N
N

N

HAL

open science

Certification of programs with computational effects
Burak Ekici

» To cite this version:

Burak Ekici. Certification of programs with computational effects. Programming Languages [cs.PL].
Université Grenoble Alpes, 2015. English. NNT': 2015GREAMO070 . tel-01250842v2

HAL Id: tel-01250842
https://theses.hal.science/tel-01250842v2

Submitted on 1 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01250842v2
https://hal.archives-ouvertes.fr

UNIVERSITE GRENOBLE ALPES

THESE

Pour obtenir le grade de

DOCTEUR DE LUNIVERSITE GRENOBLE ALPES

Spécialité : Mathématiques et Informatique
Arrété ministériel : 7 AoGt 2006

Présentée par

Burak EKici

Thése dirigée par Jean-Guillaume Dumas
et par Dominique Duval

préparée au sein du Laboratoire Jean Kuntzmann
dans I'école doctorale ED Mathématiques, Sciences et Technologies de
I'Information, Informatique

Certif cation de programmes avec
des effets calculatoires

These soutenue publiquement le 9 Décembre 2015,
devant le jury composé de :

M. Jean Francois Monin

Professeur, Université Joseph Fourier, Président

Mme Catherine Dubois

Professeure, ENSIIE, Rapporteur

M. Olivier Laurent

Directeur de Recherche, CNRS, Rapporteur

M. Alan Schmitt

Directeur de Recherche, INRIA, Rapporteur

M. Andrej Bauer

Professeur, Université de Ljubljana, Examinateur

M. Damien Pous

Chercheur, CNRS, Examinateur

M. Jean-Guillaume Dumas

Professeur, Université Joseph Fourier, Directeur de thése
Mme Dominique Duval

Professeure, Université Joseph Fourier, Co-Directrice de these

Anneme, babama ve Cagin’a ...

Acknowledgements

When I started doing my PhD in Grenoble in early 2013, I was not able to imagine how
enormous load of mathematical formalism I would be struggling with in the following three
years: using the decorated logic to formalize computational effects, making the distinction
between its syntax and semantics from the categorical viewpoint, proving properties of “ef-
fectful” programs using “complete theories” of decorated logics, certifying these proofs in
Coq implementations, combining computational effects and all that. I ignorantly believed
for a long while that all these can be done in a three-years PhD. I have to admit that it
took me a lot to put things in a real basis. At the current stage, if I could make a bit
of these things possible and get a thesis out of them, that is simply due to the endless
support and effort of many people.

First of all, I would like to express my deepest gratitude to my supervisors Dr. Jean-
Guillaume Dumas and Dr. Dominique Duval for their excellent guidance, tolerance and
patience. Many thanks also for making reasonable amount of time whenever I knocked on
your doors. This thesis would have never been possible without your constant encourage-
ment. I am also grateful to Dr. Damien Pous who has thought me many things related to
the amazing proof assistant, Coq. Thanks a lot for always being constructive and answer-
ing all my (stupid) questions.

Each member of my thesis committee has shed light on non-apparent issues which helped
me understanding thus clarifying things better: Dr. Catherine Dubois, Dr. Olivier Laurent
and Dr. Alan Schmitt; thank you so much for spending time on my manuscript, returning
corrections and writing reports that enabled me to defend. Dr. Andrej Bauer, Dr. Damien
Pous and Dr. Jean-Frangois Monin; many thanks for examining my thesis and contribut-
ing with several corrections/suggestions. I will always feel very honored to have you in
the jury. I thank Dr. Andrej Bauer once again for inviting me to lovely Ljubljana and
giving me important voice and discussion opportunities. I also owe many thanks to Dr.
Matija Pretnar and to Dr. Alex Simpson for explaining a lot of things related to algebraic
handlers thus Eff, during my visit.

It is “usually” pretty painful to live abroad. Luckily enough, I have many friends who
truly helped me feel less homesick. There is definitely no order/priority of thanksgiving
but I have to admit that some of my friends used the Skype-like tools better: Tolga Ay-
din, Tagkin Duman, Recep Giindogdu, Hakan Erdogan, Bilge & Giircan Gergek, Ayse &
Erdem Sarili, Gizem & Tunay Tuna, Hatice & Mustafa Hacibekir, Bihter & Bora Yalgin,
Bagak-Esin & Burcin Giizel, Serap & Caner Canbulat, Oya & Efe Ozelginler, Burcu &
Baran Aytag, Pelin & Hikmet Tagtan, Ayse & Samet Gacaroglu, Giilgin & Onur Tosun,
Zeynep & Mitat Poyraz, Sevilay & Dogus Eyrek, Hayal & Ilhan Oztiirk, Seyma & Batuhan
Giindogdu, Kemal Bulat, Cagatay Yiicel, Gorkem Kiling, Seckin Akin, Cevahir Altintop,
Halil Ozcan, Ramazan Tuna and Mehmet Emrah Kala; thank you guys so much for always
keeping me company.

I spent three cool years in the city of Grenoble meeting many people with whom I had
been in the same boat: Ziad, Jean-Baptiste, Federico Zertuche, Alexandre Aksenov, Pierre-
Jean, Thomas, Euriell, Mohammad, Alexis, Patricia, Nhu, Konstantina, Cecilia, Irini,
Anastasios, Nelson, Pierre-Olivier, Matthias, Chloé, Jean-Matthieu, Abdel, Rémi, Alexan-
dre Hoffmann, Charles, Lionel, Federico Pierucci and Dmitry; thanks a lot guys for all

iii

great memories.
Last but definitely not least, I thank my mother Zeynep Ekici, my father Mehmet Ekici

and my brother Cagin Ekici a lot for their true and sincere support even in the worst
moments. The entire work is dedicated to each of them individually!

Burak Ekici, Grenoble, December 2015.

“Pure mathematics is, in its way, the poetry of logical ideas.”

Albert Einstein.

“Mathematics is the art of giving the same name to different things.”

Henri Poincaré.

“Theoretical computer science is closer
to mathematics than it is to computer science. There are definitions, theorems and proofs.”

Andrej Bauer.

v

Certification of Programs with Computational Effects
Burak Ekici

LJK, University Joseph Fourier

Grenoble, France

Abstract

In this thesis, we aim to formalize the effects of a computation. Indeed, most used program-
ming languages involve different sorts of effects: state change, exceptions, input/output,
non-determinism, etc. They may bring ease and flexibility to the coding process. However,
the problem is to take into account the effects when proving the properties of programs.
The major difficulty in such kind of reasoning is the mismatch between the syntax of op-
erations with effects and their interpretation.

Typically, a piece of program with arguments in X that returns a value in Y is not inter-
preted as a function from X to Y, due to the effects. The best-known algebraic approach
to the problem interprets programs including effects with the use of monads: the interpre-
tation is a function from X to T'(Y') where T' is a monad. This approach has been extended
to Lawwvere theories and algebraic handlers. Another approach called, the decorated logic,
provides a sort of equational semantics for reasoning about programs with effects.

We specialize the approach of decorated logic to the state and the exceptions effects by
defining the decorated logic for states (L) and the decorated logic for exceptions (Legxe),
respectively. This enables us to prove properties of programs involving such effects. Then,
we formalize these logics in Coq and certify the related proofs. These logics are built so
as to be sound. In addition, we introduce a relative notion of syntactic completeness of a
theory in a given logic with respect to a sublogic. We prove that the decorated theory for
the global states as well as two decorated theories for exceptions are syntactically complete
relatively to their pure sublogics. These proofs are certified in Coq as applications of our
generic frameworks.

Keywords: computational effects, states, exceptions, program property proofs, equational
semantics, decorated logic, proof certification, Coq.

vi

Certification de programmes avec des effets calculatoires
Burak Ekici

LJK, Université Joseph Fourier

Grenoble, France

Résumé

Dans cette thése, nous visons & formaliser les effets calculatoires. En effet, les langages de
programmation les plus utilisés impliquent différentes sortes d’effets de bord: changement
d’état, exceptions, entrées / sorties, non-déterminisme, etc. Ils peuvent apporter facilité et
flexibilité dans le processus de codage. Cependant, le probléme est de prendre en compte
les effets lorsque 1'on veut prouver des propriétés de programmes. La principale difficulté
dans ce genre de preuve de programmes est le décalage entre la syntaxe des opérations
avec effets de bord et leur interprétation.

Typiquement, un fragment de programme avec des arguments de type X qui retourne une
valeur de type Y n’est pas interprété comme une fonction de X vers Y, a cause des effets.
L’approche algébrique la plus connue pour ce probléme permet une interprétation des pro-
grammes, y compris ceux comportant des effets, en utilisant des monades : 'interprétation
est une fonction de X vers T'(Y') ou T est une monade. Cette approche a été étendue aux
théories de Lawvere et aux "gestionnaires algébriques" (algebraic handlers). Une autre
approche, appelée logique décorée, fournit une sémantique équationnelle pour ces pro-
grammes.

Nous spécialisons ’approche de la logique décorée pour les effets liés a 1’état de la mémoire
et a la gestion des exceptions en définissant la logique décorée pour les états (Lst) et la
logique décorée pour les exceptions (Lez.), respectivement. Elles nous permettent de prou-
ver des propriétés de programmes impliquant de tels effets. Ensuite, nous formalisons ces
logiques en Coq et certifions les preuves associées. Ces logiques sont construites de maniére
& étre correctes. En outre, nous introduisons une notion de complétude syntaxique relative
d’une théorie dans une logique donnée par rapport & une sous-logique. Nous montrons
que la théorie décorée pour les états globaux ainsi que deux théories décorées pour les
exceptions sont relativement complets relativement & leur sous-logique pure. Non seule-
ment nous pouvons utiliser le systéme développé pour prouver des programmes comportant
des effets, mais également nous utilisons cette formalisation pour certifier les résultats de
complétude obtenus.

Mots-clés : effets calculatoires, état, exceptions, preuves de programmes, sémantique équa-
tionnelle, logique décorée, certification de programmes, Coq.

viii

Online sources

This thesis comes with some Coq sources that are available online:

e The STATES-THESIS library:
https://forge.imag.fr/frs/download.php/695/STATES-THESIS.tar.gz

e The EXCEPTIONS-THESIS library:
https://forge.imag.fr/frs/download.php/694/EXCEPTIONS-THESIS. tar.gz

e The HPC-THESIS library:
https://forge.imag.fr/frs/download.php/696/HPC-THESIS.tar.gz

Notice that the EXCEPTIONS-THESIS library includes the logics both for the core language
and the one for the programmers’ language as well as the translation of the programmers’
language into the core language.

Proof lengths & Benchmarks

library source length | length execution time
in Coq | in BTEX | in Coq

STATES-THESIS Proofs.v 12 KB | 20 KB 4.806 sec.

EXCEPTIONS-THESIS || Proofs.v 8 KB 24 KB 3.256 sec.

The HPC-THESIS package includes three different libraries:

(1) exc_cl-hp: Hilbert-Post completeness of the base language (core language with no
use of categorical coproducts) of exceptions.

(2) exc_pl-hp: Hilbert-Post completeness of the programmers’ language for exceptions.

(3) st_hp: Hilbert-Post completeness of the base language (core language with no use
of categorical products) of the state.

Proof lengths & Benchmarks
library source length | length execution time
in Coq | in BTRX | in Coq
exc_cl-hp HPCompleteCoq.v | 36 KB | 28 KB 4.600 sec.
exc_pl-hp HPCompleteCoq.v | 8 KB | 8 KB 0.988 sec.
st-hp HPCompleteCoq.v | 36 KB | 32 KB 5.979 sec.

Remark 0.0.1. Above measurements have been performed on a Intel i17-3630QM @2.40GHz
machine running the Coq Proof Assistant, v. 8.4pl3.

https://forge.imag.fr/frs/download.php/695/STATES-THESIS.tar.gz
https://forge.imag.fr/frs/download.php/694/EXCEPTIONS-THESIS.tar.gz
https://forge.imag.fr/frs/download.php/696/HPC-THESIS.tar.gz

Contents

List of Figures

1 Introduction
1.1 Motivation of the thesis
1.2 Thegoal e
1.3 Contributionso
1.4 Publications e
1.5 Content of the thesis

2 About computational effects
2.1 Formal approaches
2.1.1 Effect systems.
2.1.2 Effectsasmonads
2.1.3 Effects as comonads
2.1.4 Effects as Lawvere theories
2.1.5 Handlers for algebraic effects
2.1.6 Decorated Logic
2.2 Software tools

2.2.1 Haskell
222 Eff ..
2.3 Proof assistants oo
2.3.1 Idriso e
2.3.2 COQ . .

2.3.3 Isabelle
2.4 Concluding remarks: where is this thesis located?

3 Categorical background
3.1 Adjunctions, monads and comonads L.
3.1.1 Preliminaries
3.1.2 The Kleisli adjunction associated to a monad
3.1.3 The coKleisli adjunction associated to a comonad
314 Summaryo
3.2 The coKleisli-on-Kleisli construction associated to a monad
3.2.1 The comparison theorem for the coKleisli construction
3.2.2 The coKleisli-on-Kleisli construction
3.2.3 Application to the exceptions monad on sets.
3.3 The Kleisli-on-coKleisli construction associated to a comonad
3.3.1 The comparison theorem for the Kleisli construction
3.3.2 The Kleisli-on-coKleisli construction
3.3.3 Application to the state comonad on sets

xiii

17
17
17
18
19
21
21
22
24
27
31
31
33
36

pal

Contents

4

xii

Decorated logics
4.1 The monadic equational logic
4.2 The decorated logic for a monad
4.3 The decorated logic for a comonad
4.4 Decorated logic in Coq
4.4.1 Terms e
4.4.2 Decorations
4.4.3 Axioms: decorated logic for a comonad
4.4.4 Axioms: decorated logic foramonad
4.5 Hilbert-Post completeness L.
The state effect
5.1 The decorated logic for the state
5.1.1 Theeffectrule
512 Thepairrules.
5.1.3 Some properties of pairs oL
5.1.4 The interface rules oL
5.2 Coq implementation: Lgo
5.21 Memory
5.2.2 Terms e
5.2.3 Decorations
5.2.4 Axioms
5.2.5 Derived pairs and products
5.3 Proving properties of the state L.
5.4 Hilbert-Post completeness for the state effect
5.5 Chapter summary
The exceptions effect
6.1 The decorated logic for exceptions
6.1.1 Theeffectrule
6.1.2 The copairrules
6.1.3 Some properties of copairs oL
6.1.4 The interface rules L
6.1.5 The downcast rule,
6.2 Decorated logic for the programmer’s language for exceptions
6.3 Translating the logic Leye—p into the logic Lege . . . 0 o o o o0 0000
6.4 The logic Leze in Coq . v . v o o o o o
6.4.1 Prerequisites
6.4.2 Terms e
6.4.3 Decorations e
6.4.4 Axioms
6.4.5 Derived copairs and coproducts
6.5 The logic Lege—prin Coq oo o oL
6.5.1 Terms
6.5.2 Decorations e
6.5.3 AXIOmS
6.6 Translating Lepe—p into Legein Coq ©o 000000000000
6.7 Proofs involving the exceptions effect
6.8 Hilbert-Post completeness for the logic Lege—pr - - - . . . o . o 0 0oL L
6.9 Hilbert-Post completeness for the logic Lepe o o o 0 o o Lo

41
41
42
46
48
49
50
50
53
54

59
99
62
62
62
65
66
66
66
67
68
69
72
75
82

Contents

6.10 Chapter summary 115
7 Conclusions 117
7.1 SUMMATY . . . o o o e 117
7.2 Future directions 117
A Appendix 1 I
B Appendix 2 VII

xiii

Contents

Xiv

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

List of Figures

Interpreting the extended handling construct 8
Extended handling construct in the decorated logic for exceptions 10
Thesis approach 15
Description of the coKleisli-on-Kleisli construction associated to a monad . 28
Description of the Kelisli-on-coKleisli construction associated to a comonad 37

Syntax for Lopeq - - - - - - o oo 41
Inference rules for Lyeq . - o o o o oo 42
Syntax for Loon -« v« v e e e 42
Summary of Definition 4.2.2 oL 43
Inference rules for the logic Lyon. - - -« « o v o o o o Lo 44
Summary of Definition 4.3.1 o 47
Inference rules for the logic Leom. - -« « « o o o o 0 Lo o 47
The decorated logic L4 and its interpretation: an overview. 59
Lgpr SyNtax o 60
Lg: theeffect rule 62
Lg: rules for left pairs 62
L the interface rules 65
The decorated logic L.,. and its interpretation: an overview. 83
The decorated logic Lez.—p and its interpretation: an overview. 84
Lepe: SYNtAX . . . 0 L e e 84
Loge: theeffect rule 86
Leye: rules for left copairs o 87
Loeze: the interface rules L 90
Leze: the downcast ruleo oL L 90
Lege—pi: SYNtaX 91
Lege—pi: rules for the programmers’ language 93

XV

List of Figures

Xvi

1

Introduction

1.1 Motivation of the thesis

Software may involve mistakes that are difficult to detect. One of the current strategies
to detect possible mistakes in a given software is to run series of tests and hopefully to
figure out the possibly incorrect program behaviors. However, visiting all possible cases
is definitely out of testing scope. Hence, testing seems unsatisfactory especially when the
software in question is critical. For instance, software systems that are used to exchange
secure information, or the ones used in aviation and automotive industries. In order to en-
sure that a software system is error-free, one needs mathematical formalization and proofs.

The choice of mathematical formalization depends on the notions which are used in a
certain software. For instance, if it is implemented in a purely functional manner based
on simply typed A-calculus, then the formalization can be done using cartesian closed
categories and properties can be proved within that context. If it involves any sort of
outside world interaction (so called computational effect), then it definitely needs a better
care. In this case, the choice of formalization has a range: varying from the use of monads
to decorated logic, that are briefly presented in Section 2.

1.2 The goal

A computational effect is said to be the apparent mismatch between syntax and semantics
of a program. In this dissertation, we separately formalize the global state effect in Chap-
ter 5 and the exceptions effect in Chapter 6 with the decorated logic [DD10]. The latter
is mainly presented in Chapter 4. Then, by using these formalizations, we prove primitive
program properties including mentioned effects. In addition, we implement these formal
treatments in the Coq proof assistant and certify related program property proofs. The
inference systems provided by the formal approaches are designed to be sound and their
base languages (without categorical structures such as products and coproducts) are here
proven to be Hilbert-Post complete.

1.3 Contributions

This thesis comes with the following contributions to state of the art:

(1) the implementations of the decorated logics in the Coq Proof Assistant to verify
computational effects arising from a comonad and a monad: the decorated logic for
a comonad (L.om) and the decorated logic for a monad (Lon),

(2) the formalizations of the state and exception effects through the decorated logic:

(2.1) the decorated logic for the state (L) as an extension to Leom;

1. Introduction

(2.2) the decorated logic for exceptions (Lezc) and the decorated logic for the pro-
grammers’ language for exceptions (Leye—pr) as extensions to Loon;

(2.3) the Coq implementations of these logics as applications to item (1),

(3) the Hilbert-Post completeness proofs of the logics L4 without products, L., without
coproducts and L.y, as well as related proof certifications in Coq as applications
to item (2.3).

1.4 Publications

Below, we list the publications and reports that have been produced during this thesis:

Refereed conference papers

[DDET15] Relative Hilbert-Post completeness exceptions.

Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous and Jean-Claude
Reynaud. In Siegfried Rump and Chee Yap, editors, MACIS 2015, Sixth International
Conference on Mathematical Aspects of Computer and Information Sciences, 2015.

[DDER14] Certified proofs in programs involving exceptions.

Jean-Guillaume Dumas, Dominique Duval, Burak Ekici and Jean-Claude Reynaud.,
CICM 2014 : Eigth Conference on Intelligent Computer Mathematics, Coimbra, Portugal,
7-11 July 2014, CEUR Workshop Proceedings, no 1186, paper 20.

[DDEP14] Formal verification in Coq of program properties involving the global state ef-
fect. Jean-Guillaume Dumas, Dominique Duval, Burak Ekici and Damien Pous.,

JFLA 2014 : Journées Francophones des Langages Applicatifs, Fréjus, France, 8-11 Jan-
uary 2014.

Research reports

[Ekil5] IMP with exceptions over decorated logic.

Burak Ekici.,

Pre-proceedings of TFP 2015: Trends in Functional Programming, Sophia- Antipolis, France,
3-5 June 2015.

1.5 Content of the thesis

In the following, we describe the content of the thesis by highlighting the main contents of
each chapter:

e Chapter 2 is the state of the art chapter where we start in Section 2.1, by introducing
some of the existing approaches to formalize computational effects. This is followed
by the presentation of different software tools, either to handle computational effects
with Haskell and Eff in Section 2.2, or to verify properties of programming languages
with effects with Idris, Coq or Isabelle in Section 2.3. Most references to the related
work will appear in this section.

e In Chapter 3, first we separately study the Kleisli and coKleisli adjunctions associ-
ated to a monad and a comonad in Section 3.1. Then, Section 3.2 starts with the
proof of the comparison theorem for the coKleisli construction [ML71, Ch. VI, §5,

1. Introduction

dual of Theorem 2| and continues with the composition of Kleisli and coKleisli ad-
junctions: such a two-level structure is named the coKleisli-on-Kleisli construction
associated to a monad and studied in detail with an application to the exceptions
monad. In Chapter 6 we will make use of this construction to interpret the decorated
logic for the exception effect. Finally, Section 3.3 dualizes the construction introduced
in Section 3.2. There, we first give the comparison theorem for the Kleisli construc-
tion [ML71, Ch. VI, §5, Theorem 2| and proceed with the composition of coKleisli
and Kleisli adjunctions, yielding the Kleisli-on-coKleisli construction associated to a
comonad. We apply this composition to the states comonad, so as to interpret the
decorated logic for the state effect in Chapter 5. The main result of this chapter is
that the coKleisli-on-Kleisli category of a monad and the Kleisli-on-coKleisli cate-
gory of a comonad are proven to be respectively the full image category of the related
monad and comonad endofunctors (Theorems 3.2.5 and 3.3.4).

In Chapter 4, Section 4.1 defines the monadic equational logic Lp,eq. This logic is
extended into the decorated logic for a monad (Lpen) in Section 4.2, where the
categorical interpretation of L,,,, by the coKleisli-on-Kleisli construction associ-
ated to a monad is also given. In Section 4.3, the decorated logic for a comonad
(Leom) is detailed. There, we use the Kleisli-on-coKleisli construction associated to a
comonad to interpret the logic L.om. The Coq implementation of both logics is given
in Section 4.4. These logics have been built so as to be sound with respect to their
intended categorical interpretation; but little is known about their completeness.
Therefore, in Section 4.5, we conclude with a completeness notion: relative Hilbert-
Post completeness which is well-suited to a decorated logic. We will show in Sec-
tions 5.4 and 6.9 that one decorated logic for the state effect and two decorated logics
for the exception effect are Hilbert-Post complete with respect to their pure sublog-
ics: we adapt the theorem in [StalO, Th 5] to our logics to give a decorated proof of
their completeness.

In Chapter 5, we start, in Section 5.1, with the syntax of the decorated logic for the
state (L) with its interpretation given via the Kleisli-on-coKleisli construction asso-
ciated to the states comonad. The Coq implementation of the logic L4 is presented
in Section 5.2. In Section 5.3, we prove some properties of the state effect as in [PP02,
§3], but here in a decorated setting. Lastly, the logic Ly (without products) is proven
to be relatively Hilbert-Post complete in Section 5.4.

In Chapter 6, we start, in Section 6.1, with the decorated logic for the exception (Leyc)
with its interpretation given through the coKleisli-on-Kleisli construction associated
to the exceptions monad. We present the decorated logic for the programmers’ lan-
quage for exceptions (Lege—p) in Section 6.2, with its interpretation via the Kleisli
adjunction associated to the exceptions monad. The translation of the logic Leze—pi
into the logic Leg. is given in Section 6.3. The Coq implementations of the logics
Leze and Lege—p and the translation of the logic Leze—p into the logic Ly are re-
spectively presented in Sections 6.4, 6.5 and 6.6. We prove some properties of the
exceptions effect in a decorated setting in Section 6.7. The logic Leze—pi, as well as
the logic L¢z. without coproducts, are proven to be relatively Hilbert-Post complete
in Sections 6.8 and 6.9.

The Chapter 7 is the concluding chapter where we give an overview of the results
obtained in this thesis and highlight some potential future research directions.

1. Introduction

2

About computational effects

In programming languages theory, a program is said to have computational effects if, be-
sides a return value, it has observable interactions with the outside world. For instance,
using/modifying the program state, raising/recovering exceptions, reading/writing data
from/to some file, etc. In order to formally reason about behaviors of a program with com-
putational effects, one has to take into account these interactions with the outside world.
One difficulty in such a study is the mismatch between the syntax of operations with effects
and their interpretation. Typically, an operation in an effectful language with arguments
in X that returns a value in Y is not interpreted as a function from X to Y, due to the
effects, unless the operation is pure.

In this chapter, we start, in Section 2.1, by introducing some of the existing approaches to
formalize computational effects. This is followed by the presentation of different software
tools, either to handle computational effects with Haskell and Eff in Section 2.2, or to
verify properties of programming languages with effects with Idris, Coq, or Isabelle in
Section 2.3. Finally, in Section 2.4, we compare the formal approach behind this thesis
with the existing ones.

2.1 Formal approaches

The simply typed A-calculus is a useful mathematical tool to study behaviors of typed
programming languages without computational effects. It can be interpreted in a carte-
sian closed category with types as objects and terms (program pieces) as arrows. In
addition, categorical products and coproducts can be used to cope with n-ary operations
and conditionals (or branching), respectively. This result is known as the Curry-Howard-
Lambek correspondence which relates intuitionistic logic, simply typed lambda calculus
and cartesian closed categories. The algebraic approach for formalizing computational
effects aims to extend this correspondence in a formal way. This has been considered
from several different viewpoints and used to formalize computational effects as detailed
in Sections 2.1.2, 2.1.4 and 2.1.5. Some alternative approaches such as effect systems and
decorated logic are also briefly presented in Sections 2.1.1 and 2.1.6.

2.1.1 Effect systems

In their 1988 paper [LG88], Lucassen and Gifford presented a new approach to program-
ming languages for parallel computers. The key idea was to use an effect system to dis-
cover expression scheduling constraints. In this system, every expression comes with three
components: types to represent the kinds of the return values, effects to summarize the
observable interactions of expressions and regions to highlight the areas of the memory
where expressions may have effects. To this extend, one can simply reason that if two ex-
pressions do not have overlapping effects, then they can obviously be scheduled in parallel.

2. About computational effects

The reasoning is done by some inference rules for types and effects based on the second
order typed A-calculus.

2.1.2 Effects as monads

The best known algebraic approach to formalize computational effects was initiated by
Moggi in his seminal paper [Mog91]. There, he showed that the effectful operations of
an impure language can be interpreted as arrows of a Kleisli category for an appropriate
monad (7,7,) over a base category ¢ with finite products (see Definition 3.1.2). For in-
stance, in Moggi’s computational metalanguage, an operation in an impure language with
arguments in X that returns a value in Y is now interpreted as an arrow from [X] to TY]
in ¢ where [X] is the object of values of type X and T[Y] is the object of computations
that return values of type Y. The use of monads to formalize effects (such as state, excep-
tions, input/output and non-deterministic choice) was popularized by Wadler in [Wad92]
and implemented in the programming languages Haskell (See Section 2.2.1) and Ff.

With this, through monad transformers [Jas09], it is usually possible to “combine” different
effects formalized by monads. In [GSR14|, Goncharov et al. proposed a framework that
combines monad-based computational effects, underdefined or free operations and recursive
definitions.

Ezample 2.1.1. The exceptions monad (or coproduct monad), on the category of sets, comes
with the endofuctor TX = X 4 F for each set X and the distinguished set of exceptions
E. Note that we use the exceptions monad in Section 6 to formalize the exception effect.

Example 2.1.2. The state monad, on the category of sets, has the endofunctor TX =5 —
(X x S) for each set X and the distinguished set of states S.

Moggi’s computational metalanguage was extended into the basic effect calculus with a no-
tion of computation type as in Filinski’s effect PCF [Fil96] and in Levy’s call-by-push-value
(CBPV) |Lev99|. In their paper [EMS14], Egger at al., defined their effect calculus, named
extended effect calculus as a canonical calculus incorporating the above ideas of Moggi,
Filinski and Levy. Following Moggi, they included a type constructor for computations.
Following Filinski and Levy, they classified types as value types and computation types.

2.1.3 Effects as comonads

Being dual to monads, comonads have been used to formalize context-dependent compu-
tations. Intuitively, an effect which observes features may arise from a comonad, while
an effect which constructs features may arise from a monad [JR11|. Uustalu and Vene
have structured stream computations [UV08|, Orchard et al. array computations [OBM10]
and Tzevelekos game semantics [Tze08] via the use of comonads. In [POM], Petricek et
al. proposed a unified calculus for tracking context dependence in functional languages
together with a categorical semantics based on indexed comonads. In his report [Orcl2],
Orchard proposed a method for choosing between monads and comonads when formalizing
computational effects.

A computation can be seen as a composition of context-dependence and effectfulness
[UVO08]. In [BVS93|, Brookes and Van Stone showed that such combinations may cor-
respond to distributive laws of a comonad over a monad. This has been applied to clocked
causal dataflow computation, combining causal dataflow and exceptions by Uustalu and
Vene in [UV05].

2. About computational effects

Example 2.1.3. The costate comonad, on the category of sets, is given with the endofunctor
DX =85 x (S — X) for each set X and the distinguished set of states S.

Ezample 2.1.4. The state comonad (or product comonad), on the category of sets, is given
with the endofunctor DX = X x S. Note that, we use the state comonad to formalize the
global state effect (See Section 5) while Moggi uses the state monad (as in Example 2.1.2)
for the same effect [Mog91].

2.1.4 Effects as Lawvere theories

A Lawvere theory is a finite product category in which every object is isomorphic to a finite
cartesian power

A"=Ax Ax...x A

n times

of a distinguised object A known as the generator. A morphism f: A" — A™ in a Lawvere
theory may be expressed as f: m — n.

Lawvere theories first appeared in Lawvere’s 1963 PhD dissertation [Law63]. Three years
later, in [Lin66|, Linton showed that every Lawvere theory induces a monad on the cate-
gory of sets and on any category which satisfies the local representability condition [Lin69].
Therefore, Moggi’s seminal paper [Mog91], formalizing computational effects by monads,
made it possible for monadic effects to be formalized through Lawvere theories. To this
extend, Plotkin and Power, in [PP02|, have shown that effects such as the global and the
local state could be formalized by signatures of effectful terms and an equational theory
explaining the interaction among terms.

A model of a Lawvere theory £ in a category ¥, with finite products, is a finite-product
preserving functor M: £ — %. A homomorphism between models M; and Ms is a nat-
ural transformation h: My = Ms. All models of the Lawvere theory £, with the model
homomorphisms, form a category Mod, (%) called the model category of L. The model
category Mod, (%) is equipped with a forgetful functor U: Modp(€¢) — €. It can be
proven that U has a left adjoint F': € — Mod, (%), if € is a locally finitely presentable
category [Bor94]. This adjunction F' 4 U: Mod;(€) — % induces a monad on the base
category %. Now, a computational effect is called algebraic, if it corresponds to a monad
which can be obtained from a Lawvere theory [PP13].

In [HPPO6]| and [HLPPO7|, Hyland et al. studied the combination of computational effects
in terms of Lawvere theories.

Example 2.1.5. [HP07] The Lawvere theory Lg for exceptions is generated by Card(E)
constant operations (one for each exception e in E) raise.: A — A! with no equa-
tion [PP03]. The monad TX = X + F on the category of sets is induced by the theory Lg
as follows: Each model M is characterized by the set B = M(A) and the elements r. € B
such that M(raise.): {x} — B maps x to r., for each e in E. Now, the forgetful functor
U: Mg, (Fet) — Let maps the model M = (B, (re)ecr) to the set B. The left adjoint
F: . Yet — Mg, (.%et) maps each set X to the model (X + E, (e)ecr) of Lg in Set.

Furthermore, it has been shown in [PP03] that the operation handle,, used for recovering
from an exception e, does not satisfy the requirements to be algebraic in the sense of [PP01,
§2, Definition 2.1] while raise, is an algebraic operation in this sense.

2. About computational effects

Ezxample 2.1.6. [HP07] Let Loc be a finite set of locations and let Val be countable set
of values. The countable Lawvere theory Lg for the state S = Val*®° is generated by
the operations lookup: Loc — Val and update: Loc x Val — 1 satisfying seven equalities
stated in [PP02, §3|. Along the same lines, Plotkin and Power have shown that the theory
Lg induces the state monad TX = S — (X x S) on the category of sets.

Melliés has shown in [Mell0| that some of these seven equalities can be omitted.

2.1.5 Handlers for algebraic effects

Plotkin and Pretnar [PP09, PP13] gave an account for handling algebraic effects: Moggi’s
classification of terms (values and computations) is extended with a third level called han-
dlers within the framework of Lawvere theories. Here, we focus on exception handlers.

Simple exception handling construct. Let F be the set of exceptions and A be the
set of values returned by the computations. Then:

H(M) 4) handled with {raise, — Mc}ecr

is the simple handling construct which is itself a computation. The handling construct
H (M) is made of a computation M € A+ E and a handler {raise, — M, }.cr where, for
each exception e € F, raise, intercepts M by throwing an exception and M, € A+ E is
the corresponding predefined computation that handling construct proceeds with. There
is no equation in the Lawvere theory of exceptions Lr (Example 2.1.5) but the handling
computation is characterized by the following equations:

H(returnV) = inl(V),
H(raise.()) = M.

where V' is any value in A. Obviously, M, = raise.() causes the exception of name e’
not to be handled.

Extended exception handling construct. Simple handling construct is generalized
to the extended handling construct, introduced by Benton and Kennedy [BKO1], where
returned values are passed to a user-defined continuation map N: A — B + E.

H(M) 4 M handled with {raiseO¢ — Nc}lecptoz : AN(z)

Within the handling construct, first the computation M € A+ E is evaluated: if it returns
a value V € A, then the return value is bound to the variable x and it remains to evaluate
N(V) € B+ E. Else if M raises the exception ¢ € E, then the exception is recovered
and the computation Ny € B + E is evaluated. Obviously, N, = raise. () causes the
exception €’ not to be handled. All these are characterized by the following equalities:

H(returnV) = N(V),
H (raisee()) = Ne.

A
l\
nA
A_|_E h B+ F

Figure 2.1: Interpreting the extended handling construct

2. About computational effects

As a further step, a calculus extending Levy’s call-by-push-value (CBPV) paradigm |[Lev99|
(which is based on the distinction between computation and value types) with operations,
handler definitions and effect handling constructs has been proposed not only to handle
exceptions but also other sort of algebraic effects such as stream redirection, explicit non-
determinism, CCS, parameter passing, timeout and rollback [PP13, §3].

Remark 2.1.7. The issue of exception handling has been circumvented in [SMO04| in order
to get a Hoare logic for exceptions and in [Lev06]| by using both algebras and coalgebras.
The formalization of exceptions can also be made from a coalgebraic point of view [Jac01].

2.1.6 Decorated Logic

In 2010, Duval and Dominguez [DD10] have proposed yet another paradigm to formalize
computational effects by mixing effect systems and algebraic theories, named the decorated
logic. The key point of this paradigm is that every term comes with a decoration which
exposes its features with respect to a single computational effect or to several ones. In
addition, an equational theory highlights the interactions among terms. There, we have
two sorts of equations: weak equations relate terms with respect only to their results and
strong equations relate terms with respect both to their results and effects.

Here, we prefer not to give details of the decorated logic, since in the following chapters, we
detail them to cover the state and the exception effects. Instead, we give two examples, in
the following, to clarify the use of decorations and equations, mainly the weak equations.

Example 2.1.8. (State effect) [DDFR12a, §1.2] In the object-oriented language C++, we
write a class BankAccount as a toy example to manage simplified bank accounts with the
use of types int and void that are respectively interpreted as the set of integers Z and a
singleton {x}. In the BankAccount class, there are two methods namely balance() and
deposit (x). The former returns the balance of the account without modifying it while the
latter modifies the amount. Therefore, balance is an accessor method while deposit (x)
is a modifier. We declare these public methods in C++ syntax within the class BankAccount
as follows:

class BankAccount {
public:
int balance () const;
void deposit (int);

}

This syntax can be translated into a signature Banke,,, called apparent signature, as:

balance: void — int

Bankgy,:
“wp {deposit: int — void

with the following interpretation:

[deposit]: Z — {x}

{[[balance]]: {*x} =7

which is obviously not the intended interpretation.

2. About computational effects

In order to get the intended interpretation correctly, one needs to consider the state of any
account. Let state be the type of states of a given bank account. So that we can get the
below signature (named explicit signature) as:

balance: state — int

Bankegp: o
deposit: int X state — state

with the following interpretation:

[balance]: St — Z
[deposit]: Z x St — St

where St is the set of all possible states of an account.

The apparent signature is simple and close to the syntax but its interpretation is not the
intended one. Contrarily, the explicit signature has the intended interpretation but it is
far from the syntax itself. At this point, we define a decorated signature Bankgje., which
is close to the syntax and provides the intended interpretation. The decorated signature
classifies operations by using superscripts: (0) is used to indicate pure operations that have
no interaction with the state of the account, we have (1) for state accessor and (2) for
state modifier operations.

balance®: void — int

Bankgeco:
e {deposit@) : int — void

Let us consider the following C++ expressions:
deposit(10); balance() and 10 + balance()
which can be seen in decorated terms as:
balance¥) o deposit(Q) 010 and +© o <1O(°),ba1ance(1)>

where the operator 4+: int X int — int is pure. Obviously, these two terms have different
effects: the former one is a modifier while the latter is only an accessor with respect to
the state of an account. However both return the same integer as a result. Thus, for these
cases where operations have the same result but make different manipulations on the state,
we introduce a weak relation denoted by the symbol ~:

balance(!) odeposit@) 0100 ~ 4+ 4 <1O(O),balance(1)>

Ezample 2.1.9. (Exceptions effect) Similarly, it is possible to provide a decorated signature
for the exceptions effect: (0) is to indicate pure operations, (1) for exception throwers and
(2) for exception catchers. Weak equations relate terms that agree on ordinary arguments
but maybe not on exceptional ones.

Therefore, the extended handling in Figure 2.1 can be seen as the interpretation of the
following weak equation: h(2) ~ N(1).

N1
— T
A ~ =B
h(2)

Figure 2.2: Extended handling construct in the decorated logic for exceptions

10

2. About computational effects

Indeed, this equation means that the catcher term h(?) agrees with the propagator term
N on ordinary arguments. However, on exceptional arguments, they may behave differ-
ently: h(®) might recover the computation from the exceptional argument while N must
propagate the exceptional argument.

More precisely, the catcher term h(?): A — B is interpreted as a function h: A+E — B+E
while the propagator term N is interpreted as a function N: A — B + E. Then, the
weak equation in Figure 2.2 is interpreted by the following equality: N = h ony4, which is
the way the extended handling construct in [PP13] is interpreted (Figure 2.1). Actually,
the 3-tier system classifying the terms with respect to their exceptional features (pure,
thrower, catcher) corresponds to the values, computations and handlers in [PP13].

Notice that in Chapters 5 and 6, we will propose decorated formalizations for the global
state and the exceptions effects, respectively.

2.2 Software tools

The formal approaches mentioned in Sections 2.1.2 and 2.1.5 have been implemented in
Haskell and Eff as briefly introduced in Sections 2.2.1 and 2.2.2.

2.2.1 Haskell

Haskell is a purely functional and lazy programming language: an expression would return
exactly the same result when evaluated twice and an expression is evaluated only when it
should return a final result. Haskell proposes a strongly typed system with some sophisti-
cated features like typeclasses and generalized algebraic data types.

Monads are implemented in Haskell to make use of imperative features in a functional
setting. In this context, the first attempt was made to perform input/output operations:
reading/writing from/to a file have been implemented as monadic operations to impose an
order of evaluation. However, the use of monads in Haskell is not limited to input/output.
They also support some other imperative features such as state, exceptions, continua-
tions, non-determinism, parallelization etc.

Definition 2.2.1. Hask is the category with objects as Haskell types, functions as arrows
between these types. The identity arrow for any type A is given as

id = \x — x.
And the composition of functions f and g is given as

f . g="\x—>1f (g x).

Now, we can speak of some category theoretic concepts such as functors and monads in
Haskell. Indeed, both functors and monads are implemented as typeclasses as given in the
following:

class Functor F where
fmap :: (a —>b) —>F a—>Fb

The fmap method, for each Functor type F, applies a function of the arrow type a -> b
to an instance of type F a so as to return an instance of type F b, for each types a and b
in the category Hask.

11

2. About computational effects

class Monad m where
join :m (ma) —>ma
return :: a —> m a

Similarly, for each monadic type m and each type a in the category Hask:

(1) the method join takes an instance of type m (m a) and returns an instance of type
m a, corresponding to the multiplication of a monad;

(2) the method return takes an instance of type a and returns an instance of type m a,
corresponding to the unit of a monad.

Example 2.2.2. The Maybe type of Haskell can be used to represent computations that
might fail. Let us illustrate it as functor and monad class instances. We start with its def-
inition:

data Maybe a = Just a | Nothing

Indeed, the type Maybe a has two constructors: Just a and Nothing for each type a in Hask.

instance Functor Maybe where
fmap f Nothing = Nothing

fmap f (Just a) = Just (f a)
instance Monad Maybe where
return a = Just a

join (Just (Nothing)) = Nothing
join (Just (Just a)) Just a

The method bind, denoted »=, can be defined through fmap and join as follows:

bind = join . fmap f (Maybe a)

for each function £ :: a -> Maybe a and type a in Hask.

For any even integer n, a chain of computations to calculate the n” integral root of a given

integer, if it exists, can be implemented with the use of the Maybe monad and the bind
method as follows:

sqroot :: Integer —> Maybe Integer
sqroot x = sqroot '(0,0) where
sqroot "(s,1)
| s > x = Nothing
| s — x = Just r

| otherwise = sqroot’ x (s+2*r+1,r+1)

The above function® calculates the positive square root of a given integer, if it exists. Now,

calculating the positive 42" root is just binding the handled square root value to the same
function.

4throot :: Integer —> Maybe Integer

4throot x = sqroot x >>= sqroot

Obviously, to calculate the positive 8" root, a further binding is necessary thus for the

positive n' root, one needs n,/2 bindings. If the computation fails, then it returns Nothing.

the source has been taken from the post “Understanding Haskell Monads” by Mr. Ertugrul Séylemez.

12

2. About computational effects

8throot :: Integer —> Maybe Integer
8throot x = sqroot x >>= sqroot >>= sqroot

Therefore, error management is purely handled via the Maybe monad.

2.2.2 Eff

Eff, developed by Bauer and Pretnar [BP15, BP14, Prel4], is a programming language im-
plementing the approach of effects as Lawvere theories with handlers. Below, we summarize
the constructions specific to Eff detailing neither the syntax (expressions and computa-
tions), nor the issues related to type checking and denotational semantics.

Instances and operations. We prefer to skip the technicalities of Eff types, expressions
and computations. However, it is crucial to note that Eff has effect types E, describing
several related effectful operations, and handler types A = B indicating that an instance of
such handler acts on computations of standard type A and returns computations of stan-
dard type B. For instance, given an effect instance e of type E and an operation symbol
op: A — B € E (contained in E), there is an operation e#op: A — B which is known as a
generic effect and which is effect free as it is. However, it becomes an effectful operation
when applied to an expression exp. This is supposed to be handled by a handler of type
A = B. Besides, there is a crucial computation new which generates an effect instance of
effect type E.

Handlers. A handler
h =val x — ¢, | handler(e;#op; k — ¢;); | finally — cy
can be applied to a computation ¢ via the below handling construct:
with A handle c.

