D. Adamskiy, W. M. Koolen, A. Chernov, and V. Vovk, A Closer Look at Adaptive Regret, Algorithmic Learning Theory (ALT), pp.290-304, 2012.
DOI : 10.1007/978-3-642-34106-9_24

M. Aiolfi, C. Capistrán, and A. Timmermann, Forecast combinations Working Papers 2010-04, pp.2010-2014

P. Algoet, The strong law of large numbers for sequential decisions under uncertainty, IEEE Transactions on Information Theory, vol.40, issue.3, pp.609-633, 1994.
DOI : 10.1109/18.335876

A. Antoniadis, E. Paparoditis, and T. Sapatinas, A functional wavelet?kernel approach for time series prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.42, issue.5, pp.837-857, 2006.
DOI : 10.1073/pnas.42.1.43

A. Antoniadis, X. Brossat, J. Cugliari, and J. M. Poggi, Prévision d'un processus à valeurs fonctionnelles en présence de non stationnarités. Application à la consommation d'électricité, Journal de la Société Française de Statistique, pp.52-78, 2012.

A. Antoniadis, X. Brossat, J. Cugliari, and J. M. Poggi, CLUSTERING FUNCTIONAL DATA USING WAVELETS, International Journal of Wavelets, Multiresolution and Information Processing, vol.11, issue.01, pp.11-2013
DOI : 10.1142/S0219691313500033

URL : https://hal.archives-ouvertes.fr/inria-00559115

C. Astolfi, S. D. Veiga, and G. Stoltz, Forecasting production data of oil reservoirs with experts, 2012.

P. Auer, N. Cesa-bianchi, and C. Gentile, Adaptive and Self-Confident On-Line Learning Algorithms, Journal of Computer and System Sciences, vol.64, issue.1, pp.48-75, 2002.
DOI : 10.1006/jcss.2001.1795

K. S. Azoury and M. K. Warmuth, Relative loss bounds for on-line density estimation with the exponential family of distributions, Machine Learning, pp.211-246, 2001.

A. Ba, M. Sinn, Y. Goude, and P. Pompey, Adaptive learning of smoothing functions: Application to electricity load forecasting, Advances in Neural Information Processing Systems 25, pp.2519-2527

A. Belloni and V. Chernozhukov, ???1-penalized quantile regression in high-dimensional sparse models, The Annals of Statistics, vol.39, issue.1, pp.82-130, 2011.
DOI : 10.1214/10-AOS827SUPP

G. Biau and B. Patra, Sequential Quantile Prediction of Time Series, IEEE Transactions on Information Theory, vol.57, issue.3, pp.1664-1674, 2011.
DOI : 10.1109/TIT.2011.2104610

URL : https://hal.archives-ouvertes.fr/hal-00606486

G. Biau, K. Bleakley, L. Györfi, and G. Ottucsák, Nonparametric sequential prediction of time series, Journal of Nonparametric Statistics, vol.60, issue.3, pp.297-317, 2010.
DOI : 10.1098/rsta.1927.0007

URL : https://hal.archives-ouvertes.fr/hal-00497197

C. Bissuel, Y. Goude, and B. Péchiné, Heat load forecasting, 2013.

D. Blackwell, An analog of the minimax theorem for vector payoffs, Pacific Journal of Mathematics, vol.6, issue.1, pp.1-8, 1956.
DOI : 10.2140/pjm.1956.6.1

A. Blum, Empirical support for Winnow and Weighted-Majority based algorithms: results on a calendar scheduling domain, Machine Learning, pp.5-23, 1997.
DOI : 10.1016/B978-1-55860-377-6.50017-7

A. Blum and Y. Mansour, From External to Internal Regret, Journal of Machine Learning Research, vol.8, pp.1307-1324, 2007.
DOI : 10.1007/11503415_42

D. Bosq, Nonparametric statistics for stochastic processes : estimation and prediction. Lecture notes in statistics, 1996.

S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: a nonasymptotic theory of independence, 2013.
DOI : 10.1093/acprof:oso/9780199535255.001.0001

URL : https://hal.archives-ouvertes.fr/hal-00794821

O. Bousquet and M. K. Warmuth, Tracking a Small Set of Experts by Mixing Past Posteriors, Journal of Machine Learning Research, vol.3, pp.363-396, 2002.
DOI : 10.1007/3-540-44581-1_3

L. Breiman, The Individual Ergodic Theorem of Information Theory, The Annals of Mathematical Statistics, vol.28, issue.3, pp.809-811, 1957.
DOI : 10.1214/aoms/1177706899

L. Breiman, Bagging predictors, Machine Learning, vol.10, issue.2, pp.123-140, 1996.
DOI : 10.1007/BF00058655

L. Breiman, Random forests, Machine Learning, pp.5-32, 2001.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees, 1984.

