organism, stochasticity in gene expression can be used in mice olfactory system
development to ensure the necessary development of many different cells using a Monte Carlo
approach which proves way less expensive than a deterministic control of differentiation into
thousands of cell types (18).
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Going back to early experiments on gene expression stochasticity like that depicted in Figure 3,
we may now consider the other, more traditional cell-to-cell variability which is the extrinsic
component. As we see on Figure 3 C, cell-to-cell variability is quantitatively dominant over intrinsic
noise. Although the relative levels of both contributions are very different depending on: the level of
induction, the promoter observed, the genomic context or the type of organism considered; it is hard
to find examples where the extrinsic variability is not higher6 than intrinsic. Although the biological
origins of intrinsic noise are usually known, when it comes to extrinsic noise, the picture is more

blurry.

A simple explanation which is sometimes heard is that extrinsic variability is reminiscent of the
intrinsic one as it comes from the time integrated intrinsic variability (i.e. it is small random event
accumulated over time which leads to these pronounced levels of cell-to-cell variability). But such an
explanation is at best incomplete and more usually wrong.
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Figure 5 - Relating single cell stochastic gene expression trajectories and stochastic equilibrium
distributions. This figure reproduced from (18) aims at representing the impact of different
stochastic gene expression regimes in terms of dynamics as well as equilibrium distributions.
Equilibrium distributions should not be confused with the distributions of proteins in a population
of cell. For these two different distributions to be equal a fundamental assumption is required:
Gene expression needs to be a stationary process and every cell must harbor the exact same
process (i.e. having the exact same rates of transcription, translation, degradation etc.).

Some confusion may come from the fact that a stationary stochastic process leads to an
equilibrium distribution (see Figure 5 from Raj and van Oudenaarden) which looks similar to
histograms of total variability as provided by flow cytometry. From a theoretical point of view, for the
equilibrium distribution to be identical to the total variability distribution, gene expression needs to
be considered a stationary process and identical in different cells (i.e. ergodic). Yet, the cellular
context in which gene expression happens differs from a cell to another. Experimentally, if the
equilibrium distribution was identical to the total variability distribution, dual reporter experiments

would clearly indicate so.

®In this respect S. cerevisiae is deemed particularly extrinsic (18).
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The important correlation between dual reporters which is accounted in extrinsic variability
both comes from common causes affecting both promoters and from the fact that fluorescent
proteins are usually stable, which, as it will be shown in the next section, is fairly common.

As stated in (18), the origins of extrinsic noise are still poorly understood. This comes also from
the fact that separating overall variability into intrinsic and extrinsic contributions helps defining the
intrinsic component but puts in the other bag many different realities. Figure 6 from Huang contains
a tentative breakdown of total variability in a population of cells into several classes. In that context,
extrinsic and intrinsic refers to a cell and not to a promoter within a cell as used throughout this

paragraph.
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Figure 6 - A tentative definition of different aspects of total phenotypic variability (or heterogeneity). Figure reproduced
from (114). Note that the terminology (heterogeneity, intrinsic, extrinsic etc.) is different from that used in this

paragraph.

In the decomposition of Figure 6, we see that intrinsic gene expression noise is called temporal
noise and extrinsic is called population. This underlines the vital aspect of temporality in the context
of cellular variability. The following subsection aims at presenting how considerations of time and
cellular context are needed to come around a more solid view of extrinsic variability.
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b. What a difference a day makes?

In the previous subsection, gene expression noise was introduced and the stochastic nature of
gene expression was presented. Studying variability obviously requires obtaining single cell
measurement. A popular and efficient method to do so is using flow cytometry. Nevertheless, single-
cell measurements as obtained by flow cytometry lack crucial temporal information on variability

dynamics.
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Figure 7 - Sketch representing the impact of lacking temporal information to distinguish between different
types of variability. Figure reproduced from (114)

As we see in Figure 7 from Huang, flow-cytometry only provides a snapshot of a population
and therefore cannot alone distinguish between fast-changing properties and nearly static ones.
When it comes to its biological interpretation (i.e. looking for causes or consequences), the
temporality of variability is essential. In the following we will try to estimate what time scales are
effectively at play from gene transcription to proteins and GRN.

If we consider the simple sketch of Figure 7 and consider the overall time line depicted in A, B
and C is one cell division, it can be expected from what was mentioned in the previous section that
promoters can have activation patterns falling in all categories. As we saw, different transcription
rates are possible and determine the kinetics of mRNA production. Yet, mRNA overall kinetics also
depend importantly on degradation rates (19). Despite many technical issues in dissecting production
and degradation from mRNA levels experimentally, some genome scale idea of mRNA half-life in vivo
in S. cerevisiae is given in (20) and reproduced in Figure 8 below.
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Figure 8 — Genome wide distribution of mRNA half-life in S. cerevisiae. Data from (20)

As we can observe, most mRNAs have a half-life in tens of minutes. This means that mRNA will
have a time evolution that can either follow closely promoter activation for the most unstable
transcripts and fall in category A of Figure 7 or lead to a fairly smoothed time profile regardless of
their promoter dynamics which would be in category B or C. Therefore, when it comes to mRNA
levels, many different temporal situations can arise. Depending on the total number of mRNA itself,
both deterministic and stochastic representations may apply.

Looking now at possible variability in protein levels, we can see in Figure 9 that most proteins
are present on average in fairly large numbers. This means that when it comes to proteins, we should
be more confident about using deterministic chemical representations which arise from the law of
large numbers.
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Figure 9 — Genome-wide distribution of proteins abundance in S. cerevisiae. Data from BNID 101845

It is trivial to state that as in the case for mRNA, protein abundance results from the balance
between production of new proteins and decay through degradation and dilution. But considering
proteins are present in large numbers allows an easier deterministic representation. The nature of
decay processes, despite some protein specific regulations is well described by exponential first
order kinetics which means that the rate of protein decay (in concentration units) can be represented
by —a[P;] where a is the total decay rate and [P] is the cellular concentration for some protein P;.

On the other hand, the production of a given protein can be either: independent of the protein
concentration (as for constitutively expressed proteins or proteins whose expression depends on
other factors than the given protein level itself, for instance the position in cell-cycle); or dependent
of the protein concentration through direct (auto-regulation)’ or indirect feedbacks in the GRN.

In the first case, proteins kinetics will be largely determined by the decay rate alone. In fact,
regardless of the production rate, for an increase in expression the typical time to reach half the
maximal value is log(2)/a. For a decrease in expression, dynamics will have exactly the same typical
time. In the second case, there is no direct answer since the accurate time scale depends on the
nature and precise parameters of the feedback. Still, we can note than much faster time scales are
possible with feedback which may both increase or considerably reduce variability (see section 3.4 in
(21)).

Recent experiments (22) managed to perform a less harmful measurement of proteins
degradation rates in vivo than previous large scales studies (23). Their results, depicted in Figure 10

7 Auto-regulation is a famous motif in which a direct feedback exists between a gene and its transcription. Yet,
out of the ~180 gene encoding transcription factors existing in S. cerevisiae (160) we can estimate than 10%
include some auto-regulation in their interactions, in sharp contrast with E. coli where this proportion is
estimated to range between 52% and 74% (161). Overall, autoregulation is therefore fairly rare in budding
yeast.
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confirm and somehow reinforce precedent reports that most of S. cerevisiae proteins are highly
stable.
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Figure 10 — Measured protein half-life (in absence of dilution) for approximately half the
genome of S. cerevisiae. Data from (22)

The order of magnitude of protein stability is arguably the main reason why in most cases,
fluctuations in protein levels are mainly driven by dilution. Most proteins are therefore expected to
fall into category B of Figure 7 when upstream components are noisy and in category C for proteins
with stable upstream kinetics (which includes many essential genes (24)). These results on protein
degradation are in line with an economical consideration of variability and protein synthesis. Protein
production is an expensive process and therefore, whenever possible, protein stability ensures that
synthesis expenses are amortized. Most protein decay being driven by dilution, we see that a
significant portion of proteins are inherited and transmitted along a cell lineage. In that respect, the
initial pool of proteins which a cell receives at its birth constitutes somehow a working capital that
will take roughly one cycle to be doubled. Nevertheless, some particular proteins will have very fast
dynamics which requires more production and degradation and comes at a significant cost. From this
perspective, we see that rapid turnover required for fast fluctuation in protein levels is expensive and
must therefore bring some advantage which would explain their selection and maintenance.

From this overview, we can recall that variability comes in many flavors. Cells have
mechanisms which can both increase or decrease its level. Furthermore variability cannot be reduced
to a source of instability nor to a one fits all solution to generate phenotypic differences for evolution
to select from. Variability in its global meaning is a very broad subject of research. Because of all its
aspects, precise and quantitative analysis is useful to progressively disentangle contributing factors
and assess their importance and synergies. Studying variability requires specific experimental tools
which allow measurements at the single cell level. In the next section, we will present a short review
of available technologies for single-cell data collection. This will allow us to draw the perimeter of
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currently accessible single-cell information as well as to point out expected developments in the near
future. After this summary, we will discuss the global research methodology which was employed in
this study along with the precise biological system and research objectives we employed.
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2. Measurements at the single cell level

Many challenges in quantitative biology require single-cell data, in particular to account for
cell-to-cell variability. From the early days of molecular biology to the present times, technological
improvement has been enormous and many tools are now able to reveal biology at the single-cell
level and even below with single molecule measurements.

Measuring mRNA

Single-cell transcriptomics is now becoming a reality. It is now possible to get accurate
readouts of mRNA abundance from single cells at the genome scale with larger and larger coverage,
which is often called scRNA-seqs. Different technologies (next generation sequencing or pre
amplification with subsequent use of microarrays) have been used at the single-cell level already
(25). The first studies using these techniques used it on mammalian cells (even at a subcellular level
in the case of neurons (25)) but was not applied to budding yeast yet. Interestingly, obtaining
genome-wide transcriptional information at the single cell level triggers the integration of important
analysis paradigms coming from research in cellular heterogeneity to traditional omics frameworks
(26, 27). This in turns may enlarge the audience interested in the study of variability.

FISH (Fluorescent In Situ Hybridization) is a technique which allows to couple fluorescent dyes
to single-stranded DNA that in turn can bind to a specific mRNA. This method, coupled with super
resolution® fluorescent microscopy, can resolve single mRNAs in budding yeast (28). Yet, this method
requires cells to be fixed and washed and can therefore at best provide snapshots of cell-to-cell
variability at different points in time by using different experiments (29). In addition, although
barcoding'® might help a bit, the number of mRNA that can simultaneously be quantified is limited by
the number of distinct fluorescent dyes (in practice 3 at a time without barcoding). Although scRNA-
seq could be expected to make FISH obsolete when it comes to estimating mRNA abundance, FISH
will mostly still be very useful when it comes to acquiring spatial information and in particular at the
sub-cellular level.

Measuring proteins and metabolites

For a long time, development of antibody tags (antibodies coupled to either staining or
fluorescent molecules) allowed to visualize in fixed samples the repartition of specific molecules
(mostly proteins) and to quantify their abundance. These labelling methods allow in situ
measurements which are by essence single cell (and even sub-cellular). These techniques suffer from
the same issue of the limited number of elements which can be simultaneously observed because of
the limits in resolving tag-specific spectra within the visible/near visible light spectrum®*.

8 Single-cell RNA sequencing.

° Super resolution microscopy can resolve details below the diffraction limit of traditional microscopy by using
advanced image reconstruction algorithms and 3D microscopy data as obtained by performing a Z-stack.

' The idea of barcoding in this context is to attach to probes several fluorophores with precise ratios.
Therefore, it is a particular mixture of colors rather than one color which allows the identification. This in turns
require single molecule resolution imaging techniques.

"t is to be noted that given typical protein abundances, single molecule cannot be resolved and therefore, the
barcoding extension which may boost a bit FISH cannot be applied. But other extensions are possible for
instance sequentially bleaching and staining or washing samples.
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Traditional destructive techniques to identify molecule and quantify abundances in relatively
large samples (containing many cells) include various types of mass spectrometry (MS) used in
combination with other separation methods based on electrophoresis gels or chromatography
techniques like HPLC'2(30). These techniques are usually label free since they do not rely on addition
of specific tags. Without going into much detail, mass spectrometry based methods allow the
identification of proteins according to the m/z ratio™ of various peptides composing these proteins
(31). Yet, when it comes to precise quantification and increasing sensitivity, the introduction of some
form of labelling is useful with methods like SILAC** which relies on feeding cells with isotopically
marked amino acids to measure complete proteomes in a single experiment (32).

Using MS for in situ measurement (and therefore with single-cell or sub-cellular resolution) is
made possible by vaporizing a minute amount of (fixed) sample with a laser within a microfluidic
system which collects the corresponding vapor and convey it to the detector. This approach has been
applied with label free MS techniques (33) but could only resolve properly 35 metabolites which
were abundant enough and had well defined spectra. Alternatively, single cells can be isolated prior
to MS analysis. This was done in S. cerevisiae metabolic studies for instance in (34). A promising
research direction aims at increasing sensitivity along with quantification using metal labels. Such
methods somehow bring the antibody tag technique into the realm of MS. Instead of coupling
antibodies to fluorophores or dyes, it is possible to couple them to molecules (usually metals) that
possess a distinctive MS signature™. Limitations from the visible spectrum being therefore amended,
these techniques allow already the simultaneous measurement of tens of labels in situ (35, 36) and
are expected soon to quantify more than 100 labels simultaneously.

Dynamic measurements of variability

Flow cytometry is a widespread technique allowing fluorescent measurements at the single-
cell level for large populations of cells. Although flow cytometry is not destructive, single cell history
is lost after one measurement as all cells are replaced in a same vial. This method provides several
snapshots of a population, with single-cell resolution but without any information on single-cell
dynamics. In this respect, it is very similar to destructive methods performed on parallel experiments
sampled at different time points. Because variability exists both between cells and in time, using flow
cytometry data only to study variability requires specific assumptions on variability dynamics to
interpret the data. In other words, data alone cannot identify temporal characteristics of variability
and therefore the plausible sources of variability. FACS*allows the sorting of single cells in several
different flasks based on their level of fluorescence. This provides some form of temporal
information as subpopulations can be subsequently measured again. Because traditional systems
based on flow cytometry require manual liquid handling, it can limit temporal resolution (both in
terms of sampling and duration). Yet, novel automated platforms allow to improve significantly this
aspect along with making it possible to run several experiments in parallel (37).

2 High Pressure Liquid Chromatography, now called also High Precision Liquid Chromatography.
13 . . . . . . .
In MS, molecules are ionized prior to analysis and therefore acquire a charge z along with their molecular
mass m.
' Stable isotope labeling by amino acids in cell culture
> These methods include DOTA (162) or MeCAT (163).
'® Fluorescent-activated cell sorting
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Because dynamic aspects are of crucial importance in understanding the functioning of gene
regulatory networks, direct fluorescence microscopy is essentially the only option to obtain single-
cell time-lapse quantitative data. Gaining quantitative information on cellular processes usually will
require adding molecular probes in the cells. In this aspect, fluorescence tags are the most common
tools. Illumination for fluorescence is higher than in bright-field, but can usually be maintained low
enough as not to cause too much phototoxicity. A more detailed discussion of fluorescence imaging
issues is given in subsection Il.1.b. The obvious limitation of microscopy methods is that these are
pretty low throughput. This can be partially compensated by using microfluidics systems, strain
libraries and automation which allowed for example to record single-cell dynamics and cellular
localization for ~3000 different proteins in different conditions (38) and stresses (39) for screening
purposes.

Because the dynamic resolution of fluorescence labeled protein has several limitations (mainly
fluorophores maturation times and degradation rates), other systems have been proposed which rely
on bioluminescence to measure gene expression. The main issue being much weaker signals in
bioluminescence compared to fluorescence. Yet, as both CDD sensors and bioluminescent systems
are improved, these tools might become more widespread as an alternative to fluorescence. For
instance, the most famous bioluminescent system which uses Luciferase was recently optimized for
yeast (40) showing more rapid dynamics than fluorescent proteins upon gene expression.
Nevertheless, only one label can be used at a time so far.

Several techniques such as Spinach or MS2 allow in vivo dynamic measurements of mRNAs.
These require the inclusion of specific sequences in the mRNA to be observed which will produce
specific secondary structures. These structures in turn will allow dyes provided in the medium or
expressed fluorophores to bind to the mRNA. Although promising, these techniques which have been
used in S. cerevisiae (41-44) are still challenging in practice when it comes to precise and dynamic
mRNA quantification. Because mRNAs are small, precise counts require super-resolution type of
imaging (i.e. acquiring many frames per time point) and since signal-to-noise ratio from single mRNAs
is low, imaging these systems require high illumination which can have phototoxic effects. This can
limit in practice the use of these techniques for long term experiments. At last, these mRNA tagging
systems can affect some cellular processes (45). Yet, some shortcomings of early techniques have
been overcame by other systems such as IMAGEtag (46) which use FRET' based fluorescence in
order to improve signal to noise ratio. Therefore, although in vivo, time-lapse mRNA measurements
at the single cell resolution is not yet a very mature experimental technique, it can be expected to
become more common in the next decade and will be extremely valuable for the study of gene
expression (47).

7 Eorster Resonance Energy Transfer (or Fluorescence Energy Transfer) is the mechanism by which the
emission of a first fluorophore can excite another fluorophore if both are spatially very close to each other. In
this context, this technique allows only fluorescent tags which are bound to mRNA to be visible which improves
greatly the signal-to-noise ratio.
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Figure 11 - Synthetic comparison of several single cell experimental techniques. Colors encode
the measured elements.

Time-lapse microscopy for measuring single-cell dynamics

Our brief review of current experimental techniques allowing single-cell measurements shows
the typical trade-off (represented in Figure 11) between having a wide coverage (genome wide
methods) and being harmless enough to be conducted in time in vivo. To put it simply, one has to
choose between poor dynamic information with a broad measurement scope (e.g. whole proteomes
or transcriptomes) and precise dynamical insight on a very limited subset of elements. Although all
methods presented here provide single-cell data, the use of any specific technique will condition
importantly the type of questions which can be investigated.

In this study, we are interested in cell-to-cell variability and various dynamical aspects at the
single cell-level. This requires acquiring longitudinal single-cell data so as to study cellular dynamics
(i.e. measuring the same cell in time). Time-lapse fluorescence microscopy is therefore a natural
choice and has the direct advantages of a mature technology (cost, expertise, optimization etc.). Yet,
it goes with its inherent limitations: very few different proteins can be visualized simultaneously.

Note that imaging mRNA in addition to proteins would have surely been very informative.
Nevertheless it is still experimentally very challenging and can hardly be done for long term
experiments as it is necessary here. A study conducted in collaboration with my lab aims at
constructing such mRNA + Protein fluorescent reporters in S. cerevisiae.

Page | 34



Introduction

3. A synthetic and systems biology approach

a. Cells as systems

Proposed in the 60’ and more precisely defined in the 70’, the concept of system is now
omnipresent in science. Although applicable to nearly everything, this concept was historically
structured for a large part in relation to biology (48). While the knowledge of detailed biological
mechanisms expanded, it became clear that a purely reductionist approach might be insufficient to
understand many features of Biology. As more constituent and basic processes of living entities were
identified the focus shifted increasingly towards understanding properties of their mutual
interactions (49). This paved the way to a new discipline: Systems Biology, which defines itself in
opposition with reductionism and seeks a more holistic understanding of Biology, mainly through
mathematical modeling and a system’s theory approach (49).

As we know, biology features such complexity that engaging its study globally and precisely in
a frontal manner is hopeless. What system biology advocates is using abstraction rather than
isolation to render the analysis of complex phenomena tractable yet meaningful. Finding the proper
level of abstraction is in fact much more difficult than simply isolating a few components and
interactions, but when successful, it provides a much more general understanding because not only it
can also explain or predict phenomena, but it also answers the question: “What matters in this
process?”. Knowing what matters is vital as it helps foreseeing in which contexts the studied system
will behave differently and why. Making a parallel with physics, we can observe that thanks to known
abstractions, we know for instance that to determine the trajectory of an object, the most important
things are its mass, initial velocity and the external forces. Its temperature or its color is completely
irrelevant to this problem but as we were taught directly the proper abstraction we often forget
what it took to find out among all things what is the relevant information here. Systematic thinking
can also work together with reductionism, introducing a Russian nesting doll description of a
phenomenon. Continuing our comparison with physics, we know that if we also need to predict how
an object will spin, we do not need the full description of its mass repartition but only its inertia
matrix which is a compact description of its mass repartition symmetries. So not only in this physical
example we already know what the proper abstraction level is, but we also know how to refine or
simplify it according to the precise question at hand.

Answering to the question “what matters?” is still usually very difficult in biology and this is
also why quantification is so important: it is a fundamental tool in separating main drivers from
exotic refinements. When confronted with more than a handful of numbers, we usually cannot
distinguish any pattern anymore. This is why systems biology relies most of the time on
mathematical representations. Using mathematical models of biological processes serves multiple
purposes. In my opinion, a first advantage is the inherent precision in the system description it
requires. Luckily, this does not mean that everything needs to be completely understood, but
proposing a mathematical description of a problem clearly indicates what is known and what is more
fuzzy. It also forces assumptions to be more explicitly stated than what is usually done with words.
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Another advantage is that mathematical models benefit directly from already powerful abstractions'®
which may help finding what are the equivalents of mass, Reynolds number, or elasticity in Biology.

Typical challenges in systems biology

Having the objective of finding “what matters?” in a biological system, we can enumerate a
given set of properties which are expected to play a role in an abstract representation of biological
processes: the map or structure of possible interactions (along with their nature) between
elementary components; the dynamics of elements and the dynamics of interactions which allow
propagations; the robustness to internal or external perturbation. The study of such properties in the
case of biological systems leads to several fundamental questions:

Concerning the structure of interactions, how can we infer maps of interactions which are
heavily interconnected and include redundant components? Linear chains of causality are an
exception and usually, many interlaced cycles of cause and action are at play in biological
phenomena. In particular, many elements have several functions by themselves or may passively
affect other functions. What properties of such networks are necessary and sufficient to capture a
given type of behavior?

Concerning the dynamics of biological processes, how can we distinguish between genuinely
constant features and deceivingly stable ones which are maintained by homeostatic processes? Also,
to what extent processes having different typical time scales but common elements are
independent?

Concerning robustness, which are the relevant perturbations for a given biological process
(transitory or constant? Structural or functional? Unitary or multiple?). Also, which aspects of its
unperturbed behavior a biological system should be robust in? Should we treat differently
perturbations which are biologically plausible (i.e. which could have been present in nature thus
imposing a selective pressure) from those which are completely artificial?

As an illustration of how such properties can help characterize a system, and more precisely
“what matters?” in it, we report a study from Muzzey et al (50) in Figure 12. Authors investigated the
capacity of S. cerevisiae osmotic stress response to “perfectly adapt” (i.e. to deactivate adaptation
mechanisms as soon as the cell is adapted). Perfect adaptation is a type of dynamic robustness
property which requires part of a system to act as an integrator. Abstracting the biological adaptation
process into four sub-processes and characterizing several system level properties allowed the
enumeration of all possible combinations of integrators number and position and the subsequent
identification of the only coherent possibility.

® On a more personal prospective note, | believe that new mathematical frameworks designed for biology still
have to be invented. An old attempt at forging such a framework can be found in the work of Gilbert Chauvet.
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Figure 12 - Example of a system level analysis of a biological process. In (50),
from which this figure has been reproduced, the authors aimed at identifying
a structural characteristic of budding yeast’s adaptation to osmotic stress
(the number and position of integrating subsystems). Using specific
experiments that revealed several system level properties (related to
robustness, dynamics and structure), it was possible to identify the only
coherent topology (d) among all candidates (a-p).

Drawing frontiers around cells

Because most of the time we still lack the answer to the question “what matters?”, a study of
the aforementioned properties of biological systems is inherently difficult to design. Indeed, the
results of any given investigation will depend on the proper definition of the system and of the scope
of analysis. Although the cell seems an obvious system to study, its proper systematic definition is

not trivial.
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The first question is whether we speak of a cell as a real biological entity or if we consider the
cell as a general object of which particular cells are instances. The distinction may seem merely
philosophical but has important consequences in practice. Indeed, how should we consider and
describe the various types of variability (stable or time changing cell-to-cell variability, extrinsic or
intrinsic)? How long can we consider a cell still to be the same given that accumulated random
changes within it or external alterations of its micro-environment can make it different? To what
extent two cells are comparable?

What are the consequences of variability for the representation of a population of cells? Under
which circumstances a population can be simply abstracted as a collection of identical object?
Conversely, how can we take into account cellular variability when studying population of cells? Is
there an abstract representation capturing “what matters?” without fully accounting for all
composing elements?

In this work, we investigated dynamic processes in single cells with a focus on the
representation of cellular variability. For any cellular process, the cell as a whole defines a context
which can influence the process’ behavior and outcome. Variability between cells therefore entails a
variability of context. In our study, we wonder what influences the cellular context and how we can
represent the ensemble of context present in a population of cells.

b. Experimenting within a cell: Synthetic biology and microfluidics

Parallel to Systems Biology, Synthetic Biology takes an engineering approach where the focus
is more on acting upon biological systems (mostly at the genetic level) than on observing their
natural behavior. Somehow, synthetic biology looks for conditions and tools that would escape the

III

“everything impacts on everything” aspect of biology. It aims at creating “orthogonal” systems which
should enjoy the homeostatic conditions of cells while pursuing their artificial functions in an
uncorrelated manner with the rest of their biological environment. This approach has proven fecund,
although sometimes its limitations where overlooked (51). In any case, it both managed to
accomplish this orthogonality until some point and to provide very useful tools to act on biological
systems. Because synthetic biology is interested in designing and controlling biological systems, it
also helps answering questions central to systems biology (49). Conversely, systems biology provides

insights which help designing more efficiently new biological constructs (52).

In order to improve our understanding of cellular information processing, alterations of the
structure and interventions on the behavior and dynamics of GRN are unparalleled sources of
information. This can be done in several ways: We can act directly upon systems at the genetic level.
This in turns proves to be a very versatile way of modifying a system’s structure in a designed
manner. A basic genetic operation is gene deletion which simply removes a gene from the cellular
repertoire. Analysis of the consequences of gene deletions is the primary source of annotation of
gene’s functions. Gene deletions are useful, but they are often either without any noticeable
consequence or lethal. Lethality as such is informative but will often not help in understanding the
precise mechanism and role of an essential gene. Instead of deletions, modifications can also be
performed which will partially alters the molecular function of a protein. The most ubiquitous
modification is fluorescent tagging which allows a direct readout of gene expression. Besides the
gene itself, it is possible to modify the regulatory sequence upstream a gene to control its expression
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externally (or to put it under a different endogenous control mechanism) Such external control of
expression is known as an inducible system or inducible promoter and usually requires integrating
other genes (expressing exogenous transcription factors for instance).

Inducible systems are a cornerstone as they open the door for conditional expression (the
choice of when a gene is expressed). Moreover, many inducible systems have also a range of gradual
expression which makes it is possible to tune the level of gene expression and therefore resolve
guantitative functions in gene expression. At last, within certain bounds, it is possible with inducible
systems to exert precise dynamic perturbation at the molecular level in vivo.

Given the complexity and dynamic nature of GRN, each level of intervention (deletion,
conditional expression, gradual expression, dynamic expression) allows researchers to access a finer
and finer level of information. Deletion and conditional expression can already provide a great
amount of knowledge about gene’s functions and some interactions. Gradual expression provides
the first true quantitative data which allows building quantitative model. Yet, static gradual control
only provides information about equilibrium in GRN. At last, dynamic expression, would it be perfect,
allows in principle to truly hack into GRN and recover any sort of information concerning its present
working. In fact, as genes naturally interact through dynamic expression, being able to control it give
researchers a way to modify all relevant aspects (its level, frequency, fluctuation profile etc.). In the
eyes of a control theoretician, having dynamical input (together with outputs) is the basis for a
methodical reverse-engineering of information processing occurring in GRN. For example in (53)
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Figure 13 - Schematic representation of the use of inducible systems along with temporal information to identify motifs of genetic
regulation. Adapted from (53)

Bennett and Hasty review how dynamics of gene expression can be captured using time lapse
measurement and inducible systems. In Figure 13 we reproduce a sketch showing how various
regulatory structures will lead to distinct dynamics upon induction. More advanced examples of the
use of dynamic measurements and stimulations for systems biology are provided in (54-57).

Reverse engineering of cellular information processing by GRN is one of the broad and long-
term objectives of my research team. As such, it really is a fusion of systems biology and synthetic
biology for a more systematic understanding of cellular information processing. This thesis
participates in this long term endeavor both technically and theoretically.

From a technical perspective, the tools that are needed for such reverse-engineering are only
partially available and much further development is needed for investigating complex biological
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qguestions. We already mentioned that capturing single-cell dynamics requires time-lapse single-cell
data as provided by fluorescence microscopy. In addition, we consider here variability in dynamical
processes. This means that we compare cells regarding features of their dynamics. In order to have
informative single-cell time course data from which we can assess such features, we employed time
varying stimulations. This was done experimentally using custom microfluidics and custom hardware
which are presented in chapter Il among other crucial developments in image analysis. In our final
perspectives, we will also mention some additional technical development which was carried on but
not used yet during this project.

From a theoretical point of view, existing methodologies used in systems biology usually
originate from traditional reverse-engineering and were designed for specific types of systems.
Although applicable to some extent to biological systems as well, living matter displays some specific
features for which pre-existing frameworks were not designed. As it was discussed, focusing on the
single-cell level and on variability affecting the cellular context leads to many questions about our
representation of biological systems as simple as cells and isogenic populations of cells. To
investigate this matter, we used a well-documented biological system on which the lab had already
some expertise: the response of S. cerevisiae to osmotic stress. In the rest of the introduction, we will
describe this system and refine the broad questions we raised so far into more specific ones which
will be addressed in chapters Il and IV.
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4. S. cerevisiae response to osmotic stress

Having exposed the global research objectives driving our study, we will now present the
biological system on which we performed our experimentations: the cellular response to osmotic
stress. First we will present what osmotic stress is and give an overview of how yeast cells adapt to it.
Then, we will motivate the use of such system and detail some of its characteristics which are
relevant to our study. At last, we will present a short literature review of various analytic approaches
and mathematical models of this system.

a. An overview of the HOG response

The physics of osmotic balance in cells

Osmolarity is related to the properties of water as a solvent for dipolar molecules or ions when
various compartments are separated by semi-permeable membranes®® (such as most of cellular
membranes). Although incorrect (58), a simple explanation is that water tends to dissolve all the
available molecules evenly across semi-permeable membranes. Osmolarity quantifies the propensity
of a given solution to be further dissolved by water. Therefore, the osmolarity of a solution is related
to the concentration of soluble chemical species. Let’s consider a system composed of two
compartments separated by a semi-permeable membrane. If one of these compartments has initially
a higher osmolarity, water will flow from the lower osmolarity compartment to the higher osmolarity
one until solutes in both compartments are dissolved more evenly. This phenomenon is known as
osmosis. A consequence of osmosis is that it can lead to differences in pressure between the two
compartments, which is termed osmotic pressure.
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Figure 14 - Sketch of an osmosis experiment in which an initial disparity in solute concentration across a semi-permeable
membrane induces a flow of water. Osmotic pressure is defined as the pressure to apply to the right part of the beaker in
order to restore the initial state. Image by OpenStax College, via Wikimedia Commons. License CC 3.0
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Although this simple explanation gives some qualitative idea of osmosis, it is more rigorous to
represent osmolarity by considering the chemical potential related to water. Following such
thermodynamic representation it yields that the osmotic pressure (m) applied between a pure

19 . . . . .

A semi permeable membrane is permeable to some chemical species (typically water molecules) and
impermeable to other (typically the solutes). Phospholipid bilayer membranes harbor usually aquaporins which
are transmembrane proteins allowing influx and outflux of water.
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solution of solvent and a solution where a solute is in concentration ¢; is approximated to the first
order (i.e. for small solute concentrations) by Van’t Hoff law:

m=R.T.c (1)
where R is the perfect gas constant and T the temperature in K (59).

Under normal osmotic conditions (termed iso-osmotic or isotonic’®), yeast cells maintain a
given osmotic equilibrium with their environment where the cellular content has a slightly higher
solute concentration than the environment. Since the cell wall and the cellular membrane are semi-
permeable, this in turns produces an osmotic pressure which is balanced by cell wall tension and is
called turgor pressure. Under typical growth conditions, turgor pressure in S. cerevisiae was
estimated to be around 0.5 bar (BNID: 104997) reaching 2 bar in stationary phase (BNID: 104998).
When the osmolarity of the extracellular environment changes, this balance between cellular and
extracellular osmolarity is altered and has important consequences for the cells.

If the environment osmolarity decreases (it is termed hypo-osmotic or hypotonic), water will
flow in the cell and increase turgor pressure. This can lead to cells swelling and even bursting
although yeast, like plants, have a robust cell wall which makes this situation much less probable
than it is the case for other cell types lacking a cell wall.

On the other hand, if the environment osmolarity increases (it is termed hyper-osmotic or
hypertonic) water will flow out of the cell. If mild*, this in turn will only reduce turgor pressure. If
external osmolarity is higher, the cell volume will decrease and in extreme osmolarity (we consider
here increases of extracellular solute higher than 2M to be extreme), plasmolysis may happen (where
the cell membrane detaches from the cell wall).

In natural conditions (i.e. on fruits), it has been estimated than S. cerevisiae is exposed to
external osmolarity of 0.1 to 1.5M (60), with external osmolyte being mainly sucrose and hexose.
Osmotic stress is usually obtained in laboratory using either salts like NaCl and KCI or sorbitol.

In any cell, responding to changing osmotic conditions is essential to maintain homeostasis. In
this respect, we speak of osmotic stress to emphasize the risk it represents for cells. Because
important changes in osmolarity will change water activity, it will affect most of the chemical
reactions occurring normally and, would it be unanswered, would prove very detrimental or lethal®.
Having explained the basics of the physics besides osmotic changes, we will now briefly present how

baker’s yeast reacts to osmotic stress.

%1 this thesis, we often use the term tonicity and its derivatives in place of osmolarity. Although this misuse is
very common, it should be noted that both terms are not formally equivalent.

! Here a mild osmolarity increase is defined as one not leading to cell volume change. From Van’t Hoff relation
and considering a normal turgor pressure of 0.5 bar, a mild osmotic condition can be defined as lower than a 20
mM increase in extracellular solute concentration. For a turgor pressure of 2 bar mild osmotic stress would
correspond to less than 80 mM increase in extracellular solute concentration.

*> This explains the antique conservation techniques of drying food or salting it along with conservation of
marmalade.
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Adaptation to hypertonic environment

The adaptation of S. cerevisiae to increased levels of osmolarity has been extensively studied.
Rather than giving an extensive review of what is known about this canonical stress response, the
goal of the present description is twofold: to illustrate how global the impact of osmotic stress on
cellular physiology is and to give a minimal description of the principal mechanisms at play for the
proper understanding of the remainder of the work presented here. Readers interested in a more
precise and exhaustive review might consider the following references (61-63).

The main response to hyperosmotic stress is mediated by the High Osmolarity Glycerol (HOG)
Pathway. The HOG pathway coordinates several important acclimation/adaptations mechanisms
acting at different time scales. In order to restore size and more importantly water activity, cells need
to force water to enter the cytoplasm again. To do so, they will increase further their internal
osmolarity by accumulating glycerol, a biocompatible osmolyte which was measured to counter
balance up to 95% of the external osmolarity (64). The production of glycerol from common
metabolic intermediaries in glycolysis occurs in two steps which are catalyzed by two pairs of paralog
enzymes: Gpd1l/Gpd2 and Gppl/Gpp2. The sequence of events following an osmotic up-shift is
depicted in Figure 15 from Miermont et al. and described below:
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Figure 15 - Sketch of the different steps involved in the HOG pathway response to a hyperosmotic stress. Reproduced
from (63). Phase 1: Cells mechanically shrink by losing water. Phase 2: Osmosensors at the membrane are activated by the
osmotic imbalance which initiates the HOG cascade. Phase 3: HOG pathway’s activation culminates in the phosphorylation
of Hogl. Phosphorylated Hogl in the cytosol induces: (a) the closure of the main glycerol membrane export channel, Fps1;
(b) activation of several enzymes involved in glycerol synthesis. (c) Phosphorylated Hogl accumulates into the nucleus
which alters the transcription of more than 600 genes including GPD1. Phase 4: Proteins of osmo-responsive genes (such as
Gpd1) are produced and the HOG pathway is deactivated progressively. Phase 5: The build-up of intracellular glycerol
makes water flow back in the cell which progressively recovers its initial size. The HOG pathway is completely deactivated.
Phase 6: The cell is adapted, turgor pressure is restored and osmo-responsive genes are transcribed in a near basal amount.
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Phase 1: Within the first second of a hyper osmotic shock, cells mechanically shrink by losing
water. The volume reduction depends on the severity of the applied shock and will range between 20
to 40% reduction of the cellular volume given the range of concentrations used in our study.

Phase 2: Within less than a minute, osmosensors at the membrane are activated by the
osmotic imbalance which initiates the HOG cascade.

Phase 3 (a-b): Within 1 min, the sensing from the osmosensors is transduced by the HOG
pathway which culminates in the phosphorylation of Hogl, a MAPK*® which is the central molecular
actor of the HOG pathway and has both cytosolic and nuclear actions. Phosphorylated Hogl in the
cytosol induces: (a) the closure of the main glycerol membrane export channel, Fpsl, so glycerol
won’t leak out; (b) activation of several enzymes (including Gpd1, Gpp2 or Pfk2) involved in glycerol
synthesis which increases their enzymatic activities.

Phase 3 (c): Within 3 minutes, a significant portion of phosphorylated Hogl accumulates into
the nucleus where, along with other co-factors it will alter the transcription of more than 600 genes,
which represents about 10% of yeast’s genome?*. For example, transcription of GPD1 is upregulated.

Phase 4: Within tens of minutes to hours, depending on the severity of stress, proteins of
osmo-responsive genes are produced, including Gpd1, Gppl or Gpp2, previously mentioned and Stl1,
a H/glycerol symporter which can actively pump glycerol from the extracellular environment and is
commonly used as a reporter of hyperosmotic related gene expression. As glycerol is produced and
thanks to hogl-dependent feedback mechanisms we only begin to understand, the HOG pathway is
deactivated progressively. In fact, a system level analysis of a mutant lacking the Shol branch of the
HOG pathway argued that this feedback includes a single integrator (which may consist of integrators
in parallel) downstream of Hogl but upstream of glycerol production (50). Yet, as it was postulated in
(61) and recently at least partially confirmed, the feedback seems to be implemented at the level of
the osmosensors SIinlp (65) and Shol which surprisingly interacts with Fsp1 (66).

Phase 5: The build-up of intracellular glycerol makes water flow back in the cell which
progressively recovers its initial size. This leads to the complete deactivation of the HOG pathway
with the de-phosphorylation of Hogl which returns mainly to the cytoplasm. The fact that the HOG
pathway is deactivated precisely when osmotic balance is restored is termed perfect adaptation.

Phase 6: The cell is adapted, turgor pressure is restored and osmo-responsive genes are
transcribed in a near basal amount.

Adaptation to hypotonic environment

Compared to the adaptation to hypertonic environments which has been described, the
response of S. cerevisiae to hypo-osmotic stress is far less characterized®. Following an immediate

2 Mitogen-Activated Protein Kinase. Hog1l is highly conserved, with its mammalian homologue being p38.
24 « . . . . . . . .

It is important to mention that a major portion of osmo-responsive genes are indeed differentially expressed
for several or all types of cellular stress.
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osmotic down-shift, we saw that cells swell and that turgor pressure increases as Baker’s yeast very
strong cell wall (20 to 30% of dry mass (67)) endures the increase in osmotic pressure. Concerning
the mechanical response to a hypo-osmotic shock from normal condition and in a more pronounced
manner during a osmotic down-shift from previously high osmolarity, it is essential to underline the
role of Fpsl as a glycerol valve (61) which allows previously accumulated glycerol to leak out of the
cytoplasm, therefore reducing rapidly the osmolarity of the cell.

After this immediate mechanical response, several stress mechanisms are directly and
indirectly activated. Cell membrane sensors activate the cell wall integrity pathway (CWI) also called
Protein Kinase C (PKC) pathway (68, 69) which orchestrates the reinforcement of the cell wall. Hypo-
osmotic stress is also known to produce a transient increase in cytosolic Ca®* (70). An ensemble of
stress responsive genes whose expression is affected in several stress conditions is called the
Environmental Stress Response (ESR) and is mainly controlled by the Msn2 and Msn4 transcription
factors (71). Yet, there is empirical and sometimes direct evidence of a direct regulation of some
genes of the ESR under osmotic stress which could possibly be mediated by the Skn7 transcription
factor (61). Interestingly, genome-wide transcription analysis following hypo-osmotic stress revealed
that the gene expression change pattern is in a large part opposite to that occurring during a hyper-
osmotic stress as we can see in Figure 16 from Gasch et al. In this figure, we can also notice that

A. B.
A 25°C to 37°C shock

i Steady-state 37°C vs. 25°C

h 37°C to 25°C shock

D Steady-state 25°C vs. 37°C
Hyper-osmotic shock
Steady-state 1M sorbitol vs. YPD
Hypo-osmotic shock

| Steady-state YPD vs. 1M sorbitol

B
>6X >6X
repressed  induced

Figure 16 - Gene expression change over 1h following stress for genes composing the (general) Environmental Stress
Response (ESR) which are transcriptionally affected by most stress types. Figure reproduced from (71) and based on
micro-array transcriptome analysis.

%> The reason why hypo-osmotic stress is less known may include the lesser interest for the bio-production
industry compared to hyper-osmotic conditions, the milder effect on cellular activity since yeast cells can
endure very high hydrostatic pressure (in the tens or hundreds of MPa (164)) and the fact that the response to
hypotonic condition seems to rely mostly on the combined activation of other stress response mechanisms.
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hyperosmotic stress leads to a more transient transcription (corresponding to the period when Hogl
is nuclear) than it is for a hypo osmotic stress which dynamic is more similar to the heat shock
response.

b. Yeast response to osmotic stress as a model cellular process

Osmotic stress transcriptional response is transient and global

We previously mentioned that hyperosmotic stress affects directly the transcription of 10% of
S. cerevisiae genes, most of them being commonly induced by many different stress conditions (71).
But what such a number really represent at the scale of the overall gene regulation network is not
straightforward. As a first comparison, we know that 12% of genes are estimated to be expressed in a
cell-cycle dependent manner (72). Focusing on Hogl, we can ask which portion of yeast’s GRN is
directly connected to this multifunction (pleiotropic) protein.