If the computation ¢ evaluates into val v, then the handling construct binds v to z and
evaluates into ¢,. Else if ¢ meets an effectful operation e;#op, exp during the evaluation,
the handling construct binds exp to x and the provided continuation to k£ thus evaluates
into a computation ¢; which may still be handled by outer handling constructs, since
continuation is delimited. The finally clause can be seen as an additional transformation
which converts the handling construct into:

let x = (with h handle ¢) in cy.

Obviously, if the ¢ encounters a computation e;#op; e which is not considered by the han-
dler h, then the effect gets propagated and might be handled by outer handling constructs.

Now, let us consider a simple example which shows the way to handle exceptions in Eff:

Example 2.2.3. An exception is an effect with a single operation named raise (no charac-
terizing operation, see Example 2.1.5) which takes a parameter of type ‘a and returns an
instance of empty type:

type ‘a exception = effect
operation raise: ‘a —> empty
end

13

2. About computational effects

The input parameter ‘a can be used by the exception handler while the return instance
of the empty type indicates that a raised exception does not give the control back to the
continuation.

let optionalize e = handler
| effraise v —> print v
| val x —> print x ;;

The handler optionalize e either prints the non-exceptional value x or first handles an
exception instance e with parameter v and then prints it out. Notice that in the above
implementation, there is no provided continuation: this is ensured by the use of (_).

In order to make use of this handler, we first create an instance of the exception effect:
let e = new exception ;;

Now, we handle the computation raise e (3 * 100) with optionalize e which prints
the associated parameter to the screen:

with optionalize e handle
raise e (3 % 100) (x Raise e with argument 300. x)

To provide a continuation, say by a user-defined function, one needs to replace the under-
score with the function in question.

Lastly, Eff enables programmers to implement handlers of several other effects and it also
supports effect combination. For detailed examples, see [BP15, §6].

2.3 Proof assistants

It is crucial to note that neither Haskell nor Eff (to our knowledge) include a verification
process. Rather, within their formal context, any syntactically well-typed code is supposed
to be correct (aka certified) provided that the underlying logic is. Conversely, platforms
like Idris, Coq and Isabelle are designed either to be verification oriented or supported.
Thus, in the following, we give some pointers about such tools.

2.3.1 Idris

Idris is a purely functional programming language using an eager evaluation strategy and
dependent types. It involves a library to manage computational effects named Effects.
In [Bral3|, Edwin C. Brady describes how to use the Effects library: how to create new
computational effects, how they are implemented as well as how to handle them via an
approach based on algebraic handlers as in [BP15]. Idris also supports interactive theorem
proving with tactics. For all further information, check out the below link:

http://www.idris-lang.org/

2.3.2 Coq

Coq is a proof assistant which implements a higher order mathematical language named
Gallina. The underlying formal language of Gallina is the Calculus of Constructions (CoC)
developed by Thierry Coquand and Gérard Huet |[CH88| which extends the simply typed
A-calculus with polymorphism, dependent types and type operators: when considered the
of Barendregt’s lambda cube [BDS13], it locates on the right-top. In time, CoC has been

14

http://www.idris-lang.org/

2. About computational effects

enriched with the use of inductive, coinductive types and hierarchical Universes so as to
evolve in Calculus of (co)Inductive Constructions (CIC). For all further information, check
out the below link:

https://coq.inria.fr/

In this thesis, on the one hand, we use Coq as a platform to formalize Duval’s decorated
logic for the treatments of computational effects: the state and the exceptions. To do
so, we mainly exploit inductive and dependent types. On the other hand, we use Coq
as a proof development system by benefiting its interactive proof methods and the tactic
language when certifying properties of programs formalized with a decorated logic.

2.3.3 Isabelle

Isabelle [NPW02] is an interactive prover which embeds a formal mathematical language
named ISAR. It has mainly been developed at University of Cambridge and Technische
Universitdt Miinchen. It involves tools for proving mathematical formulae in a logical
calculus. Nowadays Isabelle/HOL is the mostly used and spread instance: apart from
proving theorems based on a higher-order logic, it also enables the use of structures such
as (co)datatypes, (co)inductive definitions and recursive functions with pattern matching.
For all further information, check out the below link:

https://isabelle.in.tum.de/

2.4 Concluding remarks: where is this thesis located?

Provided the aforementioned state-of-the-art, in this section, we clarify the point where
this thesis is located.

Decorated logic
implementation
proof Coq

ﬂied proof

Program properties

Figure 2.3: Thesis approach

We chose the decorated logic to formalize computational effects of a program and prove
its properties. As depicted in Figure 2.3, certifying property proofs of programs with effects
in a decorated setting is about using Coq as a proof development system after implementing
the related decorated logic in Coq.

On the choice of decorated logic. In this thesis, we choose the decorated logic paradigm
to formalize computational effects, mainly due to following arguments:

(1) since effects of terms are hidden by the decorations, it is possible to preserve the
syntax of term signatures. Thereafter, the provided equational reasoning would be
valid for different algebraic models of the same effect.

15

https://coq.inria.fr/
https://isabelle.in.tum.de/

2. About computational effects

(2) the equational theory is based on decorated equivalence relations proposing different
reasoning capabilities: one on effects and returned results and the other one only
on returned results.

On the choice of Coq. To our knowledge, apart from Coq, Isabelle and Idris, other
mentioned tools, Haskell and Eff, do not embody platforms which could be used both to
program formal logic and develop certified proofs.

We could have used Idris as a platform both to implement the decorated logic and to
interactively prove theorems. We do not have any apparent argument to prefer Coq against
Idris apart from their focuses: Idris supports an interactive theorem proving based on
general-purpose-programming while Coq originally motivates theorem proving.

The choice between Isabelle and Coq does not strongly stand by neither side for our im-
plementation except for the following argument: using inductive predicates of Coq might
be comparatively harder when implementing but easier when using induction as a reason-
ing strategy.

Using separate platforms for programming formal logic and developing certified proofs is
an option where a verified translator (from the platform to program formal logic to the
platform to develop certified proofs) would be necessary. However, using Coq for both issues
seems to be more homogenous and trustworthy. Notice also that we will not formalize in
Coq the categorical interpretation of the logics we propose. For a Coq formalization of
category theoretic structures, see [Ahrl5].

16

3

Categorical background

In this chapter, first we separately study the Kleisli and coKleisli adjunctions associated
to a monad and a comonad in Section 3.1. Then, Section 3.2 starts with the proof of the
comparison theorem for the coKleisli construction [ML71, Ch. VI, §5, dual of Theorem 2|
and continues with the composition of Kleisli and coKleisli adjunctions: such a two-level
structure is named the coKleisli-on-Kleisli construction associated to a monad and studied
in detail with an application to the exceptions monad. In Chapter 6 we will make use of this
construction to interpret the decorated logic for the exception effect. Finally, Section 3.3
dualizes the construction introduced in Section 3.2. There, we first give the comparison
theorem for the Kleisli construction [ML71, Ch. VI, §5, Theorem 2| and proceed with the
composition of coKleisli and Kleisli adjunctions, yielding the Kleisli-on-coKleisli construc-
tion associated to a comonad. We apply this composition to the states comonad, so as to
interpret the decorated logic for the state effect in Chapter 5.

The main result of this chapter is that the coKleisli-on-Kleisli category of a monad and
the Kleisli-on-coKleisli category of a comonad are proven to be respectively the full image
category of the related monad and comonad endofunctors (Theorems 3.2.5 and 3.3.4).

3.1 Adjunctions, monads and comonads

This section aims to study the Kleisli adjunction associated to a monad and its dual. We
start with some preliminary notions that might be helpful: all related details can be found
in [ML71, Ch. IV, Ch. VI].

3.1.1 Preliminaries

Definition 3.1.1. Let € and Z be two categories. An adjunction FF 4 G: 9 — € is a
triple (F, G,) such that F': € — 2, G: 2 — € are functors and ¢ = (¢x,4)x,4 is a
family of bijections, natural in X and A, where X is an object of ¥ and A is an object of Z:

ox,A: Homg(FX, A) =N Homy (X, GA) (3.1)

Definition 3.1.2. A monad T = (T,n,u) in a category % consists of an endofunctor
T: % — € with two natural transformations

n:Ildg =T u:T>=T (3.2)
such that the following diagrams commute:

L T

S

7T T —— =T

17

3. Categorical background

Definition 3.1.3. A comonad D = (T,¢,d) in a category € consists of an endofunctor
D: ¢ — ¢ with two natural transformations

e:D=1Idy 6:D= D? (3.3)

such that the following diagrams commute:

D392 p2 D D p2
DéT = Ta DET \idD: Ta

D2

Let us consider an adjunction ' 41G: 2 — ¢. Weset A= FX in (3.1) and get nx: X —
GFX in € which is the image of idrx by ¢x, Fx. Symmetrically, by setting X = GA, we
obtain e4: FGA — A in 2 which is the image of idga by @5}4’14. As shown in [ML71,
Ch. 1V, §1], n: Idy = GF and e: FG = Idg are natural transformations. Thus, we get
the following proposition by [ML71, Ch. VI, §1] and [ML71, Ch. IV, §1, Theorem 1].

Proposition 3.1.4. An adjunction FF 4 G: 9 — €, with associated family of bijections ¢
as in Definition 3.1.1, determines a monad on € and a comonad on Z as follows:

e The monad (T,n,u) on € has endofunctor T = GF: € — €, unit n: Idg = T
where Nx = ¢x, px(idpx) and multiplication i T? = T such that px = G(epx).

e The comonad (D,e,0) on 2 has endofunctor D = FG: 9 — 9, counite: D = Idy
where €4 = oy 4(idga) and comultiplication §: D = D? such that 54 = F(nca).

In addition, we have:

ox, Af =Gfonx: X — GA for each f: FX — A (3.4)
go;(lAgzerFg: FX — A for each g: X — GA.

3.1.2 The Kleisli adjunction associated to a monad

Each monad (7,7, u) on a category € determines a Kleisli category ¢ and an associated
adjunction Fr 4 Gp: 61 — € as follows:

T D
) Fr)
€ 1 Cr

Gr

n:ld=T FriGr e:D=1d
Note that all related details can be found in [ML71, Ch. VI, §5].

e The categories € and €p have the same objects and there is a morphism f’: X — Y
in %7 for each morphism f: X — TY in %. So that there is a bijection defined as:

(1) x.y : Homy, (X,Y) = Homy(X,TY)
et (3.7)

e For each object X in €r, the identity arrow is idx = h”: X — X in % where

h=nx:X—>TX in%. (3.8)

18

3. Categorical background

e The composition of a pair of morphisms f’: X — Y and ¢’: Y — Z in %r is given
by the Kleisli composition:

FofP=K:X—Zwhere h=pzoTgof: X ->TZiné. (3.9)

e The functor Fp: ¥ — %r is the identity on objects. On morphisms,

Frf=(nyof)’, foreach f: X =Y in 4. (3.10)

e The functor Gp: ¢ — % maps each object X in 7 to TX in ¥. On morphisms,
Gr(g’) = py o Ty, for each ¢’: X — Y in . (3.11)
Then, the monad associated to the adjunction Fr - Gr is actually the monad (7,7, i), so
that T = G Frp.

Definition 3.1.5. The monad (7,7,) is said to satisfy the mono requirement if nx is a
monomorphism for each X [Mog8&9].

Theorem 3.1.6. Let (T,n, 1) be a monad on a category €. Let €1 be the Kleisli category
and let Fp 4 Gp: ép — € be the Kleisli adjunction determined by (T,n,). Then, nx is
mono for each object X in € if and only if Fr is faithful.

Proof. The proof is dual to the proof given in [ML71, Ch. IV, §3, Theorem 1|. U

In addition, the associated comonad (D,e,d) is defined by the application of Proposi-
tion 3.1.4 as follows:

e On objects, DX = FrGrX = GprX =TX in %7, for each X in %7.
e On morphisms,
D(f*) = PrGr(f’) = Fr(py o Tf) = (nry o py o Tf) = I’ (3.12)
for each f°: X — Y and some R’ in €7 such that h = nryouyoTf: TX — T?Y in 4.
e the counit is given by

ey = (idg,y)’, for each Y in €. (3.13)
e the comultiplication is given by

Sy = Fr(nag,y) = My Frary © UGTY)b in ¢r where NG, rrGry © NGy TY — T3Y in €.
(3.14)

3.1.3 The coKleisli adjunction associated to a comonad

In this section, we dualize of the notions introduced in Section 3.1.2. Now, let (D,¢,d) be
a comonad on a category . Let €p be the coKleisli category and let Fp 4 Gp: € — 6p
be the adjunction it determines with following settings:

D T
) Gp !
€ T ch
Fp

e:D=1d GprFp n:ld=T

19

3. Categorical background

e The categories € and €p have the same objects and there is a morphism f#: X - Y
in p for each morphism f: DX — Y in ¥. So that there is a bijection defined as:

(Yp)x.y: Homeg, (X,Y) = Homg(DX,Y) (3.15)
fre f (3.16)

For each object X in €p, the identity arrow is idx = h*: X — X in €p where

h=ex: DX - X in¥. (3.17)

The composition of a pair of morphisms f#: X — Y and ¢*: Y — Z in €p is given
by the coKleisli composition:

gt o f* = h¥ where h=go Dfodx: DX — Z in ¢. (3.18)

The functor Gp: € — %p is the identity on objects. On morphisms,
Gpf = (foex)¥ foreach f: X =Y in €. (3.19)

The functor Fp: €p — ¥ maps each object X in €p to DX in €. On morphisms,

Fp(g*) = Dgoébx, for each ¢*: X — Y in €p. (3.20)
Then, the comonad associated to the adjunction Fp - Gp is actually the comonad (D, ¢, J),
so that D = FpGp.

Definition 3.1.7. The comonad (D, ¢, d) is said to satisfy the epi requirement if € x is epi
for each X.

Theorem 3.1.8. Let (D,e,d) be a comonad on a category €. Let €p be the coKleisli
category and Fp 4 Gp: € — €p be coKleisli adjunction determined by (D,e,0). Then,
ex 1s epi for each object X in €, if and only if Gp is faithful.

Proof. The proof is given in [ML71, Ch. IV, §3, Theorem 1]. O

In addition, the associated monad (7,1, 1) is defined by the application of Proposition 3.1.4
as follows:

e On objects, TX = GpFpX = FpX = DX, for each X in %p.
e On morphisms,
ijﬁ = GDFD(fﬁ) = GD(Df (e} 5x) = (Df (e} (5)((e} e’;‘DX)ti = hﬁ (321)

for each fﬁ: X — Y and some hf in €p such that h = Dfoéx oepx: D*°X —
DY in €.

e the unit is given by
nx = (idp, x)*, for each X in €p. (3.22)
e the multiplication is given by
px = Gpleryx) = (Erpx 0 €Fpaprpx)’ in €p (3.23)

where ep,x 0 cp,GpFpX D3X - DX iné. (3.24)

20

3. Categorical background

3.1.4 Summary

In summary, an adjunction F' 4 G: 2 — € [Kan58] determines a monad (7,7,) on the
category % and dually a comonad (D, ¢,d) on the category 2.

T D

F) F)

¢ 1L =9 — % 1 2
G G

Conversely, a monad (7,1,) on a category 4 may determine several adjunctions, includ-
ing: Fr 4 Gr: ér — € where 67 is the Kleisli category of (T,n,u). The associated
adjunction Fr 4 Gr determines back the monad (7', i,).

T T
) Fr)
¢ = 1 =% = ¢
Gr

Dually, a comonad (D,e,0) on a category € may determine several adjunctions, includ-
ing: Fp 4Gp: € — €p where €p is the coKleisli category of (D,e,0). The associated
adjunction Fp | Gp determines back the comonad (D, ¢,).

D D

) Gp)

¢ = ¢ T =% = %
Fp

3.2 The coKleisli-on-Kleisli construction associated to a monad

The adjunction, given in Sections 3.1.2, Fpr 4 Gr: r — % determines a comonad
(D,e,0) on €¢r. This comonad further determines several adjunctions, including: Fr p -
Gr,p: 61 — €r,p where €1 p is the coKleisli category of (D,e,6). The associated ad-
junction Fr p 4 G, p determines back the comonad (D, ¢,).

D D
) Gr.p)

Cr - Gr - T = cgﬂ D - Cr

_//
Fr p

Besides, we show in Theorem 3.2.5 that the category é7, p is the full image category of
the endofunctor 7.

Therefore, in this section, we study the composition of the Kleisli construction Fp -
Gr: 6r — € associated to a monad T, as detailed in Section 3.1.2, with the coKleisli
adjunction Frr p + Gr,p: €1 — 61, p associated to a comonad D as given in Section 3.1.3,
when the comonad D is determined by Fr 4 Gp. As a result of this composition, we
obtain the coKleisli-on-Kleisli construction associated to a monad 7'. The generic settings
provided by such an approach are applied to the exceptions monad in Section 3.2.3. The
main aim of which will become explicit in Section 6.1 where we interpret the decorated logic
for the exception effect. This logic proposes a formalism to prove properties of programs
with exceptional features.

21

3. Categorical background

3.2.1 The comparison theorem for the coKleisli construction

Let us start with the proof of the comparison theorem for the coKleisli construction.
A specialization of this result will be used in Proposition 3.2.5, which is important for
highlighting the relation among the categories defined in Section 3.2.2.

Theorem 3.2.1. (The comparison theorem for the coKleisli construction) Let F' 4 G: € —
9 be an adjunction and let (D,e,d) be the associated comonad on €. Then, there is a
unique functor L: €p — & such that LGp = G and FL = Fp, where €p is the coKleisli
category of (D, e,0), with the associated adjunction Fp 4 Gp: € — €p.

D
() Gp
€ T

S

Proof. We give the proof since it is left as an exercice in [ML71, Ch. VI, §5, Theorem 2|.
Let us first assume that L: ¥p — Z is a functor satisfying LGp = G and FL = Fp.

¢ g @
ide [[L = Lidcg
¢ . 2 . ¢

~

Let Ox,y: Homy, (X,GpY) — Home(FpX,Y') be the bijection associated to the adjunc-

tion Fp 4 Gp. Similarly, let ¢x.y : Homg(X, GY) = Homg(FX, Y) be the bijection
associated to the adjunction F' 4 G. Since both the counit of the adjunction Fp 4 Gp and
the counit of the adjunction F' 4 G are the counit € of the comonad (D,¢,d), by [MLT71,
Ch. 1V, §7, Proposition 1|, we obtain the commutative diagram below:

[%
Home,, (X, GpY) o Homg(FpX,Y)
Lx.apy = tdpy X,y
Homg(LX,LGpY) Homg(FpX,Y)
I I
VLX,Y

Homg(LX,GY') Homg(FLX,Y)

Therefore, Lx g,y = 1/1;)1(y ©0x y. This formula ensures that the functor is L is unique.
Let us simplify it: by Equation (3.5) in Proposition 3.1.4, we have:

9)(7yfﬁ :eyoFDfﬁ: FpX — Y, for each fﬁ: X —>GpY =Y in 6p.
Since, Fpf! = Df o §x in €, for each f*: X — Y by Equation (3.20), we get

9)(71/‘]&i :eyonO(le FDGDX:FDX% Y.

22

3. Categorical background

Thanks to the naturality of e, we get Ox, vy fti = foepx odx. The comonadic axiom
ensuring epx o dx = idpx yields 9)(7yfﬁ = f: FpX — Y. Presumed that Fp = F L and
since Gp is the identity on objects, we have

Ox.yff=f: FLX - Y and LGpX = LX = GX.
Now, by Equation (3.4) in Proposition 3.1.4, we obtain
1/12)1(7Yf =Gfonx =Gfongx = 1/15}(7yf foreach f: FGX — Y in ¥.
Hence,
Uixy Ox. v 1) =gy yf =Gfonax.

In other words: given a functor L satisfying GL = Gr and LFpr = F, then it must be such
that LX = GX for each object X in %p and

Lff =Gfongx in 2 for each f*: X -V in €p. (3.25)

We additionally need to prove that the mapping L: €p — &, characterized by LX = X
and Lf! = Gf ongx, is a functor satisfying LGp = G and FL = Fp:

1. For each object X in €p, due to the fact that idx = (eSX)ti in €p, we have L(idx) =
L((ex)*) = Gex ongx. By [ML71, Ch. IV, §1, Theorem 1], we have

Gex ongx = idgx = idrx.

For each pair of morphisms ff: X — Y and ¢f: Y — Z in €p, by coKleisli compo-
sition, we get

L(g* o f*) = Ggo GFGf o GFngx o ngx-

Since 7 is natural, we obtain L(gf o f*) = Ggongy o Gf ongx which is L(g*) o L(f*)
in 9. Hence, L: €p — & is a functor.

2. For each object X in ¢, GpX = X in ¥p and LGpX = GX in 9. For each
morphism f: X — Y in €, Gpf = (f oex)? by Equation (3.19). Hence,

LGpf = L((foex)’) = Gf o Gex ongx.
Due to € and 7 are natural, we have Gex ongx = idgx yielding LGp f = Gf. Thus,

LGp =G.

3. Now, for each object X in ¥p, LX = GX in 9. So that FLX = FGX in %.
Similarly, FpX = FGX in %€ by definition. Hence, FLX = FpX on objects. For
each morphism f#: X — Y in €p, Lf* = Gf o ngx, by definition. Hence,

FLf* = FGf o Fnax.
Similarly, Equation (3.20) gives:
Foff = FGf o Frax.

We get FILf = Fpf for each mapping f, therefore, F'L = Fp.

23

3. Categorical background

3.2.2 The coKleisli-on-Kleisli construction

Let (T, n, 1) be a monad defined on a category €. It determines a Kleisli category €7 along
with the associated adjunction Fp 4 G : 7 — €. Let (D = FrGrp,e,0) be the comonad
that the adjunction Fr 4 Gp : 61 — € determines on 7. Refer back to Section 3.1.2, for
the related details.

Remark 3.2.2. Note that the details of below items, from 1 to 4, are depicted in Figure 3.1.

Now, let €7, p be the coKleisli category determined by (D, ¢,0) and let Fr p 4 G p: €1 —
¢T,p be the associated adjunction with the following settings:

24

T D
() Pr () Gr.p
= L =< T %o
Gr Fr p
n:Id=1T e:T=1Id

. The categories € and %7 have the same objects and there is a morphism f>: X — Y

in 6T for each morphism f: X — TY in %.

. The categories ¢ and ¢r, p have the same objects and there is a morphism ht: X —

Y in ¢r,p for each h: TX =Y in 6.

. The functor G, p: 61 — 61, p is the identity on objects. On morphisms,

GT,D(gb) = (¢’ oex)? = hf for each ¢’: X — Y in €. (3.26)

Let h = ®oex: TX — Y in %p. Since ex = (idTX)I’ in 6r, we get h = ¢* o
(idp X)" =k for some k” in €p. By Kleisli composition, we end up with

Gr.p(g”) = h¥ such that h = k" and k = py o Tg: TX — TY in €. (3.27)

. The functor Fr p: ¢r,p — 6T maps each X in ¢1,p to TX in 67. On morphisms,

FT,D(hbﬁ) = D(h") ody for each R’#: X = Y in ¢r,p- Let us introduce mappings
¢’,a” and ¥ in €p and set

¢ = Fr p(h™),d” = 6x and ¥’ = D(’)
Thus, we have ¢ = b o @’ and by Kleisli composition, we get:
g=pry oTboa: TX — T*Y in €.

(a) We have 0x = Fr(ng,x) by definition. We also have GrX = GrFrX =TX
due to Fr being identity on objects. So that dx = Fr(nrx). Since @’ = by, we
have @’ = Fr(nrx). Using the fact that Frf = (ny o f)? for each f: X — Y in
¢ (see Equation (3.10)), we derive:

@’ = (nr2x onrx)’ hence a = (Np2x onrx) in €.

(b) We also have v’ = DR’ = FrGrh’ such that h: TX — TY in €. Provided
by Equation (3.11) that G (h?) = py o Th. Therefore, we have Fr(py o Th) =
(nry o py o Th)b = 1". So that b= (nry o py o Th) in €. By rewriting a and b
in g, we obtain:

g = pry o Tnry o Ty o T*h o ngex o nrx.

3. Categorical background

Thanks to the monadic axiom stating pury o Tnry = idpey we have g = Tuy o
T%honp2x onrx. Since 7 is natural, used three times, we get g = Ty o2y o
Thonrx = Tuy onpzy onry o h = nry o uy o nry o h. Due to the monadic
axiom ensuring py o nry = idry, we write

Fr.p(h'*) = ¢" where g = nry o h. (3.28)

Then, the associated comonad to the adjunction Fr p 4 G, p is actually the comonad
(D, g, 5) where D = FT,DGT,D-

5. The composition G, p o Fr: ¢ — %7, p is the identity on objects. On morphisms,
due to Equation (3.10), we have:

Gr, pFr(f) =Gr,p((ny o f)) for each f: X —Y in %.
We further have:
Gr.p((ny o £)°) = ((ny o f)’ oex)* in €r p by Equation (3.26).

Provided that ex = (idrx)’ in r, we get Gt pFr(f) = ((ny o f)’ o (idrx)’)* and
Gr,pFr(f) = (py o Ty o T£)"* by Kleisli composition. Due to the the monadic
axiom stating py o Tny = idry, it simplifies into

Gr.pFr(f) = (Tf)* = B such that h =Tf: TX - TY in €. (3.29)

Proposition 3.2.3. 1. The categories € and 61 p have the same objects and there is
a morphism 4 X > Y in ¢r,p for each k: TX —TY in €.

2. For each object X in €1 p, the identity arrow is idx = Y. X — X in Cr,p where
kZidei TX -TX in¥.

3. The composition of a pair of morphisms f?*: X — Y and ¢*: Y — Z in Cr,p 15
given by g™ o f*' = k% where k =go f: TX - TZ in €.

Proof. 1. It is the consequence of items 1 and 2 of Section 3.2.2.

2. For each object X, we have Bf =idx: X = X in ¢T, D, where K =cx: DX = X
in ¢r, due to Equation (3.17). Since ex = (idg,x)’ in €r, by Equation (3.13), we
obtain k = idg,x in €. Now, Gr X =TX yields k =idrx: TX - TX in €.

3. For each ¢’*: Y — Z and f: X — Y in €T, p, due to coKleisli composition, we
get ¢ o f* = ¢ o D(f°) 0 dx = K* in €p. Since D(f°) = (nry o py o Tf)” and
Sx = (np2x o nrx)’ respectively given by Equations (3.12) and (3.14), we have
K =go (nry o py on)b o(nrex onTX)b. Thanks to associativity of composition and
Kleisli composition we obtain & = (yz 0 Tgonry o py o Tf)" o (npax onrx)’. Using
Kleisli composition again, we get k = puzoTuzoT?goTnry oTpy oT? fonpex onrx
in . Now, we use naturality of n twice and obtain k = pzoTuzoTnrzoTgoT uy o
Tnry o Tf onrx. This simplifies into k = uz o T'g o T f o nrx, thanks to monadic
axiom ensuring px o nrx = tdrx for each object X. Lastly, naturality of n gives
k = uzonrzogo f, by the same monadic axiom, we end up with k = gof: TX — TZ
in %.

O

25

3. Categorical background

Definition 3.2.4. Let H: € — & be a functor. Then, the full image of H is a category
imH composed of objects X for each object X in % and morphisms ¢g*: X — Y for each
morphism g : HX — HY in 9. Let E: ¢ — imH and K: imH — 2 be the functors
defined as follows :

{E(X) =X . {K(X) = HX
E(f)=(H[)* K(g") =g

Then, the full image factorization (or decomposition) of H is the pair (E, K). Note that
H=KoF.

Theorem 3.2.5. Let (T,n,p) be a monad on a category € and let €1 be the Kleisli
category of (T,n, u) with the associated the adjunction Fr 4 Gp: ¢ — €. Let (D,e,0) be
the comonad on €1 determined by the adjunction Fr 4 Gr. And let ¢1,p be the coKleisli
category of (D,e,d) with the associated adjunction Fr p 4 Gr p: €1 — €r,p. Then,

1. there is a unique functor K: 67 p — ¢ such that FrK = Fr p and KGt,p = Gr.
2. the full image factorization of T is given by T = KFE where E = G, pFr.

D

E
() Gr,p
Cr T Cr. D

Fr p

GTf

3. for each X in €, ex is split-epi thus G, p is faithful.

Proof. 1. We specialize Theorem 3.2.1 by instantiating Fp 4 Gp with Fr p 4 Gr,p
and F' 4 G with Fr 4 Gp. Thus, we obtain the unique functor K: 671 p — ¢r such
that KGT7D = GT and FTK = FT,D-

2. The category %7, p is the full image category of T', since it is made of objects X
for each X in € and arrows f: X — Y for each f: TX — TY in 4. Recall that
T = GTFT by definition and GT = KGT7D by pOiIlt 1, T = KGT,DFT = KEFE. On
the one hand, E(X) = G, pFr(X) = X and E(f) = Gr. pFr(f) = (Tf)*": TX —
TY thanks to Equation (3.29). On the other hand, K(X) = TX for each object
X and K(¢"") = Gr(¢’) o nrx for each ¢’*: X — Y in %1 p by Equation (3.25).
Thanks to Equation (3.11), we obtain K(¢’#) = py o Tg o nrx. Since 7 is natural,
we have K (g"ﬁ) = py onry o g. The monadic axiom ensuring py o nry = idry gives
K(¢"") = g: TX — TY. Obviously, KE(f) = K(Tf*) = Tf: TX — TY for each
morphism f: X — Y and KE(X) = K(X) = TX for each object X. Therefore, the
full image factorization of T is given by the pair (K, FE).

26

3. Categorical background

3. It is necessary to show the existence of a mapping f° in €7 such that ex o f° = idy.
Since ex = (z’dTX)" and idxy = (nX)" in 67, we get (z’dTX)b o f" = (nX)b in €7, and
equivalently, nx = puxoT (idrx)o f in € by Kleisli composition. It is trivial to show,
by the monadic property idrx = ux o nrx, that this equation is satisfied when f is
chosen to be nrx onx. So that ex is split-epi, for each X. Notice also that split-epi
implies epi. Now, due to the point (i) of [ML71, Ch. IV, §3, Theorem 1], we conclude
that G, p is faithful.

O
We will use the coKleisli-on-Kleisli construction in Section 6.1 where we interpret the dec-
orated logic for the exception effect. This logic proposes a formalism to prove properties of
programs with features to handle exceptions.

3.2.3 Application to the exceptions monad on sets

In this section, we apply the coKleisli-on-Kleisli construction associated to a monad to
the exceptions monad. This means that we start with the exception monad defined on the
category of sets ¥ and then construct its Kleisli category ¢ with the associated adjunc-
tion Fp 4 Gp. This adjunction determines a comonad on 67 which further determines the
coKleisli category 67 p with the associated adjunction Fr p 4 Gr, p.

Let % be the category of sets. It is closed under the categorical coproduct or disjoint union,
denoted ‘+’. The left and right inclusions associated to ‘+’ are denoted inlx y: X —
X +Y and inrx y: Y — X + Y, for each set X,Y. We consider a distinguished set E
called the set of exceptions.

In the following, the objects denoted E° represent the same set (the set of exceptions); su-
perscript ¢ is used to indicate which copy of the set E is considered. Similarly, the notation
¢! refers to an element e in E'.
We now consider the exceptions monad (or coproduct monad) (T,n, 1) on € composed of:
e the endofunctor T: € — €
— on objects, for each X in ¢, TX =X+ F in .
— on arrows, Tf=f+4+idg: X+ FEF —-Y + Fin € for each f: X - Y in ¥.
e the unit n: Idy = T
—nx =inly g: X - X 4+ E in &, for each X in €.
X —2X+E
e
e the multiplication p: 72 = T
— ux = [idx+E] inrx,E]:X—i—E—i—E—)X—i—Ein ¢, for each X in %.
X+E +E2 25 - X+ B3

x| X

61)—>€3

62)—>63

27

3. Categorical background

&€
X
X
f
Y
4
GrX=TX

TX

| g

Gr(g°) %Y

\LP«Y
TY
(¢)-——--—~- Cr
X
X X
g gb
TY Y
(€)-——-—-~- Cr

Fr pX =TX

TX TX
ih i/(SX
gl TY FrpH| TY

\LWTY =g lD(hb)
T?Y TY

Cr————-- (%)
Fr X=X
X X
| s
Frf gl Y
—g iny
Y TY
Cr—————~— (%)
X
X X
g g
TY
¢rp-————- (6r) - - —-—(%)
GrpX =X
X TX TX
\LEX \LTg
Gr, p(g") i X k| T?Y
=ht —kP \Lgb \LHY
Y Y TY
¢rp-————- (6r) - - - - (%)
X
X TX TX
h# hb h
Y Y TY

Figure 3.1: Description of the coKleisli-on-Kleisli construction associated to a monad

28

3. Categorical background

As in Section 3.1.2; the monad (7,7, 1) determines a Kleisli category ¢ and an associated
adjunction Fr 4 Gp: 61 — € with the following settings:

T 4B

) Pr
¢ 1 Cr
Gr

n:Ild=T FPriGr ¢e¢:T=1d

e The categories € and €r have the same objects and there is a morphism f’: X — Y
in 67 for each morphism f: X — Y + FE in ¥. So that there is a bijection defined as:

(or)x.v: Homeg, (X,Y) = Homg(X,Y + E) (3.30)
P f (3.31)

e For each object X in %7, the identity arrow is idx = R: X — X in ¢p where
h=nx: X—->X+Fin%.

e The composition of a pair of morphisms f’: X — Y and ¢’: Y — Z in %r is given

by the Kleisli composition, ¢’ o f> = h’ where h = uz o Tgo f: X — Z+F in €.

X—Lyip g gt g

T | y,\ 2 z
\ 2t
el e et

e The functor Fr: € — @r is the identity on objects. On morphisms, Frf = (ny o
f)> =k’ in € for each f: X — Y in € and some h’ in € such that h = ny o f in €.

Xty My m
x| Y y

e The functor Gp: ¢r — % maps each X € % to X + FE in ¥. On morphisms,
Gr(g®) = py o Tg for each ¢’: X =Y in €r.

X4+B' — Ly g3ty ps

T} Y Yy
62% 64
el e3 | et

The adjunction Fp 4 Gp : 7 — % determines a comonad (D, e,d) on %7 with
e the endofunctor D: €r — 67r:

— on objects, for each X in ¢p, DX = X + E in %r.

— on arrows, thanks to Equation (3.12), D(¢°) = (ny.r o py o Tg)’ = I’, for
each ¢”: X — Y and some A’ in €p such that h = ny+gopyolg: X + FE —
Y+E+FEin%.

29

3. Categorical background

T
X+E' — Ly 2y oy gt Py i RS
T} y! Y y
e et e’
el | e et ed

e the counit e: D = Idy,:
—ex = (idX+E)b: X+ F — X in 67, for each X in %r.
e the comultiplication 6: D = D?:

— 0x = Pr(nex) = Pr(inx+e) = (ix+e+ponx+E): X +E — X+ E+E in 67,
for each X in 7.

X+ P g2 g3 P gt B S
Z | €Tt X
61 } 621 64
e e?

Let €7, p be the coKleisli category of the comonad (D,¢,0) and let Fr p 4 Gp,p: €1 —
¢T,p be the associated adjunction, defined as follows:

def def

T g p¥_LEg
ﬂ Fr ﬂ Gr, D

¢ N br<____ T ____—=%rp
Gr Fr.p

n:ld=T Fr-Gr e:T=1d

1. The categories € and € have the same objects and there is a morphism f’: X — Y
in %7 for each morphism f: X - Y + F in %.

2. The categories 67 and 67, p have the same objects and there is a morphism ht: X —
Y in ¢r,p for each, g: X + F — Y in ér.

3. As a trivial consequence of above items 1 and 2, the categories ¢ and 47, p also have
the same objects and there is a morphism 4 X > Y in ¢r,p foreach k: X + E —
Y + E in €. So that €7 p is the full image category of the functor (— + E).

4. Due to Point 2 in Proposition 4.5.7, for each object X in ¢r, p, the arrow is idy =
E*: X — X in 61 p where k =idx g: X + E— X + Ein %.

5. Due to the Point 3 in Proposition 4.5.7, the composition of a pair of morphisms
X >Yandg*: Y - Zin%rpisgivenby gof: X+ E— Z+Fin ¥,

6. The functor Gr,p: ér — 67, p is the identity on objects. On morphisms, thanks to
Equation (3.27), we have G, p(g°) = hf such that h = k” and k = py oTg: X +E —
Y + E in €, for each ¢°: X — Y in %r.

X4F — Xy e 3y e

T} Y Yy
62% 64
el e3 | et

30

3. Categorical background

7. The composition G, p o Fr is identity on objects. On morphisms, due to Equa-
tion (3.29), we have:

Gr.pFr(f) = (Tf)* =h”* such that h=Tf: X+ E Y +Ein%. (3.32)
Thus, the composition G, p o Fr is the functor E in Theorem 3.2.5.

8. The functor Fr, p: ¢r,p — ¢ maps each X in €1, p to X+ F in 7. On morphisms,
due to Equation (3.28), we obtain FT7D(hI’ﬁ) = ¢’ such that g = nyypoh in &, for
each A’%: X =Y in 6T, D-

X+E' oy g2 Py g3 gt
T} Y y

e3

61‘ Yt y
’\2 3

e €

3.3 The Kleisli-on-coKleisli construction associated to a comonad

The adjunction, given in Sections 3.1.3, Fp 4 Gp: €p — € determines a monad (7', 7, i)
on 67. This monad further determines several adjunctions, including: Fp, 7 4 Gp,7: €p —
¢p,r where €p 1 is the Kleisli category of (T,n,). The associated adjunction Fp 7
Gp,r determines back the monad (7,7, p).

T T
" Fo.1 D’

ch — ch - 1 = ch7 T — ch

~ -
Gp,r

Besides, we show in Theorem 3.3.4 that the category €p, 7 is the full image category of
the endofunctor D.

This section studies the composition of the coKleisli adjunction Fp 4 Gp: 4 — %p
associated to a comonad D, as detailed in Section 3.1.3, with the Kleisli adjunction Fp 7
Gp,1: €p,7 — €p associated to a monad T as given in Section 3.1.2. Note also that T
is determined by Fp - Gp. As a result of this composition, we obtain the Kleisli-on-
coKleisli adjuntion construction to a comonad D. The generic settings provided by such
an approach will be applied to the states monad in Section 3.3.3. The main aim of which
will become explicit in Section 5.1 when we interpret the decorated logic for the state.
This logic proposes a formalism to prove properties of programs with the state effect.

3.3.1 The comparison theorem for the Kleisli construction

Let us start with the proof of comparison theorem for the Kleisli construction. A special-
ization of this result will be used in Proposition 3.3.4, which is important for highlighting
the relation among the categories defined in Section 3.3.2.

Theorem 3.3.1. (The comparison theorem for the Kleisli construction) Let F 4G: 9 —
€ be an adjunction and let (T, n, n) be the associated monad on €. Then, there is a unique

31

3. Categorical background

functor L: ¢ — 2 such that GL = Gp and LFp = F, where €1 is the Kleisli category of
(T,n, p), with the associated adjunction Fp 4 Gp: ¢ — €.

T
) Fr
¢

L N R S
ideg [= L L = [ideg
¢ Pt

Let Ox,y: Homeg, (FrX,Y) =N Homy(X,GrY) be a bijection associated to the adjunc-
tion Fr 4 Gp. Similarly, let ¢xy: Homg(FX,Y) = Homg(X,GY) be a bijection
associated to the adjunction F' 4 G. Since both the unit of the adjunction Fr 4 G and
the unit of the adjunction F' 4 G are the unit n of the monad (T',n, u) by [ML71, Ch. IV,
§7, Proposition 1], we obtain the commutative diagram below:

0
Homg, (FrX,Y) oY Homg (X, GrY)
Lppx,y = idx,Gpy
Homg(LFrX,LY) Homy(X,GrY)

I I
Homg(FX,LY) vxLy Homg (X, GLY)

Therefore, Lp, xy = T/J;(lLy ofx,y. This formula ensures that the functor L is unique. Let
us simplify it: by Equation (3.4) in Proposition 3.1.4, we have:

9)(7yfb :GbeonX: X — G7rY, for each fb: FrX=X—Y in %r.
Since Grf’ = py o T'f in €, for each f>: X — Y in %y, by Equation (3.11), we have
(9)(75/]”b =puyoTlfonx: X - GrFrY =GrY.

Thanks to the naturality of n, we get Ox y f » = liy onry o f. The monadic axiom ensuring
Wty onry = idry yields 9X7yfb = f: X — G7rY. Presumed that Gr = GL and since Fp

is the identity on objects, we have
Oxyvf = f: X = GLY and LF;Y = LY = FY.
Now, by Equation (3.5) in Proposition 3.1.4, we obtain
¢;(,1Lyf =¢pyoFf=cpyoFf= w;(}FYf for each f: X — GFY in .

32

3. Categorical background

Hence,

Uy Oxy f’) = Ux'py f =epy o Ff.

In other words: given a functor L satisfying GL = Gr and LFr = F, then it must be such
that LX = FX for each object X in %r and

Lf® =epy o Ff in 2 for each f>: X — Y in €. (3.33)

We additionally need to prove that the mapping L: Cpr — &, characterized by LX = X
and Lf’ = ey o F'f, is a functor satisfying GL = Gy and LFp = F:

1. For each X in %7, due to the fact that idxy = (77)()b in ¢r, we have L(idx) =
L((nx)’) = erx o Fnx. By [ML71, Ch. 1V, §1, Theorem 1], we have

erpx o Fnx =idpx = idpx.

For each pair of morphisms f°: X — Y and ¢°: Y — Z in €r, by Kleisli composition,
we get

L(gbofb):5FZOFG€F20FGFgoFf.

Since ¢ is natural, we obtain epz o0 Fgoepy o F'f which is L(¢?) o L(f?) in 2. Hence,
L:6¢r — 2 is a functor.

2. For each object X in 67, LX = FX in 2 and GLX =GFX =TX =GrX in ¢.
For each morphism f’: X — Y in €r, Lf’ = epy o Ff in D by definition. Hence,

GLf’ = Gepy o GF.
Similarly, Equation (3.11) gives:

Grf® = Gepy o GF f.
We get GLf* = Gpf? for each mapping f?, therefore,

GL = Gr.

3. Fr is the identity on objects, thus LFrX = LX = FX. For each morphism f: X —
Y in €, we have Frf = (ny o f)’ in €, by definition. So that

LFpf=L(nyo f) =epy o Fiy o Ff.

Due to € and 7 being natural, we have epy o Fny = idpy yielding LFrf = F f for
each mapping f, thus, LFp = F. O

3.3.2 The Kleisli-on-coKleisli construction

Let (D,e,d) be a comonad defined on a category &. It determines a coKleisli category
¢p along with the associated adjunction Fp 4 Gp : € — ¢p. Let (T = GpFp,n, 1)
be the monad that the adjunction Fp 4 Gp : € — %p determines on ¥p. Refer back
to Section 3.1.3, for the related details.

Remark 3.3.2. Note that the details of below items, from 1 to 4, are depicted in Figure 3.2.

33

3. Categorical background

Now, let €p, 1 be the Kleisli category determined by (T',n, 1) andlet Fp v 4 Gp,7: €p, 7 —
%p be the associated adjunction with the following settings:

34

D T

m Gp m Fp, r

43 T Cp_ L =%
Fp Gp, T

e:D=1d FpGp n:Ild=1T

. The categories € and €p have the same objects and there is a morphism ff: X — Y

in €p, for each f: DX - Y in .

. The categories 6p and €p, 7 have the same objects and there is a morphism B X —

Y in €p,r, for each h: X — DY in 6p.

. The functor Fp 7: €p — ép,r is the identity on objects. On morphisms,

Fp.r(¢") = (ny 0 g*)* = I’ for each ¢*: X — Y in €p. (3.34)

Let h = (ny og%): X — DY in %p. Since ny = (idpy)* in €p, we get h =
(idDy)ti o gf =k for some k¥ in €p. By coKleisli composition, we end up with

Fp.7(g*) = b’ such that h = k* and k = Dgodx: DX — DY in €. (3.35)

. The functor Gp,7: €p,7 — €p maps each X in €p 1 to DX in ¥p. On morphisms,

GD,T(hﬁb) = py o ThY for each . X > Y in ¢p,r- Let us introduce mappings
gﬁ, al and b in €p and set

g = Gp.7(h”),a* = py and bF = ThE.
Thus, we have ¢ = a? o bf and by coKleisli composition, we get:
g=aoDbodpx: D*°X — DY in €.

