Topological characterization of virtual braids

Résumé : Le but de cette thèse est de fournir une caractérisation topologique de tresses virtuelles. Les tresses virtuelles sont des classes d’équivalence de diagrammes de type tresses tracés sur le plan. La relation d’équivalence est générée par l’isotopie, les mouvements de Reidemeister et les mouvements de Reidemeister virtuels. L’ensemble des tresses virtuelles est munie d’une opération de groupe. On parlera alors du groupe de tresses virtuelles. Dans le Chapitre 1, nous introduisons les notions de base de la théorie de noeuds virtuels, nous évoquons certains propriétés du groupe tresses virtuelles, et des liens qu’il a avec le groupe de tresses classiques. Dans le Chapitre 2, nous introduisons la notion de diagramme de Gauss tressé (ou diagramme de Gauss horizontal), et on démontre qu’il s’agit là d’une bonne réinterprétation combinatoire pour les tresses virtuelles. On généralise en particulier certains résultats connus en théorie de noeuds virtuels. Un application est de retrouver la présentation classique du groupe de tresses virtuelles pures à l’aide des diagrammes de Gauss tressés. Dans le Chapitre 3, on introduit les tresses abstraites et on montre qu’elles sont en correspondance bijective avec les tresses virtuelles. Les tresses abstraites sont des classes d’équivalence des diagrammes de type tresses tracés sur une surface orientable avec deux composantes de bord. La relation d’équivalence est générée par l’isotopie, la compatibilité, la stabilité et les mouvements de Reidemeister. La compatibilité est la relation d’équivalence générée par les difféomorphismes préservant l’orientation. La stabilité est la relation d’équivalence générée par l’addition ou la suppression d’anses à la surface, dans le complémentaire du diagramme. Dans le Chapitre 4, on démontre que tout tresse abstraite admets une unique représentant de genre minimal, à compatibilité et mouvements de Reidemeister prés. En particulier, les tresses classiques se plongent dans les tresses abstraites.
Type de document :
Thèse
General Topology [math.GN]. Université de Bourgogne, 2015. English. <NNT : 2015DIJOS025>
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-01250596
Contributeur : Abes Star <>
Soumis le : mardi 5 janvier 2016 - 09:03:06
Dernière modification le : mardi 12 janvier 2016 - 12:58:02
Document(s) archivé(s) le : jeudi 7 avril 2016 - 14:57:09

Fichier

these_A_CISNEROS_DE_LA_CRUZ_Br...
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01250596, version 1

Collections

Citation

Bruno Aarón Cisneros de La Cruz. Topological characterization of virtual braids. General Topology [math.GN]. Université de Bourgogne, 2015. English. <NNT : 2015DIJOS025>. <tel-01250596>

Partager

Métriques

Consultations de
la notice

336

Téléchargements du document

45