In Figure 17 we propose a visualization of the interactions of Hogl with other proteins. This
representation uses a synthetic view of yeast’s proteome under normal conditions as a basis on
which we overlay information about Hogl interactions. The basis representation, from (73) and
already shown in the general introduction (Figure 1) represents proteins as Voronoi regions. The
surface of a region is proportional to the abundance of such protein. The relative position of regions
(proteins) is related to how related and interacting proteins are. From this representation of the
overall proteome under normal conditions, we color proteins which interact®® with Hog1, genetically
and physically (Hogl itself is barely visible and is located in the yellow region on the right).

It appears that Hogl interacts through at least one gene (or protein) with all the major cellular
processes depicted here. Also, an important number of associated genes are in the unmapped grey
territory whose genes and proteins are those for which no clear function or physiological effect is
known.

°® Note that the interaction database used in this section, (165), compiles many types of experimental data.
Having different experiments and estimation procedures means that the level of information or the confidence
in detected interaction among proteins is variable.
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Figure 17 - Voronoi representation of S. cerevisiae proteome in normal growing condition, with superimposed in green
proteins genetically interacting with Hogl and in light blue proteins physically interacting with it. Protein abundance are
given by mass spectrometry in (32) Voronoi visualization comes from (73), interaction database from (165). The area of
the Voronoi regions correspond to the normal protein abundance and their position in the diagram to how related the
corresponding proteins are.

Yet, in Figure 17 we highlighted interactions which do not necessarily take place at the same
time. In fact, protein-protein interactions (in light blue) are much faster than genetic ones (in green).
In order to have a coherent view of the influence of Hogl at the transcription level, it would be
necessary to consider not only genes whose transcription ifs affected by Hogl (among reported
genetic interaction of Hogl), but also those whose transcription is modulated by the proteins Hogl
physically interacts with. In Figure 18, these indirect transcriptional effects have been added. What
appears is that through both physical and genetic immediate interactions, Hog1 is connected to most
of the overall gene regulatory network®’. Needless to say, considering genes one degree further in

>’ More than half the genes can be affected which represent roughly 70% of the proteome in terms of
abundance.
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terms of interaction from Hogl would lead to virtually all of the genes represented here being
accessible.
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Figure 18 - Voronoi representation of S. cerevisiae proteome in normal growing condition, are superimposed in green:
proteins genetically interacting with Hogl; proteins physically interacting with hogl; genetic interaction of the proteins
which physically interact with Hogl. Mass spectrometry data from (32) Voronoi visualization from (73), interaction
database from (165) The area of the Voronoi regions correspond to normal protein abundance and their position in the
diagram to how related the corresponding proteins are.

It is important not to get confused about this representation as what is depicted here is more
the potential action of Hogl on the overall gene regulatory network through known interactions,
than a representation of the actual impact following an osmotic stress. It illustrates well the fact that
HOG1 is a pleiotropic gene, a hub in the overall GRN. In annex 3, we provide a similar visualization
representing a time course of genome-wide transcriptome changes upon hyperosmotic stress. It
reveals that the actual transcriptional impact of hyperosmotic stress is globally closer to what is
represented in Figure 18 than to the restrictive view given in Figure 17.
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As it was evoked for the adaptation to hypo-osmotic conditions and visualized in Figure 16,
many genes which are affected by hyperosmotic stress are also affected by other stress conditions
such as heat shock. It is commonly admitted that S. cerevisiae has a general stress response, the ESR,
which is activated in nearly all stress condition (71) in addition to stress specific responses such as
that of the HOG pathway for hyperosmotic stress?®. The ESR is modulated by many different
pathways (e.g. the TOR pathway, the PKA pathway, etc.) and although lacking a clear picture, is
related among other mechanisms (74) to the activity of Msn2/Msn4 transcription factors and to
STRE® promoter elements (61, 75). It is also important to state that parallel to the overlap in the
transcriptional response by various signaling pathways (which composes the ESR), there is evidence
of several cross-talks between different signaling pathways themselves. For instance, the HOG
pathway and the pheromone response pathway (76).

Upon osmotic stress, Hogl leads a global, yet transient modification of gene expression in
cells. As it was evoked in the previous subsection, yeast’s response to a hyper-osmotic stress follows
a precise temporal pattern which depends mostly on the severity of the stress. Figure 19 gives a
collection of time profiles giving a more precise temporal vision of several aspects of osmotic stress
response. In Figure 19 A from Muzzey et al we can see that the level of external osmolarity applied
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Figure 19 - Timing of the response to hyperosmotic stress. In A and B are represented the impact of the osmotic stress
strength (in NaCl concentrations) on Hogl nuclear localization and cellular volume dynamics. A and B are reproduced
from (50) and shaded areas represent the standard error on the mean for several experiments. In C, we show the
dynamics of Hog1l nuclear localization for a 1M sorbitol stress (comparable to a 0.5M NaCl stress) with black line showing
the population average whereas the shaded area is the standard deviation between single cells. In D, we report the
proportion of yeast proteome which is transcriptionally impacted following a 1M sorbitol osmotic stress. We used mRNA
time course data from (71) to extract genes whose transcription differed from more than 20%. The proportion of genes
with differentiated expression was weighted by the fraction of total protein accounted by each gene using proteome
abundance data from (32).

increased resistance to other type of stress (75).
*° STRE stands for Stress Response Elements which are specific DNA sequences often found in promoters of
stress response genes.
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during an osmotic stress affects mostly the duration of Hogl activation and nuclear localization
rather than its level. When it comes to cellular volume (Figure 19 B), we observe an apparent linear
increase of the volume loss upon osmotic stress with the applied osmolarity. In addition, to some
extent, it appears that Hogl deactivation and subsequent nuclear export is approximatively
concomitant with volume recovery. For a standard osmotic upshift (Figure 19 C, our own data)
induced by 1M sorbitol, we see that Hogl is active and nuclear for about 20 to 30min, affecting
transcription. Yet, if we look globally at transcriptional data as in Figure 19 D, we can see that mRNA
levels will still be higher than normal ~10 min after Hogl which is expected for regularly stable (the
median mRNAs half-life in S. cerevisiae is 20 min, BNID 100205) transcripts.

When considering the impact of osmotic stress on gene expression, the transcriptional control
is not the only aspect to be taken into account. For instance osmotic stress impacts also mRNA
stability in vivo (77) both in an unspecific manner (by globally destabilizing mRNAs) and in a specific
fashion (by stabilizing most of mRNA related to osmotically induced genes). Other post-
transcriptional modifications include an impact on protein translation (again both unspecific and
specific) though activation of the Rck2 kinase (78). In addition, the remodeling of the epigenetic
chromatin landscape has also been recently related to the action of the HOG Pathway (79, 80).

Osmotic stress and cellular physiology

By definition, osmotic stress is a physical phenomenon. It has consequences both in terms of
chemistry because of a reduced water activity and on mechanical properties of the cell by means of
cell wall tension and turgor pressure. Turgor pressure is known to affect cell wall properties and is
central to remodeling the shape of walled organisms which is essential in budding or mating (81).
Osmotic stress may even induce nutrient starvation by affecting membrane active transporter (61). It
is worthy to note that the impact of severe osmotic stress goes beyond a simple increase of what
happens in mild stress because it leads to macromolecular crowding (82). This affects the normal
diffusion of molecules in a size dependent manner and therefore affects nearly all chemical reaction
rates. It is also probably the reason why at very high osmolarity, the kinetics of the HOG pathway are
slowed down, a phenomenon which was previously unexplained (61).

Given all the aforementioned effects of osmotic stress, and considering the potential impact
pictured in Figure 18 on proteins involved in metabolism and cell-cycle, it comes with no surprise
that osmotic stress effectively affects cellular proliferation activity. In fact, osmotic stress pauses
proliferation both by stopping the cell-cycle and through modifications of metabolic activity until the
cell is adapted and proliferation resumes (61). This will be discussed in more detail in chapter 1V,
where we present experimental quantifications of the impact of osmotic stress on growth and cell
cycle which are fundamentals elements of a cell’s physiology.

From our cursory review we can state that most challenges encountered in quantitative
biology are present in the study of osmotic stress. For example it is a highly dynamic process which
includes several phases and sub-processes with distinct time scales. Some elements carry many
distinct functions depending on the molecular context®® or time scale®! and our knowledge of the

* For instance Hogl display many different roles between its phosphorylated, non-phosphorylated, nuclear or
non-nuclear forms. Also, spatial proximity of SIn1 and Fspl on the membrane modify the activity of the former
(66).
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structure of interactions among key molecular players is still incomplete. Also, we can expect the
cellular physiology to be both affected by stress response and to condition the cellular adaptation to
it. This later challenge is at the core of this study. For all these reasons, the response to osmotic
stress can be considered as a model process. This means that we can expect methodological
improvements in the comprehension of this system to be at least partially translated to many other
biological systems.

When studying such a process from a systems biology perspective, the use of quantitative
analysis and mathematical modelling in particular is essential and the next paragraph aims at
reviewing existing modelling approaches of the many biological phenomena triggered by
hyperosmotic stress.

3 Again, Hogl acts differently at different time scales: Its action in the cytosol as a kinase has a typical time
scale of protein-protein interactions (<s to s). Its nuclear localization, where Hogl is passively transported
(although retained actively) has a typical time scale of minutes. At last, its action as a transcription factor as a
typical time scale in tens of minutes to hours.
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¢. Modelling the cellular response to osmotic stress

As explained, yeast’s response to osmotic stress displays such complexity and interplay that it
can be considered as a canonical example of cellular process. There is an abundant literature
concerning osmotic stress and Hogl and many different experimental and analytical methods have
been used on this system. In this subsection we try to summarize the different mathematical
modelling approaches aiming at representing the HOG pathway rather than providing a thorough
review. Only dynamic and quantitative models will be considered here although other interesting
approaches (e.g. logical/boolean models) have been applied to the HOG pathway. Finally, we
mention that more detailed discussion of some models particularly relevant to our work will appear
later in this thesis.

Detailed mechanistic models

A straightforward modelling approach consists in translating into mathematical models all
available knowledge on a system. Such explicit models are usually formulated as a system of ODEs.
Building this kind of models is not very difficult from a conceptual point of view since they do not
abstract any details. Yet, the precise definition of interactions is usually tricky along with assigning
values for the many parameters that come with detailed descriptions. Moreover, given existing
experimental limitations, some parameters can be structurally or practically non-identifiable*.
Nevertheless, detailed models are usually able to benefit from comparison with a very broad range
of experiments (including mutants or dynamical measurements of any modelled species) and when
properly constructed and parametrized can be highly informative. For example, detailed models can
be used to test different biological assumptions for which no obvious experiment can provide a direct
answer. This approach was used in (83) to study the interplay between the two signaling branches of
the HOG pathway. It should be noted that detailed models which include all component at the same
level can also be helpful in finding proper abstractions (i.e. answering what matters? for a given
coupling aspect) by using well defined mathematical aggregations methods of several precise
components into an abstract one (e.g. adimensionalization or time scale separation). In the case of
osmotic stress some detailed models include complex couplings such as the interplay of: physical
mechanisms, MAPK signaling, Hogl localization, osmo-induced gene expression, and metabolism
(84); or Hogl cytosolic response, glycerol metabolism, cellular energy utilization, growth and turgor
pressure (85). Currently, there is no detailed model which integrates cell-to-cell variability and this
leads to important issues discussed in chapter Ill and our article in annex 6.

Engineers and physicists models

In line with the idea of reverse-engineering of biological systems, several studies have looked
at osmotic stress from an input-output perspective. These studies are interested mainly in the
phenomenological aspect of the HOG pathway, and particularly in the feedback mechanism which
allows perfect adaptation® (50). Experimental data is usually in the form of temporal profile and part
or all of the signaling cascade can be studied in terms of its transfer function (which displays
properties of a low-pass filter) (54, 55). These models are usually deterministic and minimal in their

see (166) for more information on non-identifiability of ODE models and the supplementary information of
the article in annex 6 for an example of non-identifiability analysis in the context of our work.

% perfect adaptation can be defined as the property of the HOG pathway to shut down as the osmotic balance
is recovered without over-shooting (i.e. over reacting) or missing its target (i.e. under-reacting).
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description of cellular processes so as to capture only the system level properties required. For
instance, in (86) a minimal model of gene expression proved to be sufficient to control gene
expression in real time with a model predictive control approach.

Stochastic models

As it was presented in section 1, biochemical reactions and more specifically transcription of
mMRNA can occur in a random manner. To quantitatively model such behavior, stochastic models are
used. These are generally constructed from chemical reaction stoichiometry only using the chemical
master equation (CME)?*". These models being probabilistic in nature, many independent realizations
are needed to be measured in order to infer their parameters. Although dual reporters or others
similar experimental systems should be preferred, most of the time these models are inferred from
flow cytometry data. Given the important computation burden of exact simulations (typically
performed with the SSA*® algorithm which uses a Monte Carlo approach), the number of modelled
species is limited and parameter fitting is very long. Nevertheless, from the CME can be derived ODEs
for all statistical moments (mean, variance, skewness, etc.). Using particular assumptions like
moment closure® allows therefore parameters of the CME to be fitted to experimentally measured
moments at much lower computational cost. Stochastic models are useful to represent the impact of
random fluctuations in gene expression on the overall behavior of a biological system, both at the
single-cell and population levels. In the case of the HOG pathway, such model (87) along with
moment closure and an extrinsic parameter’’ was used to explain reported bi-modal expression of
pSTL1 at intermediate osmolarity (88). Another interesting example is provided in (89) which aimed
at characterizing the precise nature®® of pSTL1 stochastic expression. Several of these models will be
precisely described in chapter Il

Integrative and hybrid models

Other notable models of the response to osmotic stress display both explicit, detailed
mechanisms and engineer type of black box input-output modules. This allows models to be adapted
to the precise scope of the research question at hand and to accommodate with an uneven
knowledge of all interconnected processes. A good example is given in (90) which focuses on the
interplay between cell-cycle (S to G1 transition) and osmotic stress. In (91), a simpler mix of detailed
and black-box modelling was calibrated to time-varying data and used to investigate in-silico the
response of the HOG pathway to various fluctuating stress patterns. Finally, population models such
as Mixed Effects models which will be detailed in chapter Ill allow combining a semi-detailed model
of pSTL1 response to hyperosmotic stress with cell-to-cell variability (92) and to compare such
representation of cellular heterogeneity with that obtained by stochastic formulations from (87).

*A rigorous derivation of the CME from mechanical considerations is given in (167).

» Gillespie’s Stochastic Simulation Algorithm (SSA) is a type of Monte Carlo method generating statistically
exact trajectories for a stochastic equation (168, 169).

** Moment closure is a set of assumption regarding the modelled distribution which is necessary in most cases
since the equation for n" moment depends on the n+1" moment, see (170) for examples of derivations.

* This extrinsic parameter was suggested to be related to chromatin remodeling complex abundance.
Mathematically, it allows, on top of the typical stochastic gene expression, to account for a cell-specific
parameter value within a typical stochastic model.

%% See the next section for a description of the two main stochastic regimes in gene expression: Poisson and
Bursty.
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5. Introduction Conclusion and Outline

Along this introduction, we presented several open questions concerning the fact that
biological processes do happen within single cells which although similar are not identical. In isogenic
cell population, the physiological state of each cell is different and most cellular activities are
affected by it. For a given process, the subset of the cells physiology which can impact it constitutes
therefore a context and a same process occurring in different cells can therefore display some
extrinsic variability.

Here we focus on cellular information processing and on gene expression in particular. This
biological process is dynamic and emerges from the many interactions between genes, proteins and
other elements. In sections 2 and 3 we described important methodological and experimental
considerations for this study such as the use of single-cell longitudinal information along with
dynamic stimulations.

In section 4 we presented the biological process we used in our investigation: the response to
osmotic stress. In particular we presented the large and transient change in gene expression which is
triggered by the HOG pathway and Hogl. In the following chapters, we present our investigations of
two aspects of the relationship between process and context in the osmotic stress response. More
precisely we ask:

* To what extent the transcriptional response coordinated by Hogl is affected by its cellular
context, leading to cell-to-cell variability?

* How the stress response itself can in turn affect proliferation (which is a major driver of cellular
physiology)?

In chapter Il we will discuss technical developments allowing long term experiments in controlled
dynamic environments such as the design and use of microfluidic chips and image analysis methods
to recover single cell information on gene expression and physiology from microscopy data.

In chapter Il we will present our investigation of cell-to-cell variability in gene expression under
repeated stress

In chapter IV we will present our quantitative analysis of the impact of repeated osmotic stress on
cell-cycle and cellular growth.

We will then propose general perspectives for our research topics and mention additional
developments undertaken during this thesis which will contribute to future projects. At last we will
present our general conclusions and final discussion of the presented investigations.
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Il. Long term dynamic experiments and single-cell

data

In this chapter, we will describe the methods that were developed specifically for this project.

Most experiments were carried within the general pipeline depicted below.
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Figure 20 — Schematic representation of the main experimental pipeline used in this study.
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1. Single-cell measurements in precisely changing environments using
microfluidics and microscopy

a. The Truman show: the use of microfluidics

Using microfabrication techniques like soft Iithography39, it is possible to construct systems
adapted to handling very small quantities of liquids (in the order of pL to fL). Fabrication at this scale
is used for many different purposes (93—95) and can include many components as it is reflected in
the term lab on chip which is often employed to describe complex microfluidic systems. In this work
we are interested in the possibility of creating chips which fulfill the following objectives:

* Providing a controlled homogeneous environment for cells. This can be ensured by
constantly renewing the liquid medium, thereby removing waste and ensuring a
constant availability of nutriments. Other physical properties like temperature or
pressure or mechanical cues (like shear stress coming from liquid flowing on cells) can
also be controlled (53).

¢ Controlling the chemical composition of the medium dynamically so as to impose time-
varying concentration of chemicals for instance.

* Improving observation conditions e.g. by forcing cells to grow as a monolayer and
therefore prevent cells from overlapping (which makes it impossible to distinguish
them).

* Allowing several experimental replicas to be performed simultaneously or allowing
several experiments to run in parallel.

A typical chip is composed of several elements:

* Imaging chambers where cells will be observed. These chambers usually have a low
height in order to force cells to grow as a monolayer. For haploid S. cerevisiae cells,
chambers of 3 to 5 um are commonly used.

* One or more flow channels where culture medium can flow. These channels are
usually higher than imaging chambers and include connectors regions which will be
connected to tubes outside of the chip.

Some additional common elements include: loading channels which are used to inject cells
inside the imaging chambers; mixers (96) which have a geometry helping fluid mixing40; geometric
elements such as pillars, nozzles, traps etc. Complex chips can also include control layers which are

Pt s interesting to note that, as it has been tested in our laboratory, recent improvements in
stereolithographic 3D printing already allow minifluidic devices to be constructed much more easily (and with
much cheaper equipment) compared to soft lithography. It can be expected that most microfluidic devices will
be constructed with this technology in the future.

Ot is important to bear in mind that at the scale of typical microfluidic chips, fluid motion is quite different
from what we are used to. More precisely, the Reynolds number is pretty low which means that flows will be
very laminar. This in turns means that mixing rapidly two liquids is difficult and usually requires geometries
creating turbulence to reduce mixing time.
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composed of channels containing pressurized liquids that allow for example to control fluxes in flow
channels using valves or peristatic pumping on chip.

Microfluidic chips used in this project

Figure 21 - Picture of one microfluidic chips used in this work (parallel-H-Shaped). Left: picture of a wafer covered in
hardened PDMS and which acts as a mold. Right: Once cut out from the wafer, a chip is punched, plasma-cleaned and
bonded to a coverslip.

A microfluidic chip itself is usually made using a mold (a.k.a. a master or wafer Figure 21 Left)
on which molded resins are hardened, cut out and bound to a coverslip (Figure 21 Right). While some
chips require several layers of channels and therefore several molded parts that are assembled
together, in our case a single mold making both culture chambers and flow channels is used. Using
single-layer chips simplifies significantly the fabrication process and reduces the proportion of faulty
chips.

We design and make our own masks and wafers (protocols for master mold design fabrication
and chip fabrication are given in annex 4). This is not only cost efficient, it also allows us to fine-tune
designs and parameters such as chambers height in order to obtain a microfluidic chip which really
fits our needs. For instance, depending on culture conditions (high or low growth rate), | found chips
with chambers of different heights*' to be most efficient in trapping cells in chambers.

** For big fast growing cells, chambers of 3.5 to 3.7um high are good whereas smaller cells growing slowly will
stay more easily in a 3.1um high chamber.
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For the work presented here, two designs were used: a H-shaped chip (Figure 22) and a
parallel H-shaped chip (Figure 21 and Figure 23). | made wafers of H-shaped chip with 3.7 or 3.1um
high chambers and flow channels having a height of 50 to 80 um..
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Figure 22 - Left panel: Microscopy image of a H-shaped chip. Red arrows indicate medium flow in flow channels. This chip
has 5 culture chambers, one identified by the white box. Right panel: sketch representation of a cross section of the
white rectangle. Figure adapted from (86)

We can see in Figure 22 that culture chambers are connected to two large flow channels. With
this design, the medium inside the chambers is renewed by diffusion only*’. This design makes it
possible to renew the liquid content of a chamber within ~2 min (see Figure S1B of (86) or
computations in Annex 5) while keeping cells in position. In addition, the H-shape conveniently
allows using the flow channels for cell loading: if necessary, it is possible to inject cells from one flow
channel extremity while blocking the exit of that same flow channel. This in turns forces a flow in the
culture chambers where cells get trapped.

Using the H-shaped device, it is possible to perform relatively long experiments, obtaining 5
fairly independent® replicas (one per chamber) at a time. This was convenient for experiments used
in chapter lll. Nevertheless, the study of cell growth presented in chapter IV required longer
experiments which were hardly doable with the H-shaped chip. Indeed, starting with a relatively low
number of cells (30 in field of view overall), and under normal growth conditions, image field and
more importantly culture chambers are completely filled in typically 6 to 10 hours. This makes it
difficult to conduct much longer experiments because at high density, image analysis becomes very
challenging, mechanical strain due to continuing growth in a crowded chamber may have
physiological effects and homogeneous nutriment availability across the chamber is not ensured
anymore (see Annex 5).

To allow longer experiments to be performed, | designed a modified version of the H-shaped
chip represented in Figure 23. This chip has larger chambers (400x400 um) which will delay the
complete filling of chambers (yet as the field of view is determined by the microscope camera and

*? Residual low-velocity flow in chambers can still happen from time to time.

It could be argued that cells in the most upstream chamber could alter the composition of the medium which
will reach chambers downstream. Yet, given that we impose typically a flow of 120L1L.min_1 for each flow
channel, we see that the overall volume of one chamber is flown in the flow channels every 70 us. Said
differently, anything produced by cells in a chamber over 1 min will be on average diluted nearly a million time
by the flow in flow channels.
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Figure 23 - Sketch of the parallel H-shaped design

optics, it fills up at the same rate, the chip delays only possible physiological effects and do not
changes the image analysis challenge of crowded field of view). In addition, this chip allows 5
different experiments to be performed in parallel (with again 5 replicas for each). This increases the
experimental throughput and places us at the limit imposed by the microscope: stage motion,
automatic focus and fluorescence filter change (for one color) limits imaging to 25 fields of view
every 3 min.

Another important aspect is that in this new design, chambers are not only larger; they are
squares* instead of rectangles in the H-shaped device. This improves the nutriment homogeneity at
high densities as shown in annex 5. This design features some less critical improvements such as:
round connecting areas which reduce the possibility of tearing PDMS* during punching; larger angles
in flow channels which remove the possible formation of small bubbles which often occurred in the
straight angles of the basic H-shaped chip; smaller flow channels (800x50 um cross-section) which
allow to impose the same fluid speed without consuming as much medium compared to the basic H-
shaped chip”®.

*In fact, | designed different masks allowing changing the chambers form. Square is called type C and type A
has the form of an hourglass.

*> PDMS is the abbreviated name of the typical polymer used to make microfluidic chips. See protocol in annex
4 for more details.

*® This obviously reduces a bit the chamber volume to flow dilution discussed in footnote 43 for the H-shaped
chip. Nevertheless, with a dilution ratio of 110 000, replicas can still arguably considered as independent.
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Digital control of cellular environments with valves

During an experiment, we flow fresh medium constantly in flow chambers in order to ensure
homogeneous conditions. This is performed by peristatic pumps (Figure 24 D) (Ismatec IPC) which
impose a constant flow rate to the flow channels (we use 120 and 80 pL.min™ for each flow channel
for H-shaped and parallel H-shaped chips respectively). This is done by pulling fluid out of the media
bottles (Figure 24 A) through the chip (Figure 24 C) and then to the trash (Figure 24 E) rather than by
pushing it. Such a pulling arrangement ensure no media will leak on the inverted microscope would
there be a leak on the chip.
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Figure 24 - Image of our microfluidic experimental setting (here with the H-shaped device). A. Fresh medium bottles (we
can switch between two media) are kept in the enclosure equipped with a 30°C thermostat. B. A custom made digitally
controlled valve can switch inlets between input bottles and connects to the microfluidic chip inlets. C. The H-shaped
microfluidic chip mounted on custom chip holder. D. A peristaltic pump pulls liquid out from the bottles in A and flows it
towards the trash E.

In order to change the media dynamically, a valve (Figure 24 B, custom enclosure, valve from
The Lee Company) upstream of the chip which has two inlets and one outlet. This valve is controlled
by a custom-made, Arduino-based controller which can be programmed in Matlab. This design is
easily extendable as in the case of the parallel H-shape chip (which requires 5 valves to run 5
independent experiments) a single Arduino and slight modifications to the driver were enough to
parallelize the control without stacking simple controllers.

It is informative to note that a protocol to create a very similar experimental platform (yet
using a more expensive and less versatile control board and having a microfluidic setup where cells
are growing in the flow channels) was deemed worthy of the cover of Nature Protocols in 2015 (97).
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b. Fluorescent probes to peep into cellular activity

Fluorescent proteins (FPs) are definitely the tool of choice when it comes to monitoring gene
expression dynamically and in-vivo at the single cell level. As any measurement technique, it has pros
and cons. In the pros we have that fluorescent reporters are easy to integrate in the genome. These

can be inserted in place of a gene or fused to it (at either the N or C terminal®’

). They allow
quantifications, although relative (i.e. not absolute molecule values but relative changes in values)
and do not require any additional chemical or construct®®. One big advantage of PFs is that they are
very popular and therefore a large palette of FP is available and many are way better characterized
than most other measurement techniques (98—100). Their use in fact goes beyond traditional
imaging (e.g. when performing FRAP* or considering some FPs can act as molecular timers (101)). At

the same time, using FPs leads to several issues, which we will discuss here.

When using FPs as gene expression reporters, it is important to consider that these proteins
have their own kinetics. In fact, in chapter Ill we use an yeast optimized yellow FP (yECitrine (102)).
This FP is expressed under the control of an endogenous promoter, pSTL1 and therefore is expected
to be transcribed pretty much in the same manner than the original gene (STL1) which was replaced
by the FP. This is because transcription is believed to depend mainly on the sequence upstream (i.e.
promoter region) which in our case was left untouched. With the same kind of argument, the mRNA
produced with our FP has the same 5 UTR*® than endogenous STL1 and therefore, should be
translated also in the same way. Nevertheless, since the insertion of an FP in the genome requires a
selection marker (in our case the auxotroph marker HIS5, see strain yPH91 in strain table in Annex 1)
which is placed after the FP stop codon, the 3’ UTR of our exogenous mRNA is different than the
wildtype STL1 3’UTR. This can affect the mRNA decay rate (103) which in turns changes mRNA levels
and therefore, protein levels. Moreover, although some extensive work has been done to quantify
MRNA decay under osmotic stress for nearly all of S. cerevisiae genome (77), such genome wide
studies never include fluorescent proteins in their scope (which would be very useful in practice). The
same remark applies to protein degradation rate although in that case, several approaches to modify
natural degradation rates of FPs (which are usually very stable proteins) have been proposed (104,
105). For all these reasons, when we looked for literature values for several parameters of our model
of gene expression in chapter Ill, we took care not to consider our reporter to behave like the gene it
replaces (see supplementary information in the article in annex 6).

One important factor to be taken into account when conducting quantitative fluorescent
measurements has to do with photobleaching: the fact that fluorescent proteins lose their
fluorescence when excited too much. This means in practice that the more fluorescent proteins are
imaged, the lower the signal. The precise reasons for photobleaching are poorly understood (106).
From that, and considering that bleaching is a random event with constant probability in time
(excitation time) the most common model of photobleaching is a Poisson transition to bleach state
which leads to an exponential decay of fluorescence intensity upon illumination. In order to

*In some specific cases, FP are also inserted within a protein, or in an exon.

*® Unlike luciferase reporters for example.

** Fluorescence Recovery After Photobleaching is a well-known technique that uses FPs to measure diffusion in
vivo.

> UnTranslated Region. Part of mRNA which is transcribed but not translated and appears before the gene
(start codon) when reading DNA in the 5’ to 3’ direction. After the stop codon there is a 3’ UTR.
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compensate or at least account for bleaching, it is necessary to measure the rate of fluorescence
decay due to bleaching. The classic experiment consists in placing cells expressing the FP in similar
conditions as the experiment®’ and leave excitation light shining on them while recording the
diminution in fluorescence (106).

Here, motivated by the fact that fluorescent proteins can also be subjected to photoblinking (a
process similar to bleaching but transitory whereas bleaching is irreversible) (107), we conducted a
photobleaching experiment where excitation illumination was intermittent® with the same exposure
time as for experiments. The average fluorescence over 10 cells is reported in Figure 25. Linear fit on
log transformed, background free fluorescence (which is more appropriated since an exponential fit
in normal fluorescence give much more weight to the highest points) allowed an estimation of a
bleaching rate of 0.0032 per frame>>. In other words fluorescence intensity decreases by 0,32% for
each illumination frame of 200 ms at 50% of illumination power. As it appears in Figure 25, bleaching
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Figure 25 - Bleaching rate estimation. The average fluorescence of 10 cells decays as an increasing number of
fluorescent images are taken. Bleaching experiment was carried following a regular experiment (100913),
therefore, having cells from the yPH91 strain with typical YFP fluorescence levels (~¥4500 AU). Imaging
conditions are the same as for experiments of chapter lll except here one image was taken every 5 seconds.

is only imperfectly represented by an exponential decay. This mild deviation from a pure exponential
was found to be more pronounced at very low fluorescence level in our system (~300 AU).

n fact, beaching rate can be specific to a given strain in particular experimental conditions.

> yECitrine, excited for 200ms every 5s at 50% intensity on an X-Cite 120PC lamp, under a 100X objective
PlanApo 1.4 NA, Olympus

> This means that with the sampling of 6 min rate used in chapter lll, fluorescence decay from photobleaching
has a rate of 5.3.10™ which is ten times less than protein dilution and is therefore negligible.
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A last consideration on the use of FP is phototoxicity. Although detrimental effects for cells can
already appear in bright field, the intensity of fluorescence excitation illumination is much higher.
Moreover, in order to fluoresce, FPs jump to excited states where they are likely to react and form
ROS>* which can have various harmful effects on cells. Because so many factors related to
microscopy can produce toxic effects, it is hard to properly quantify its effects and not much
literature is available concerning phototoxicity in S. cerevisiae™. From a practical point of view, a
simple rule is to minimize overall exposition (in terms of sampling rate, exposure time, light intensity
and color with short wavelength being more energetic) as much as it does not hurt the Signal-to-
Noise ratio or under-samples in time the phenomenon of interest. In this aspect, it is usual to use
different sampling rates for bright field images and fluorescent ones. This allows having a high
enough bright field sampling rate (so as to obtain good single cell tracking) and sufficient sampling
for fluorescence which fluctuates more slowly while minimizing phototoxic effects. At last, measuring
the growth rate in absence of perturbation other than imaging itself is a standard control.

54 . .

Reactive Oxygen Species
> A guantitative investigation of the matter in S. cerevisiae has been done recently by a research group but
publication is not yet available at the time of redaction.
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2. Image Analysis

In this section, we will discuss image analysis which is a crucial step consisting in automatically
extracting relevant and quantitative information from microscopy images.

a. Segmentation and Tracking using Cell*

When we look at a microscopy images we usually have no problem in distinguishing single cells
one from another, and this even when images are of rather poor quality. Working at the single cell
level usually requires obtaining a fairly good amount of data in order to derive meaningful statistical
values. In a typical experiment, we record from 5 to 20 fields of view for several hours which rapidly
amount to thousands of images featuring hundreds of cells. Performing image analysis by hand is
therefore a lost cause for most of the experiments we are interested in. When it comes to having
algorithm performing that same task of distinguishing cells, things become much more difficult.
Basically, the goal is, from bright field images (Figure 26 A) to obtain for each image the pixels which
corresponds to each cell (segmentation, Figure 26 B) and for two images taken at different time, the
knowledge of which cell is which (tracking Figure 26 C).

Frame 0 Frame 25 Frame 50

L))

Figure 26 - A. Bright field time-lapse images. B. Segmented images. C. Tracked &
segmented images

Importantly, we want to obtain dynamical data for single cells over relatively long periods
(several hours). We call trace all the segmented pixels in time corresponding to a single cell. It is
important to see that a single error in segmentation or tracking in one frame will affect the whole
trace for the concerned cell. This leads to what we can call the exponential decay of precision which
is depicted in Figure 27. What this figure represents is the fact that having a per-frame accuracy of
95%, which might seems fair at first, is insufficient for long term experiments. In fact, after only 50
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frames, less than 10% of traces would still be correct. Because of this accumulation of errors,
automated segmentation and tracking (S&T) needs to aim for very high levels of per-frame precision.

% correct traces

2 50 10b
# frames

Figure 27 - Segmentation and tracking errors per frame
accumulate over long sequences. Here is plotted the
accumulated error (in terms of single cell traces) for two
systematic error rates per frame. Figure from (108).

Realizing that the level of accuracy of available methods was insufficient for long-term S&T, we
helped collaborators in designing a new tool: CellStar (Cell*) which is dedicated to long term S&T of
S. cerevisiae microscopy images. Whereas most budding yeast segmentation tools are based on the
generalized Hough transform, in Cell* segmentation is based on active rays, a technique inspired
from active contours. Tracking is performed through on a multi-criteria optimization which allows
taking into account typical tracking hardships encountered when imaging yeast in microfluidic
chambers (see (108)). This allows this tool chain to have a better precision than any other tool it was
compared to. In addition, since at some point any per frame precision will eventually lead to a trace
being lost in time, Cell* also includes a user interface to correct traces rapidly. The paper describing
this new tool is still in preparation (108). In this collaboration, our contributions were the following:

* We produced a set of time-lapse microscopy images displaying several common
hardships for S&T (e.g. small movement of the microscope stage in between frames,
osmotic stress or jumps of patches of cells). This allowed the construction by
collaborators of an open source benchmark tool allowing quantitative comparison of
several available S&T algorithms for budding yeast™.

* We provided regular and extensive feedback on performance, bugs, user experience in
order to produce a relevant tool for the community. In this respect, many interns and
other experimentalists were also provided with different alpha or beta versions of the
tool to gather larger feedback. Overall, we tested it on tens of movies, both in batch
with scripting upon the tool and with the interactive user interface to provide
feedback both for advanced use and for beginner use.

* We created part of the documentation which will come with the official release of
Cell*. This is in the form of a tutorial, allowing a broad audience of users, some of

> Algorithm benchmark results, methodology and open source tool, see http://yeast-image-toolkit.biosim.eu/
(accessed on 15" September 2015)
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which may not be very at ease with Matlab or Octave (the two compatible software
environments to use the tool) to get stated with the tool.

An important aspect of Cell* has to do with the usually very difficult task of setting a S&T
algorithm internal parameters. To the practitioner, such meta-parameters are most of the time
abstract and would require time-consuming trial and error to be adjusted for new imaging
conditions. In Cell*, a machine learning approach has been implemented which allows a user to
provide the algorithm with a few hand curated images which are used to automatically tune Cell*
meta-parameters. Interestingly, besides this perks for Cell* robustness and versatility, it appears that
with time one finds how to tune microscopes so as to produce images which are the most
informative for the algorithm. In the end machine learning and human learning converge to produce
higher quality data.

As it will become apparent in the rest of this chapter, S&T is a crucial step in image analysis
since many measurements derive from it to some extent. An elementary derived measure is that of
single-cell fluorescence: by imaging cells not only in bright-filed but also in fluorescence, we use S&T
results to compute single cell fluorescent levels (usually the averaged®’ fluorescence) over time. Co-
localization of proteins tagged with different FP is also straightforward®® when images have been
segmented.

b. Measures of cellular identity

As we investigate single cell variability, we ask the question of what constitutes a single cell’s
identity. It has been claimed that variability could be related to several aspects of cells physiology
and could be influenced by the microenvironment (109). Many putative features which can relate to
variability are accessible to quantification from microscopy images. In this study, we quantified for
instance local cellular density, cells age, size as well as cell’s perception of osmotic stress>”.

Genealogical origin is also expected to contribute importantly to variability because of all the
features which are transmitted from a mother cell to its daughter. This includes not only a genome
but also epigenetic traits and a given cytoplasmic composition which together carry the state of the
augmented gene regulatory network of the mother (if we see this as a large dynamic system).

Cell* development plan includes an automated way to extract cell lineages from bright field
images only but this option is not yet functional. In addition, such lineage reconstruction from bright
field relies on some assumptions (e.g. all cells dividing regularly) which can limit its use. For instance,
when studying the impact of repeated osmotic stress on cell division, cells do not divide regularly
indeed.

>" Here we refer to the fluorescence intensity averaged over all pixels attributed to a given cell at a given time
frame.

>% Co-localization is usually defined as a ratio of pixels showing both fluorescent colors to pixels only having
one. In the case of nuclear localization (of Hogl for instance) it can be measured as the ratio of the summed
fluorescence for Hogl over pixels corresponding to the nucleus (as identified by another FP) divided by the
total summed fluorescence of Hogl in the cell.

> For a description of the quantification methods employed for these features, see the supplementary
information of the paper draft given in annex 6
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Using yeast strains containing a nuclear tag® and with a frequent enough image acquisition it
is possible to observe mitosis and in particular anaphase® which allows to reconstruct faithfully
mother-daughter pairs. Time lapse imaging of such cells is represented in Figure 28.

Figure 28 - Montage of time-lapse showing mitosis for cells having a fluorescent nuclear tag (HTB2-
mCherry). Microscopy images at 100X (scale bar is 5um), overlay of bright-field (grey) and RFP
fluorescence (red). Strain used: yPH15 growing in 2% glucose SC medium, experiment 140214.

We implemented an automatic lineage reconstruction algorithm from microscopy image
similar to those of Figure 28. This algorithm performs the segmentation of nuclei (Figure 29 A) using a
gradient based approach (Figure 29 C) and matches it with S&T data from Cell* (Figure 29 B). Then,

Figure 29 - lllustration of automated lineage reconstruction from nuclear markers. A. Composite image of bright field at
100X and nuclear marker HTB-mCherry fluorescence. B. Segmentation and Tracking result. C. Segmented nuclei. D.
Results of lineage reconstruction. Cells coming from the same initial cell are coded with the same color.

® A nuclear tag is a fluorescent protein which is restricted to the nucleus. This is done usually by fusing this
protein to a nuclear endogenous protein. To have a good signal, such a nuclear protein should be expressed in
large amounts. A typical fusion choice made here is to use histones proteins, e.g. Htb2.

® Anaphase is the spatial separation of chromosomes between cells. As this event lasts approximatively 10
min, sampling time should be set accordingly.
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mother-daughter relationships are extracted by detecting nuclear separations and genealogy is
reconstructed (Figure 29 D). This algorithm requires the sampling rate to be high enough so as to
ensure both mother and daughter nuclei will be fused in at least one frame. Yet, this condition is not
always fulfilled as nuclei can often split very rapidly.

The performance of this automatic lineage reconstruction was improved by including more
features than nuclear merging (11 overall®®) which are computed systematically for each daughter
and potential mother (defined by cells being close enough to the new born cell when it receives a
nucleus). In its current form where feature selection and weighting has been done by hand, it already
has a true positive rate of 94% and a false positive one of 1,7% (based on 375 potential mother
daughter pairs among which 82 correct ones). It can even resolve situations like that shown in Figure
30 where two cells bud simultaneously crossing each other. Once stable, the code will be available
at: http://github.com/Lab513/YeastImAnalysisToolchain/LineageTool

Figure 30 - Example of lineage reconstruction difficulty as indicated by the white arrow. Numbered frames are separated
by 6 min. Strain used: yPH15 growing in 2% glucose SC medium, experiment 140214. Scale bar is 5pm.

62 . . . . are . . .
Features include metrics of nuclei shapes, nuclei position relative to cells, nuclei movements. Distance
between cells, fluorescence in between cell centroids and variations of metrics thereof.
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3. Measuring growth in populations and single cells

a. Going beyond the field of view: An Eulerian measure of population growth

Generally population growth could only be measured in the initial part of our experiments,
before the imaging window was full of cells. This is because the typical way to measure growth is by
following the number of cells present in time. When the imaging window is full, cells flow in and out
and it is no longer possible to measure the number of cells. This imposes a trade-off: estimating
finely growth rate of a population in time requires having many cells so budding occur frequently.
But the more cells, the faster the imaging region gets filled.

To circumvent this imitation, | designed and implemented a technique allowing the estimation
of population growth rate from microscopy images filled with cells (but segmented and tracked). It
relies on tracking the flux of cells present in the image. Bulk measurements are performed chamber
by chamber. Out of the 512x512 pixels, we follow the number of cells present, entering and leaving a
centered “window” of 482x482 pixels as depicted in Figure 31.

Tracking Windpw

A

Figure 31 - Principle of the window growth estimation method. We track cells
coming in and out of a reference window (blue square and green and red
arrows) along with cells appearing in the window (yellow circles).

For each frame, we have the relation:
Nw(t +1) - Nw(t) = Nnew(t) + Nin(t) = Nyt () (2)
where:

* N, (t) is the number of cells present in the window at frame t

*  N;,(t) is the number of cells that entered the window between t and t+1

*  Nyye(t) is the number of cells that left the window between t and t+1

*  Npew(t) is the number of cells that were born in the window between t and t+1
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By simply counting the number of cells observed during an experiment (black curve in Figure
32 A), we cannot estimate the global division rate as soon as cells leave the imaging field (Figure 32
A, dark blue curve). Retrieving N;,.,, (t) allows computing a first estimation of the population growth
by simply considering N,,(0) + X:t_; Npew (S) (Figure 32 A, green curve). This estimator accounts for
cells born in the window and which have left. Yet it only includes cells which are born within the field
of view. As a consequence, it does not take into account the contribution to population growth of a
cell which has left the observation window. Accordingly, it cannot be compared to the traditional
model of population growth (where the division rate is defined) in which population growth is
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Figure 32 - Results of the window growth estimation on experiment 140214 (pooled data from 5 positions). In this
experiment, the strain yPH15 grows in 2% glucose SC medium in absence of stress.

unconstrained.