(a) We have uy = Gp(ep,y) by definition. We also have FpY = FpGpY = DY
due to G'p being identity on objects. So that uy = Gp(epy). Since af = puy,
we have af = Gp(epy). Using the fact that Gpf = (foex)? foreach f: X — Y
in € (see Equation (3.19)), we derive:

a* = (epy o ep2y)f hence a = (epy oepzy) in F.

(b) We also have bf = Th* = GpFph! such that h: DX — DY in €. Provided
by Equation (3.20) that Fp(h*) = Dhodx. Therefore, we have Gp(Dhodx) =
(Dhodx o aDX)ﬁ = b, So that b = (Dhodx oepx) in €. By rewriting a and
b in g, we obtain

g = €Dy CEp2y OD2h0D5X OD6DX O(pr.

Thanks to the comonadic axiom stating Depx o dpx = idp2x we have g =
epy o €p2y o D?h o Déx. Since ¢ is natural, used three times, we get g =
EDyODhO€D2XOD(5X = hOEDXOEDQXOD(SX = hogDXO(SXOEDX- Due to
the comonadic axiom ensuring epx o dx = idp,, we write

Gp.7(h”) = ¢* where g = hoepx (3.36)

3. Categorical background

Then, the associated monad to the adjunction Fp 4 Gp, 7 is actually the monad (7', i1, 1)
where T = GD,TFD,T-

5. The composition Fp 1 o Gp is identity on objects. On morphisms, due to Equa-
tion (3.19), we have:

Fp.7Gp(f) = Fp.7((f oex)*) for each f: X —Y in %.
We further have:
Fp.r((foex)®) = (ny o (f oex)®)” in €p. v by Equation (3.35).

Provided that nx = (z'dDX)ﬁ in €p, we get Fp rGp(f) = ((z'dDX)ti o (foaX)ﬁ)" and
Fp.rGp(f) = (Df o Dex o §x)® by coKleisli composition. Due to the comonadic
axiom stating Dex o §x = idpx, it simplifies into

Fp.7Gp(f) = (Df)* = h* such that h = Df: DX — DY in €. (3.37)

Proposition 3.3.3. 1. The categories € and €p,T have the same objects and there is
a morphism k*: X =Y in Cp,T for each k: DX — DY in €.

2. For each object X in €p, T, the identity arrow is idx = K X — X in ©p, T where
k= idpxt DX - DX in%.

3. The composition of a pair of morphisms f?: X — Y and ¢*:Y — Z in Cp,T 18
given by g® o f = k® where k =go f: DX — DZ in €.

Proof. 1. It is the trivial consequence of items 1 and 2 of Section 3.3.2.

2. For each object X, we have kP =idx: X — X in ¢p, T, where k= nx: X - TX
in €p, due to Equation (3.8). Since nx = (idr,x)* in €p, by Equation (3.22), we
obtain k = idp,x in €. Now, FpX = DX yields k =idpx: DX — DX in ¢.

3. For each ¢: Y — Z and f: X — Y in ¢p, T, due to the Kleisli composition,
we get ¢gf o ff = puz oT(g%) o f* = k¥ in €p. Since T(g*) = (Dg o dy o epy)*
and puz = (epz 0 ep2)! respectively given by Equations (3.21) and (3.23), we have
Kt = (epz oeDzZ)ﬁ o(Dgody oepy)ti ofﬁ. Thanks to associativity of composition and
coKleisli composition, we obtain kf = (EDZogDzZ)ﬁo(Dgoéy Oe’;‘DyODfO(S)()ﬁ. Using
coKleisli composition again, we get k = epzoep2,0D2goDdy 0oDepyoD? foDéxodx
in €. Now, we use naturality of € twice and obtain k = epz o Dg o Depy o Ddy o
Df oDepx o Ddx o dx. This simplifies into k = epz o Dg o Df o dx, thanks to
comonadic axiom ensuring epx o 0x = idpx for each object X. Lastly, naturality
of € gives k = go foepx o dx, by the same comonadic axiom, we end up with
k=gof: DX —>DZin%.

O

Theorem 3.3.4. Let (D,d,¢) be a comonad on a category € and let €p be the coKleisli
category of (D, d,€) with the associated adjunction Fp 4 Gp: ¢ — ¢p. Let (T, u,n) be
the monad on €p determined by the adjunction Fp + Gp. And let €p T be the Kleisli
category of (T, u,n) with the associated adjunction Fp v 4 Gp.v: €p, 7 — €p. Then;

1. there is a unique functor K: €p, v — € such that KFp v = Fp and GpK = Gp, 7.

35

3. Categorical background

2. the full image factorization of D is given by D = KE where = Fp 7Gp.

3. for each X in €p, nx is split-mono thus Fp 1 is faithful.

Proof. 1. We specialize the Theorem 3.3.1 by instantiating Fr 4 G with Frr p 4 G, p
and F' 4 G with Fr 4 Gp. Thus, we obtain the unique functor K: €p v — ¢p such
that KFD7T = FD and GDK = GD,T-

2. The category €p, 7 is the full image category of D, since it is made of objects X for
each X in € and arrows f®: X — Y for each f: DX — DY in €. Recall that D =
FpGp by definition and Fp = K Fp 1 by point 1, sothat D = KFp 7Gp = KE. On
the one hand, E(X) = FD7TGD(X) = X and E(f) = FD,TGD(f) = (l)f)ﬁb DX —
DY thanks to Equation (3.37). On the other hand, K(X) = DX for each object
X and K(¢¥) = epy o Fp(g?) for each g*: X — Y in €p 7 by Equation (3.33).
Thanks to Equation (3.20), we obtain K (¢¥) = epy o Dgodx. Since ¢ is natural, we
have K (gﬁb) = epy o dy o g. The comonadic axiom ensuring epy o dy = idpy gives
K(¢®)=g: DX — DY. Obviously, KE(f) = K(Df*) = Df: DX — DY for each
morphism f: X — Y and KE(X) = K(X) = DX for each object X. Therefore, the
full image factorization of D is given by the pair (K, F).

3. Tt is necessary to show the existence of a mapping f* in €p such that ffony = idx.
Since nx = (idpx)* and idy = (ex)f, we get ffo (idpx)* = (ex)! in €r and
equivalently ex = f o D(idpx—px) o dx in € by coKleisli composition. It is trivial
to show, by the comonadic property idpx = epx o dx, that this equation is satisfied
when f is chosen to be ex oepx. So that nx is split-mono, for each X in %;. Notice
also that split-mono implies mono. Now, due to the point (i) of the dual of [MLT71,
Ch. 1V, §3, Theorem 1|, we conclude that Fp 7 is faithful.

O
We will use Kleisli-on-coKleisli construction in Section 5.1 where we interpret the deco-
rated logic for the state. This logic proposes a formalism to prove properties of programs
with the state effect.

3.3.3 Application to the state comonad on sets

In this section, we apply the Kleisli-on-coKleisli construction associated to a comonad to
the state comonad. This means that we start with the state comonad defined on the cate-
gory of sets ¥ and then construct its coKleisli category ép with the associated adjunction
Fp 4 Gp. This adjunction determines a monad on €p which further determines the Kleisli
category ¢p,r with the associated adjunction Fp r 4 Gp, .

36

3. Categorical background

Gp

¢ A pp— (€)
X GpX =X
X X DX
o
f Gpf gl X
,gu if
Y Y Y
@ s I (%)
FpX =DX X
DX X DX
ox
Fp(g%) DX gt g
| Do
DY Y Y
Fp T
(€)————-—~- (35 Cpr——-—- -~ (¢p) - - - (%)
X FprX =X
DX X X X DX
o Jox
g g Fpr(gt) hl Y k| D*X
Y Y Y DY DY
Gp,T
(€)==~ G o - ()~~~ - ()
GprX = DX X
D2X DX X X DX
\LEDX \LTh
9(DX Gp.rh®)|D2Y hib hi h
\Lh :g'i \LMY
DY DY Y DY DY

Figure 3.2: Description of the Kelisli-on-coKleisli construction associated to a comonad

37

3. Categorical background

Let € be the category of sets. It is closed under the categorical product (or carte-
sian product) denoted ‘x’. The left and right projections associated to ‘x’ are denoted
fstxy: X xY — X and sndx,y: X xY —= Y, for each sets X,Y. In &, we consider a
distinguished set of states denoted S.

Now, let (D, ¢e,d) be the states comonad (or product comonad) defined on € as:
e the endofunctor D: ¢ — ¢

— on objects, for each X in ¢, DX =X x Sin .
— on arrows, Df = f Xidg: X xS =Y xSin %, foreach f: X Y in &¥.

e the counit ¢: D = Idyg:

—ex =fstx,g: X xS = X in ¢ for each X in 7.

X xS sX
(x,8) ——=x

e the comultiplication 6: D = D?:
—dx = <idXXS,sndX7S>: Xx8—=XxSx8{foreach X in 7.

X xS (x,s)
idx xS TfSt idx xS If
st

(idxxsona)—>X X S xS (5 5) ——(idx xs.s0d)—> (, 5, 5)

\ lsnd x Isnd
S

S

X xS8

The comonad (D, ,7n) determines a coKleisli category ¢p and an adjunction Fp 4 Gp: € —
%p with the following settings:

Dd:fox.Sv

() Gp
€ T ch
Fp

e:D=1d GprFp n:Id= D

e The categories € and €p have the same objects and there is a morphism f#: X - Y
in ¥p for each morphism f: X xS — Y in .

e For each object X in %p, the identity arrow is idy = hf: X — X in €p where
h=ex: XxS—=Xin%.

e The composition of a pair of morphisms f*: X — Y and ¢*: Y — Z in €p is given
by the coKleisli composition, g% o f# = hf where h=goDfodx: X x S — Z in F.

XxSiéXxSxSf&YXSLZ
(1’,8)'—>($,S,8)1 (y,S)I z

where y = f(x,s) and z = g(y, s).

38

3. Categorical background

e The functor Gp: ¥ — %p is the identity on objects. On morphisms, Gpf = (f o
ffX)ﬁ = k!, for each f: X =Y in € and some h! in €p such that h = foex in F.

Xxxs=E.x- Loy
(z,8) F——=z+——>1y
where y = f(x)
e The functor Fp: €p — % maps each X in ¥p to X x S in ¥. On morphisms,
Fp(g*) = Dgodx for each g*: X — Y in %p.
XxS—Xxxsxs2oyxs
(x7 S) (x7 87 s) (y7 s)
where y = g(z, s)
The adjunction Fp 4 Gp : € — €p determines a monad (7,7, 1) on €p defined as follows:
e the endofunctor T: €p — €p:

— on objects, for each X in €p, TX = X x S in ép.

— on arrows, thanks to Equation (3.21), T'(g*) = (Dgodx oexxs)f = hf, for each
gﬁ: X — Y and some h¥ in €p such that h = Dgodxoexxsg: X x5 x5 —

Y xSin%.
XxSxSsﬁXxSngxSxSLYXS
(x,s1,82)1 (w,51) (w,81,81) — (y,51)

where y = g(z, s1).
e the unit n: Idg, = T
— nx = (idxxs)’: X = X x S in €p for each X in €p.

tdx xs

Xde—>X><S
(z,s) —(x,s)

e the multiplication p: 72 = T
- uUx = GD(epr) = GD(€X><S) = (5X><S osXngg)ﬁ: XxS8%xS5— X xS for
each X in €p.

EXXSxS

X xSxSxS8 X><S><S€XX—S>X><S
(x781,$2,33)}%(x781,82)}%(1}81)

Let €p, T be the Kleisli category of the monad (7', i, ¢) and let Fp v 4 Gp,7: €p, 7 — €D
be the associated adjunction, we have them defined as follows:

Dd:ef—xS Td:ef—xS

() Gp) Fp,r
— T
¢ T b L " %pr
Fp Gp, T

e:D=1d FpGp n:Ild=1T

39

3. Categorical background

. The categories € and €p have the same objects and there is a morphism hf: X — Y

in €p, for each h: X x S — Y in €p.

. The categories 6p and €p, 7 have the same objects and there is a morphism B X —

Y in €p,r, for each h: X =Y xS in ép.

. As a trivial consequence of above points 1 and 2, the categories ¥p v and € have

the same objects and there is a morphism h: X Y € ¢p,T, foreach h: X x § —
Y x Sin €. So that €p r is the full image category of the functor (— x 5).

. Due to Point 2 in Proposition 3.3.3, for each object X € €p 1, the identity arrow is

idy =h¥: X = X € €p.1 where h = idxxs: X x S — X x S in €p.

. Due to Point 3 in Proposition 3.3.3, the composition of a pair of morphisms f#: X —

Yandgﬁb:Y—)ZGCKD,Tisgivenbygof:X><S—>Z><Sin‘€.

. The functor Fp 7: €p — €p,r is the identity on objects. On morphisms, thanks

to Equation (3.34), we have Fp 7(g*) = B’ such that h = k* and k = Dgodx: X x
S—>Y xSin?%.

XXSl;XXSXSDL)YXS
(x7 S) (x7 87 8) (y7 8)

. The composition Fp 1o Gp is the identity on objects. On morphisms, due to Equa-

tion (3.37), we have:
Fp.7Gp(f) = (Df)¥ = h¥ such that h=Df: X x S - Y x S'in €.

Thus, the composition Fp 7 o Gp is the functor F in Theorem 3.3.4.

. The functor Gp,7: €p,7 — €p maps each X in €p 7 to X xS in €p. On morphisms,

due to Equation (3.36), we have Gp, r(h%) = g such that g = hoexxg in € for
each h*: X - Y in €p,T-

EXxS

XxSxS229 xws—.yvxs
(x781782)'—>(w781)|—>(y783)

such that (y,s3) = h(z, s1).

40

4

Decorated logics

We present two equational-based logics with categorical interpretations, in order to prove
properties of programming languages with effects. We start with the monadic equational
logic as in [Mog91], which can be interpreted in any category. Then, we extend it by adding
decorations to its terms and equations. In fact, we propose two dual inference systems that
can be instantiated using monads or comonads, respectively, so as to cope with different
computational effects. The first inference system is interpreted in the Kleisli category of a
monad and the coKleisli category of the associated comonad as in Section 3.2.2. Dually,
the second one is interpreted in the coKleisli category of a comonad and the Kleisli cate-
gory of the associated monad as in Section 3.3.2. Both logics combine a 3-tier effect system
for terms, with a 2-tier system for equations made of “up-to-effects” and “strong” equations.

Section 4.1 defines the monadic equational logic Leq. This logic is extended into the deco-
rated logic for a monad (Lyen) in Section 4.2, where the categorical interpretation of £,,0n
by the coKleisli-on-Kleisli construction associated to a monad is also given. In Section 4.3,
the decorated logic for a comonad (Leom,) is detailed. There, we use the Kleisli-on-coKleisli
construction associated to a comonad to interpret the logic Lcom. The Coq implementa-
tion of both logics is given in Section 4.4. These logics have been built so as to be sound
with respect to their intended categorical interpretation; but little is known about their
completeness. Therefore, in Section 4.5, we conclude with a completeness notion: relative
Hilbert-Post completeness which is well-suited to a decorated logic. We will show in Sec-
tions 5.4 and 6.9 that one decorated logic for the state effect and two decorated logics for the
exception effect are Hilbert-Post complete with respect to their pure sublogics: we adapt
the theorem in [Stal0, Th 5] to our logics to give a decorated proof of their completeness.

4.1 The monadic equational logic

The monadic equational logic (Lmeq) is interpreted in a category with objects as types,
arrows as terms and equalities as equations. The reason we choose to start with such
a logic is that it can be extended into a decorated logic with the use of decorations on
terms and equations. Notice that the keyword “monadic” has little to do with monads. It
indicates that the operations of the logic are unary (or mono-adic). We remind the monadic
equational logic [Mog91]| with its grammar and inference rules given in Figures 4.1 and 4.2:

Grammar for the monadic equational logic:
Types: t o= X|Y]|...
Terms: f,g == id¢|a|b|---|gof
Equations: e u= fZ=g

Figure 4.1: Syntax for L,

41

4. Decorated logics

Every term has a source and a target type, e.g., f: X — Y. Every equation is formed by
terms with the same source and target types, e.g., e : f = g where f, g: X — Y.

The logic L,¢q can be interpreted in a category: each type as an object, each term as an
arrow and each equation as an equality between arrows with the same source and target.

categorical rules

(id) X () f+X—=Y gY—>Z

1 — = Ccom

idx: X > X P (gof): X > Z
f: X->Y f: X->Y

(id-source) (id-target)

foidx = f dyof=f
[X—=>Y gY—>Z h:Z->U
ho(gof)=(hog)of

congruence rules

(assoc)

/ =9 f=g g=h
(refl) F=7 (sym) PEY; (trans) =D
(replsubs) hEf: XY =g Y > Z

giofi=gao fo

Figure 4.2: Inference rules for L4

The congruence rules indicate that the relation ‘=’ is a congruence which means, an equiv-
alence relation (reflexive, symmetric and transitive) which obeys replacement and substi-
tution of compatible terms with respect to the composition. The basic categorical rules
indicate that there is an identity morphism idx: X — X for each type X, that composi-
tion is an associative operation and that composing any term f with id is f, up to =, no
matter the composition order.

4.2 The decorated logic for a monad

The decorated logic for a monad (Ly,0n) [DDR14] extends the monadic equational logic
(Lmeq) with the use of decorations on terms and equations. We give the syntax and the
inference rules of L., in Figures 4.3 and 4.5, respectively.

Grammar for the decorated logic for a monad:
Types: t o= X|Y]|...
Terms: f,g == id¢|al|b|---|gof
Decoration for terms: (d) == (0)](1)](2)
Equations: e u= f=gl|f~g

Figure 4.3: Syntax for L,,on

Each term has a source and a target type as well as a decoration which is denoted as a
superscript (0), (1) or (2): a pure term has the decoration (0), a constructor has (1) and
a modifier term comes with the decoration (2). Similarly, each equation is formed by two

42

4. Decorated logics

terms with the same source and target as well as a decoration, denoted by “~” if it is weak
or by “=” if it is strong.

Remark 4.2.1. Note that within the scope of any decorated logic in this thesis, when stating
the rules, the decorations are not explicitly given, if the rule in question is valid for all
decorations. However, the decorations appear in the related interpretations.

Let (T,n, 1) be a monad satisfying the mono requirement which means that its unit 7 is
a monomorphism. See Definition 3.1.5. In order to express the meaning (interpretation)
of the logic L,,0n, we use the coKleisli-on-Kleisli construction associated to the monad
(T',n, p) as detailed in Section 3.2. There, we have introduced the adjunctions Fr - Gr
and Fr p 4 G, p with faithful functors Fr: ¢ — ¢r and Gr,p: ér — ¢r,p. This gives
raise to a hierarchy among morphisms in 47 p. This hierarchy is useful for interpreting
decorations: pure terms are in €, constructors are in 67 and modifiers are in 6t p.

Definition 4.2.2. Let Ct be the interpretation of the syntax for the logic Lo, With the
following details:

T D
m Fr m Gt,p
¢ L er<____T __=%rp
Gr Fr.p
d FrAGr e:T=1d

(1) The types are interpreted as the objects of €.
(2) The terms are interpreted as morphisms as follows:

(2.1) apure term f©: X 5 Y in€as f: X Y in%
(2.2) a constructor term fN): X Y in@ras f: X -TY in €
(2.3) a modifier term f®): X - Y inGr pas f: TX - TY in €

(3) A strong equation between modifiers fD=¢®:. X 5Yin T, p is interpreted by an
equality f =¢: TX — TY in €. Similarly, a strong equation between constructors
O =¢M: X - Y in Gr is interpreted by an equality f = g: X — TY in €. And
a strong equation between pure terms f(© = ¢(®: X — Y in € is interpreted by an
equality f=¢g: X - Y in %.

(4) A weak equation between terms f @ ~ ¢@: X - Y is interpreted by an equality
fonx =gonx: X —» TY in ¥. Similarly, a weak equation between constructors
fM ~ ¢gM: X - Y in €y is interpreted by an equality f = g: X — TY in €. And
a weak equation between pure terms f© ~ ¢ : X — YV in € is interpreted by an
equality f=¢g: X - Y in ¥.

Lomon Interpretation of Lyon
modifier f@.x 5y f:TX = TY
constructor x5y f: X =>TY
pure term fO.x 5y f:X—>Y
strong equation [P =¢@ . X 5V |f=¢g:TX > TY
weak equation fOug® . X 5Y | fonx=gonx: X =TY

Figure 4.4: Summary of Definition 4.2.2

43

4. Decorated logics

Example 4.2.3. Let T'= — 4+ E be the monad of exceptions defined over the category of sets
as in Section 3.2.3. We will use this specialization in Section 6.1 to interpret the decorated
logic for the exception (Leye) which is an extension to Lo, used to formalize the excep-
tion effect.

In Figure 4.5, we propose an inference system associated to the syntax in Figure 4.3.
The rules in question are obtained by decorating the rules in Figure 4.2. In addition, we
introduce the hierarchies (or conversions) among decorations.

hierarchy rules

O Fo
@

=) ~ g(d)
(stow)% (wtos)fff“(; for all d,d’' <1
congruence rules

f =9

refl) ——— sym) ——
wet) L o) L2

f=g99=h
(trans) =1

flEfQZX—)Y g1 Egg:Y—)Z
(replsubs)
grofi=g20fo

(wsym) % (wtrans) %

lefQ:X—>Y gY—)Z

gofi~gofa
fO: X 3Y gi~g: Y - Z

giof~geof

(wrepl)

(pwsubs)

categorical rules

(i) X mmﬁﬂ%X%YgN%Y%

idg?):X—>X (go f)tmealdd)): X — Z
X =Y X =Y

ffoidXEf (idt) Z'J;yofzf

[X=>Y ¢gY—=>Z h:Z-U
ho(gof)=(hog)of

Z for all d, d’

(ids)

(assoc)

Figure 4.5: Inference rules for the logic L;0n.

Proposition 4.2.4. The logic Lon s sound with respect to the interpretation Ct given
in Definition 4.2.2. Moreover, the hierarchy rules are interpreted by faithful functors (in-
formally conversions are “safe”).

Proof. (1) The conversion from pure terms to constructors is interpreted by the functor
Fr. Foreach f: X - Y in €, Fr(f) =h in ¢ where h=ny o f: X = TY in ¢
(See Equation 3.10). We assume that 1 is a monomorphism. This implies, thanks
to the point (i) of the dual of [ML71, Ch. IV, §3, Theorem 1], that Fr is faithful.
Therefore, this conversion is safe.

44

4. Decorated logics

(2)

(6)

(8)

The conversion from constructors to modifiers is interpreted by the functor Gt p.
For each f’: X — Y in %r, GT7D(fb) = k" in Gr,p where k =py oTf: TX - TY
in ¢ (See Equation 3.27). Due to Proposition 3.2.5, the functor G p is faithful. So
that this conversion is safe.

Now, the conversion from pure terms to modifiers is interpreted by the composi-
tion Gr, p o Fp. Thanks to Equation 3.29, we have G p o Fr(f) = (Tf)l’ti =
K in ¢p,T, for each f: X — Y in ¢ and some k% in ¢p,r such that k =
Tf:TX — TY in ¢. The functors, Gr,p and Fr are faithful so is Gp,p o Fr.
Therefore, this conversion is safe.

When a term has several decorations (due to being pure or constructor), it has
different interpretations. Le., f©: X — Y can be interpreted either as f: X — Y,
f: X > TY or f: TX — TY. Similarly, f(): X — Y can be interpreted either as
f: X —>TYoras f: TX — TY: the choice should be clear from the context. In any
case, they will end up with the same result up to conversions. Therefore, the rules are
given in such a way that terms are decorated with the largest possible decorations.
Note also that when a term appears with no decoration, this means that it has the
decoration (2).

(stow) For each pair of mappings f, g: TX — TY in €, if f = g holds, then
obviously fonxy = gonx: X — TY. Recalling the items (3) and (4), we say that
the interpretation of a strong equation f2 = ¢(® implies the interpretation of weak
equation f® ~ ¢ So that the conversion from strong to weak is freely allowed.

(wtos) Moreover, it is possible to infer from items (3) and (4) that the interpretation
of a weak equation f ~ ¢ coincides with the one for f = ¢ in case f and g are not
modifier terms. So that f() ~ ¢(V) can be converted into f() = ¢(1),

(wrepl) Given f1(2) ~ 2(2): X — Y with interpretation fionx = foony: X — TY in
% and ¢ : Y — Z with interpretation g: TY — TZ, we get ¢ o f1(2) ~g? o f2(2)
in ¢r,p with the following interpretation: go fionx = go foonx: X — TZ
in €. That informally means that weak equations obey the replacement rule with
no precondition.

(pwsubs) Given g§2) ~ ggz): Y — Z with interpretation gy ony = ggony: Y - TZ

in ¢ and f©: X — Y which can be seen as f: X — Y and interpreted as
Tf: TX — TY in €, thanks to above point (3). We get g§2) o f0 ~ ggz) o O with
the following interpretation: gyoT fonyxy = gooT fonx: X — TZ in €. It is simple to
check that this equality holds: due to the naturality of n, we get gionyof = gionyof
which is true considering the given interpretation g; o ny = go o ny. This informally
means that weak equations obey the substitution rule only when the substituted
term is pure.

The identity term idg?): X — X is interpreted as idx: X — X in ¥. The com-
position of two modifiers f®: X — Y and ¢®:Y — Z has the interpretation
gof=TX — TZ in €. Given these, the interpretations for the rules (ids), (idt)
and (assoc) can trivially be deduced. O

45

4. Decorated logics

4.3 The decorated logic for a comonad

The decorated logic for a comonad (Lcom) [DDR14] extends the monadic equational logic
Lmeq wWith the use of decorations on terms and equations. The syntax of Loy, is similar
to that of L0, and given in Figure 4.3. Fach term has a source and a target type as
well as a decoration which is denoted as a superscript (0), (1) or (2): a pure term has the
decoration (0), an observer has (1) and a modifier term comes with the decoration (2).
Similarly, each equation is formed by two terms with the same source and target as well
as a decoration, denoted by “~” if it is weak or by “=" if it is strong.

The logic Lo is dually interpreted with L0, Let (D,e,0) be a comonad satisfying the
epi requirement which means that its counit € is an epimorphism. See Definition 3.1.7. In
order to interpret L.om, we this time, use the Kleisli-on-coKleisli construction associated to
the comonad (D, ¢,) as detailed in Section 3.3. There, we have introduced the adjunctions
Fp 4 Gp and Fp v - Gp, 7 with the faithful functors Gp: ¢ — ép and Fp r: €p —
¢p,r. This gives raise to a hierarchy among morphisms in ¢p 7. We use this hierarchy
to interpret the decorations: pure terms are in €, observers are in ¥p and modifiers
are in €p 7.

Definition 4.3.1. Let Cp be interpretation of the syntax for the logic Lo, with following
details:

D T
) Gp () Fp,r

e — T
¢ T tp<__ L = %prT
Fp Gp,T

e:D=1d Gp+-Fp n:Id=T

(1) The types are interpreted as the objects of €.
(2) The terms are interpreted as the morphisms as follows:

(2.1) a pure term fO: X 5 Y in%as f: X =Y in¥
(2.2) an observer term f1): X Y in 6p as f: DX - Y in €
(2.3) a modifier term f®: X - Y in ¢p,7ras f: DX — DY in €

(3) A strong equation between modifiers f @ =¢@. X 5Yin ©p, T is interpreted by
an equality f = ¢g: DX — DY in ¥. Similarly, a strong equation between accessors
fM =¢M: X 5V in 4p is interpreted by an equality f = ¢g: DX — Y in €. And
a strong equation between pure terms f(9 = ¢(®: X — Y in ¥ is interpreted by an
equality f=¢g: X - Y in ¥.

(4) A weak equation between modifiers f@~g?: X 5Yin ¢p, T is interpreted by
an equality ey o f = ey og: DX — Y in ¥. Similarly, a weak equation between
accessors f(U ~ ¢ X — Y in p is interpreted by an equality f = g: DX — Y in
% . And a weak equation between pure terms f(© ~ ¢(©: X — ¥ in ¥ is interpreted
by an equality f =¢: X =Y in %.

46

4. Decorated logics

Lomon Interpretation of Lion
modifier f@. x5y f: DX —» DY
observer . x5y f: X —= DY
pure term fO.x 5y f: X=>Y
strong equation [P =¢@:X 5Y|f=g:DX = DY
weak equation fA~g® X 5Y |eyof=eyog:DX =Y

Figure 4.6: Summary of Definition 4.3.1

Example 4.3.2. Let D = — x S be the comonad of states defined over the category of set
where S is the distinguished set of states and ‘x’ is the cartesian product operator. We
will use this specialization in Section 5.1 to interpret the decorated logic for the state (Lst)
which is an extension to Lo, used to formalize the state effect.

In Figure 4.7, we propose an inference system associated to the syntax given in Figure 4.3.

hierarchy rules : See Figure 4.5
congruence rules: the single difference only - see Figure 4.5 for the rest
(pwrepl)

categorical rules : See Figure 4.5

fOVy 57 gy~vg: X =Y
fogi~fogr

flfvaZY—>Z gX—)Y
Jiog~ faog

(wsubs)

Figure 4.7: Inference rules for the logic L om.

Proposition 4.3.3. The logic L.om is sound with respect to the interpretation Cp given
in Definition 4.3.1. Moreover, the hierarchy rules are interpreted by faithful functors (in-
formally conversions are “safe”).

Proof. (1) The conversion from pure terms to observers is interpreted by the functor

Gp. Foreach f: X =Y, Gp(f) = ht in €p where h = foex: DX - Y in €
(See Equation 3.19). We assume that ¢ is an epimorphism. This implies, thanks to
the point (i) of [ML71, Ch. IV, §3, Theorem 1], that Gp is faithful. Therefore, this
conversion is safe.

The conversion from observers to modifiers is interpreted by a the functor Fp .
For each ff: X — Y, Fp 7(f*) = k* in €p 7 where k = Df o §x: DX — DY
in ¢ (See Equation 3.35). Due to Proposition 3.3.4, Fr p is faithful. So that this
conversion is safe.

Now, the conversion from pure terms to modifiers is interpreted by the composi-
tion Fp 7 o Gp. Thanks to Equation 3.37, we have Fp 1 o Gp(f) = (Df)P =
k® in ¢p,T, for each f: X — Y in € and some k® in ¢p,r such that k =
Df: DX — DY in €. The functors Fp r and Gp are faithful, so is Fp 7 o Gp.
Therefore, this conversion is safe.

When a term has several decorations (due to being pure or observer) then it has
different interpretations. Le., f©: X — Y can be interpreted either as f: X — Y,
f: DX =Y or f: DX — DY. Similarly, f): X — Y can be interpreted either as

47

4. Decorated logics

f: DX - Yoras f: DX — DY the choice should be clear from the context. In any
case, they will end up with the same result up to conversions. Therefore, the rules are
given in such a way that terms are decorated with the largest possible decorations.
Similar to the decorated logic for a monad, when a term appears with no decoration,
this means that it has the decoration (2).

(5) For each pair of mappings f, g: DX — DY in ¢, if f = g holds, then obviously
eyof =c¢eyog: DX — Y. Recalling the items (3) and (4), we say that the
interpretation of a strong equation f = ¢(® implies the interpretation of weak
equation f@ ~ ¢ So that the conversion from strong to weak is freely allowed.

(6) Moreover, it is possible to infer from items (3) and (4) that the interpretation of a
weak equation f ~ g coincides with the one for f = g in case f and g are not modifier
terms. So that f1) ~ ¢! can be converted into f) = ™).

(7) (wsubs) Given f1(2) ~ f2(2): Y — Z with interpretation ez o fy = ez o fo: DY = Z
in ¢ and ¢®: X — Y with interpretation g: DX — DY in €, we get f1(2) 0g® ~
f2(2) 0g® in ¢r, p with the following interpretation: ezo fiog =¢ezo foog: DX — Z
in ¥. That informally means that weak equations obey the substitution rule with no
precondition.

(8) (pwrepl) Given g?) ~ 952) : X — Y with interpretation ey og; = eyoge: DX — Y in

% and f©:Y — Z which can be seen as f?): Y — Z and interpreted as Df: DY —
DZ in €, thanks to above point (3). We get f OF g§2) ~ fOo géz) with the following
interpretation: ezoDfogy =ezo0Dfogy: DX — Zin %. It is simple to check that
this equality holds: due to the naturality of n, we get foey o gy = f oey o go which
is true considering the given interpretation €y o g1 = €y o go. This informally means
that weak equations obey the replacement rule only when the replaced term is pure.

(9) The identity term idg?): X — X is interpreted as idx: X — X in . The composi-
tion of modifiers f®: X — Y and ¢®: Y — Z has the interpretation go f = DX —
DZ in €. Given these, the interpretations of the rules (ids), (idt) and (assoc) can
trivially be deduced. O

4.4 Decorated logic in Coq

The decorated logics for a monad and comonad are implemented as separate frameworks
in the Coq Proof Assistant. In order to construct these frameworks, we need to define data
structures, terms, decorations and basic rules as axioms. This organization is reflected
with corresponding Coq modules as follows:

BASES: Terms —— Decorations —— Axioms

Remark 4.4.1. This organization will be extended into Coq libraries, when we formalize
the decorated logics for the state in Section 5.2 and for the exception in Section 6.4.

First, we give the definitions of non-decorated terms: they constitute the main part of the
design with the introduction of the basic operations. The next step is to decorate these
functions. For instance, the id function is defined as pure and this status is represented
by a pure label in the library. All the rules related to decorated functions are stated in the
module called Azioms. Considering the entire design, we benefit from an important aspect

48

4. Decorated logics

provided by Coq environment, namely dependent types. They provide a unified formalism
in the creation of new data types and allow us to deal in a simple manner with most of
the typing issues. More precisely, the new Coq Type term defined in Section 4.4.1 is not
a Type, but rather a Type — Type — Type. The domain/codomain information of term is
embedded into the Coq type system, so that we do not need to talk about ill-typed terms
and their compositions. For instance, given X Y: Type, we have term Y X which is also a
Type instance representing the type of terms with domain X and codomain Y, in Lg.:
the reason for this exchange is just to get an ease in term compositions. Now, let us go
through the Coq implementation details of the logic Leon. Along the way, the differences
with the logic Ly, will be pinpointed.

4.4.1 Terms

We define the terms of the decorated logic for a monad L., by using an inductive predicate
called term. It mainly establishes a new Coq Type out of two input Types.

Inductive term: Type — Type — Type :=

| tpure: forall {X Y: Type}, (X - Y) - term Y X

| comp: forall {XY Z: Type}, termXY — term Y Z — term X Z.
Infix "o" := comp (at level 70).

The type term Y X is dependent. It depends on the Type instances X and Y and represents
the arrow type: X — Y in the decorated framework. The constructor tpure takes a Coq
side (pure) function and translates it into the decorated environment. So that pure terms,
as id, such are built by applying the tpure constructor to Coq functions. The comp
constructor deals with the composition of two compatible terms. I.e., given a pair of terms
f:termXYand g: term Y Z, then the composition £ o g would be an instance of the type
term X Z. For the sake of conciseness, infix ‘o’ is used to denote the term composition.
Notice that together with the associativity of composition (see Section 4.4.3), this defines
a category with objects as Coq Types and morphisms as tpure f:term Y X, for each pure
Coq function f : X — Y.

Definition id {X: Type} : term X X := tpure id.

Since the identity function is natively embedded in Coq, we use tpure constructor to have
it within the decorated scope. We have an abuse of notation here: the id applied to the
tpure constructor is the one already involved in the Coq system (aka Datatypes.id) while
the id we define is an instance of type term X X, representing the type of mappings from X
to X. In such a setting, we also have constant terms:

Definition constant {X: Type} (v: X): term X unit := tpure (fun tt = v).

Any Coq side pure function of type 1 — X for each Type instance X, is translated into
the decorated settings via the tpure constructor: fun tt = v corresponds to the lambda
term Att :unit.v where unit is the singleton type and tt is the unique instance of it.
Therefore, for any constant value v: X, the pure term constant v is of type term X unit.

49

4. Decorated logics

4.4.2 Decorations

The decorations are first enumerated and then assigned to the terms by using an inductive
predicate named is. It forms a proposition (a Prop instance in Coq) out of a term and a
kind which is the name of the enumerated Type for decorations. Within the context of a
decorated proof, is is used to check whether the given term is properly decorated or not.
We respectively use keywords pure, ro and rw instead of (0), (1) and (2): pure for pure, ro
for observer and rw for modifier terms. Below, is the association of decorations on terms:

Inductive kind := pure | ro | rw.
Inductive is : kind — forall X Y, term X Y — Prop :=
| is_tpure : forall XY (f: X — Y), is pure (@tpure X Y f)
| is_comp : forallk XY Z (f: termXY) (g: termY Z), iskf - iskg —isk (fog)
| is_pure_ro : forall XY (f: term X Y), is pure f — is ro £
| is_ro_rw : forall XY (f: termXY), is ro f — is rw f.

Any term constructed through the tpure constructor is pure. The decoration of composed
terms depends on the decorations of the components: indeed, it takes the larger decoration.
The hierarchy rules among terms are also given here: the constructor is_pure_ro ensures
that a pure term can be seen as an observer and similarly is_ro_rw is to indicate that an
observer term can be taken as a modifier, on demand. See the non-equational hierarchy
and categorical rules in Figure 4.5. It is trivial to infer now that id is a pure term:

Lemma is_id X: is pure (@id X).
Proof. unfold id. apply is_tpure. Qed.

After unfolding id, one needs to show that is pure (tpure Datatypes.id) holds. Now,
it suffices to apply the constructor is_tpure to close the goal. It would also be sufficient
to skip the unfolding: directly applying the constructor is_tpure. The tactic unfold
provides information on how the term in question has been defined. To stay pedagogical
(for these example), we prefer using unfold.

1 subgoals 1 subgoals

' unfold id. : apply is_tpure.
T (11 o (1/1) PPLY is-tP
is pure id is pure (tpure id)

4.4.3 Axioms: decorated logic for a comonad

We can now detail the Coq implementation of the axioms. The idea here is to decorate also
the equations. On the one hand, the weak equation between parallel morphisms models
the fact that they have the same result but may perform differently with respect to an
associated effect. On the other hand, if both have result and effect equivalence, then the
equation becomes strong. We hereby state the rules with respect to weak and strong
equations by defining them in a mutually inductive way: mutuality is used here to enable
the rules including strong and weak equations at the same time. In Coq, both strong and
weak equations are defined to be the instances of the relation class. We respectively
use the symbols ‘=="and ‘~’ to denote strong and weak equations within Coq. See the
equational rules in Figure 4.7.

20

4. Decorated logics

Reserved Notation "x == y" (at level 80). Reserved Notation "x ~ y" (at level 80).

Definition idem X Y (x y: term X Y) :=x = y.

Inductive strong: forall X Y, relation (term X Y) :=
(*congruence rulesx)

refl X Y: Reflexive (@strong X Y)

sym: forall XY, Symmetric (@strong X Y)

trans: forall X Y, Transitive (@strong X Y)

replsubs: forall XY Z, Proper (@strong X Y ==> @strong Y Z ==>> @strong X Z) comp
(*categorical rules*)

ids: forall XY (f: termX Y), f o id ==

| idt: forall XY (f: termXY), ido f == f
assoc: forall X YZ T (f: termX Y :termY Z) (h: termZT), f o oh) ==(fo oh
g g g
(*the hierarchy rulex)
| wtos: forall XY (f g: termXY), isrof —isrog —>f ~ g—>f==g
(*tpure preserves the pure compositionx)
| tcomp: forall XY Z (f: Z — Y) (g Y — X), tpure (compose g f) == tpure g o tpure f

with weak: forall X Y, relation (term X Y) :=
(*congruence rulesx)
wsym: forall X Y, Symmetric (@weak X Y)
wtrans: forall X Y, Transitive (Qweak X Y)
pwrepl: forall XY Z (g: term X Y), is pure g — Proper (@weak Y Z ==>> @weak X Z) (comp g)
wsubs: forall X Y Z, Proper (Q@weak X Y ==>> Qidem Y Z ==>> Queak X Z) comp
(*the hierarchy rulex)
| stow: forall XY (f g: termXY), f ==g—f ~ g
where "x == y" := (strong x y) and "x ~ y" := (weak x y).

(1) More precisely, strong equation is an equivalence relation so that reflezivity, symme-
try and transitivity properties are assumed: it is defined to be an instance of the
Reflexive, Symmetric and Transitive relation classes of Coq.

(2) The replacement and substitution properties with respect to strong equation are as-
sumed by stating the composition as a proper element of the relation (@strongXY
==> @strongYZ ==> QstrongXZ)foreachX Y Z: Type. Due to Sozeau [Soz10],
‘==>"is the right-associative notation used to indicate the respectfulness property
among relations. Le., respectful (R: (@strong Y Z)) (R': (@strong X Z)) re-
turns an instance R of type relation (term Y Z -> term X Z). So that composi-
tion is now a proper instance of type relation (term X Y -> term Y Z -> term
X Z) with respect to the strong equation.

(2.1) Let us now suppose that f£: (term X Y) and g == g’: (term Y Z) are given
and we intend to show that f o g == f o g’ holds, for each X Y Z: Type.
It is trivial to reduce it to £ o g == f o g through the use of the tactic

setoid_rewrite, developed by Coen [Coe04], since replacement with respect
to strong equation has already been enabled with no precondition.

1 subgoals 1 subgoals
X : Type X : Type
Y : Type Y : Type
Z : Type Z : Type
2 t:ii i; setoid_rewrite <—HO. 2 t:ii i; apply refl.
g : termYZ g : termYZ
HO: g==¢g HO: g ==¢g
1/1 1/1
P — (1/1) — (1/1)
g==1o0g fog==fog

2.2 Similarly, let us suppose that f = £’': (term X Y) and g: (term Y Z) are given
and we intend to show that f o g = £’ o g holds. One can trivially reduce it
tof o g = f o g, since strong substitution comes with no precondition.

51

4. Decorated logics

1 subgoals 1 subgoals
X : Type X : Type
Y : Type Y : Type
Z . Type Z . Type
f: XY f: XY
£ :t:j:;lm XY setoid_rewrite <-HO. e :t:j:;lm Xy apply refl.
g: termYZ g: termYZ
HO: f == ¢f’ HO: f == f’
(1/1) (1/1)
f’og==fog fog==fog

(3) By ids and idt, we get that the composition of id with any term £ is strongly equal

to £ no matter the composition order.
The property associativity is attached to the composition.

Converting any instance of weak equation into strong is not pricelessly ensured by
wtos: one has to make sure that both hand sides are at most observers or ro in Coq
implementation.

The rule tcomp states that the tpure constructor preserves the composition of pure
terms up to the strong equation.

Weak equality is also an equivalence relation: it is assumed to be an instance of
Symmetric and Transitive relation classes. It is trivial to prove that weak equation
is an instance of Reflexive class:

Instance wrefl X Y: Reflexive (Qweak X Y).
Proof. intros X Y f. apply stow. apply refl. Qed.

First, the goal-side weak equation £ ~ f is reduced to f == £ via the rule (stow).
Then, it suffices to apply the reflexivity property of strong equation (refl) to close
the goal.

1 subgoals 1 subgoals

X : Type X : Type

Y : Type Y : Type

f: termY X apply stow | . . o vx apply refl.
——————————————— (1/1) (/D)

f~1 f==f

(8)

The replacement with respect to weak equation is enabled only when the replaced
term is pure. Thus, (comp g) is an instance of the type (@weak Y Z ==> @weak X
Z) foreach X Y Z: Type and pure term g: term X Y. Suppose that we are given £ ~
£': (term Y Z) and g(®): (term X Y) so to show that g o f ~ g o £ holds. Since
g is pure, one simply handles g o £ ~ g o f.