G. W. Brier, VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY, Monthly Weather Review, vol.78, issue.1, pp.1-3, 1950.
DOI : 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2

P. J. Brockwell and R. A. Davis, Time series : theory and methods, 1991.

A. Bruhns, G. Deurveilher, and J. Roy, A non-linear regression model for mid-term load forecasting and improvements in seasonnality, Proceedings of the Fifteenth Power Systems Computation Conference (PSCC), 2005.

O. Cappé, E. Moulines, and T. Rydén, Inference in hidden Markov models, 2005.

N. Cesa-bianchi, Analysis of two gradient-based algorithms for on-line regression, Proceedings of the tenth annual conference on Computational learning theory , COLT '97, pp.392-411, 1999.
DOI : 10.1145/267460.267492

N. Cesa-bianchi and G. Lugosi, Potential-based algorithms in on-line prediction and game theory, Machine Learning, pp.239-261, 2003.

N. Cesa-bianchi and G. Lugosi, Prediction, learning, and games, 2006.
DOI : 10.1017/CBO9780511546921

N. Cesa-bianchi, G. Lugosi, and G. Stoltz, Minimizing Regret With Label Efficient Prediction, IEEE Transactions on Information Theory, vol.51, issue.6, pp.77-92, 2005.
DOI : 10.1109/TIT.2005.847729

URL : https://hal.archives-ouvertes.fr/hal-00007537

N. Cesa-bianchi, Y. Mansour, and G. Stoltz, Improved second-order bounds for prediction with expert advice, Machine Learning, pp.321-352, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00019799

K. Chaudhuri, Y. Freund, and D. J. , A parameter-free hedging algorithm, Advances in Neural Information Processing Systems 22, pp.297-305, 2009.

A. Chernov and F. Zhdanov, Prediction with Expert Advice under Discounted Loss, Proceedings of the 21st International Conference on Algorithmic Learning Theory, pp.255-269, 2008.
DOI : 10.1007/978-3-642-16108-7_22

A. V. Chernov and V. Vovk, Prediction with advice of unknown number of experts. CoRR, abs/1006, p.475, 2010.

C. Chiang, T. Yang, C. Lee, M. Mahdavi, C. Lu et al., Online optimization with gradual variations, Proceedings of the 25th Annual Conference on Learning Theory (COLT), pp.6-7, 2012.

H. Cho, Y. Goude, X. Brossat, and Q. Yao, Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach, Journal of the American Statistical Association, vol.73, issue.501, pp.7-21, 2013.
DOI : 10.1198/016214504000001745

H. Cho, Y. Goude, X. Brossat, and Q. Yao, Modeling and forecasting daily electricity load using curve linear regression, Lecture Notes in Statistics: Modeling and Stochastic Learning for Forecasting in High Dimension, 2014.

Y. S. Chow, Local Convergence of Martingales and the Law of Large Numbers, The Annals of Mathematical Statistics, vol.36, issue.2, pp.552-558, 1965.
DOI : 10.1214/aoms/1177700166

R. T. Clemen, Combining forecasts: A review and annotated bibliography, International Journal of Forecasting, vol.5, issue.4, pp.559-583, 1989.
DOI : 10.1016/0169-2070(89)90012-5

X. Conort, 10 r packages to win kaggle competitions, Ruser, 2014.

J. Cugliari, Prévision non paramétrique de processus à valeurs fonctionnelles : application à la consommation d'électricité, 2011.

S. Dasgupta and D. Hsu, On-Line Estimation with the Multivariate Gaussian Distribution, 20th Annual Conference on Learning Theory, COLT 2007, pp.278-292, 2007.
DOI : 10.1007/978-3-540-72927-3_21

A. Dawid and V. Vovk, Prequential Probability: Principles and Properties, Bernoulli, vol.5, issue.1, pp.125-162, 1999.
DOI : 10.2307/3318616

S. De-rooij, T. Van-erven, P. D. Grünwald, and W. M. Koolen, Follow the leader if you can, hedge if you must, Journal of Machine Learning Research, vol.15, pp.1281-1316, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00920549

R. Deswartes and E. R&d, Application des méthodes random forests à la prévision de consommation électrique, 2012.

M. Devaine, P. Gaillard, Y. Goude, and G. Stoltz, Forecasting electricity consumption by aggregating specialized experts ? a review of the sequential aggregation of specialized experts , with an application to Slovakian and French country-wide one-day-ahead (half-)hourly predictions, Machine Learning, pp.90231-260, 2013.

V. Dordonnat, State-space modelling for high frequency data: Three applications to French national electricity load, 2009.

J. Duchi, S. Shalev-shwartz, Y. Singer, and T. Chandra, -ball for learning in high dimensions, Proceedings of the 25th international conference on Machine learning, ICML '08, 2008.
DOI : 10.1145/1390156.1390191

URL : https://hal.archives-ouvertes.fr/hal-00159487

J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, vol.12, pp.2121-2159, 2011.

R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, Journal of Functional Analysis, vol.1, issue.3, pp.290-330, 1967.
DOI : 10.1016/0022-1236(67)90017-1

E. Eban, A. Birnbaum, S. Shalev-shwartz, and A. Globerson, Learning the experts for online sequence prediction, Proceedings of ICML, 2012.