NTLEW(t)
Ny (t)
window between t and t+1. Although fluctuations in N,,(t) are mild, and the results are pretty
similar, we deemed more pertinent®® to use as denominator the mean number of cells in the window

during the last hour (or during one average division time), i.e. < N,,(S) >¢zt—1pn.¢-

From this relation, we estimate which is the relative number of newborns in the

To obtain an equivalent population division rate we estimate the instantaneous division rate as
NTLEW(t)
<N, (t)>.At

then be extrapolated which yields the orange curve in Figure 32 A.

(with At being the time interval between two frames). This instantaneous division rate can

, i , Ny (t
A linear fit on the cumulative sum ofM
<Ny, (t)>

directly the average division rate in the window (given by the slope of the red linear fit in Figure 32

(Figure 32 B, green curve) allows measuring

®|If we consider that some cells might enter or leave the window at any time, using N,,(t) may lead to
estimation errors coming from either accounting incoming cells or excluding cells which have just left in the
“cell production pool”.
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B). Simulating a pure exponential population growth at the average rate yields the red curve in Figure
32 A

In practice, this computation is done chamber by chamber as a sanity check and we use data
pooled over all the chambers to compute the overall division rate for a given experiment (as it is the
case in Figure 32).

We can note that the current method is still sensitive to fast flow (fast being when cells come
in and out of the window in less than an average division time). This could be improved marginally
with finer tracking of single cell’s residency in the window but would become more sensitive to

eventual segmentation and tracking errors.

At last, although the example presented here concerns an experiment where cells were
growing in the absence of stress, the proposed approach has been also applied to experiments with
osmotic stress.
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b. Measuring growth at the single cell level

It is possible to extract division rates at the population level from microscopy images. Yet,
division rate is also variable within a population. When nuclear markers are available and lineages
are reconstructed, single cell division times are naturally accessible. Nevertheless among other
practical reasons, given the limited number of fluorescent marker which can be included at the same
time in a strain, measuring single cell division rates without nuclear markers is useful.
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Figure 33 - Fine oscillations in cell size are related to cell cycle. A. Subtle oscillations in cell size are
measured through segmented images. The black curve is raw data, dark green is a mildly
smoothed version and the light green curve is an even smoother version. B. The black curve
represents the relative variation of the smoothed cell size (dark green curve in A) over the global
cell size trend (light green curve in A. C. We Extracted by hand bud emergence events (red arrow)
and nuclear separation events (blue arrow). In A. and B. these events are represented by red and
blue vertical dashed lines respectively. Example of cell #1 from 140214 (no osmotic stress)

When segmentation is accurate enough, we can observe subtle oscillations in cell size (see
black and dark green curves in Figure 33 A) which we found to be related to bud emergence® and

® This corresponds to the time at which a new bud is visible and marks the G1/S transition, see red arrow in
Figure 33 C.
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mitosis® (red and blue dotted vertical lines in Figure 33). Note that the example given here comes
from an experiment without osmotic shocks. Yet, the presented method can be used also when short
stresses are applied, provided data points corresponding to stress are removed.

In order to use this size effect to infer single cell division rate, we need to filter out both fast
variations coming from pure imaging and segmentation noise, and slow variation of cell size. To
remove fast variations while keeping variation due to cell cycle, we applied a simple iterative
averaging window smoothing®® twice which yields a signal, s,(t) (dark green curve Figure 33 A). To
obtain a more global trend in cell size we apply the same window smoothing 10 times, which yields

s10(t) (light green curve Figure 33 A). We then consider the fluctuation of s, (t) relative to s, (t), i.e.
52(t)=510(t)
510(t)
perform a Fourier transform to compute the power spectrum and retrieve the average division

(Figure 33 B). In order to extract frequency information from this relative size change, we

frequency67.

This approach has been also used on experiments in which repeated osmotic shocks were
applied (typically experiments form chapter Ill). Despite the fact that osmotic shocks lead to brutal
drops in cell size, this method was still able to infer single cell division rate. A graphical example is
given in supplementary materials and methods of the article in annex 6. In a data set featuring
osmotic shocks, this approach was manually validated on fifty cells yielding an average error
(compared to manual bud appearance based doubling rate®®) on the mean doubling rate of 12%.
Note also that the particular use of s,(t) and s1((t) here is not critical, using s;(t) or s;1(t) would
give similar results. These were simply determined by hand on a few examples. The filtering part of
this method could probably be improved, for example by using directly Gaussian filters with different
windows.

® we report times where nuclei divides, corresponding to G2/M transition observed with a nuclear marker. See
blue arrow in Figure 33 C.

% Here we use a (11 frames i.e.33 min) centered window with left and right padding. Therefore sy(t) is the
average of sy.(t-5), sn.1(t-4), ..., sna(t+5). Note that the iterative application of a simple smoothing window
converges toward the application of a Gaussian filter.

It would be possible to compute the average division time by simply taking maxima or minima of the
oscillation but this might be more sensitive to sampling time respective to the proposed method. To compute
the global division rate we compute the power averaged frequency for frequencies having a period between 60
and 400 min, conservatively including possible doubling times for yeast.

*® The precision of estimating division rate from bud emergence being itself limited by visibility of buds and
imaging frequency.
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4. Conclusions on: long term dynamic experiments and single cell
data

In this chapter, key experimental elements used in our study have been presented. In the
introduction chapter, a short review of measurement techniques applicable to the single-cell level in
yeast was proposed. This motivated the choice of microscopy as a main source of measurements for
its capability of long-term acquisition of single-cell longitudinal data. The use of custom microfluidic
chips allows improved imaging and homogeneous culture conditions along with a precise temporal
control of cellular environment, thanks to custom made hardware and software.

The crucial aspect of image analysis to retrieve information from long-term microscopy
experiments was stressed out. The initial step in image analysis is segmentation and tracking for
which we used Cell*, a new tool with superior performance. Our contribution to its development was
mentioned and several original image analysis methods which can be subsequently performed were
presented. These notably included the inference of genealogy in a cellular population using nuclear
markers as well as measures of growth in population and in single cells.

In the following chapters Il and IV, we will see how these single-cell measurements can help to
assess quantitatively cellular variability in the response to osmotic stress and provide some
characterization of the cellular context affecting osmo-induced gene expression and cellular
proliferation in particular.
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lll. Individuality in the transcriptional response

to osmotic stress

In this chapter we report our investigations of cellular non-genetic individuality in gene
expression. The work presented here is for a large part reproduced in an article currently under
review in PLoS Computational Biology and available in Annex 6. Here we are interested in lasting
differences between cells regarding their gene expression features. By features, we mean not only
the level of expression but rather parameters of gene expression dynamics at the single cell level.
Such parameters usually represent several biochemical processes within global rates (e.g.
transcription rate, translation rate, maturation rate etc.). These features are useful in describing gene
expression as a dynamic process so when we ask “When are genes expressed?” and “What matters in
gene expression?” and not only “How much genes are expressed?”. More precisely, we wonder to
what extent we can capture cell-to-cell variability with single-cell models of gene expression where
each cell has its specific behavior. An important question is also to what extent it is possible to
represent a population while taking into account cell-to-cell variability.

1. Modelling dynamics of gene expression at the single cell level

a. pSTL1 as a reporter of HOG transcriptional response

Here, we are interested in the dynamics of gene expression at the single cell-level in response
to osmotic stress. We will focus more precisely on the stable differences between cells regarding
gene expression dynamics. To measure gene expression induced by Hogl, we use a strain where the
STL1 gene (which normally encodes for a glycerol/H" symporter) was replaced by a yellow
fluorescent reporter.

STL1 is expressed specifically in hyper osmotic conditions

As it was presented in |.4.a, upon hyperosmotic stress, the MAPK Hog1 is phosphorylated and
quickly translocates into the nucleus where it alters the expression level of hundreds of genes. This
major remodeling of gene expression serves several purposes: Several genes are directly involved in
the response to osmotic stress specifically. Also, a large subset of osmo-induced genes provides a
rather general protection to stressful conditions (they are part of the ESR®) and code for chaperones,
or enzymes producing protecting molecules like trehalose. At last, a global repression of many genes
involved in protein synthesis, along with a global destabilization of mRNAs frees up resources (like
RNA Pol Il or ribosomes) for the synthesis of osmo-induced genes.

About 80% of osmo-responsive genes are Hogl dependent (62). Although all the molecular
details of how all these gene are affected by Hogl is not known’®, it is clear that Hogl affects many
gene in association with several co-factors such as the transcription activators Hotl, Smpl, Msnl,
Msn2, Msn4 and the transcription repressor Skol (see Figure 34). Each of these transcription factors

% The Environmental Stress Response is a set of genes activated in many different types of stress.
%1t should be reminded here that Hogl is known to affect chromatin remodeling factors such as the SAGA or
SWI/SNF complexes.
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(TF) has specific targets, for instance, genes of the ESR are targeted by Msn2/Msn4 and Msnl is
related to DNA replication stress. Hotl and Skol have less targets (~70) but these are much more
specific to osmotic stress (110). In fact, although the targets of these various TF acting with Hog1 can
sometimes overlap, these regulations will sometimes be effective in different conditions. For
example, STL1 which is induced by Hotl in exponential growth seems to be activated by Smp1 during
the stationary phase (111). Also, some targets of Msn2/Msn4 and Hot1/Skol overlap but when an
hyperosmotic stress is due to extracellular glucose, Msn2 and Msn4 are not activated (110).

STL1 is a standard reporter of the HOG pathway transcriptional response

STL1 belongs to the category of genes which are expressed specifically in hyper-osmotic stress
conditions. Its activation is mediated by Hot1 which also activates the expression of GPD1 (110).

Production of glycerol (which is the principal biocompatible osmolyte) is the main mechanism
for adaptation to hyperosmotic stress (i.e. recovery in size and water activity). Two pairs of paralog
enzymes, Gpd1/Gpd2 and Gppl/Gpp2 are essential for the synthesis of glycerol from common
metabolites and the genes GPD1, GPP1 and GPP2 are up-regulated under osmotic stress (112). It was
reported that Gpp1/Gpp2 is not rate limiting in glycerol synthesis (113) and therefore, the expression
of GPD1/GPD2 has a more direct impact on cell’s adaptation capability. GPD1 plays a major role
under aerobic conditions while GPD2 is required and produced in absence of oxygen (113). In
addition unlike GPD2, GPD1 is induced by Hog1.

Gpd1 plays a major role in specific adaptation to hyper osmolarity. Yet, although it is possible
to produce functional fusions of Gpdl with fluorescent proteins, such reporter imposes several
practical limitations. As glycerol production is necessary in normal conditions, Gpd1l is expressed
already at significant levels prior to any osmotic stress. Therefore, its expression is enhanced but not
conditioned to hyperosmotic stress which makes it an unspecific reporter of the HOG pathway. In
addition, when it is not used, this enzyme accumulates in peroxisomes which makes it difficult to
quantify its level properly. On the other hand, STL1 is among the most strongly induced genes upon
osmotic stress. Also, in contrast with the central role of Gpdl in osmotic stress response, STL1
encodes a membrane transporter which can actively import glycerol from the external medium.
Therefore deleting STL1 has very limited consequences on cells survival to osmotic stress and in our
case, ensures some increased independence between cells regarding adaptation (since cells cannot
import glycerol which could have been produced by their neighbors).

For all these reasons, STL1 is one of the most popular reporters of the HOG pathway’s
transcriptional activity and accordingly, experimental results models and parameters about STL1 are
readily available in the literature.
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Figure 34 - Representation of the HOG Pathway including osmosensors, signaling cascade, major transcription factors
working in association with Hogl and the main feedback mechanism due to glycerol production. Although it is not
considered to be a major feedback mechanism, the possible import of extracellular glycerol by the Stll1 transporter is also
represented. At last, the action of phosphatases on phosphorylated Hogl is not represented while it is essential for
perfect adaptation.

Pulses of osmolarity avoid the effects of negative feedback coming from adaptation

It is clear that the transcriptional response is not mandatory for cells to accumulate glycerol as
glycerol producing enzymes are constitutively expressed and their activity is increased under
hyperosmotic conditions regardless of transcription (112). The transcriptional response ensures a
protection from possible harmful effects of osmotic stress and helps adapting to very severe
osmolarity changes. Also, it can prepare the cell for subsequent shocks. When applying medium
stress (1M sorbitol), cells will adapt within 15 to 30 min. Once adapted, Hogl is dephosphorylated
and leaves the nucleus which ends its transcriptional effect. In this respect, the cytosolic activity of
the HOG pathway acts as a negative feedback for its transcriptional activity. When interested in
transcriptional dynamics, this negative feedback through adaptation makes it difficult to quantify
properly gene expression features. Indeed, the actual output would reflect not only gene expression
but also adaptation through glycerol production.

In order to disentangle transcriptional features with adaptation, we use the same trick as in
(86). By applying 8 min pulses of hyper osmotic medium (1M sorbitol) we stay in the region where
adaptation has not progressed enough to modify Hogl nuclear localization. This is illustrated in
Figure 35 where we show Hog1 nuclear localization in response to a 1M sorbitol upshift’’. Performing

’* Data shown in Figure 35 corresponds to experiment 250915. We used a yPH15 strain having a nuclear marker
(HTB2-mCherry) and a fusion of Hog1-GFP in a microfluidic device. We flow SC medium with 2% glucose and at
time 0 the same medium with 1M sorbitol in addition. ~30 cells were used and imaged every 2 min to compute
the curves. The relative enrichment corresponds to the relative difference between nuclear average GFP
fluorescence and cytoplasmic average GFP fluorescence.
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an 8 min shock avoids adaptation which is visible in sustained stress and which leads to Hogl nuclear
export (See dark blue bar in Figure 35). In addition, we impose pulses to be separated by at least 30
min’?in order to make sure the HOG pathway has been completely deactivated before a new
stimulation is made’®. In fact, the typical period with which Hogl can shuttle in and out from the
nucleus while faithfully following external osmolarity and displaying complete deactivation is larger
than 16 min (55). By stimulating the HOG pathway shortly and repeatedly we can experimentally
enhance the signal corresponding to the transcriptional response while neglecting adaptation
through glycerol production.
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Figure 35 - Average and standard deviation of Hogl nuclear enrichment
following an osmotic upshift applied at t=0 (red bar). The dark blue bar
indicates the 8 min period used in our experiments. The light blue bar
indicates the minimum resting time between consecutive stimulations. See
footnote 71 for experimental details.

By stimulating the HOG pathway in this manner, and using pSTL1 expression as a reporter of
gene expression in response to osmotic stress, we can in fact simplify the global view of the HOG
pathway given Figure 34 to keep only the components which should matter in our experiments as
represented in Figure 36. By designing dynamic experiment, we can simplify the HOG signaling
cascade by removing (or at least neglecting) the feedback coming from adaptation. As it will be
exposed in subsection IIl.2.a, this will allow us to abstract out all the HOG signaling cascade with a
very simple, deterministic model.

72 j.e. we have 30 min between the start of two pulses, the minimal period of normal osmolarity is therefore 22

min.

73 It should be noted that switching cells back to normal osmolarity before complete adaptation leads to a very
rapid cell size and turgor pressure restoration. Accordingly, The HOG pathway will shut down rapidly. In
addition, any newly produced glycerol in the cytoplasm will leak out of the cells rapidly to ensure osmotic
balance. Therefore, this resting period is a precaution rather than a hard bound.
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Figure 36 - Subset of the HOG pathway which is relevant to the presented study. From the more complete picture of the
HOG pathway given in Figure 34, we here show the effective impact of using only short pulses of osmolarity along with
replacing the STL1 endogenous gene with a yECitrine fluorescent protein gene.

Variability in pSTL1 expression

Cellular systems and gene expression in particular are subject to distinct flavors of variability.
In Figure 37 we show yeast cells (yPH91) expressing yECitrine under the control of the pSTL1
promoter. We witness a large amount of cell-to-cell variability.

Figure 37 - Color enhanced microscopy image of cells bearing an
pSTL1-yECitrine construct (yPH91). Image (100x) taken from
experiment 040813, 30 min after their first 8 min stress pulse (1M
sorbitol). Scale bar is 5 um.
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A common distinction when it comes to gene expression variability is the aforementioned
difference between intrinsic and extrinsic noise’®. In the case of brief pulses of hyperosmotic stress
(unless otherwise stated, we always mean as induced by 1M sorbitol), fluorescence levels for pSTL1-
yECitrine is shown in Figure 38. We can see that there is an important cell-to-cell variability in gene
expression as depicted by the grey area. In addition, when looking at single cell traces, we can also
notice that for a given cell, the response to individual pulses can be very different. This random
cellular response for distant shocks is reminiscent of intrinsic noise at the STL1 promoter.
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Figure 38 - pSTL1-yECitrine fluorescence in response to spaced 8 min osmotic pulses (red line). Solid black line is the
mean value; grey shaded area represents one standard deviation in each direction. Colored solid lines are single cells
fluorescence. Experiment 221012.

b. Representing variability in pSTL1 gene expression with stochastic models

Within systems biology an important modelling effort has been dedicated to designing,
simulating and estimating (i.e. fitting) stochastic models of gene expression. A general and powerful
mathematical formalism allowing formulating chemical reactions as stochastic processes is the
famous Chemical Master Equation (CME’®). In such formalism, the exact number of molecules of
each reactant is accounted for as an integer value and chemical reactions are defined in a
probabilistic manner. In practice it means defining an equation for the time evolution of the
probability of the system to be in a given state’® x at a given moment t knowing its initial state x, at
to. The equation giving the time evolution of P(x,t/xst;) depends on the stoichiometry of the

* We use here the typical terminology where intrinsic refers to a gene or promoter and not to a cell. See I.1 for
a detailed discussion.

A rigorous derivation from chemical mechanics is provided in the landmark paper from Gillespie (167).

’® Here, the state of the system is the precise number of each type of molecule involved in any reaction.
Therefore, it is usually an integer-valued vector x.
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reactions along with how the elementary probabilities of each reaction is modelled’”’. Here we
present different studies where this approach was employed on the system we are interested in.

Stochasticity in Hogl-induced gene expression and in pSTL1 in particular was mainly studied
experimentally by Pelet et al. in (88), where it was shown that for very mild stress (0.1M NacCl, so
around 0.2M sorbitol) stochasticity in gene expression could lead to bi-modal distribution of
expression (some cells expressing pSTL1 and others not). In addition, a dual reporter assay found
intrinsic noise to be dominant for pSTL1 at this mild level of induction and still contributing to around
50% of total noise at higher levels (0.4M NaCl). It should be noted that this stochastic behavior was
not due to differences in HOG signaling (as quantified by Hogl nuclear enrichment in time). Instead,
ChIP’® and mutant experiments were rather indicating that pSTL1 was undergoing remodeling of its
chromatin state and that this process, rather than binding events from Hogl and Hotl, was
responsible for the noisy expression pattern (i.e. pSTL1 has a bursty type of noise).
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Figure 39 - Sketch of the stochastic model representing pSTL1
stochastic behavior from (88).

From this set of experimental results, the authors proposed a stochastic model depicted in
Figure 39 which could capture some experimental features. As we can see, this model abstracts out
signaling and adaptation and represents in a more detailed fashion processes acting at the promoter
level and leading to transcription. In this model, all cells were considered to have the same dynamical
parameters although reactions being stochastic, their state originated from different realization of
this same stochastic process. Despite the fact that this model could account for several experimental
findings qualitatively, it relied on many parameters which cannot be measured and which were set

"7 Most of the time elementary reactions are modeled as exponential jumping times. The propensity for a given
reaction increase linearly with reactant abundance for monoreactant reactions. and as the product of
reactants’ abundances for a multi reactant reactions. Under the classic assumption than reaction rates do not
depend on time, the CME defines a Markovian process. Relaxation of this assumption can leads to semi-
Markovian processes it rates are time dependent.

’® Chromatin Immuno-Precipitation experiments allow to measure the proteins bound to a specific portion of
DNA.
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by hand using both reasonable assumptions and probably some trial and error. It can be expected
that this model would display a significant amount of non-identifiability if its parameters were
estimated from data alone. In this respect, this model was more useful in demonstrating that the
hypothesized mechanisms can indeed produce part of the observed behavior (e.g. bi-modality at low
induction) rather than in proposing a quantitatively predictive tool.
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Figure 40 - Schematic representation of a basic random
telegraph model of gene expression (top) and of the
generalized random telegraph model (bottom) selected
to represent STL1 expression in (89). Note that
transition rates can depend on Hogl nuclear abundance
Figure from (89).

Several subsequent studies tried to propose stochastic models which could be inferred from
data in order to be more predictive quantitatively speaking. In (89), single cell data of STL1 mRNAs
was acquired by FISH. This allowed the measurement of distributions of mMRNA abundance within a
cell population at different time points. The authors took a more abstract view to model stochastic
gene expression by considering a generalized random telegraph model (GRTM)79 with various
possible states for the pSTL1 promoter. They used a cross-validation approach to conduct model
selection. This allowed selecting a GRTM of a specific size by operating a trade-off between improved
fit (which is naturally provided with larger models) and minimizing over-fitting (which leads to non-
identifiable parameters and lowered prediction capability). This computationally extensive method
indicated that the four states GRTM depicted in Figure 40 (bottom) provided the best compromise. In
addition, a model selection refinement determined that having Hogl nuclear abundance impacting
the transition k,; alone was sufficient, yielding a model with 13 parameters. Therefore, this model
has a fairly high number of parameters which may lead to non-identifiability issues. Arguably, since
fitting was performed on the full population distribution of mRNA abundances and at several time
points, the data used for inference is way richer than simply mean and variance in the population.
Nevertheless, consideration of experimental replicability and measurement errors make it difficult to
assess fully experimental distributions robustness.

”® The random telegraph model (RTM) is a classic model of gene expression in bursts. In this model, the gene
can be in several states (OFF and ON in basic RTM, see Figure 40 top) which have defined transition
propensities which in this context depend upon Hogl nuclear abundance and each state can produce mRNA
with different propensities (In basic RTM, the OFF state does not allow mRNA production while the ON state
does). In its generalized form, more than two states are possible (but transition is sequential, i.e. transitions are
only possible between states | and i+1) and one or more of them can produce mRNAs with possibly different
rates.
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In both models for STL1 expression presented until now, all cells have always been considered
as different realizations of a same stochastic process. In addition, the total variability in transcription
was accounted by stochastic effects at the promoter level alone. Nevertheless, both in theory and as
measured in (88), variability in STL1 abundance should include both an intrinsic and an extrinsic noise
component. Building stochastic models where every cell has the same parameters usually amounts
to neglecting extrinsic variability®®. When inferring parameter values by fitting total variability, it
somehow forces a stochastic model to represent what it is not supposed to capture.
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Figure 41 - Schematic representation of the stochastic model of gene
expression of pSTL1 including extrinsic variability (elements in blue can
vary between cells). Figure from (87).

In (87), the authors took this consideration into account and proposed a stochastic model of
gene expression for pSTL1 which included both intrinsic variability and extrinsic variability as
depicted in Figure 41. To some extent, it resembles a GRTM with three promoter states in which,
among 12 primary® parameters, two were able to have different values from one cell to another and
are depicted in blue in the figure. From a theoretical perspective, this framework is therefore much
more satisfying than those presented before. Indeed, it allows modelling both intrinsic and extrinsic
noise components in a rigorous manner. Yet, the model was estimated on distributions of
fluorescence obtained by flow cytometry, therefore the dataset did not include longitudinal
information about single cells trajectory. In consequence, the repartition of intrinsic to extrinsic noise
along with the position of extrinsic variability along the typical stochastic model cannot be validated.

% Unless all the molecules involved in gene expression such as RNA Pol Il, free ribosomes etc. are also modelled

as variables of this stochastic model, which would be intractable from a computational point of view.

81 . . . .
Since two primary parameters can vary, the real number of free parameters to be estimated was 15 since

variance of the extrinsic parameters and their covariance also needed to be estimated from data.
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c. ldentifiability of extrinsic and stochastic models of gene expression at the single-
cell level

In the examples presented in the previous subsection, the first model was parametrized by
hand, using reasonable assumption and trial and error so as to represent data at least qualitatively.
Such hand-made parametrization is usually not predictive at all and cannot tell more than this
hypothetical construction can produce this typical behavior and as such is more of a reasoning tool.
The other two examples used parameter inference in order to extract parameters values from data.
This in turns not only yields more predictive models, but can also answer to some extent to the
question “what matters in this system?” which is central in systems biology as presented in I.3. In
fact, performing parameter estimation requires dealing at some point with the issue of the
identifiability of the parameters of a model given some data. A model is identifiable if all of its free
parameters®’ can be defined completely and univocally from data alone. Usually, this is not the case
and only confidence intervals on parameter values are accessible. In some cases, because of the
nature of data itself or because of its quantity or quality, parameters will be non-identifiable®*. This
means that there can be an infinite number of combinations of parameter values which, although
much different, will produce indistinguishable outputs given data precision. ldentifiability is
challenging, but it also indicates when modeling becomes too precise for the sole description of a
given dataset.

Identifiability of stochastic models and single-cell data

Although all models are usually written at the single cell level (i.e. they aim at representing
what happens within a cell), many are in practice used on population level data only. For example, if
we consider the stochastic models presented in the previous section, we need to consider that what
was measured and compared are dynamic distributions coming from populations. When it comes to
genuine temporal single cell data, as provided by time-lapse microscopy, the direct application of
stochastic models leads to difficult estimation problems. This is because within a stochastic
framework, a single cell trace is only one possible outcome among many. Given that gene expression,
like most biological processes, is not ergodic® (114, 115), estimating parameters of stochastic
processes absolutely requires having several realizations of such process. Yet, in practice, a cell only
features a single realization® and therefore renders single-cell parameter estimation much more
problematic than it is the case for population data.

8 Here a free parameter is a parameter which is to be estimated from data. It is possible to build a model and
assign by hand some values while estimating others. Yet, fits and predictions are as good as the value set by
hand which is rarely very accurate.

® The concept of non-identifiability is crucial, yet regularly overlooked. It is related to the idea of overfitting
which is more common. Its precise discussion is outside the scope of this thesis but readers can refer to (166)
for a graphical introduction. Also, supplementary information of our paper in Annex 6 includes a non-
identifiability analysis applied to the model of gene expression we used.

® From a statistical point of view, an ergodic process is stationary and when observed for long enough in one
system (particle, cell, gene etc.) its time distribution of states matches that of a sufficiently large population of
such independent systems. | our case, a single cell would be ergodic if the distribution of its fluorescence level
in time would produce the same distribution than a span shot of fluorescence in a population. Yet, because of
extrinsic variability which may only change on long time scales, this is not the case.

|t can be argued that using dual or multiple reporters could in fact give several independent realizations per
cell. Yet, this would impose some additional experimental difficulties and more importantly, may show
systematic biases between the different reporter (because of the importance of the genetic context which
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This pinpoints an important aspect for modelling variability. Identifiability is related to the
model structure (i.e. its mathematical formulation), the parameters to be estimated and qualitative
and quantitative aspects of data. In this respect, longitudinal single-cell data as obtained by time-
lapse microscopy is qualitatively different from data obtained at the population level as provided by
flow cytometry of FISH. As a consequence, identifiability of a given model is expected to differ
significantly whether it is used on longitudinal single-cell data or on population-level single-cell data.

This should motivate us in making a clear distinction between models that are designed and
identified at the single-cell level, and those which are designed at the single-cell level but used on
population data only. In this respect, the approach we present in this chapter allows to distinguish
both clearly and to define properly how they are related.

Besides mathematical clarity, this overlooked distinction is crucial as biology becomes more
guantitative. Building models at the single-cell level and estimating parameters on population data is
not an issue per se. The problem is when interpreting a parameter value as the value (or the average
value) for single cells. Actually, parameter values estimated at the population level are not directly
applicable to all the single cells composing the experimental data. Rather, they define implicitly some
form of average or virtual cell and virtual populations composed of identical cells.

Combining extrinsic and intrinsic variability

In the last example of the previous subsection (from (87)), authors presented a model
including both intrinsic and extrinsic variability. Although they took care in making their model
identifiable®®, no rigorous model selection was proposed regarding which parameters in the model
would be subject to extrinsic variability. In fact, model selection can itself be a non-identifiable task,
meaning that from data alone we cannot always choose among several model structures with
different parameters. Although the biology of the HOG pathway and STL1 expression are quite
documented, there is not any information which ensures the proposed sources of extrinsic variability
are the major ones at play.

In this study, we are interested in cellular non-genetic identity which falls clearly under the
extrinsic label. Therefore, we wanted to impose as little constrain as possible regarding where
variability could be present (while still ensuring our model is identifiable). Also, it was important to
be able to actually estimate single-cell parameters which represent cellular identity and to test their
biological relevance. If we had used a framework combining intrinsic and extrinsic variability, the
estimation of single-cell parameters from single-cell data not only would have presented the two
types of difficult identifiability issues mentioned, but also the blending of both. In other words, given
a single cell trajectory, many combinations of specific single-cell identities (or context) and specific
possible realizations from a single identity could yield a equally-plausible fit to our data.

Witnessing that validating a model encompassing both types of variability against data is still
very difficult given current experimental possibilities (116), we propose to explore a different

would either be different for all reporter, either artificial if reporters were placed sequentially along the
genome). Although challenging, it is nevertheless a promising direction for future investigations.

% For example, in their model, ribosomes levels and translation rates could not be estimated separately
because all that matters for the data they have is the effective translation rate (i.e., the product of translation
rate per ribosome and abundance of free ribosome).
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approach in which variability is represented only as stable differences between cells (i.e. extrinsic
variability). Accordingly, we place ourselves in an experimental situation where intrinsic variability is
mild and we neglect it in our modelling by using deterministic (ODE) models of single-cell behavior.
This still leaves room for a challenging estimation problem as it will be discussed in the remainder of
this chapter. Overall, our simplifying assumption is a necessary first step towards a congruent
representation of the total variability in gene expression, and can be readily applied to other
biological processes in which extrinsic variability dominates or when the focus lies on cellular
identity.
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2. Mixed effects models of pSTL1 expression

a. Building a single-cell model of pSTL1 expression including cell-to-cell variability

Here, we propose to represent lasting differences in single-cell gene expression using single-
cell parameter values. Basically, every cell in the population is represented by the same model of
gene expression but the parameters of this common model can take different values for different
cells. Nevertheless, for both practical and empirical reasons, all parameters of this common model
are not necessarily variable across cells. Therefore, it should be kept in mind that some parameters
can vary in the population while some are common to all cells. In addition, as it will be described in
the next subsection, not all parameters are estimated from data. In this subsection we will present
the common model and explain the assumptions it is built upon.

In subsection Ill.1.b, we presented several models which were proposed to represent pSTL1
expression. In particular, the model from (87) served as starting point upon which we performed
many iterations to obtain the model we present here. As it was discussed in the previous subsection,
we decided to represent single cell gene expression using deterministic models (ODEs). Since the
original model in (87) is stochastic, we started by using a deterministic version of it¥. Nevertheless,
this initial model had too many state variables and parameters to be correctly estimated from data at
the single-cell level. In addition, as it was stated in the previous paragraph, we seek to enforce the
lesser constrains as possible on which parameters can differ between cells. This increases the
effective number of parameters to estimate (as it will be explained in the next subsection) and
therefore raises identifiability issues. Therefore, we iteratively simplified the model until the point it
was identifiable enough while keeping most parameters variable in the population.

The transcriptional response of individual cells is described mainly by two state variables.
Denoting with m and p the cellular concentration of mRNA and fluorescent protein, respectively, we
have the following ODE system which represents transcription and translation.

m(t) = kpu(t) — gmm(t)
(3)
p(t) = k,m(t) — gpp(t)

The production and decay rates are denoted k;, and g, for the mRNA, and k,, and g, for the
protein, respectively. We assume that these are the parameters which can differ between cells.
Although each of these parameters represents the overall contribution of several biological
processes, it is possible to propose biological interpretations of why such parameters would differ
from one cell to another.

¥ From stochastic models expressed in terms of Chemical Master Equation, it is possible to derive ODEs for all
the moments (mean, variance etc.). Yet, in general, this system of ODE is not in a closed from as equations for
the moment of order N typically include the moment of order N+1. Using a moment closure approach (170), we
use assumptions to make the system closed form. Here variances and any higher moments were set to zero.
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Dynamic experimental stimulation of gene expression is encoded by the input function u(t)
which represents the whole HOG signaling cascade and more precisely the phosphorylation and
nuclear accumulation of phosphorylated Hogl. This abstract representation is represented in Figure
42. We control the valve switching between isotonic and hyperosmotic media and call u,(t) the
valve status. From u,(t) we compute the effective osmolarity in the microfluidic chambers: u.(t).
The applied transformation essentially represents the delay for the fluid to travel from the valve to
the chambers along with the mild mixing during this travel along with diffusion limited washing of
osmotic medium. At last, u.(t) is the input for a first order kinetic representation of the HOG
signaling cascade which can be seen as related to Hogl activity and nuclear localization and is
represented by u(t). See Figure 42 A for a schematic representation and Figure 42 B for the typical
time course of u,(t), u.(t) leading to u(t). See Text S1 and Table S1 of Annex 6 for details and

reference on this aspect of our model.
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Figure 42 — Abstracted representation of the HOG signaling cascade in the input function u(t). A.
Schematic representation of the transformation from u,,(t), the effective input we impose, to u(t),
the input term in our gene expression model. B. Corresponding time course for a standard pulse of 8

min.

It can be noted that we assume that all cells have the same signaling dynamics as the input
function u(t) will be the same for all cells. This is motivated by the fact Hogl nuclear localization is
only mildly variable within the population (see Figure 35). In addition, the absolute value of u(t) is
somehow arbitrary and what is relevant to a single cell is k,,u(t) which can indeed be different for

every cell.

The model presented so far cannot be compared to experimental data yet. To relate
fluorescence measurements f(t) to the protein concentrations p(t), we account for protein folding
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and maturation time using a delay 7. In practice, this captures the fact that measurable fluorescence
increase will be visible only 40 min after a shock. To faithfully account for the fact that while a
protein matures, it is still diluted, we use equation (4) to relate p(t) to f(t). See Text S1 and Table S1
of Annex 6 for details.

f@) =e 9p(t —1) (4)

Given empirical observation in our data and the fact that fluorescent protein maturation rates
were reported to display low (~10%) cell-to-cell variability (117) the protein maturation delay 7 is
also assumed to be the same for all cells in an experiment but its precise value will still be estimated
from data.

At last, in order to estimate parameter values from data using likelihood, we need to asses
measurement errors (i.e. the expectable deviation of the model from data). To this purpose, we
assumed that multiplicative and additive white Gaussian measurement noises were affecting
fluorescence measurements, whose strength is the same for all cells (see Text S1 and Table S1 of
Annex 6 for details).

b. Representing extrinsic variability with using Mixed-effects models

In the previous subsection, we presented a common gene expression model which included
parameters which value could vary from one cell to another. In this section, we will present how we
can relate single- cell models to a model of the whole population using Mixed-effects models. In fact,
as every single-cell model can have different parameter values, a straightforward model for a
population of cells consists in a collection of as many models as there are cells. Yet, if an experiment
has N cells, and considering that 4 parameters can differ at the single-cell level, such representation
of the whole population would have roughly 4N effective parameters. This is obviously problematic
for several reasons. We expect that for large enough populations, the overall behavior will not
depend on each and every cell or on the precise number of cells. Also, by having so many parameters
describing an overall population we can hardly determine what is important for the population
behavior. One simple way to propose a more concise representation of the population behavior is to
further assume that single-cell parameter values follow a given distribution across the population.
Basically, this assumption forces variability to be constrained for the purpose of population
representation to some class of multidimensional distribution.
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Figure 43 - Visual representation of the Mixed-effects approach employed here. A. Single cell fluorescence (thin blue
lines) in response to several pulses of hyperosmotic medium (black bars). Median behavior is shown in dark blue. B. In
ME, each cell has its own set of parameters value as represented in the small insert at the bottom right. Here we
represent two out of four parameters which vary across the population. In the scatter plot, each dot is a cell and we
provide the marginal distribution for these parameters.

Mixed-effects (ME) models are a class of statistical models introduced to describe the
response of different individuals within a population to known stimuli. In our context, we consider
that Kk, gm, kp, and g, vary within the population as represented in Figure 43. We assumed that
these parameters were log-normally distributed across the population: 8 = (kp,, gm, kp, gp ) With
In (6) ~N(u,[])), where u and [] correspond to a vector of means and a covariance matrix,
respectively (see marginal distributions for k,,, and g, in Figure 43 B). This assumption ensures the
population is represented in a much more concise and general manner than what would be possible
by representing it as the sum of every cell observed in an experiment. In this framework, each cell
has a set of parameters (0; for a cell i), and the population is described by a set of meta-parameters
(1 and Z) which describe the distribution of parameters across all cells®®

c. Estimating population and single-cell models and validating them

As it was described, in a ME approach we can derive models at both the population and the
single-cell scale which are related as single-cell parameter values form a distribution over the
population. In this subsection, we are interested on how we can estimate from data, the parameters
values for single cells and the parameter distributions for the population. Since the model was
written for single-cell data, it is possible to fit each individual fluorescence trace in order to obtain
single-cell parameters. The question remains on how we can estimate the population distribution of
parameters and how single-cell fits should be conducted.

Concerning the population model, we are looking for a multidimensional distribution defined
by its center of mass (i.e. a vector of mean values) and its spread (i.e., a covariance matrix) across the

® Here we omit parameters which are common to all cells such as 7 for simplicity since they are the same for
each cell and for the population.
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population. A simple, intuitive manner to tackle this problem is to search for the different parameter
values that best describe each individual cell (using single cell likelihood), and then compute the
statistics (mean and covariance) of the underlying distribution from the set of single-cell parameter
estimates. We refer to this method as the ‘naive approach’ since it is the natural starting point and
that it is only by testing it that its limitations appear.

An alternative is to conduct the estimation procedure the other way around and start by
estimating the population distribution. To do so we use a state-of-the-art algorithm for the
identification of ME models: the Stochastic Approximation Expectation Maximization (SAEM)
algorithm. SAEM is a stochastic approximation version of the well-known expectation—maximization
algorithm and has been developed for the inference of population models in presence of limited
available information (118, 119) Notably SAEM is the reference approach in
pharmacokinetics/pharmacodynamics studies (120, 121). However, it has not yet been applied to
time-lapse single-cell data. The SAEM algorithm directly searches for multivariate distributions by
alternating (i) an estimation of (an approximation of) the likelihood of the parameters and individual
observations given the current best estimate of the parameter distribution in the population and (ii)
an update of the current estimate of the parameter distribution. In a second step, a posteriori
estimates of the individual cell parameters are obtained from the inferred parameter distribution
and individual data (maximum a posteriori estimate, MAP). This way, the fact that all parameters
share (hidden) traits of the common population is explicitly taken into account. The naive and
proposed approaches are graphically represented in Figure 44.
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Figure 44 — Schematic representation of the statistical inference methods for single-cell
and population parameter estimation.
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To summarize, in the naive approach, optimization is applied to seek -for each cell- parameter
values fitting the individual behavior of the cell via residual minimization® (Figure 44 top, step 1). The
distribution, describing all of the estimated parameter values, is empirically deduced afterwards
(Figure 44 top, step 2). In the proposed method, the SAEM tool is used to infer directly a distribution
that explains the set of individual behaviors (Figure 44 bottom, step 1). Parameter values for single
cells are then estimated based on the particular behavior of the cell and the inferred distribution for
the population®, using maximum a posteriori estimation (Figure 44 bottom, step 2). More details are
given in Text S1 from Annex 6.

Fit and validation

Both the naive approach and the SAEM-based estimation method were applied to an
experimental data set comprising more than 300 cells observed during several hours. Despite the
significant diversity in the behavior of individual cells (Figure 43 A), both the naive approach and the
SAEM estimation method were able to find single-cell parameters that fitted well®! the set of
observed single-cell behaviors (Figure 45 A and B).

A SAEM B Naive

3
x 10

of observed cells

0 2 4 6 8 10
Time (h) Time (h)

Figure 45 - Fit performance of single-cell models estimated with the naive or SAEM method. Envelopes represent 95% of
the fluorescent traces and dashed lines represent the median. Green envelopes are simulations for each cell from time 0
to t=10h based on single cell fit results. Blue envelope is data. A Simulated behavior obtained when using the parameters
of each observed cell in the dataset (325 cells) inferred with the SAEM approach. B. Simulated behavior obtained when
using the parameters of each observed cell in the dataset (325 cells) inferred with the naive approach.

We then evaluated the capability of the obtained parameter distributions (i.e. population
meta-parameters) to actually describe the behavior of the cell population (mean and spread). To do
so, the parameter distributions obtained using the naive and the SAEM approaches were randomly
sampled, thus creating two different virtual ‘cell populations’ for which the corresponding sets of
behaviors were computed from our model of gene expression. The SAEM-inferred parameter

% Given the error model is Gaussian at each time step, estimation of parameters by minimizing residuals (i.e.
the mean squared error) or maximizing the likelihood is equivalent.

% This is done in practice by using the population distribution as a prior for parameter values.

Tt may be surprising to see that the naive method yields slightly larger envelopes than SAEM, given than it
has much more flexibility as no prior is enforced on single cell parameters. Yet, as some cells used in the
experiment are not born yet at time 0, we see that the naive method attributes parameters to these young
cells which produce less realistic simulations at early time points. On the other hand, SAEM does a better job as
parameter prior includes information of early time points. When compared only on the data points were cells
exist, naive and SAEM give a relative error of 8.6% and 8.3% respectively which show they perform equally
good and in agreement with the assumed measurement errors.
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distribution accurately reproduced the observed behavior of the real cell population (Figure 46 A)
whereas the naive approach failed to do so (Figure 46 B). Therefore, although both approaches were
able to identify a set of single-cell parameters that reproduced well the behaviors of observed cells,
only the SAEM-based method was able to infer a parameter distribution at the population level
which is consistent with the observed heterogeneity in gene expression.

A Sampled cells B \ Sampled cells
8x 103 (SAEM) 16 X10 (Na|ve)
i =) 15"y, .
' A e /2~ {1
Distribution of 8; 4 joF ‘\,.\ 7/ 8
A 7 .
_ L 2 A 4 i
e / c
X ;’\)(‘- U 1 Ilfl,lllll LA a -
QM 0 ORI L ¢ e
0 2 4 6 8 10 0 2 4 6 8 10

Figure 46 - Fit performance of population models estimated with the naive or SAEM-based method. Envelopes represent
95% of the fluorescent traces and dashed lines represent the median. Blue envelope is data, pink envelope is population
simulation. A. Simulated behavior of 10,000 cells when resampling the population joint distribution inferred with SAEM.
B. Simulated behavior of 10,000 cells when resampling the population joint distribution inferred with the naive
approach.