1 subgoals 1 subgoals
X : Type X : Type
Y : Type Y : Type
Z : Type Z : Type
f: termY Z f: termYZ
£f7: termY Z setoid_rewrite <—H1. | £ : termY Z apply wrefl.
g: termXY g: termXY
HO: is pure g HO: is pure g
Hi: f ~ Hi: f ~ f
(1/1) (1/1)
gof ~gof gof ~gof

52

4. Decorated logics

(9) The substitution with respect to weak equation is given by assuming that composition
is a proper instance of the relation (@weak X Y ==> @idem Y Z ==> Q@weak X Z)
foreachX Y Z: Type where idem takes two instances say x and y of the type term X Y
and checks whether x equals to y. Let us suppose that £ ~ f': (term X Y) and
g: (term Y Z) are given and we intend to show that f o g ~ £’ o gholds, for each
X Y Z: Type. It is trivial to obtain £ o g ~ f o g, since weak substitution can be
done with no precondition.

1 subgoals 1 subgoals
X : Type X : Type
Y : Type Y : Type
Z : Type Z : Type
f: termXY . . f: termXY
£ . term X Y setoid_rewrite <-HO. £ . term X Y apply wrefl.
g: termY Z g: termYZ
HO: f ~ £’ HO: f ~ £’
(1/1) (1/1)
fog~fog fog~fog

(10) Lastly, strong equation freely converts into weak equation via stow.

4.4.4 Axioms: decorated logic for a monad

In this section, we consider the implementation of decorated logic for a monad Lo, This
follows the same approach for terms and decorations with the implementation of the logic
Lecom- The single difference appears within the context of rules: dual to the implementation
of the logic L om, weak substitution is enabled only when the substituted term is pure while
weak replacement comes with no precondition. See congruence rules in Figure 4.7.

Definition pure_id X Y (x y: term X Y) := (is pure x) A x = y.
Definition idem X Y (x y: term X Y) :=x = y.

Inductive strong: forall X Y, relation (term X Y) :=
with weak: forall X Y, relation (term X Y) :=
| wrepl : forall XY Z, Proper (@idem Z Y ==> Queak Y X ==>> Quweak Z X) comp

| pwsubs : forall X Y Z, Proper (@weak ZY ==> Qpure_id Y X ==> Queak Z X) comp
where "x == y" := (strong x y) and "x ~ y" := (weak x y).

(1) The replacement with respect to weak equation is given by assuming that composition
is a proper instance of the relation (@idem Z Y ==> @weak Y X ==> Quweak Z X),
foreachX Y Z: Type where idem takes two instances say x and y of the type term X Y
and checks whether x equals to y. Let us suppose that £ ~ f': (term Y X) and
g: (term Z Y) are given and we intend to show that g o £ ~ g o £’ holds, for each
X Y Z: Type. It is trivial to obtain g o £ ~ g o £, since weak replacement can be
done with no precondition.

1 subgoals 1 subgoals
X : Type X : Type
Y : Type Y : Type
Z : Type Z : Type
:7 ’ :t::;mYYXX setoid_rewrite <—HO. :7 : : t::;mYYXX apply wrefl.
g: termZY g: termYZ
HO: f ~ £’ HO: f ~ £’
(1/1) (1/1)
gof~gof gof ~gof

53

4. Decorated logics

(2) The substitution with respect to weak equation is enabled only when the substituted
term is pure. Thus, (comp) is an instance of the relation (@weak Z Y ==> @pure_id
Y X ==> Queak Z X),foreachX Y Z: Type where pure id takes two instances say
x and y of the type term X Y and checks whether x is pure and equals to y. Suppose
that we are given f ~ £': (term Z Y) and g(®: (term Y X) so as to show that £ o

g ~ f' o gholds. Since g is pure, one simply handles that f o g ~ f o g as:

2 subgoal 2 subgoal
1 subgoals X : Type X : Type
X : Type Y : Type Y : Type
Y : Type Z : Type Z : Type
Z : Type f: termZY f: termZY
f: termZY 2 : termZY f2: termZY
s exact HO. exact H1.
f7: termZY apply pwsubs. | g: term Y X split g: termY X reflexivit
g termY X HO: f ~ f’ pLit. HO : f ~ £’ v
HO : f ~ £’ Hl1: is pure g Hl1: is pure g
Hi: ispureg | (1/2) | e __ (1/2)
________________ (1/1) f~f is pure g
fogn~~fog | 2/2) | o ___ (2/2)
pure_id g g g—g

Applying pwsubs (See Figure 4.5) results in two subgoals: f ~ f’ and pure_id g
g. The former is already an assumption so that we remain with the latter which can
be split into two further subgoals when unfolded: is pure g and g = g. Now, the
former is an assumption and the latter is trivial given that the relation ‘=’ is reflexive.

Let us conclude with the notion called Hilbert-Post Completeness which is well-suited with
a decorated theory. We will make use of this notion to show in Section 5.4 and Section 6.9
that the base languages (with no use of categorical pairs and copairs) of the decorated
logic for the state (which is an extension to L.om,) and the decorated logic for the excep-
tion (extending L,on) with the programmers’ language for exceptions are Hilbert-Post
complete.

4.5 Hilbert-Post completeness

Each logic in this thesis comes with a language, which is a set of formulae (equations),
and with deduction rules. Deduction rules are used for deriving (or generating) theorems,
which are some formulae, from some chosen formulae called azioms. A theory T is a set of
theorems which is deductively closed, in the sense that every theorem which can be derived
from T using the rules of the logic is already in 7. We describe a categorical intended
model for each logic we introduce; the rules of the logic are designed so as to be sound with
respect to this intended model. Given a logic £, the theories of £ are partially ordered by
inclusion. There is a maximal theory T,,q:, where all formulae are theorems. There is a
minimal theory Tp.un, which is generated by the empty set of axioms. For all theories 7
and 77, we denote by T + T the theory generated from 7 and 7.

Example 4.5.1. With this point of view there are many different equational logics, with the
same deduction rules but with different languages, depending on the definition of terms. In
an equational logic, formulae are pairs of parallel terms (f,g) : X — Y and theorems are
equations f = ¢g: X — Y. Typically, the language of an equational logic may be defined
from a signature (made of sorts and operations). The deduction rules are such that the
equations in a theory form a congruence, i.e., an equivalence relation compatible with the
structure of the terms. For instance, we may consider the logic “of naturals” L., with
its language generated from the signature made of a sort N, a constant 0 : 1 — N and

o4

4. Decorated logics

an operation s : N — N. For this logic, the minimal theory is the theory “of naturals”
Trat, the maximal theory is such that sk = st and sF 0 0 = s¢ 0 0 for all natural numbers
k and ¢, and (for instance) the theory “of naturals modulo 6” T,,,q6 can be generated
from the equation s% = idy. We consider models of equational logics in sets: each type
X is interpreted as a set (still denoted X), which is a singleton when X is 1, each term
f:X =Y as a function from X to Y (still denoted f: X — Y'), and each equation as an
equality of functions.

Definition 4.5.2. Given a logic £ and its maximal theory T,.q., a theory 7T is consistent
if T # Ta, and it is Hilbert-Post complete if it is consistent and if any theory which
contains 7 coincides with 7,4, or with 7.

Example 4.5.3. In Example 4.5.1 we considered two theories for the logic L,4:: the theory
“of naturals” 7,4 and the theory “of naturals modulo 6” T,,.46. Since both are consistent
and Toge contains Tpa:, the theory Tpq: is not Hilbert-Post complete. The unique Hilbert-
Post complete theory for L, is made of all equations but s = #dy, it can be generated
from the axioms so0=0 and sos=s.

If a logic £ is an extension of a sublogic Ly, each theory Ty of Ly generates a theory
F(Tp) of L. Conversely, each theory T of £ determines a theory G(T) of Ly, made of
the theorems of 7 which are formulae of Lo, so that G(Tmaz) = Tmaz,0- The functions F
and G are monotone and they form a Galois connection [Smil0, Definition 2.1.1|, denoted
F + G: for each theory T of £ and each theory Ty of Ly we have F(7y) C T if and only if
To C G(T). It follows that 7o C G(F(Tp)) and F(G(T)) C T.

Definition 4.5.4. (Duval et al., [DDE"15]) Given a logic Lo, an extension £ of Ly and
the associated Galois connection F' 4 G, a theory T’ of L is Lo-derivable from a theory T
of Lif T" =T + F(Ty) for some theory 7 of Ly. And a theory T is relatively Hilbert-Post
complete with respect to Lg if it is consistent and if any theory of £ which contains T is

Lo-derivable from 7.

Each theory T is Lo-derivable from itself, because T = T + F(Tmin,0), where Tpn o is the
minimal theory of Ly. In addition, Theorem 4.5.6 shows that relative completeness lifts
the usual “absolute” completeness from Ly to L.

Lemma 4.5.5. Let us consider a logic Ly, an extension L of Ly and the associated Galois
connection F 4 G. For each theory T of L, a theory T' of L is Lo-derivable from T if and
only if T"' =T + F(G(T")). As a special case, Tpay is Lo-derivable from T if and only if
Tmaz = T + F(Tmaz,0). A theory T of L is relatively Hilbert-Post complete with respect to
Lo if and only if it is consistent and every theory T’ of L which contains T is such that
T =T+ F(G(T)).

Proof. Clearly, it 7' = T+ F(G(T")) then T" is Lo-derivable from 7. Conversely, let 7; be
a theory of Lo such that 7/ = T+F (7), and let us prove that 7' = T+F(G(T")). For each
theory 7' we know that F(G(T")) C T'; since here T C T' we get T+ F(G(T")) C T'. For
each theory 7 we know that 7j C G(F(7)) and that G(F(7;)) € G(T) + G(F(T3)) C
G(T + F(7y)), so that 7§ € G(T + F(73)); since here 7' = T + F(7]) we get first
Tg € G(T) and then T/ C T + F(G(T")). Then, the result for 7,4 comes from the fact
that G(Tmaz) = Tmaz,0- The last point follows immediately. O

Theorem 4.5.6. Let us consider a logic Lo, an extension L of Lo and the associated
Galois connection F' 4 G. Let Ty be a theory of Lo and T = F(To). If To is Hilbert-Post
complete (in Lgy) and T is relatively Hilbert-Post complete with respect to Ly, then T is
Hilbert-Post complete (in L).

55

4. Decorated logics

Proof. Since T is relatively complete with respect to Lo, it is consistent. Since T = F(7p)
we have To C G(T). Let T’ be a theory such that 7 C T'. Since T is relatively complete
with respect to Ly, by Lemma 4.5.5 we have 7' = T + F(7;) where 7; = G(T"). Since
TCT, ToCG(T) and T§ = G(T'), we get To C T. Thus, since Ty is complete, either

0 = To or T] = Trmaz,0; let us check that then either 7/ = T or T’ = Tpae. If 7] = To then
F(Ty) =F(To) =T,sothat T' =T +F(T)) =T. It Ty = Taz,0 then F(T)) = F(Tmaz,0):
since 7T is relatively complete with respect to Loy, the theory 7T,,4: is Lo-derivable from T,
which implies (by Lemma 4.5.5) that Trep = T + F(Tmaz0) = T O

Proposition 4.5.7. Let L1 be an intermediate logic between Ly and L, let F1 4 G and
Fy A Gy be the Galois connections associated to the extensions L1 of Lo and L of Lq,
respectively. Let Ty = F1(To) and let T = F5(T1). If T1 is relatively Hilbert-Post complete
with respect to Lo and T is relatively Hilbert-Post complete with respect to L1, then T is
relatively Hilbert-Post complete with respect to L.

Proof. This is an easy consequence of the fact that F' = F5 o F}. O

Corollary 4.5.10 provides a characterization of relative Hilbert-Post completeness which is
used in Sections 5.4 and 6.9 and in the Coq implementation.

Definition 4.5.8. For each set E of formulae, let Th(E) be the theory generated by F; and
when E = {e}, let Th(e) = Th({e}). Then, two sets E7, Fy of formulae are T -equivalent
if T+ Th(Ey) =T + Th(E>); and a formula e of L is Ly-derivable from a theory T of L
if {e} is T-equivalent to Ej for some set Fy of formulae of L.

Proposition 4.5.9 provides a characterization of relative Hilbert-Post completeness which
will be used in the next Sections.

Proposition 4.5.9. Let T be a theory of L. Each theory T' of L containing T is Lo-
derivable from T if and only if each formula e in L is Ly-derivable from T .

Proof. Let us assume that each theory 77 of £ containing 7 is Lo-derivable from 7.
Let e be a formula in £, let 7' = T + Th(e), and let 7 be a theory of Ly such that
T' =T + F(T'o). The definition of Th(—) is such that Th(T"y) = F(T"y), so that we
get T + Th(e) = T + Th(Ey) where Ey = T'g. Conversely, let us assume that each
formula e in £ is Lo-derivable from 7. Let 77 be a theory containing 7. Let 7" =
T+ F(G(T")), so that T C T"" C T’ (because F(G(T")) C T’ for any T'). Let us consider
an arbitrary formula e in 77, by Definition 4.5.8 there is a set Ej of formulae of £g such that
T +Th(e) =T + Th(FEy). Since e is in T and T C T’, we have T + Th(e) C T, so that
T+Th(Ey) C T'. It follows that Ey is a set of theorems T’ which are formulae of £y which
means that Ey C G(T), and consequently Th(FEy) C F(G(T")), so that T+Th(Ey) € T".
Since T +Th(e) =T + Th(Ep), we get e € T"'. We have proved that 7' = T"| so that T’
is Lo-derivable from 7. O

Corollary 4.5.10. A theory T of L is Hilbert-Post complete with respect to Lg if and only
if it is consistent and for each formula e of L, there is a set Eg of formulae of Lo such that
{e} is T -equivalent to Ey.

Two interesting aspects of a relatively Hilbert-Post complete theory are given in Theo-
rem 4.5.6 and Proposition 4.5.7. The former shows that relative the Hilbert-Post com-
pleteness lifts the (absolute) Hilbert-Post completeness from the sub-logic to the extended
logic. The latter reveals the fact that the relative Hilbert-Post completeness is compatible

o6

4. Decorated logics

with the composition of logics.
Note again that the base languages of the decorated theory for states and exceptions (in

the absence of categorical products and coproducts, respectively) will be proved in Sec-
tions 5.4 and 6.9 as Hilbert-Post complete with respect to their pure sublogics.

o7

4. Decorated logics

o8

D

The state effect

The use and modification of the memory state is the fundamental feature of imperative
languages. For instance, a C function may observe the value of a variable or modify it. In
order to prove correctness of programs with such features, one has to take into account
the use and manipulation of the state. In this chapter, any access to the state is treated
as a computational effect: a syntactic term f : X — Y is not interpreted as f : X = Y
unless it is pure. Indeed, a term which reads the memory state has the interpretation
f: X xS —Y, while a term which updates the state is interpreted as f : X xS - Y x 5,
where “x” is the product operator and S is the set of states. In this chapter, we introduce
the decorated logic for the state (Lgt), as an extension to the decorated logic for a comonad
(Lcom) which has been introduced in Section 4.3. This logic is used to prove equivalence of
programs involving the state effect, while keeping the memory accesses and manipulations
implicit, as described in [DDEP14]. We obtain the decorations of the logic Ly, for terms
and equations, from the logic L.m,. In addition, we introduce the interface functions
lookup and update for state access and manipulation, respectively. Since, in the presence
of the state effect, the result of evaluating the arguments may depend on the order in which
they are evaluated, we use a decorated version of categorical products as in [DDR11] to
impose an order in evaluating the arguments of multivariate operations. In Figure 5.1 we
instantiate the comonad D in Figure 4.6 with the comonad of states:

Lt Interpretation of L
modifier f@.x 5y f:XxS8—-YxS
accessor fO.x 5y f: X xS=>Y
pure term fO.x 5y f: X—>Y
strong equation [P =¢g? . X 5Y |f=g: X xS—=Y xS
weak equation fAug® . X 5Y | mof=mog: X x8—=Y
where 71: X xS — X is the first projection

Figure 5.1: The decorated logic L and its interpretation: an overview.

We start, in Section 5.1, with the syntax of the decorated logic for the state (Lg) with
its interpretation given via the Kleisli-on-coKleisli construction associated to the states
comonad. The Coq implementation of the logic L4 is presented in Section 5.2. In Sec-
tion 5.3, we prove some properties of the state effect as in [PP02, §3|, but here in a decorated
setting. Lastly, the logic L (without products) is proven to be relatively Hilbert-Post com-
plete in Section 5.4.

5.1 The decorated logic for the state
The decorated logic for the state (Lg) extends the decorated logic for a comonad (Leom)

with the product types (sorts), the singleton type 1 and the type V; of values that can be
stored in any location i € Loc where Loc is a finite set. Similar to the terms (operations) of

59

5. The state effect

the logic Lcom, each term has a source and a target type. Additionally, there is a (left) pair
term (f,g);: X — Y1 x Y, for each couple of terms f: X — Y; and g: X — Y. For each
product type X x Y, there are canonical projections m1: X XY — X and my: X XY = Y.
The symbol ()x denotes the unique term from X to the singleton type 1 for each type X.
The term lookup,: 1 — V; stands to observe the content of a given location ¢ while the
term update;: V; — 1 is used to modify it. We give the syntax of Ly in Figure 5.2 and
its inference rules in Figures 5.3, 5.4 and 5.5 in addition to the ones stated in Figure 4.7.

Grammar of the decorated logic for the state: (i € Loc)
Types: t,s o= X|Y|---|txs|1|V;
Terms: f,g == id¢|a|b|---|gof|(f, g1 |m M| ()]
lookup; | update;
Decoration for terms: (d) == (0)|(1)](2)
Equations: e u= f=g|f~g

Figure 5.2: L syntax

Each term has a decoration which is denoted as a superscript (0), (1) or (2): a pure term
has the decoration (0), an observer (or accessor) has (1) and a modifier term comes with
the decoration (2). Similarly, each equation is formed by two terms with the same source

(A —

and target as well as a decoration, denoted by “~” if it is weak or by “=" if it is strong.

Let ¥ be a category with finite products and a distinguished object of states S. Let
(D = — x S,&,9) be the states comonad defined over €. Let us assume that S is given
such that the the epi-requirement is satisfied (Definition 3.1.7). For instance, when ¥ is
the category of sets, then S cannot be the empty set.

The interpretation of Lg is given via the Kleisli-on-coKleisli construction associated to
a comonad, detailed in Section 3.3, applied to the states comonad. Recall that in Sec-
tion 3.3.2, we have introduced the adjunctions Fp 4 Gp and Fp r - Gp, 7 with the
faithful functors Gp: ¢ — 6p and Fp 7: €p — ¢p,r- This gives raise to a hierarchy
among terms in €p, r. We use this hierarchy to interpret the decorations: pure terms are
in €, accessors are in €p and modifiers are in €p, .

Definition 5.1.1. Let Cgt the interpretation of the syntax for the logic L4 with the
following details:

def def

D= —xS T=-x8
m Gp m Fp,r
€<= T —T=%¢p<_____ 1L = %pr
Fp Gp, T

e:D=1d FpHGp n:Ild=1T

(1) The types are interpreted as the objects of €.

(1.1) the unit type 1 is interpreted by the final object of the category €.
(1.2) for each i in Loc, the type V; is interpreted as an object Val;.

60

5. The state effect

(1.3) for each pair of types X and Y, the product types X x Y are interpreted as the
binary products in €.

Now, we can define the object of states as S = Iljcroc Val;. The projections are
denoted m;: S — Val;, for each location i. The object S in % is not the interpretation
of a “type of states”. Indeed, the use of decorations in the logic L provides a
signature without any occurrence of such a “type of states”. So that signature is kept
close to the syntax. Besides, for each object X in &, the first projection m x 5: X X
S — X is ex and the second projection mp x 5: X x S — S, up to the isomorphism
between of S and 1 x S, is D({)x).

(2) The terms are interpreted as the morphisms as follows:

(2.1) a pure term fO: X 5 Y in%as f: X =Y in¥
(2.2) an accessor term f1: X =Y inépasf: X xS =Y in¥g
(2.3) a modifier term f): X — Y in ¢pras f: X xS5=Y xS8in?¥

(3) The terms fl(l): X — Y] and f2(2): X — Y5 are interpreted as f1: X x § — Y] and
for X xS = Yy xS in%. Thus, <f1,f2>l(2): X — Y] x Y5 is interpreted as the
categorical pair <f1, f2>: X x8 -2V xYy,xSin %. It is called the left pair of f
and g.

(4) The pure projections Wgo) : X XY — X and 7T§0) : X XY — Y are interpreted as the
canonical projections m1: X XY — X and mo: X XY — Y associated to pairs.

(5) The pure term (>g?): X — 1 is interpreted as the unique mapping from X to the
final object 1 in %.

(6) For each i in Loc, the term lookupgl): 1 — V; is an accessor in €p and interpreted
as lookup, = m;: S — Val; in € (up to the isomorphism between 1 x S and 5).

(7) For each i, the term update§2): Vi — 1 is a modifier in €p,r and its interpretation
is characterized by the following equalities: for each j in Loc such that ¢ # j, m; o
update; = m;0my vyy,,5: Val; xS — Val; and moupdate; = 7 yq,5: Val; xS — Val;.

(8) A strong equation between modifiers fO=¢®.: X 5Yin ¢p, T is interpreted by an
equality f =¢g: X x5 = Y xS in ¥. Similarly, a strong equation between accessors
fO =¢M: X - Y in €p is interpreted by an equality f = g: X x S — Y in %.
And a strong equation between pure terms f(© = ¢ : X — Y in € is interpreted
by an equality f = g: X — Y in . Intuitively, two terms are strongly equal if they
have equivalences on returned results and effects on the state.

(9) A weak equation between modifiers f @ ~g®: X 5Yin ¢p,T is interpreted by
an equality ey o f = ey o0g: X x § = Y in ¥. Similarly, a weak equation between
accessors f1) ~ ¢g: X — Y in %p is interpreted by an equality f = g: X x S —
Y in ¥. And a weak equation between pure terms f©@ ~ ¢@: X — VYV in ¥ is
interpreted by an equality f = g: X — Y in ¥. Intuitively, two terms are weakly
equal if they return the same result with maybe different effects on the state.

The rules of the logic L.om, as stated in Figure 4.7, are rules of the logic L. Now, we
introduce the additional rules of the logic L4 in several steps, with some comments.

61

5. The state effect

5.1.1 The effect rule

the effect rule
(effect) Jufo: X =Y le{2 (Jyofi={()vofe
fi=fo

Figure 5.3: Lg: the effect rule

(effect) This rule states that weak and strong equations are related with the property
that f1 = fy if and only if f1 ~ fo and ()y o f1 = ()y o fo. In other words, two terms
f1 and fo are strongly equal if and only if they have the “same result” (f; ~ f2) and
“the same effect” (()y o f1 = ()y o fa).

5.1.2 The pair rules

rules for the left pairs
X X =1
(unit) ————— (w-unit) Xl
<>(%):X—>]l f~{x
d .
X =Y X = Y5 1,2} Y1 Y.
(Ipair) i T —>')1(f2Y ; 2 (for all d < 1) (proj) Z(i){ 2} N Yo
Lf2)ir X = Y1 x Yy w1 Y1 xYy =Y,
X sy X oY
_ _ <
(s-lpair-eq) ., o (= F (for all d < 1)
. fl ZX—>Y1 f21X—>Y2
- - <
(w-lpair-eq) o (i~ (for all d < 1)
(Ipair-tieq) Ji, 2 XoViXY, mofi~mofy mofi~mof
Ji~ fa

Figure 5.4: L : rules for left pairs

(w-unit) This rule intuitively means that for each modifier term f: X — 1, there is an
obvious result equivalence between f and the unique mapping () x, since both return
void. The unique instance of type 1 can be used to interpret the result void.

(Ipair) This rule states that the left pair (fi, fo); is defined only when f; is pure or
accessor. Indeed, when both f; and fs are modifiers, such a construction would
lead to a conflict on the returned result. When f; is an accessor, with (w-lpair-eq),
we ensure that (f1, fo); returns “the same” result with f; and with (s-lpair-eq) that
(f1, f2); returns “the same” result with f along with “the same” manipulation on
the state.

(Ipair-ueq) This rule ensures that a left pair is unique up to the weak equation.

5.1.3 Some properties of pairs

In this section, we start with a property of the “empty pair” and then prove the unicity of
left pairs up to the strong equation. Afterwards, we build the symmetric (or right) pairs
by using the left pairs and prove some of their properties. Lastly, we construct the left and

62

5. The state effect

right products, by respectively using left and right pairs, and similarly prove some related
properties.

Proposition 5.1.2. (s-unit) For alld, d' < 1, given two terms of the form fl(d), fz(d,): X —
1 for each X, then f1 = fo.

Proof. Obviously, fi ~ f2 thanks to (w-unit). Since none of them is a modifier, then
f1 = f2 due to (wtos). O

Proposition 5.1.3. (Ipair-u) For each fi,fo: X — Y1 x Yo, if mp o f1 ~ m o fo and
Ty 0 fi =m0 fa, then f1 = fa.

Proof. 1. Starting from 7y o f; = 79 o fa, we obtain ()y, om0 fi = ()y, o m2 0 fo due
to (replsubs). Besides, we have ()y, o m2 = ()y, xy, thanks to (s-unit). Therefore,
we get < >Y1><Y2 of1= < >Y1><Y2 o fa.

2. Since we have m o fi = my o fy, by converting the strong equation into a weak
equation, we get mo o f1 ~ w9 o fo. In addition, my o f; ~ m o fy is also assumed so
that we end up with f; ~ fy thanks to (Ipair-ueq).

Now, the above items 1 and 2 suffice to ensure f1(2) = 2(2) due to (effect) rule introduced
in Figure 5.3. 0

Definition 5.1.4. For all d < 1, given f;: X — Y; and fz(d): X — Y5, the right pair
(f1, f2)r = permut o (fo, f1); where permut = (mo, m1);.

Yo
f2 Tm
X — (fo.1)r=Ya x Y]

T I

Y

permut—-— Y1 X Y2

Proposition 5.1.5. For alld <1, given f1: X — Y} and f2(d): X — Yy, we have:
e m o (f1, f2)r = f1 (s-rpair-eq)

o w0 (f1, fo)r ~ f2(d) (w-rpair-eq)

Proof. e Due to (w-lpair-eq), we have 71 o (m, m1); ~ ma. Since terms are all pure, the
weak equation converts into the strong one: 71 o (w9, m1); = me. Through (replsubs),
we obtain 71 o (me, m1);0(fa, f1)1 = m20(fa, f1)1. Now, (s-lpair-eq) gives 7 o (ma, m1);0
(f2, f1)1 = f1 which folds into m o (f1, fo)r = fi1.

e Thanks to (s-lpair-eq) and (stow), we get m o (me,m1); ~ 71. The rule (wsubs) gives
oo (me, 1)1 0(fo, f1)1 ~ ™10 (fe, f1);. By using (w-lpair-eq), we obtain my o (mwg, 1) 0

(fa, f1)1 ~ £3? which is actually m o (f1, fo)r ~ £37.
O

Proposition 5.1.6. (rpair-u) For each f1,fo: X — Y1 x Y, if mp o fi = 70 fo and
Ty 0 fi ~ w0 fa, then f1 = fa.

Proof. 1. Starting from 7 o f; = 7 o fo, we obtain ()y, om0 fi = ()y, om0 fo due
to (replsubs). Besides, we have ()y, o m = ()y, xy, thanks to (s-unit). Therefore,
we get < >Y1><Y2 of1= < >Y1><Y2 o fa.

63

5. The state effect

2. Since we have 7 o fi = m o fo, by converting the strong equation into a weak
equation, we get w1 o fi ~ m o fo. In addition, mo o fi ~ 7o 0 fo is also assumed so
that we end up with f; ~ fo thanks to (lpair-ueq).

Now, the above items 1 and 2 suffice to ensure f; = fy due to (effect) rule introduced in
Figure 5.3. U

One can define the left and right products of terms respectively using left and right pairs.

Definition 5.1.7. e For all d < 1, given fl(d): X1 — Y7 and fo: X9 — Y5, we obtain
a left product (fl X1 fg) = <f1 o 7T1,f2 o 7T2>l: X1 x X9 —=Y] xYs.

e For all d < 1, given f1: X7 — Y7 and fQ(d): Xo — Y5, we obtain a right product
(f1 xr f2) = (from, fa0), = permut o (fa oma, from): X1 X Xo — Y1 x Y2 such
that permut = (mq, m1);.

fi fe

Xl Yl X2 Y2
- i o for 22
X1 X Xg—(fixfa) =Y x Yy X1 X Xg - (fexif1) =Yy X Y7 —permut— Y7 X Yy
7T2\L \Lﬂ'g 7T1¢ ¢7r%
X2 f2 Y X1 fi n

Proposition 5.1.8. For all d < 1, given fl(d): X1 = Y7 and fo: Xo — Yo, we have:

o w0 (fi xi f2) ~ i oy (w-lprod-eq)
e w0 (f1 X; fa) = fo 0ma (s-lprod-eq)

Proof. e By setting fi := fi om and fo := fo o my within (w-lpair-eq), one gets
m1 0 (f1 omy, foom) ~ fl(d) o which folds into my o (f1 X; f2) ~ fl(d) oTy.

e Similarly, we set f1 := f1om and fo := fy0me within (s-lpair-eq), one gets w0 (f1 o
71, fo 0 ma); = g o fo which folds into my o (f1 X; f2) = f2 0 ma. O

Proposition 5.1.9. (lprod-u) For each fi,fo: X1 X Xo = Y1 X Y, if mpo f1 ~ 7 0 fo
and o o fi = me 0 fy, then f1 = fo.

Proof. Tt suffices to apply (Ipair-u). O
Proposition 5.1.10. For all d < 1, given f1: X1 — Y1 and fQ(d): Xy — Y5, we have:

o mi o (f1 Xy f2) = from (srprod-eq)

o mo (fi Xy f2) ~ fi¥ o my (w-rprod-eq)

Proof. e By setting fi := f1 om and fy := fo o my within (s-rpair-eq), one gets W%O) o

(f10m, fo 0ome), =71 o f1 which folds into 71 o (f1 X, f2) = w1 0 f1.

e Similarly, we set f; := m o f; and fy := 79 o fo within (w-rpair-eq), one gets my o
(fiom, faoma)y ~mgo0 f2(d) which folds into 79 o (f1 X, f2) ~ mg 0 fQ(d). O

Proposition 5.1.11. (rprod-u) For each f1, fa: X1 X Xo = Y1 X Yo, if mp0 fi ~ a0 fo
and 1 o fy = w0 fo, then f1 = fo.

64

5. The state effect

Proof. 1t suffices to apply (rpair-u). O

Remark 5.1.12. The product of two modifier terms f1: X; — Y7 and fo: X9 — Y5 is
modeled by their sequential products, as introduced in [DDR11], which impose some order of
evaluation of the arguments: a sequential product is obtained as the sequential composition
of two semi-pure products. A semi-pure product, as far as we are concerned in this thesis,
is a kind of product of an identity function (which is pure) with a modifier function.

Notice that we use some of these properties when proving the properties of programs with
the state effect, in Section 5.3.

5.1.4 The interface rules

interface rules

€ L € L
(lookup) ! i) o (update) ! Z) o
lookup, : 1 — V; update,”: V; — 1
(ax1) i € Loc (ax5) i,j € Loc i #j

lookup; o update; ~ idy; lookup; o update; ~ lookup; o ()y,
g1,92: X =1 for all ¢ € Loc lookup; o g; ~ lookup, o g2

g1 = g2

(local-global)

Figure 5.5: L the interface rules

(ax1) This rule states that one obtains the value v after both of the following cases:

(a) first storing v into a location 4, then observing the same location,
(b) feeding v to the identity term.

Clearly, the equation between operations in (a) and (b) is weak since they have
different manipulations on the state.

(ax2) This rule states for each couple of different locations 7 and j that after below cases
(c) and (d), one obtains the same result but different manipulations on the state:

(c) first storing a value v into a location j and then observing a different location ¢

(d) first forgetting the value v then observing the location i.
Notice that the operation in (c) is a modifier while the one in (d) is an accessor.

(local-global) This rule means that for each location i, the statement of the (effect) rule
can be expressed as a pair of weak equations for g1 = ()y o f1 and g2 = ()y o fa:
g1 ~ g2 and lookup, o g; ~ lookup, o g2. Since gi,g2: X — 1 return the same result
(void), there is no explicit need to check whether g; ~ g2 or not. It suffices to check
if lookup, o g; ~ lookup, o g2 holds, in order to reason whether g; = g» or not. Note
that this rule needs to be reformulated when we formalize the local state effect (or
dynamic allocation) which is beyond the scope of this thesis.

Now, the following result is easily obtained:

Theorem 5.1.13. The logic L is sound with respect to the interpretation Cgrt given in
Definition 5.1.1.

65

5. The state effect

5.2 Coq implementation: L

The main scope of this section is to formalize the decorated logic for the state (Lg) in
Coq |[DDEP14]. To do so, we aim to enrich the implementation of the logic L.y, that
is already detailed in Sections 4.4.1 4.4.2 4.4.3: we will reuse the code blocks in order to
preserve the integrity of the formalization with no repeated explanation. The organization
of the modules is reflected in the Coq library STATES-THESIS as follows:

BASES: Memory —— Terms —— Decorations —— Axioms
DERIVED: D.Pairs =—— D.Products
PROOFS: Proofs

Remark 5.2.1. The complete STATES-THESIS library can be found on https://forge.
imag.fr/frs/download.php/695/STATES-THESIS. tar.gz.

5.2.1 Memory

In order to enrich the terms of the logic Leom (or Lyon), we first need to speak about some
preliminaries: the set of memory locations is implemented by a Coq parameter, Loc: Type.
Provided that each location may contain different type of values, we also implement an
arrow type V: Loc — Type that is the type of values stored in any location.

Parameter Loc: Type. Parameter V: Loc — Type.

5.2.2 Terms

We can implement the additional terms, as new constructors to the dependent type term
that has been given in Section 4.4.1, as follows:

(1) <f,g>: X — Y x Z for each pair of terms f: X — Y and g: X — Z, together with
the canonical projections m1: Y X Z Y and m9: Y X Z — Z,

(2) ()x: X — 1 for each type X,,
(3) lookup,: 1 — V; for each location i,
(4) update;: V; — 1 for each location i.

Thus, the implementation of terms in Coq looks like:

Inductive term: Type — Type — Type :=
| comp: forall {XY Z: Type}, termXY — termY Z — term X Z
| tpure: forall {XY: Type}, (X = Y) = term Y X
| pair: forall {X Y Z: Type}, termX Z — term Y Z — term (X*Y) Z
| lookup: forall i:Loc, term (V i) unit
| update: forall i:Loc, term unit (V i).
Infix "o" := comp (at level 70).

Instead of the symbol <>, we use the keyword pair in the implementation. The terms
such as the identity, the pair projections, the empty pair and the constant function can be
derived from the native Coq functions, with the use of tpure constructor, as follows:

66

https://forge.imag.fr/frs/download.php/695/STATES-THESIS.tar.gz
https://forge.imag.fr/frs/download.php/695/STATES-THESIS.tar.gz

5. The state effect

Definition id {X: Type} : termX X = tpure id.
Definition pil {X Y: Type} : term X (XxY) := tpure fst.
Definition pi2 {X Y: Type} : term Y (XxY) := tpure snd.
Definition forget {X} : termunit X := tpure (fun _ = tt).

Definition constant {X: Type} (v: X): term X unit := tpure (fun tt = v).

Remark also that the pair projections are named pil and pi2 while the unique mapping
()x from any type X to 1 is called forget in the implementation.

Remark 5.2.2. See the source Terms.v for related implementation details.

5.2.3 Decorations

Thereby, the decorations’ implementation follows:

Inductive kind := pure | ro | rw.
Inductive is: kind — forall XY, term X Y — Prop :=
| is_tpure: forall XY (f: X — Y), is pure (@tpure X Y f)
| is_comp: forall k XY Z (f: termX Y) (g termY Z), isrof - iskf > iskg —isk(fog)
| is_pair: forall k XY Z (f: termX Z) (g: termY Z), isk f — is k g — is k (pair f g)
| is_lookup: forall i, is ro (lookup i)
| is_update: forall i, is rw (update i)
| is_pure_ro: forall XY (f: term X Y), is pure f — is ro f
| is_ro_rw: forall XY (f: termX Y), is ro f — is rw f.
Hint Constructors is.

Notice that instead of the decorations of the form (0), (1) and (2), we respectively use
the keywords pure, ro and rw in the implementation. The decoration of any composed
or paired off term depends on its components and always takes the upper decoration
(pure < ro < rw). E.g., given a modifier term and a read-only term, their composition
will be a modifier, as well. The decoration of a pair construction depends on its second
component, since the first one should at most be a read-only term. Hence, we cannot form
pairs of two modifier terms. The pair construction always takes the upper decoration. For
instance, given a pure term and a read-only term, their pair will be a read-only, as well. We
declare the term lookup as an accessor. On the contrary, update is a modifier. It is trivial
to derive that the pair projections are pure. For the sake of conciseness, we demonstrate
only the first one:

Lemma is_pil X Y: is pure (@pil X Y).
Proof. apply is_tpure. Qed.

Since pil is constructed through tpure and since any argument of tpure is by definition
pure, it suffices to apply the constructor is tpure. The process of decoration checking
is crucial and troublesome in a decorated setting: the use of rules is determined after
ensuring that the related terms have the intended decorations. It is possible to automate
the verification of decorations. To do so, we create a new tactic named decorate, by using
Delahaye’s Ltac language [Del00]:

Ltac decorate := solve|
repeat (apply is_comp || apply is_pair)
I
(is_tpure || apply is_lookup || apply is_update || assumption)
I
(apply is_pure_ro)
I

(apply is_ro_rw) |.

The tactic decorate repeatedly checks if the goal term is a composition or a pair, if not,
it tries to decide whether the term is pure constructed by tpure or one of the following

67

5. The state effect

terms: lookup and update or else a local assumption. If it is still not the case, it applies
the hierarchy rules. All that are performed in the given sequence. Since these checks are
all done inside the solve tactical, decorate fails in the absence of match.

Class PURE {X Y: Type} (f: term X Y) := isp : is pure f.
Hint Extern O (PURE _) = decorate : typeclass_instances.

Class RO {X Y: Type} (f: term X Y) := isro : is ro f.
Hint Extern O (RO _) = decorate : typeclass_instances.

Class RW {X Y: Type} (f: term X Y) := isrw: is rw f.
Hint Extern O (RW _) = decorate : typeclass_instances.

The assignment of decorations over terms is declared as constructors of Coq type classes
parametrized by a term. Then, we extend the scope of the tactic auto with the optional
patterns (PURE _), (RO _) and (RW _), the tactic decorate at cost zero. This is provided
by the vernacular command Extern (num) pattern => tactic. The zero cost means
that the tactic auto would non-recursively try the hints upon the usage.

Remark 5.2.3. See the source Decorations.v for related implementation details.

5.2.4 Axioms

Here we give the formalization of the rules/axioms in Coq.

Reserved Notation "x == y" (at level 80). Reserved Notation "x ~ y" (at level 80).
Definition idem X Y (x y: term X Y) :=x = y.
Inductive strong: forall X Y, relation (term X Y) :=
(*congruence rulesx*)

| refl X Y: Reflexive (@strong X Y)

| sym: forall XY, Symmetric (@strong X Y)

| trans: forall X Y, Transitive (@strong X Y)

| replsubs: forall XY Z, Proper (@strong X Y ==>> @strong Y Z ==>> @strong X Z) comp

(*categorical rulesx)

ids: forall XY (f: termXY), f o id ==
idt: forall XY (f: termX Y), ido f ==

| assoc: forall XYZT (f: termXY) (g: termY Z) (h: termZT), fo(goh) == (fog)oh
(*the hierarchy rulex*)
| wtos: forall XY (f g: termXY), ROf »R0Og—f ~ g—f==g

(*strong pair rules*)
s_lpair_eq: forall XY’ Y (f1: term Y X) (£f2: term Y’ X), RO f1 — pi2 o pair f1 f2 == £2
(xthe effect rulex)
effect: forall XY (f g: term Y X), forget o f == forgetog > f~g > f==g¢g
(*the strong interface rulex)
local_global: forall X (f g: term unit X), (forall i: Loc, lookup i o f ~ loockupiog) »f==g¢g
(*tpure preserves the pure compositionx)
| tcomp: forall XY Z (f: Z — Y) (g Y — X), tpure (compose g f) == tpure g o tpure f
with weak: forall X Y, relation (term X Y) :=
(*congruence rulesx)
wsym: forall X Y, Symmetric (@weak X Y)
wtrans: forall X Y, Transitive (Qweak X Y)
pwrepl: forall XY Z (g: term X Y), is pure g — Proper (@weak Y Z ==>> @weak X Z) (comp g)
wsubs: forall X Y Z, Proper (Queak X Y ==> Q@idem Y Z ==> Qweak X Z) comp
(*the hierarchy rulex*)
stow: forall XY (f g: termXY), f ==g—>f~g
(*the weak pair rulex)
w_lpair_eq: forall X Y'Y (f1: term Y X) (£2: term Y’ X), RO f1 — pil o pair f1 £2 ~ f1
w_unit: forall X (f g: termunit X), f ~ g
(*¥weak interface rulesx*)
axl: forall i, lookup i o update i ~ id
ax2: forall i j, i<>j — lookup j o update i ~ lookup j o forget
(*the weak unicity rulex)
| lpair_ueq: forall X Y Y'(f g: term (YxY’) X), pilof ~pilog —+pi2of ~pi2og—>f~g
where "x == y" := (strong x y) and "x ~ y" := (weak x y).

68

5. The state effect

On the details of additional rules. For w_unit, s_lpair_eq, w_lpair_eqand lpair_ueq,
see Figure 5.4. The rule effect is given in Figure 5.3. Lastly, for ax1, ax2 and local_global,
refer back to Figure 5.5.

The derived rule (s-unit), given in Proposition 5.1.2, specializes (w-unit) in the absence
of modifiers so that the weak equation converts into the strong one. Below is the Coq
certified statement and its proof:

Lemma s_unit: forall X (f: term unit X), (RO f) — f == forget.
Proof. intros X f H. apply wtos; [exact H| decorate| apply w_unit|. Qed.

Remark 5.2.4. See the source Axioms.v for related implementation details.

5.2.5 Derived pairs and products

In order to speak about symmetric or (right) pairs as well as left and right products, we
define the permutation term, denoted permut. It inputs two Coq Type instances X and Y
and outputs an instance of type: term (Y*X) (X*Y).

Definition permut {X Y}: term (X«Y) (Y+X) := pair pi2 pil.

Clearly, permut is a pure term, since it is a left pair made of pure projections. Now, the
right pair structure looks like:

Definition rpair {X Y Z} (f1: term Y X) (£2: term Z X): term (Y+Z) X := permut o pair £2 f1.

The decoration of a given right pair depends on its components:

Lemma is_rpair: forall k X Y Z (f1: term Y X) (f2: term Z X), RO f2 — is k f1 — is k £2
— is k (rpair f1 £2).
Proof. intros k XY Z £1 £2 H1 H2 H3. induction k; decorate. Qed.

After introducing the necessary instances, we induce on the kind k. Then, it suffices to
decorate each goal: is pure (rpair f1 £f2), is ro (rpair f1 £2) and is rw (rpair
f1 £2) locally provided: HO: is pure f1, Hl: is pure £2; HO: is ro f1, Hl:is ro £f2
and HO: is rw f1, Hl:is rw f2.

The projection rules attached to right pairs, that are stated and proven in Proposition 5.1.5,
are certified in Coq along with their proofs:

right pair: first projection

Lemma s_rpair_eq: forall X Y’ Y (f1: term Y X) (£2: term Y’ X), RO £2 — pil o rpair f1 £2 == f1.
Proof.
intros XY’ Y £1 £2 HO. unfold rpair. unfold permut. rewrite assoc.
cut (pil o pair pi2 pil == (@pi2 Y’ Y)).
intro H1. rewrite H1.
apply s_lpair_eq. exact HO.
apply wtos; try decorate. apply w_lpair_eq; decorate.
Qed.

After forming the environment for the assumptions, the proof continues with unfolding
rpair and permut followed by rewriting associativity which shifts parentheses to the left.
At this point, the goal looks like: (pil o pair pi2 pil) o pair f2 f1 == f1. Here,

69

5. The state effect

we cut the Prop instance, (pil o pair pi2 pil == (@pi2 Y’ Y)) and introduce an in-
stance of it named H1. We apply H1 inside the goal and obtain pi2 o pair f2 f1 == f1.
Now, it suffices to apply the rule s_lpair_eq and prove that RO £2 which is exactly HO.
It remains to prove the strong equation that we have already cut. There, we first convert
the goal side strong equation into the weak equation provided that pil o pair pi2 pil
and (@pi2 Y’ Y) are both accessors. So that the goal turns into (pil o pair pi2 pitl
~ (@pi2 Y’ Y)). It suffices to apply w_lpair_eq and prove that RO pi2 which is done by
the use of tactic decorate.

right pair: second projection

Lemma w_rpair_eq: forall X Y’ Y (f1: term Y X) (£2: term Y’ X), RO £f2 — pi2 o rpair f1 £2 ~ £2.
Proof.

intros XY’ Y £1 £2 HO. unfold rpair. unfold permut. rewrite assoc.

rewrite s_lpair_eq; [apply w_lpair_eq; decorate| decorate]|.
Qed.

After some preliminary modifications on the goal (by following the first line in the proof),
we obtain (pi2 o pair pi2 pil) o pair f2 f1 ~ £2. Here, we rewrite s_lpair_eq
which results in two subgoals: pil o pair f2 f1 ~ £2 and RO pi2. The application of
the rule w_lpair_eq followed by the decorate solves the first subgoal and decorate alone
closes the second.

We also certify the proofs of Propositions 5.1.3 and 5.1.6 ensuring that left and right pairs
are unique with respect to the strong equation:

left pair: unicity

Lemma lpair_u: forall X Y Y'(f1 £2: term (Y’xY) X),
(pil o f1 ~ pil o £2) A(pi2 o f1 == pi2 o £2) — f1 == £2.
Proof.
intros XYY f1 £f2 (HO&H1). apply effect.
¢ (Jofi=()ofs
cut(forget o (@pi2 Y’ Y) == forget).
intro H2. rewrite <-H2.
setoid_rewrite <—assoc. apply replsubs; [reflexivity| exact H1]|.
(x 1st cut *)
setoid_rewrite s_unit;[reflexivity| decorate|.
G f1~ f2 %)
apply lpair_ueq. exact HO. apply stow. exact H1.
Qed.

right pair: unicity

Lemma rpair_u: forall X Y Y'(f1 £2: term (YY) X),
(pil o f1 == pil o £2) A(pi2 o f1 ~ pi2 0 £2) — f1 == £2.
Proof.
intros XYY f1 £f2 (HO&H1). apply effect.
¢ (Yofi=()of
cut(forget o (@pil Y’ Y) == forget).
intro H2. rewrite <-H2.
setoid_rewrite <—assoc. apply replsubs; [reflexivity| exact HOJ.
(x 1st cut *)
setoid_rewrite s_unit;[reflexivity| decorate].
G f1~ f2 %)
apply lpair_ueq. apply stow. exact HO. exact H1.
Qed.

Both proofs follow the same approach: first the (effect) rule is applied to the goal. This gen-

70

5. The state effect

erates two subgoals to prove: forgetofl = forgetof2 and f1 ~ £2. Then, depending
on the assumed context, we use either forget opil = forget or forget o pi2 = forget
(ensured by the rule (s-unit)) to close the first subgoals. For instance, considering the
unicity of the right pairs, by rewriting forget o pil = forget inside the goal, we obtain
forget opilofl = forget opil o £2. By applying (replsubs), we get pil o f1 = pilo £f2
which is a local assumption. For the second subgoals, we use (Ipair-ueq) rule. For in-
stance, for the unicity of the right pairs, applying (Ipair-ueq) yields following subgoals:
pilofl ~pilof2 and pi20fl =pi20f2. The former is an assumption after the free
conversion of the weak equation into the strong one provided by the application of rule
(stow). The latter is an assumption.

In addition, left and right product structures, that are detailed in Definition 5.1.7, are
implemented in Coq as follows:

Definition lprod {X Y X’ Y’} (f: termX X’) (g: term YY’) := pair (f o pil) (g o pi2).
Definition rprod {X YX’ Y’} (f: termX X’) (g termYY’) := permut o pair (g o pi2) (f o pil).

One can simply prove that the decoration of a pair product depends on its components:

Lemma is_lprod: forall k X’ X Y’ Y (f1: term X X’) (£2: termYY’), RO f1 — isk f1 — is k £2
— is k (1prod f1 £2).
Proof. intros k X’ X Y’ Y f1 £f2 H1 H2 H3. induction k; decorate. Qed.

After introducing the necessary instances, we induce on the kind k then it suffices to
decorate each goal: is pure (prod f1 £2), is ro (prod f1 £2) and is rw (prod f1
£2) locally provided: HO: is pure f1, Hl: is pure £2; HO: is ro f1, Hl:is ro £2 and
HO: is rw f1, H1:is rw f2. The similar idea applies to the case of right products:

Lemma is_rprod: forall k X’ X Y’ Y (f1: term X X’) (£2: term YY’), RO f2— isk f1 — is k £2
— is k (rprod f1 £2).
Proof. intros k X’ X Y’ Y f1 £f2 H1 H2 H3. induction k; decorate. Qed.

The projection rules attached to left and right products, that are stated and proved in
Propositions 5.1.8 and 5.1.10, are certified in Coq along with their proofs:

left and right products: first and second projection

Lemma w_lprod: forall X’ XY’ Y (f: termX’ X) (g: term Y’ Y), RO f — pil o (prod f g) ~ £ o pil.
Proof. intros X’ X Y’ Y f g H. apply w_lpair; decorate. Qed.

Lemma s_lprod: forall X’ XY’ Y (f: term X’ X) (g: termY Y), ROf — pi2 o (prod f g) == g o pi2.
Proof. intros X’ X Y’ Y f g H. apply s_lpair; decorate. Qed.

Lemma w_rprod: forall X’ XY’ Y (f: termX’ X) (g: term Y Y), RO g — pi2 o (prod f g) ~ g o pi2.
Proof. intros X’ X Y’ Y f g H. apply w_rpair; decorate. Qed.

Lemma s_rprod: forall X’ XY’ Y (f: term X’ X) (g: term Y Y), RO g — pil o (prod f g) == f o pil.
Proof. intros X’ X Y’ Y f g H. apply s_rpair; decorate. Qed.

They are nothing but specialized (w-lpair-eq), (s-lpair-eq), (w-rpair-eq) and (s-rpair-eq).

We lastly have the unicity properties of left and right products with respect to the strong
equation, that are stated and proven in Propositions 5.1.9 and 5.1.11, certified in Coq:

left and right products: unicity

71

5. The state effect

Lemma lprod_u: forall X X’ Y Y'(£1 £2: term (YxY’) (X%X’)),
(pil o f1 ~ pil o £2) A(pi2 o f1 == pi2 o £2) — f1 == f2.
Proof. intros X X’ Y Y’ f1 £2 (HO&H1). apply lpair_u. split; [exact HO| exact Hi]. Qed.

Lemma rprod_u: forall X X’ Y Y'(£1 £2: term (YxY’) (X*X’)),
(pil o f1 == pil o £2) A(pi2 o f1 ~ pi2 0 £2) — f1 == £2.
Proof. intros X X’ Y Y’ f1 £2 (HO&H1). apply rpair_u. split; [exact HO| exact Hi]. Qed.

It suffices to respectively apply (Ipair u) and (rpair u) to close the goals.

Remark 5.2.5. See the sources Derived_Pairs.v and Derived_Products.v for related
implementation details.

5.3

Proving properties of the state

In [PP02, §3], Plotkin and Power have introduced seven properties of the global state. In
addition, we introduce an eighth property which will become useful when we apply this
idea of reasoning to a programming language such as IMP (or while). Here, as an example
of use, we provide the decorated versions of these properties together with their proofs in
a decorated setting and with the related formalizations in Coq.

(1)a

72

Annihilation lookup-update. Reading the value of a location i and then updating the
2

location i with the obtained value is just like doing nothing. Vi € Loc, update;” o

1ookup§1) = idglo) :1— 1.

Interaction lookup-lookup. Reading twice the same location i is the same as reading

it once. Vi € Loc, 1ookup§1) o (>§2) o 1ookup§1) = 1ookup§1) S VA

Interaction update-update. Storing a value x and then a value x' at the same loca-

tion 1 1is just like storing the value =’ in the location. Vi € Loc, updatez(z) o Wéo) o

(2) Xy id(o)) = update(2) o 7T§0) Vix Vi — 1.

(update

Interaction update-lookup. When one stores a value x in a location i and then reads
the location i, one gets the value x. Vi € Loc, 1ookup(1)oupdate(2) ~ id&g) Vi = Vi

7 7
Commutation lookup-lookup. The order of reading two different locations i and j

does not matter. Vi # j € Loc, (id&g) xrlookupg-l) © 2(1) = g.?i) o

(id%g) X 1ookup(1)) o 711_1(0) o 1ookup§-1) 11— V; x V; where 771_1(0) = (id, (>>l(0)'

[

)O7T1_1 olookup permut

Commutation update-update. The order of storing in two different locations i and j

(2) 2) 2)

J [[

7T§0) o (idgg) X1 update§2)) Vix Vy— 1.

does not matter. Vi # j € Loc, update;”’ o ﬂéo) o (update;” X, id&g)) = update;”’ o

Commutation update-lookup. The order of storing in a location i and reading another
(1) (2
j i

7750) o (update§2) Xy idgg)) o (id%g) X1 lookupg»l)) o wfl(o) Vi = V.

location j does not matter. Vi # j € Loc, lookup;’ oupdate;”’ =

Commutation lookup-constant. Just after storing a constant ¢ in a location i, ob-

serving the content of i is the same as regenerating the constant ¢. ¥i € Loc, V¢ €
(1)) (2

N ; ©constant A0 = constant) o update;” o constant A0

Vi; lookup
1—-V.

o update

5. The state effect

The decorated logic for the state (Lg) is used to prove above the stated properties. Such
proofs are enriched with Coq certifications. Within the Coq scripts, one can simply relate
the Coq proof to the proof on the paper by observing the comments following crucial steps.
Notice also that the use of associativity of composition in the Coq proofs just balances the
proof tree into an intended shape. This is omitted in the proofs on the paper.

Lemma 5.3.1. Annihilation lookup-update (ALU). Reading the value of a location i and
then updating the location © with the obtained value is just like doing nothing.

Vi e Loc,updateg) o 1ookup() = dgl) (5.1)

(2

(M

Proof. (1) Due to (ax;), we have lookup,;’ o updategz) ~ id%g). By (wsubs), we obtain

1ookupl(.1)oupdatel(?)olookupz(l) ~ id%g) olookup(-l). We first throw the identity out by

2

. . . 1 2 1 1) .
the use of (ids), then (idt) gives lookupz()oupdateg)olookupg)~ lookupg)ozdglo).
Vié€ Loc
(eact) M @
lookup, ’ oupdate,”’ ~ idy,
(wsubs)
(ids) 1ookup(.1) oupdate(?) o 1ookup(.1) ~ idy, o 1ookup(1)
ids
(idt) 1ookup() oupdate(Do lookup()~ lookup(l)
i
lookup() o update() o lookup()~ lookup o zd(o)

2)

(2) We have lookupl(j) o update, (1) (0)

~ lookup, ’ o (>Vz , for each location k such that

k # i, due to (axqg). We get 1ookup§€1) o updatel(?) o 1ookup§1) ~ 1ookup§€1) o (>§2) o

lookupgl) thanks to (wsubs). Besides, we have (>§2)olookup§1) = idglo) using (s-unit).

Therefore, we finally have 1ookup§€1)) updateZ(Q) o 1ookup§ N 1ookup()6 zd(o)
Vike Locs.t. i#k
(ax2) 5
1ookup() oupdate() 1ookup (>() :
(wsubs) (s-unit)
1ookup§€1) o updatez(.) o 1ookup£)~ 1ookup o >(2) o 1ookupz(.1) 1ookup (>(O) = d(o)
1ookup() oupdate() o 1ookup()~ 1ookup](€1) o idj(lo)
From the | local-global) yiel @ M = g0
rom the items (1) and (2), (local-global) yields update;” o lookup, ' = id; .

O

In addition, one can start with the goal statement itself, continue with manipulations on
it and finally end up with a truth value. This is actually constructing the proof tree with
a bottom-up strategy. For instance, let us start with applying (local-global) on the above
stated goal and continue as follows:

(1) for any location k, when k = i, the goal looks like lookupgl)

1ookup(-1)) idglo) .

2

@

oupdate; @

olookup,

(1.1) we apply (ids) and (idt) to obtain 1ookup(.1) o updatel(?)

K3
lookupgl).

o lookup(l) ~ id&g) o

)

(1.2) by applying (wsubs), we get updateZ(Q)

tion of (axy) resolves the goal.

o 1ookup(1) ~ id&g). Finally, the applica-

)

(1) 2)

(2) when k # i, the goal becomes lookup, ' o update; (1)

o lookup; 1), idglo).

~ lookup,

73

5. The state effect

(2.1) thanks to (s-unit), we have 1ookup§1) o >§/Oi) = idglo) thus 1ookup,(§1) oupdateZ(Q) o
lookupz(l) ~ 1ookup,(€1) o >$2) o lookupgl).
(2.2) by applying (wsubs), we get lookupg) o update§2) ~ lookupg) o >§2). Finally,

the application of (axs) resolves the goal.

We express the formalization of the statement (ALU) along with its certified proof in Coq.
Note that the proof proceeds by manipulations on the goal statement(s) to end up with
some truth value. Therefore, it follows the same lines as the proof given just above. By
using the apparent numbering, one can relate the proof steps in English to the ones in Coq.

Lemma ALU: forall i: Loc, update i o lookup i == id.
Proof.
intro i.
apply eq3. intro k. destruct (Loc_dec i k) as [Ha|Hb|. rewrite Ha.
(x k=1 %) (x (1) *)
rewrite ids. setoid_rewrite <-idt at 6. rewrite assoc. (* (1.1) *)
apply wsubs; [apply axl| reflexivity]. (x (1.2) *)
(x k <> i %)
cut((@forget (Vi)) o lookup i == (@id unit))-
[intro HO| setoid_rewrite s_unit; [reflexivity| decorate| decorate]|.
rewrite <—HO. setoid_rewrite assoc. (* (2.1) *)
apply wsubs; [apply ax2; exact Hb| reflexivity|. (x (2.2) *)
Qed.

where Loc_dec is a variant of excluded middle ensuring that two locations i and k are
either the same or different.

Parameter Loc_dec: forall i j: Loc, {i=j}+ {i<>j}.

Lemma 5.3.2. Interaction lookup-lookup (ILL). Reading twice the same location i is the
same as reading it once.

@ 4 (>§/Oi) o 1ookup(1) = 1ookup(1) 1=V (5.2)

Vi € Loc, lookup

(1 _

Proof. By (s-unit), we have (>§2) o lookup, z'dglo). Then, the use of (replsubs) gives

lookupgl) o (>§2) o lookupz(l) = lookupgl) o idglo). By (ids), we simply conclude with
1ookup§1) o >$/Oi) o 1ookup§1) = 1ookup§1)
(s-unit) -
()g)) o lookupgl) = idj(lo)
(replsubs) -
1ookup§1) o)g.)) o 1ookup£1) = 1ookup£1) o idj(lo)
(ids) -
lookupgl) o >§2) o 1ookupz(.1) = lookupz(.l)
O
Let us continue with another proof the same statement but this time following the bottom-
up strategy: lookupz(l) o >$2) o lookupgl) = lookupgl):

(1) by (ids), we obtain 1ookup§1) o (>§/Oi) o 1ookup§1) = 1ookup§1) o idglo).

1) = idglo).

i

(2) we apply (replsubs) and get (>$/Oi) o lookup

(3) finally, the use of (s-unit) closes the goal.

74

5. The state effect

Below, we give the related formalization of (ILL) in Coq with its certified proof. The proof
follows a the bottom-up strategy:

Lemma ILL: forall i, lookup i o forget o lookup i == lookup i.
Proof.
intro i. rewrite <—assoc.
setoid_rewrite <—ids at 6. (* (1) *)
apply replsubs; [reflexivity|]. (x (2) *)
setoid_rewrite s_unit; [reflexivity| decorate| decorate|. (¥ (3) *)
Qed.

The proofs of the remaining properties can be found in Appendix A. By using them, we
can prove program properties with the global state effect.

Remark 5.3.3. See the source Proofs.v for related implementation details.

5.4 Hilbert-Post completeness for the state effect

Now, in order to prove the completeness of the decorated theory for the state effect under
suitable assumptions, we first determine canonical forms and then we study the equations
between terms in such forms [DDET15].

The logic L is precisely introduced and its categorical interpretation is studied in Sec-
tion 5.1. Let the logic L4 be the variant of L obtained by dropping the categorical

pairs/products. Let the logic Ly,eq+1 be an extension to L,,¢q with the use of unit (1) type
f X —1

and the following inference rules: 0% XX —5 and . Now, the core theory of states
Tst is defined as a theory of the logic L4 g generated from the fundamental equation
1ookup() o update() ~ zd(o) and from some consistent theory Tg, of the logic Leq+1;
with the notations of Sectlon 4.5, Tst = F(Teq). In this section, we prove that the theory
Tst of the logic L« is Hilbert-Post complete with respect to the logic £eq+41-

Remark 5.4.1. Note that a Coq certification of the whole Hilbert-Post completeness proof,
presented in this section, can be found in the package hp-thesis: https://forge.imag.
fr/frs/download.php/696/HPC-THESIS.tar.gz. Check out the HPCompletenessCoq.v
file inside the st-hp folder. Our main result is Theorem 5.4.9 about the relative Hilbert-
Post completeness of the decorated theory T, of states under suitable assumptions. It is
assumed that there is only one location ¢ and we write V', lookup and update instead
of V;, lookupi® and updatei(®. The study of completeness proof with the signature
including several locations and products is considered as a future goal.

Note also that we do not explicitly have the relative Hilbert-Post completeness (rHPC)
formalization in Coq. Thanks to the second characterization of rHPC given in Corol-
lary 4.5.10, it suffices to show that any formula e in the logic L4 g is (T-)equivalent to
some set of formulae Fjy in the logic Leq41:

Tst + Th(Eo) = Tet + Thle).

This has been checked in Coq.

Lemma 5.4.2. 1. For all pure terms ugo),ug) V =Y, one has: ugo) = ugo) —

ugo) o lookup = u;)6 lookup <— ugo) o lookup oupdate = u;)6 lookup oupdate.

2. For all pure terms u(¥ : V =Y, v : 1 = Y, one has: u¥ = v o (>§/0) =
u® o lookup = 00,

75

https://forge.imag.fr/frs/download.php/696/HPC-THESIS.tar.gz
https://forge.imag.fr/frs/download.php/696/HPC-THESIS.tar.gz

5. The state effect

3. For all modifiers f1(2) ,f2(2): X — V, updateo fl(Z) = updateo f2(2) = f1(2) ~ f2(2).
(0)

Proof. 1. Implications from left to right are clear. Conversely, u;”’ o lookup o update =

0) (0) (0)

ug o lookup o update = u; = uy : after converting the strong equation into a

(0) (0))

: 0
weak equation, the use of axiom (ax;), since the term w;y ' is pure, gives u; = ~ ug .

(0) (0)

Now, neither of u; and uy are modifiers, so that u; " = uy".

2. First, since (>§9) olookup : 1 — 1 is an accessor we have (>$/0) olookup = idglo). Now,

if u® =0 o >§9) then u(9) 0 1lookup = v(¥) o (>§9) olookup, so that u(®) o lookup =
v(® . Conversely, if u(?) o 1lookup = v(® then u(? o 1lookup = v o (>§9) o lookup,

and by Point (1) this means that u(®) = v(© o (>§/0).

3. Assuming update o f1(2) = updateo f2(2), we get lookup o update o f1(2) = lookup o
update o f2(2), thanks to (replsubs). Now, we convert the strong equation into a
weak one and apply (axj) on both sides so as to obtain f1(2) ~ f2(2). Conversely, if
f1(2) ~ f2(2), by rewriting (wsubs), we obtain id&ﬁ]) o 1(2) ~ id%ﬁ)) o f2(2). We then apply
(axg) and get lookup o update o fl(Z) ~ lookup o update o f2(2). Since we consider a

single location, (local-global) gives update o f1(2) = update o f2(2).
O

Proposition 5.4.3. 1. For each accessor aV) : X — Y, either a is pure or there is
a pure term u® V. — Y and an accessor vV : X — 1 such that o) = v o
1ookup(1) o v,

2. For each modifier f : X — Y, either f is an accessor or there is an accessor ab) :
X =V and a pure term u® : V =Y such that f® = 4% o lookup o update o a(V).

Proof. 1. The proof proceeds by structural induction. If a is pure, then the result is

obvious. If @ = lookup, then it follows that lookup = id§/0)0100kupoid§11)

a can be written as a = agl)oag) such that fi1: Z — Y and ap: X — Z. By induction,

a1 and ag are either pure or a; = uj o lookupow; and as = us o lookup o vy for some
pure terms ugo): V->Y, ugo) : V — Z and some accessors vgl) Z =1, vél) X — 1.

So, there are four cases to consider.

. Otherwise,

(1.1) If both a; and ag are pure, then a is.

(1)

1.2) If aq is pure while as is an accessor, we get f = (f1 o ug 0) 6 1ookup o vy .
p g pov;

1.3) Symmetrically when a9 is pure while a; is an accessor, we get f = u(o) olookupo
Yy Yy p) g 1 P

(?}1 e} az)(l).

(1.4) If both are accessors, then f = ugo) o lookup o vg) o u;o) o lookup o vgl). We

have vgl) o uéo) olookup = idglo), thanks to (s-unit). The use of (replsubs) yields

ugo) o lookup(l) o vgl) o uéo) o lookup(l) o véo) = ugo) o lookup(l) o véo). Hence,
(0) (0)
5

we obtain f =wu; "’ o lookup™ o v

2. The proof proceeds by structural induction. If f is an accessor, then the result is
obvious. If f = update, then it follows that update = (>$/0) o lookup oupdate o ids)
(notice that (>§9) o lookup = z'dglo) due to (s-unit)). Otherwise, f can be written in

away as f = f1(2) o f2(2) such that f1: Z — Y and fo: X — Z. By induction, either

76

5. The state effect

f1 and f5 are accessors or f; = u§0) o lookupoupdateo agl) and fo = ugo) o lookupo

(1)

updateoas ’ for some pure term u; ,up and some accessors ap ,az. So, there are four
cases to consider.

(2.1) If both f1 and fy are accessors, then f is also an accessor.

(0)

(2.2) if fy is a modifier whilst f; is an accessor, we obtain f = fl(l) ouy’ o lookup o

(1)

update o agl) Thanks to Point 1, f1 = w§0) o lookup o, ’ for some pure term

go) V — Y and some accessor v().z oo Thus, the equation expands

into f = w§0) o lookup o vgl) o ugo) o lookup o update o agl). Due to (s-unit),

we have vgl) o u§0) o lookup = idglo). Thanks to (replsubs), we end up with

wgo) olookupo vgl) o ugo) olookupoupdateo agl) = wgo) olookupoupdateo agl) .

Thus, f = wgo) o lookup o update o agl).

(2.3) Symmetrically when f; is a modifier while f5 is an accessor, we get f = ugo)

lookup o update o (a1 o f2)™).

(2.4) If both are modifiers, then f = ugo)olookupoupdateoagl)ougo)olookupoupdateo

agl),suchthatu(v —Y, a(). 7 > Vv, u(o): V — Zandagl): X — V. Here,
(1

the reasoning proceeds on a;). Therefore, we have two subcases:

©) .,

(2.4.1) Let us first consider the case where a; is pure. Since ay” ouy’ is pure, from

(pwrepl), we have ago) o ugo) ag) (0) o lookupoupdate. Now, we apply

Point 3 in Lemma 5.4.2 and get update(Q) o ago) o ugo) = update® o a(o)

ugo)olookup(l)oupdate@). By (replsubs), we obtain ug)olookupoupdateo

ago)ougo) (1) () ©) 4,0 (1)

= olookupoupdateoa; ’ ouy’ olookupoupdateoa,’.

(0)

Hence f=wu;’ o 1ookup oupdateo (aj oug o a2)(1).

(2.4.2) Let us also consider the case where a; is a non-pure accesor (it has lookup).

Thanks to Point 1, we obtain ag) = wg)olookupovg) such that w(o) V-

V and vg). Z = 1. So that f=wy)olookupoupdateowg)olookupov(l)

ugo)olookupoupdateoag). Due to (s-unit), vgl)ougo) = ()v. By (replsubs),

1ookupov§1)ou§0)olookup = lookupo()y olookup. Thanks to Lemma 5.3.2,

we obtain lookup o vgl) o ugo) o lookup = lookup. By (replsubs), go)

lookupo vgl) o u§0) o lookup o update = w§0) o lookup o update. Here, we

first convert the strong equation into a weak equation and then make use

(0) (1)

of (ax;) on the right (since w; is pure) which gives w;’ o lookup o vy
ugo) olookupoupdate ~ wgo) Now, applying Point 3 in Lemma 5.4.2 gives

update(Z) o wg)o lookup o v%l) o ugo) o lookup o update = update(Q) o w(o)

(0) (0)

(e]

o

Thanks to (replsubs), we end up with u; "’ olookupoupdateow; ' olookupo
v%l) o ugo) o lookup o update o agl) = ugo) o lookup o update o wgo) o agl).
Therefore, f = ugo) o lookup o update o (wy o az)™).

O

Corollary 5.4.4. For each accessor a'V) : X — Y, either a is pure or there is a pure term
vV =Y such that oY) = v o 1ookup® o (>g?).

Proof. If the accessor a® . X =Y is not pure, then it can be written in a unique way as
a = v o 1ookupob™ for some pure term v(? : V — Y and some accessor bV : X — 1,

7

5. The state effect

thanks to the Point 1 in 5.4.3. Due to (s-unit), we have b() = (>(0) then the result
follows. O

Thanks to Propositions 5.4.3, in order to study equations in the logic L4 we may restrict
our study to pure terms, accessors of the form v(®) o lookup o (>g?) and modifiers of the
form u(9) o Lookup o update o a(V).

Now, Proposition 5.4.5 shows that
(1) equations between modifiers can be reduced to some equations between accessors,

(2) equations between accessors can be reduced to some equations between pure terms.

Proposition 5.4.5. 1. For all agl),agl) : X =V oand ugo)’ugo) V=Y, let f1(2) =

ugo)olookupoupdateoagl) : X =Y and f2(2) = ugo)olookupoupdateoagl) X =Y.

Then

(1) (1) 0) 5 1) ©) 5 @)

fi~ fo — ugo) o agl) = uéo) o a;l)
fi=fh < a7’ =ay;’ and uy ' ocay’ =uy’ oay

0) .

2. Forall !V : X — vV, u(V=Y andal’ : X — Y, let f(2) =49 lookup o
1 2 1 1

update o ag)X =Y. Then

fi= 61,(21 = u(lo) o a,(ll) = a,(21) and a,(ll) = lookup o (>()?)

{f1 ~ a(Ql) = u(lo) o a,(ll) = a,(21)
3. Let us assume that >g?) is an epimorphism with respect to accessors. For all
v%),vé) V=Y et a,(ll) = v%o) o lookup o (>g?) : X =Y and a,(21) = véo) o
lookup o (>g?) : X =Y. Then

(1) (1)

oV = of (©0) _ (0

= v =,

4. Let us assume that (>§9) 1s an epimorphism with respect to accessors and that there
exists a pure term k:(o) 1 — X. For all v%o) :V =Y and véo) X =Y, let
(1) = v()o lookup o (>g?) : X =Y. Then

0) — 0 4 O (>(0)

v and vy’ =

0 = 0 o 5O 6 (YO

a;’ =vy = v =vy oky hx
Proof. 1. We have four implications to show:
(1.1) u () o lookup o update o a(ll) ~ u(20) o lookup o update o a(ll) == u(10) o agl) =
(0) o agl) By (ax;) and (wprepl), since u(lo) and uéo) are both pure, we obtain
(O) oag) éo) oagl). Due to the lack of modifiers, we end up with u(10) oagl) =
(0) oat)
5 .
(1.2) ugo) o agl) = ugo) o agl) = ugo) o lookup o update o agl) ~ ug) o lookup o

updateo agl): We first convert the strong equation into a weak equation. Then,
due to (ids) we get ugo) 0id® o agl) ~ ugo) 04d® o agl). By rewriting (axj)
(0) (1)

on both sides (since u; is a pure term), we get u; ~ o lookup o update o a;’ ~

(0) (1)

Uy~ © lookup oupdateoay .

78

5. The state effect

(1.3) ug) o lookup o update o agl) go) o lookup o update o agl) = agl)

ag) and ugo) o agl) ug) o aé).

(1.3.1) Given ugo) o lookup o update o agl) = ugo) o lookup o update o agl), we get

(>§9)ougo)olookupoupdateoagl) = (>§9)ougo)olookupoupdateoagl) thanks

to (replsubs) rule. Thanks to (s-unit), we have (>§9) Ou§0) olookup = idglo),

for each i € {1,2}. Therefore, we obtain update o agl) = update o agl).
Now, by applying Point 3 in Lemma 5.4.2, we have agl) ~ agl). The lack of
modifiers yields agl) = agl).

(1.3.2) First, we convert the strong equation into a weak equation and apply (ax;)

) agl) ~ ugo) ° agl). Since there is no

(0) gl) = ugo) (e} agl).

on both sides so as to obtain wu;

modifiers involved, we conclude with u;
(1.4) agl) = agl) and ugo) o agl) = ug) o agl) — ugo) o lookup o update o a§1) _

ugo) o lookup o update o agl). We show in below two steps that they have the

same effect and the same result:

(1)

oupdateoa,

(1.4.1) Starting from agl) = agl), we get idglo) oupdate o agl) = idglo)

thanks to (replsubs). Due to (s-unit), we have (>§9)ou§0)olookup = (>§lo) =
idglo) for each i € {1,2}. Therefore, we obtain (>§9) ougo) olookupoupdateo
agl) = (>(0) o ug) o lookup o update o agl).

(1.4.2) Starting from ug)oagl) = uéo)oagl), we have ugo)oidg)) oagl) = u;o)oidgg) oagl)

thanks to (ids). Here, we first convert the strong equation into the weak
(0) (0)

equation and then apply (ax;) on both sides (provided that u;’ and wuy
are pure) so as to obtain ugo) o lookup o update o agl) ~ ugo) o lookup o
update o agl).

Now, the (effect) rule yields ugo) o lookup o update o agl) = (0) o lookup o

update o agl) given above items (1.4.1) and (1.4.2).

2. Here, we again have four cases to prove:
(2.1) u (0) o lookup o update o agl) ~ agl) == agl) = ugo) o agl): By (ax1) and the
fact that uq is a pure term, we get u(o)) agl) gl). The lack of modifiers gives

W96 oM = W
Uy =4ay "

o al
(2.2) agl) = u§0) o agl) = ugo) o lookup o update o agl) ~ agl): We start with

converting the strong equation into a weak equation: agl) ~ ugo) o agl). Thanks

to (ids), we get agl) ~ ugo) 0id©) oagl). By (ax;), we obtain agl) ~ ugo) olookupo
update o agl).
(1 —)

(1) 0,1 —

(2.3) ugo)olookupoupdateoa1 =a,’ = lookupo(>g?) =ay andu; 'oa;’ = agl):
(2.3.1) Given ugo) olookupoupdateoagl) = aél). we can have (>§9) oug)olookupo

update o agl) = (>§9) o agl) thanks to (replsubs). Due to (s-unit), we have

(>§B) o u§0) o lookup = idy. Therefore, update o agl) = (>§B) o agl)

by (s-unit), we have (>§9) o ag) = (>g?). Hence, update o agl) = (>g?). The

(replsubs) gives lookupoupdateoagl) = lookupo(>g?). Now, we convert the
strong equation into a weak equation and then apply (axi) so as to obtain

agl) ~ lookup o (>g((]). The lack of modifiers yields agl) = lookup o (>g?).

. Again

79

5. The state effect

(2.3.2) We get ugo) olookupoupdateoagl) ~ agl) by converting the strong equation

into a weak equation. On the left, we can apply (axy), since uj is a pure

0 1
()oag) () (0) o ()_()_

term, and get u . The lack of modifiers yields u;

(2.4) lookupo(>() = (1) and ug)oagl) = agl) = ug)olookupoupdateoag) = agl).
(2.4.1) Starting from lookup o (>g?) = agl), due to (replsubs), we obtain (>§E) o

ugo) olookupoupdateolookupo (>g?) = (>§/) ougo) olookupoupdateo agl).

Since Lemma 5.3.1 states that update o lookup = zd(o) we get (>§9) ougo) o
lookup o { >g?) = (>(0) () o lookup o update o agl). Besides, we have
(>§9) ougo) olookup = zdgl), thanks to (s-unit). Thus, (>g?) = updateoagl).

(2.4.2) Given u§0) o agl) = agl), we first convert the strong equation into a weak

equation and then apply (ids) so as to get ug Vo zd(o) (1) ~ agl). Since, u1
(0) (1)

is a pure term, we can apply (ax;) and obtain u; olookupoupdateoa1 ~

agl). The above point (2.4.1) gives ugo) o lookup o >g?) ~ agl). Now, the

lack of modifiers yields ugo) o lookup o (>g?) = agl). Again due to the above

point (2.4.1), we end up with ugo) o lookup o update o ag) =aq (1)

3. We want to show that agl) = ag) — v%o) = véo):
(3.1) Let us start with vgo) o lookup o { >g?) = vy o lookup o (>g((]) = v§0) = vgo).

Since (>g?) is an epimorphism with respect to accessors, we get Ugo) o lookup =

véo) o lookup. By Point 1 in Lemma 5.4.2, we end up with v§) = vgo).
(3.2) Conversely, if vgo) = véo) then v§0) o lookup o { >g?) = vy 0 lookup o { >g?) due to
(replsubs).
(1)

4. Now for a; (0)

0 _

= 1 véo) o k:g?) o >§9) and U(O) = véo) o kg?) o (>g?):

(4.1) Let us first consider the left to right implication.

(4.1.1) v§0) olookupo (>g?) = U(O)Z Since v(o) = véo) ok:g?) o >§/0), we get v() kg()
(>$)olookupo(>(0) =v (). Due to (s-unit), we have (>()olookupo(>g() =
(>g?). Therefore, v(o) o k:() o (>g?) = véo).
(4.1.2) v§0) olookupo (>g?) = vé). We get v§0) olookupo (>g?) = véo) = véo) ok:g?) o
(>g?), thanks to above item (4.1.2). Since (>$/0) is an epimorphism with
(0)

respect to accessors, we have v}’ o lookup = véo) o kg?). Now, Point 2 in
Lemma 5.4.2 yields vgo) = véo) o k:g?) o >§9).
(4.2) Conversely, v§0) = vgo) o kg?) o (>$9) and vgo) = vgo) o k:g?) o (>g?) = ugo) o

lookup o (>g?) = véo).

(4.2.1) Starting from vgo) = véo) o kg?) o (>§/0), we get v§°) o lookup o (>g?)
O%

véo) o k:g?) o >$9) o lookup o (>g?). We have (>$) o lookup o { >g(=
thanks to (s-unit). Therefore, vgo) olookupo >g?) = véo) ok:g?) of >(0). Now,

given véo) = véo) o kg?) o >g?), we end up with v§0) o lookup o (>g?) = véo).

O

(0)

80

5. The state effect

Definition 5.4.6. A type X is inhabited if there exists a pure term kg?) 11— X. A

[

type 0 is empty if for each type Y there is a pure term : 0 —» Y, and every term

f@ .0 =Y is such that f? = H@-

Remark 5.4.7. When X is inhabited then for any k:g?) : 1 — X we have (>(0) o k:g?) = d(o)
so that (>g?) is a split epimorphism; it follows that (>g?) is an epimorphism with respect
to all terms, and especially with respect to accessors.

Now, Corollary 5.4.8 shows that equations between modifiers can be reduced to equations

between pure terms. It also makes the proof in Coq easier to read.

Corollary 5.4.8. Let us assume that (>g?) is an epimorphism with respect to accessors.

Then:

1. For all fl(l),fg(l) : X = Y, we have one of the following cases:

(@) 3a\”, v sy, B W0 x 5y,
fll) = fz(l) = ago) = go) and b(o) = (0)

) 3 v sy, (V=Y = (O =6,
(c) Ela1 (O) X =Y, fl(l) Ef2(1) = ag) —ago)

2. For all f1(2),f2(2) : X — Y, we have one of the following cases:

(a) 3V, o x 5 v, W AV x 5y
FOLAD o ol = and 60 =)

(b) Hagl) a(21): X =Y, f1 = f2(2) = agl) = agl)
Proof. The proof is immediate from Proposition 5.4.5. See full proof in Appendix B. O

Theorem 5.4.9. If every non-empty type is inhabited and if V' is non-empty, the theory
of states Tg of the logic Lg—g is relatively Hilbert-Post complete with respect to the pure
sublogic Lmeq+1-

Proof. The proof relies upon Corollary 5.4.8. The theory Ty is consistent: it cannot be
proved that update® = (>$9) because the logic L is sound with respect to its intended
model and the interpretation of this equation in the intended model is false as soon as V' has
at least two elements: indeed, for each state s and each x € V', lookup o update(x,s) = x
because of (ax;) while lookup o (>§/0) (z,s) = lookup(s) does not depend on z. Let us
consider an equation (strong or weak) between terms with domain X in £4; we distinguish
two cases, whether X is empty or not. When X is empty, then all terms from X to Y
are strongly equivalent to |]gg), so that the given equation is equivalent to the empty set
of equations between pure terms. When X is non-empty then it is inhabited. Thanks
to Remark 5.4.7, we have that (>g() is an epimorphism with respect to accessors. Thus,
Corollary 5.4.8 proves that the given equation is equivalent to a finite set of equations
between pure terms. Thus, in both cases, the result follows from Corollary 4.5.10. U

The case distinction in Theorem 5.4.9 comes from the fact that the existence of a pure
term k:(V1o X, which is used in Point 4 of Proposition 5.4.5, is incompatible with the
1ntended model of states if X is interpreted as the empty set.

81

5. The state effect

Remark 5.4.10. This can be generalized to an arbitrary number of locations. The logic L
and the theory Ty have to be generalized as in [DDFR12a], then Proposition 5.4.3 has to
be adapted using the basic properties of lookup and update, as stated in [PP02[; these
properties can be deduced from the decorated theory for states, as proved in [DDEP14].
The rest of the proof generalizes accordingly, as in [Prel0)].

Remark 5.4.11. See the source HPCompleteCoq.v inside st-hp folder for related implemen-
tation details.

5.5 Chapter summary

In this Chapter;

(1) The logic Lg has been built as an extension to the logic L.., and interpreted via
the Kleisli-on-coKleisli construction applied to the states comonad.

(2) The logic L4 has been formalized in Coq. This formalization has been used to prove
and certify primitive properties of the programs with the state effect.

(3) The base language of the logic L4 (with no use of products) has been proved to be
Hilbert-Post complete (for a single location) and this proof has been checked in Coq.

82

O

The exceptions effect

Exception handling is provided by most modern programming languages. It allows to deal
with anomalous or exceptional events which require special processing. This brings a flex-
ibility into the coding but in order to prove the correctness of such programs one has to
take into account the interactions with exceptions. In this chapter, each interaction with
exceptions is treated as a computational effect: a term f : X — Y is not interpreted as a
function f : X — Y unless it is pure. Indeed, a term which may raise an exception has the
interpretation f: X — Y + F, while a term which may catch an exception is interpreted
as f : X+ F — Y + FE, where “4” is the disjoint union operator and E is the set of
exceptions. In this chapter, we introduce the decorated logic for programmers’ language for
exceptions (Lege—pi) and the decorated logic for exceptions (Lezc). The logic Leye—p aims
to model the treatment of exception handling as in modern programming languages such
as Java [GJSB05, Ch. 14| and C++ |Dral2, §15|, in a decorated setting. It uses decora-
tions only on terms to classify according to their behaviors with respect to exceptions: a
term is either pure or a propagator. This logic has two distinguished constructs: throw
to raise exceptions and try/catch to handle them. The logic L. is built dually to the
logic L formalizing the state effect [DDFR12b|. Thus, we obtain the decorations of the
logic Leyc, for terms and equations, from the logic L,,,, and we introduce the interface
functions tag and untag for raising and catching exceptions, respectively. Furthermore, we
use a decorated version of categorical coproducts in order to deal with the case distinction
which is encapsulated in the handling of exceptions. In addition, we provide a translation of
the logic Lez.—pi into the logic L. and prove that the rules are correct with respect to Lege.

In Figure 6.1, we instantiate the monad 7" in Figure 4.4 with the monad of exceptions:

Lere Interpretation of Lexc

catcher f@.x 5y [X+E—->Y+FE

propagator /thrower JiDED g f: X—=Y+FE

pure term fO.x 5y f: X—>Y

strong equation fA=¢g@ . X3V |f=g: X+E—-Y+E

weak equation fA~g?®.Xx Y foinlxp=gomlxp: X =Y +FE
where inlxp: X =Y +F
is the left coprojection

Figure 6.1: The decorated logic L., and its interpretation: an overview.

Note that, in this chapter, the keywords thrower and propagator are interchangeably used.
The former indicates the terms that are allowed to throw exceptions and the latter indicates
the ones that must propagate the already thrown exceptions. Both are interpreted in the
same way (Figure 6.1).

83

6. The exceptions effect

In Figure 6.2, we instantiate the monad T in Figure 4.4 with the monad of exceptions but
we exclude catchers and weak equations:

Lege—pl Interpretation of Leye—pi
propagator /thrower fO.x 5y [X—=>Y+EFE
pure term fO.x 5y f: X—>Y
strong equation D=V . X 5Y|f=¢g: X >Y+E

Figure 6.2: The decorated logic L., and its interpretation: an overview.

We start, in Section 6.1, with the decorated logic for the exception (Lez.) with its in-
terpretation given through the coKleisli-on-Kleisli construction associated to the excep-
tions monad. We present the decorated logic for the programmers’ language for exceptions
(Leze—pt) in Section 6.2, with its interpretation via the Kleisli adjunction associated to the
exceptions monad. The translation of the logic Leyc—p into the logic Lez. is given in Sec-
tion 6.3. The Coq implementations of the logics Lez. and Lezc—p and the translation of
the logic Lege—p into the logic L, are respectively presented in Sections 6.4, 6.5 and 6.6.
We prove some properties of the exceptions effect in a decorated setting in Section 6.7.
The logic Lezc—pi, as well as the logic L., without coproducts, are proven to be relatively
Hilbert-Post complete in Sections 6.8 and 6.9.

6.1 The decorated logic for exceptions

The decorated logic for exceptions (L¢zc) extends the decorated logic for a monad (L0n)
with the sum types (sorts), the empty type 0 and the type EV . of parameters for each
exception name e € EName where EName is a finite set. Similar to the terms (operations)
of the logic Lyon, €ach term in L.,. has a source and a target type. Additionally, there
is a (left) copair term [f | g];: X1+ X2 — Y for each couple of terms f: X; — Y and
g: Xo — Y. For each sum type X+Y, there are canonical inclusions inl: X — X+Y and
inr: Y — X+Y. The symbol [] x denotes the unique term from the empty type 0 to X for
each type X. The term tag,: EV,. — 0 stands to encapsulate an ordinary parameter with
an exception of name e while the term untag,: 0 — E'V, is used to recover the parameter.
The “]” symbol denotes the downcast term that takes as input a term and prevents it
from catching exceptions (Section 6.1.5). We give the syntax of L, in Figure 6.3 and its
inference rules in Figures 6.4, 6.5, 6.6 and 6.7, in addition to the ones stated in Figure 4.5.