To investigate the causes of the marked differences between the predictive power of the ME
models inferred using either the naive approach or the SAEM-based method, we compared the
corresponding parameter distributions. In both cases, the mean values of the parameters were
comparable and within the expected ranges (see Table S1 for parameter values and Text S1 for
literature values in Annex 6). However, the distribution obtained with the SAEM algorithm was
visually more compact and structured as visible on a 2D projection in Figure 47 A. This was confirmed
using two metrics to quantify compactness and structure: SAEM vyielded distribution with a smaller
volume®® in the parameter space, (see “parameter distribution spread” in Figure 47 B); along with
higher cross-correlations on average®® (see “parameter distribution structure” in Figure 47 B).

%2 The volume of parameter distributions is computed as the volume in parameter space of the 95%-confidence
ellipsoid associated with the covariance matrix. This yields a measure of the typical volume of parameter space
occupied by the parameter distribution, and therefore, quantifies the spread of the parameter distributions

% Structure in the parameter distribution is quantified using the average of the coefficients of the variation
matrix (i.e. of the off-diagonal terms cov;;/(u; u;)) between the parameters of the model.
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Figure 47 - The distribution that better describes the entire population is more compact and more structured. A. 2D plot
describing the distribution of the (logarithm of) single-cell parameters for two parameters (insert: same data shown in
natural scale). The ellipses represent the region in which 50% of the parameters are distributed. B. Two metrics were
computed to quantify the difference in the structure of the parameter distributions at a more global level. See text for
details.

This strongly suggested that the structure of the parameter distribution is essential in order to
capture the population behavior. Both the individual statistics of each parameter, and their
covariance, describing mutual relationships, contain essential information to properly account for the
observed cell-cell variability. And indeed, when using a parameter distribution with the same
individual parameter statistics (mean and variance) as the distribution inferred using SAEM but with
null cross-correlations (i.e. using the marginal distributions), the model lost its capability to represent
the behavior of the population (compare Figure 46 A and Figure 48).
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Figure 48 - Impact of population parameter distribution structure. By removing the
covariation information from the SAEM inferred parameter distribution, the fit quality is
totally lost which stresses the importance of the parameter distribution structure.
Envelopes represent 95% of fluorescence traces and dashed lines are median. Blue
envelope Is data and the pink envelope simulation of 10 000 cells.
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Our understanding is that in the naive approach, all cells are fitted individually and are
subsequently casted into a multidimensional distribution. In contrast, SAEM allows finding equally
good single-cell parameters while favoring a compact multidimensional representation of the overall
population. The difference in performance between these two approaches is rooted in the fact that
even with a simple model of gene expression the information contained in a single trajectory is too
scarce to constrain the inferred parameter values in a satisfactory way. Using the population
distribution as a prior for single cell fits, we actually allow each single-cell fit to use information about
the overall population, which ensures coherence between the representation of the population by
distributions and the representation of single cells with specific parameter values. Having
demonstrated that the SAEM-based identification approach captures the behavior of the cell
population, from here on we focus only on the results obtained using this method.

In addition to the fits presented in this subsection, we performed several tests about the
prediction capability of the inferred models. For the population model, we tested the prediction of a
different experiment or of the same experiment when learning with a shorter time horizon. Also, we
tested the prediction capabilities with a shorter horizon for single cells. At last, we investigated the
robustness of this approach as the number of single cell traces is reduced and found that decent
population parameter distribution could be obtained with as few as 36 cells. We refer to Annex 6 for
details.

Identifiability in single cell and mixed effects models

Another important consideration for parameter estimation in the case of ME models, and in
particular when using SAEM is the flexibility in the status of each parameter regarding estimation. As
it was mentioned, some parameters can be fixed for all cells from the start (such as those underlying
the definition of the input function u(t)), other parameters are equal for all cells but can still be
estimated from data (these are called fixed effects which include here T and the noise model
parameters), and at last, some parameters are variable across the cell population and are estimated
from data (these are called mixed effects or random effects).

A non-identifiability analysis of our model revealed that the parameters k,, and k,, were
structurally non-identifiable at the single cell level (see Annex 6 TextS3). This means that from a
single-cell estimation perspective, only the product of these parameters is observable from the
dynamics of the fluorescence. Therefore, we define ky,, = ki, kp, which will be in fact the parameter

which is estimated® for all the following results which concern single-cell parameter values.

Nevertheless, it is non-trivial to assess what are the consequences in terms of non-
identifiability for the population model. This is because as it was stated, the population model is
actually different from the single-cell model, although derived from it. For the population, k, and k,,
not only show up in the vector of means (in logspace) i, but also in the covariance matrix Z with
variance and covariance terms. Although a conservative reflex would push towards fixing all
population parameters related to one of the non-identifiable ones, we considered that it was indeed

* An equivalent and practical way to do so is to fix one of these parameters to an arbitrary value and to
estimate only the other.
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possible that having both parameters varying may result in a different identifiability perspective®.
Therefore, we decided only to fix the component corresponding to k, in u but to leave its variance
and covariance with other parameters for estimation from data. This corresponds somehow to a
fixed, mixed effect and was carried in all the results concerning the population model presented
previously.

Another sanity check which should be carried when using ME has to do with shrinkage. As it
was stated, using SAEM we first compute a distribution of parameters for the overall population of
cells and we subsequently attribute to each cell parameter values by MAP using the population
parameter distribution as a prior. Shrinkage will appear if overall, the single cell parameters do not
repopulate the distribution which was inferred at the population level. This is not the case here as
visible on Figure 49.

0 05 1 15 2 -35 -3 -25 -2 -15
Parameter value (log10)

Figure 49 - Comparing single cell parameters and population distributions. Plots on the diagonal represent the marginal
distributions (black line) estimated from SAEM for each parameter along with a histogram of all the single cell
parameters estimated by MAP. The plots off-diagonal show the covariation of parameters one with another. In red are
represented the inferred single cell parameters and black ellipses correspond to one standard deviation (68%) confidence
intervals from the population distribution inferred with SAEM. 325 cells from experiment Di were used.

2 A publication having for subject the identifiability of mixed effects models should be published soon by M.
Lavielle. We hope it will include a more general and detailed analysis of this interesting question.
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3. Cellular identity and gene expression

a. Relations between gene expression and cell physiology

Several features of the cell physiology and local environment were speculated to be related to
stable cell-to-cell variability in gene expression (109). Such features notably include cell division rate,
cell size, cell age, and local cell density. Thanks to specifically designed image analysis algorithms,
these features can be measured or estimated for each single-cell based on bright-field time-lapse
imaging. In consequence we tested in a systematic manner for empirical evidence of such relations
between cellular features and the parameters that describe cellular individuality in gene expression.

First, we searched for a correlation between the protein decay parameter, g,, and the cell
division rate. Indeed, as the fluorescent reporter we used has a long half-life, one should expect that
its observed decay comes mostly from dilution due to cellular growth. Therefore, we quantified for
each cell its division rate averaged over the observation period (as described in I.3.b) and, as
expected”®, found a significant positive correlation between the measured average single-cell division
rate and the protein decay parameter g, (Figure 50). Stated differently, using exclusively the
fluorescence profile of individual cells and the inferred parameter distribution for the cell population
as an a priori, the inference approach attributed statistically higher dilution rates to cells that grow

faster.
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Im 0.21 (3.5x104) -0.23 (2.6x105) -0.21 (1.3x10-4) -0.06 (0.39)
Kmp 0.35 (4.4x10°11) -0.19 (7.4x104) -0.30 (2.4x10-8) -0.19 (2.7x10%3)
PC1 (87%) 0.22 (7.2x1079) -0.23 (4.2x107°) -0.21 (1.5x104) -0.05 (0.46)
PC2 (12%) 0.34 (4.5x10°10) 0.05 (0.35) -0.24 (1.4x10-5) -0.24 (1.5x104)
PC3 (<1%) -0.13 (0.02) -0.12 (0.03) -0.02 (0.76) 0.00 (0.98)

Figure 50 - Correlations between these single-cell features and the single-cell parameter estimates and their principal
components are provided with their corresponding p-values. The proportion of variance accounted for by each principal
component is indicated in parenthesis.

Several other highly significant correlations between single-cell parameters and the above-
mentioned single-cell measured features were observed (Figure 50). Note that all measured features
were averaged across time to allow the comparison with the time-invariant model parameters (Text
S1 Annex 6). Although it is difficult to attribute in a systematic manner a direct and unambiguous
biological interpretation of the observed correlations between coarse-grained model parameters and

% The fact that the actual correlation coefficient is not very high reflect probably some mis-estimation and
measurement errors but also can arise from the fact that here we consider the average division rate over
several hours and that division rate is related but not equivalent to growth rate in terms of volume which is the
proper metric for dilution rate.
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cell features, one can nevertheless observe (i) that cell density appears to have a pronounced
influence on the protein production rate, suggesting that - even in microfluidic growth chambers -
the environment of the cells should not be assumed to be perfectly homogeneous, and (ii) that the
correlations of the protein production rates and mRNA degradation rates with every measured
feature always have the same sign, corroborating the presence of mechanisms for the joint
regulation of these processes in our system.

More generally, one wonders how the different measured cell features relate to the overall
(multivariate) parameter variability. We conducted a principal component analysis (PCA) of the set of
inferred single-cell parameter values. This yielded a new parameterization of the model (new
parameters being called principal components PC1, PC2 and PC3) which is particularly relevant to
investigate variability as, unlike natural parameters, each principal component is uncorrelated to the
others. A visualization of what these principal components may represent in terms of actual single
cell data is provided in Annex 7. The analysis showed that the first two components PC1 and PC2
represented 87% and 12%, respectively, of the overall variance in single-cell parameter values, and
that these principal components correlated very significantly with measured cell features (Figure 50).
We then ranked the various features based on their correlation with the variability captured by the
inferred ME model. For a given feature, this is defined as the weighted average correlation with the
different PCs, with weights equal to the importance (i.e., explained variance) of every PC. It appeared
that local cell density was the most important factor (average correlation: 0.23), followed by cell size
(0.21) and the division rate (0.2). Quite surprisingly, from our data, age was not associated with a
significant variability in parameter values. Taken together, our results show that, for quantitative
studies, features other than culture medium or colony growth rate should be taken into account
when comparing experiments.

b. Inheritance of phenotype and gene expression features

Finally, we investigated inheritance of single-cell parameters. Statistical tests showed that the
parameters of mother and daughter cells were significantly closer to each other than the parameters
of 20 000 random cell pairs (Text S1 in Annex 6 and Figure 51). However, this comparison does not
exclusively test the effect of lineage. The fact that mother and daughter cells share a similar
environment may also explain this result.
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Figure 51 - Mother and daughter cells have closer parameter values in average than random pairs of cells. For each
parameter, we report the average value of mother-daughter distance in parameter values (red lines) and compare it to
the distribution of parameter distance of 20 000 couples of cells picked at random (blue histograms).
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To study the specific influence of lineage, we compared the parameter values between pairs of
cells that either were mother and daughter (related mother/daughter pairs, called MD) or were a
mother and the unrelated daughter of another mother cell (non-related mother/daughter pairs,
called nMD), with all cells growing in the same microfluidic chamber so as to limit environmental
bias. Comparing the average parameter distance revealed that mother and daughter had closer
parameters values and this for all parameters (compare the blue and red large vertical bar in Figure
52).

Yet, as the parameter distance varied importantly among particular pairs, we wanted to test
this hypothesis statistically. As the empirical distribution of the distance between parameters for all
MD pairs was not reasonably approximated by common distribution shapes, we employed a
bootstrap approach to compute empirically the probability distribution of the estimator of the mean
(which is Gaussian as soon as enough samples are drawn). This allows us to derive p-values for the
inequality of the mean between MD and nMD average parameter distance”’.

As shown in Figure 52, the parameter values of individual cells are indeed statistically closer to
the parameters of their own mother cell than to the parameters of another mother cell. More
precisely, they are 16% (resp. 14%, 10%) closer in genuine mother/daughter pairs for g, (resp. gm,
kmp). Although mild in absolute terms, the bootstrap test showed the presence of a statistically
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Figure 52 — Statistical analysis of single cell parameters inheritance. Comparison of
the mean distance between parameters of either a mother with a daughter (MD, red
histograms) or a mother with a non-related daughter (nMD, blue histogram). Details
are in the text.

In the example plotted, 50 000 bootstraped sets of 40 pairs (either from MD, or from nMD) were drawn to
derive each histogram and p-values were computed using classical two sided t-tests for mean inequality of
Gaussian distribution with different variance.
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strong inheritance effect (p-values < 10" for all parameters, see Text S1 Annex 6).

Biological interpretation of inherited single cell parameters

When we apply the same inheritance testing to some of the single-cell features which were
shown previously to correlate with single cell parameters, we found that several ones were in fact
anti-inherited, meaning that mother and daughters were significantly more different that non-related
mother and daughters. As we can see in Figure 53, this is the case for the intensity of the perceived
shocks, with daughter cells being 14% more sensitive than their mother on average. This might be
related to size effects (as mothers are larger than daughters) or to properties of the cell wall
(daughter cells having a newly synthesized cell wall which differ from the mothers).
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Figure 53 - Statistical analysis of single cell features inheritance using the same methodology as in Figure 52. NB: perceived shocks are
defined in the next subsection. MD stands for Mother and Daughter Paris and nMD for non-related Mother and Daughter pair.

At last, concerning density, it is expected that mother and daughter being spatially close will
experience a more similar local density. As cellular density was demonstrated to be the most
correlated cellular feature with parameter values, inheritance of density could bias the previous
results on parameter value inheritance. As we can properly assess such density inheritance, we were
able to construct a more refined set of non-related mother and daughter pairs which featured nearly
exactly the same distribution of density distance as MD pairs. Running the previous inheritance test
with such set of nMD pairs gave nearly exactly the same results® corroborating the idea of a genuine
partial inheritance of single cell parameters..

As a conclusion, we can see that parameter values, along with cellular features, exhibit some
degree of inheritance (or anti-inheritance) from a mother to a daughter. We can wonder what
biological features could be the basis for such inheritance of non-genetic identity. Such an
observation leads to many possible speculations, some of which we share thereafter.

% It can also be noted that testing inheritance in terms of principal components rather than natural parameters
yields very similar results.
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Mother and daughter are usually living in proximity and therefore will experience similar
microenvironments. Despite our efforts to mitigate such potential influence from our measurement
of inheritance, we cannot completely refute this simple hypothesis.

We can also propose that epigenetic effects would lead to inheritable changes in gene
expression features over the course of several generations. In the specific case of the HOG pathway
and pSTL1, we know that chromatin remodeling complexes such as the SAGA complex are recruited
and alter the chromatin organization(62). Also, pSTL1 is located close to telomere regions of the
chromosome which are known to be subjected to epigenetic silencing. The SIR complex (and Sir2 in
particular) is involved in silencing in these regions. Sir2 silencing can be affected by the Redox
balance (122). Knowing that glycerol production also plays an important role in maintaining the
Redox balance, one can wonder if this would indirectly relate response to osmotic stress and
epigenetic silencing. Yet tentative experiments using TSA or Nicotinamide (which are inhibitors of
several epigenetic silencing processes) were inconclusive.

Although we always consider epigenetic phenomena when it comes to non-genetic
inheritance, other mechanisms should be considered as well. As gene expression networks form
large dynamical systems, they may possess many local dynamic equilibrium states. Therefore, we
could envision a situation where a mother cell transmits, along with its DNA, the current state of her
GRN, including its local equilibrium which will change slowly.

Yet another possibility would come from the consideration of the impact of osmotic stress on
the cell cycle (see chapter IV). This could lead to a situation where mother and daughters are mildly
synchronized in their cell cycles by some form of lock-in due to the frequency of stimulation we
applied here. The measured inheritance being reminiscent of cell cycle effects in the response to
osmotic stress.

Concerning anti-inheritance effects, we might recall that several proteins are known to exhibit
an asymmetric repartition between mother and daughter cells (123) which could therefore create
such effect. Considerations of the cell wall properties which differ in mothers and daughters and are
also related to the mechanical aspects of osmotic stress might also provide candidates for this effect.

Therefore, we see than when it comes to cell-to-cell variability, many factors can introduce
biases in analysis and many known biological factor could equally play out. Rigorous statistical testing
is a necessary tool to try to avoid bias issues but it is not possible to protect against all bias. From
these exploratory analyses, hypothesis driven experiments are needed to confirm the importance
and decipher the underlying mechanisms behind such inheritance relationships.

c. Listening to the noise: harvesting natural cell to cell variability

Having identified single-cell parameter values, one may wonder whether they can be used to
retrieve known facts or discover new ones on the physiology of the cell response to hyperosmotic
shocks. In our model, hyperosmotic shocks affect all cells identically (in terms of signaling cascade).
However, from a physical point of view, the intensity of the shock perceived by different cells varied,
as evidenced by differences in the reduction of cellular volume following shocks. Therefore, one
might expect that protein production parameters inferred for the most severely impacted cells are
statistically higher than average. We thus estimated the perceived shock intensities as the time-
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averaged reduction of cellular volume following shocks, and compared for all the cells the inferred
parameter values and the perceived shock intensities. We found a strong correlation between
protein production rates and shock intensities in agreement with our hypothesis. Moreover an
equally-strong correlation was also found with mRNA degradation rates (Figure 54 A). This second
feature, obtained by our framework without any additional measurements or hypothesis, is
consistent with the known global destabilization of mMRNAs observed after hyperosmotic shocks (77).
Lastly, the high correlation between protein production rates and mRNA degradation rates (Figure 54
B) indicates that these two processes are jointly regulated in response to hyperosmotic shocks. Note
that the direct experimental identification of such co-regulations would be very challenging. This
shows the interest of extracting and analyzing distributions of model parameters for co-regulation
identification.
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Figure 54 - Effects of hyperosmotic shocks on intracellular processes involved in gene expression. A. Correlations
between the perceived intensity of hyperosmotic shocks and single-cell parameter estimates are provided with their
corresponding p-values (Text S1 Annex 6). B. Estimated values for protein synthesis rates kmp and mRNA degradation
rates g,, for each individual cell. Their strong correlation (Spearman coefficient: 0.88; p-value<10™°) together with their
mutual increase with perceived shocks intensity indicates that these two processes are jointly regulated in response to
hyperosmotic shocks. Insert plot and colored background represent perceived shock intensity for 9 groups of 35 cells
along the regression line.
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4. Conclusions on: Individuality in the transcriptional response to
osmotic stress

Personal contributions

The study presented in this chapter has been done in close collaboration with the co-authors
of the article provided in Annex 6. For the purpose of a fair evaluation | should state my personal
contributions to this study. These includes: the realization of experiments, image analysis both for
single-cell fluorescence extraction and for the quantification of all other cellular features of the
microenvironment or of cellular physiology. | performed the inheritance analysis along with
correlations of cellular features with single cell parameters. | contributed to the construction of the
single-cell model and to the parametrization of SAEM runs (although not performing them myself). |
took part in the mathematical and biological analysis of single-cell parameters and population
distributions. At last, review and discussion of all analysis, along with redaction of the article was
done collectively.

Conclusion

In this chapter, we used a classic reporter of the transcriptional response of the HOG pathway
along with a specific design of experiments using dynamic hyperosmotic stress in order to reveal
long-lasting differences in single cell genetic expression. In sharp contrast with previous work on cell-
to-cell variability on this system, which mainly focused on the intrinsic aspect of gene expression
noise, we focused on the extrinsic part only. From our early discussion of identifiability issues arising
when estimating the parameters of models of gene expression at the single-cell level, we can now
better assess the potential issues arising when both intrinsic and extrinsic noise are considered
jointly. Arguably, the information content of our experiment is to some respects qualitatively richer®
than what was used in previous studies. Yet, identifiability considerations in our study indicated that
only coarse-grained models could be used to infer extrinsic variability and assign precise values to
each cell. At the same time, as it was investigated in (124), mixed-effects models and stochastic
models using moments (as in (87)) were found to be equally good at explaining population data only
(as it would be obtained by flow cytometry) but only ME allowed decent single-cell fits. Therefore,
ensuring the identifiability of a detailed model including both intrinsic and extrinsic variability should
probably require even more informative experiments and require a very careful estimation method.
A noticeable trial in estimating models with both intrinsic and extrinsic noise from single cell
longitudinal data and using a different gene expression system in yeast (116) has shown that indeed,
large stochastic models (as used in purely intrinsic models) are not adapted when extrinsic variability
is also considered.

We presented an approach for capturing the biological variability observed in single-cell time-
lapse microscopy experiments of gene expression by distributions of parameters. By doing so, we
address a fundamental issue encountered in the vast majority of quantitative studies where
parameters of deterministic or stochastic models of intracellular processes make sense at the single-

% This is because from many single-cell traces it is possible to reconstruct at each time points distributions of
single cell fluorescence, but such distributions as given by population snapshots experiments (e.g. flow
cytometry or FISH) cannot provide any single-cell temporal information. Yet we do not use varying levels of
stress or mutants which might bring even more information.
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cell level but are estimated from population data and therefore are actually representing a virtual
‘mean cell’ rather than actual cells. As it was discussed in the introduction of this thesis, variability is
ubiquitous in biological systems. Although reasoning in terms of average effects is useful, and for a
long time was mandatory given the experimental possibilities, it appears that variability somehow
combines with the common non-linearity of biological processes. It results in systematic estimation
bias when variability is neglected and only average values are considered. This is detrimental to the
generality and reproducibility of quantitative research in biology. Therefore, more care should be
taken to underline the distinction between genuine single-cell measurements or estimations and
information coming from population information.

Our analysis was based on the mixed-effects (ME) modeling framework and two inference
approaches were evaluated. The use of adapted estimation methods and advanced algorithms, like
SAEM, was essential to properly capture the variability of biological parameters across the
population in a simple manner, including most notably the correlation among them. With this
approach, the information on each and every cell is jointly used to calibrate the population
parameter distribution and in the end, constrains single-cell parameter estimation. This approach
alleviates the problem of limited observability and noisy observations encountered at the individual
cell level. This explains the surprisingly low number of single-cell data which is sufficient to represent
population variability in our system (see Text S2 in Annex 6) and explains the robustness of this
approach.

Although we have tested how the inference method scales when fewer cells are used, we did
not study directly how important was the use of complex gene induction patterns for the estimation
of relevant parameters. In this respect, from our principal components analysis of single-cell
parameters, we can derive eigen cells. Eigen cells are virtual cells which represents independent
modes (or types) of parameters combination which can summarize the observed variability in gene
expression. Looking at simulated traces of these eigen cells (Annex 7) we can see a posteriori that it is
only on the latter part of our experiments, (when random pulses are applied) that the first and
second eigen cells’ trajectories diverge. Therefore, using complex temporal stimulations of the HOG
pathway was indeed instrumental to discriminate the two major modes of variability encoded by the
two first principal components. Although the design of dynamic stimulations was based here on
informed, yet intuitive guessing, it is highly relevant to propose a more systematic experimental
design methodology as more complex models are used.

As it was presented, the practical application of mixed effects model estimation requires an
adequate modelling effort if identifiability is important’®. In particular, a precise modelling
construction methodology should be used to find the proper modelling scope which satisfies the
tradeoff between detail and identifiability. The fact that parameters can be variable or not (fixed vs
random effects), estimated or not leads to a great flexibility in this approach. Yet, a consequence of
such flexibility is that many possible combinations are possible and should be screened during
systematic model selection. Further investigations could be performed so as to find the number of
minimal sources of variability in the model as well as their precise position.

1%t should be reminded that if parameter estimates are not used for biological interpretation but only serves

to calibrate a model which is therefore used as a black box model which is used for prediction, identifiability
issues can be ignored to some extent. Such approach can be sufficient to implement a model predictive
controller for instance but is not relevant to describe biological processes.
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A significant contribution of this work comes from the demonstration of the biological
relevance of the inferred cell-specific parameters. Our single-cell parameters which are based on
fluorescence measurements only were found to contain information which overlaps with biologically
relevant measurements on the same cells and which were not included in any manner in our model.
These include genealogy, micro-environment and single-cell physiology which, taken together,
constitute a set of corroborating evidence supporting two distinct claims:

i. The proposed method allows extracting biologically relevant information at the single cell
level from dynamic fluorescent measurements only. Indeed, if our model or our estimation of
variability could not be related to independently-assessed biological features, any biological
interpretation would be shadowed by a suspicion of an artifact based variability
representation’®".

ii. Although simplistic, our description and estimation of extrinsic variability allows a
prospective interpretation where single-cell parameters define some form of cellular identity
in gene expression dynamics. Such interpretation should be taken with care as we only
consider here a particular biological process within a single experimental framework. Yet, the
fact that single-cell parameter values are related to known contributors to cellular identity (i.e.
size, physical properties of the cells, micro-environment history etc.) and seems to be inherited
differently than these known determinants might suggest that gene expression features and
physiological features are related, yet not identical, aspects of what makes every cell unique.

Perspectives

The first immediate perspective of the study presented here is its application to other
processes than pSTL1 expression in order to assess to what extent our methodology can be
generalized. In addition, hypothesis driven experiments aiming at providing direct evidence of some
covariation between gene expression features on one hand and environmental and physiological
features on the other hand are necessary to strengthen our findings. Nevertheless, experimental
limitations make some of these validations technically impossible at present times.

Another interesting perspective concerns the broad question of “what matters?” for single-cell
variability in gene expression. As it was discussed, a typical distinction is made between random
fluctuations emerging from stochastic gene expression (intrinsic noise) and more stable differences
which form the basis of some form of cellular identity. Although much work has been done in the
past concerning the former, more and more studies now quantitatively assess the later. Extrinsic
variability in fact is here defined in opposition with its intrinsic counterpart. Yet, such negative
definition makes it too vague for a meaningful discussion (18). A more relevant breakdown of
individuality in gene expression should focus on the causes of stable differences and include several
properties of variability.

In particular, it was proposed in (109) that extrinsic variability could be to a large extent caused
by single cell physiology and micro-environment. A genome wide and high-throughput systematic
analysis of both mRNA transcript counts, physiological state and micro-environment features in

%Y our discussion in the introduction of this chapter explains why we can have such suspicion concerning

models of pSTL1 expression forcing variability to be fully intrinsic.
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mammalian cells, relying of advanced image analysis of FISH data (125) was carried recently. This
studied allowed single cell transcript abundances to be predicted with high accuracy from phenotypic
descriptors onlyloz, highlighting the deterministic nature of gene-expression variability. Yet, the
precise causal relationship between what we could call gene expression identity and augmented
phenotypic identity (which includes information about the micro-environment) cannot be resolved in
general from snapshot data of unperturbed cell populations’®. Advanced experimental design
combined with longitudinal experiments will be necessary to resolve causality hierarchy in the overall
cellular individuality. In this respect, the importance of covariation among single-cell parameters
raises important experimental challenges as most of the time it is not possible to measure directly
parameters at the single-cell level, let alone several of them simultaneously. An important part of
stable individuality is expected to come from the levels of proteins, yet given the number of putative
relevant elements, it is not possible using fluorescence tags to systematically screen for all of them or
worse, for possible covariations among them. In this respect, an extremely challenging, yet
technically possible experimental system which would combine time-lapse fluorescence microscopy
followed by in-situ single-cell proteomic measurements is probably the best prospective to relate
observed variations in gene expression dynamics to absolute protein abundance and to screen
putative molecular sources of extrinsic variability in a systematic manner.

The vision of gene expression identity which comes with stable differences in gene expression
features should also be considered from a dynamic perspective. As it was discussed in I.1.b, the
cellular identity in gene expression at a given instant is probably the results of structural and
molecular features fluctuating with different time-scales. This in turns calls for distinct
interpretations of cellular identity as different time scales are considered. In the experiments which
were presented here, cell identity was defined implicitly as a time averaged effect over a few cell-
cycles which de facto removes extrinsic components whose fluctuation is faster. Given previous
studies on extrinsic noise dynamics (126) in E. coli, it is surprising to find that some aspects of such
identity were stable enough to produce biologically significant parameters. Still, there is direct
evidence than several core features of the augmented phenotypic identity were changing during the
course of our experiment. This means that if the proposed method was to be applied to longer
experiments, it might require at some point either to split single cell data into fixed periods which
would correspond to different cellular identities (i.e. taking into account changes in identity in a
discrete manner), or to account explicitly for continuous time-changing identity, combined with the
contribution of cellular division as a fundamental discrete event affecting identity *®* (through
inheritance and anti-inheritance that affects both the mother and the daughter cells). This latter
option would in principle allow a beautiful, yet extremely challenging, unification of intrinsic and
extrinsic noise were intrinsic noise over all the genome constitutes the basis for slow identity
fluctuation upon which dynamics of the micro-environment (including contribution by neighbor cells)
would act.

192 Work by L. Pelkmans’ group communicated at the EMBO/EMBL symposium on Cellular Heterogeneity in

Heidelberg, 15-18 April 2015, still unpublished at the time of writing.

1% fact, from snapshot data only, distinguishing from A causes B, B causes A or X causes both A and B is a
chicken and egg problem.

1% Erom M. Lavielle comments on this work, it is worth noting that in fact, in its current form, mixed effects
models assume individuals composing a population to be independent one from another. Accordingly, our
finding that some inheritance effects are present already requires a modification of the general theoretical
framework we employed to include some form of dependence between single-cell individuality.
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Interestingly, division and growth, which are tightly coupled processes (so as to ensure cells
size to be bounded), are essential components of both the augmented phenotypic identity and of
gene expression identity (as most proteins decay is driven by dilution). Although it was considered
constant in time (yet variable among cells) for our study until now, the division rate of cells is actually
changing in time as repeated stress is applied. Division and growth rates are central components of
cellular identity. Moreover they provide a measure of single cell fitness which is the missing piece
allowing single-cell and population measurements to be related in the previously described dynamic
representation of time-changing cellular identity. For these reasons, and for the purpose of
improving our integrated vision of the cellular response to fluctuating stress, we decided to study the
impact of repeated osmotic stress on cellular proliferation as it will be presented in the next chapter.
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IV. The impact of repeated stress on cellular

proliferation

In the general presentation of yeast’s response to osmotic stress (see 1.4) we mentioned how
deep and global is the effect of hyperosmotic stress on cellular activity. In fact osmotic stress and
cells’ subsequent adaptation have an impact that is not limited to the HOG pathway and glycerol
production. For instance, the brutal change in size occurring during a sudden hyperosmotic shock
affects the membrane and cell wall and osmotic stress triggers the Cell Wall Integrity (CWI) pathway
(69) both after hyper and hypo osmotic shocks. In this chapter, we are concerned with the impact of
repeated osmotic stress on a central activity of cells: proliferation. Focusing on the consequence of
osmotic stress on this particular aspect of cellular physiology is motivated by several factors.

Proliferation, by means of genome duplication and cellular growth, affects globally the cellular
context which is relevant to gene expression. Indeed, as growth drives the dilution of the cell’s
content, it actually determines one of the key parameters of gene expression dynamics. As long as
genes are studied at a coarse-grained level, in isolation and under conditions which do not alter
much replication, assuming constant and homogeneous replication may be a fair assumption. Yet, as
we try to better understand dynamic changes at the level of gene regulatory networks which are
related to fundamental steps of cellular life (like metabolic changes upon nutriment change,
adaptation to environmental aggression, differentiation, mating, sporulation, senescence etc.) we
will find that all of them come with important changes in growth and cell cycle. Therefore, any
guantitative approach to these questions will have to abandon at some point the useful assumption
of constant and homogeneous proliferation. In the context of the study of osmotic stress, the
investigation of how growth is affected by repeated stress may therefore also possibly help the study
of gene expression dynamics and regulation upon stress.

The impact of environmental conditions on proliferation is obviously a very old research topic
in biology. Yet, most traditional experiments only measured this impact in stationary conditions.
Dynamic changes in environment give access to transient effects. It is generally possible to perform
some form of dynamic perturbations in batch and chemostats. Yet, given experimental possibilities
with these systems, applying precise and repeated changes is limited in practice to a single change or
low frequency perturbation (because of the typical time required to remove a previously added
chemical, by dilution or centrifugation). At last, such studies capture only the overall population
growth which is insufficient to characterize replication at the single-cell level. Using microfluidics and
automated image analysis, we can actually measure proliferation at the single-cell level in a large
range of dynamical perturbations frequencies.

In chapter Ill, we demonstrated that the use of specific temporal patterns of osmotic shocks
could both simplify our study of the HOG pathway by making short-term adaptation feedbacks
negligible, while providing rich information of single-cell dynamics. In the investigation of the
consequences of osmotic stress on proliferation, we will again rely on dynamic stimulations. This
serves two purposes: on the one hand, it allows us to explore how cells react to repeated stress
which is a fairly uncovered topic (while there is a profusion of studies on single stress). On the other
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hand, by repetitively stressing cells at different frequencies we hope to separate cellular processes
which have distinct dynamical typical time-scales. For instance, in (55), several typical time-scales
were identified for the physical, signaling and transcriptional response of cells to hyperosmotic
conditions (from the faster to the slower). Here we will investigate lower frequencies which are
relevant for slower components of the cellular response: i.e. proliferation and metabolic
adjustments. At last, repeated stimulation may allow in theory to amplify transient effects which
would be otherwise inaccessible to direct measurements.

Page | 110



The impact of repeated stress on cellular proliferation

1. Anintegrated view of the response to osmotic stress

a. How osmotic stress affects growth and division?

Sudden osmotic upshift is known to impact proliferation which is stopped or slowed down and
resumes once cells have adapted (i.e. the HOG pathway is deactivated) (61). Replication involves
mostly two connected sets of processes. On the one hand the cell cycle orchestrates DNA replication,
budding, nuclear separation and finally cytokinesis. On the other hand growth (although the term is
sometime used to describe proliferation as a whole) relates more specifically to the production of
cellular mass (i.e. the replication of other cellular components than DNA) which is required to fill the
daughter cell without having the mother cell getting smaller. Cell cycle and growth are obviously
connected so as to ensure that cells keep sizes within a viable range. Although how this coupling is
ensured is still an active research question, it seems that division accommodates to effective growth
but not the opposite (127, 128).

Recent work which will be detailed in 2.a demonstrates that in fact phosphorylated Hogl
directly controls cell cycle arrest. From a general point of view, osmotic stress, via Hoglp, is able to
delay or stop the cell cycle in different phases, namely in G1, S and G2. This is believed to allow cells
so as to prevent deleterious effects of stress on some delicate steps of the cell cycle and eventually
give time for possible repair. By applying repeated stress to cell cultures, we were indeed able to
spot one harmful effect osmotic stress can have for cells in M phase for which yeast seems not to
have a protection against and which will be described in 2.b.

As it was presented in 1.4.a a central aspect of osmoadaptation is the production of glycerol to
allow water influx and restore pre-stress size. As it will be presented in 3.a, production of the
required quantity of glycerol to allow adaptation is costly, both in terms of energy and in terms of
carbon resources. This in turns will impact growth in terms of speed (growth rate) and in terms of
yield.

In our study, we will focus on these two sets of mechanisms (direct cell-cycle arrest and
altered carbon metabolism) to provide a system level description of the impact of osmotic stress on
proliferation. Obviously, other mechanisms should be at play and will be hereby neglected. For
instance, indirect effects may influence cell cycle under osmotic stress like the sudden loss of turgor
pressure happening in hyperosmotic conditions which is normally necessary for bud formation. Also,
osmotic stress triggers several pathways and transcription events which may alter the state of cells
indirectly affecting proliferation. An example being the activation by osmotic stress of Sfpl which
controls the production of ribosomal protein (129) and is possibly associated to cell size control
(127).

Under a single osmotic stress, both mass growth and cell cycle are affected as the cell produce
glycerol (which requires glucose) and pauses its cycle to protect itself against potentially harmful
effects. In Figure 55 is represented at an abstract level the two main mechanisms of acclimation'® to

1% Acclimation is the phenotypic response of a given organism to a sudden change in environment. It can be

reversible to some extent. Adaptation is used more broadly and is often confused with acclimation as it is the
case here. Yet, adaptation often refers to long term changes in both genotype and phenotype on several
generations.
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hyper osmolarity. Importantly, the action of Hogl is by essence transient as the HOG pathway is
inactive in adapted (acclimated) cells.
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Figure 55 - Schematic representation of the acclimation to a hyperosmotic stress. Red arrows indicate the modifications
due to hyper osmolarity. Hogl* stands for phosphorylated Hogl.

Once acclimated, proliferating in a hyperosmotic environment requires constantly producing
glycerol in order to maintain the proper osmotic balance (turgor pressure being mandatory for
budding). Although glycerol can be recycled as a carbon source in practice it will not be the case
because it will either be diluted upon daughters divisions or it will be leaked out from the cell to the
environment. In fact, S. cerevisiae sustained growth is achieved by over producing glycerol and
having the glycerol channel Fspl acting as some form of pressure-sensitive valve which leaks the
surplus out. This situation is depicted in Figure 56.
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Figure 56 - Schematic representation of modifications related to proliferation in hyperosmotic environment.

Both transient and persistent effects of hyperosmolarity are at play and hardly distinguishable
when a single osmotic up-shift is applied. Accordingly, it is usually by using various kinds of mutant
strains that the current knowledge on the impact of osmotic stress on proliferation has been
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gathered. Despite their indispensable contribution to eliciting the molecular mechanisms at play, the
study of mutants in single upshifts hardly allows assessing quantitatively and dynamically what is at
play in wildtype cells.

b. Proliferation quantification at the single cell level: a matter of point of view

As observed for gene expression, when considered at the single-cell level, proliferation
displays a richer behavior than what is accessible from population-based measurements. In most
studies, proliferation is quantified using a single parameter: a population growth rate. Because cells
grow at different speeds, single-cell metrics of proliferation are needed.

We presented original image analysis methods that allow quantifying proliferation at the
population level (11.3.a) and at the single-cell level (11.3.b). In the proposed single-cell measurement of
division rate, the focus is on a cell which undergoes several cell cycles. Accordingly, we quantify the
average time it takes for a cell to divide over several divisions. As we can see in Figure 57, there is an
important heterogeneity in individual average division time with some cells dividing on average two
times faster than others.
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Figure 57 - Comparing estimation of cell proliferation in population or at the single cell level..
Experimental data from 041013.

From these single-cell average division times, we can compute an overall average division time
by averaging over all cells which is represented by the light blue line in Figure 57. If we compare such
average to the average division time as computed from population data (red line in Figure 57,
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. . . . . e 106
estimation details in I1.3.a) we find dissimilar values

. The observed discrepancy comes from the
different representations of cellular proliferation which we used. A population division time or
division rate does not provide a precise representation of proliferation at the single cell level. Only if
all cells had an identical division rate that the population measurement would be applicable to single

cells.

If we see the population representation of Figure 57 as a static picture of cells division speed
(with fast and slow cells) the fact that single-cell average division time is smaller than the population
average division time is surprising. In fact, fast cells should divide more during a given experimental
time window and therefore, population growth rate should be determined primarily by these fast
dividing cells. To resolve this seemingly strange result, we need to take into account not only the fact
that cells are different, but also the precise definition of what our system and our measurement are.
In fact, because we consider here mostly cellular identity, we look at cells for several cell cycles.
Collecting data for a given number of cells which we follow during an experiment amounts to
studying a cohort of cells. Studying cohorts is convenient from an experimental perspective'® and
also puts the focus on cellular identity. In order to relate our population measurement with the
average division time of a cohort of cells as plotted here, the individual history of cells matters. As S.
cerevisiae undergoes an asymmetric division, newborn cells are smaller and tend to be at first slower
to divide than their mothers. This feature of budding yeast division is represented in Figure 58.
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Figure 58 - Average division time given for the first 7 divisions of a newborn cell. Here average is done
over all recorded division events for a given division index. Data extracted by hand from bud appearance
on 50 cells (196 divisions) from experiment 041013. Error bars represent the standard error on the mean.

106 . . . . .. . .
Note that using other metrics such as the geometric mean, or median leads to similar discrepancies.

Computing a single cell average growth rate requires a cell to be observed for more than one cycle. Note
that cells in our cohorts do not have the same age.

107

Page | 114



The impact of repeated stress on cellular proliferation

This dissection of division time by groups of cell of the same age unveils the structured (in
terms of age) aspect of a growing yeast population. This measurement confirms the statement made
in (130) that 4 generations should be taken into account in order to have a faithful representation of
the age structure in a budding yeast population since after that point, division time seems to be
stable (up to a certain point where aging impacts division time). Going back to the apparent paradox
between population and single-cell estimates of division rates, we can now see that any cell which
divides gives birth in fact to a slow cell. This means that at any time, half the population is composed
of slow cells. When we pickup cells which we then follow in time, we distort the instantaneous
picture present in a population. This selection process allows performing measurements on what a
typical cell is during its life, but in terms of quantitative representation of a population, it suffers
from a bias towards old cells.

In conclusion we see here that quantifying replication at the single-cell level may vyield
different results than population based measurements. The precise definition of the studied system
(a collection of cells considered during one division only, a cohort of cells undergoing several cycles)
along with the selection process (constructing cohorts controlling for age structure or at random,
building cohorts by age or not) influence the results we can obtain and the conclusion we can draw
from them. At last different metrics used to quantify proliferation (e.g. division rate, mean cycle
time, growth rate, volume or mass doubling rate) are only equivalent (i.e. can be deduced one from
the other) for simplistic models of proliferation. Considering dynamical changes and/or cell-to-cell
variability will usually require more complex representation of proliferation which can involve other
guantities such as cell volume, volume at division, cell mass, division asymmetry parameters or age
structure in a population.
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2. The impact of osmotic stress on the cell cycle

a. Osmotic stress can trigger phase-dependent arrest of the cell cycle

The rapid change in physiology following a hyperosmotic stress can have harmful effects on
cell proliferation. Among others, water potential is altered, therefore modifying biochemical reaction
rates. Given that the cell cycle requires a precise sequence of biochemical reactions to be performed
in the correct order, altered water potential may lead to errors in completing the cell-cycle program.
The cellular response to osmotic stress itself (for instance the rapid transcription of hundreds of
genes) can be harmful (131). In addition, budding requires a high-enough turgor pressure, a
condition which cannot be met unless the cell has recovered its size and accumulated enough
glycerol. In order to prevent dangerous progression in the cell cycle before adaptation has occurred,
several direct control mechanisms of the HOG pathway on cell-cycle have evolved in S. cerevisiae.
Recent studies have unveiled some molecular details of such interactions which are summarized in
Figure 59.
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Figure 59 - Overview of the direct effects of the HOG pathway on the cell cycle of S. cerevisiae. Red arrows represent known
mechanisms and the green arrow represents a novel mechanism.