Grammar of the decorated logic for the exception: (e € EName)
Types: t,s o= X|Y|---|t+s|0|EV,
Terms: f,g == id¢|a|b|---|gof|[f]|glh|inl|dinr|[],]
vag, | untag, | |
Decoration for terms: (d) == (0)](1)](2)
Equations: e = f=glf~g

Figure 6.3: L., syntax

84

6. The exceptions effect

Each term has a decoration which is denoted as a superscript (0), (1) or (2): a pure term
has the decoration (0), a propagator (or thrower) has (1) and a catcher term comes with
the decoration (2). Similarly, each equation is formed by two terms with the same source
and target as well as a decoration: denoted by “~” if it is weak or by “=" if it is strong.

Let € be a category with finite coproducts and a distinguished object of exceptions F.
Let (T'= — + E,n,) be the exceptions monad defined over €. Let us assume that E is
such that the mono-requirement is satisfied (Definition 3.1.5). For instance, this property
is always satisfied when % is the category of sets.

The interpretation of Le,. is given via the coKleisli-on-Kleisli construction associated to
a monad (detailed in Section 3.2) applied to the exceptions monad. Recall that in Sec-
tion 3.2.2, we have introduced the adjunctions Fr G and Fr p - G, p with the faithful
functors Fr: ¢ — ¢r and G, p: 67 — ¢r1,p. This gives raise to a hierarchy among mor-
phisms in 47 p. This hierarchy is useful for interpreting the decorations: pure terms are
in €, propagators are in ¢ and catchers are in 6t p.

Definition 6.1.1. Let Cgxc be the interpretation of the syntax for the logic L¢z. with
the following details:

TE 4B DE _4E
) Fr) Gr,p
¢ N ¢r<____ T __=%rp
Gr Fr p

n:ld=T Pr-Gr e:T=1d

(1) The types are interpreted as the objects of €.

(1.1) the empty type O is interpreted by the initial object of the category €.
(1.2) for each e in EName, the type EV, is interpreted as an object EVal,.

(1.3) for each couple of types X and Y, the sum types X + Y are interpreted as the
binary coproducts in 4.

Now, we can define the object of exceptions as E = Ycec gname (EVal.). The copro-
jections are denoted in.: EVal, — E, for each exception name e. The object E in
% is not the interpretation of a “type of exceptions”. Indeed, the use of decorations
in the logic L., provides a signature without any occurrence of such a “type of ex-
ceptions”. So that signature is kept close to the syntax. Besides, for each object
X in €, the left coprojection inlx g: X — X + E is nx and the right coprojection
inrx,p: E— X + E, up to the isomorphism between F and 0 + E, is T'([] x).

(2) The terms are interpreted as morphisms as follows:

(2.1) apure term f@: X 5 Y in€as f: X Y in%
(2.2) a propagator term WX 5Yinérasf: X>Y+FEin%g
(2.3) a catcher term f®): X Y inérpasf: X+E =Y +Ein%
(3) The terms f: X; — Y and ¢ : X; — Y are interpreted as f: X; — Y + E and

g: Xo+FE - Y+ FEin%. Then, [f | g]l(Q): X1+X2 — Y is interpreted as the
categorical copair [fl g} : X1+ Xo+FE — Y+E. It is called the left copair of f and g.

85

6. The exceptions effect

(4)

The pure coprojections (or inclusions) nl®: X 5 X +Y and inr®: Y 5> X +Y
are interpreted as the canonical coprojections inl: X — X +Y and inr: ¥ — X +Y
associated to copairs.

The pure term |]g?): 0 — X in ¥ is interpreted as the unique mapping from the
initial object O to the object X in ¥.

For each e in EName, the term tagél): EV. — 0 is a thrower (or propagator) in €p

and interpreted as tag, = in.: EVal. - E in € (up to the isomorphism between
0+ F and F).

For each e in EName, the term untagg): 0 — EV. is a catcher in é7,p and its
interpretation, untag,: £ — EVal. + E, is characterized by the following equalities:
for each f in EName, such that e # f, untag, o iny = inrgyy, g o ing: EValp —
EVal, + E and untag, o in, = inlgyy, g: EVale — EVal, + £ in €.

A strong equation between catchers f2 = ¢®: X — Y in ¢, p is interpreted by
an equality f = g: X+ FEF — Y + F in ¥. Similarly, a strong equation between
propagators f) = ¢(): X — Y in %y is interpreted by an equality f = ¢g: X —
Y + E in €. And a strong equation between pure terms f(© = ¢@: X — Y in ¢ is
interpreted by an equality f = g: X — Y in %. Intuitively, two terms are strongly
equal if they agree on ordinary and exceptional arguments.

A weak equation between catchers @ ~ ¢®): X — Y is interpreted by an equality
fonx =gonx: X - Y + F in ¥. Similarly, a weak equation between propagators
fM ~ ¢gM: X - Y in € is interpreted by an equality f = g: X - Y + E in €.
And a weak equation between pure terms f(© ~ ¢©: X — YV in ¥ is interpreted
by an equality f = ¢g: X — Y in €. Intuitively, two terms are weakly equal if they
agree on ordinary arguments, but maybe not on exceptional arguments.

The rules of the logic L,,0n, as stated in Figure 4.5, are rules of the logic L.... Now, we
introduce the additional rules of the logic L., in several steps, with some comments.

6.1.1 The effect rule

the effect rule
Ji,f2: X =Y fi~fo fiollx = faollx
1=/

(eeffect)

Figure 6.4: L., the effect rule

(eeffect) This rule states that weak and strong equations are related with the property

86

that fi = fo if and only if f1 ~ fo and fio[]x = foo|]|x. In other words, two terms
f1 and fo are strongly equal if and only if they have the same behavior on ordinary
arguments (f; ~ f2) and the same behavior on exceptional ones (f1 o[|x = fao[|x)-

6. The exceptions effect

6.1.2 The copair rules

rules for left the copairs

00— X
(empty) 0 &+ (w—empty) fi
N¢:0-x f~llx
(d)

. X1 —>Y f2: Xy —Y
lcopair) 4L foralld <1
(p) [fl’fZ]l:X1+X2_>Y (—)

. X1 Xo
(coproj)

z‘nz<0>:)(%—>X1+X2 inr®: Xy — X1 + Xo
fl 1X1—>Y f22X2—>Y
fi Nd<1
[fi] folioinl ~ f1 (foralld < 1)
F9X 5Y f XY
[f1] falioinr = fo

(w-lcopair-eq)

(s-lcopair-eq) (for all d < 1)

(lcopair-ueq)
fi,fe X1+ Xo—>Y froinl~ fooinl fioinr ~ fyoinr
Ji~ fo

Figure 6.5: L.,.: rules for left copairs

(w-empty) This rule intuitively means that any term f: 0 — X with no input parame-
ter is said to have an equivalence on ordinary arguments with the unique mapping
[] x:0— X.

(lcopair) The rule (Icopair) states that the left copair [fi | f2]; is defined only when f; is
pure or is a propagator. Indeed, when both f; and fy are catchers, such a construction
would lead to conflicts on exceptional arguments. When f; is a propagator, with (w-

copair-eq), we ensure that ordinary arguments from X are treated by [f1 | fz]l@) as
they would be by fl(l) and with (s-copair-eq) that ordinary arguments from Xo and
exceptional arguments are treated by [f1 | fg]l(Q) as they would be by f2(2).

(lcopair-ueq) This rule ensures that a left copair structure is unique up to the weak
equations.

6.1.3 Some properties of copairs

In this section, we start with a property of the “empty copair” and then prove the unicity
of left copairs up to the strong equation. Afterwards, we build the symmetric (or right)
copairs by using the left copairs and prove some of their properties. Lastly, we construct
the left and right coproducts, by respectively using left and right copairs, and similarly
prove some related properties.

Proposition 6.1.2. (s-empty) For alld, d' < 1, given two terms of the form fl(d)7 fg(d,): 0—
X for each X, then f1 = fo.

Proof. Obviously, fi ~ fo thanks to (w-empty). Since none of them is a catcher, then
f1 = f2 due to (wtos). O

Proposition 6.1.3. (lcopair-u) For each fi, fa: X1+ Xo = Y, if fioinl ~ fyoinl and
fooinr = fooinr, then fi = fo.

87

6. The exceptions effect

Proof. 1. Starting from f; o inr = fy 0 inr, we obtain fjoinro[] = fooinro]] due to
(replsubs). Besides, we have inr o[]x, = []x,+x, thanks to (s-empty). Therefore,
we get f1o[]x+x: = f20 [|xi4+x-

2. Since we have fi o inr = fy o inr, by converting the strong equation into a weak
equation, we get f1 o inr ~ fyoinr. In addition, f1 o inl ~ fy o inl is also assumed
so that we end up with f; ~ fy thanks to (Icopair-ueq).

Now, the above items 1 and 2 suffice to ensure f; = fo due to (eeffect) rule introduced in
Figure 6.4. O

It is possible to build symmetric right copairs as in Definition 6.1.4 and reason about their
properties.

Definition 6.1.4. For all d < 1, given f1: X1 — Y and fQ(d): Xo = Y, the right copair
[f1 | folr = [f2 | fili o permut where permut = [inr | inl];.

Xo
inll/ f2
permut—s= Xo+ X1 — [fol il —=Y

inr| /

X1

X1+Xy

Proposition 6.1.5. For alld <1, given f1: X1 =Y and f2(d)1 X, =Y, we have:
e [f1| fa]r 0 inl = f1 (s-rcopair-eq)

e [f1] folroinr ~ f2(d) (w-rcopair-eq).

Proof. e Due to (w-lcopair-eq), we have [inr | inl]; o inl ~ inr. Lack of catchers yields
[inr | inl]; o inl = inr. Through (replsubs), we obtain [fs | fl]l(Q) o [inr | inl]; o inl =
[f2 | fi]; o inr. Now, (s-lcopair-eq) gives [fo | fi]; o [inr | inl]; o inl = f1 which folds
into [f1 | fo]r o inl = f1.

e Thanks to (s-lcopair-eq) and (stow), we get [inr | inl]; o inr ~ inl. The rule (wrepl)
gives [fo | fi] o [inr | inl]; o inr ~ [fao | f1] o inl. By using (w-lcopair-eq), we obtain
[f2 | f1] o [inr | inl); o inr ~ fQ(d) which is actually [f1 | fo], o inr ~ fZ(d).

O

Proposition 6.1.6. (rcopair-u) For each fi, fo: X1+ Xo — Y, if foinl = fy0inl and
fooinr ~ fooinr. Then fi = fo.

Proof. 1. Starting from f1 o inl = fy o inl, we obtain fyoinlo[]| = fyoinlo[] due to
(replsubs). Besides, we have inl o[|x, = [|x,+x, thanks to (s-empty). Therefore,
we get f10 []X1+X2 = fao HX1+X2'

2. Since we have f1 o inl = f9 o inl, by converting the strong equation into a weak
equation, we get f1oinl ~ fooinl. In addition, f; oinl ~ fsoinl is also assumed so
that we end up with f; ~ fo thanks to (lcopair-ueq).

Now, the above items 1 and 2 suffice to ensure f1(2) = 2(2) due to (eeffect) rule introduced
in Figure 6.4. O

One can also define the left-right coproducts of terms respectively using left and right
copairs.

88

6. The exceptions effect

Definition 6.1.7. e For all d < 1, given fl(d): X1 = Y] and fy: X9 — Y5, we obtain
a left coproduct f1 4+ fo = [inlo f1 | inr o fo];: X1+ Xo — Y1+Y5.

e For all d < 1, given f1: X1 — Y7 and fQ(d): Xo — Yo, we obtain a right coproduct

fi+r fo = [(inl o f1) | (inr o fo)], = [(inr o fa) | (inl o f1)]; o permut such that
permut = [inr | inr];.

J1 f2
X, Yi 4 Xo Yo
int) in e inr
X1+ Xy - [finif] = V1+Y5 X1+ Xy —permut— Xo+ X1 - [fotif1] = Y1+Y2
nr 1\ 1\ inr) inr’T\ 1\ inl
Xo F Y, \m X1 7 Yy
2 1

Proposition 6.1.8. For all d < 1, given fl(d): X1 =Y, and fo: Xo — Ys, we have:
e (fi+if2)oinl ~inlo fl(d) (w-lcoprod-eq)
e (f1 4+ f2) oinr = inr o fy (s-lcoprod-eq)

Proof. e By setting f; := inlo fi and fy := inr o fy within (w-lcopair-eq), one gets
[(inl o f1) | (inr o f3)]; 0 inl ~ inlo fl(l) which folds into (f1 +; f2) o inl ~ inl o fl(d).

e Similarly, we set f; := inl o fi and fy := inr o fy within (s-lcopair-eq) and get
[(inl o f1) | (inr o f3)]; 0 inr = inr o fo which is (f1 +; f2) o inr = inr o fo. O

Proposition 6.1.9. (Icoprod-u) For each f1, fo: X1+ Xo — Y1+ Y5, if fioinl ~ ofyoinl
and fs o inr = ofy oinr, then f1 = fs.

Proof. Tt suffices to apply (lcopair-u). O
Proposition 6.1.10. For all d < 1, given f1: X1 — Y1 and fQ(d): Xo — Y5, Then;
o (fi+r f2)oinl =inlo fl(d) (s-rcoprod-eq)

e (f1+r fa) oinr ~ inro fy (w-rcoprod-eq)

Proof. e By setting f; := inlo fi and fo := inr o fo within (s-rcopair-eq), one gets
[(inl o f1) | (inr o f3)], o inl = inlo fl(d) which folds into (f1 +, f2) oinl = inlo fl(d).

e Similarly, we set fi; := inl o fi and fo := inr o fo within (w-rcopair-eq) and get
[(inl o f1) | (inr o f3)], 0 inr ~ inr o fy which is (f1 4+, f2) o inr ~ inr o fo. O

Proposition 6.1.11. (rcoprod-u) For each f1, fo: X1+ X9 — Y1+Y3, if fioinl = ofsoinl
and fo o inr ~ ofy o inr, then fi = fo.

Proof. 1t suffices to apply (rcopair-u). O

Notice that we use some of these properties when proving the properties of programs with
exceptions, in Section 6.7.

89

6. The exceptions effect

6.1.4 The interface rules

interface rules

e € EName e € EName
(tag) 0 (untag) @
tage 't EV, — 0 untage ' : 0 — EV,

for each exception names (e, f) such that e # f
untag, o tagy ~ [|gv, o tagy

(eaxq) (eaxa)

untag, o tag, ~ idgy,
for each exception name e, g1, g2: 0 =Y ¢ otag, ~ g2 o tag,

(elocal-global)
g1 = g2

Figure 6.6: L.,.: the interface rules

(eax;) This rule states that encapsulating an argument with an exception of name e fol-
lowed by an immediate recovery is equivalent to “doing nothing” up to weak equation.
This is because, left side of the equation may recover from an exceptional argument
while the right side cannot, due to being pure.

(eaxy) Encapsulating an ordinary argument with an exception of name f and then recov-
ering from a different exception of name e would just lead £ to be propagated. It is
assumed by the rule (eaxy) that this have “the same” behavior with encapsulating an
ordinary argument with an exception of name f with no recovery attempt afterwards.
Notice that this is only an equivalence on ordinary arguments.

(elocal-global) This rule means that for each exception name e, the statement of the
(eeffect) rule can be expressed as a pair of weak equations for g; := f; o[]y and
g2:= fao|ly: g1 ~ g2 and g1 o tage ~ gy o tage. Due to g1,92: 0 — X, they have
apparently the same behavior on ordinary arguments. So that there is no explicit
need to check whether g; ~ g¢o is true. It suffices to check if g; o tage ~ gs o tage
holds, in order to decide whether g; = g2 or not.

6.1.5 The downcast rule

the downcast rule

f@. X 5y
LHW: X =Y

f X—=>Y
W~

(downcast) (w-downcast)

Figure 6.7: L.,.: the downcast rule

The left adjoint functor Fr p : €1 p — ¢r maps each object X to X + E (Section 3.2.2).
There is another “mapping” what we call the downcast, defined from ¢7, p to €1 as follows:

Definition 6.1.12. The “mapping” downcast, denoted “]” and defined from %7 p to ¢r,
is the identity on the objects and it maps each morphism f** : X — Y in ¢r,p to
R = |(f"): X - Y in € where h = fony : X — Y+ F in 4 (notation as in
Section 3.2.2).

Notice however that this “mapping” is not a functor: it does preserve identities but for
X > Yoand fi' 1Y = Zin €, p we have b’ = [(fF o fI'): X — Z in %p such
that h = foo fionx : X — Z + E in €, while k* = [(gﬁ)oi(Ifﬁ) : X —» Zin 6r

90

6. The exceptions effect

such that kK = uz oTfooTny o fionx in €. Whenever T fy o Ty = Tnyz o fo then
1(f2) o L(f1) = L(f2 o f1). But in general [(f2) o L(f1) # L(f2 0 f1).

(#)-—---- r - Crp-—-—-- (#r)-— =~ (#)
X X
X X X X+FE X+FE
Ynx
hWX+E hbt Lf” lfb lf
vf =1
Y+E Y Y Y Y+FE

(downcast) This rule states that the “mapping” downcast exists and it is interpreted by
Definition 6.1.12.

(w-downcast) This rule states that the term | f behaves as f, if the argument is ordinary.
If the argument is exceptional, it prevents f from catching the exceptional argument.

Now, the following result is easily obtained:

Theorem 6.1.13. The logic Ley. is sound with respect to the interpretation Cgxc given
in Definition 6.1.1.

6.2 Decorated logic for the programmer’s language for ex-
ceptions

Let us call the usual language for exceptions, with throw and try/catch blocks, the pro-
grammers’ language. The documentation on the behavior of exceptions in many languages
(for instance in Java [GJSB05]) makes use of a core language which we have already studied
in Section 6.1. There, the empty type plays an important role together with the funda-
mental operations for dealing with exceptions: tag is used for raising while untag is for
recovering from an exception. However, in the following, we present a logic for the pro-
grammers’ language, with no mention of the core language. We call it the decorated logic
for the programmers’ language for exceptions and denote it by Leze—pi-

Let £',,0n be the sublogic of the logic £,,,, obtained by dropping catcher terms and weak
equations. The logic Lezc—p extends the logic £'p,0, with the type EV . of parameters for
each exception name e € EName where EName is a finite set. In addition to the terms of
the logic £'),0n, the term throwy .: EV, — X stands to raise an exception of name e while
the fact of catching exceptions (i.e., of name e) is hidden inside the term try(a)catch(e =
b): X — Y for each couple of terms a: X — Y and b: EV, — Y. We give the syntax of
the logic Leze—p in Figure 6.8 and its inference rules in Figures 4.5 and 6.9.

Decoration for terms:

Equations:

Syntax: (e € EName)
Types: t X|Y]| - |EVe
Terms: f, g id¢ [a|b| - |gof]

throwy . | try(a)catch(e = b)

) (1)

f=g

Figure 6.8: L.;._,: syntax

91

6. The exceptions effect

As in Section 4.2, each term has a source and a target type as well as a decoration which
is denoted as a superscript (0), (1): a pure term has the decoration (0), a thrower has (1).
All terms must propagate exceptions; propagators are allowed to raise exceptions while
pure terms are not.

Let € be the category of sets with finite coproducts and a distinguished object of ex-
ceptions F. Let (T'= — + E,n,) be the exceptions monad defined over ¥. Thus, the
mono-requirement is satisfied (Definition 3.1.5). The interpretation of Ley.—p is given via
the Kleisli adjunction associated to a monad (detailed in Section 3.1.2) applied to the ex-
ceptions monad. Recall that in Section 3.1.2, we have introduced the adjunction Fr 4 G
with the faithful functor Fp: € — %7. This gives raise to a hierarchy among morphisms in
%p. This hierarchy is used to interpret the decorations: pure terms are in &, propagators
are in 7. Notice that this respectively corresponds to values and computations in Moggi’s
seminal paper [Mog91].

Definition 6.2.1. Let Cgxc—p1 be the interpretation of the syntax for the logic Leye—p
with the following details:

def

TE _+E
O m
€ L 6r
Gr
n:ld=1T e:D=1d

(1) The types are interpreted as the objects of €.

(1.1) for each e in EName, the type EV, is interpreted as an object EVal,.

(1.2) for each couple of types X and Y, the sum types X + Y are interpreted as the
binary coproducts in €.

Now, we can define the object of exceptions as E = Xcc pnyame (EVale). The inclusions

are denoted in.: FVal, — E, for each exception name e. The object E in % is not

the interpretation of a “type of exceptions”. Indeed, the use of decorations in the

logic Leze provides a signature without any occurrence of such a “type of exceptions”.

So that signature is kept close to the syntax.

(2) The terms are interpreted as morphisms as follows:

(2.1) apure term f@: X 5 Y in@as f: X Y in %
(2.2) a thrower term fM): X Y in%rasf: X =Y +Ein%

(3) A strong equation between throwers f W = ¢®:. X - Y in € is interpreted by
an equality f = ¢g: X - Y 4+ F in ¥. And a strong equation between pure terms
fO =40 X - ¥ in ¥ is interpreted by an equality f =¢: X — Y in %.

(4) The composition of two throwers fM: X 5 Y and ¢V Y — C in €y is interpreted
by the Kleisli composition go f = ucoTgo f: X - C+ Fin ¥.

(5) The term throwg/l)e: EV, — Y in €7 is interpreted as throwy, = inry,goin.: EVal, —
Y+ FEin%.

(6) The behavior of the term try(a)catch(e = b) corresponds to the Java mechanism
for exceptions [GJSB05, Ch. 14] and [JacO1]: if the first exception occurring in a(")
is of name e, then the computation continues with b(!). Formally, for each pair of
throwers (Y : X — Y, b(M: EV, — Y and for each exception name e;

92

6. The exceptions effect

—if a® = oM o throw(Zl)e ou® for some terms vM: Z -V, u®: X — EV,,
then try(a)catch(e = b)(M: X — Y in %7 has the same interpretation as
bW ou®: X 5 Y in Cr.

— otherwise try(a) catch(e = b)(1) in € is interpreted as a: X — Y + E in €.

In addition to the rules of the logic £',,0n, we have the following rules related to throw
and try/catch structures:

rules for the programmers’ language

(throw) Y e€ EName (try-catch) a: X —Y b: EV, =Y ec EName
W y-
ehronl) : BV, = Y try(a) cateh(b =)): X — Y
(ppt) a: X —Y (rcv)ug(])’ug]) : X — EV, throwy, . ou; = throwy . o us
PP a o throwy . = throwy,. UL = ug
ai,a0: X =Y b:EV. =Y a1 =as uW9:X Y b:EV, Y
(try) tryo)

try(ay)catch(e = b) = try(az)catch(e = b) 0 try(u)catch(e = b) =u
uW9:X 5 EV, b:EV, Y

try(throwy, .o u)catch(e = b) =bou

for each (e, f) € EName, such that e # f u(0:X — EV; b:EV, =Y

try(throwy, o u)catch(e = b) = throwy, fou

(tryq)

(tryz)

Figure 6.9: L., rules for the programmers’ language

(ppt) The rule states that exceptions are always propagated.
(rcv) It ensures that the parameter used for throwing an exception may be recovered.
(try) It states that the strong equation is compatible with the try/catch.

(tryo) With this rule we assume that the pure code inside the try part never triggers the
code inside the catch part.

(try;) By this rule, we assume that the code inside the catch part is executed as soon as
an exception is thrown inside the try part.

(try2) This rule states that an exception cannot be handled, if the pattern matching on
exception names is not successful. This means that the exception is propagated.

Now, the following result is easily obtained:

Theorem 6.2.2. The logic Lege—p 15 sound with respect to the interpretation Cexc—pL
given in Definition 6.2.1.

6.3 Translating the logic L.,. , into the logic L.,

The decorated logic for the programmer’s language of exceptions (Lezc—p) does not include
the private tag and untag operations, but the public throw and try/catch constructs. In
this section, we show that they can be built in terms of tag and untag in the logic L.yc.
The main ingredients for building the logic L¢y.—p from the logic L. are the coproducts
X = X + 0 and the downcasting conversion with the downcast rules (See Figure 6.7).

93

6. The exceptions effect

Remark 6.3.1. Note that, for the sake of conciseness, here we assume that only one excep-
tion name is handled in a try/catch expression: the general case is treated in [DDR13].

(1)

Definition 6.3.2. For each type Y and each exception name e, the propagator throwy . is:

throwg,l)e = []§9) otagl): EV, =Y
This means that raising an exception with name e is first tagging the given ordinary value
as an exception of name e and then converting it to the given type Y.

Definition 6.3.3. For each propagators f): X -V, ¢(¥: EV, — Y and each exception
name e, the propagator try(f)catch(e = ¢)(!) is defined in three steps, as follows:

CATCH(e = ¢)® = [id? | g® cuntagt? : V40— Y
TRY(f)CATCH(e = ¢g)® = CATCH(e = ¢)® o ml(y% o f: Xy

try(f)catch(e = g)) = |(TRY(f)CATCH(e = g)?): X—=Y

To handle an exception, the intermediate expressions CATCH(e = ¢) and TRY(f)CATCH(e =
g) are private catchers and the expression try(f)catch(e = g) is a public propagator: the
downcast operator prevents it from catching exceptions with name e which might have
been raised before the try(f)catch(e = ¢) expression is considered. The definition of
try(f)catch(e = g) corresponds to the Java mechanism for exceptions [GJSB05, Ch. 14]
and [Jac01] with the following control flow, where exc? means “is this value an exception?”,
an abrupt termination returns an uncaught exception and a mormal termination returns
an ordinary value.

v
y_~ exc? N
T
|
LY/ exc? \N
untagg) normal

|

)Y/ exc? \N)
|
normal | or | abrupt

Theorem 6.3.4. If the pure term []y : 0 — Y is a monomorphism with respect to
propagators for each type Y, the above stated translation of the logic Leyc—p into the logic
Leze 18 correct.

Proof. 1t is shown by Propositions 6.7.3, 6.7.4, 6.7.5, 6.7.6 6.7.7 and 6.7.8 that the images
of (six) basic properties of throw and try/catch are satisfied. O

6.4 The logic L.,. in Coq

The main scope of this section is to formalize the decorated logic for exceptions (Leze) in
Coq [DDER14]. To do so, we aim to enrich the implementation of the logic L., that is
already detailed in Sections 4.4.1 4.4.2 and 4.4.4: we will reuse the code blocks in order to

94

6. The exceptions effect

preserve the integrity of the formalization with no repeated explanation. The organization
of the modules is reflected in the Coq library EXCEPTIONS-THESIS as follows:

BASES: Prerequisites ——— Terms —— Decorations —— Axioms
DERIVED: D.coPairs = D.coProducts
PROOFS: Proofs

Remark 6.4.1. The complete EXCEPTIONS-THESIS library can be found on https://forge.
imag.fr/frs/download.php/694/EXCEPTIONS-THESIS. tar.gz.

6.4.1 Prerequisites

In order to enrich the terms of the logic L0, Wwe first need to speak about some pre-
liminaries: the set of exception names is implemented as a Coq parameter EName: Type.
Provided that there might be several exceptional values of a certain exception name e, we
implement an arrow type EV : EName — Type that is the type of exceptional values of a
certain exception name. Notice also that the implementation follows the same approach
as the one for states already detailed in Section 5.2.

Parameter EName: Type. Parameter EV: EName — Type.

6.4.2 Terms

We implement the additional terms as new constructors to the dependent type term given
in Section 4.4.1:

(1) [f|g]: X+Y — Z for each couple of terms f: X — Z and g: Y — Z, together

with the canonical projections inl: X — X+Z and inr: 7 — X+ 2,
2) []x: 0 — X for each type X,

(2)
(3) L f: X =Y, for each types X, Y and term f: X =Y,
(4) tag,: EV, — 0 for each exception name e,

)

(5) untag,: 0 — EV, for each exception name e.

Thus, the implementation of terms in Coq looks like:

Inductive term: Type — Type — Type :=

comp: forall {XY Z: Type}, termXY — termYZ — term X Z

| copair: forall {X Y Z: Type}, termZX —termZY — term Z (X +Y)
| downcast: forall {X Y: Type} (f: termX Y), term X Y

| tpure: forall {X Y: Type}, (X - Y) - term Y X

| tag: forall e:EName, term Empty_set (EV t)

| untag: forall e:EName, term (EV t) Empty_set.

Infix "o" := comp (at level 70).

Instead of the symbols [|] and |, we respectively use the keywords copair and downcast
in the implementation. We derive terms such as the identity, the copair coprojections and
the empty copair from the native Coq functions, with the use of tpure constructor, as
follows:

95

https://forge.imag.fr/frs/download.php/694/EXCEPTIONS-THESIS.tar.gz
https://forge.imag.fr/frs/download.php/694/EXCEPTIONS-THESIS.tar.gz

6. The exceptions effect

Definition id {X: Type} : term X X := tpure id.
Definition coprojl {X Y} : term (X+Y)X := tpure inl.
Definition coproj2 {X Y} : term (X+Y)Y := tpure inr.

Definition emptyfun (X: Type) (e: Empty_set) : X := match e with end.
Definition empty X: term X Empty_set := tpure (emptyfun X).

Remark also that the copair coprojections are named coprojl and coproj2 while the
empty pair is called empty in the implementation.

Remark 6.4.2. See the source Terms.v for related implementation details.

6.4.3 Decorations

Thereby, the decorations’ implementation follows:

Inductive kind := epure | ppg | ctc.

Inductive is: kind — forall XY, term X Y — Prop :=

is_tpure: forall X Y (f: X — Y), is epure (@tpure X Y f)

is_comp: forall k XY Z (f: termX Y) (g: termY Z), iskf —iskg— isk (fog)
is_copair: forall k X Y Z (f: term ZX) (g: termZY), isppg f - isk f — is k g — is k (copair £ g)
is_downcast: forall X Y (f: term X Y), is ppg (@downcast X Y f)

is_tag: forall t, is ppg (tag t)

is_untag: forall t, is ctc (untag t)

is_pure_ppg: forall X Y (f: term X Y), is epure f — is ppg £

is_ppg_ctc: forall XY (f: term X Y), is ppg f — is ctc f.

Hint Constructors is.

Notice that instead of the decorations of the form (0), (1) and (2), we respectively use the
keywords epure, ppg and ctc in the implementation. The decoration of any composed
and co-paired off term depends on its components and always takes the upper decoration
(epure < ppg < ctc). E.g., given a catcher term and a propagator term, their composition
and copair will be a catcher, as well. We declare the term tag as a propagator by using
the keyword ppg. On the contrary, untag is a catcher with the decoration keyword ctc.
The term downcast £ is a propagator, for each catcher term f£. It is trivial to derive that
the copair coprojections are pure. For the sake of conciseness, we demonstrate only the
first one:

Lemma is_coprojl X Y: is pure (@coprojl X Y). Proof. apply is_tpure. Qed.

Since coprojl is constructed through tpure and since any argument of tpure is by def-
inition epure, it suffices to apply the constructor is tpure. Recall that the process of
decoration checking is crucial and troublesome in a decorated setting: to automatize the
verification of the decorations, as in Section 5.2.3, we build a new tactic named edecorate,
by using Delahaye’s Ltac language [Del00]:

Ltac edecorate := solve[
repeat (apply is_comp || apply is_copair)
Il
(apply is_tpure || apply is_downcast || apply is_tag || apply is_untag || assumption)
Il
(apply is_pure_ppg)
Il

(apply is_ppg-_ctc) |.

The tactic edecorate repeatedly checks if the goal term is a composition or a copair, if
not so, it tries to decide whether it is a pure term constructed via tpure or one of the
following terms: downcast, tag and untag or else a local assumption. If it is still not the
case, it applies the hierarchy rules. All that are performed in the given sequence. Since
these checks are done inside the solve tactical, edecorate fails in the absence of match.

96

6. The exceptions effect

Class PURE {X Y: Type} (f: term X Y) := ispure : is pure f.
Hint Extern O (PURE _) = edecorate : typeclass_instances.

Class PPG {X Y: Type} (f: term X Y) := isppg : is ppg £.
Hint Extern O (PPG _) = edecorate : typeclass_instances.

Class CTC {X Y: Type} (f: term X Y) := isctch : is ctc f.
Hint Extern O (CTC _) = edecorate : typeclass_instances.

The assignment of decorations over terms is declared as constructors of Coq type classes
parametrized by a term. Then, we extend the scope of the tactic auto with the optional
patterns (PURE _), (PPG _), (CTC _), the tactic edecorate at cost zero. This is pro-
vided by the vernacular command Extern (num) pattern => tactic. The zero cost
here means that the tactic auto would non-recursively try the hints upon the usage.

Remark 6.4.3. See the source Decorations.v for related implementation details.

6.4.4 Axioms

Here we give to the formalization of the rules/axioms in Coq.

Reserved Notation "x == y" (at level 80). Reserved Notation "x ~ y" (at level 80).

Definition idem X Y (x y: termX Y) :=x = y.

Inductive strong: forall X Y, relation (term X Y) :=
(*congruence rulesx)

refl: forall XY (f: termX Y), f ==

sym: forall XY, Symmetric (@strong X Y)

trans: forall X Y, Transitive (@strong X Y)

replsubs: forall X Y Z, Proper (@strong X Y ==> @strong Y Z ==>> @strong X Z) comp
(*categorical rulesx)

| ids: forall XY (f: termXY), f o id == f
| idt: forall XY (f: termX Y), ido f ==
| assoc: forall XYZT (f: termXY) (g: termY Z) (h: termZT), fo(goh) == (fog)oh
(*the hierarchy rulex)
| wtos: forall XY (f g termXY), PPGf »PPGg »>f~g > f==g¢g
(*strong copair rules*)
| s_lcopair_eq: forall XX’ Y (f1: term Y X) (£f2: term Y X’), PPG f1 — (copair f1 £2) o coproj2 == £2

(xthe effect rulex)
| eeffect: forall XY (f g: termY X), £ ~ g — (f o (Qempty X) == g o (@empty X)) — £ ==
(*the strong interface rulex)
| elocal_global: forall X (f g: term X Empty_set), (forall t: EName, f o tagt ~ g o tagt) —» f ==
(*tpure preserves the pure compositionx)
| tcomp: forall XY Z (f: Z — Y) (g: Y — X), tpure (compose g f) == tpure g o tpure f
with weak: forall X Y, relation (term X Y) :=
(*congruence rulesx)
| wsym: forall X Y, Symmetric (Qweak X Y)
| wtrans: forall X Y, Transitive (@weak X Y)
| wrepl : forall X Y C, Proper (@idem CY ==>> Quweak Y X ==> Quweak C X) comp
| pwsubs : forall X Y C, Proper (@weak CY ==> @pure_id Y X ==> Qweak C X) comp
(*the hierarchy rulex)
| stow: forall XY (f g termXY), f ==g—f~g
(*the weak copair rulex)
| w_lcopair_eq: forall XX’ Y (f1: term Y X) (£f2: term Y X’), PPG f1 — (copair f1 £2) o coprojl ~ f1
| w_empty: forall X (f: term X Empty_set), f ~ (@empty X)
(*the down-casting rulex)
| w_downcast: forall XY (f: term X Y), £ ~ (@downcast X Y f)
(*xweak interface rulesx)
| eaxl: forall t: EName, untag t o tag t ~ (@id (Val t))
| eax2: forall t1 t2: EName, t1 <> t2 — untag t2 o tag t1 ~ (Q@empty (Val t2)) o tag t1
(*the weak unicity rulex)
| lcopair_ueq: forall X X’ Y (f g: term Y (X+X’)), (f o coprojl ~ g o coproji) —
(f o coproj2 ~ g o coproj2) - f ~g
where "x == y" := (strong x y) and "x ~ y" := (weak x y).

On the details of additional rules. For w_empty, s_lcopair_eq, w_lcopair_eq and

97

6. The exceptions effect

lcopair_ueq, see Figure 6.5. The rule eeffect is given in Figure 6.4. For eax1, eax2 and
elocal_global, refer back to Figure 6.6. Lastly, w_downcast is detailed in Figure 6.7.

Before detailing properties related to copairs and coproducts, let us hereby give the certified
Coq proof of the derived property (s-empty) as it is given in Proposition 6.1.2. The rule
(s-empty) claims that the equation among parallel terms with domain 0 is strong, provided
that they are pure or propagators.

Lemma s_empty: forall X (f: term X Empty_set), PPG £ — f == (Cempty X).
Proof. intros X f H. apply wtos; [exact H | edecorate | apply w_empty]|. Qed.

The proof converts the goal-side strong equation into weak provided that both £ and empty
are non-catchers. Now, it suffices to apply (w-empty) to close the goal.

Remark 6.4.4. See the source Axioms.v for related implementation details.

6.4.5 Derived copairs and coproducts

In order to speak about symmetric or (right) copairs as well as left and right coproducts,
we define the permutation term, denoted permut. It inputs two Coq Type instances X and
Y and outputs an instance of type: term (Y*X) (X*Y).

Definition permut {X Y} : term (X+Y) (Y+X) := copair coproj2 coprojl.

Clearly, permut is a pure term since it is a left copair made of pure projections. Now, the
right copair structure looks like:

Definition rcopair {X Y Z} (f1: termX Y) (f2: term X Z) : term X (Y+Z) := copair £f2 f1 o (@permut Z Y).

The decoration of a given right copair depends on its components:

Lemma is_rcopair: forall k X Y Z (f1: term Z X) (£2: term ZY), PPG f2 — is k f1 — is k £2
— is k (rcopair f1 £2).
Proof. intros k X Y Z £1 £2 H1 H2 H3. induction k; edecorate. Qed.

After introducing the necessary instances, we induce on the kind k. Then it suffices to
edecorate each goal: is pure (rcopair f1 £2), is ppg (rcopair f1 £2) and is ctc
(rcopair f1 £2) locally provided: HO: is pure f1, H1: is pure f2; HO: is ppg f1, H1:
is ppg f2 and HO: is ctc f1, Hl:is ctc f2.

The projection rules attached to right copairs, that are stated and proven in Proposi-
tion 6.1.5, are certified in Coq along with their proofs:

right copair: first coprojection

Lemma s_rcopair_eq: forall X ZY (f1: term X Y) (£f2: term X Z), PPG f2 — rcopair f1 £f2 o coprojl == f1.
Proof.
intros XY’ Y £f1 £2 HO. unfold rcopair, permut. rewrite <—assoc.
cut (copair coproj2 coprojl o coprojl == (@coproj2 Y’ Y)).
intro H1. rewrite H1.
apply s_lcopair_eq; exact HO.
(x1st cutx)
apply wtos;|edecorate| edecorate| |. apply w_lcopair_eq; edecorate.
Qed.

98

6. The exceptions effect

After forming the environment of the assumptions, the proof continues with unfolding
rcopair and permut followed by rewriting associativity which shifts parentheses to the
right. At this point, the goal looks like: copair f2 f1 o (copair coproj2 coprojl o

coprojl) == f1. We cut the Prop instance, (copair coproj2 coprojl o coprojl ==
(@coproj2 Z Y)) and introduce an instance of it named H1. We rewrite H1 and obtain
copair f2 f1 o coproj2 == f1. Now, it suffices to apply the rule s_lcopair_eq and

prove that PPG f£2 which is an assumption. It is necessary to prove the strong equation
that we have already cut. There, we first convert the goal side strong equation into a
weak equation provided that copair coproj2 coprojl o coprojl and (@coproj2 Z Y)
are both propagator. So that the goal turns into (copair coproj2 coprojl o coprojl
~ coproj2). It suffices to apply w_lpair_eq and prove that PPG coproj2 which is closed
by edecorate.

right copair: second coprojection

Lemma w_rcopair_eq: forall X Z Y (f1: term X Y) (£2: term X Z), PPG £f2 — rcopair f1 £2 o coproj2 ~ f2.
Proof.

intros XY’ Y £1 £2 H. unfold rcopair, permut. rewrite <—assoc.

rewrite s_lcopair_eq;|| edecorate|. rewrite w_lcopair_eq;|reflexivity| edecorate].
Qed.

After some preliminary modifications on the goal (by following the first line in the proof),
we obtain copair f2 f1 o (copair coproj2 coprojl o coproj2) ~ f2. We rewrite
s_lcopair_eq which results in two subgols: copair f2 f1 o coprojl ~ f2 and PPG
coproj2. The application of the rule w_lcopair_eq followed by the edecorate solves
the first subgoal and decorate alone closes the second.

We also certify the proofs of Propositions 6.1.3 and 6.1.6 ensuring that left and right co-
pairs are unique with respect to strong equation:

left copair: unicity

Lemma lcopair_u: forall X Y Y’ (f1 £2: term X (Y’ +Y)),
(£1 o coproj1l ~ £2 o coprojl) A (fl1 o coproj2 == £2 o coproj2) — f1 == f2.
Proof.
intros XYY f1 £f2 (HO&H1). apply eeffect.
G fro[]=fao[] %
cut((@coproj2 Y’ Y) o (@empty Y) == (Qempty (Y’ +Y))).
intro H2. rewrite <-H2.
setoid_rewrite assoc. rewrite Hl. reflexivity.
(x 1st cut *)
setoid_rewrite s_empty; [reflexivity| edecorate].
G f1~ fa2 %)
apply lcopair_ueq. exact HO. apply stow. exact H1.
Qed.

right copair: unicity

Lemma rcopair_u: forall X Y Y’ (f1 £2: term X (Y’ +7Y)),
(£1 o coproj1l == £2 o coprojl) A(fl o coproj2 ~ £2 o coproj2) — f1 == f2.
Proof.
intros XYY f1 £f2 (HO&H1). apply eeffect.
¢ frol]=fzol]
cut((@coprojl Y’ Y) o (@empty Y') == (Cempty (Y’ +Y))).
intro H2. rewrite <-H2.
setoid_rewrite assoc. rewrite HO. reflexivity.
(x 1st cut *)
setoid_rewrite s_empty; [reflexivity| edecorate].
G f1~ f2 %)
apply lcopair_ueq. apply stow. exact HO. exact H1.
Qed.

99

6. The exceptions effect

Both proofs follow the same approach: first the (eeffect) rule is applied to the goal of the
form £1 == £2. This generates two subgoals to prove: f1 o empty == f2 o empty and
f1 ~ £2. Then, depending on the assumptions, we use the fact coprojl o empty ==
empty or coproj2 o empty == empty ensured by (s-empty) to close the first subgoal. For
the second subgoals, we use (lcopair-eq) rule to conclude with f1 == f2.

In addition, one can derive the left coproducts out of copairs and coprojections as:

Definition lcoprod {X1 Y1 X2 Y2} (£f1: term X1 X2) (£2: term Y1 Y2) : term (X1+Y1) (X2+Y2)
:= copair (coprojl o f1) (coproj2 o £2).

Now, right coproduct structure looks like:

Definition rcoprod {X Y X’ Y’} (f1: term X X’) (£2: term Y Y’) : term (X+7Y) (X’ +Y’)
:= rcopair (coprojl o f1) (coproj2 o £2).

One can simply prove that the decoration of a term coproduct depends on its components:

Lemma is_lcoprod: forall k X’ X Y’ Y (f1: term X X’) (£f2: term Y Y’), PPG f1 — is k f1 — is k £2
— is k (lcoprod f1 £2).
Proof. intros k X’ X Y’ Y f1 f2 H1 H2 H3. induction k; edecorate. Qed.

After introducing the necessary instances, we induce on the kind k. Then, it suffices
to edecorate each goal: is pure (lcoprod f1 £f2), is ppg (lcoprod f1 £2) and is
ctc (lcoprod f1 £2) locally provided: HO:is pure f1, H1:is pure f2; HO:is ppg
f1, H1:is ppg £2 and HO: is ctc f1, Hl:is ctc £2. The similar idea applies to the
case of right coproducts:

Lemma is_rcoprod: forall k X’ X Y’ Y (f1: term X X’) (f2: termYY’), PPG f2 — is k f1 — is k £2
— is k (rcoprod f1 £2).
Proof. intros k X’ X Y’ Y f1 f2 H1 H2 H3. induction k; edecorate. Qed.

The coprojection (or inclusion) rules attached to left and right coproducts, that are stated
and proved in Propositions 6.1.8 and 6.1.10, are certified in Coq along with their proofs:

left and right coproducts: first and second coprojections

Lemma s_lcoprod_eq: forall X1 X2 Y1 Y2 (f: term X1 X2) (g: term Y1 Y2),
PPG f — (lcoprod f g) o coprojl ~ coprojl o f.
Proof. intros X1 X2 Y1 Y2 f g H. apply w_lcopair_eq; edecorate. Qed.

Lemma w_lcoprod_eq: forall X1 X2 Y1 Y2 (f: term X1 X2) (g: term Y1 Y2),
PPG £ — (lcoprod f g) o coproj2 == coproj2 o g.
Proof. intros X1 X2 Y1 Y2 f g H. apply s_lcopair_eq; edecorate. Qed.

Lemma s_rcoprod_eq: forall X1 X2 Y1 Y2 (f: term X1 X2) (g: term Y1 Y2),
PPG g — (rcoprod f g) o coprojl == coprojl o f.
Proof. intros X1 X2 Y1 Y2 f g H. apply s_rcopair_eq; edecorate. Qed.

Lemma w_rcoprod_eq: forall X1 X2 Y1 Y2 (f: term X1 X2) (g: term Y1 Y2),
PPG g — (rcoprod f g) o coproj2 ~ coproj2 o g.
Proof. intros X1 X2 Y1 Y2 f g H. apply w_rcopair_eq; edecorate. Qed.

They are nothing but the specialized versions of (w-lcopair-eq), (s-lcopair-eq), (w-rcopair-
eq) and (s-rcopair-eq).

We lastly have the unicity properties of left and right coproducts with respect to strong
equation, that are stated and proven in Propositions 5.1.9 and 5.1.11, certified in Coq:

100

6. The exceptions effect

left and right coproducts: unicity

Lemma lcoprod_u: forall X1 X2 Y1 Y2 (f1 £2: term (Y2 +Y1) (X2 +X1)),
(£1 o coproj1l ~ £2 o coprojl) A (fl o coproj2 == £2 o coproj2) — f1 == f2.
Proof. intros X1 X2 Y1 Y2 £f1 £2 (HO&H1). apply lcopair_u. split; [exact HO| exact H1]. Qed.

Lemma rcoprod_u: forall X1 X2 Y1 Y2 (f1 £2: term (Y2 +Y1) (X2 +X1)),
(£1 o coproj1l == £2 o coprojl) A(fl o coproj2 ~ £2 o coproj2) — f1 == f2.
Proof. intros X1 X2 Y1 Y2 f1 £2 (HO&H1). apply rcopair_u. split; [exact HO| exact H1]. Qed.

It suffices to respectively apply (lcopair u) and (rcopair u) to close the goals.

Remark 6.4.5. See the sources Derived_coPairs.v and Derived_coProducts.v for related
implementation details.

6.5 The logic L.,y in Coq

The Coq implementation of the logic Lcy.—p follows the same approach with the one of
the logic Ly, as in Section 6.4, and it can be found in the EXCEPTIONS-THESIS library.

6.5.1 Terms

By using the same preliminaries, the implementation of terms looks like:

Inductive termpl: Type — Type — Type :=

| pl_tpure: forall {X Y: Type}, (X — Y) — termpl Y X

| pl_comp: forall {X Y Z: Type}, termpl X Y — termpl Y Z — termpl X Z

| throw: forall {X} (e: EName), termpl X (Val e)

| try_catch: forall {X Y} (e: EName), termpl Y X — termpl Y (Val e) — termpl Y X.
Notation "a 0’ b" := (pl_comp a b) (at level 70).

Terms are inductively defined via a dependent type called termpl. In addition to the main
constructors throw and try_catch, via pl_tpure, we introduce Coq side pure functions.
The constructor pl_comp enables to compose compatible terms. Notice that there is neither
tag nor untag involved. Lastly, the keyword ‘0’ is used to notate the composition of
compatible terms. For the ease of further usage, we introduce some basic Coq side functions
inside the decorated environment via the use of the pl_tpure constructor.

Definition pl_id {X: Type} : termpl X X := pl_tpure Datatypes.id.

The term pl_id makes use of the native id function in Coq and constructs the termpl X
X type for each X: Type.

Remark 6.5.1. See the source Terms.v for related implementation details.

6.5.2 Decorations

Since there is no catcher term in the logic Le¢gc—pi, the enumerated type kindpl implements
decorations with two constructors: pl_pure and pl_ppg.

Inductive kindpl := pl_pure | pl_ppg.

Inductive is_pl: kindpl — forall X Y, termpl X Y — Prop :=

| is_pl_tpure: forall XY (f: X — Y), is_pl pl_pure (@pl_tpure X Y f)

| is_pl_comp: forall k X Y Z (f: termpl X Y) (g: termpl Y Z), is_plkf — is_pl kg — is_pl k (f 0 g)

| is_throw: forall X (e: EName), is_pl pl_ppg (@throw X e)

| is_try_catch: forall X Y (e: EName) (a: termpl Y X) (b: termpl Y (Val e)), is_pl pl_ppg (@try_catch _ _e ab)
| is_pl_pure_ppg: forall X Y (f: termpl X Y), is_pl pl_pure f — is_pl pl_ppg f.

Hint Constructors is_pl.

101

6. The exceptions effect

Anything defined over pl_tpure is declared to be pure. The decoration of a composed
term depends on its components. The terms throw and try_catch are defined to be
propagators. The hierarchy among decorations is also there as the last constructor: a pure
term can be seen as propagator.

Class PL_EPURE {X Y: Type} (f: termpl X Y) := isplp : is_pl pl_epure f.
Class PL_PPG {X Y:Type} (f: termpl X Y) := isplppg : is_pl pl_ppg £.

Remark 6.5.2. See the source Decorations.v for related implementation details.

6.5.3 Axioms

There is only one type of equation relating (strong equation, denoted * ==) the terms.

Reserved Notation "x * == y" (at level 80).

Inductive pl_strong: forall X Y, relation (termpl X Y) :=

| pl_refl: forall XY (f: termpl X Y), f % ==

| pl_sym: forall X Y, Symmetric (@pl_strong X Y)

| pl_trams: forall X Y, Transitive (@pl_strong X Y)

| pl_assoc: forall X YZ T (f: termpl X Y) (g: termpl YZ) (h: termpl ZT), £ 0 (g0h) x==(f0g)0h

| pl_ids: forall XY (f: termpl XY), £ 0 pl_id * == f

| pl_idt: forall XY (f: termpl XY), pl_id0f x==f

| pl_replsubs: forall X Y Z, Proper (@pl_strong X Y ==> @pl_strong Y Z ==>> Q@pl_strong X Z) (pl_comp)
(*for throw and try/catchx)

| ppt: forall XY e (a: termpl XY), a 0 (@throw Y e) * == (Qthrow X e)
| rev: forall XY e (ul u2: termpl (Val e) Y), (@throw X e) 0 ul * == (Qthrow X e) 0 u2 — ul * == u2
| try: forall XY e (al a2: termpl X Y) (b: termpl X (Val e)), al x == a2 —

try_catch e al b x == try_catch e a2 b

| try0: forall X Y e (u: termpl X Y) (b: termpl X (Val e)), PL_LEPURE u — try_catcheub*==u
| tryl: forall XY e (u: termpl (Val e) Y) (b: termpl X (Val e)), PL_EPURE u —
try_catch e ((@throw X e) 0u) b *==b0u
| try2: forall XY e f (u: termpl (Val f) X) (b: termpl Y (Val e)), e <> f — PL_EPURE u —
try_catch e ((@throw Y f) Ou) b * == (@throw Y f) O u
(*pl_tpure preserves the pure compositionx)
| pl_tcomp: forall XY Z (f: Z — Y) (g: Y — X), pl_tpure (compose g f) * == pl_tpure g 0 pl_tpure £
where "x % == y" := (pl_strong x y).

The only crucial point is about the rules concerning throw and try_catch blocks. For the
related discussion, see Figure 6.9.

6.6 Translating L.,.,; into L., in Coq

The terms of the logic L¢z.—p can simply be translated into the logic L. as follows:

Fixpoint translate X Y (t: termpl X Y): (term X Y) :=
match t with

| pl_tpure XY £ = tpure f

| pl_comp _ _ _ab = (@translate _ _ a) o (@translate _ _b)

| throwYe = (Gempty Y) o tag e

| try_catch X Y e a b = downcast(copair (@id Y) ((@translate _ _ b) o untag e) o coprojl o (@translate _ _ a))
end.

Any pure term in the logic Lezc—py is still pure in the logic Le;.. The term compositions in
the logic Leyc—pi corresponds to the composition of translated terms in the logic Lez.. We
translate the terms throw and try/catch as they are given in Definitions 6.3.2 and 6.3.3.
This translation is used to prove Theorem 6.3.4.

Remark 6.6.1. See the source Terms.v for related implementation details.

102

6. The exceptions effect

6.7 Proofs involving the exceptions effect

In this section, we detail some primitive program properties with the exceptions effect
and prove them in a decorated setting (as done in Section 5.3 for programs with the state
effect). We also provide corresponding formalizations in Coq.

(1)q atu. Untagging an exception of name e and then raising it, is just like doing nothing.

Ve € EName, untagg) o tag(l) zd()0 0.

(2)q cuu. Untagging two distinct exception names can be done in any order.

Ve #r € EName, (untag, 4+, idpy,) o inr(® o untaggﬂz)

(idgy, +; untag,)® o inl® o untagg) :0— EV,+ EV,.

(3)q ppt. A propagator term always propagates an exception.
Ve e EName, aV: X =Y, aM o]]() o tag W = []9 o taggl): EV, =Y.

(4)q rev. The parameter used for throwing cm exception may be recovered.

<Vf(1),g(1);X_>® 1906 0 =196 40 :fl)—g(l)) —
<Ve € EName, u§0)7u; N EV,,
([]gf) otaggl) ougo) = [](0) otag() 50)) — ugo) = ugo)).

(5)q try. The strong equation is compatible with try /catch.
Ve € EName, iV, V. X - v, 50 : BV, - Y, alV
<J,([idy | bountag,|; oinlo[]y otag, o al)(l) =

o) —

J,([Zdy ’ bo untage]z ol o []y o tage o a2)(1)>.

(6)q tryg. Pure code inside try never triggers the code inside catch.
Ve e EName, u: X Y, b : EV, - Y,
L([idy | bountag,); o inl o u)(l) = idgﬁ)) ou®: X 5.

(7)q tryi. The code inside catch part is executed as soon as an exception is thrown inside
try.
Ve € EName, u®: X — EV,, bV : EV, - Y,
L([idy | bountag,]; o inlo[]y otag, o u)(l) =M ou®: X 5.

(8)q trys. An exception cannot be handled, if the particular exception name is not matched.
The exception s propagated.
V(e # f) € EName, u0: X — EV;, b)) 1 EV, - Y,

L(lidy | bountag,];oinlo[]y o tagy o u)(l) = [](0) o tag;) ou®: X - Y.
The decorated logic for exceptions (Lezc) is used to prove above the stated properties.
Such proofs are enriched with Coq certifications. Within the Coq scripts, one can simply
relate the Coq proof to the proof in English by following the comments following crucial

steps. The use of associativity of composition in the Coq proofs just balances the proof
tree into an intended shape. This is omitted in the proofs on the paper.

Proposition 6.7.1. Annihilation tag-untag (atu). Untagging an exception of name e and
then raising it, is just like doing nothing.

Ve € EName, untag? o taglt) = idg)) :0—0 (6.1)

103

6. The exceptions effect

Proof. (1) Due to (eax;), we have untagg) o taggl) ~ idg. Thanks to the (wrepl), we

obtain taggl) o untag(2) o taggl) ~ taggl)) id&g). This can be written as taggl) o

untagg)6 tag(l) ~ zd(o) o taggl) by respectively using (ids) and (idt).

V e € EName
0 i,

(eax1)
untag o tage

taggl) o untagé)

tagl”

vag!

(wrepl)
o tag() tagél) o idgz,e

(2)

(ids)
(idt)

(1) (1)

ountage ~ tage

(2)

O tage

(1)

ountage ™’ o tag()~ Zd(o) o tage

(2) We have taggl) of]§/) = d(o) provided by (s-empty). Thanks to (replsubs), we get

S’ of]((1) o tag(l) = zd(o) o tag£), for each exception name r such that e # r. It

(1) OH%Z) o

tag
is allowed to switch from the strong equation into a weak equation: tage
tagfnl) ~ z'dg)) o taggﬂl). The use of (eaxg) on the left, enabled by (wrepl), yields

taggl) o untagg) o tagfn) zd(o) o tagfnl).

Ve r € EName s.t. e r

(ax2)
untagg) otag ~[lev, © tagg)
(wrepl) (s-empty) :
taggl) o untag()o tag ~ tag() o[lev, o tag() tagg)6 [lev, = idg))
agt(3) o untag() o tag(l) d(o) o tag
Given items (1), (2) and the rule (elocal-global), we end up with taggl) o untagg) = idg)).
U

In addition to the above proof, it is possible to start from the goal statement itself and end
up with some truth value. This is actually constructing the proof tree with a bottom-up
strategy. For instance, let us consider the above statement (atu): we start with applying
the (local-global) rule and proceed as follows:

(1) for any r € EName, when e = r, the goal looks like tageountageotage ~ idpotage.

1.1) we apply (idt) and (ids) to obtain ta, S’ ounta 9) ota £)
(y g g g

(1.2) by applying (wrepl), we get untagg) o tagg) ~ idgg/e . Finally, the application

of (eaxj) resolves the goal.

tag(l) o zd(o)

(2) when e # r, the goal becomes tage o untage o tagr ~ idp o tagr.

(2.1) thanks to (s-empty), we have tageo| |gy, = idp, thus taggl)ountagg) otaggl) ~

taggl) o[]gv, o tagg).

(2.1) by applying (wrepl) we get untagg) o taggl) ~ []gv, © taggl). Finally, the

application of (eaxs) resolves the goal.

Below, we formalize the statement (atu) together with its certified proof in Coq. This
proof proceeds by manipulations on the goal and ends up with “true”. Therefore, it follows
the same lines as the proof given just above. By using the apparent numbering, one can
relate the proof steps in English to the ones in Coq.

104

6. The exceptions effect

Lemma ATU: forall e: EName, (tag e) o (untag e) == (@id Empty_set).
Proof.
intro e.

Qed.

apply elocal_global.

intro r. destruct(Exc_dec r e) as [Ha|Hb]. rewrite Ha.
(x case e = r *) (x (1) *)
rewrite idt. setoid_rewrite <—ids at 6. rewrite <—assoc. (* (1.1) %)
apply wrepl; [reflexivity| apply eaxl]. (* (1.2) *)
(¥ case e <> r *) (x (2) *)
cut(tag e o (@empty (Val e)) == (@id (Empty_set)))-

[intro HO| setoid_rewrite s_empty; [reflexivity| edecorate| edecorate]|.

rewrite <—HO. setoid_rewrite <—assoc. (x (2.1) *)
apply wrepl; [reflexivity| apply eax2; exact Hb|. (x (2.2) *)

Proposition 6.7.2. Commutation untag-untag (cuu). Untagging two distinct exception
names can be done in any order.

Vt# s € EName, (untag, +, idEVs)(Q) o inr® o untagg2) = 6.2)
(idgy, +; untag,)® o inl® o untag§2): 0— EV;+ EVj '

Proof. (1) We have (untag, +, idgy,)® o inr(® ~ inr(® o id?), due to (s-rcoprod-eq).

EVs

We can use (ids) to have (untag, +, idgy,) oinr® o idg‘),s ~ inr(©) oz’dg‘),s. Thanks

to (eax;), enabled by (wrepl) on both sides, we get (untag, +, idgy,)® o inr® o

untaggz)) taggl) 0 o untaggz) o taggl)
(2)

(untag, +,idgy,)? o inr(® ountags” o taggl)

~ inr! . Thanks to (s-lcoprod-eq), we obtain

~ (idpy, +untag,)® o inr® o tagl".

The use of (s-empty) yields (untag, +,idgy,) o inr® ountagg) otaggl) ~ (idgv, +1
untag,)® o inl® o |]g‘),t o taggl). We now obtain by (eaxs), enabled by (wrepl) on
the right, that (untag, +,idgy,)? o inr®) ountagg2) otaggl)

inl©® o untaggz) o taggl).

~ (ZdEVt + untags)(Q) o

Symmetrically, there is (idgy, +;untag,)® o inl® ~ inl® oidg‘)/t due to (w-lcoprod-

eq). We use (ids) to handle (idpy, +; untag,)® o inl® o idg‘),t ~inl® o id%o‘)/t. Now,

by (eax;), on both sides we get (idpy, +; untag,)® o nl® o untag§2) o taggl) ~

inl©® o untag?) o taggl).

inl® o untag?) o taggl)

Thanks to (s-rcoprod-eq), we get (idgy, +; untag,)® o

~ (untag, +, idgy,)® o nl® o taggl). It follows the use of

(2) (1)

(s-empty) that (idgy, +;untag,)® oinl®) ountag,” otag)” ~ (untag, +,idgy,)® o

inr(© o]]Sg‘)/s otaggl). We get by (eaxs) on the right that (idgy, +;untag,)® oinl® o

untagf) o tag§” ~ (untag, +, idgy,)? o inr® o untaggz) °© taggl)'

In addition, by (s-empty), one has inr® o |]gfs = inl® o]SEQ‘)& It is possible to get

inr(©) o |]g‘)/s o tagfnl) = inl® o []g‘),t o taggﬂl), for each exception name r such that

r# s and r # t. It is free to switch from the strong equation into a weak equation:

(0) (1)

inr(® o]Sg‘)/s otag&l) ~ inl®o] |y, otagy . Here, we make use of (eaxy), allowed by

9) o tagf}) ~ inl© ountaggg) o tagf}).
Thanks to (s-lcoprod-eq), we obtain (idgy, +; untag,)® o inr(® o taggﬂl) ~ il o
unt ag§2) otagg)

t aggl)

(wrepl) on both sides, so as to get inr(®) ountag

and symmetrically, (s-rcoprod-eq) yields (idgy; +juntag,)® oinr(©®o

~ (untag,+,idgy,)® oinl® otag&l). Now, by (s-empty) on both sides, we get

(idgy, +juntag,)® oinl® of]SEQ‘)& otagg) ~ (untag, +,idgy,)® oinr® o]]559\)/5 otag&l).

105

6. The exceptions effect

And by (eaxs) on both sides, we end up with (idgy, +;untag,)® o inl® o untag?) o

taggl) ~ (untag, +, idgy,)® o inr©® o untagg2) o taggl).
Now, provided above items (1), (2), (3) and the rule (elocal-global), we conclude that
(untag, +, idgy,)? o inr® o untaggQ) = (idpy, +; untag,)® o inl® o untag§2) for each
exception names s and t such that s # t. O

Proposition 6.7.3. Propagate (ppt). A propagator term always propagates an exception.

Ve e EName, aV: X - Y, oMo []() otagll) = []() otagll): BV, - V. (6.3)

Proof. For each a(t) : X — Y, (s-empty) implies that a(M) o []g?) = |]§9), so that al) o
[](0) o tagg) = []g/o) o tagg) by (subs). O

Proposition 6.7.4. Recover (rcv). The parameter used for throwing an exception may be
recovered.

(F7®, g0 X =0, ([P0 =)0 0g® = j0=40) =
< € EName, ugo), 0. x - EV,, (6.4)

[]() o tag(V 0) = []}9 o tag(t) go) = ugo) = ugo)).
Proof. If |]()otagg)ougo) = [](0) otagé)ougo), since []y is a monomorphism with respect
to propagators, we have tagg) go) = tagg3) o ugo). Now, (replsubs) gives untagg) o
tag(l) g) = untagg) o taggl) o ugo). By (stow), we obtain untagg) o taggl) o ugo) ~
untagg3) o taggl) o ugo). Since uj and ug are pure, we are enabled to use (eaxj) on both

(0) (0)

sides so as to handle u;’ ~ wu, . Since there is no modifiers, we simply end up with

ugo) = ugo). U
Proposition 6.7.5. try. The strong equation is compatible with try/catch.

Ve € EName, agl), agl) X =Y, b EV., =Y,

ay’ =ay’ = (i([idy | bountag,|;0inlo[]y otag, o al)(l) = (6.5)

W(idy | bountag, o inlo[Jy o vag, 0az)).
Proof. Given agl) = agl), we can trivially obtain [idy | bountage]l(2) oinl® o]gg) otagt! o
(1)

agl) = [idy | bo untage]l@) oinl® o]gf) o tagt o agl) thanks to (replsubs). After the

free conversion of the strong equation into a weak one, we can use (w-downcast) to get
L([idy | bountag,]oinlo|]y otag, oal)(l) ~ ([idy | bountag,];0inlo|]y otag, oag)(l).
Since both sides are throwers we convert weak equality back into strong: i([idy | bo

untag,|; o inlo []y o tag, o al)(l) = | ([idy | bountag,]; o inlo[]y o tag, o ag)(l). O
Proposition 6.7.6. tryg. Pure code inside try never triggers the code inside catch.

Ve € EName, u': X - Y, b : EV, - Y,

(6.6)
L(lidy | bountag,]; o inlo u)(l) = idg]) ou®: X Y.

106

6. The exceptions effect

Proof. Due to (w-lcopair-eq), we have [idy | bo untage]l(Z) o inl® ~ idg/o). By using
)

[i
1(2 o inl® o y® ~ z'dg?) ou®. Thanks to (w-
1)

(pwsubs), we obtain [idy | bo untag,]

downcast) ensuring |([idy | bountag,]; o inlou)"’ ~ [idy | uo untage]l(Q) o inl® o 40,

we end up with |([idy | bo untag,]; o inl o u)(l) ~ id§9) o u® by (w-lcopair-eq). Lack of
catchers gives | ([idy | bountag,]; o inl o u)(l) = idg/o) oul®, O

Proposition 6.7.7. try,. The code inside catch is evecuted as soon as an exception is
thrown inside try.

Ve € EName, u'9: X — EV,, bV : EV, - Y, 67
L([idy | bountag,]; o inlo[]y o tag, o u)(l) =M ou®: X 5y, .

Proof. Thanks to (eax;), we have untagg) o taggl)

we get b o untagg) o taggl) ou® ~ M oidy o u®. Besides, (s-lcopair-eq) yields

[idy | bo untage]l(Q) oinr =bM o untagg). So that we obtain [idy | bo untage]l(Q) o inr® o

taggl)

So that we get [idy | bo untage]l(Z) o inl® o]§9) o taggl) oul® ~ bW o u®. Now, (w-

~ idy,. Due to (pwsubs) and (wrepl),

oul® ~ b ou(0, Alongside these, with (s-empty), we handle inr(®) = inr® o]gﬁ)).

downcast) yields | ([idy | bountag,]; o inlo []y o tag, o u)(l) ~ bW o u© . The lack of
catchers gives |([idy | bountag,]; o inlo[]y otag, o u)(l) =1 o0, O

Proposition 6.7.8. trys. An exception cannot be handled, if the particular exception
name is not matched. The exception is propagated.

V (e # f) € EName, u?: X — EVy, W BV, 5 Y, 65)
6.8
L([idy | bountag,]; o inlo[]y otagso u)(l) = []§9) o taggfl) oul®: X - V.

Proof. Due to (s-lcopair-eq), we have [idy | bo untage]l(z) o z’m“g% =D o untagg). By

using (subs), we get [idy | bo untage]l(Q) o mr% o taggcl) ou=bMo untagg) o taggcl) ou(®,

Here, we first convert the strong equation into a weak equation and then use (eaxs) on
the right side, since u is pure, so as to obtain [idy | bo untage]l(Z) o mr% o taggcl) o
u® ~ b1 o |]g‘)/f o taggcl) ou®. Since b o []g‘),f = |]gﬁ)), due to (s-empty), we get

[idy | bountage]l(Q) omrg%otagg}) ou® ~ Hg/o) otaggcl)

yields |([idy | bo untage]l)(l) o mr% o taggcl) ou® ~ |]§9) o taggcl) ou®. The lack of

ou®. Now, the rule (w-downcast)

catchers gives |([idy | bountage]l)(l) o z'm“g% otaggcl) oul® =]gg) otaggcl) oul®). We have
inrg% = ml% o]g/o), thanks to (s-empty). Therefore, |([idy | bo untage]l)(l) o ml% o

[]gﬁ)) o taggfl) oul0) = []g/o) o tagg}) oul0. O

Remark 6.7.9. See the source Proofs.v for related implementation details.

6.8 Hilbert-Post completeness for the logic L.,

(0)

exc—pl> for dealing with pure terms, can be seen as any logic extending

a monadic equational logic Lpyeq. For instance, Eg;)c_pl may be an equational logic, with

n-ary operations for arbitrary n. However, the rules for £.;.—;,; do not allow to form tuples

The pure sublogic L

107

6. The exceptions effect

of decorated terms, so that the term op(f,g) (where op is a pure operation of arity 2) is
not well-formed, unless f and g are pure. It is well known that there is no “canonical”
interpretation for such terms; however, the interpretation where f is runned before g can
be formalized thanks to strong monads [Mog91| or sequential products [DDR11]. In this
chapter, in order to focus on completeness issues, we avoid such situations.

This pure sublogic Eg;)cipl is extended to form the corresponding decorated logic for the
programmers’ language for exceptions Lege—p by applying the rules in Figure 6.9, followed
by the intended meanings.

The theory of programmers’ language for the exception Tepe—pr is the theory of Leye—p

generated from some chosen theory 7@ of Eg(;)cfpl; with the notations of Section 4.5,

Tewe—pl = F(T(O)). The soundness of the intended model follows, see, e.g., [DDEP14,
§5.1] and [DDFRI12b|, with the description of the handling of exceptions in Java, see
for instance [GJSBO05, Ch. 14|, or in C4++ [Dral2, §15|. Now, in order to prove the
completeness of the decorated theory for exceptions under suitable assumptions, we first
determine canonical forms and then we study the equations between terms in canonical
forms.

Remark 6.8.1. Note also that Coq certifications of Hilbert-Post completeness proof, pre-
sented in this section, can be found in the package hp-thesis: https://forge.imag.fr/
frs/download.php/696/HPC-THESIS.tar.gz. See the HPCompletenessCoq.v source file
inside the exc_pl-hp folder.

Proposition 6.8.2. For each term a) : X — Y, either there exists some pure term
9 : X — Y such that a = u or there exists some pure term u® : X — EV such that
a = throwy o u.

ul

Proof. The proof proceeds by structural induction. If a is pure the result is obvious,
otherwise a can be written in a unique way as a = b o op o v where v is pure, op is either
throwy for some Z or try(c)catch(d) for some ¢ and d, and b is the remaining part of a.

o If a = bV o throwy o v(?) then by (propagate) a = throwy o v().
o If a = bW o (try(cM)catch(dV))ov® then by induction we consider two subcases.

— If ¢ = w® then by (tryg) a = b o w(® 0 v(® and by induction we consider
two subcases: if b = (9 then a = (t ow o v)(® and if b = throwy o t(?) then
a = throwy o (tow o)),

— If ¢ = throwyz o w® then by (try;) a = b() o dM) 0 w(® 0 4(® and by induction
we consider two subcases: if bod = () then a = (towov)® and if bod =
throwy o t(¥) then a = throwy o (t o w o v)®. O

Thanks to Proposition 6.8.2, in order to study equations in the logic L.z, we may restrict
our study to pure terms and to propagators of the form throwy o v where v is pure.

Proposition 6.8.3. For all vgo),vgo) : X — EV let agl) = throwy ov; : X — Y and

a;l) = throwy owvy : X =Y. Then agl) = agl) — vio) = Ué(])'

Proof. Clearly, if vgo) = vgo) then agl) = agl). Conversely, if a; = ag, i.e., if throwy ov§0)

throwy o véo), then by rule (recover) it follows that vgo) = véo). O

108

https://forge.imag.fr/frs/download.php/696/HPC-THESIS.tar.gz
https://forge.imag.fr/frs/download.php/696/HPC-THESIS.tar.gz

6. The exceptions effect

Assumption 6.8.4. In the logic Lezc—p, for all vgo): X - EV, véo): X =Y, let agl) =
throwg/l) o Ugo): X — Y. Then, agl) = véo) — forall fO ¢0:x 5V, f0 =40,

Let € be the category of sets. Thanks to item (1) in Proposition 4.2.4 and point (6)
in Definition 6.2.1, throwg,l) o vgo) = Uéo): X — Y is interpreted as py o T'(throwy) o
Ny ovi =nyowve: X =Y 4+ Ein %. It is not possible to have this equality for some
x € X, since the left hand side is in the £ summand while the right hand side is in Y
summand of the disjoint union Y 4+ F. This means that these two sides are distinct as
soon as their domain X is interpreted as a non-empty set. If the interpretation of X is
the empty set, then both sides of the assumption are true: Vf, g: 0 — Y, f = g. Similarly,
Vai: 0 =Y + E,vy:) = Y,a; = ny o ve. For this reason, Assumption 6.8.4 is sound.

Theorem 6.8.5. Under Assumption 0.8.4, the theory of exceptions Tegze—pi of the logic

0

Lege—pi 15 relatively Hilbert-Post complete with respect to the pure sublogic Egm)cfpl.

Proof. Using Corollary 4.5.10, the proof relies upon Propositions 6.8.2, 6.8.3. The theory
Texe—p is consistent: it cannot be proved that throwg‘)/ = idg‘), because the logic Leye—pi
is sound with respect to its intended model and the interpretation of this equation in the
intended model is false: indeed, throwgy (p) € E for each p € EV, and since EV + E
is a disjoint union we have throwgy(p) # p. Propositions 6.8.2 and 6.8.3 together with
Assumption 6.8.4 prove that the given equation is equivalent to a set of pure equations. [

6.9 Hilbert-Post completeness for the logic L.,

The logic Ly is precisely introduced and its categorical interpretation is studied in Sec-
tion 6.1. Let the logic Leze—q be a variant of L.,. obtained by dropping the categorical
copairs/coproducts. Let the logic Ly,eq+0 be an extension to Ly, with the use of empty
(0) type and the following inference rules: ll

[X:)a()—>X and f:gq)_;f(. Now, the core theory of
exceptions Tez. is defined as a theory of the logic Lez.—q generated from the fundamental
equation untagg) otaggl) ~ idg\)/e and from some consistent theory 7, of the logic £,,e4+0;
with the notations of Section 4.5, Teze = F'(Teq). In this section, we prove that the theory
Texe of the logic Leye—q (not of the logic Le,.) is Hilbert-Post complete with respect to the

logic Lineq+o-

Remark 6.9.1. Note that Coq certifications of the Hilbert-Post completeness proof, pre-
sented in this section, can be found in the package hp-thesis: https://forge.imag.fr/
frs/download.php/696/HPC-THESIS.tar.gz. Check out the HPCompletenessCoq.v file
inside the exc_cl-hp folder. Our main result is Theorem 6.9.9 about the relative Hilbert-
Post completeness of the decorated theory Te.. of exceptions under suitable assumptions.
It is assumed that there is only one exception name e and we write EV, tag and untag
instead of EV,, taggl) and untagg).The study of completeness proof with the signature
including several exception names and coproducts is considered as a future goal.

Note also that we do not explicitly have the relative Hilbert-Post completeness (rHPC)
formalization in Coq. Thanks to the second characterization of rHPC given in Corol-
lary 4.5.10, it suffices to show that any formula e in the logic Ley.—g is (T-)equivalent to
some set of formulae Fy in the logic £,eq40:

Tewe + Th(Ey) = Tewe + Th(e).

109

https://forge.imag.fr/frs/download.php/696/HPC-THESIS.tar.gz
https://forge.imag.fr/frs/download.php/696/HPC-THESIS.tar.gz

6. The exceptions effect

This has been checked in Coq.

Lemma 6.9.2. 1. The fundamental strong equation for exceptions is tag o untag =
id?).
2. For all pure terms ugo),ugo) : X = EV, one has: ugo) = ugo) <= tago ugo) =

tago ugo) < untagotago ugo) = untago tago ugo).

3. For each pair of catchers f1(2) f2(2): EV =Y, f1(2)ountag = f2(2)ountag — f1(2) ~
7.

Proof. 1. By rewriting the axiom (eax;), we get tagountago tag ~ tag; then by rule
(elocal-global) tagountag = z'dg]).

2. Implications from left to right are clear. Conversely, given untag o tag o ugo) =

(0)

untag o tag o u, ', we first convert the strong equation into a weak equation, then
(0) (0)

use rules (eax;) and (wsubs) so as to get uy; ' ~ uy . Since u; and ug are pure, we
(0 (0)
obtain u;”’ = uy .
: (2) — 2 (2) — 2
3. Assuming that f;” ountag = f,”' ountag, we have f;”’ ountagotag = f,”~' ountago
tag, thanks to (replsubs). We convert the strong equation into a weak equation and

apply (eax;) on both sides to get fl(z) ~ f2(2). Conversely, given fl(z) ~]”2(2)7 we have

f1(2) oz’dgg/ ~ 2(2) oidg‘)/, thanks to (pwsubs). Now, by making use of (eax;) on both

sides, we get f1(2) ountag o tag ~ f2(2) ountag o tag. Due to (elocal-global), we end
up with f1(2) ountag = f2(2) ountag.
U

Proposition 6.9.3. 1. For each propagator a® . X = Y, either a is pure or there
is a pure term v : X — EV and an accessor uV: 0 — Y such that «V) =
u o tago 00,

2. For each catcher f(2) : X =Y, either f is a propagator or there is a propagator a®
EV =Y and a pure term u9) : X — EV such that f® = a(!) o untag o tagov(®).

Proof. 1. The proof proceeds by structural induction. If a is pure, then the result is
obvious. If a = tag, then it follows that tag = idqgl) otago z'dsgo‘)/. Otherwise, a can

be written as a = agl) o agl) such that a1: Z — Y and ao: X — Z. By induction a;

and agy are either pure or a1 = ugl) otago v%o) and a9 = ug) otago véo) for some
pure terms vi: Z — EV and vo: X — EV and some propagators u;: 0 — Y and

uo: 0 — Z. Thus, there are four cases to consider:

(1.1) If both ay and a9 are pure, then a is.
(0)

(1.2) If a1 is pure while as is a propagator, we get a = (aj o ug)™") o tago Uy .

(1)

(1.3) Symmetrically when as is pure while a; is a propagator, we get a = uy’ otago
(?}1 o az)(o).
(1.4) If both are propagators, then a = ugl) o tago vio) o uél) o tago véo). Thanks

to (s-empty), we get tag o vio) o ug) = idg]). The use of (replsubs) yields
ugl) o tago vio) o ugl) o tago véo) = ugl) o tago véo).

(1) (0)

Uy - otagouvy .

Hence, we obtain a =

110

6. The exceptions effect

2. The proof proceeds by structural induction. If f is a propagator, then the result
is obvious. If f = untag, then it follows that untag = idg‘)/ ountago tago [|py
(notice that tago [gy = z'dg)) due to (s-empty)). Otherwise f can be written as

/= fl(Z)o f2(2) such that fi: Z — Y and fo: X — Z. By induction f; and f5 are either

propagators or fl(Z) = agl) ountago tago Ugo) and f2(2) = agl) ountago tago vgo) for

some pure terms v1: Z — EV and vo: X — EV and some propagators a;: EV — Y
and ag: EV — Z. Thus, there are four cases to consider:

(2.1) If both f; and f2 are propagators, so is f by (comp).

(2.2) If fy is a catcher while f, is a propagator, we obtain f = agl) ountagotagovgo) o

f2(1). Thanks to Point 1, fo = u o tag o w for some pure term w(®: X — EV

and some propagator w0 = Z. So that the equation expands into f= agl) o
untagotagovgo) oul® otagow(o). Thanks to (s-empty), we get tagovgo) oull) =
idéo). The use of (replsubs) yields agl) ountag o tago vgo) 0) =

agl) ountago tago w©®. Thus, we end up with f = agl) ountago tago w©,

9} u(l) O tag 9} ’U)(

(2.3) Symmetrically when fo is a catcher while f; is a propagator, we obtain f =

(f1 0 az)M ountago tago véo).

(2.4) If both are catchers, then f = agl) ountago tago v§0) o agl) ountago tago véo)
such that v§0): Z — EV, véo): X — EV, agl): EV — Y and agl): EV — Z.

(1)

Now, the reasoning proceeds on a, *. Thus, we have two sub-cases:

(2.4.1) Let us first consider the case where ay is pure. Since, the composition

ng)Q@gO) is pure, due to (pwsubs), we have untagotagovgo)oago) ~ vgo)oago).

Now, we apply Point 3 in Lemma 6.9.2 and obtain untagotago vgo) o ago) o

untag = vgo) o ago) ountag. Thanks to (replsubs), we write agl) ountago

((0) ©) _ (1) (V) (0)

tago vlo) oay ountagotagowy’ =a;’ 0 vgo oay ountagotagow, .

Hence, f = (a1 o vy 0 ap)M) ountago tago véo).
(2.4.2) It remains to consider the case where ag is not pure (it has tag). Thanks
to Point 1, we obtain agl) = uM o tag o w® such that v(V: 0 — Z and

w®: BV — EV. Thus, f = agl) ountag o tago v%o) ouM o tagow® o
(0)

untag o tagowvy . Due to (s-empty), we have tago 2O 641 = g0 By
g g0 Uy gouv, 0

using (replsubs), we get tago v%o) ouM otagow® = tagow®. We first

convert the strong equation into a weak equation and then make use of

(wrepl) to obtain untago tago vgo) ouM otagow® ~ untagotagow®.

Since w is pure, we apply (eax;) on the right to get untag o tago vgo) o

uM otagow® ~ w® . Now, we apply Point 3 in Lemma 6.9.2 and obtain
(0)

untag o tagow, o uM o tag o w® o untag = w® o untag. Thanks to

(1) (0)

(replsubs), we obtain a;’ o untag o tago v;

tago vgo) = (a3 ow)M o untag o tago véo).

oulM o tago w® o untago

O

Corollary 6.9.4. For each propagator aV) o X =Y, either a is pure or there is a pure

term v(0: X — EV such that oY) = []gﬁ)) otago v,

Proof. Due to Point 1 in Proposition 6.9.3, a is either pure or it can be written in a unique

way as a = b o tag o v for some pure term v(¥: X — EV and some propagator

111

6. The exceptions effect

b(M: 0 — Y. Thanks to (s-empty), we have b(1) = []gﬁ)), hence the result follows. O

Thanks to Corollary 6.9.4 and Proposition 6.9.3, in order to study equations in the logic

Lz, we may restrict our study to pure terms, propagators of the form []g/o) otago v(©®

and catchers of the form a(!) o untago tago u(®.

Assumption 6.9.5. For any strict thrower term a(*) : X — Y and pure terms vgo) X =
EV, véo): X — Y, such that oY) = []§9) otagov®. Then;

[]gﬁ]) otago v = véo) = (for all f(o), g(o)t X =Y, f(o) = 9(0))-

Let € be the category of sets. Thanks to items (2) and (3) in Proposition 4.2.4, |]gﬁ)) o
tagMon® = véo) : X — Y isinterpreted as T'(] |y)oppoT (tag)oT (v1) = T'(ve): X+F —
Y + E in €. Given any exceptional argument ¢’ € FE, we have T([|y) o up o T'(tag) o
T(v1)(e') = € = T(v9)(€’): both sides propagate the exception e’. Besides, given any
ordinary argument z € X, we have T'([]y) o up o T'(tag) o T'(v1)(x) = €/, for some ¢’ € F
and T'(v2)(z) = y, for some y € Y. Since, “4” is the disjoint union operator on sets,
T([ly)oupoT(tag) oT(v1) =T(v2): X + E — Y + E cannot hold in % sides agree on
exceptional arguments but not on ordinary ones. In other words, with this assumption,
we thus mean that if such an equality holds then all pure parallel terms are equal to each
other.

Remark 6.9.6. Notice also that Assumption 6.9.5 is the image of Assumption 6.8.4 by the
translation given in Section 6.3, so that by Theorem 6.3.4, they are equivalent.

Now, Proposition 6.9.7 shows that
(1) equations between catchers can be reduced to some equations between propagators,

(2) equations between propagators can be reduced to some equations between pure terms.

Proposition 6.9.7. 1. For all agl),agl) : BV — Y and ugo),ugo) : X — EV, let
f1(2) = agl) ountagotagougo) : X =Y and f2(2) = agl) ountagotagougo) X =Y.
Then;

1(2) ~ f2(2) = agl) o ugo) = aél) o uéo)
1(2) = f2(2) = agl) = agl) and agl)) ugo) = agl) o ugo).

2. For all agl) BV - Y, ugo) : X — EV and agl) X =Y, let f1(2) = agl) ountag o
tago ugo) : X =Y. Then;

{ O o) s o oul? = off

1(2) = agl) — agl) o

ugo) = agl) and agl) = []g/o) o tag.

3. Let us assume that |]g/o) 18 a monomorphism with respect to propagators. For all

0) (0) |

v§0),vé0) X = EV, let agl) = []gﬁ)) otagovgo) : X =Y and agl) = []g/ otagov,
X =Y. Then;
al) = al) = oV =0
Proof. 1. We have four implications to prove:

112

6. The exceptions effect

(1.1) agl) ountago tago ugo) ~ agl) ountago tago ugo) = agl) o ugo) = agl) S) ugo)_

Since, u; and ug are both pure, we apply (eax;) on both sides. So that we get

(1) go) ~ agl) o ugo). Due to the lack of catchers, we end up with ag Vo ugo) =
(1) (0)

(12) ag) 0 _ 0,0 (M © O (0)

ouUy’ =ay 0Uy = a ountagotagowu;’ ~ a,’ ountagotagousy’ .
We first convert the strong equation into a weak equation and then using (ids),
(O zdg‘)/ o ugo) ~ agl) o idg)),

we get ay ouy . By rewriting (eax;) on both sides
(since u; and ug are both pure), we end up with agl) o untag o tag o ugo) ~
a(Ql) ountago tago u(QO).

0 _

(0) (1) (1)

(1.3) agl) ountag o tagou; = ay’ ountagotagou, —> aj = as’ and
oD 6,0 = (1) 0.
1 1= 2"

(1.3.1) Given agl) ountagotagoug) = a(2)ountagotagougo), we get agl) ountago

tagou(o) []()?) = a,(21) ountagotagougo) []g?) thanks to (replsubs). Since
tago ugo) o]g?) = []g)) = idéo) due to (s-empty), for each i € {1,2}, we

obtain all ountag = agl) ountag. Now, we apply Point 3 in Lemma 6.9.2

(1) (1) n _ @)

to get a;’ ~ a5 ’. There is no catchers involved, thus we write a;’ = a, .

(1.3.2) First, we convert the strong equation into a weak equation and then apply

(eaxy) on both sides (provided that u; and ug are both pure) so as to get
o o u(O) (1) 040
1 2

. There is no catchers involved so that we conclude

with a(l) o ugo) = (1) u(o)

(1.4) agl) = agl) and(a)(l) o ug) = ag)o ugo) == agl)
0

untagotagou, “:

0
ountagotagou;’ =ay’ ©

(1.4.1) Starting from agl) = agl), thanks to (replsubs), we get ag) ountago zd() =

agl) o untag o id() (0) [](0) =

1) =

Due to (s-empty), we obtain both tag o uy

0 zda()) and tagou(o) []g?) = []gj) = zdéo). Hence, agl) ountagotago
u(o) H(O) _— (0) H(O)

a5~ ountago tago u, X -

(1.4.2) Starting from agl) go) = a(l) ou;), thanks to the use of (ids) on both sides,

we get ag)6 zd() go) = gl) o zd() o ugo). After converting the strong

equation into a Weak equation, we apply (eax1) on both sides, since u; and
(0) (1) (0)

. 1
U9 are pure so as to obtain: ag)ountagotagoul ~ a5 ountagotagous .