During G1 (Gapl) the cell increases its mass and volume until it will eventually commit
irreversibly to division through a molecular checkpoint called Start. The Start transition is made only
if a certain number of conditions are met (sufficient size, nutrient availability, absence of
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pheromones, absence of DNA damage etc.). It is clear that hyper osmotic stress affects cell-cycle
regulation by down regulation of the transcription of cyclins CLN1 and CLN2 (the G1/S cyclins'®in S.
cerevisiae) (132). Yet, the direct role of Hogl is a bit controversial in this respect as (132) finds that
for normal stress (0.5M KCI in their case) this phenomenon was Hogl independent, while in (133),
activating Hogl artificially without osmotic stress lead to the same cell-cycle arrest, therefore
suggesting CLN1 and CLN2 downregulation is Hogl dependent. Both agree upon the fact that
recovery from such cell-cycle arrest requires functional Hogl. Nevertheless, CLN1 and CLN2 down-
regulation is not enough to prevent Start (as over expressing them did not removed the delay) but
may rather be a consequence of a lesser activity of their main regulator: CLN3 (the G1 cyclin in S.

k' in S. cerevisiae). As the level of

cerevisiae) which acts in association with Cdc28 (the only Cd
transcription of CLN3 (which is always constitutively expressed) is not affected by hyperosmotic
stress, other inhibitory mechanisms were expected to be active under osmotic stress. It appears that
Hogl directly interacts with Sicl which is a Cdk inhibitor''® and stabilizes it whereas it is normally
targeted for degradation by CIn-Cdc28 complexes. This in turns prevents cells under osmotic stress

from committing to Start. This regulation is depicted as (A) in Figure 59.

During the S phase, the cell starts to bud and proceeds to DNA replication. As it was presented
in 1.4.b, the HOG pathway triggers the rapid transcription of hundreds of genes. This situation is
potentially harmful for cells replicating their chromosomes as it can lead to collisions between the
replication and transcription complexes. Such collisions are prone to recombination events and
accordingly threaten genomic integrity. To reduce the probability of such events, it has been shown
that Hogl can in fact directly delay early and late replication origins’ firing (134). This protective
action is achieved by phosphorylating Mrcl which is a member of the DNA replication complex. This
phosphorylation is directly attributed to Hogl and appears to be distinct from other mechanisms
affecting Mrcl as in response to hydroxyurea exposition for instance. This regulation is depicted as
(B) in Figure 59.

During the Gap 2 phase (G2) the bud grows and the spindle is assembled to prepare mitosis.
Hogl can delay G2 exit to allow the cell to adapt before entering M phase (135). A failure to do so
would lead to deleterious effects and abnormal morphology. This control is exerted by Hogl on Hsl1
(a checkpoint kinase) which in turns leads to Swel accumulation. Swel is believed to ensure the
G2/M size checkpoint and its sustained level inhibits the activity of the Clb2-Cdc25 complex which
triggers mitosis. This regulation is depicted as (C) in Figure 59.

At last, some influence of the HOG pathway on cell exit from mitosis (M/G1 transition) was
reported in (136). Yet, this effect, which is visible in specific mutants and involves Hogl once again,
does not lead to a quantifiable delay in wildtype cells. In addition, it is unclear whether this
phenomenon happens differentially under osmotic stress compared to isotonic environments.
Therefore, the aforementioned impact of Hogl may well correspond to a function of Hogl which is

108 Cyclins are proteins which oscillate during the cell cycle (with the notable exception of CLN3). G1/S cyclins

are required for Start and proceeding to the S1 phase of the cell cycle.

109 Cyclin dependent kinases (Cdk) have crucial roles in orchestrating the cell-cycle and their activity is
conditioned by their association with cyclins. In S. cerevisiae, there is a single Cdk whereas other organisms
have several.

119 cdk inhibitors inhibit the activity of cyclin-Cdk complexes. In s. cerevisiae, there are two of them: Sicl and
Farl, the later having been ruled out as a potential actor in cell-cycle arrest by hyperosmotic stress.
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separated from its central role in the response to hyperosmotic stress. For these reasons, | did not
include such regulation in Figure 59.

Unlike the experiments performed in all of the studies mentioned previously, which used
artificially synchronized populations reaction to a single hyperosmotic upshift, we systematically
studied the reaction of unsynchronized cultures to repeated osmotic stress of varying frequency. As
it will be presented more precisely in the next paragraph, we observed that when stressed at a
precise moment during mitosis, yeast cells have a risk of failing to divide their nucleus properly
among daughter cells. This can cause a delay in the progression of the M phase as the cell try again
to separate its genetic material among daughter cells. Interestingly, such even can in rare cases
induce polyploidy, aneuploidy or have lethal effects. This impact of hyperosmotic stress on the cell
cycle is depicted as (D) on Figure 59.
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b. Nuclear separation is perturbed by osmotic stress

Within the M phase of the cell cycle, the genetic material is separated among mother and
daughter cells. This crucial part of mitosis is usually a relatively brief event. Applying repeated
osmotic stress on yeast strains harboring a nuclear tag, we observed that stress could significantly
delay the M phase with cells repeatedly trying to separate their chromosomes for hundreds of
minutes (therefore it seems that such issues happen during anaphase although it is difficult to
discern exactly phases composing the M phase). In Figure 60 we report a photomontage of an
experiment'!! where periodic phases of high osmolarity were applied (1M sorbitol for 45 min
followed by 45 min of isotonic medium). The depicted cell is in anaphase when the first hyperosmotic
stress is applied. Whereas usually nuclear division lasts approximately 10 minutes, it will take more
than two hours for this cell to finish its cycle as it is stressed again 90 min after the initial stress.

..
4 45
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57

mMms
14l
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85

Figure 60 - Photomontage showing a cell stressed during the M-phase which endures a significant delay in nuclear
separation. Note that the mother cell will experience again difficulties for its next division whereas its daughter cell is not
affected. The frame number is indicated in white, frames being taken every 6 min (therefore there is 12 min between
each vignette). Periods of hyperosmotic stress are indicated with a 1MS white label in the top right part of a vignette.
See text for experimental conditions.

w Experiment 180215 used strain yPH15 which has a HTB2-mCherry nuclear marker. Cell from exponential
cultures were let to grow in a H-shaped microfluidic device with SC medium (2% glucose) for 105 min before
subjecting them to repeated phases of osmotic stress (1M sorbitol SC medium) and normal medium of 45min
each.

Page | 119



Effects of repeated osmotic stress on gene expression and growth

While such events usually end up by cells finally dividing, as the cell followed in Figure 60, it
can also lead to many deleterious effects. For instance, such events can lead to ploidy anomalies. In
Figure 61, we show an example taken later from the same experiment (cells being unrelated). In this
case, the mother cell of Figure 61 had been stressed in late G2/early M phase at the beginning of the
experiment. It displayed an abnormal M phase but managed to divide several times until it divided
leaving a bud nearly empty of genetic material (green arrow in the first vignette of Figure 61). During
its next M phase we can observe that the genetic material is no longer well separated as three
distinct clusters of chromosomes are visible (frames 94 to 98, blue arrows Figure 61).

Figure 61 - Photomontage showing a cell displaying ploidy anomaly (blue arrows) and which will finally die
upon hypo-osmotic stress (yellow arrow). The cell shown here had previously endured difficulties in
performing M phase which ended in budding a cell with only a very little portion of regular genetic
material (green arrows in the first vignette). The frame number is indicated in white, frames being taken
every 6 min. Periods of hyperosmotic stress are indicated with a 1MS white label in the top right part of a
vignette. See text for experimental conditions.

Although we also observe ploidy defects which are non-lethal, they often lead to altered
morphologies (cells being usually larger than the average), complete stalled or extremely slow cell
cycle or cell death as it is the case in Figure 61 (yellow arrow).

We wonder what dysfunction (or safeguard mechanism in the case of delayed yet recovering
cells) is at play in such anomalies. It seems plausible that mechanics of chromosome repartition are
altered by osmotic stress. This could come from the impact of osmolarity on microtubules which play
a central role in chromosomes separation. In fact, studies carried on S. pombe showed that osmotic
stress could lead to severely altered microtubule function, including during M phase (137).
Cytoskeleton dysfunction could have a mechanical or a molecular origin. Another hypothesis would
be an influence of osmotic stress on the APC (anaphase promoting complex) and its action on
securins and cohesins which hold sister chromatids together because the reported anomaly shows
chromosomes stuck at the equator.

Adaptation to the level of stress used in our experiments takes around 15 min (and therefore
osmolarity is rapidly balanced and the HOG pathway is deactivated) while we witness much longer
delays. Therefore it appears that whatever mechanism is behind this M phase arrest, it require some
time for the cell to recover once the triggering stimuli has been removed. To gain more insight on
this phenomenon so as to narrow down the range of possible explanations, we tested if such
anomaly was related to the duration of stress or to the frequency of stress. We quantified the
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number of different M-phase anomalies happening in different dynamical stress conditions. Sensible
delay in nuclear division is called a M phase anomaly. A cell showing an abnormal number of
chromosomes clusters such as in Figure 61 is called a Ploidy anomaly and observable cell death is
called a lethal anomaly.

In Table 1 we report our results concerning three experiments conducted in similar conditions
(H-shaped microfluidic device, using the yPH15 strain, constantly flowing fresh SC medium without or
without 1M sorbitol and using the same imaging settings). As a negative control we quantified the
number of anomalies occurring in a growing population in absence of osmotic stress. Then, we
considered two experiments where we repeatedly stress cells. Because we apply symmetric repeated
stress (i.e. the hypertonic and isotonic phases are of equal durations), cells spend an equivalent
proportion of time in hyper osmotic medium. Because anomalies are a fairly rare events we need
many cells and divisions to observe enough events so as to obtain a meaningful quantification.
Observing multiple separate microfluidic channels in parallel and performing experiments of 20h for
the no stress and of more than 10 hours for the T=90 and T=20 min conditions, we could observe
~40000, ~6000 and ~1300 divisions**? in no Stress, T=90 and T=20 conditions respectively.

No Stress T=90 min T=20 min
Observed M phase anomalies 27 30 49
Observed Ploidy anomalies 0 2 13
Observed Lethal anomalies 0 2 3
Observed division events 41653 5901 1251
Average number of cells per frame 828 725 146
M anomaly per newborn 6,48E-04 5,08E-03 3,92E-02
P anomaly per newborn 0,00E+00 3,39E-04 1,04E-02
L anomaly per newborn 0,00E+00 3,39E-04 2,40E-03
M anomaly per cell per hour 6,48E-03 3,48E-03 1,76E-02
P anomaly per cell per hour <2,4E-05 2,32E-04 4,68E-03
L anomaly per cell per hour <2,4E-05 2,32E-04 1,08E-03
M anomaly per cell per stress 5,21E-03 5,87E-03
P anomaly per cell per stress 3,48E-04 1,56E-03
L anomaly per cell per stress 3,48E-04 3,60E-04

Table 1 - Quantification of stress-induced anomalies in M phase. Based on anomaly counting by
visual inspection of Experiments 140214 180214 and 020813 (SC medium, 2% Glucose, 0 or 1M
sorbitol). T stands for the period of hyperosmotic repeated stimulations which consists of T/2 time
in 1M sorbitol followed by T/2 in isotonic medium. In later rows of the table, P stands for Ploidy
and L for lethality See text for more explanations.

We found that an anomaly in M phase occurred on average once every ~1500 divisions (Table
1, M anomaly per newborn). Such anomalies are rather mild as we could not witness any ploidy or
cellular death when no stress was applied. The rate of a given anomaly per division or newborn is
simply the number of recorded anomalies divided by the total number of births estimated on an

"2 The number of divisions is estimated by segmentation and tracking of cells nuclei which are marked with the

fluorescent HTB2-mCherry tag.
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overall experiment (all individual channels being pooled). When we consider cells being stressed, we
observe a nearly ten-fold increase in the rate of anomaly per division for T=60 with an anomaly every
~200 divisions approximately and an even higher probability of anomaly in intense repeated
stimulations (T=20) with one anomaly every ~25 divisions (Table 1, M anomaly per newborn).

Although the number of anomaly per number of division gives a good vision of the impact of
this phenomenon at the single cell level (because it compensates for variable division rate between
conditions), we tried to compute metrics more adapted for a synthetic view of anomalies occurring
at the population scale. Accordingly we estimated the probability for any given cell to experience an
anomaly within an hour (Table 1, anomaly per cell per hour). From this, we can factor in the
frequency at which we impose osmotic stress which yields the rate of anomalies per cell and per
stress (more precisely, per period T which is composed of T/2 stress followed by T/2 isotonic
environment). In Table 1, (anomaly per cell per stress) we can see that in fact, the probability of M
phase anomalies per stress and per cell is very similar for T=90 and T=20. This in turns calls for a
mechanism which depends mostly on the number of stress received by a cell. The higher number of
anomalies in T=20 compared to other conditions when measured per unit of time or per division
appears therefore as originating from the combined effects of imposing a larger number of stress
events per unit of time and having a lower division rate.

Although we could not observe enough Ploidy and Lethal anomalies in mild or no stress
conditions to be conclusive, it appears that severe defects are more likely to happen in frequent
stress. This could mean that following an initial anomaly, it is additional stresses in a given time
window which triggers deleterious effects. At last, it should be considered that ploidy modifications,
although possibly hazardous for cells are paradoxically also an interesting potential mechanism to
evolve important mutations quickly in response to various stress, including those induced by NacCl
(138, 139).
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c. Timing of cell cycle arrest and partial lock-in

Many published experiments reveling cell-cycle delays in response to hyperosmotic stress
were usually conducted on synchronized cultures (using a factor release or nitrogen deprivation for
instance) with usually low time sampling. Synchronization is a necessity for most molecular biology
assays but may lead to artifacts when it comes to retrieving dynamic information. For example,
several experiments in the literature were conducted on mutants conditionally activating the HOG
pathway using temperature based inducible genes therefore applying a heat stress. Some rough
estimates of delays can still be obtained and are reported in Table 2

Phase affected Measured delay Experimental condition Reference

G1 30 min 0.5M KCl batch population growth (132)

) Synchronized cultures (a factor release)
G1 30-50 min . (132)
wildtype vs 0.5M KClI

. Synchronized cultures (a factor release)
G1 40 min ) (133)
wildtype vs 0.4M NaCl

Temperature sensitive mutant : 25°C - a factor

S 20 min release — 37°C synch and release at 25°C. (134)
0.4M NacCl

S 40 min Same procedure as over, 0.8M sorbitol (134)

S 10-30 min Delay for replication origin firing (134)

. Synchronized cultures (a factor release)
G2 80-100 min . . (135)
wildtype vs 0.4M NaCl 50 min after release.

Table 2 - Literature values for cell cycle arrest in response to hyperosmotic stress.

Besides possible bias coming from experimental methods, cell cycle delays have always been
measured in single osmolarity upshifts. Therefore we do not know if once triggered, the molecular
mechanisms involved in these delays will proceed alone or if sustained Hogl activation is necessary.
Yet, we know on the opposite that for constitutively activated Hogl, cells seem not to divide at all
(133) so the G1 arrest can be maintained as long as a cell is not adapted. At last, these measurements
only give information on the average delay but not on the cell to cell variability in this delay.

In order to quantify the delay induced by an hyperosmotic stress at the single cell level, we
performed an experiment (220715) were cells bearing a nuclear fluorescent tag (strain yPH15) were
grown in a microfluidic chip in 2% glucose SC media constantly renewed. After 300min of free
growth, a short (15 min) osmotic stress was applied using the same media with an addition 1M
sorbitol and cells were imaged for another 300 min. Our custom lineage detection algorithm
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presented in 11.2.b was used to retrieve division instants (defined as the time of nuclear separation)
for 218 cells (442 divisions).

We then sorted all the observed cell cycles in four categories. Pre-stress concerns cell cycles
which have ended before the osmotic stress was applied. On stress regroups cell cycles which have
some overlap with the applied stress. Post Stress 1 contains the cell cycles which have begun after
the osmotic stress was removed but which immediately followed the stress. At last, Post Stress 2+
concerns all subsequent cell cycles. As we see on Figure 62, a 15 min stress leads to a ~50 min
increase in the average cycle time, a value which is coherent with the literature values reported in
Table 2. Since when we return to an iso-osmotic medium the HOG pathway is deactivated very
shortly, we see here that once arrested the cell cycle requires some time to resume.

200 T T T
+  Sandard deviation
180 +  Sandard error on mean [
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Figure 62 - Average cell cycle duration before, during and after a short hyperosmotic stress.
Average is performed on all cells without discrimination.

Influence of age on cell cycle delay

Considering the important standard deviation in cell cycle durations reported in Figure 62, we
additionally distinguished cells’ cycles based on their age to see if this variability comes from age
differences between cells. In other words we distinguish the first cycle of a newborn from the first
cycle of a mother (mother n°1), the second cycle of a mother (mother n°2) etc. (see sketch in Figure
63). As we see on Figure 63, new born cells have significantly longer cell cycle times when stressed
than mother cells. Yet as newborns are always slower than mothers, we computed the time
difference between the normal division time as in pre stress conditions, with that of under and post
stress. As depicted in Figure 64, we find that the length of the average delay is actually similar for all
ages, amounting to approximately 50 min.
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Figure 63 - Comparative effect of age on the average cell cycle duration before, during and after a short hyperosmotic stress. The
average for a given experimental period (e.g. post stress 1) and a given age class is derived from the cells that had the age of the
given age class during the given experimental period. Age classes are depicted in the sketch.

We can also note that older cells have a slightly longer delay (Figure 64) which in turns means
that relatively to their normal cell cycle length, a fixed delay represents a much more important
slowdown than for newborns as visible in Figure 65. In fact for a mother cell, the delay upon osmotic
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Figure 64 - Difference in division time relative to pre-stress condition for several age classes.
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stress can get as long as its normal division time. Interestingly, mother cells seem to require more
than one cycle to recover their normal cell cycle time. This could be seen as if cells had some form of
inertia in their proliferation. It would be interesting to investigate more precisely if such inertia is
related to the cell cycle or to cellular growth. In other words, is inertia due to properties of the
biochemical network governing cell cycle or is it rather a consequence of metabolic adaptations?
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Figure 65 — Relative variation in division time relative to pre-stress condition for several age
classes.

Influence of cell cycle position on cell cycle delay

Instead of proceeding to a synchronization of our yeast culture, we use single-cell information
to perform a virtual synchronization a posteriori of the cells present in our experiment. We divide the
duration of each single-cell division in five portions with equal duration. By considering the average

113

duration of each phase of the cell cycle for newborns and mothers ™" (140), we can propose the

following approximate mapping:
*  For mother cells: 0-20% :G1, 20-60% S, 60-100% G2/M
* For newborns: 0-40% G1, 40-70% S, 70-100% G2/M

In Figure 66 we show the delay and relative delay of cell-cycles perturbed by osmotic stress
compared to pre-stress conditions. In contrast to the indicative values from literature in Table 2, we
find the effect of stress to be the most important when occurring in the late G1, early S phase.

3 \We round the estimates of cell cycles phases to be 20 min, 40 min, 40 min (G1, S, G2/M phases respectively)

for mother cells and 60 min, 40 min, 40 min for daughter cells.
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Figure 66 - Impact of cell cycle position upon osmotic stress induced cell cycle
delay.

d. Lock-in phenomenon

When a naturally oscillating dynamical system is perturbed with a periodic input, lock-in
phenomenon can appear. Lock-in happens when the oscillating system frequency and phase (with a
possible lag) will progressively change to match those imposed by the external stimulus. The cell
cycle is obviously a natural oscillator. Since osmotic stress can delay the cell cycle, we can expect a
population of initially desynchronized cells to be forced into synchrony by applying a regular pattern
of stress.

In Figure 67 we show that the division rate of a population of cells oscillates in phase with a
periodic stimulation with 1M sorbitol having a period (90 min) close to the cell cycle duration. We
used a strain bearing a nuclear tag and window-based methods (see Il.3.a) to estimate the
instantaneous population division rate (black thin curve in Figure 67). We smooth this noisy'** curve
using a sliding window averaging method where the smoothed signal at time t is the geometric
average of the signal over a symmetric time window of 54 min centered on t. Once smoothed once
or twice (green dotted and black thick line respectively in Figure 67) we can observe that indeed, in a
fluctuating environment, cells at least partially synchronize and that they tend to divide less in high
osmolarity as expected.

% We see that with time, the instantaneous division rate becomes less noisy. This is because as our fields of

views fill with more cells more divisions occur at each frame.
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Figure 67 - Time evolution of the division rate of a population stimulated by periodic osmotic stress (1M sorbitol) with a
period of 90 min. Osmolarity within a period is 1M sorbitol for half the period (red pulses) and OM sorbitol for the
remainder. Data from experiment 180214.

Note that here we used a geometric average because instantaneous division rates are
subjected to compounding (like interests) and using a geometric mean produces an equivalent
division rate over a given time period (the effective difference with an arithmetic average being more
pronounced as many frames are averaged).

In Figure 67 we show synchronization occurring with an input frequency which is fairly close to
the natural division rate of mother cells in a standard culture medium. Smoothed rates improve the
visualization of such phenomena, yet given the sampling time, it makes it difficult to assess properly
the importance of the lock-in in terms of amplitude of the forced oscillations. When we look at the
unsmoothed division rate at late time points, we see that the amplitude of forced oscillations is far
larger than for the smoothed curve and that in the middle of the hyperosmotic period, division is
almost zero.

In order to quantify the amplitude of lock-in, we performed a spectral analysis (using fft, fast
Fourier transform) of the raw instantaneous division rate of cells subjected to periodic hyperosmotic
stress with different frequencies'™. To compare spectra across different conditions having different
average division rates, we centered and scaled the raw signal. Because the average division rate can
change slowly during an experiment (an evolution we do not want to capture in this lock-in analysis),
we used a 114 min geometric averaging sliding window smoothed division rate for normalization. So

Al experiments were carried in microfluidic devices, using strain yPH15 with 2% glucose SC medium with or

without 1M sorbitol. Applying an input with period T means that after a resting period of 1 to 2h, cells are
repeatedly in hyperosmotic medium during T/2 and in isotonic medium during T/2 for 10 to 20h.
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the signal used in fft is the relative variation of the instantaneous division rate compared to the slow
time-averaged division rate. Resulting power spectrum densities are reported in Figure 68.
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Figure 68 - Power spectrum density of the instantaneous population division for different experiments where cells are
subjected to periodical hyperosmotic stress with different, fixed frequencies. For each panel, the osmotic stress input
period is indicated in top right corner and the corresponding frequency in indicated by a solid red line. Note that scales
are different across panels. See text for details.

Observing the frequency content of division rate, we observed that in unstimulated growth
(top left panel in Figure 68) only residual frequencies are present (note the 107 factor for the power)
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with a relative peak corresponding to twice the sampling frequency (a common sampling artifact).
This serves as a baseline of the spectral noise we can expect in absence of any stress. It should be
noted that as we consider here the overall division rate of a non-synchronized population, we cannot
expect to find more than traces of the natural cell cycle frequency.

As it is clearly visible in all conditions the population division rate spectrum shows a significant
peak at the input frequency (red lines in Figure 68). This indicates that there is always some
synchronization occurring. Yet, in terms of absolute power, we see that the peak corresponding to
the input frequency does not carry the same power across conditions as represented by the
histogram in Figure 69.

Not only we observe a peak at the input frequency in the spectra of Figure 68, but we can
often observe smaller peaks regularly spaced in the spectrum. It appears that in some case, these
secondary peaks correspond to harmonics of the input frequency (this is particularly clear for T=60
min in Figure 68). Such harmonics are probably the signature of a shape closer to a triangle or a
square signal than a sinewave as qualitatively visible at late time points in Figure 67.
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Figure 69 - Spectral power of the input frequency for different periodic stress experiments. The red thin
line represents the maximal power recorded in an experiment with no stress and serves as a baseline.

As it could be expected, we see that lock-in is the most efficient when we try to synchronize
cells at a frequency close to the natural division time. Yet it is surprising to see that at T=180 min the
synchronization factor is even smaller than for high frequencies. Future experiments mapping
intermediate periods between 60 and 180 min could allow us to determine if we can achieve even
higher lock-in and find the resonance spectrum of division oscillations. At last, performing a single cell
analysis will make it possible to quantify to what extent lock-in is due to changes in cell cycle
durations or to synchronization of cell cycles among cells.
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3. The impact of osmotic stress on metabolism

a. Metabolism shifts upon osmotic stress

In hyperosmotic conditions, cells produce glycerol from Dihydroxyacetone phosphate (DHAP)
in a two-steps reaction, catalyzed by two pairs of isoenzymes, Gpd1/2 and Gpp1/2 as we can observe
on the simplified sketch in Figure 70. This implies that glycerol production affects the pool of
intermediary metabolites used for energy production via the TCA cycle.

Glucose

|

Fructose-6-P ) Fructose-2,6-BP

6-phosphofructo-
l 2-kinase (Pfk2)

Fructose-1,6-BP

h NADH  NAD* P,

Glyreraldehyde Dihydroxyacetone Glycerol-3-phosphate
3-phosphate (GAP) W |\ ohate (DHAP) ™ " Gy Corol.3.P) A Glycerol

l Glycerol-3-phosphate Glycerol-3-phosphate
dehydrogenase phosphatase
l (Gpd1/Gpd2) (Gpp1/Gpp2)
pyruvate
TCA cycle

Figure 70 - Simplified sketch representing the relation of glycerol production with the central carbon metabolism in S.
cerevisiae. Enzymes in red are activated by the HOG pathway. Figure adapted from (62)

When growing in isotonic conditions, yeast cells produce glycerol at a non-negligible basal rate
(which serves several purposes such as maintaining the Redox balance of the cell). As it was already
mentioned, the genes GPD1, GPP1 and GPP2 are up-regulated under osmotic stress (112). It was
reported that Gpp1/Gpp2 is not rate limiting in glycerol synthesis (113) and therefore, expression of
GPD1/GPD2 has a more direct impact on cell’s adaptation ability. GPD1 plays a major role under
aerobic conditions while GPD2 is required and produced in absence of oxygen (113). In addition
unlike GPD2, GPD1 is induced by Hog1.

Yet, the transcriptional regulation of glycerol producing enzymes is not responsible for cell
adaptation to moderately high osmotic stress (such as those we use here). In fact, although the
precise mechanisms are still unclear, it appears that following an osmotic stress, enzymatic activity of
glycerol producing enzymes can be increased rapidly (61). In addition to the changes directly related
to glycerol production, it appears that osmolarity affects several metabolic routes (61), for instance
through the activation of Pfk2 which produces fructose-2,6-biphosphate, affecting rapidly the whole
carbon metabolism activity (62).

Page | 131



Effects of repeated osmotic stress on gene expression and growth

Here we are primarily concerned with the impact of repeated osmotic stress on proliferation;
therefore, we focus on the metabolic aspects which affect growth. Because proliferation and
adaptation both use the same resource (glucose and its derivatives), cells under osmotic stress
harbor a competition for it between energy production and growth on the one hand and glycerol
production on the other hand.

We propose to adopt an economics kind of view of the impact of osmolarity on metabolism.
We see hyper-osmotic conditions as imposing a supplementary cost (in terms of glucose mainly, but
also in terms of energy) to the basal cost of producing a newborn cell. This cost can be broken down
into a fixed cost (i.e. a cost a cell has to pay regardless of its proliferation) and a variable cost (which
is related to producing cells in a hyperosmotic environment). These costs will be reflected in the
growth yield of populations in terms of number of cells produced per amount of glucose.
Superimposed on this cost aspect is the consideration of flows. In a given environmental condition,
the uptake rate of glucose and the rate of production of glycerol and energy are bounded.
Considering that in absence of stress cells maximize their proliferation, we can expect that taping
into carbon sources for glycerol production will have a similar effect as having less glucose available:
it will diminish growth and division rate.

b. Quantifying adaptation variable cost

Previous work used chemostat cultures with various salt (NaCl) concentrations to determine
the cost associated to sustain growth in hyperosmotic conditions (141). They found that the total
energetic surplus required for growth in hyperosmotic conditions (0.9 M NaCl) ranged from 28% to
51% of the energetic cost for growth in iso-osmotic medium. In addition, this cost was found to
depend on the dilution rate. This cost accounted for both maintenance of cells (what we call a fixed
cost) and growth (what we call a variable cost).

In this section, we report experiments aiming at measuring the complete cost of growth in
hyperosmotic conditions. Therefore, we are interested in the yield as measured in number of cells
produced per quantity of glucose present™®. In order to quantify this cost, depending on the glucose
concentration and the osmotic level, we conducted several batch experiments.

Yeast cells (yPH15) from a fresh YPD plate were grown'” in liquid cultures containing various
glucose and sorbitol concentrations for 48h and the final OD600 was measured'*® as reported in the
table below.

18 Note that this definition of the yield differs from another common definition as the ratio of dry mass of cell

produced to the mass of glucose.

7 cells were grown aerobically in 3mL at 30°C in a shaking incubator at 250 rpm. Cells were coming from the
same YPD plate but not always from the same colony. Nevertheless, the original plate was streaked directly
from an isogenic frozen stock of the yPH15 strain.

"% OD600 was measured in 1mL cuvettes using A SmartSpec Plus spectrometer (BioRad). For each condition,
blank was made using the corresponding medium. For OD600 > 0.8 dilutions using the corresponding medium
were performed so as to achieve an actual measure below 0.8 on which the dilution factor was applied to find
the actual OD600.
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Saturation OD600
9,94 8,66 6,63 3,58 3,16
8,39 7,69 6,76 4,37 3,66
3,60 3,15 3,00 2,57 0,71
0,67 0,67 0,63 0,65 0,22
Figure 72 - Final OD600 for various glucose and sorbitol concentrations. Cultures started from a fresh
YPD plate.

0D600 is a common proxy for cell density. Therefore, a proxy for the total yield of the batch
culture can be obtained by dividing the final OD600 by the corresponding glucose concentration*®

Yield (OD600 / glucose %)
4,97 4,33 3,32 1,79 1,58
8,39 7,69 6,76 4,37 3,66
36,04 31,46 29,99 25,67 7,15
66,93 66,93 62,76 64,71 21,78

Figure 71 - Yield for batch cultures with various glucose and sorbitol concentrations. Cultures started
from a fresh YPD plate.

We note that whatever the glucose concentration is, yield decreases with increasing sorbitol
levels. Moreover, as we can see in Figure 73, the average drop in yield due to an osmolarity of 1.8M
sorbitol (more or less comparable to 0.9M NaCl) relative to the same glucose concentration without
sorbitol is approximately 60% which is comparable to the 28% to 51% overcost measured in (141).

Effect of sorbitol on yield differs with glucose concentration
120%
2
5 100% - =4—2% Glucose
g
< 80%
E ’ == 1% Glucose
o
5 60%
@ 0.1% Glucose
£ 40%
2 ——0.01% Glucose
T 20%
=
0% == Average for all glucose
0 0,5 1 1,5 2 concentration
Sorbitol concentration (M)

Figure 73 - Yield (in OD600/ glucose concentration) relative to the yield without
sorbitol for cultures started from plate.

In this first experiment, we started cultures from plated colony of yeast that were not adapted
to any of these specific growing conditions. When using the saturated cultures as inoculum for

' Yield as measured in batch is not the same as in chemostats with the same glucose and sorbitol

concentration. This is because as the cells consume glucose, the exterior concentration in glucose drops.
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another experiment (therefore starting effectively from pre adapted cells) the results were similar
yet, to the exception of very low glucose concentration, more consistent across glucose
concentration as shown in Figure 74.

Effect of sorbitol on yield differs with glucose concentration
120%

100%

——2% Glucose

80%

—— 1% Glucose
60%
0.1% Glucose
40%

20% ====0.01% Glucose

Yiel relative to to OM Sorbitol

0%

—f==Average for all glucose
0 0,5 1 1,5 2 concentration

-20%

Sorbitol concentration (M)

Figure 74 - Yield (in OD600/ glucose concentration) relative to the yield without
sorbitol for cultures started from pre adapted cells. Note that in this case, the
average does not take into account the 0.01% Glucose condition which displays
a marked difference from the other conditions.

For this second experiment, the relative decrease in yield due to osmolarity looks more linear.
This is coherent with a simple model were growing in high osmolarity requires to produce glycerol as
to match the external osmolarity, thereby having a linear increase in the cost with the external
sorbitol concentration. Surprisingly, the overall yield reduction is more pronounced in these cultures
of pre adapted cells that in those starting from plated colony.

As a conclusion, we can therefore summarize these results by stating that each extra molarity
of sorbitol in the medium increases the cost in glucose of making a new cell by 45%. Unlike the
120 than that
reported in (141). Concerning the deviation of the results for very low concentrations of glucose

previous experiment using non adapted inoculum, we find this value to be larger

(0.01%), this may result from either:

* The fact that the experimental conditions were inappropriate for such low proliferation.
Since absorbance is very low, technical error in determining OD600 is more pronounced. The
time span of the experiment may be too short or evaporation of water from medium non
negligible any longer before the low concentration of cells.

* Because at these concentration, growth rely mostly on respiration, which is much more
efficient than fermentation. Therefore, the cost of growing in sorbitol is less pronounced.

Another question concerns the impact of growing in hyperosmotic medium on the
proliferation speed as measured by the division rate. Determination of growth rate in batch cultures
proved difficult when measuring OD600 by hand at regular time points because all conditions display
different growth kinetics.

120 By assuming the osmotic potential of NaCl is twice that of Sorbitol (which is not accurate since some Na+
enters the cell) 0.9M NaCl would correspond to 1.8M Sorbitol. At this concentration we find the yield to be
reduced by 80% and not 28 to 51%.
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Previous data from the lab, acquired with an automated plate reader, give the following
impact of osmolarity on OD600 doubling rate in batch (Figure 75).
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Figure 75 - Impact of increasing external sorbitol concentration on growth kinetics
(OD600 doubling rate) in SC medium with 2% glucose. Data from P. Hersen.

It seems that growing in a hyperosmotic environment imposes a fixed diminution in growth
rate (which corresponds to a 45% decrease with respect to a condition without sorbitol) on top of
which we witness an additional diminution which seems linear with respect to the external
osmolarity. Fitting the linear part (i.e. not taking into account the fixed drop) of the curve in Figure 75
yields that the diminution in growth rate per added molal of sorbitol represents 25% of the growth
rate without sorbitol and 46% of the growth rate in 0.2M sorbitol.

Compared to the impact of external sorbitol on yield, the impact on growth rate has a fixed
and a variable component. The fixed drop in growth rate upon addition of sorbitol might reflect a
gualitative change in growth regime whereas the linear decrease with increasing osmolarity reveals a
guantitative change.

We estimated the decrease in yield to be of 45% per extra molal of sorbitol (as quantified in
number of cell per quantity of glucose) which matches the proportional decrease of growth rate. This
seems to indicate that there is a bottle neck upstream of glycerol production which imposes a
slowdown in cellular growth related to the fact that a part of imported glucose is used for glycerol
production.
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c. Quantifying acclimation costs of osmotic fluctuation

As we saw previously in this chapter, several factors affect proliferation in repeated stressful
environments. In Figure 76 we give a sketch view of the timing which different phenomena can
occur, along with notations.

Timing notations
T
< »
i »
Ton
>

Metabolic costs . | . | . |

<
Ta Thurden

Cell cycle arrests - | - | - |

<>
Tc

T:Shock period Ta: Acclimation time Tc: Cell cycle stop time
Ton : High osmolarity duration ~ Thurden : Burdened growth time

Figure 76 - Notations for the impact of repeated osmotic stress on proliferation.

Upon an osmotic upshift, cells adapt by producing glycerol. This is represented by Ta in Figure
76 and imposes the metabolic cost of glycerol production along with the cost of signaling and
modifying cellular physiology. The actual cost of acclimation in terms of energy and glucose is
unknown. Once acclimated, cells continue to produce glycerol in order to support growth required
for proliferation which will come at an additional cost for as long as the environment is
hyperosmotic. This means that during Tburden the cost of producing a cell is ~45% larger than in
normal conditions. Once back in isotonic medium (at the end of Ton), nearly all the accumulated
glycerol leaks out of cells and is washed away. This resets the glycerol pool to its normal levels. As we
saw, cell-cycle can be delayed in several points by 40 to 50 min in average, this delay is noted Tc and
in practice is variable among cells and depends on the cell-cycle phase cells are in at the onset of
stress. After this delay, the cell-cycle resumes.

We performed several experiments were we subjected cells to symmetric fluctuations of stress
(Ton=T/2) at 1 M sorbitol. We varied systematically the frequency of stress (i.e. the duration of T) and
the available concentration of glucose in the media. We measured the average division rate in the
population (computed as the geometric mean of instantaneous division rates like what was
presented in IV.2.d and report the results in Figure 77. For a given concentration of glucose, changing
the frequency of stress does not change the proportion of time which is spent in hyperosmotic
medium. Therefore, the marked changes we observed when the input frequency varies are related to
transition effects: cell cycle time delay and acclimation cost. As we see in Figure 77, transition effects
can become very important as the fluctuation frequency of the environment increases.
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Figure 77 - Average population division rate for different concentrations of glucose and different
stress frequencies. Base lines for each glucose concentration correspond to the division rate in
absence of stress.

As stress frequency increases, a cell will undergo more osmolarity transitions per cell-cycle.
This will imply a higher acclimation cost per cycle as well as more cell cycle delays per division time.
In terms of division rate, both acclimation costs and molecular delay mechanisms contribute in
making each division longer. For as long as a cell is not acclimated, Hogl is active and continuously
triggers cell cycle arrest mechanisms. The effective delay we expect is equal to Tc for sufficiently
small Ta and becomes Tc+Ta when acclimation becomes comparable or larger than Tc.

By normalizing the division rates reported in Figure 77 and plotting them in function of stress
frequency rather than stress period we observe an apparently linear (affine) relationship of the
average division rate with stress frequency as visible in Figure 78. We try to propose an
interpretation of such linear relation in the following manner:

We note T, the effective delay induced by one osmotic transition, Ts the average division time under
stress and T, the average division time without stress. If a cell had a division time of Ty, it would

experience in average ?" periods of stress during its cell cycle. In consequence it would experience a

complete delay of%.Te and therefore we would have: Ts = Ty + %.Te

. 1 . . . T
Noting f = ;the stress frequency we can rewrite this relation as T—S =14+T,.f
0

Therefore we can interpret the slope of Figure 78 as T,. Performing linear fits yields the following
values:
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* For 2% glucose we have ;—S =0.86+33.f
0
*  For0.1% glucose, we have ? =099+35.f
0

*  For0.01% glucose we have = = 1.0 + 227.f
0

It therefore appears that for 2% and 0.1% glucose we have a very similar effective delay of ~35
min whereas the lower glucose condition gives a much more important delay of nearly 4 h. Because
the mechanisms behind cell cycle arrests are unlikely to depend importantly on the glucose
availability, a plausible interpretation would be that when glucose is abundant enough, delays in the
cell cycle are the main cause of replication slowdown whereas at lower glucose concentrations,
acclimation costs becomes more and more important.
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Figure 78 — Ratio of the average population division rate in absence of stress to the average population
division rate for different concentrations of glucose and different stress frequencies. A frequency of 0
means no stress.

A surprising aspect of the proposed interpretation of the linear relationships visible in Figure
78 which yields the effective delay T, is that it makes sense as a delay for the number of fluctuations
a cell would have received if it had a normal division rate (i.e. as in absence of stress) whereas in
reality a cell will experience more fluctuations because its average division time is longer. Yet

deriving relations using the effective number of fluctuations (?S) yields equations which do not match

the shapes we observe in Figure 78.

The effective delay that we find is also surprisingly smaller than the average delay in cell cycle
upon osmotic stress. This corroborates the surprising fact that we indeed record non negligible
division rates for stress periods smaller than the average delay in cycle upon osmotic stress at 2%
glucose (~50 min). This indicates than under severe repeated stress, a population of cell is capable of
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adaptation which somehow either shortens the cell-cycle delays happening during a single stress
event or that they somehow bypass these cell cycle arrests. Partial synchronization of division with
stress fluctuations (as shown in IV.2.d) could be part of the answer, with cells progressively adapting
their cell cycle so stress occurs in parts of their cycle which is more stress tolerant (or at least
deprived of cell arrest mechanism). Another putative explanation would be that cells having slowed
down their cell-cycles are less susceptible to cell-cycle arrest.
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4. Conclusion: The impact of osmotic stress on colony growth
dynamics

In this chapter we presented an original approach to characterize the impact of repeated
osmotic stress on proliferation. Again the use of dynamic inputs and single-cell longitudinal data
proved instrumental to our quantifications. After having reviewed the mechanisms which were
known to impact proliferation in relation with osmotic stress we presented several experiments and
analysis which aimed at providing temporal quantifications of the processes thereof. Concerning the
impact of osmotic stress on the cell-cycle, we observed anomalies occurring at the M phase which
had not been reported previously and characterized their occurrence. We used in-silico
synchronization of single-cell data a posteriori to measure cell-cycle arrest without employing
potentially harmful and therefore artifact-prone biological synchronization techniques. We
characterized the synchronization of cell cycles within a population which occurs under periodic
osmotic stress using a spectral analysis of population instantaneous division rates. We considered the
major metabolic changes which occur under osmotic stress and which impacts proliferation both in
terms of yield and division rate. Focusing on the economic aspect of proliferation, we considered the
variable cost of growth in hyperosmotic environments (related to growth and division rates)
performing growth rate and yield experiments in batch. We then studied the transitory cost of
adapting to changing osmolarity and found a dependence of the average division time upon
fluctuation frequency which is congruent with a constant cost per fluctuation. Importantly, our data
indicates that this transient cost can be affected by glucose availability.

These findings require further experiments and analysis to obtain a more complete
understanding of the quantitative impact of repeated osmotic stress on proliferation. In the months
to come, we will complete the picture we have sketched here using quantification of single-cell
growth in terms of volume which is a missing piece to understand proliferation as a whole. This
addition will allow us to have a minimal working model of proliferation at the single-cell level. This
will therefore allow us to assess cell-to-cell variability regarding proliferation in a more coherent
manner. Because the effects of metabolic changes and cell cycle arrest can sometimes superimpose
one on each other, using mutants or reporters of cell cycle or metabolic activity could provide an
additional mean to dissect variability and model it properly. For instance, the amount of Gpd1 is
expected to play a significant role in the metabolic part and the localization of Whi5 can serve as a
readout of the passage through Start.