Now, the (eeffect) rule yields agl) ountago tago ugo) = agl) ountagotago ugo)

given both items (1.4.1) and (1.4.2).

2. We again have four cases to prove:
(2.1) agl) ountago tago ugo) ~ aél) = agl) o ugo) = aél): Since, u; is pure, we can

® ., 0 (1)

apply (eax;) and obtain ay’ ouy’ ~ ay’. There is no catchers involved, thus

1,0 — (1)

we end up with a3’ ouy’ =ay .

(2.2) agl) o ugo) = agl) = agl) o untag o tag o ugo) ~ agl): Thanks to (ids), we
have agl) o idg‘), ° ugo) = agl). Now, we first convert the strong equation into
a weak equation and then apply (eax;), since the term w; is pure, so as to get
agl) ountago tago u(o) ~ agl).

(2.3) ag) o untago tago ugo) = aél) = agl) o ugo) = aél) and agl) = []gf) o tag:

113

6. The exceptions effect

(2.3.1) We first convert the strong equation into a weak equation. Since u4 is pure,

we apply (eax;) and obtain ag) ougo) ~ agl). There is no catchers involved,

1) 5,0 =)

thus we end up with a;”’ ouy’ = a,

(2.3.2) Thanks to (replsubs), we get agl) ountago tago ugo) of](0) = (1) []g?).
Due to (s-empty), we have tagou() [](0) []G(DO) = idq()) and a(l) []g?) =
[]gg). Therefore, agl) ountag = |]gg). Now, the use of (replsubs) gives

(1) (0)

ay ' ountagotag =[]y’ otag. After converting the strong equation into a

weak equation, we apply (eax;) and obtain agl) ~ [](0) otag. The lack of
(1 — [](0)

catchers gives a;’ = o tag.

(2.4) agl) o ugo) = agl) and a (1) = [](0) otag = agl) ountago tago ugo) = agl):

(2.4.1) Starting from ag) o ugo) = aé) first, we have the conversion of the strong

(1)

equation into a weak equation, then we apply (ids) so as to get a;’ o

idg%, o ugo) gl). Since w; is pure, we apply (eax;) on the left and obtain
1)

0) 40

ay ' ountagotagou;’ ~ ay
(2.4.2) Staring from al) = [](0) o ta first obtain a!” = iV ©
4. =1y g, we first obtain a3’ = ay’ o[| o tag
thanks to (s-empty). By the use of (replsubs), we get agl) ountag = agl) o

[]g?) otagountag. By using Point 1 in Lemma 6.9.2 we have agl) ountag =

agl) o |]g?). Due to (s-empty) tag o u§0) o |]g?) = |]g)) = idqgo) holds.
Therefore, agl) ountago tago ugo) []g?) = agl) o []g((]).
Now, the (eeffect) rule yields agl) ountago tago ugo) = agl), given above items
(2.4.1) and (2.4.2).
3. Recall the statement []() o tago v§0) = []gg) otago v§0) = v%o) = véo).

(3.1) If |](0) otagovgo) = []gﬁ)) otagovéo), since []gﬁ)) is a monomorphism with respect
to propagators we get tago vgo) = tago véo). By Point 2 in Lemma 6.9.2, this
yields in v%o) = véo).

(3.2) Conversely, if vg) = vgo) then thanks to (replsubs), we simply get []() o tago
20 = H(O) ota (0)

1= g0 s
O

Now, Corollary 6.9.8 shows that equations between catchers can be reduced to equations
between pure terms. It also makes the proof in Coq easier to read.

(0)

Corollary 6.9.8. Let us assume that [|- is a monomorphism with respect to propagators.
Then:

1. For all agl) ,agl): X — Y, we have either of below cases:

(1.1) when X 7é 0, we have one of below subcases:
(1.1.1) Hvl X 5 BV, oY =6l = o0 =00
(1.1.2) Hvl) vé D g Y, agl) = agl) = vgo) Evéo)

(1.1.3) O: X -V, Vie{l, 2}, ol =00
VIO 0. X 5y £0 = 40

114

6. The exceptions effect

(1.2) when X = 0, we have:

()

(1
aq Gy "

2. For all fl(z), 2(2): X =Y, we have either of below subcases:

2.1) 3V, o BV s v, Y 6 x sy, 1P =0 e
agl) = agl) and bgl) = bgl),
(2.2) Hagl), agl): X =Y, f1(2) = 2(2) = agl) = agl).
Proof. The proof is immediate from Proposition 6.9.7. See full proof in Appendix B. [

Theorem 6.9.9. Under Assumption 6.9.5, the theory of exceptions Teze of the logic Lege—a
is relatively Hilbert-Post complete with respect to the pure sublogic Lyeq+0-

Proof. Using Corollary 4.5.10, the proof is based upon Corollary 6.9.8. It follows the same
lines as the proof of Theorem 6.8.5, except when X is empty: due to catchers, the proof
here is slightly more subtle. First, the theory 7. is consistent: it cannot be proved that
untag(Q) =]5302/ because the logic L. is sound with respect to its intended model and
the interpretation of this equation in the intended model is false: indeed, the function
untag : £ — EV + E is such that untag(tag(p)) = p € EV for each p € EV while
[|ev(e) = e € E for each e € E, which includes e = tag(p); since EV + E is a disjoint
union we have untag(e) # [|gv(e) when e = tag(p). Now, let us consider an equation
between two terms f1 and fo with domain X; we distinguish two cases, whether X is empty
or not. When X is non-empty, Corollary 6.9.8 proves that the given equation is equivalent
to a finite set of equations between pure terms. When X is empty, then f; ~ []y and
fa ~ []y, so that if the equation is weak or if both f; and fs are propagators, then the given
equation is equivalent to the empty set of equations between pure terms. When X is empty
and the equation is f; = fs with at least one of f; and fy a catcher, then by Point 2 of
Corollary 6.9.8 the given equation is equivalent to a set of equations between propagators;
but we have seen that each equation between propagators (whether X is empty or not) is
equivalent to a set of equations between pure terms, so that fi = fo is equivalent to the
union of the corresponding sets of pure equations.]

6.10 Chapter summary

In this Chapter;

(1) The logic Leye has been built as an extension to the logic Lo, and interpreted
interpreted via the coKleisli-on-Kleisli construction applied to the exceptions monad.

(2) Legpe—pr has been established as an extension to L0, and interpreted via the Kleisli
adjunction associated to a monad applied to the exceptions monad.

(3) The logics Leze and Lege—p have been formalized in Coq and these formalizations
have been used to prove properties of programs with features to handle exceptions.

(4) The base language of the logic Leze (with no use of coproducts) and the language of
Legzc—pi have been proven to be Hilbert-Post complete (for a single exception name)
and these proofs have been checked in Coq.

115

6. The exceptions effect

116

[

Conclusions

7.1 Summary

In this thesis, as extensions to the monadic equational logic (L), we have presented
the decorated logic for a comonad (L.om,) and a monad (Len). The former has been
extended into the decorated logic for the state (Lg) and the latter into the decorated
logic for exceptions (Lezc). The logics L4 and L. have been used to formalize the state
and the exceptions effects, respectively. We have also introduced the decorated logic for
the programmers’ language of exceptions (Leyc—pr). It has been translated into the logic
Leze and the translation has been proven to be correct. We have also given categorical
interpretations of all these logics. Besides, the logic L4 (without products) and the logic
Legze (without coproducts) as well as the logic L. have been proved to be Hilbert-Post
complete, relatively to their pure sub-logics.

We have separately implemented the logics L4 and L., in Coq and used it to certify some
properties of programs involving the state and the exceptions effects. We have also certi-
fied the relative Hilbert-Post completeness proofs of the logics L4 and Le,.. Similarly, the
logic Leye—p has also been implemented in Coq to certify the correctness of its translation
into the logic L., and its relative Hilbert-Post completeness proof.

7.2 Future directions

Below, we itemize some exciting directions to which this thesis can be extended:
e The relation between Hoare Logic and the logic L4 could be shown.

e We plan to study the combination of the logics L4 and Lez.. This may be used to
build some sort of equational semantics for a toy imperative language with exceptions.
This would enable us to make some equational reasoning between programs involving
both the state and the exceptions effects. In fact, we have made the first attempt
for combining the logics L4 and Lez. in a very restricted setting where the toy
language is chosen as IMP (or “while”) [Marl2] with only one type of exceptions.
Following is the link to its implementation in Coq where a few examples of program
equivalences involving the mentioned effects could be found: https://forge.imag.
fr/frs/download.php/697/IMPEX-STATES-EXCEPTIONS-THESIS. tar.gz

e Other sorts of computational effects such as local state and non-termination can first
be formalized separately in a decorated logic. Then, their composition with the logics
Lg and L.z could be discussed. This would enhance the decorated treatment of the
effects of a given computation.

117

https://forge.imag.fr/frs/download.php/697/IMPEX-STATES-EXCEPTIONS-THESIS.tar.gz
https://forge.imag.fr/frs/download.php/697/IMPEX-STATES-EXCEPTIONS-THESIS.tar.gz

7. Conclusions

118

e The logic L, with products and similarly the logic L., with coproducts could be

proven to be Hilbert-Post complete, relative to their sub-logics. To do so, it will be
necessary to figure out the canonical forms of terms with decorations (1) and (2) in
the presence of pairs and copairs.

The effect composition could be generalized in a way to compose all effects that can
be separately formalized through the decorated logic. This study requires a detailed
work in categorical interpretations of decorated logics.

We have already stated our first understanding on the relation between effect handlers
and terms with decoration (2) in Example 2.1.9. We could study this relation further
to get a better understanding.

We will check whether the theories Te.. and T preserve the Hilbert-Post complete-
ness property when the categorical (co)products are considered (7e.. as a theory
of Leye and Ty as a theory of L) for several exception names and locations with
respect to the logics Lyeq+0 and Lyeqt1-

7. Conclusions

119

7. Conclusions

120

[Ahr15|

[BDS13]

[BKO1]

[Bor94|

[BP14]

[BP15]

[Bral3|

[BVS93]

[CHSS]

[Coe04]

[DD10]

[DDE+15]

Bibliography

Benedikt Ahrens. Initiality for typed syntax and semantics. J. Formalized
Reasoning, 8(2):1-155, 2015.

Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Cal-
culus with Types. Perspectives in logic. Cambridge University Press, 2013.

Nick Benton and Andrew Kennedy. Exceptional syntax. J. Funct. Program.,
11(4):395-410, July 2001.

Francis Borceux. Handbook of Categorical Algebra. Number 50 in Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 1994. Three
volumes.

Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and
handlers. Logical Methods in Computer Science, 10(4), 2014.

Andrej Bauer and Matija Pretnar. Programming with algebraic effects and
handlers. J. Log. Algebr. Meth. Program., 84(1):108-123, 2015.

Edwin Brady. Programming and reasoning with algebraic effects and depen-
dent types. In Proceedings of the 18th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP ’13, pages 133-144, New York, NY,
USA, 2013. ACM.

Stephen Brookes and Kathryn Van Stone. Monads and Comonads in Inten-
sional Semantics. Technical Report CMU-CS-93-140, Pittsburgh, PA, USA,
1993.

Thierry Coquand and Gerard Huet. The calculus of constructions. Inf. Com-
put., 76(2-3):95-120, February 1988.

Claudio Sacerdoti Coen. A semi-reflexive tactic for (sub-)equational reasoning.
In Types for Proofs and Programs, International Workshop, TYPES 2004,
Jouy-en-Josas, France, December 15-18, 2004, Revised Selected Papers, pages
98-114, 2004.

César Dominguez and Dominique Duval. Diagrammatic logic applied to
a parameterisation process. Mathematical Structures in Computer Science,
20(4):639-654, 2010.

Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous, and
Jean-Claude Reynaud. Relative hilbert-post completeness for exceptions. In
Siegfried Rump and Chee Yap, editors, MACIS 2015, Sixzth International Con-
ference on Mathematical Aspects of Computer and Information Sciences, 2015.

121

Bibliography

[DDEP14]

[DDER14]

[DDFR12a]

[DDFR12b)

[DDR11]

[DDR13]

[DDR14]

[Del00)]

[Dral2]
[Eki15]
[EMS14]
[Fil96]

[GJSBOS]

|GSR14]

122

Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, and Damien Pous.
Formal verification in Coq of program properties involving the global state
effect. In Christine Tasson, editor, 25e Journées Francophones des Langages
Applicatifs, Fréjus, January 2014.

Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, and Jean-Claude
Reynaud. Certified proofs in programs involving exceptions. In Matthew Eng-
land, James Davenport, Paul Libbrecht, Andrea Kohlhase, Michael Kohlhase,
Walther Neuper, Pedro Quaresma, Josef Urban, Alan Sexton, Petr Sojka,
and Stephen Watt, editors, CICM’2014, Proceedings of the 2014 Conference
on Intelligent Computer Mathematics, Coimbra, Portugal, CEUR Workshop
Proceedings, pages 1-16, July 2014.

Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, and Jean-Claude
Reynaud. Decorated proofs for computational effects: States. In Proceedings
Seventh ACCAT Workshop on Applied and Computational Category Theory,
ACCAT 2012, Tallinn, Estonia, 1 April 2012., pages 45-59, 2012.

Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, and Jean-Claude
Reynaud. A duality between exceptions and states. Mathematical Structures
in Computer Science, 22(4):719-722, 2012.

Jean-Guillaume Dumas, Dominique Duval, and Jean-Claude Reynaud. Carte-
sian effect categories are Freyd-categories. Journal of Symbolic Computation,
46(3):272-293, March 2011.

Jean-Guillaume Dumas, Dominique Duval, and Jean-Claude Reynaud. A
decorated proof system for exceptions. CoRR, abs/1310.2338, 2013.

Jean-Guillaume Dumas, Dominique Duval, and Jean-Claude Reynaud. Break-
ing a monad-comonad symmetry between computational effects. CoRR,
abs/1402.1051, 2014.

David Delahaye. A tactic language for the system coq. In Logic for Program-
ming and Automated Reasoning, Tth International Conference, LPAR 2000,
Reunion Island, France, November 11-12, 2000, Proceedings, pages 85-95,
2000.

C++ Working Draft. ISO/IEC JTC1/SC22/WG21 standard 14882:2011,
2012.

Burak Ekici. Imp with exceptions over decorated logic. In Preproceedings of
Trends in Functional Programming 2015, 2015.

Jeff Egger, Rasmus Ejlers Mggelberg, and Alex Simpson. The enriched effect
calculus: syntax and semantics. J. Log. Comput., 24(3):615-654, 2014.

A. Filinski. Controlling Effects. PhD thesis, 1996.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley
Professional, 2005.

Sergey Goncharov, Lutz Schroder, and Christoph Rauch. (co-)algebraic foun-
dations for effect handling and iteration. CoRR, abs/1405.0854, 2014.

Bibliography

[HLPPO7]

[HPO7]

[HPPOG6|

[JacO1]

[Jas09]

[JR11]

|[Kanb8§]

[Law63]

[Lev99]

[Lev06]

[LG8S|

[Lin66]

[Lin69)

[Mar12]

[Mel10]

[ML71|

Martin Hyland, Paul Blain Levy, Gordon D. Plotkin, and John Power. Com-
bining algebraic effects with continuations. Theor. Comput. Sci., 375(1-3):20—
40, 2007.

Martin Hyland and John Power. The category theoretic understanding of uni-
versal algebra: Lawvere theories and monads. Flectr. Notes Theor. Comput.
Sci., 172:437-458, 2007.

Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum
and tensor. Theor. Comput. Sci., 357(1-3):70-99, 2006.

Bart Jacobs. A formalisation of java’s exception mechanism. In ESOP’01,
pages 284-301, 2001.

Mauro Jaskelioff. Modular monad transformers. In Programming Languages
and Systems, 18th European Symposium on Programming, ESOP 2009, Held
as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, pages 64-79, 2009.

B. Jacobs and J. Rutten. An introduction to (co)algebras and (co)induction.
In In: D. Sangiorgi and J. Rutten (eds), Advanced topics in bisimulation and
coinduction, pages 38-99, 2011.

Daniel Kan. Adjoint functors. Transactions of the American Mathematical
Society, 87:294-329, 1958.

F. W. Lawvere. Functorial Semantic of Algebraic Theories (Available with
commentary as TAC Reprint 5.). PhD thesis, 1963.

Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Typed
Lambda Calculi and Applications, 4th International Conference, TLCA’99,
L’Aquila, Ttaly, April 7-9, 1999, Proceedings, pages 228-242, 1999.

Paul Blain Levy. Monads and adjunctions for global exceptions. Electr. Notes
Theor. Comput. Sci., 158:261-287, 2006.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings
of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 88, pages 47-57, New York, NY, USA, 1988. ACM.

F. E. J. Linton. Some aspects of equational theories. In Proc. Conf. on
Categorical Algebra, pages 84-95, La Jolla, 1966. Springer-Verlag.

F. Linton. Relative functorial semantics: adjointness results. In Lecture notes
in mathematics, volume 99, 1969.

Claude Marché. Mpri course 2-36-1: Proof of program. Technical report,
2012.

Paul-André Melliés. Segal condition meets computational effects. In Proceed-
ings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS
2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 150-159, 2010.

Saunders Mac Lane. Categories for the Working Mathematician. Number 5
in Graduate Texts in Mathematics. Springer-Verlag, 1971.

123

Bibliography

[Mog89]

[Mog91]

[NPWO02]

[OBM10]

[Orc12]

[POM]

[PPO1]

[PP02]

[PP03]

[PP09)

[PP13)]

[Prel0]

[Prel4]

[SMO04]

124

E. Moggi. Computational lambda-calculus and monads. In Proceedings of
the Fourth Annual Symposium on Logic in Computer Science, pages 14-23,
Piscataway, NJ, USA, 1989. IEEE Press.

Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55—
92, July 1991.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

Dominic A. Orchard, Max Bolingbroke, and Alan Mycroft. Ypnos: Declar-
ative, parallel structured grid programming. In Proceedings of the 5th
ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming,
DAMP ’10, pages 15—24, New York, NY, USA, 2010. ACM.

Dominic Orchard. Should i use a monad or a comonad? Technical report,
2012.

Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: unified static
analysis of context-dependence. In Proceedings of International Conference on
Automata, Languages, and Programming - Volume Part II, ICALP 2013.

Gordon D. Plotkin and John Power. Semantics for algebraic operations. Electr.
Notes Theor. Comput. Sci., 45:332-345, 2001.

Gordon D. Plotkin and John Power. Notions of computation determine mon-
ads. In Foundations of Software Science and Computation Structures, 5th
International Conference, FOSSACS 2002. Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble,
France, April 8-12, 2002, Proceedings, pages 342-356, 2002.

Gordon D. Plotkin and John Power. Algebraic operations and generic effects.
Applied Categorical Structures, 11(1):69-94, 2003.

Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Pro-
gramming Languages and Systems, 18th European Symposium on Program-
ming, ESOP 2009, Held as Part of the Joint Furopean Conferences on The-
ory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings, pages 80-94, 2009.

Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Logical
Methods in Computer Science, 9(4), 2013.

Matija Pretnar. The Logic and Handling of Algebraic Effects. PhD thesis,
2010.

Matija Pretnar. Inferring algebraic effects. Logical Methods in Computer
Science, 10(3), 2014.

Lutz Schroder and Till Mossakowski. Generic exception handling and the Java
monad. In Charles Rattray, Savitri Maharaj, and Carron Shankland, editors,
Algebraic Methodology and Software Technology, volume 3116 of Lecture Notes
in Computer Science, pages 443-459. Springer, 2004.

Bibliography

[Smil0] Peter Smith. The galois connection between syntax and semantics. Technical
report, Cambridge University, 2010.

[Soz10] Matthieu Sozeau. A new look at generalized rewriting in type theory. Journal
of Formalized Reasoning, 2(1):41-62, 2010.

[Stal0] Sam Staton. Completeness for algebraic theories of local state. In Founda-
tions of Software Science and Computational Structures, 13th International
Conference, FOSSACS 2010, Held as Part of the Joint Furopean Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings, pages 48-63, 2010.

[Tze08] Nikos Tzevelekos. Nominal game semantics. PhD thesis, 2008. CS-RR-09-18.

[UVO05] Tarmo Uustalu and Varmo Vene. The essence of dataflow programming.
In Central Furopean Functional Programming School, First Summer School,
CEFP 2005, Budapest, Hungary, July 4-15, 2005, Revised Selected Lectures,
pages 135-167, 2005.

[UVO08] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. Elec-
tron. Notes Theor. Comput. Sci., 203(5):263-284, June 2008.

[Wad92] Philip Wadler. The essence of functional programming. In Proceedings of
the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’92, pages 1-14, New York, NY, USA, 1992. ACM.

125

Bibliography

126

A

Appendix 1

Decorated proofs of Plotkin&Power properties of the global state (continued
from Section 5.3).

Note that in the following, we respectively use 1kpl(-1)

updategz)

@)

and upd,”’ instead of 1ookupl(-1) and

, for the sake of simplicity.

Lemma A.0.1. Interaction update-update (IUU). Storing a value x and then a value y
at the same location 1 is just like storing the value y in the location.

Vi € Loc, ude(Q) o wéo) o (ude(Q) ., id\C)) = ude(Q) o wéo) Vix V=1 (A1)

Proof. (1) the location i stores the same value after executing operations on both sides:

(w-1prod-eq)

i o (wpal? x, id\)) ~ id() o

(idt) (s-lpair-eq)

71'50) o (updEQ) X id(o)) ~ ﬂ(o) 7r(0) o (ma, 7r1>(0) = ﬂgo)
d(2) d(O)

o (up: (2) Xp zd(o

o (u
(
(pwrepl)
(
o (u

~

wpa® x, id? 2d<o>)

~

idg)) o7r o

(ax1)

)~
)
)
pa® %, id?) ~ 1p(" 0 upa® o 7"

(2) every location k, such that k # ¢, stores the same value after executing operations
on both sides:

Vi k € Loc s.t. i#k
kpg) o updEQ) ~ 1kp§€1) o(>§2)

(ax2)

(wsubs)

&) @ __(0) 0 et T o
1kp,; ’ oupd;~ omy " ~ lkp, °<>Vi 0Ty <>Vz omy’ =T

kp](cl) SN 1kp,<€1) o ﬂgo)

o upd§2) O Ty

(wsubs) o 2) @) (1) __(0) (2 (0)
kp " o upd? o 7{” o (upa? x, idVi) ~1kp, ’ omy o (upd,”’ X idvi) [TT4]

1kp](€1) o upd§2) om0 (upd§2) X id$)) ~ lkp,il) o updEQ) o ﬂéo)

[IT4]

(s-rprod-eq)
7'('50) o (updEQ) X idg?_)) = updEQ) o ﬂgo)

Given above items (1), (2) and the (local-global) rule, we conclude that upd() 775) o

(ude@) X idg)) = updg) o 7150).

O

(s-unit)

A. Appendix 1

Lemma A.0.2. Interaction update-lookup (IUL). When one stores a value a in a location
1 and then reads the location i, one gets the value a.

Vi€ Loc, 1kp!" oupd”) ~id\)) : V; = V; (A.2)
Proof. Applying (axy) closes the goal.
]

Lemma A.0.3. Commutation lookup-lookup (CLL). The order of reading two different
locations © and j does not matter.

Vi # j € Loc, (id&g) X1 1kp§1)) o 71'1_1(0) o 1kp§1) = (A3)
‘ 3

permutﬁ) o (id&?j) X1 lkpgl)) o wfl(o) o 1kp§1) 1=V xV;

Proof. (1) result agreement on the first argument of the returned pair after executing
operations on both sides:

id{” = (){?) o 1xp}

1xp') = 11p{M 0 ¢)52) o 1kp!"

(s-lpair-eq)

. 0
1kp") ~ 1kp{ o ¢ >§2_) o 1kp!) w0 (idy,, { v,) = >§g)
D e ——
R
1
1kp§1) ~ 1kp£1) o wéo) o wfl(o) o 1kp§.1) [Hl}
1 0 . ,(0 1 —1(0 1
1p!) ~ 7l o (zdﬁ,j) %y 1kp{Y) o M 0 11p T3]

1kpl) ~ 7l o (ma,m1)V o(idl)) x; 1kp{Y) 0 7y M@ 0 1pH
J

pe'rmutj’i

(idt)
z'dg/?_) o 1kp§1) ~ wgo) o permut; ; o (z'dg?,) X1 1kp§1)) o 7'('1_1(0) o 1kp§1) [I13]
k2 ’ J

ﬂgo) o (idgg_) X1 1kpj(.1)) o 7r1_1(0) o lkpgl) ~ ngo) o permut; ; o (id&g) X lkpgl)) o nl_l(o) o 1kp§1)

[T14] (I-lpair-eq) 5 o 5
(s-lprod-eq) o T2, M1 © 7
ngo) o (id%) X 1kpz(.1)) = 1kpz(.1) o ngo) (wtos) Lo) 2

[I15]

ﬂgo) o (id&g) X1 lkpgl)) ~ id&g) o ﬂgo)

(w-lprod-eq)

(wsubs)

70 o (1D x; 1pD) oy 1@~ d® 0 7 o 7y 1O

71{0) o (idgz) X lkpgl)) o ﬂ;l(o) ~ idgg)

(wtos) —o o Dy _—1(0) _ . (0)
my o (idy, Xy 1lkp;) omy =idy,

(2) result and effect agreement on the second argument of the returned pair after exe-
cuting operations on both sides:

II

A. Appendix 1

(w-lprod-eq)

idgg) o ngo) ~ 71{0) o (idgg) X lkpgl))

(wsubs)

7T50) o ﬂ_—l(O) - 7T(0) ° (id(o_) X, 1kp(~1)) o 7'('1_1(0)
_Ipair- -pair-
(w-lpait-ed) idy) ~ w0 (id\)) x; 1kp{V) 0 7 1O (s-pair-eq) () =l o permut; ;
id (0‘) N 7T() o permut; ; o (id%?_) Ny 1kp§1)) o ”1_1(0) o 1kp§1)
(wsubs) (1) () (Jo) (1) —1(0) (1)
o permut; ; (idvj X 1kp; ') o my o 1kp;
(wtos)
(1) = 7r() o permut; ; (id(ol) X7 1kp(1)) o Wﬁl(o) o 1kP§~1) (I14]

ﬂgo) S (idgg_) X1 lkpj(.)) o 7r1_1(0) o 1lkp () = () opermut(o) (idgg) X1 1kpz(.1))) 7r1_1(0) S lkpj(-l)

[T14]
Wéo) o (id%?_) X 1kp§1)) = 1kp§1) o Wéo)

(s-lprod-eq)

(replsubs) (s-pair-eq)
ﬂgo) o (id&g) X 1kp§1)) o nfl(o) = lkpj(-l) o 71'50) o Wfl(o) ngo) o nfl(o) =)(Oi)
7r(o (zd(o) X 1kp(1))) ﬂ;l(o) = 1kp§1) o >€'))
(replsubs) ———15) Dy o —10) 10D PO NG
Ty O (idVi X 1kp; ') o my olkp, ' =1kp; ' o >V¢ o 1kp; [I2]

O o (idl x; 1plM) o iy M@ 0 1kp() = 1kplH)

[TT2]
O 0 1pft) = il

(s-unit)

Given above items (1), (2) and (Ipair-u), we conclude that (zd() xllkp(l)) 1(0) olkpgl) =
permuth o (id%g) X1 lkpg)) om 10 lkpé»l).
U

Lemma A.0.4. Commutation update-update (CUU). The order of storing in two different
locations © and j does not matter.

Vi # j € Loc, updgg) o ﬂéo) o (updz(?) X id&g)) =

2, (0

) o (id© (2) (A-4)
upd;” oy o (idy, x;upd;”) 1 V; x V; — 1

Proof. (1) the location i stores the same value after executing operations on both sides:

(w-lprod-eq)

id® o (@ ~ 7 o (id(o) x upd'?)
(idt) :
id(o) o 7r£)~ zd(o) o 7r o (zd(o) X upd(Q))

(ax1)

1k El) o pd(2) () 1kp(1) oupd(2) 7r1 o (idg_) X upd§2))
(s-rprod-eq) -

lkpgl) o 7r1 o (updEQ) Xr id&?v)) ~ 1kp£1) o updz(?) o ngo) o (id&?) X updgz))
(s-unit) ! ‘

1kp§1) o()v; o 7r(0) o (upd(.Q) X id(o_)) ~ 1kp(1) o upd(?) o 7r(0) o (idg_) X updg.Q))
(ax2) -

oupd() o (upd(Q) X zd(o)) ~ lkp() oupd()6 7r() (idgg_) X updEQ))
(2) the location j stores the same value after executing operations on both sides:

III

A. Appendix 1

Vi e Loc

(ax1)
- 7(0) €] @)
dej ~ 1kp,’ oupd,

(wsubs)
idgg) o wéo) ~ 1kp§1) o updg?) o Wéo)

(s-lpair-eq)
(0 0 1 0 . (0 2
zd&,j) ow;) lkpj(.) ow;)6 (zd;i) X updj<-))

(s-unit) — 55 &) ©) . (0) @)
z'dvj omy’ ~1kp; o ()y, om O(idVi Xy upd,;™)

(ax2)
idg)v) o 71';0) ~ 1kpj<.1) o upd§2) o 7r§0) o (id$) X updSQ))
(w-rpair-eq) ! -

Wéo) o (updEQ) X id$_)) ~ 1kp§.1)) upd§2) o 7r§0) o (id$) X upd§2))
J 7

(idt)
idgg) o ngo) o (updEQ) X idgg)) ~ 1kp§1) o updEQ) o ngo) o (idgg_) X ude(-Q))

(0)

(ax1)
1kp§.1) o upd§2) omy’ © (z'dg?_) X7 upd§2)) ~ 1kp§1) o updEQ) o 7r£0) o (idﬁ? X updg.Q))

(3) every location k, such that k # j A k # i, stores the same value after executing
operations on both sides:

(sunit) — o 0 . .©
<>Vi om E<>Vj 0Ty
(replsubs) — o ——0—© D _ /10 __(©0)
(: 1kp, °<>Vi om = 1kp, O<>Vj oy
stow
1kp](€1) o (>§2) o 7r§0) ~ lkp;cl) o >§2) o ﬂgo)
(ax2)

1kp,(€1) o updEQ) o 7'('50) ~ 1kp,(€1) o updg?) o Wéo)

(s-lpair-eq)
lkp,il) o updz(?) o ngo) ~ 1kp](€1) o 71';0) o (idg)i) X updSQ))

(s-rpair-eq)
i

1kp§€1)) 7'('50) o (upd(Q) X idg.)‘)) ~ 1kp§€1) o()%?) o 7'('50) o (z'dg?_) X1 updg?))
(s-unit) ! ‘ ‘

1kp](€1) o)&2) o néo) o <(idvj om2), (upd; o 7r1)>(2) ~ lkp,il) o)&2) o 7r§0) o (idg)i) X updj(?))

(ax2)
1kp§€1) o upd§2) o Wéo) o (id%?) X upd§2)) ~ 1kpl(€1) o updEQ) o 7'('50) o (z'dg?_) X7 updg?))

Given above items (1), (2), (3) and the (local-global) rule, we conclude with updg»Z) o ﬂéo) o

(ude(Q) Xy id&?j)) = ude(Q) o ﬂgo) o (id%g) X upd§-2)). O

Lemma A.0.5. Commutation update-lookup (CUL). The order of storing in a location i

and reading another location j does mot matter.
Vi # j € Loc, 1kp§1) o updz(?) = (A5)
5
ﬂéo) o (ude(Q) X id%g)) o (id&g) X1 1kp§.1)) o 71'1_1(0) Vi=V;

Proof. (1) effect agreement after executing operations on both sides:

(w-lpair-eq)

0 0 . (0)
Wg '~ Wg Lo {idvi, (vi) (w-lpair-eq)

o) w0 (idf) x; 1kp{") ~ idy) o 7"

(wtos) (wtos) : . - -

7r§0) = ﬂgo) o wfl(o) (i) 7r§0) o (zdg)i) X1 lkpg-l)) = zd§2) S ﬂgo)
i

w21 070 = 1pa® o710 L 10 O o (14 1) = 70

(replsubs)

updEQ) = updEQ) o 71'50) o (id&g) X1 lkpj(-l)) o 7r1_1(0)

(s-rpair-eq)
upd§2) = 7r§0) o (upd§2) X id$_)) o (id$) X 1kp§.1)) o ﬂ;l(o)
(s-unit) ! ‘

updEQ) = >$j) o ﬂéo) o (updEQ) X id&g)) o (id&g) X 1kp§1)) o ﬂl_l(o)

(idt)

i

id](lo) o updEQ) = >§2) o néo) o (upd(Q) Xr idg)j)) o (idsl) X 1kp§1)) o 71_1—1(0) [TI4]

OV o 1kp}” o upa(® = ()y, ol o (upa(®) x, id(l)) o (idfy) x; 1p!)) o 1O

v

A. Appendix 1

[I14]

0 1) _ .0
<)§/j)olkpj(.):zd](1)

(s-unit)

(2) result agreement after executing operations on both sides:

Vi, j € Loc

(ax2)
1kp§1) o upd£2) ~ 1kp§1) o)y,

(s-lpair-eq)
1kp§1) o updEQ) ~ 1kp§.1) o Wéo) o 7r1_1(0)

(s-lpair-eq)

lkpgl) o upd(2) ~ ﬂéo) o (idy; X, lkp(l)) o Wfl(o)
(idt)

i J

1kp§.1) o updEQ) ~ id%?_) o Wéo) o (idy; x; 1kp§.1)) o 7'('1_1(0)
J

(w-rpair-eq)
1kp§1) o upd£2) ~ ngo) o (upd£2) X id%)) o (idy; x; 1kp§1)) o ﬂ;l(o)

Given above items (1), (2) and the (effect) rule, we conclude that 1kp§1) o updl(?) = 7750) o
2 (0 . (0 1 ~1(0
(updg) Xrld%))o(ldi/i) Xllkp§))07r1 © _

Lemma A.0.6. Commutation lookup-constant (CLC). Just after storing a constant ¢ in
a location i, observing the content of i is the same as regenerating the constant c.

Vi € Loc, Ve € Vi 1kpl(.1) o upd§2) o const ¢¥) = o)
0) o constc® : 1 — Vi -

const ¢ o ude(A2

Proof. (1) effect agreement after executing operations on both sides:

unit :
(s-unit) (>§9) o 1kp(~1) = idj(lo)
(replsubs) : : (s-unit) :
(>§2) o 1kp£1) o updz(.Q) o const ¢(®) = idj(lo) o updz(.Q) o const ¢(®) (>§2) o const ¢(®) = idj(lo)

()52) o 1kpz(.1) o upd£2) o const ¢(?) = ()&2) o const c(® o upd£2) o const ¢(?)
(2) result agreement after executing operations on both sides:

Vi€ Loc

(ax1) —73 @ _ (0
1kp, ’ oupd; NidVi

al?

(wsubs)

o const ¢(®) ~ const c(O)
(ids)

lkpgl) O up!

T p (w-unit) 3
1kpz(.) updg) 5 const ¢(® ~ const ¢(® o idj(lo) uPdE) o const c(0) ~ id1(10)

1kp£1) o updEQ) o const ¢(® ~ const ¢(9) o updEQ) o const ¢(?)

Given above items (1), (2) and the (effect) rule, we conclude that 1kp§1)oupd§2)oconst A0 =
(2)

const c® o upd,”’ o const 0,

O

A. Appendix 1

VI

B

Appendix 2

Full proof of Corollary 5.4.8:

1. We have four cases to consider:

(1.1)

(1.2)

(1.3)

(1.4)

When both f; and fo are pure, we set a; = f2(0) and ag = f2(0) so as to trivially
obtain fl(o) = f2(0) — fl(o) = 2(0).

When f; is an accessor while f20 is pure, we only get fll) = vg)olookupo< >g?)
for some pure term vg). V — Y. In this case, we set a1 = Ugo , = f(O
kg?) o >(0) by = f20) and by f2(O ok(o) o(>g?) and get f) = fQ(O) = v§°) =
f2(0) ok X o (>V and f2 = 2(0) o k:g?) o (>(0) from Point 4 in Proposition 5.4.5.
Symmetrically when fs is an accessor while f; is pure, we only get f2

véo) o lookup o (>g?) for some pure term véo) V — Y In this case, we set

a; = vgo), as = fl(o) o k:g?) o (>§9), by = fl(and by = f1 (0) o (>g((]) and get
fz(l) = fl(o) = véo) = 1(0) o k:g?) o (>§9) and fl(o = fl(o o (> also from
Point 4 in Proposition 5.4.5 to close the goal.

When both f; and fy are accessors, thanks to Corollary 5.4.4, we have fl(l) =

vgo) o lookup o (>§?) and fy(1) = véo) o lookup o (>(O)

vgo)’véo) V = Y. Setting a; = v; and as = vs, we obtain vg)olookupo

é) o lookup o { >g?) = v%o) é)

for some pure terms

0% =

from Point 3 in Proposition 5.4.5.

2. We again have four cases to show:

(2.1)

(2.2)

(2.3)

(2.4)

In the case where both are accessors, we set a1 = fl(l) and az = f2(1) so as to
trivially obtain fl(l) = f2(1) — fl(l) = 2(1) which is trivial.

When f; is a modifier whilst f, is an accessor, we only get f12 = ugo) olookupo
updateoagl). We set a; = agl), ag = lookupo(>X , b = f2 and by = ugo)oagl),
then we get f1(2) = 2(1) <= lookup o (>() (1 and f(1 = (0) gl). We
apply Point 2 in Proposition 5.4.5.

Symmetrically when f5 is a modifier whilst f; is an accessor, we only get f2(2) =
ugo) o lookup o update o agl). We set a; = lookup o { >g((]), as = a(l) by = 1(1)

and by = ugo) o ag), then we get f2(2) = 1(1) <= lookup o (>g?) = agl) and

fi M) = ugo) o aé) Similarly, we apply Point 2 in Proposition 5.4.5.

When both f; and fy are modifiers, due to Point 2 in Proposition 5.4.3, we get

f1(2) (0) o lookup o update o ag and f(2) = (0) o lookup o update o agl)
for some pure terms ugo) (0) : V. — Y and accessors agl) (1) : X - V. By
setting a1 = agl), as = agl), by = go) o agl) and by = go) o agl), we obtain

VII

B. Appendix 2

f12) = fy SUPEEN agl) = agl) and ugo)) agl) = ugo) o agl). Now, we apply

Point 1 in Proposition 5.4.5 to close the goal. U
Full proof of Corollary 6.9.8:

1. The proof proceeds on the distinction whether X is inhabited or not:

(1.1) when X # 0, we have four cases to consider:

(1.1.1) In the case where both a; and ag, we set v1 = a; and v9 = ag so as to

(0) _ (0 0) _ (0

trivially obtain a;’ = ay’ <= a7 =ay’ .
(1.1.2) When a; is a propagator while as is pure, we can only get agl) =](0) otago
v%o) for some pure term v§). X = EV. We set v = ag) so that the goal

looks like []() otagovgo) = ago) — VfO 0. X 5 vst fO =40,
This is solved by applying Assumption 6.9.5.
(1.1.3) Symmetrically when as is a propagator while a1 is pure, we can only get

agl) = []g/o) otago vgo) for some pure term véo) X = EV. Weset v = ago)

so that the goal looks like ago) =](0) otago v(o) — VfO 40 x -
Y s.t. £O = ¢(O . This is solved by applying Assumption 6.9.5.

(1.1.4) When both a; and ay are propagators, then thanks to Corollary 6.9.4, we

have agl) =[]y otago vgo) and similarly agl) =[]y otago véo) for some
pure terms U§0)7 0. X EV. We set v; = vgo) and vg = v(o) So that
the goal looks like []() o tago v(o) = |]§9) otago vgo) = vgo) = véo).

This is solved by the application of Point 3 in Proposition 6.9.7.
(1.2) Thanks to (s-empty), we have []y = a; for each i € {1, 2}. Thus a1 = as.

2. We have four cases to prove:

(2.1) When both f; and fy are propagators we set a; = fl(l) and ag = fz(l) so as to

trivially obtain fl(l) = 2(1) = f (1).

(2.2) When f; is a catcher while f, is a propagator, we only get f1(2) = agl) ountago

tagougo). Here, we set a; = agl) ag = [](0) otag, by = f2(1) and by = ag)ougo).

Now, the goal looks like ag) o untag o tag o ugo) = 2(1) — agl) =]g/o)

tag and f (1) ugo). This comes from Point 2 in Proposition 6.9.7.

(2.3) Symmetrically when fs is a catcher while f; is a propagator, we only get f22 =

(1) (0)

ay’ ountagotagou, . Here, we set a; = []gﬁ)) otag, ag = a2 , f(1

by = agl) o uéo). Now, the goal looks like fl(= agl) ountago tago ugo)

agl) =](0) 1) 4,0

= o tag and fl(l) = a5 ©ouy . This comes also from Point 2
in Proposition 6.9.7.

(2.4) When both f; and fy are catchers, due to Point 2 in Proposition 6.9.3, we get

fl(= agl) ountagotago ugo) and f2(= agl) ountagotago ug)

terms ugo), ugo) X — EV and propagators agl), a;). BV - Y. We can simply

(1) _ @ b =a (1) (0) 1,0

seta; =a; ', a2 = ay ', ouy’ and by = ay ’ouy . Therefore, we obtain

(1) 0 _ (1) (0)

—

for some pure

a goal which looks like a; ’ o untag otagou;’ =ay ountagotagou, <+
(1) = a;) and agl) o ugo) = aél) o ug). We apply Point 1 in Proposition 6.9.7
to solve it. O

VIII

	List of Figures
	Introduction
	Motivation of the thesis
	The goal
	Contributions
	Publications
	Content of the thesis

	About computational effects
	Formal approaches
	Effect systems
	Effects as monads
	Effects as comonads
	Effects as Lawvere theories
	Handlers for algebraic effects
	Decorated Logic

	Software tools
	Haskell
	Eff

	Proof assistants
	Idris
	Coq
	Isabelle

	Concluding remarks: where is this thesis located?

	Categorical background
	Adjunctions, monads and comonads
	Preliminaries
	The Kleisli adjunction associated to a monad
	The coKleisli adjunction associated to a comonad
	Summary

	The coKleisli-on-Kleisli construction associated to a monad
	The comparison theorem for the coKleisli construction
	The coKleisli-on-Kleisli construction
	Application to the exceptions monad on sets

	The Kleisli-on-coKleisli construction associated to a comonad
	The comparison theorem for the Kleisli construction
	The Kleisli-on-coKleisli construction
	Application to the state comonad on sets

	Decorated logics
	The monadic equational logic
	The decorated logic for a monad
	The decorated logic for a comonad
	Decorated logic in Coq
	Terms
	Decorations
	Axioms: decorated logic for a comonad
	Axioms: decorated logic for a monad

	Hilbert-Post completeness

	The state effect
	The decorated logic for the state
	The effect rule
	The pair rules
	Some properties of pairs
	The interface rules

	Coq implementation: Lst
	Memory
	Terms
	Decorations
	Axioms
	Derived pairs and products

	Proving properties of the state
	Hilbert-Post completeness for the state effect
	Chapter summary

	The exceptions effect
	The decorated logic for exceptions
	The effect rule
	The copair rules
	Some properties of copairs
	The interface rules
	The downcast rule

	Decorated logic for the programmer's language for exceptions
	Translating the logic Lexc-pl into the logic Lexc
	The logic Lexc in Coq
	Prerequisites
	Terms
	Decorations
	Axioms
	Derived copairs and coproducts

	The logic Lexc-pl in Coq
	Terms
	Decorations
	Axioms

	Translating Lexc-pl into Lexc in Coq
	Proofs involving the exceptions effect
	Hilbert-Post completeness for the logic Lexc-pl
	Hilbert-Post completeness for the logic Lexc
	Chapter summary

	Conclusions
	Summary
	Future directions

	Appendix 1
	Appendix 2