Proposing an analytical framework summarizing the impact of repeated stress at the single cell
level is a challenging task and we are currently considering several possible paradigms. To put it
simply, we can start from data and build up a mathematical framework from it or start from available
knowledge and use data to adapt and validate its representation as a mathematical model. In the
first approach, we would primarily use empirically extracted relationships between our control
parameters and observables. This physicist approach has the obvious advantage of providing a
compact representation of the information actually present in our data. Nevertheless, we are
ultimately interested in relating our observations to the biological knowledge which is available on
proliferation and osmotic stress response. In this respect, the difficulty comes in the a posteriori
biological interpretation of empirical relationships.
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Employing the alternative strategy consists in building a mathematical model of the available
knowledge which is then fitted to available data. Yet, in such an approach, and given the known
complexity of osmotic stress response, growth and cell cycle regulation, we expect severe non-
identifiability issues to diminish our confidence in interpreting parameters and predictions. Yet
having a model at hand allows data-based model selection techniques along with informed
experimental design aiming at improving parameter identifiability overall.

This dichotomy between data-based or knowledge-based mathematical modelling is classic in
systems biology. In the problem at hands here, it is the interplay between several already complex
processes which is our focus. Recent years have seen several attempts at building whole cell models
which have the principal advantage of explicitly accounting for such interplay between biological
processes. At first, whole cell models seem the extreme version of the knowledge based analytical
approach (142). Yet compact whole cell models have also been recently developed which indeed
focus on the interplay between processes and abstract most details of any singular biological
mechanism (5). In our case, we aim at completing and quantifying known mechanisms on the
interplay between repeated stress and growth. Therefore, available whole cell models are not
completely adapted. An interesting strategy could be to use a simple enough abstract whole cell
model as a basis to regenerate empirically inferred relationships between control parameters and
observables.

Whole cell models make utter sense when applied to single-cell data which leaves the question
of representing cellular individuality with whole cell models. Although we can envision to use mixed
effect approaches on concise enough whole cell models, this would only including static individuality
(i.e. pre-existing differences between cells). As we saw, the increase in cell cycle time under repeated
stress is globally regular in its dependence with the frequency of stress. Yet our data on single
transient stress show that what happens in repeated stress is not a simple repetition of a single event
(otherwise proliferation should be stopped at high enough frequencies, regardless of the glucose
concentration). This is possibly indicative of an adaptation mechanism which changes the cell
response over time. This in turns might require taking into account time-changing physiology and
cellular context on top of the already mentioned individuality.

Nevertheless, our present experimental system may provide insufficient data for a systematic
investigation of single-cell individuality dynamics. At some point we need information on how a given
cell (in terms of individuality) with a particular history will respond to different environment
stimulations. The finer our characterization of cellular individuality, the lesser cells representing each
possible case will be observed during a given experiment. Although we observe hundreds of cells
over hours, the complete space representing dynamic cellular identity will not be efficiently sampled
during fixed experiments. In the following conclusive chapter, we will discuss current possibilities and
perspectives concerning real-time, automated, experimental design. The broad array of experimental
techniques identified behind such appellation may provide much more adapted tools for the study of
dynamic cellular identity.
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V.Perspectives and final discussion

Although isogenic single cells host identical processes, intrinsic randomness in some reactions
implies that different cells harbor different realizations of a given process. In addition, cells
themselves constitute distinct cellular contexts which will in turn lead to extrinsic, cell-to-cell
variability in processes’ parameters (which increases the variability of processes outcomes). Even
when cell-to-cell variability is not of interest, the fine understanding of biological processes generally
requires taking into account variability in time and across a population. Simply neglecting variability
by reasoning on virtual average cell for instance can introduce systematic bias in quantitative
estimation and diminish experimental reproducibility.

A systematic comprehension of dynamical processes which are embedded in a single-cell
context could benefit several research areas. A quantitative representation of cellular variability is of
high interest for embryology, research on cancer or personalized medicine. In addition, physical
limitations and finite resource allocations constrain the cellular context and impose indirect
interactions among cellular elements which would otherwise be independents. Such aspects of
cellular economics are of high interest for synthetic biology which faces important issues related to
orthogonality or modularity of genetic constructs as well as for bioengineering concerning bio-
production scaling.

Conducting systems biology at the single-cell level raises specific theoretical and experimental
challenges. Compared to aliquots or petri dishes, the physical scale which is imposed by single cell
experimentation requires very precise and sensitive technology. Other differences include the fact
that whereas for populations, experiments in aliquots allow the use of destructive measurements
repeatedly over time, this cannot be done to resolve single cell dynamics. Hopefully, recent progress
in instrumentation makes single cells accessible to more and more measurement techniques.

The variable nature of cells induces a profound difference with regular population studies. This
is particularly challenging when studying dynamical processes. From a theoretical perspective, we
already mentioned many open questions related to cellular differences. In particular, the articulation
of intrinsic and extrinsic variability, the notion of identity which can be associated to stable
differences between cells and the many interplay and feedbacks between environment, cellular
processes and cellular context all require particular analytical frameworks.

1. Experimental pipelines for systems biology at the single-cell
level

To investigate dynamic processes at the single-cell level, non-destructive experimental
methods are necessary. In this respect, fluorescence microscopy is a tool of choice but limits
importantly the number of components which can be measured at the same time. Because biological
phenomena are usually subject to a large number of interactions, we need to accommodate with
partial observations of the complete state of the system. Under traditional modelling assumptions
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(i.e. a population made of identical cells), this situation already leads to difficult identifiability issues.
As cellular variability is taken into account, the scarcity of observations compared to the required
amount of information becomes even more pronounced.

The issue of building a representative sample

In its simplest form, variability is accounted by a number of discreet cell types. As we describe
variability in more details, for example considering multi-factorial or continuous differences, the set
of possible cell types becomes larger.

While it is possible to use the variability naturally present in a population of cells in order to
acquire data on different cell types during a single experiment, increasing the number of criteria
defining cellular individuality will decrease the probability to find enough cells of each type during a
single experiment. In chapter lll, variability between cells was represented with few parameters.
Performing a single experiment on many cells at the same time and obtaining simultaneously
hundreds of single-cell trajectories was therefore sufficient to capture variability.

Yet, the individuality of cells was assumed to be fixed over time. When it comes to the study of
the dynamics of the cellular context itself, such as in chapter IV, this experimental procedure is
insufficient. In fact, if the past stimulations or the particular history of a cell needs to be taken into
account into the cell identity, the effective space of cells to sample becomes larger. Simply taking the
population of cells present at the beginning of an experiment may not represent a proper sampling
of the space of possible cellular context anymore.

Therefore, as we use more refined definitions of cellular individuality, selecting a sample of
cells becomes less trivial and careful attention must be paid to it. Depending on the question at hand,
using several cohorts of cells having the same age can be relevant whereas in other cases each
cohort should be composed of cells of different age in the same proportion as the age pyramid of the
complete population.

Given the experimental constrains imposed by dynamical, single-cell measurements we
propose three prospective directions to build more informative datasets:

Improving measurements

For the dynamical study of gene expression, being able to measure proteins and mRNA at the
same time (using a system like MS2 or Spinach) would provide very valuable information compared
to proteins only. Such an approach has been recently demonstrated in E. coli (143) and my lab is part
of a collaborative project aiming at implementing such a system in yeast.

Another type of strategy would be to perform a traditional dynamic experiment which would
be followed by a genome-wide (destructive) measurement in-situ (or at least such that we are able
to keep track of dynamic and genome-wide measurements concerning the same cell. Advanced
microfluidic chips developed in my group would normally allow recovering cells chamber by chamber
at the end of an experiment. It may be possible to adapt its design so as to recover only one cell per
chamber.
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Improving perturbations

Throughout this project, we used time-varying stimulations as a tool of choice to obtain
informative data on single-cell dynamics. This is made possible thanks to custom microfluidic chips
and valves. Yet, all cells in a chamber were always subjected to the same perturbation.

Optogenetics are molecular systems which respond to light. When illuminated with specific
wavelengths, some proteins can change their conformation and perform functions (144). For
instance, it is possible to trigger the binding of two distinct protein domains in a fast and reversible
manner. This allows controlling the cellular localization of a protein (using one domain as an anchor
and the other as a target)(145). Such system has been adapted to create light-inducible promoters
(56). Although optogenetic systems already constitute interesting induction tools when used globally
under the microscope (i.e. sending the same illumination all over the sample), it is the possibility to
exert single-cell inductions which is the most salient feature of these molecular tools.

In fact, by projecting light patterns through the microscope objective directly on the sample, it
is possible to induce single-cells independently (145, 146). Commercial systems allowing single-cell
optogenetic stimulation are both expensive and usually run on proprietary software which cannot be
programmed. This is an issue when it comes to integrating this tool within an experimental pipeline.
During this thesis, | developed an Open Source illumination system which plugs into the microscope
and allows single-cell illumination with a higher projection resolution than commercial solutions, and
for less than a tenth of the commercial price. This project is described in more details in Annex 8.

Improving experiments

In the presented project, we used random or periodic osmotic stimulations to obtain
informative data. Complex systems are often composed of interconnected sub-systems which have
distinct response frequencies. In the case of the response to osmotic stress, we know that the
physical response (i.e. loss of water, loss of volume) is relatively fast and therefore will faithfully
follow repeated osmotic stress even at high frequency. Signal’s transduction by the HOG pathway or
nuclear localization of Hogl both have slower kinetics, acting as integrators at high frequencies.
Finally, transcription has even slower typical time (55). Therefore, by applying various frequencies, it
is often possible to disentangle various interconnected sub-processes. Yet, such separation of time
scales is not always possible. Here we present three more general options aiming at increasing the
information content of experiments based on dynamic stimulation.

Option 1: conditional experiment

In a conditional experiment, microscopy data is continuously analyzed during the experiment.
At each time step, we test a predefined condition based on the data and trigger a predetermined
experimental sequence when the condition is valid. This approach is particularly interesting when we
study time-changing properties. For instance, in order to assess more precisely the timing of cell-
cycle arrests upon repeated hyperosmotic stress, we could want to stress repeatedly a target cell
when it is entering the G1 phase. At each time frame, image analysis is performed automatically and
the computer determines if the target cell is entering G1 and controls osmolarity if necessary.
Because such experiment would only provide data for one cell, it might be convenient to use highly
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parallel microfluidic systems with on-chip valve systems and allowing independent control of each
culture chambers.

Option 2: Optimal experimental design

Given some initial information on a biological system, along with a defined objective (e.g.
estimating the parameters of a model of the system, being able to perform the best predictions of a
given situation etc.), it is possible to optimize the choice of experiments to be conducted. Optimal
Experimental Design (OED) is particularly useful when the system under study is already partially
characterized as it can only leverage on available knowledge. There are several traditional
approaches to OED which differ in the category of models they can handle, the way they predict and
define the utility of an experiment (e.g. using the Fisher information Matrix, using entropy etc.) and
the optimization technique used to sample the space of experiments (pure Monte Carlo, biased
searches, using heuristic algorithms etc.). In addition to some prior information, one should provide a
model of the impact of an experiment. For example, a gene deletion is modeled by fixing the
according gene expression rate to 0.

OED is particularly relevant to reverse engineer complex networks of interacting elements for
which humans cannot take into account all the expectable consequences of a given perturbation or
measurement. Prior to my thesis, | worked on the development of such an algorithm for the
estimation of parameters of dynamic models of GRN in the idea of the DREAM 6 and DREAM 7
challenges. The proposed method is original in the fact that unlike many algorithms which base their
optimization of experiments on their current best estimate, we designed our algorithm in order to
take uncertainty on the system into account explicitly. Also, the proposed method represents OED as
a game and adapted one of the most performant algorithm for the game of Go (based on active
learning and Monte Carlo Tree Search) (147). Although it was designed for taking uncertainty into
account, this algorithm could also be used with populations or single-cell data using as prior
information parameter distributions given by mixed effect model estimations. The application of a
different OED method on real experimental data proved the ability of such methods to exhibit
complex and highly informative patterns of temporal stimulation which would never have been
designed by men (148).

Option 3: Real time control

A last option consists is performing real-time control of a part or of the whole process.
Controlling a cellular process is not necessarily informative per se, yet it can be used to drive cells
towards a state of interest. The possibility to use the HOG pathway for real time control of gene
expression has been demonstrated by my research group (86) and a similar control approach was
used in (149) with optogenetic inducible systems in batch.

In the context of single-cell systems biology, real-time control can play an important role in
ensuring that cells are in the desired state before another experiment would begin. In a way, real
time control is a fusion of conditional experiments (where experimental decision is computed in real
time) and OED since in some cases performing control requires some optimization on the space of
possible experiments.
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Real-time control, like conditional experiments, requires real-time, autonomous and reliable
analysis and decision making algorithms along with microscopy synchronization and stimulation
pilotage. This is made much easier when each of the bricks composing such experimental pipeline
has been developed in a modular way and is well documented. Although some commercial software
is of very good quality, commercial solutions are most of the time impossible to customize or adapt
and cannot be integrated in an experimental pipeline. Usually, Open Source solution exist for the
same application, for instance we can quote Micro-Manager, a free software driving our
microscopes. The main interest of open source software is not that these are free, but rather that
they benefit from modifications, bug fixes, tutorials and customizable plugins by a community of
users. At last, they usually include options making integration in custom experimental platforms
easier.

Obviously, performing simultaneously the control of single-cell in real time using optogenetics
allows not only to drive one or a few cells in a target state, but to control a whole population of cells.
Such experimental system would allow hypothesis-driven experimentation of processes subjected to
population effects.

2. Cellular variability and context

Cellular economics

As it was exposed throughout this thesis, many cellular processes can be assumed to depend
upon a certain cellular context. Elements of context may be chemical, physical of even geometric
features of a cell which are relevant to biological processes. Cellular context can also be affected by
the history of a cell. From a given process perspective, the cellular context also includes effects
coming from physical and economical limits. Cellular resources present in limited supply needs to be
shared between all processes.

Performing direct quantification of available resources would be very informative but is quite
challenging. An important aspect in cellular resource allocation concerns the difference between
global fluxes, turnover rates and intermediary stocks. In fact, as it was mentioned, most pools of key
metabolites are renewed extremely rapidly (BNID 109701). Quantifying the level of ATP in a given cell
(or population of cell) would not be very indicative of the actual power which could be generated. If a
reporter system was to draw too much of the resource itself, the measuring probe would
significantly affect the measured value. Conversely, if this hypothetical probe did only withdraw
slight amounts of resource, it would only allow titrating the resource carrier and not the available
power.

We studied the impact of repeated osmotic stress on cell cycle and growth. Using periodic
osmotic stress, we found that proliferation is affected by stress frequency in a glucose availability
manner. Repeated stress accumulates transient metabolic costs and makes it possible to measure its
impact. Assuming that single cells maximize their growth rate, the drop in growth due to repeated
stress is therefore directly related to the burden we apply. Overall, this allows measuring what a
fluctuation cost is.

Page | 147



Effects of repeated osmotic stress on gene expression and growth

Given the magnitude with which osmotic stress impacts cellular activity, we wonder if part of
the stress response could be related to economic considerations, in particular carbon and NADH
sudden depletion related to glycerol production.

Some studies have been able to demonstrate precise resource limitations for specific
processes in specific contexts (7, 150). Such hypothesis driven investigation allow identifying
conservation laws operating in precise conditions. In order to capture the more general constrains
imposed by the cellular context upon biological processes and conversely, the participation of
processes to defining the cellular context, parsimonious whole cell models are instrumental. As many
different cellular elements are in limited supply, we expect different shared resources to become
limiting depending on the moment and the process at play. From specific conservation and
economical mechanisms, whole cell models may help identifying more general conservation laws (5).

A particular consequence of cellular economics is that sharing resources somehow creates a
flow of reciprocal information between processes which would otherwise be independent. To what
extent this reciprocal information is exploited by processes in place of direct coordination
mechanism? Can such market-based information be selected by evolution? What are the systematic
characteristics of such indirect regulations compared to direct mechanisms? Can cells evolve new
limiting elements mainly as a mean to impose a new regulation? What would be the consequence of
artificially relaxing several of these constrains with exogenous supplies?

Variability and cellular identity

Variability in the outcome of biological processes can be broken down into an intrinsic and an
extrinsic component. While the intrinsic component is fairly well characterized and is related to
random events in chemical reaction, the extrinsic part is defined by its difference with intrinsic one
and actually aggregates many different aspects of cells being different.

From a given biological process’s perspective, different cells constitute different context
possibly leading to different dynamics besides eventual intrinsic fluctuations. Accordingly, the cellular
context is accounted as extrinsic variability. Here, we studied long lasting differences between cells
as we followed cohorts of cells for several divisions. Doing so, not only we average out intrinsic
variability, but we also average any extrinsic variability which would have fluctuated faster, typically
at the scale of the cell cycle.

Such long lasting extrinsic variability in gene dynamics was surprisingly correlated to both a
feature of the micro-environment as well as elements of the cellular physiology and was inherited
from mother to daughter. Given these properties, we wonder to what extent such variability reflects
some form of cellular identity which may arises from genealogy, physiology and micro-environment.

Using a mixed effect modelling approach, we can properly relate single cell individuality as
defined by single cell parameter values with the overall population. The overall population is
represented by a log-normal, multidimensional distribution of parameters. Besides rather technical
investigations of the effect of using other distribution shapes, we wonder if any pertinent biological
interpretation can be proposed on such distribution. Given the importance of covariance terms to
obtain plausible simulated single-cell dynamics, it appears that population distributions capture some
constrains on plausible cellular parameters. It would be interesting to perform similar experiment in
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different environments and observe how the population distribution’s shape might be affected (for
example changing the amount of glucose to render adaptation more expensive and slow down
growth or supplying a limited amount of amino acids so as to increase the price of protein
production).

Since stable extrinsic variability is partially inherited, we wonder to what extent fluctuating
osmotic stress may provide an interesting system to study soft inheritance. In fact, in particularly
intense stress, we often observe a transient adaptation which lasts between one to two cell-cycles. A
more thorough single-cell analysis will be performed to understand the mechanism behind such
adaptation (do all cells adapt? Some cells are already resistant and proliferate?). Given the frequency
of environmental perturbations and the availability of glucose we wonder what strategy is more
successful between active adaptation (fast glycerol production) and a more “wait and see” strategy
where minimal cellular adaptation allows an efficient energy management (minimal response).
Testing such strategies could be done using a cell lacking Gpd1 and hence cannot adapt. Maybe,
under specific conditions there can also be some form of phenotypical equivalence where two
strategies are equally successful and the overall population distribution is subject to phenotypic drift.

Embracing variability

The introduction of variability as a genuine biological feature (and not a mere noise against
which biological entity must act) has profound consequences on how we think of living organisms.
Considering cells as machines leads to representing them as extremely complex and dynamic systems
harboring so many interactions that any complete mapping or mathematical description is beyond
our reach. Acknowledging that variability is a biological constituent cannot be conceived in a vision
were living organisms are machines. Machines may be very complex, they may share features with
biological entities like the presence of feedbacks; machines nevertheless always work against any
variability in both their components and their processes. Machines rely on normalization and
standardization where biological entities foster and harvest diversity and variability.

Accepting the fact that cells actually do not work like machines does not, however, leaves us
helpless in our endeavor of understanding precisely and quantitatively biology. From a theoretical
point of view a system-level approach can be broadened enough to include all biological features.
Systems biology will need to find the proper abstraction in order to address the specific type of
complexity present in biological entities and reach tractable mathematical descriptions.
Mathematical tools currently used in systems biology are not really adapted to handle variability of
biological systems. Some probabilistic frameworks can be used to represent it in a satisfactory
manner, as well as to perform simulations, but we lack a dedicated analytical framework including
variability in a more natural and general way.

Facing the limitations of the classic mechanistic reductionist approach will lead to forging new
conceptual frameworks which are more adapted to the reality of living organisms. The well-known
assertion of Theodosius Dobzhansky that “Nothing in Biology makes sense except in the light of
evolution” is still hardly audible in quantitative molecular biology or even in systems biology. A more
biology-centered framework for understanding cells should be constructed around the concepts of
variability, natural selection and evolution rather than upon noisy machines. Although several
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authors have praised such an approach (151) going beyond words and global concepts to the actual
construction of such a new way of thinking and analyzing biological entities is yet to be done.
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List of abbreviations

GNR Gene Regulatory Network

ATP Adenosine triphosphate

ADP Adenosine diphosphate

NAD Nicotinamide adenine dinucleotide (oxidized form)
NADH Nicotinamide adenine dinucleotide (reduced form)
YFP Yellow Fluorescent Protein

CFP Cyan Fluorescent Protein

GFP Green Fluorescent Protein

CCD Charge-Coupled Device

ESR Environmental Stress Response

FISH Fluorescence In Situ Hybridization

Cwi Cell Wall Integrity

TOR Target Of Rapamycin

PKA Protein Kinase A

HOG High Osmolarity Glycerol

PDMS Polydimethylsiloxane

FP Fluorescent protein

5" UTR 5’ UnTranslated Region

3’ UTR 3’ UnTranslated Region

ODE Ordinary Differential Equation

CME Chemical Master Equation

FP Fluorescent Protein

AU Arbitrary Units

S&T Segmentation and Tracking (image analysis)

SC Synthetic Complete (culture medium)

TF Transcription Factor

GRTM Generalized Random Telegraph Model

ME Mixed Effects

SAEM Stochastic Approximation of Expectation Maximization
MAP Maximum A Posteriori

PCA Principal Component Analysis

PC Principal Component

fft Fast Fourier Transform

TCA cycle Tricarboxylic acid cycle, a.k.a. Citric acid cycle or Krebs cycle
DHAP Dihydroxyacetone phosphate
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1. List of Strains

Strain ID | Genome Comments

yPH_142 | (pSTL1-STL1)AO Construction strain to move away from telomere

yPH_171 | STL1::CFP-cIn2Pest-KanMX Active Degron for STL1 system

yPH_172 | HIS3::CFP-cIn2Pest-KanMX Active Degron control with constitutive promoter

yPH_173 | STL1::CFP-KanMX Control for yPH_171 characterization

yPH_174 | HOG1-GFP-HIS3 Control for yPH_178
HTB2-mCherry-URA3
HIS3::CFP-KanMX

yPH_175 | STL1::ECFP-HIS3 Alternative selection to yPH_173

yPH_177 | HOG1-GFP-HIS3 Strain for STL1 system with improved kinetics
HTB2-mCherry-URA3
STL1::CFP-cIn2Pest-KanMX

yPH_178 | Hogl-GFP-HIS3 Monitoring HOG1 load on constitutive promoter
HTB2-mCHerry-URA3,
HIS3::CFP-cIn2Pest-KanMX

yPH_146 | stl1-ECFP-HIS3MX6 Made with S. Jaramillio for lineage extraction of
HTB2::mCherry-kanMX STL1 system

yPH_147 | GDP1::ECFP-HIS3MX6 Made with S. Jaramillio for ineage extraction of
HTB2::mCherry-kanMX HOG1 impact

yPH_143 | pCupl-CpIXP Given by Hasty lab — Cup Inducible degron for Gal
pGall-GFP-ssrA inducible GFP

yPH_144 | HIS3::pGall-yEGFP-ssrA Given by Hasty Lab — Lacl Inducible degron for Gal
TRP1::pADH1i-ClpP inducible reporter
URA3::pADH1i-yClpX
LEU2::pADH1-mLacl

yPH_156 | LEU::PhyB-mCHerry-CAAX-LEU Given by Weiner Lab — Optogenetic membrane
HIS::Pif6-mCitrine-HIS recruitment

yPH_157 | LEU::PhyB-mCHerry-CAAX-LEU Given by Weiner Lab — Optogenetic control of gene
TRP::pGall-mCerrulean-TRP expression
Gal80::Gla80-mCitrine-Pif6-NAT
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2. The use of S. cerevisiae

In the table reproduced from Milo in Figure 79 are reported some characteristic orders of
magnitudes for different common types of cells used for research. Despite apparent quantitative
differences between these cell types, it is important to understand that a large portion of these
reflect direct size scaling. For example, if we compare the DNA content it seems that the mammalian
cell has way more DNA than E. coli or S. cerevisiae. But if we renormalize the number of bases given
in Figure 79 with the cellular volume which is relevant for DNA (being the whole volume for E. coli
and the nuclear volumes for S. cerevisiae and H. Sapiens as given in BNID 104709 and 104716) we
find concentrations of 4.6, 4.3 and 4.6 Kb.um™ respectively. As we see, the DNA concentration is
quite similar. The same observation can be done for the proteins content: the actual total
concentration of proteins in the cell is actually 1.0 1.0 and 3.2 mM for E. coli, S. cerevisiae and H.
sapiens respectively and these have similar average sizes (Figure 79). Most of the time chemical
reactions depend upon concentrations rather than absolute number of molecules. As a consequence,
a large part of cellular biochemistry will be similar from bacteria to mammalian cells.

property E. coli budding yeast mammalian (HeLa line)
cell volume 0.3-3 um? 30-100 pm? 1,000-10,000 pm?
proteins per pm? cell volume 2-4x10°8

mRNA per cell 103-10* 10%-10° 10°-108
proteins per cell ~10° ~10% ~10'0
mean diameter of protein 4-5nm

genome size 4.6 Mbp 12 Mbp 3.2 Gbp
number protein coding genes 4300 6600 21,000
regulator binding site length 10-20 bp

promoter length ~100 bp ~1000 bp ~10%-10° bp
gene length ~1000 bp ~1000 bp (;Ji?;‘ir‘]gig‘s’)
concentration of one protein per cell ~1nM ~10 pM ~0.1-1 pM
?Sff:ﬁigr&:ri\rzr}tse)of protein across cell ~0.01s ~02s ~1-10's
diffusion time of small molecule ~0.001 s ~003s ~0.1-1s

across cell (D = 100 pm?/s)

Figure 79 - Table of typical values and dimensions for several cell types. Reproduced from (3)

Although S. cerevisiae is a microscopic unicellular organism, it is eukaryote. Despites the billion
year or so (no precise figure is available) of separated evolution between fungi and animals, it still
shares many features with plants or even humans, both in terms of genetic material, and in terms of
cellular processes. Baker’s yeast is a central organism for the study of genetics as reflected by the
fact that, S. cerevisiae was the first sequenced eukaryote (in 1996). Its genome is composed of 16
chromosomes (for haploids) which represents overall a bit more than 12 Mb (Millions of
nucleobases). Baker’s yeast has 6600 genes, whose sequences represent 72% of the total genome,
such compactness contrasting sharply with most eukaryotes (152). Most strains also harbor a
plasmid (called 2-um) although it is apparently useless to the cell (152).
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Gene expression processes and gene regulation are identical or very similar to many animals.
Therefore, from a system level point of view, yeast displays an equivalent level of complexity and of
interaction between its elements to be representative of many other living organisms at the gene
expression and regulation levels. Yet having one of the shortest genomes among eukaryotes, using S.
cerevisiae for our study allows working on a relatively small system®* while keeping most of the
complexity.

S. cerevisiae can live both as a haploid and a diploid which is useful for many studies or
genome manipulation. It mostly reproduces by cellular division where a cell gives rise to two isogenic
cells (which allows easily obtaining large population of isogenic cells). An important and quite
peculiar aspect of S. cerevisiae division is that it is asymmetric. This pattern, termed budding makes it
possible to distinguish a mother and a daughter cell which will share the same DNA sequence but will
differ in size, replicative age and also surprisingly in protein content because of asymmetric protein
repartition upon mitosis (101, 153). This asymmetry between the two cells resulting from mitosis is
also true for other cells whose division is symmetric (154), but is much easier to study in S. cerevisiae
because the two resulting cells are visually distinguishable. Therefore budding yeast, as it is also
called, proved to be instrumental in the study of cellular aging and inheritability. Budding yeast can
also display more complex life cycles including sexual conjugation and sporulation which are beyond
the scope of this work but definitely constitute some perks of this organism as research subject as
much as genetic manipulation method.

S. cerevisiae is also subject to epigenetic processes which imply (depending on the definition of
epigenetic) some form of inheritance and regulation of gene expression that is not related to the
DNA sequence itself (and therefore is not sequence-specific as classic gene regulation by
transcription factors). Epigenetic processes are related to the organization of the DNA and to the
molecules in proximity like histones. Recent advances in epigenetics are imposing a new vision of
cellular adaptability and evolution dynamics and again, the yeast S. cerevisiae has been instrumental
in the understanding of many epigenetic phenomena. Some more precise aspects of yeast
epigenetics will be detailed later in this document and the reader can refer to (155) for a
presentation of some of the main epigenetic processes in S. cerevisiae.

If budding yeast has been studied so much it is for a large part because of its ease of use
compared to other cellular types. Although the most common laboratory strain (S288c) is not
believed any longer to be fairly representative of wild yeast, it has exceptional qualities for lab work
(152). It is by far the most documented strain of yeast and for the system level approach we employ,
the fact that it is a domesticated hybrid rather than a wild organism will only impose caution in
making conclusion about yeast in its natural environment. Yeast cells divide pretty fast (with a
division time of roughly 100 min depending on the strain and conditions) which allow faster

! The most up-to-date database of yeast genes interaction (through physical or genetic means) has 334 500

interactions entries out of which 209 538 are genetic. This means than on average every of the 6600 genes of S.
cerevisiae is connected to 50 other genes (although using the mean degree of such a network makes no sense
as the degree distribution of such networks is in the form of a power law also called small world or scale free).
Experimental attempts to map with a single procedure such interaction map (171) predicted around 100 000
genetic interactions with an average of 34 interactions ranging from 1 to 146.
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experiments than most eukaryote cells. Most strains do not aggregate and therefore are easier to
observe under the microscope. Their round shape makes it easier, relatively to other cells, to
automatically segment microscopy images; which as it will be detailed in Il.2, is a fundamental
prerequisite for high throughput single cell longitudinal studies.

Concerning genetic manipulation, S. cerevisiae is an exceptional subject. Like bacterium, it can
transcribe plasmids and replicate them (although using a different origin of replication than bacteria).
But if plasmids are easy to use and give rise to more efficient transformation, it is the possibilities of
genome integration that make this yeast a great organism for gene related studies. Like nearly all
cells, this organism can perform homologous recombination (which acts to repair double strand
breaks). But for some reason, it is much easier to use this natural process in yeast to perform gene
targeting (i.e. modifying precise endogenous DNA sequences) than in most other cell types. Using
transformation techniques based on homologous recombination, it is therefore possible to integrate,
alter or delete nearly any portion of the genome in a reliable and stable manner. The possibility to
use auxotrophic markers in addition to the common antibiotic resistance selection markers allows
creating multiple mutants more easily. At last, the possibility to perform counter selection (where we
select a loss of a marker rather than the integration of one) is also convenient to create highly
modified strains.

This ease of use led to courageous initiatives like the Saccharomyces gene deletion project
(156) where around 20 000 yeast strains were constructed by deleting one open reading frame (ORF)
at a time. This generated a library of mutants covering 90% of all ORF (some ORF being so redundant
that achieving specific deletion proved too difficult). The existence of such library also explains that
yeast’s genome is much better annotated than most sequenced organisms. It was followed by a
similar initiative using double mutants to study interaction between genes at the genome level (157).
In a similar way, but so as to study gene expression, the GFP collection consists of more than 4000
strains where GFP was fused to the C-terminal of protein producing genes. This collection covers
roughly 75% of yeast’s proteome (158).
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3. Transcriptome time course in response to hyperosmotic stress
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4. Custom microfluidic chips fabrication method

Making microfluidic chips

22 \which is bonded to a microscope

Microfluidic chips are most of the time made out of PDMS
coverslip. PDMS is a silicone polymer which is crosslinked in order to form a solid resin which has
numerous advantages: It is non-toxic, inert, very transparent and porous to gas but not to liquids.
PDMS presents itself as a viscous liquid which is mixed with a cross-linking agent (curing agent) in
order to for a silicon resin. In addition, PDMS is relatively cheap and its mechanical properties can be
adjusted by adapting curing agent ratio or polymerization temperature. Microfluidic chips in PDMS
are created from a wafer (or mold) which is produced by photolithography. The overall process of

wafer and chip fabrication is summarized In Figure 80, reproduced from Ferry et al (95).

Microfluidic chip fabrication protocol contains the following steps:

1. Mix base and curing agent in the proper ratio (here 1:10 curing agent to base ratio) by
manual mixing with a pipette.

2. Remove bubbles trapped in the mix placing the viscous mix in a vacuum chamber (~15
min).

3. Pour the mix on top of the master mold. Eventually remove dust or new bubbles with
a pipette (Figure 80 G)

4. Cure at 65°C for at least 12h

5. Once PDMS has been cured on the wafer, the chip is cut of with a scalpel and peeled
off the wafer.

123 which will allow tubing to be connected to the chip.

6. Holes are punched
7. Chips are cleaned with office tape (Magic tape 3M) and using a plasma cleaner

8. Finally, the chip is bonded to a coverslip*** (Figure 80 H).

122 ppMS stands for Polydimethylsiloxane, which is a specific type of silicone. In our experiments, Sylgard 184

(Dow chemical) was used.

2 punchers and connectors are usually homemade from syringes needles using a Dremel tool.

In order to bind PDMS to glass coverslips we activate both surfaces in a plasma cleaner (for 1 min 10) and
simply put activated surfaces one against the other. This leads to the formation of hydrogen bonds which
ensure a water-tight sticking between glass and PDMS.

124
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Figure 80 - Overview of the fabrication process: Photolithography (A-F), soft lithography (G), and PDMS
processing (H). (A) Photoresist deposition. (B) Spin-coating: the deposited photoresist is spun at a specific speed
to create a uniformly thick layer. (C) UV exposure cross-links the photoresist creating a pattern identical to the
photomask. (D) Postexposure baking joins the silicon wafer and the cross-linked photoresist. (E) Developing
removes the uncross-linked photoresist, revealing the features. (F) Repeating steps A—E creates additional
features. (G) Pouring and curing PDMS over the patterned wafer creates a mold. (H) Bonding the PDMS mold to a
glass coverslip finishes a microfludic chip. Figure from (95).

Designing microfluidic chips

While many microfluidic chips are now commercially available, we continue to hand make
them along with designing and producing master molds. Masters are usually made out of more solid
resins and are fabricated in a clean room to avoid any dust or floating particle to get included in the
mold. Molds are made by soft-lithography which is similar to argentic photographical printing. For an
extended protocol, see (95).
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The essential steps are the following:

1. Thin layers of UV sensitive resin'® are deposited on a silica wafer by spin-coating

(Figure 80 A-B).
Using custom designed masks, we expose parts of this resin layer to UV (Figure 80 C).

This layer is then developed in a solvent which dissolves the resin which was not
exposed to UV (Figure 80 E).

If several different heights are needed, operations 1 to 3 are repeated using different
resin thickness and different masks, starting by the lower pattern(Figure 80 F). This
requires sub-micrometer alignment of already developed patterns with the mask for
the next pattern. This delicate operation requires a specific microscope coupled to a
UV source which is called an aligner'®.

When a mask is finished, its surface quality along with its actual dimensions is
measured using a profilometer (dektak).

Prior to the first molding of PDMS, wafers are silanized i.e. a thin layer of cross linking
agent such as (3-Mercaptopropyl)trimethoxysilane (Sigma Aldrich) is. This allows
passivating Si groups from the silica wafer so they will not for Si-Si bonds with the
PDMS which is molded. This is performed by placing the wafer in a vacuum chamber
with a beaker of silane so silane vapor can react with the wafer.

The high resolution masks required for soft lithography are printed by external contractor

(either in chrome deposited on glass or high resolution inkjet printing on transparent plastic sheets)
and designed with CAD software like L-Edit (Tanner), AutoCAD (Autodesk) for very high resolution or

Illustrator (adobe) for micron scale resolution.

122 we usually use the photoresists SU8 (2000.5 to 2050 from microchem) which are epoxy-based, UV sensitive
resins available in several densities which yield different film thickness. To make 3 to 4um high chambers, |
make my own SU8 by mixing SU8 2005 and a SU-8 thinner available from microchem.

126

In Paris Diderot facility we use for wafer fabrication, the aligner is a MJB4 aligner (SUSS MicroTec).
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5. Glucose diffusion and consumption in microfluidic chambers

1 Assumptions and scope

Scope In this simple computation we try to estimate diffusion of glucose in a microflu-
idic chamber where cells grow as a monolayer. We try to model the diffusion limited
glucose transport along with growth related glucose consumption. Typical time scale for
this equilibrium is small compared to cell division so cellular proliferation itself is not
taken into account. Rather, a constant density of cells (defined in a surfacic manner as
we consider monolayers) is assumed.

Defining equations We use a unidimensional version of the reaction diffusion equa-
tion which relates % to glucose consumption and diffusion. Diffusion is represented
using Fick’s second law where the concentration change due to diffusion in a fixed vol-

ume is proportionnal to £c&:t)
prop P

Glucose uptake by cells is consider to follow Hill kinetics and is of the form vmax.%.

PDE resolution scheme Given glucose consumtion is non linear, explicit resolution
of the reaction-diffusion PDE is difficult. We therefore implemented a simple finite dif-
ferences scheme.

In a H-shaped device, chambers are connected by both ends to flow channels. The
growth chamber is parallepipedic and subdivided in N slices (see Figure 1).

Boundary conditions Given the speed of flow in flow channels, a constant concentra-
tion of glucose can be assumed which imposes Dirichlet boundary conditions. Because of
the symmetry at half the chamber, we can consider that it acts as a wall (since diffusion
from both sides will be exactly the same, the number of molecules diffusing in each di-
rection will be the same and no flux can be assumed). This leads to Neumann boundary
conditions. Since the second Fick law can be derived from Ficks first law (which accounts
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Figure 1: Sketch of the system’s geometry and boundary conditions

for the transport of molecules in absolute numbers), we used considerations of absolute
numbers to derive equations concerning concentrations for the first and last slice.

2 Notations and parameters

2.1 Geometric parameters

Half-chamber’s dimensions using the notations of Figure 1 are:

L =200pum
he = 3.Tum
wi = 3um

The chamber is divided into N equal slices (this corresponds to the mesh step of our
finite differences scheme) having an elementary volume equal to:

L.he.wi

[ =
evo N

with length [ = £

A portion of this volume is occupied by cells. In this simulation, our free parameter
is the surfacic cell density (i.e. the portion of surface seen from above which is occupied
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by cells). This is called the packing ratio and in the case of circles of equal radius, a
higher bound is approximately 0.9. Two illustrations are given in Figure 2 A.

A B

@ g =
Q0 @ ceeee or
9 L QOOOO “

= = Py
Intermediate Packing Maximum Packing Cylinder/ sphere n.r’.2r 3
(~0,2) (~0,9) volume ratio Tnr 2

Figure 2: Sketch representing A. Different surfacic cell packing and B. Explaining the
prefactor in free volume computation.

We assume cells have a radius of ¢r = % and are evenly distributed in space. As a

consequence the total number of cells in this half chamber is:

i L. )
TotNeells — wi.L.cellpacking

m.cr?

In terms of volume, the portion of chamber volume which is no occupied by cells is:
1
VolPack = g.cellpack:ing + (1 — cellpacking)

where %.cellpacking corresponds to available volume for surface occupied by cells (cylin-
der to sphere ratio, see Figure 2. B) and (1 — cellpacking) is the volumic packing
contribution of surface free of cells.

2.2 Biological and physical parameters

Cellular glucose uptake is modeled with a Michaelis Menten rate, i.e. the molar uptake

rate is in the form:

c(x,t)
oz, t) + Ky

Urate = Umazx

with ¢(x,t) the glucose concentration at distance x from the flow channel and at time t.
Using BNID 110954 and 106225 and adapting units we find the following parameters

Vmaz = 55.10 " nmol.cell t.s7!

Page | 178



Appendix

Ky, =76.107°M
As a consequence, the total glucose uptake for a given slice is:

TotNcells
Uslice = 'Umax-T

in nmol.s~! which impacts the concentration of glucose in a given slice as:

Uslice 6

“ur = Vol Pack.cvol

where the 108 factor allows this quantity to be in mol.L'.s7!.
The constant glucose concentration from the flow channel corresponding to 2
Overall, our ODE system has 5 parameters:

[Cup7 Kma Da 007 l]

3 ODEs definition

With all the previous notations, and using a centered approximation of the spatial second
derivative along direction z, we have the following ODE for a slice ¢ accounting for the
time evolution of the glucose concentration in mol.L™!:

de(i, t) (i, t) c(i—1,t) — 2.c(i,t) + c(i + 1,¢)
= —Cup- D.
dt et 2

For the frist and last slices, this equation must be adapted accordingly:

de(1,t) c(1,t) Co — 2.c(1,t) + ¢(2,1)
R SR R 2

dc(N, t) _ . ¢(N,t) D —c(N,t) + (N —1,¢)
dt P Ky + (N, 1) ' 12

4 Simulation results

Simulation with N = 20 slices, starting with a chamber fully packed (0.9) with cells,
with no glucose inside and over the course of 3 min yields the following results (Figure
3):

As we can see, equilibrium is reached rapidly at all length. We can visualize the same
data both in space and time as in Figure 4:

As we can see, when the chamber is fully packed with cells, the actual glucose concen-
tration in the middle of the chamber can be significantly impacted. This highly depends
on the cellular density. This dependance is shown in Figure 5 depicting the steady state
distribution of glucose concentration for different densities of cells. As we can see, the
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Figure 3: Time evolution of glucose concentration in different slices. Regular H-shaped
device

concentration drop can can affect cells at high densities since it drops below K,,, meaning
effective uptake will be less than half its maximal value.

This situation has been improved by using square chambers as in the parallel H-
shaped device type C which has wi = 400um and L = 200um as we can see in figure
6

At last, using chambers of the parallel H-shaped device type A which have a shape of
a hourglass with wjflowchambertochannel = 400/“” Wimideahmber = ZOONm and L = 200/“”
further improves this situation as we can see in figure 7. (nb: this required to adapt the
proposed equations yet, these are very similar).

As a conclusion, we see that shape matters in order to ensure homogeneous conditions
in microfluidic devices. Nevertheless, these calculations are too crude to consider using
these results for correcting data. Rather, these are used as design guidelines and in order
to determine the conditions in which the homogeneous assumption is possible.
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Effective concentration of glucose in a microfluidic chamber
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Figure 4: Time and spatial evolution of glucose concentration in the overall microfluidic

chamber. For this graph, £ = 0 corresponds to the center of the chamber. Regular
H-shaped device.
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Figure 6: Steady state glucose distribution for various cellular densities for the parallel
H-shaped device type C.
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Abstract

Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations.
Consequently, parameters of models of intracellular processes, usually fitted to population-averaged
data, should rather be fitted to individual cells to obtain a population of models of similar but non-
identical individuals. Here, we propose a quantitative modeling framework that attributes specific
parameter values to single cells for a standard model of gene expression. We combine high quality
single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-
of-the-art statistical inference approaches for mixed-effects models to infer multidimensional
parameter distributions describing the population, and then derive specific parameters for individual
cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression
dynamics, cell size, growth rate, mother-daughter relationships) is, at least partially, captured by the
parameter values of gene expression models (e.g. rates of transcription, translation and
degradation). Our approach shows how to use the rich information contained into longitudinal single-
cell data to infer parameters that can faithfully represent single-cell identity.

Summary

Because of non-genetic variability, cells in an isogenic population respond differently to a same
stimulation. Therefore, the mean behavior of a cell population does not generally correspond to the
behavior of the mean cell, and more generally, neglecting cell-to-cell differences biases our
guantitative representation and understanding of the functioning of cellular systems. Here we
introduce a statistical inference approach allowing for the calibration of (a population of) single cell
models, differing by their parameter values. It enables to view time-lapse microscopy data as many
experiments performed on one cell rather than one experiment performed on many cells. By
harnessing existing cell-to-cell differences, one can then learn how environmental cues affect (non-
observed) intracellular processes. Our approach is generic and enables to exploit in unprecedented
manner the high informative content of single-cell longitudinal data.
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Introduction

It is well-recognized that cellular heterogeneities exist in a population of isogenic cells [1-3]. Indeed,
cellular processes are noisy and generate cell-to-cell differences. Microfluidics and time-lapse
fluorescence microscopy combined with cell-tracking algorithms make it possible to follow the
behavior of populations of cells at the single-cell level over long time and to apply stimulations
homogeneously [4,5]. Therefore, cell-cell variability in the expression of a gene of interest can be
observed over extended time scales. The origins of the variability of biological processes and
phenotypes are multifarious. Indeed, the observed heterogeneity of cell responses to a common
stimulus is believed to originate partly from differences in cell phenotypes (age, cell size, ribosome
and transcription factor concentrations, etc...), from spatio-temporal variations of the cell
environments and from the intrinsic randomness of biochemical reactions. A proper assessment and
modelling of such heterogeneity is therefore a challenging task since not only it has several sources
but also those sources are inter-dependent and act with different strengths and on different time-
scales [6].

Regarding dynamical models of gene expression, the most widely-accepted approach to take into
account cell-cell variability so far relies on modelling transcription as a stochastic process [7]. Yet,
these approaches only give a partial representation of cellular heterogeneity as they assume that all
the measured variability originates only from the noisy expression of the modelled genes. The level
of expression of other genes and their products, along with the cell’s phenotype that emerges from
it, are considered as fixed in time and equal for all cells. That is, the standard modeling approach
considers all gene expression noise to be intrinsic. Yet, it is known from seminal works on noise in
gene expression that the overall noise breaks down into intrinsic and extrinsic components [8,9].
Although both are always present, intrinsic noise contribution is generally dominant only on short
time scales and for unstable or weakly expressed proteins.

Therefore, a purely stochastic representation of cellular heterogeneity is not appropriate for a large
proportion of genes and biological processes. Witnessing that validating a model encompassing both
types of variability against data is still very difficult given current experimental possibilities [10], we
propose to explore a different approach in which variability is represented only as stable differences
among cells. This simplifying assumption is a necessary first step towards a congruent representation
of the total variability in gene expression, and can be readily applied to other biological processes in
which extrinsic variability dominates or when the focus lies on cellular identity.

Here we analyzed the temporal evolution of the level of expression of an inducible fluorescent
reporter in a population of yeast cells growing in a microfluidic device. By selecting a strong inducible
promoter and using a stable reporter, we placed ourselves in experimental conditions where
extrinsic variability is dominant over the neglected intrinsic component. In addition we assess directly
how the inferred individuality in gene expression can be related to measurable features of cell’s
phenotype and physiology and therefore related to typical biological measures of cellular identity.
We use a modeling approach in which, for a standard model of gene expression in yeast, each single
cell is given specific parameter values while the cell population is described by a multidimensional
parameter distribution (Figure 1). This leads to a challenging inference task compared to a classic
situation where all cells are described by the same “mean-cell” model and parameters. Indeed the
problem is shifted from obtaining a single value per parameter to obtaining parameter values for
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each observed cell, as well as a multidimensional distribution representing parameter values in large
cell populations. This problem not only involves determining the distribution within a population for
each parameter but also their mutual relationships, or more formally, their joint distribution. In order
to do so, we used state-of-the-art statistical methods [11,12] that allow inferring parameters
distribution across the population that are congruent with parameters attributed to each single cell.
We motivate the use of such demanding statistical tools by showing why a simpler and more
straightforward method is inappropriate for our current objective of representing populations by a
distribution of parameters.

We propose several validations of the inference results and we analyze the obtained parameter
distributions representing cell populations. Then we focus on single cells and analyze the correlation
across parameters or between parameters and other single-cell features related to phenotypic and
physiological variability. At last, the inheritability of the parameters of gene expression is assessed.
Taken together, our results demonstrate that using the proposed framework, biologically-relevant
model parameters can be attributed to individual cells and related to single-cell features, while the
population of cells is represented in a concise manner. As such, this work is an important step
towards identifying the major determinants of extrinsic cell-cell variability, as well as introducing
quantitatively the concept of single-cell identity.

Results

Gene expression in response to repeated osmotic stress shows a high level of variability between
cells.

Using microfluidics and time-lapse microscopy we acquired longitudinal data of the response of
individual yeast cells subjected to repeated hyperosmotic shocks (see Material and Methods) [13,14].
Cells were bearing a stable fluorescent reporter driven by the STL1 promoter which is strongly
activated by hyperosmotic stress [15,16]. We extracted fluorescence values for large numbers of
single yeast cells (typically 300) over a long period of time (typically 8-10 hours). Markedly-different
behaviors were observed between individual cells (Fig. 1 and S1). As extrinsic variability is arguably
the dominant component of phenotypic heterogeneity in gene expression in eukaryotic cells [17,18],
these differences are expected to depend at least in part on variations in the rates of transcription,
translation and degradation/dilution from one cell to another. Parameters of a model of our reporter
gene expression should therefore be different from one cell to another to account for extrinsic
variability. By using short but pronounced and repeated inductions of gene expression with a stable
reporter protein, we limited both the impact of intrinsic noise in our experiments and the deleterious
effects of hyperosmotic shocks (see Experimental Design in Text S1).
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Figure 1: Experimental setup and principle of single-cell parameter estimation. A. Microfluidic device enabling the growth
and imaging of yeast cells over extended durations while applying repeated hyperosmotic shocks by rapidly switching
their environment between normal and hyperosmotic media. Using a reporter gene that drives the transcription of the
yellow fluorescent protein yECitrine under control of the osmoresponsive promoter pSTL1, one can track the
transcriptional response of cells to repeated osmotic shocks. B. Thanks to segmentation and tracking algorithms, the
response of single-cells can be measured over several generations. C. As a result we obtain single-cell trajectories (thin
blue lines) that show the variability in cells response to hyperosmotic stress. The thick blue line represents the median
behavior. Black bars on the x-axis represent the hyperosmotic shocks applied to cells. D. From these trajectories, our goal
is to extract the parameters of a standard model of gene expression (see text) for each cell, and therefore a
multidimensional distribution describing the cell-to-cell variability. As an illustration, the right inset shows that different
cells will be modeled with different parameter values to account for their own specific behavior.

Mixed-effects model is an ideal framework for representing extrinsic variability.

Mixed-effects (ME) models are a class of statistical models introduced to describe the response of
different individuals within a population to known stimuli. Here, we used a ME model where the
response of individual cells was described in terms of a simple dynamical model of gene expression.
Denoting with m and p the cellular level of mRNA and fluorescent protein, respectively, we have

m(t) = kpu(t) — gmm(t)

p(t) = kpm(t) — gpp(t)

where u(t) represents the activity of transcription factors — in our case, the phosphorylation and
nuclear import of the kinase Hoglp — and is a function of the osmolarity of the cell environment (see
Material and Methods and Text S1). The production and decay rates are denoted k,, and g,, for the
mRNA, and k,, and g, for the protein, respectively. To relate fluorescence measurements to actual
protein concentrations, we accounted for protein folding time using a delay 7. We also assumed the
presence of multiplicative and additive white Gaussian measurement noise whose strength is the
same for all cells (see Text S1 and Table S1 for details). Importantly, in the ME framework, it is
considered that k., gm, kp, and g, vary within the population. Differences in parameter values may
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typically originate from differences in the level of key components of the gene expression machinery
(e.g. RNA polymerase and ribosomes) or in environmental or physiological parameters (e.g. cell
growth rate). We assumed that these parameters were log-normally distributed across the
population: 6 = (K, gm, kp, gp ) with In (8) ~N (i, Z), where p and X correspond to a vector of
means and a covariance matrix, respectively. This assumption ensures the population is represented
in @ much more concise and general manner than what would be possible by only representing a
population by the dynamics of every cell observed in an experiment.

Here, we are looking for a multidimensional distribution defined by its center of mass (i.e. a vector of
mean values) and its spread (i.e., a covariance matrix) across the population. A simple, intuitive
manner to tackle this problem is to search for the different parameter values that best describe each
individual cell, and then compute the statistics (mean and covariance) of the underlying distribution
from the set of parameter estimates. We refer to this method as the ‘naive approach’ since it is the
natural starting point, bearing limitations that are not apparent until a proper analysis is performed.
The proposed alternative is to use state-of-the-art approaches for the identification of ME models,
such as Stochastic Approximation Expectation Maximization (SAEM). SAEM is a stochastic
approximation version of the well-known Expectation—Maximization algorithm and has been
developed for the inference of population models in presence of limited available information
[11,19]. Notably SAEM is the reference approach in pharmacokinetics/pharmacodynamics studies
[12,20]. However, it has not yet been applied to time-lapse single-cell data. The SAEM algorithm
directly searches for multivariate distributions by alternating (i) an estimation of (an approximation
of) the likelihood of the population parameters and individual observations given the current best
estimate of the parameter distribution in the population and (ii) an update of the current estimate of
the parameter distribution. In a second step, a posteriori estimates of the individual cell parameters
are obtained from the inferred parameter distribution and individual data (maximum a posteriori
estimate, MAP). This way, the fact that all parameters share (hidden) traits of the common
population is explicitly taken into account. The naive and SAEM approaches are graphically
represented in Fig. S2.

The SAEM approach provides relevant and robust single-cell parameter distributions.

Both the naive approach and the SAEM estimation method were applied to an experimental data set
comprising more than 300 cells observed during several hours. Despite the significant diversity in the
behavior of individual cells (Fig. 2A), both the naive approach and the SAEM estimation method were
able to find single-cell parameters that fitted well the set of observed single-cell behaviors (Fig. 2B,C).
For the naive approach, one can observe that the envelope of the fitted trajectories is slightly larger
than the data at the early time points (Fig. 2C). This simply results from the absence of data to
constrain the fits at the early times for cells born during the experiment. Indeed, the average relative
absolute difference between single-cell predictions and data are nearly identical in the two
approaches (naive approach: 8.7%; SAEM approach: 8.3%).
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Figure 2: The SAEM approach provides parameter distributions that capture the population behavior because of cross-
correlations between parameters. A. Representation of the experimental dataset. B. Simulated behavior obtained when
using the parameters of each observed cell in the dataset (325 cells) inferred with the SAEM approach. C. Simulated
behavior obtained when using the parameters of each observed cell in the dataset (325 cells) inferred with the naive
approach. D. Simulated behavior of 10000 cells when resampling the population joint distribution inferred with SAEM,
(pink). E. Simulated behavior of 10000 cells when resampling the population joint distribution inferred with the naive
approach. F. As an illustration we show the simulated behavior of 10000 cells when resampling the population
parameter distribution as in D but without preserving the covariance between parameters (i.e., using marginal
distributions). For E and F, note that the y-axis has been scaled differently. Shaded areas represent the fluorescence
values of 95% of the population and the dashed lines represent the median. Experimental data is represented in blue.
Black bars indicate the presence of osmotic shocks. Note that unlike actual cells, all simulated cells are represented
during the whole experiment (i.e. from 0 to 10hrs).

We then evaluated the capability of the obtained parameter distributions to actually describe the
behavior of the cell population (mean and spread). To do so, the parameter distributions obtained
using the naive and the SAEM approaches were randomly sampled, thus creating two different
virtual ‘cell populations’, and the two corresponding sets of behaviors were computed from our
model of gene expression. The SAEM-inferred parameter distribution accurately reproduced the
observed behavior of the real cell population (Fig. 2D), whereas the naive approach failed to do so
(Fig. 2E). Therefore, although both approaches were able to identify a set of single-cell parameters
that reproduce well the behaviors of the set of observed cells, only SAEM was able to infer a
parameter distribution at the population level consistent with the observed heterogeneity in gene
expression.

To investigate the causes of the marked differences between the predictive power of the ME models
inferred using either the naive approach or the SAEM algorithm, we compared the corresponding
parameter distributions. In both cases, the mean values of the parameters were comparable and
within the expected ranges (see Table S1 for parameter values and Text S1 for literature values).
However, the distribution obtained with the SAEM algorithm was significantly more compact (i.e. it
had a smaller volume in the parameter space) and was more structured (i.e. it had higher cross-
correlations on average; Fig. S3). This strongly suggested that capturing the structure of the
parameter distribution is essential in order to explain the population behavior. Both the individual
statistics of each parameter, and their covariance, describing mutual relationships, contain essential
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information to properly account for the cell-cell variability observed in the dataset. And indeed,
when using a parameter distribution with the same individual parameter statistics (mean and
variance) as the distribution inferred using SAEM but with null cross-correlations (i.e. using the
marginal distributions), the model lost its capability to predict the behavior of the population
(compare Fig. 2D and 2F). Our understanding is that in the naive approach, all cells are fitted
individually and are subsequently casted into a multidimensional distribution. In contrast, SAEM
allows finding equally good single-cell parameters while favoring a concise multidimensional
representation of the overall population. The difference in performance between these two
approaches is rooted in the fact that even with a simple model of gene expression the information
contained in a single trajectory is too small to constrain the inferred parameter values in a
satisfactory way. Using SAEM, we actually allow each single-cell fit to use information about the
overall population, which ensures coherence between the representation of the population by
distributions and of the single cells by specific parameter values. Having demonstrated that the
SAEM-based identification approach captures the behavior of the cell population, from here on we
focus only on the results obtained using this method.

We then tested the robustness of the inference approach which is an essential property for learning
algorithms. Interestingly, the performance of the SAEM inference method degraded gracefully as the
number of available single-cell trajectories for identification was decreased to as few as 32 cells (Fig.
3A and Text S2), and also as the experimental time period used for learning was reduced (Fig. 3B and
Text S2). Lastly, ME models with SAEM-inferred parameter distributions were still able to give good
predictions when tested on a different data set (Fig. 3C, see also Text S3).
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Figure 3 Robustness of the SAEM approach and validation of model predictive power. A Predictions obtained for a ME
model having parameter distributions estimated on only 32 randomly-chosen cell trajectories (see also Text S2). B
Predictions obtained for an ME model having parameter distributions estimated using only the first 7 h of the
experimental data (see also Text S2). C Prediction obtained for the validation dataset for a ME model with parameter
distributions estimated using the identification data set. Different temporal patterns of osmotic shocks were applied.

Parameters of the gene expression model only make sense at the single-cell level.

At this point, we have showed how to efficiently and robustly extract the distributions of parameters
of a standard model of gene expression from a collection of longitudinal single-cell data, and a set of
parameters for each cell in the population. While we are here mostly interested in the details of the
parameter distribution, we can also extract the average value for each parameter of the model.
Importantly, they are different from the parameters that are obtained by fitting directly our model of
gene expression to the population-averaged behavior. This is illustrated on Figure 4 where the
‘average cell’ trajectory (whose parameters are the average of single-cell parameters) is different
from the average trajectory (obtained by directly averaging the single-cell trajectories). As mentioned
in the introduction, this expected result reminds us that parameters of a model of a biological
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process estimated from average behaviors, as done in the vast majority of quantitative studies, may
poorly represent the actual process.
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Figure 4: Parameters only make sense at the single-cell level. A-B. Starting from an experimental dataset (A), one can
either extract the parameters that describe the average behavior (in blue), or use our framework to extract the entire
collection of single-cell parameters (black dots in B) and compute the average parameters (in yellow). B-C. The average
parameters do not match the parameters that best describes the average behavior. C. Visualization of 1000 simulated
single-cell behaviors (blue thin lines) based on the parameters distributions shown (partially) in B. The solid blue line is a
(good) simulation of the average behavior (also shown in blue in panel A). The yellow solid line is the behavior
corresponding to the “average cell”, which has for parameters, the average parameters of the parameters distributions.
The “average cell” behavior is clearly different from the averaged behavior.

Analysis of parameter correlations may reveal non-identifiability relations.

Non-identifiability arises when the information contained in data along with a model structure does
not allow for the proper estimation of parameter values: several parameter values (or more usually
combinations of parameter values) yield equally-good results given the available data. In our
framework, very high correlations between parameter values may indicate the existence of non-
identifiability relations among parameters. The first application of the SAEM algorithm showed that
k and k;, were highly correlated, and, indeed, checking single-cell values suggested that the rates
of transcription and translation could hardly, if at all, be quantified independently. A detailed
identifiability analysis showed that, at the level of individual cells, these two parameters are
structurally non-identifiable; only their product can be quantified (Text S4). However, in population
approaches, partial information about the second-order statistics of individual parameters can be
inferred from the population statistics even if these parameters are non-identifiable at the single-cell
level (Text S5). Consequently, to address identifiability issues while preserving maximal information,
we fixed the mean value for k, when inferring parameter distributions using SAEM, and introduced
the protein production rate k., defined as the product of k,;, and k,, for the single-cell models.
With these changes, shrinkage was then found to be negligible (Text S4).

Single-cell parameters correlate with the intensity of shocks perceived by single cells.

Having identified single-cell parameter values, one may wonder whether they can be used to retrieve
known facts or discover new ones on the physiology of the cell response to hyperosmotic shocks. In
our model, hyperosmotic shocks affect all cells identically. However, in the microfluidic device, the
intensity of the shock perceived by different cells varied, as evidenced by differences in the reduction
of cellular volume following shocks. Therefore, one should find that protein production parameters
inferred for the most severely impacted cells are statistically higher than average. We thus estimated
the perceived shock intensities as the time-averaged reduction of cellular volume following shocks,
and compared for all the cells the inferred parameter values and the perceived shock intensities. We
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found a strong correlation between protein production rates and shock intensities in agreement with
our hypothesis. Moreover an equally-strong correlation was also found with mRNA degradation rates
(Fig. 5A). This second feature, obtained by our framework without any additional measurements or
hypothesis, is consistent with the known global destabilization of mRNAs observed after
hyperosmotic shocks [21]. Lastly, the simultaneous increase of protein production rates and mRNA
degradation rates strongly correlates with the increase of the perceived shock (Fig. 5B) indicating
that these two processes are jointly regulated in response to hyperosmotic shocks. Note that the
direct experimental identification of such co-variations would be very challenging. This shows the
interest of extracting and analyzing distributions of model parameters for the identification of joint

regulations.
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Figure 81 : Effects of hyperosmotic shocks on intracellular processes involved in gene expression. A. Correlations between
the perceived intensity of hyperosmotic shocks and single-cell parameter estimates are provided with their
corresponding p-values (Text S1). B. Estimated values for protein synthesis rates k,,,, and mRNA degradation rates g,,
for each individual cell. Their strong correlation (Spearman coefficient: 0.88; p-value<10’15) together with their mutual
increase with perceived shocks intensity indicates that these two processes are jointly regulated in response to
hyperosmotic shocks. Insert plot and colored background represent perceived shock intensity for 9 groups of 35 cells
along the regression line.

Single-cell parameters correlate with single-cell physiological features.

In addition to hyperosmotic shocks, several features related to the cell physiology or local
environment are also expected to relate to gene expression [22]. Such features notably include cell
division rate, cell size, cell age, and local cell density. Since these features can be measured or
estimated for each single-cell based on bright-field time-lapse imaging, one can again harness cell-to-
cell variability and search for relations between these features and the parameters that describe
intracellular processes involved in gene expression. Firstly, we searched for a correlation between
the protein decay parameter, g,, and the cell division rate. Indeed, as the fluorescent reporter we
used has a long half-life and photobleaching is negligible (see Initial parameters values Text S1), one
should expect that its observed decay comes mostly from dilution due to cellular growth. Therefore,
we quantified for each cell its division rate, averaged over the observation period (Text S1) and, as
expected, found a significant positive correlation between the measured average single-cell division
rate and the protein decay parameter g, (Fig. 6). Stated differently, using exclusively the
fluorescence profile of individual cells and the inferred parameter distribution for the cell population
as an a priori, the inference approach attributed statistically higher dilution rates to cells that grow
faster. Several other highly significant correlations between single-cell parameters and the above-
mentioned single-cell measured features were observed (Fig. 6). Note that all measured features
were averaged across time to allow the comparison with the time-invariant model parameters (Text
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S1). Although it is difficult to attribute in a systematic manner a direct and unambiguous biological
interpretation of the observed correlations between coarse-grained model parameters and cell
features, one can nevertheless observe (i) that cell density appears to have a pronounced influence
on the protein production rate, suggesting that - even in microfluidic growth chambers - the
environment of the cells should not be assumed to be perfectly homogeneous, and (ii) that the
correlations of the protein production rates and mRNA degradation rates with every measured
feature always have the same sign, corroborating the presence of mechanisms for the joint
regulation of these processes in our system.

More generally, one wonders how the different measured cell features relate to the overall
(multivariate) parameter variability. We conducted a principal component analysis (PCA) of the set of
inferred single-cell parameter values. This yielded a new parameterization of the model (new
parameters being called principal components PC1, PC2 and PC3) that is particularly relevant to
investigate variability as, unlike natural parameters, each principal component is uncorrelated to the
others. The analysis showed that the first two components PC1 and PC2 represented 87% and 12%,
respectively, of the overall variance in single-cell parameter values, and that these principal
components correlated very significantly with measured cell features. We then ranked the various
features based on their correlation with the variability captured by the inferred ME model. For a
given feature, this is defined as the weighted average correlation with the different PCs, with weights
equal to the importance (i.e., variance) of every PC. It appeared that local cell density was the most
important factor (average correlation: 0.23), followed by cell size (0.21) and the division rate (0.2). To
our knowledge, there is no established direct connection between local cell density and gene
expression in yeast. It would be interesting to investigate this connection at the molecular level.
Quite surprisingly, from our data, age was not associated with a significant variability in parameter
values. Taken together, our results show that, for quantitative studies, features other than colony
growth rate should be taken into account. A natural extension of this study would be to investigate
how the inclusion of these features in the model, seen as covariates, could improve single-cell

predictions.
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Figure 6: Harnessing cell-to-cell variability reveals correlations between parameter values and independently-measured
cellular features. Local cellular density, division rate, size and age were quantified with single-cell resolution (Text S1).
Correlations between these single-cell features and the single-cell parameter estimates and their principal components
are provided with their corresponding p-values. Note the expected correlation between protein degradation/dilution
rate g, and the cell division rate. The proportion of variance accounted for by each principal component is indicated in
parenthesis.

Single-cell parameters are partly inherited from mother to daughter.
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Finally, we investigated inheritance of single-cell parameters. Statistical tests showed that the
parameters of mother and daughter cells were significantly closer to each other than the parameters
of random cell pairs (Text S1 and Fig. S4). However, this comparison does not exclusively test the
effect of lineage. The fact that mother and daughter cells share a similar environment may also
explain this result. To study the specific influence of lineage, we compared the parameter values
between pairs of cells that either were mother and daughter (related mother/daughter pairs) or
were a mother and the unrelated daughter of another mother cell (non-related mother/daughter
pairs), with all cells growing in the same microfluidic chamber so as to limit environmental bias. As
shown in Fig. 7, the parameter values of individual cells were statistically closer to the parameters of
their own mother cell than to the parameters of another mother cell. It appears that parameter
values are 16% (resp. 14%, 10%) closer in genuine mother/daughter pairs for g, (resp. gm, kimyp)-
Although mild in absolute terms, bootstrapping testing showed the presence of a statistically strong
inheritance effect (p-values < 10™ for all parameters, Text S1). Importantly, we verified using a more
restrictive notion of nMD pairs that the observed inheritance effect was not due to the fact that
mother and daughter cells have more similar mean densities on average than nMD cells since the
former share the same environment. Interestingly, we also found that daughter cells are on average
14% more sensitive than their mothers and that the intensity of the perceived shocks is anti-
inherited: the most resistant mothers have the most sensitive daughters, and conversely.
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Figure 7: Parameter values of individual cells are statistically closer to the parameters of their own mother than to the
parameters of another mother cell. (A) The distance between parameters of related mother and daughter cells (MD) and
non-related mother and daughter cells (nMD) were compared. (B-D) Distribution for each parameter of the average
distance between 40 pairs of MD (red) and nMD (blue) for 50000 combinations obtained by bootstrapping (Text S1). All
parameters are closer between mothers and daughters than on average (*** p-values < 10'15).

Discussion

In this work, we proposed an approach for capturing the biological variability observed in single-cell
time-lapse microscopy experiments by distributions of parameters. By doing so, we address a
fundamental issue encountered in the vast majority of quantitative studies where parameters of
deterministic or stochastic models of intracellular processes make sense at the single-cell level but
are estimated for a virtual ‘mean cell’. The analysis was based on the mixed-effects (ME) modeling
framework and two inference approaches were evaluated. The relevance of the ME framework for
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modeling biological processes has been recently recognized [23,24]. The use of advanced statistical
methods, like SAEM, was essential to properly capture the variability of the biological parameters
across the population in a simple manner, including most notably the correlation among them. In
addition, we showed that the SAEM method scales to real-life problems and provides robust results.
With this approach, the information on each and every cell is jointly used to calibrate the model
parameter distribution, alleviating the problem of limited observability and noisy observations
encountered at the individual-cell level. We then demonstrated the biological relevance of the
inferred cell-specific parameters, as they were partly inherited from mother to daughter cells and
correlated with independently-measured single-cell features.

Our approach is adapted to calibrate models explicitly accounting for extrinsic variability. From a
mechanistic viewpoint, two components of biological variability, termed intrinsic and extrinsic noise,
have been proposed. For a given cellular process, intrinsic variability is mostly related to fast
fluctuations coming from stochasticity in molecular reactions while extrinsic variability includes more
stable cell-to-cell differences in intracellular and extracellular environments [25,8,17]. Thanks to
recent methodological developments, such as finite state truncation methods, significant progress
have been made in the identification of intrinsic noise models, in particular for the study of gene
expression [26]. Such models assume that the different observations arise from different realizations
of the same stochastic process and, therefore, are still based on the notion of a virtual mean -
although noisy - cell. In comparison, and despite recent methodological developments [27,28], few
attempts have been made to infer extrinsic noise models from data, see [4,10,23,29,30] and our
previous work [32]. We refer the reader to Karlsson et al. [24] for a detailed discussion of these
works. This is surprising, given the fact that extrinsic noise has been shown to be the dominating
component in many biological systems [17,18,31] and that application of cell population models has
proven extremely useful, notably to explain cell decision processes [3]. Moreover, with the notable
exceptions of Zechner et al [10] and Gonzalez et al [32], no method that exploits single-cell time-
lapse data for the identification of cell population models has been able to predict population
behaviors. Interestingly, Zechner et al [10] proposed a very general framework capturing intrinsic and
extrinsic variability by using a stochastic model based on the chemical master equation with
parameter distributions. They investigated whether this modeling framework was able to capture
both noise components appropriately, all of the extrinsic variability being aggregated into a unique
cell-dependent parameter. Here, we pursued a different objective. We focused on extrinsic noise and
investigated whether multidimensional parameter distributions provide an accurate description
thereof and can be inferred from the available experimental data, whether the inferred single-cell
parameter values are biologically-relevant, and how extrinsic noise is distributed across different
cellular processes. Given the identifiability issues encountered already on relatively simple ME
models, one might wonder whether more complex models combining the use of a stochastic
interpretation of the reactions and of distributions for all (or most of) the parameters can be
accurately identified based on available experimental data. Another attractive possible extension of
the mixed-effect framework is to replace the purely static description of cell-to-cell differences
obtained by using different, time-invariant parameter values by a more dynamical representation
using reaction parameters that slowly fluctuate in time. This can typically be done by accounting for
the stochastic turnover of the proteins underlying the various reactions involved in the processes of
interest [33].
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The possibility of identifying single-cell models opens new perspectives. Indeed, our results support
the approach advocated by Pelkmans and coworkers (18) in which "studying cell-to-cell variability [...]
will increase our understanding of how cellular activities are embedded in the physiology of a cell."
Following what we have shown here, one could dissect the variability of the different cellular
processes involved in a particular phenotypic response and search for correlations with different
cellular processes and with environmental factors. Such rich information on the integrated
functioning of cells is otherwise barely accessible. More fundamentally, single-cell modeling provides
a quantitative tool to study the notion of cell identity, as it offers a quantitative description of cell-to-
cell differences. Lastly, to which extent this increased knowledge can be used to improve our ability
to predict and ultimately control single-cell behavior is a question of interest for both the systems
and synthetic biology communities [14,34-36].

Materials and methods

Yeast strain and microscopy. All experiments were performed using a STL1::yECitrine-HIS5, Hogl-
mCherry-hph yeast strain derived from the S288C background [14]. Cells were cultured overnight in
synthetic complete (SC) medium at 30°C, in a shaking incubator at 250 rpm, and then the cultures
were diluted in SC so as to reach an optical density of ~0.2 in 4h. Exponentially-growing cells were
injected into a home-made microfluidic device [14]. Liquid medium was flowed using a peristaltic
pump (IPC-N, Ismatec) placed after the microfluidic device (flow rate: 120uL/min). A computer-
controlled three-way valve (LFA series; The Lee Company) was used to select between normal
medium (SC) or the same medium supplemented with 1M sorbitol. The microfluidic chip was made
by casting polydimethylsiloxane (PDMS; Sylgard 184 kit; Dow Corning) on a master wafer (made by
soft lithography), curing it at 65 °C overnight, pealing it off, and bonding it to a glass coverslip after
plasma activation. The device has 5 chambers of 200x400x3.6 um where cells are imaged. These
chambers are connected to larger channels where medium flows such that the environment of the
imaging chamber is changed by diffusion only (see [14]). After having loaded cells in the device, we
leave them to rest with SC flowing for 30 min before starting the experiment. A switch of the valve
state did not lead to an instantaneous change of the cells’ environment inside the microfluidic
device: ~2 min were needed for the fluid to pass from the valve to the channels and the imaging
chamber.

The cells were imaged using an automated inverted microscope (1X81; Olympus) equipped with an X-
Cite 120PC fluorescent illumination system (EXFO) and a QuantEM 512 SC camera (Roper Scientific).
The temperature of the microscope chamber, which also contains the media reservoirs, was
constantly held at 30°C by a temperature control system (Life Imaging Services). All of these
components were driven by the open-source software uManager which was interfaced with Matlab.
Images were taken using a 100x oil immersion objective (PlanApo 1.4 NA; Olympus). The
fluorescence exposure time was 200 ms, with fluorescence illumination intensity set to 50% of
maximal power. The fluorescence exposure time was chosen such that the fluorescent illumination
did not cause noticeable effects on cellular growth over extended periods of time. Importantly,
illumination, exposure time, and camera gain were not changed between experiments, and besides
background and auto-fluorescence subtraction (defined as the minimum intensity in the first frame),
no data renormalization or processing was done. Imaging was performed at a frequency of one
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frame every 3 min for bright-field and one frame every 6 min for fluorescence measurements. The
duration of the experiments was 10 hours.

Measurements of gene expression and physiological features at the single-cell level. Single-cell
gene expression profiles were obtained in two experiments: one for identification (D; 325 single-cell
trajectories) and one for validation (D"; 166 single-cell trajectories). The randomly-generated
profiles of hyperosmotic stresses differed in each experiment. Image analysis was performed using a
home-made segmentation and tracking tool, CellStar. After observing that newly-detected cells
usually corresponded to buds still attached to their mother for a long period of time after detection
and might present fluorescence quantification artifacts (due to their small size and variable focus),
we discarded the information obtained during the first two hours for new cells. Only cells imaged for
more than 5 h were selected for identification and validation. The average size of a cell corresponds
to its size measured at each time point in bright-field images and averaged over all time points.
Average cell age and density were defined analogously. The density of the environment of a single
cell was defined as the area occupied by neighbor cells relative to the area of the neighborhood of
the cell. The neighborhood was defined as a disk with a radius corresponding to five times the radius
of a typical cell. The relative changes in the size of the cells caused by budding events were used to
estimate single-cell division times from bright-field images and compute the average cell specific
division rate. After automated segmentation and tracking, lineage was manually extracted from the
microscopy images. More details are provided in Text S1.

Single-cell models and ME population models. We assumed that the transcription factor activity,
u(t), depends on the osmolarity effectively sensed by the cells inside the microfluidic chambers,
u:(t) , which itself depends on the valve status, u,(t) (Text S1). To relate fluorescence
measurements to actual protein concentrations, we accounted for protein maturation time using a
delay T and assumed the presence of multiplicative and additive measurement noises that are white
and Gaussian (Text S1). A mixed-effects population model is then obtained from single-cell models by
assuming that the parameters of the population of cells follow log-normal distributions. More details
on the modeling assumptions are provided in Text S1.

Inference of single-cell and ME population models. Two methods were proposed to infer ME
population models: a naive approach and SAEM. The naive approach used the local optimization
algorithm fminsearch from Matlab to maximize the (log-)likelihood of the parameters tested, given
the observed data for the considered cell. The parameter distribution for the ME model is then
defined based on the set of single-cell parameters. The SAEM approach aims directly at maximizing
the likelihood of the population (high-level) parameters describing the distributions of the model
parameters, given all the single-cell data. We used the SAEM implementation of Monolix software.
Lastly, having inferred a distribution for the model parameters of a population of cells, one could
estimate the most likely parameter values for each single cell (ME single-cell models). We used the
local optimization tool fminsearch from Matlab to implement a maximum a posteriori approach. For
more details on the parameter inference approach see Text S1.

Relating the specific intracellular processes involved in gene expression with other, non-modeled
cellular properties. The analysis of the correlations between the perceived shocks or the single-cell
measured features and the estimated parameters was performed using the Spearman coefficient of
correlation. The significance of the correlations (p-values) was assessed using the standard two-tailed
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test implemented in the Matlab statistics toolbox. To test whether parameters of mother and
daughter cells were statistically closer than on average, we constructed pairs of cells that differed
solely by whether they were direct relatives (mother/daughter pairs, MD pairs) or not (non-related
mother/daughter pairs, nMD pairs). The comparison of the mean distance between MD pairs and
nMD pairs was performed by bootstrapping (Text S1).

Supplementary Information

Supplementary information contains details on data analysis and modeling framework (Text S1), an
analysis of the robustness of population prediction that extends the results shown in figure 3 (Text
S2), a discussion on the validation of population predictions (Text S3), an identifiability analysis (Text
S4), a discussion on learning the statistics of non-identifiable parameters (Text S5), four figures to
support the results presented in the main text, and one table that regroups the different parameter
distributions obtained in this work.
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Text S1. Supplementary Materials and Methods

Experimental Design

In this study, we aim at characterizing the extrinsic variability in gene expression. When designing
experiments, we aimed at (i) obtaining relatively high signal-to-noise ratio, (ii) obtaining highly-
informative single cell traces, and (iii) minimizing the effect of intrinsic variability on the level of our
fluorescent protein.

To obtain high signal-to-noise ratio, we used the STL1 promoter, one of the strongest
osmoresponsive promoter (1), and applied hyperosmotic shocks in a repeated manner, starting
experiments with a short series of 7 strong shocks. Because of cell adaptation to hyperosmotic
environments, significantly higher expression levels are reached in fluctuating environments, in
which stresses are repeatedly applied, than in sustained hyperosmotic environments (2).

Regarding single-cell gene expression dynamics, experiments in which periods dominated by protein
production or by protein degradation are both present are in principle more informative than
experiments in which only one behavior is observed. We therefore applied after the first seven
shocks randomized sequences of shocks, instead of more the more conventional periodic shock
profiles.

To minimize the effects of intrinsic variability on the level of our reporter protein, we used a stable
fluorescent protein (yECitrine) and non-lethal but relatively strong shocks (1M sorbitol). Firstly, the
use of long-lived reporters averages fast fluctuations in time. Secondly, although intrinsic variability is
important for mild stresses (eg 0.1M NacCl), this effect was found to be significantly attenuated for
more pronounced shocks (3). Note that care must be taken when comparing the two systems since
our fluorescent reporter is integrated at the endogenous STL1 locus whereas in (3) it was inserted in
the LEU2 and/or HIS3 loci and noise properties are context dependent. In particular, the endogenous
locus of STL1 is very close to the telomeres of chromosome IV, a region expected to be more
subjected to epigenetic effects, a potential source of extrinsic variability in gene-expression.

Lastly, we note that although the experimental design has to comply with the specific constraints of
our biological system, the proposed inference approach is general.

Data analysis
Datasets of single-cell gene expression measurements

The cell expression profiles were generated in three experiments: one for identification (D’) and two
for validation (DY and DF). In each experiment, the cells were first subjected to a series of seven
hyperosmotic shocks of eight minutes every 30 minutes to obtain fluorescence measurements with
good signal-to-noise ratio. After this, several osmotic shocks of eight minutes were applied with
randomly-selected time intervals between shocks (D! and DY) or with periodic shocks (DF). Image
analysis was performed with a home-made segmentation and tracking tool, called CellStar. Raw data
coming from image analysis were processed as follows. First, the data gathered from all imaging
chambers were pooled together. Second, a manual review of the images and their analysis with
CellStar was carried out to look for tracking problems and other possible sources of error. Missing
data during the lifespan of a cell was replaced via linear interpolation when no more than one
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sample was missing. Subsequently, we discarded the information for the first two hours of newly
detected cells after observing that usually, these cells correspond to buds that remain attached to
their mother a long time after their detection. Also because of their very small size, fluorescence
guantification artifacts (very dark, very steep increase) are encountered. Finally, only cells whose
lifespan extended for more than 5 hours were selected for identification and validation. The
motivation for this being that cells whose lifespan is too short may not contain enough information
on the dynamics of the system and may generate unreliable parameter estimates.

The datasets D!, DV, and D” contain 325, 166, and 285 single-cell trajectories, respectively (see
Figure S1). Among them, 63 and 39 trajectories start from time zero and remain in the device during
all the experiment in D! and DV, respectively. They are called “initial cells” and will be denoted with
D% and DVO. Unless otherwise noted, all results are given for the identification dataset D’.

Estimation of single cell quantitative features

Average perceived shock intensity. Hyperosmotic shocks cause reductions of the cellular volume.
The cell volume returns approximatively to its pre-shock value upon restoration of the normal
growth conditions. For each cell and each shock, the perceived shock intensity is defined as the
relative change in volume, with the minimal and maximal volumes estimated over an 18 min time
window around the considered shock. The duration of the time window was set so that it includes
data before, during and after the shock. Volumes are estimated from apparent sizes in px* under the
assumption that cells are spherical. Then, for each cell, the average perceived shock intensity is
defined as the perceived shock intensity averaged over all shocks.

Average cell size. The size of each cell is computed at each time instant in bright-field images and
then averaged over all time instants. Because hyperosmotic shocks lead to marked reductions of the
cell volume and steep changes in the cell fluorescence, images taken less than 12 minutes after a
shock are removed for this analysis.

Average age. The time of birth of a cell is defined as the time of its detection by the image analysis
tool. Itis to be noted that the cell may not yet have detached from its mother at that time. The cell’s
mean age is simply the average of the cell’s age at every time frame. This feature cannot be defined
for cells present at the beginning of the experiment (initial cells).

Average density. The density of the environment of a single cell is defined as the area occupied by
neighbor cells relative to the area of the cell’s neighborhood. The neighborhood is defined as a disk
of radius of 75 px, corresponding approximatively to 5 typical cell’s radii. If the centroid of another
cell is inside this neighborhood, then it is considered a neighbor cell. The mean density is the
averaged cell’s density over all time frames.

Average division rate. In order to automatically estimate single cell division times from bright-field
images, we use the relative changes in size of cells (buds volume are not accounted for). As visible in
Figure 1, these relate with budding. Since osmotic shocks greatly impact the size of cells (Figure 1),
the first 12 min following shocks are discarded, yielding the dark blue curve in Figure 1 A. Two signals
are defined: the first one, s, (t) (green), is obtained by smoothing twice the size curve with an 11-
frame (33 min) window average; the second one, the general tendency s,,(t) (yellow), is obtained
by iteratively smoothing 10 times with an 11-frame window.
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We then define the relative cell size as the relative difference between the smoothed size and the
S5(t)=s10(t)
S10(t)
average division time is defined as the power averaged frequency for frequencies having a period in

between 60 and 400 min, conservatively including possible doubling times for yeast. This approach
has been manually validated on fifty cells yielding an average error (compared to manual bud
appearance based doubling rate) in the mean doubling rate of 12%.

A

general tendency (Figure 1 B) and compute the Fourier power spectrum of this signal. The
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Figure 1. Automated detection of cell budding times. A. Plots representing the temporal evolution of the size of a cell
together with several signals used for automatically extracting doubling rate. Here, the cell #6 in D! was used. Light blue is
the raw size. Dark blue is the raw size without shocks. Green is s,(t), the smoothed version of the size without shocks.
Yellow is sip(t), the general tendency. Vertical green bars show manually detected bud appearance time (shown for
validation purpose). B. Normalized cell size used for the Fourier analysis. Vertical green bar are the same as in A.

Cell lineage reconstruction

After automated segmentation and tracking, lineage was manually extracted from microscopy
images for the first imaging chamber of the identification experiment D in order to retrieve the
complete lineage tree for the cells tracked in that chamber. Among the 86 cells in the chambers, 55
mother-daughter relationships are identified (the experiment starts with 26 cells in the fields of view
and 5 additional cells come from the outside).

Model of osmostress-induced gene expression

Gene expression model

We use here the following model of gene expression:
m(t) = ku(t) — g,m(t),

p(t) = kym(t) — g,p(t),
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where m and p denote, respectively, the cellular concentration of the mRNA and of the fluorescent
protein yECitrine. Synthesis and degradation rates for mRNA are represented by k,, and g,,,
whereas their respective counterparts for the protein are denoted with k,, and g,,. At time zero, we
consider the initial concentrations my =py =0 . The input function u(t) represents the
phosphorylation and nuclear import of the Hogl protein, and like in Uhlendorf et al (2012) and
Muzzey et al (2009), we assume that it depends on the osmolarity effectively sensed by the cells
inside the microfluidic chambers u.(t) as follows:
u(t) = kpuc(t) — gru().

In accordance with the observations made in Zechner et a/ (2012), we assume that in comparison to
gene expression, signal transduction shows little variability. Therefore, we assume fixed values for kj,
and gp: ky, = 0.3968 and g, = 0.9225 (6). Lastly, as shown in Uhlendorf et al (2012), there is a
known lag between the valve actuation u, (t) and the actual change in the osmolarity of the cellular
environment in the imaging chamber u.(t). This relation can be simply represented by a piecewise
linear function. The relations between the valve status, the chamber osmolarity, and the Hogl
activity are graphically represented in Figure 2 for an 8-minute shock.
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Figure 2: Temporal evolution of the osmolarity of the cellular environment u,, and of the Hog1 activity u, as a function of
the position of the microfluidic valve u,, (0/1: normal/hyper-osmotic medium).

In order to account for fluorescent protein maturation time, we introduce a delay t. The measured
concentration of mature protein depends on the total (mature or not) protein concentration t
instants before and on the dilution rate due to cell (exponential) growth (we neglect degradation and
photobleaching, see section Initial parameter values). To establish these relations, consider a cell
that grows at a rate g,,. Then, p(t) is the total protein concentration at time t, and we denote P(t),
F(t), V(t), and f(t), the total and mature protein amounts, the cell volume, and the mature protein
concentration, respectively. Then it holds that V(t) = V(t — 7)e9?" and that F(t) = P(t — 7). So,
we can describe the cell fluorescence as

o) = F(t) B P(t—1)

V() " V(= D)ednt = e 9"p(t — 7).

We assume p(t) = 0fort < 0. The choice of representing protein maturation by a delay rather
than with first or second order linear reaction comes from the observation that in our data there is a
delay following a shock during which absolutely no increase in fluorescence is observed. Finally, we
assume a Gaussian noise model for the observations noise, with an additive component and a
multiplicative component, meaning that the measured cell fluorescence y(t) follows
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y(t) = f(t) + h(t)n(t),

with h(t) = (g4 + f(t)ep), and where n(t) is white Gaussian noise with mean 0 and intensity 1, and
£42, €42 define the intensity of the additive and multiplicative noise components. NB: experimental
noise being considered iid, this formulation is equivalent to having two independent Gaussian white
noises for the additive and multiplicative contributions by additivity of Gaussian random variables.
Also in the SAEM inference these noise parameters are the same for all the cells. For the Naive
inference, it is not possible to infer noise parameters shared by all cells. These have either to be fixed
or to be estimated separately for each cell. Nevertheless, estimating measurement noise parameters
for each cell gives very close noise values to that found with SAEM. We verified that fixing the same
measurement noise for the Naive approach did not change the results.

Mixed-effects model of gene expression

In this framework, we assume that cells share the structural model of gene expression described
above but that their parameters are different. Let denote S the number of molecular species, and
x(t) = [ x1(0), ...,xs(t)]Tthe vector of their respective concentrations at time t. The velocity of
the change in concentration for each species can be described as a differential equation of the
form
20 = v(x(0), (), ;)
where i = 1,...,Nand N is the total number of cells and y; are cell-specific parameters. System
guantities that are measured over time can be described via an output equation:
yi(© = 7(x;) + h(F(x;), E)n: (1)
wherethevector y;(t) € R™ is the system output. Function ¥(*) allows us to select state variables
that are observed over time (e.g. total concentration of protein). We assume output
measurements are corrupted by additive and multiplicative noise, i.e.
h(T(x;), &) = (gq + P(x:)ep)
7; represents white Gaussian noise where 1;(t)~N(0,1). Denoting the output transition map
when 71;(t) = 0 as f(t,u,xp,¥;), we have:
yi(®) = f(&,u,x0, ;) + h(E,u, X0, 1, E)Mi(t)
For a given observation at time t:
Vij = f(tj,u,xo,w,[)i) + h(tj,u,xo,lpi,f)mj, i=1,..,Nj=1,.,T
This equation is called the individual-level model.
For our particular system, xo = x(to) = {mq, Po}, ¥i = {kmi» Gmi» kpir Gpir T}, & = {€q, €}, and:
m(t) = kput) — gmm(d),

v(x(t),u(t),P;) =
p(t) = kym(t) — g,p(t),

P(x;) = e 9 p(t — 1)
Note that the noise parameters é = { g4, €5} are constant over the whole population of cells.
The single-cell parameters 1; depend themselves on a model that defines their statistics. This
model is called population-level model and it defined as
Y; = d(u, b); bi~N(0,Q)
where p is called the vector of fixed-effects and represents the typical parameters of the
population, which are not to be confused with the mean-cell parameters. Vector b; denotes
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the random effects, drawn from a multivariate Gaussian distribution with mean 0 and covariance
matrix Q, which determine how different from u the individual parameters are. Function d(-)
performs a monotonic transformation on the parameters to have non-normal parameter
distributions. Here we assumed that the parameters i); are log-normally distributed:

P; = d(w, b)) = e**Pi, with ¢; = p + by and 9;~N (1, Q)
where for a vector ¢; = [(pl-l, ---"Pip]: we define the element-wise operation
e?i = [e?, .., e?p].
The set of parameters to identify is 8 = {u, 1, é} . Note that the number of parameters to identify
scales quadratically with the number of model parameters.

Parameter inference
Initial parameter values

Initial parameter values are estimated based on literature data as described in the table below.

Reference Reference
Parameter Description Unit value value Source
(Log. scale)
kmn Transcription rate min™ 1.00 10’ 2.30 (7)
Im mRNA ?:tgeradatlon min-! 294 10" 192 (7"
k, Translation rate min™ 9.47 10" -54107 Computations using (8) & (9) 2
9p Protein decay rate min™ 4.00 107 -5.52 This study *
T Pro‘e'”tir;aet“rat'on min 3.00 10" 3.40 This study *

"Note that the value used as reference taken from (7) appeared later to be inappropriate because we express here
an exogenous mRNA (pSTL1-yECitrine) which differs on the 3’ end from that used in (7). A more conservative
value would be to take the average mRNA degradation rate in yeast (1,31 10”%) as measured in (10). Indeed, we
found an estimated value closer to this average value and similar to that of native STL1 transcripts as measured
in (11).

®Translation rate was estimated by using the rate of translation initiation and the rate of correct translation using
models from (8, 9) calibrated for our specific DNA sequence.

*This term comes from three processes: degradation, photo-bleaching and dilution. Degradation was assumed to
be negligible since yECitrine is very stable. The dilution rate was computed from the average doubling rates
estimated on D! and DY (linear fit on the logarithmic number of cells). It yields an average dilution rate of 4 10°
min™'. Photo-bleaching was estimated by repeatedly imaging a cell population and extracting a bleaching rate per
frame by fitting the decay curve obtained. This yields a bleaching rate of 3.5 10 min ™.

*The value is based on the time required for the cells to respond to the first stimulus. Note that this value was
larger for DY.

Inference of mixed-effects model: the naive approach

One intuitive approach for estimating single-cell and population parameters in a mixed-effects
framework consists in obtaining individual estimates of rate parameters ¥; = {kmi,gmi, kpi,gpi,‘ri}

and noise parameters §; = { €a;r sbi} by fitting one cell at a time and then to compute the population
statistics directly from the set of obtained parameters. For each celli =1, ..., N, the total set of
parameters 0; = {1, ;} has been inferred using maximum likelihood estimation (MLE), yielding a
total of 7XN inferred parameters. Given that the estimation of the single-cell parameters, 6;, is done
cell by cell, one has to solve N optimization problems, each involving 7 variables only. This is done as
follows:
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L(6;|Y)) = p(Y;16,)

= f(tj,u, xo,lpi) + ¢ g~N (0, ( h(tj'u: xoﬂl’i»fi))z)

So, for a given sample in cell i at time j:

p(Y"|9')= 1 exp(—l< f( Uxo,ll’)) )
W 2w h(f (4w, %091, €1) 2\R(f (5, u, %0, ), &)

2
1Y — f(t,u x,Y;
log[p(Y;,16:)] = 1°g\/— log ((f(y u’xo’w")’f"))_5<héf(t,-],ct(1,1x;$)fﬂ))>

And, for the complete set of samples in cell i:

p(1116) = p(Yin, Vi -, Yigl60) = | [p(%i160)
J

Therefore:
1 U, Xg, Y; ) 1
log[p(Y;16;)] = ZE(h(f( X0, 0, ) fl ) zlog h(f( u,xo,l,l}i),fi)) +Zlogﬁ

The last term is a constant, thus can be removed from the equation. Now we can compute:
~ Argmax U, Xo, Y ))
6. = Z Z lo h U, xo,W;), &
iML Y, & l h(f( u, Xo,l,b) El 8 (f( 0 l,l)l) El))

The maximization is performed using the fminsearch function from Matlab. For convenience, all the

parameters are estimated in the logarithmic scale, which is equal to estimating the normally-
distributed variables ¢; as defined in the mixed-effects model section. Denoting ¢ =
{o1, 02, ... on}T, the population statistics u, Q and & are computed in the following way.

N N N
1 1 . 1
—NZ%', Q=m2(¢i_ﬂ)(¢i_ﬂ) ) f=ﬁzs‘i
i=1 i=1 =1

Inference of mixed-effects model: the SAEM approach

Instead of the naive approach, one can choose a more inclusive approach, in which we directly
estimate the population statistics by accounting simultaneously for the ensemble of all cell’s
observations. Single-cell fits can be computed a posteriori using the population distribution as prior
knowledge (see below). The estimation of the population statistics can be done via population-
likelihood maximization algorithms, such as the Stochastic Approximation Expectation Maximization
(SAEM) (12). Here the set of parameters to identify is 6 = { u, Q, £}. At each iteration of the
algorithm, the objective is to maximize the log-likelihood [Lixoft, Monolix Methodology v.4.3.3, 2014]

2
1 ij — (X i N
log (Y, 10) = —Z tog (h(xyy 1,€)) - EZ (%) - S log(la)

2(% W' Q™ — ) - —+10g(2n)
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where N¢,; is the total number of samples and N is the number of degrees of freedom. We used the
SAEM implementation available in the Monolix software (13).

Inference of single-cell models from population models: a MAP approach

Based on a population distribution with parameters 8 = { i, Q, £}, single cell estimates ; are
obtained via maximum a posteriori estimation (MAP).

b Yl ir ' i , L
Diriap = Arf,,‘?ax[p(wim,u, 0,9 = Arffp“;ax p( |1£( Y?#’pé}/;)m )

Note that, because of identifiability issues, {; might be reduced to 4 effective parameters only,
where k,,, captures the product of k;, and k,, (see main text and Text S4). By a slight abuse of
notation, and because it should be clear from the context, we use i; to denote both vectors. As

p(Y;|u, ©, &) does not depend on i;, it can be removed from the equation. Then:

Yiyap = Arir?aX[IOg[p(Yilwi, )1 + log[p (Y|, O)]]

The first term, log[p(Y;|yY; §)], corresponds to the log-likelihood log[p(YiJ-|0,-)] explained
previously summed over j (the only difference being that in the present case the noise parameters
& are common to all cells. For the second term, log[p(¥;|u, R)], we have:

1 1
p(Yilu, Q) = ——=cexp (— W — W'ty - u))
21| Q| 2

1 1
log[p(;|p, Q)] = log (—) —=Wi W' W — W
2m|Ql) 2

The term log ( being a constant, we obtain:

)

N _ Argmax| 1 Y;— f(tu, xo:lpi))Z B
VYiyap = P; 2 Z (h(f(t]-, W, %o, 1/’1'). f) Z]: log (h(f(tj, u, X, lIJi); f))

1
-3 Wi -w'Q W —

Simulation of population behavior

Predictions of the behavior of cell populations using mixed-effects models are obtained by sampling
10000 parameter values from the distributions and performing the corresponding numerical
simulations.

Correlation with quantitative single cell measurements

To compute correlations between single cell features and estimated parameters, we used the rank-
based Spearman coefficient of variation. The standard two-tailed statistical test included in the
Matlab statistics toolbox is used to test the significance of the correlations (p-values). Note that a few
cells have been discarded because a given feature cannot always be determined for those cells. For
instance, cells present at the beginning of the experiment cannot be assigned an age.
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Heritability analysis

We wanted to test whether single cell parameter values could capture some form to inheritance. We
considered the average mother-daughter distance in parameter values using the Euclidian distance

d(qi, qj) = |(qj — q;)?. This distance, computed parameter by parameter, was then compared to

the distribution of parameter distances for random pairs taken from the whole experiment
population, and showed significant differences (Figure S4). Nevertheless, this comparison is
subjected to several biases, mainly that mother and daughter parameters could be closer only
because they share a more similar environment. To compensate for these biases, the average
mother-daughter parameter value was compared to that of a more thoughtfully constructed control
population. First, we only considered cells coming from the same chamber. Second, from this original
set of mother-daughter pairs, we constructed a control set of pairs of cells where every pair is made
of one mother cell and one daughter cell of a different mother. This allows comparing two set of
pairs of cells (related mothers and daughters, termed MD and non-related mothers and daughters,
termed nMD) which are made from exactly the same cells and only differ by the presence of direct
lineage relationship, therefore minimizing the previously mentioned biases. The MD set is made of
55 pairs and the nMD set is made of 1870 pairs. We see that mean distances based on MD pairs are
always smaller than mean distances based on nMD pairs. Nevertheless, we wanted to derive a p-
value on this hypothesis. Because the distribution of distances between pairs of parameters is a
priori of unknown shape (and in practice non-gaussian), bootstrapping, a standard method to derive
confidence intervals for random variables with unknown distribution was used. p-values are based on
the Welch two sided t-test for checking whether the mean of 40 cells in MD is smaller than the mean
of 40 cells in nMD. The effective degree of freedom was computed using the Welch-Satterthwaite
equation. In the main text example, we used 50 000 bootstrapped sets of 40 pairs. Similar results
were obtained when we used a different number of bootstrapped sets, and smaller and bigger sets
(e.g. bootstrapping sets of 5, 10, 20, 30, 40 and 50 cells).
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Text S2. Robustness of population predictions: influence of the cell number
and of the learning time horizon

Influence of cell number on the robustness of population predictions

What is the minimum number of cells we have to track in order to obtain reliable estimates? This is
an important question to address when dealing with the identification of parameter distributions.
We therefore tested the robustness of SAEM inference with respect to the number of cells available
in the identification dataset for ME models. For this purpose we repeatedly estimated ME models
from datasets containing only a few cells and quantified the variability of the corresponding
predictions. More precisely, we extracted from D% 25 sub-sets D9, with ¢ = 2,4,8,16,32 and
n =1,..,5. Each subset has a number c of cells which will be extracted randomly n times from
dataset D/°. We performed population parameter inference in each subset, and compared the
guantiles of the predicted population to those of the observed population. The selected quantiles
were =0.5, q=0.025 and g=0.975. These values represent, respectively, the median of the
population and the lower and higher bound of the 95% of the population. For the comparison, we
used the root mean squared error, normalized by the difference between the maximal and minimal
observed values (NRMSE). Table 1 shows the computed NRMSE values for each test and each
guantile. The means and standard deviations of the NRMSE in the different tests are indicated in
Table 1 and graphically represented in Figure 1. They give a measure of the accuracy and the
uncertainty of the estimates. The uncertainty is large when there are only two cells (the quantile’s
predictions even overlap), but rapidly decreases and stabilizes above 16 cells.

Table 1. Effect of the number of cell traces on the robustness of the predictions. The deviation (NRMSE) between the
predicted quantiles and the observed quantiles for 5 random subsets of cells is reported. The mean is an indicator of the
accuracy of the prediction. The standard deviation is an indicator of the dispersion of these predictions; a low SD indicates
that the predictions do not vary considerably when selecting different subsets with the given number of cells.

Robustness of population predictions with respect to number of cells in D’

NRMSE(q)

# of Cells | Quantile | Testl | Test2 | Test3 | Test4 | Test5 | Mean SD

q0.025 0.14 0.37 0.33 0.32 0.14 0.26 0.11

2 q0.5 0.11 0.13 0.22 0.08 0.07 0.12 0.06

q0.975 0.08 0.05 0.16 0.07 0.10 0.09 0.04

q0.025 0.15 0.20 0.11 0.06 0.13 0.13 0.05

4 q0.5 0.06 0.06 0.06 0.08 0.07 0.07 0.01

q0.975 0.08 0.08 0.06 0.13 0.07 0.08 0.03

q0.025 0.09 0.11 0.05 0.11 0.09 0.09 0.02

8 q0.5 0.06 0.06 0.07 0.06 0.05 0.06 0.01

q0.975 0.12 0.05 0.12 0.07 0.10 0.09 0.03

q0.025 0.05 0.06 0.14 0.07 0.07 0.08 0.04

16 q0.5 0.06 0.06 0.05 0.06 0.07 0.06 0.01

q0.975 0.10 0.07 0.08 0.09 0.09 0.09 0.01

q0.025 0.06 0.06 0.05 0.06 0.07 0.06 0.01

32 q0.5 0.06 0.05 0.06 0.06 0.06 0.06 0.00

q0.975 0.10 0.06 0.09 0.12 0.08 0.09 0.02
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Figure 1. Effect of the number of cell traces on the robustness of the predictions. Green, red and blue solid lines denote,
respectively the 0.025, 0.5 and 0.975 quantiles, corresponding to 95% of the observed population in DT (325 cells). The
shaded areas with the corresponding colors represent the maximum and minimum boundaries of the quantiles estimated
with 5 randomly selected subsets of 2,4,8,16 and 32 cells. Thinner shaded areas indicate less variability in the predictions.
After 16 cells the width of these areas has decreased considerably.

Influence of the learning time horizon on the robustness of population predictions

We tested the robustness of SAEM inference with respect to the duration of the learning time
horizon (observation time T,,s) by testing the prediction capabilities of the resulting mixed-effect
models on the rest of the data (prediction time Ty;cq). We used the identification dataset D!. ME
models inferred on datasets with 5 or 6 hours of observations show bad prediction capabilities on
the subsequent hours. After 7 hours the performance increases significantly (Figure 2). This suggests
that an accurate inference of the model’s parameter values in this experimental setup requires
acquisition of data during extended time intervals.
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Figure 2. Influence of the learning time horizon in population predictions. The blue line and blue shaded area represent
observed cell populations (median and 95% of the population). Red dashed line and pink shaded area represent the model
predictions during observation time (Toys) and prediction time (T,.eq, gray shaded area) (again median and 95% of the
population). All are given for experiment D'.
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Text S3. Validation of population predictions: predicting population behavior
on two validation data sets

To test the capacity of our model and inferred parameter distribution to predict the behavior of cell
populations, we generated two validation datasets. The first one, DV, uses temporal profile of
hyperosmotic shock that is different from but close to the identification dataset D’. The second one,
DP, uses periodic shocks (8 minutes shocks every half-hour) and is markedly different from the
identification dataset.

In both cases, we simulated 1000 single-cell traces using the population distribution of parameters
estimated on D’. Prediction results are represented on Figure 1. On DV, the prediction quality was
acceptable (Fig 1A). However, a significant bias was observed for the validation dataset D (Fig 1B —
see the difference between real and predicted median profiles). How can this be explained? One of
the results of our study is that, in addition to hyperosmotic shocks, several factors are likely to
influence gene expression, one of them being the cell division rate. And indeed, cells grow and divide
in DF significantly slower than in D! (mean division rates are 3.5 10° and 6.3 10 min™, respectively).
This growth rate difference can be explained by the significantly higher total amount of stress
imposed to cells in DP.

Because protein degradation rate and photobleaching can be neglected in comparison to the dilution
effect due to growth (see section Initial parameter values), one can correct the parameter g, in a
systematic manner. In fact, when replacing the median value of g, from the population distribution
of parameters estimated on D! with the empirical population division rate, the prediction capability
improves and the systematic bias is effectively corrected (Fig 1C). Yet, we observe that the predicted
variability is still somewhat lower than the observed one. This might likely come from other
differences in environmental or physiological conditions. Unlike the possible correction of g, which
used a direct relationship between a measurable influence factor (division rate) and a parameter of
our model, most other influence factors cannot be similarly corrected for prediction purposes. This is
because either they cannot be measured, or because applying a correction would require a specific
model of the relationship between these factors and single cell parameter values.
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Figure 1. Predicting population behavior on validation data sets (A) Prediction for experiment DY using a population
model estimated on D’. (B) Prediction for experiment DF using a population model estimated on D’. (C) Prediction for
experiment D using a population model estimated on D! for which the average dilution rate gp was set to the population
division rate measured in DF. Shaded areas represent the fluorescence values of 95% of the population and the dashed
lines represent the median. Experimental data is represented in blue and simulations of 1000 virtual cells are shown in pink.
Black bars indicate the presence of osmotic shocks. Note the different scale for the y-axis.
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Text S4. Identifiability analysis

We show here that parameters k,, and k,, cannot be assigned values unambiguously no matter the
quality and quantity of fluorescence measurements. Since the gene expression model giving mRNA
(m) and protein (p) levels as a function of time is a linear dynamical system, and the cell fluorescence
f is assumed to be simply a rescaled and delayed version of p, we can easily verify this by looking at
the transfer function of the system (1). This is given by

F(s) = e ™@r*s)p(s),

1
m(0) + ——p(0),

P(s) m % U(s) + 7
(s + gm)(s + gp) s+ gp

TG+ g+ ogy)

where U(s), P(s) and F(s) are the Laplace transforms of u(t), p(t) and f(t), in the same order. For
any fixed input U(s), since m(0) = p(0) = 0, itis apparent that F(s) depends on k,, and k, only
via their product. That is, all models with the same values of g,,, g, and k;, - k;, will respond
identically to the same input no matter the specific values of k,;, and k. A similar issue would arise
if m(0) was different from zero but unknown. In this case, the term depending on k, only would
actually depend on the product k,m(0), with both factors unknown. This issue is commonly referred
to as “structural non-identifiability” (of k,, and k).

Structural non-identifiability of k,, and k,, generally results in issues in the identification of their
population statistics as well. In order to ensure a well-posed mixed-effects identification problem, all
identification results reported in this work were obtained with the mean of k,, fixed to a default
value. We stress the fact that, although related, single-cell model (non-)identifiability should not be
confused with the (non-)identifiability of the parameter statistics in the mixed-effects approach. To
what extent, if at all, identifiability of the statistics of non-identifiable single-cell parameters is
ameliorated by a population approach (e.g. through their correlation with yet other parameters) is
not obvious. While a full theoretical investigation of this issue would go beyond the scope of this
paper, this point is illustrated on a simple example, analogous to our case study, in Text S5.

When using Mixed Effects models and SAEM, controlling shrinkage is also useful in order to detect
potential identifiability-related issues. We speak of shrinkage when the empirical distribution of
single-cell parameters (as estimated by MAP or maximum likelihood) is narrower than the population
distribution. Obtaining shrinkage is indeed reminiscent of having single-cell parameters ill-defined
(having a flat likelihood). In such a case, single-cell parameter estimates given by MAP will mostly
represent the mode of the prior (i.e. the population distribution), resulting in a narrow distribution of
single-cell parameter values (2). Subsequently to our non-identifiability analysis, we found that no
substantial shrinkage was present. Indeed, computing the n-shrinkage as in (2) yielded 12%, 0% and
4% for parameters ky,, gp and gn, on DY, and 6%, 4% and 4% on DV, respectively.
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Text S5. On learning the statistics of non-identifiable parameters

We illustrate here that statistical properties of parameters that are not distinguishable at the single-
cell level can nevertheless be constrained in a population approach. To this aim, we consider a simple
model, linear in its parameters:

yi = 0;+6;

y2 = 03

In this model, 8; and 8, cannot be distinguished from one observation of the outputs, i.e. they would
be non-identifiable at the single-cell level. Note that the situation is analogous to the one
encountered in our gene expression model considering log-transformed parameters. Indeed
log (k;,) and log (k,) are reflected in the model output only via their sum, log (k) (see Text S3
Identifiability analysis). Denoting the experimentally observable vector variable y = [y;,v,]7, and
the vector of parameters 8 = [6; ...05]", we have
1 1 0
= LO,with L =
y=Lmw [0 0 1]
Suppose that, across different cells, 8 is distributed with mean pg = [[.19,1../19’3]T and covariance
matrix X9 = (Sy,c)rc=1.3- Regardless of the distribution, by the linearity of the model one has that

by = Lytg, Zy =L ZgL"

For the sake of simplicity, we assume that the output statistics p, = [uy 1 ,uy‘Z]T and 2, =
(Orc)rc=12 are known (while in practice, in the ME model inference framework, they would be
estimated from population data).

The statistics of non-identifiable parameters are constrained by output statistics

In this section, we explore to what extent the different statistics of 8, g and Xy, are constrained by
the output statistics p,, and 2.

First-order moments. Because p, = Lig, it holds that uy, 1 = pg1 + tgo and Uy, = pe 3. Thus,
knowledge of u, allows reconstruction of the mean of 65, but the means of 6; and 6, are
indistinguishable. Unless one is fixed, the other cannot be reconstructed.

Second-order moments. Because X, = L LT, it must hold that

(31) 0'1,1 = 51’1 + 251,2 + 52,2
(3.2) 012 = 513+ 523
(3.3) 022 = 53,3

This fixes s3 3 equal to g, ,, but the other entries of Xy are underdetermined. In addition, however,
covariance matrices are positive semi-definite, i.e. all eigenvalues are (real and) nonnegative. By a
known characterization of this class of matrices, this is equivalent to all principal minors (the
determinants of all square matrices obtained by extracting the same rows and columns from the
given matrix) being nonnegative. For our case study, among other inequalities, this criterion yields

S11 =0, 5., = 0 (variances are nonnegative) and s;; * S;, — 512,2 > 0, which is equivalent to the
two inequalities 51, < /S11 * /S22 and sy, = —,/S11 *,/Sz2. Used in conjunction with Eq. (3.1)
thIS y|E|dS 0'1‘1 < 51’1 + 2,/51’1 * 1/SZ’Z + 52’2 and 0'1’1 > 51’1 — 2,/51,1 * ,/52’2 + 52’2, or equivalently

(4) (\/ 51,1 = +/ 52,2)2 <011 < (\/ 51,1 14/ 52,2)2
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Thus, knowledge of 0, ; (output statistics) implies constraints on the variances of parameters 6, and
0,. Similar constraints involving other entries of £y can be derived algebraically using (3.1)-(3.3) in
conjunction with other implications of the positive-semidefiniteness of Zy.

The resulting constraints can be graphically represented for particular values of X,,. Assuming for
example thatoy; = 1,0, = 0,7 = —0.2 and g, , = 0.5, we obtain the plots in Fig. 1. For all pairs
of entries of Xy, scatter plots illustrate what values of these unknown entries are compatible with the
known output statistics Z,, for at least some values of the remaining entries of X4 (i.e. satisfy
2y =1 ZoLT with a positive-semidefinite £4). For example, Inequalities (4) determine the parabolic
shape visible in the first-row, fourth-column plot. In Fig 2, a similar plot shows the relationships that
must hold among s; 1, Sz 2 and s 5, the second-order moments of the two unidentifiable parameters
8, and 8,. This analysis shows that knowledge (or accurate estimate) of Z,,, together with structural
properties of covariance matrices, result in significant knowledge about the (yet underdetermined)
values of the underlying statistics of interest, i.e. Zg.

S33

Figure 1. Second-order output statistics constraint second-order parameter statistics. (Left) Scatter plots of feasible value
pairs for the unknown second-order statistics of parameter vector 6. For the given z,, all possible Xgy are computed by first
determining the affine space of symmetric solutions of the linear equation I, = LZBLT. Then, 108 candidate X are
generated at random from within this space, and only the positive semidefinite solutions (i.e. the solutions with
nonnegative eigenvalues) are retained and reported in the plot. (Right) Surface of feasible value triples for the unknown
(joint) second-order statistics of the unknown parameters @1 and 8,. Sample solution triplets are obtained by the method
described above, and the plotted solution surface is obtained from the samples by triangulation.

The statistics of non-identifiable parameters are constrained by correlations between identifiable
and non-identifiable parameters

We now pose the question how correlation between an identifiable parameter and a non-identifiable
one may help the estimation of the latter. For simplicity let ug = 0 (arguments below can be
generalized to ug # 0). Consider again the case where the identifiable parameter 65 is perfectly
determined via y, by the observation of the single-cell output y. Regardless of the additional
information provided by y;, what can we say about, e.g., 8,7 From the theory of linear estimation,
the optimal linear estimator of 8, which is also optimal over all possible estimators in the Gaussian
case, is 8] = 51,353'&93, and the variance of the estimation error is

* _ -1 _ 2
1”17”(91 —0;) = S$1,1 — $1,353,353,1 = S1,1 — 51,3/53,3
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Thus, relative to the a priori variance s; 1, observation of y, = 83 decreases the uncertainty about
61by the amount 512,3/53,3, which is positive if the correlation s; 3 between 8, and 683 is nonzero. The
residual uncertainty about 6, is captured by the so-called Fraction of Unexplained Variance, defined
as

FUV =1 512'3/
- 51,1533
The larger the correlation between 8, and 65, the smaller the residual uncertainty about 8, given the
knowledge of 65. Because s; 1, S33 and sy 3 are only partially determined by X,,, the FUV cannot be
computed uniquely. For the case of the previous section, however, we computed the average FUV
over all sampled solutions Zg compatible with Z,,. We found that

average FUV = 0.75

and we found this number rather insensitive to the width of the sample space. That is, in absence of
detailed information about Zg, for the given Z,, the sole knowledge of 83 is expected to contribute to
25% of the knowledge of 8;. This analysis shows that indeed joint distributions may help refine the
knowledge of non-identifiable parameters given the observation of identifiable parameters
correlated with them.
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Figure S1. pSTL1 expression in response to repeated osmotic stresses shows a high level of variability between cells. A.
Minimum, maximum and average cellular fluorescence levels in the identification dataset D!. Back bars represent input
shocks. B. Set of single cell trajectories present in the identification dataset D! (solid lines). Samples that did not pass all
quality tests described in Text S1 appear as light blue dots. C. Set of single cell trajectories present in the validation dataset
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Figure S2: Statistical inference methods for single-cell and population parameter estimation. In the naive
approach, optimization is used to seek -for each cell- parameter values fitting the individual behavior of the cell via
residual minimization (top, step 1). The distribution describing all of the estimated parameter values is then
deduced (top, step 2). In the proposed method, the SAEM tool is used to infer a distribution that explains the set
of individual behaviors at the distribution level (bottom, step 1). Parameter values for single cells are then
estimated based on the particular behavior of the cell and the inferred distribution for the population, using
maximum a posteriori estimation (bottom, step 2).
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Figure S3: The distribution that better describes the entire population is more compact and more
structured. A. 2D plot describing the distribution of the (logarithm of) single-cell parameters for two parameters
(insert: same data shown in natural scale). The ellipses represent the region in which 50% of the parameters are
distributed. B. Two metrics were computed to quantify the difference in the structure of the parameter distributions
at a more global level. The first metric was the average of the coefficients of the variation matrix (i.e. of the off-
diagonal terms cov;;/(u; 11;)) between the parameters of the model; this represents the amount of structure in the
parameter distribution and shows that SAEM yielded a more structured parameter distribution. The second metric
was the volume in the parameter space of the 95%-confidence ellipsoid associated with the covariance matrix.
This yields a measure of the typical volume of parameter space occupied by the parameter distribution, and
therefore, quantifies the spread of the parameter distributions. This showed that the SAEM approach described
the population with a smaller distribution.
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Figure S4. Average parameter distance of Mother-Daughter pairs against random pairs from the same experiment. The
blue bar represent the average distance in parameters between 55 mother-daughter pairs from experiment D!. The red
distribution is obtained by bootstrapping 20000 sets of 55 random pairs of cells (from the same experiment). We see that
the distance is very significantly smaller for mother-daughter pairs.
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Table S1. Parameter estimates for the mixed-effects model using the naive inference approach (A), using SAEM on the
identification dataset D! (B) and using SAEM on the validation dataset DY (C). (A) Initial values for the search have been
obtained by global optimization (CMAES) on the mean behavior starting from literature-based parameters. The value of the
delay T has been fixed for all cells to its mean-cell. Therefore, statistics on its variability have been shaded. The dataset used
is the identification set D'. (B and C) The parameter search is initialized with parameter means extracted from the literature
and a diagonal covariance matrix. The parameter search has been adapted to account for the structural non-identifiability
relation of k,,, and k,, (only their product is relevant in single-cell models): the mean of k,, is kept at a constant value during
the search. No constraints are placed on its variance though. The value of the delay T is estimated but is set identical for all
cells. The dataset used for identification is D! (B) and DV (C). The relative standard errors of the estimated moments are

typically less than 2%, with the exception of the estimate of SD[k,,, ] where it was 8%.

A
Inferred Values Initials Inferred Values Initials
Parameter Values Units Parameter Values
Nat. Log. Log. Nat. Log. Log.
Values Values Values Values Values Values
E[k,] 5.47 1.61 1.49 min~* | Corr(kygm) 0.128 0.167 NA
E[gpm] 1.38-107 -4.75 -4.74 min~? Corr(k,k,) -0.172 -0.196 NA
E[k,] 1.23 7.81-10” 5.66-10” min~! Corr(kmg,) 0.297 0.328 NA
Elg,] 9.76-10° -4.82 -4.81 min~! Corr(k,,7) 0 0 NA
E[r] 23.4 3.15 3.15 min Corr(g,,k,) 0.342 0.424 NA
SD[k,,] 2.41 0.421 NA min~? Corr(g,ngp) -0.136 -0.205 NA
SD[gn] 1.73-107 0.971 NA min~? Corr(gp,T) 0 0 NA
SD[k,] 0.667 0.508 NA min~! Corr(k,gp) 0.216 0.244 NA
SD[g,] 6.60-10° 0.614 NA min~! Corr(k,T) 0 0 NA
SD[7] 0 0 NA Corr(g,7) 0 0 NA
£q 45.3 3.81 3.62 AU
€p 9.13-10” -2.39 -1.51 -
B
Initial Initial.
Inferred Values nitfals Inferred Values nitfals
Parameter Values Units Parameter Values
Nat. Log. Log. Nat. Log. Log.
Values Values Values Values Values Values
E[k,] 14.7 2.63 2.30 min~* | Corr(k,,gn) 0.320 0.432 0
E[g,] 6.00-107 -3.45 -1.22 min~! Corr(k,,k,) -0.0647 -0.0753 0
E[k,] 1.19 -5.45.10° | -5.45-10" min~! Corr(kmg,) -0.324 -0.376 0
E[g,] 6.45-10° -5.22 -5.52 min~! Corr(k,,T) 0 0 0
E[r] 37.0 3.61 3.40 min Corr(g,,k,) 0.627 0.746 0
SD[k,,] 4.80 0.319 0.330 min~! Corr(g,ngy) -0.416 -0.843 0
SD[g,,] 9.66:10" 1.13 0.330 min~! Corr(g,,7) 0 0 0
SD[k,] 0.902 0.674 0.330 min~? Corr(k,g,) -0.289 -0.382 0
SD[g,] 4.12-10° 0.585 0.330 min~? Corr(k,7) 0 0 0
SD[r] 0 0 0 Corr(g,7) 0 0 0
£q 63.9 4.16 5.99 AU
€p 8.67-10° -2.45 -1.20 -
C
Initials . Initials
Parameter Inferred Values Units Parameter Inferred Values
Values Values
Nat. Log. Log. Nat. Log.
Values Values Values Values Values Log. Values
E[k,] 9.33 2.10 2.30 min~' | Corr(k,,gn) 0.604 0.733 0
E[g,] 4.17-10 -3.80 -1.22 min~! Corr(k,,k,) 0.329 0.359 0
E[k,] 1.08 -5.45.10° | -5.45.107 min~! Corr(k,g,) | 252:10° | 2.99-10° 0
E[g,] 4.36-10° -5.65 -5.52 min~! Corr(k,,7) 0 0 0
E[r] 50.4 3.92 3.40 min Corr(g,,k,) 0.578 0.706 0
SD[k,,] 5.08 0.509 0.330 min~! Corr(g,ngp) -0.247 -0.458 0
SD[gym] 6.57-10" 1.12 0.330 min? Corr(g,,7) 0 0 0
SD[k,] 0.605 0521 0330 min* | Corr(k,g,) | -4.05-10” | -4.88-10" 0
SD[g,] 3.17-10™ 0.652 0.330 min~! Corr(k,7) 0 0 0
SD[r] 0 0 0 Corr(g,7) 0 0 0
& 68.6 4.23 5.99 AU
€p 6.42-10" -2.75 -1.20 -
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7. Simulation of Eigen cell behavior

Performing a PCA yields a new parametrization where the new parameters (called principal
components) are linearly independent from each other. The basis in which these new parameters are
decomposed can be expressed as a set of eigen cell. This theoretical cell represents which aspect of
the initial variability is captured by a given principal component. Here, we represent the principal
components that were obtained when performing a PCA analysis on the 325 cell of the experiment Di
(see 1l.3.a) and which yield the following parameters for the three eigen cells.

17,4 0,054 0,0041 37
19,0 0,028 0,0087 37
9,1 0,065 0,0074 37

Table of parameter values for the three eigen cells. The figure in parenthesis is a reminder of the proportion of the total
variability which is accounted by a given principal component and therefore, by the corresponding eigen cell.

8000 T T T T T
Eigen cell 1 -

7000 |- Eigen cell 2
Eigen cell 3

6000

5000

4000

3000

Fluorescence {AU)

2000

1000

0 100 200 300 400 500 600
Time (min)

Simulation of the behavior corresponding to the three eigen cells. Thin black lines are the simulations for all single cells
parameters estimated. Black pulses are the applied osmotic shocks. Experiment Di.
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8. Developing an Open Source, single-cell optogenetic system

Objective

In order to activate optogenetic systems at the single cell scale, we need to project an image directly
on the sample through the microscope objective. The image is projected at the microscope focal
plane (and is therefore on the sample when the sample is focused).

Various optogenetic systems respond to different wavelength, therefore, it should be possible to
change the illumination wavelength.

Principle

We use a RGB LED projector which uses a Digital Mirror Device (DMD) technology. If necessary, we
change the LEDs in order to project the wavelength of interest.

Coupling with the microscope is based on common optic elements and several 3d printed (or 4 axis
machined) custom parts (nb : custom part can be ordered through commercial prototyping services).
The coupling should allow focusing the image on the sample plane, translation and rotations for
proper alignment. We enter the microscope column through a fluorescent illumination port (at the
back).

We drive the system using Matlab®©, allowing calibration (mapping camera pixels to DMD pixels),
simple manual utilization by drawing ROI to be projected, automated utilization from segmentation/
tracking images of yeast cells.

Realization

Digital Mirror Devices are used in various commercial projectors and
in many industrial applications (structured illumination, computer
vision, 3D printers by stereolithography etc.). As represented in Figure
82, DMD are arrays of micrometric mirrors which can tilt

independently. Projectors including a DMD have a single light source
- DMD devices are large arrays of

micrometric mirrors. Each mirror forms a pixel
of the projected image and can tilt individually
in order to either reflect incident light (in which
case the pixel is illuminated) or divert it (in
which case the pixel will be black).

The starting element is

a DMD

(alternating quickly Red, Green and Blue for color projectors)
iluminating a DMD. Mirrors tilt determine if the pixel is ON or OFF
(gray values are obtained by pulse Width Modulation, PWM)

A DLP4500FQE

development kit depicted on Figure
83. The kit is composed of a control
board which includes video inputs
(DVI, HDMI etc.) and drives a DMD and
RGB LEDs. In addition, this kit includes
a light engine (Figure 83 B) where are
mounted the DMD, the LEDs along

with several optical elements. Figure 83 — A. View of the DMD development kit used in this system. B. Close up vie\
of the light engine (opened, objective removed) which comes with the kit. It sells fror
Texas Instruments © for about 1500¢€. It has a resolution of 1280x800 and a refreshin

rate of 120 Hz in grayscale and >4KHz in binary.
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Mirror
gle:

Towards Microscope arid sample
(image formation)

’\v

Figure 84 — Concept view of the optical coupling of the DMD with the microscope fluorescent back port. Using the
original light engine (A), we removed the objective and replaced it with a custom made 45° mirror holder (B). The whole
light engine can be rotated using a 2-axis goniometer (C). The image bounces off towards a second 45° mirror with two
degrees of rotation (D). A first converging lens (E) makes the image of the DMD at infinity (DMD is at the focal plane).
Lights travels through an helicoidal lens holder (F) and reaches a second converging lens (G) which has the sample in its
focal plane (in reality, a virtual image of the sample, located around 20 cm inside the microscope). The lens holder is
connected to fluorescent illumination port at the back of the microscope using a C-mount adaptor (H).

The projector is mounted on the microscope using a fluorescence illumination port. It could also be
mounted using an unused camera port but the first option has the advantage of being able to use
filter cubes in DMD light path (for now we simply use a empty filter cube with a beam-splitter in
place of a dichroic). In this configuration, the projector will project exactly in the focal plane of the
microscope (which means the projected image is always in focus, regardless of the objective choice
or of the focus wheel position).

In order to connect the light engine to our microscope, we employed a strategy where we first
produce an image at infinity of the DMD (using lens E in Figure 84) which travels at infinity in an
infinity tube (portion from E to F in Figure 84) where it encounters a second lens (G in Figure 84)
which focus plane is on the microscope sample plane (the effective distance depends on the

microscope).

Importantly, in the montage represented in Figure 84, we have separate focusing elements for the
DMD and the sample which makes the initial focusing easier. Also, the light engine as well as the
mirror cube (D Figure 84) each have two axis of rotation. Combined together, this allows the fine
positioning and orientation of the projected image with the sample plane.
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Figure 85 - Logo of the MSC Lab projected on a mirror mounted on a
microscope slide at 100X magnification. For comparison, we show an image
of a yeast colony taken with the same microscope and the same objective.

In order to visualize (under the microscope) the projected image, we place a small mirror on a glass
slide and focus the microscope objective on its reflective surface. In Figure 85 we projected the Logo
of the MSC lab and imaged it at 100x. We see that although slightly blurry, we can achieve precise
and very small illumination. This is clearly sufficient for the purpose of single cell independent
optogenetic induction, provided a safe margin around cells is maintained to avoid cross illumination
at the borders.

Software

In order to drive the device, we use Matlab®©. | designed a simple dedicated set of scripts and class
which allows easily to recalibrate pixels (i.e. refresh the mapping between DMD pixels and Camera
pixels if the device has been moved or misaligned.). To do so, the DMD projects a reference image
and the user images it with the microscope. The user is prompted to indicate 3 reference points in
the original and recorded images. From these reference points, an affine transformation is computed
and the DMD is ready to use.

The dedicated class has methods to turn on, off, display any image and draw and image to be

projected.
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Figure 86 - Picture of the DMD system mounted on the back of the
microscope.

In Figure 86, we can see how it is in the end integrated at the back of the microscope. Custom pieces
(in grey) can also be ordered for people who do not have access to fabrication equipment. As for
now, it is tested on mammalian cells, using a blue light optogenetic system by a PostDoc in our
research group. Next developments are: building an enclosure and changing one LED to have a
different illumination wavelength.
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