S. Fan and R. J. Hyndman, Short-Term Load Forecasting Based on a Semi-Parametric Additive Model, IEEE Transactions on Power Systems, vol.27, issue.1, pp.134-141, 2012.
DOI : 10.1109/TPWRS.2011.2162082

D. P. Foster and R. V. Vohra, Asymptotic calibration, Biometrika, vol.85, issue.2, pp.379-390, 1998.
DOI : 10.1093/biomet/85.2.379

D. Freedman, On Tail Probabilities for Martingales, The Annals of Probability, vol.3, issue.1, pp.100-118, 1975.
DOI : 10.1214/aop/1176996452

Y. Freund, Predicting a binary sequence almost as well as the optimal biased coin, Information and Computation, vol.182, issue.2, pp.73-94, 2003.
DOI : 10.1016/S0890-5401(02)00033-0

Y. Freund and R. E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, issue.1, pp.119-139, 1997.
DOI : 10.1006/jcss.1997.1504

Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth, Using and combining predictors that specialize, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing , STOC '97, pp.334-343, 1997.
DOI : 10.1145/258533.258616

J. H. Friedman, Stochastic gradient boosting, Computational Statistics & Data Analysis, vol.38, issue.4, pp.367-378, 1999.
DOI : 10.1016/S0167-9473(01)00065-2

J. H. Friedman, machine., The Annals of Statistics, vol.29, issue.5, pp.1189-1232, 2000.
DOI : 10.1214/aos/1013203451

J. H. Friedman, T. Hastie, and R. Tibshirani, Regularization Paths for Generalized Linear Models via Coordinate Descent, Journal of Statistical Software, vol.33, issue.1, pp.1-22
DOI : 10.18637/jss.v033.i01

P. Gaillard and Y. Goude, Forecasting Electricity Consumption by Aggregating Experts; How to Design a Good Set of Experts, Modeling and Stochastic Learning for Forecasting in High Dimension, 2014.
DOI : 10.1007/978-3-319-18732-7_6

P. Gaillard, Y. Goude, and G. Stoltz, A further look at the forecasting of the electricity consumption by aggregation of specialized experts, 2011.

P. Gaillard, G. Stoltz, and T. Van-erven, A second-order bound with excess losses, Proceedings of COLT, pp.176-196, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00943665

S. Gerchinovitz, Prediction of individual sequences and prediction in the statistical framework: some links around sparse regression and aggregation techniques, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00653550

S. Gerchinovitz and J. Y. Yu, Adaptive and optimal online linear regression on -balls, Theoretical Computer Science, vol.519, pp.4-28
DOI : 10.1016/j.tcs.2013.09.024

URL : https://hal.archives-ouvertes.fr/hal-00594399

Y. Goude, Melange de prédicteurs et application à la prévision de consommation électrique, 2008.

Y. Goude, R. Nedellec, and N. Kong, Local Short and Middle Term Electricity Load Forecasting With Semi-Parametric Additive Models, IEEE Transactions on Smart Grid, vol.5, issue.1, 2012.
DOI : 10.1109/TSG.2013.2278425

P. Grünwald, The Minimum Description Length Principle, 2007.

L. Györfi and G. Ottucsák, Sequential Prediction of Unbounded Stationary Time Series, IEEE Transactions on Information Theory, vol.53, issue.5, pp.1866-1872, 2007.
DOI : 10.1109/TIT.2007.894660

L. Györfi, W. Härdle, P. Sarda, and P. Vieu, Nonparametric curve estimation from time series. Number 60 in Lecture notes in statistics, 1989.

L. Györfi, G. Lugosi, and R. T. Fargas, Strategies for Sequential Prediction of Stationary Time Series, SSRN Electronic Journal, 2001.
DOI : 10.2139/ssrn.248563

T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning. Springer Series in Statistics, 2001.

T. J. Hastie and R. Tibshirani, Generalized Additive Models, Statistical Science, vol.1, issue.3, pp.297-318, 1986.
DOI : 10.1214/ss/1177013604

T. J. Hastie and R. Tibshirani, Generalized Additive Models, 1990.

E. Hazan and S. Kale, Extracting certainty from uncertainty: regret bounded by??variation in??costs, Machine Learning, pp.165-188, 2010.
DOI : 10.1007/s10994-010-5175-x

E. Hazan and C. Seshadhri, Efficient learning algorithms for changing environments, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, 2009.
DOI : 10.1145/1553374.1553425

D. P. Helmbold and M. K. Warmuth, Learning Permutations with Exponential Weights, Journal of Machine Learning Research, vol.10, pp.1687-1718, 2009.
DOI : 10.1007/978-3-540-72927-3_34

M. Herbster and M. Warmuth, Tracking the best expert, Machine Learning, pp.151-178, 1998.

M. Herbster and M. Warmuth, Tracking the best linear predictor, Journal of Machine Learning Research, vol.1, pp.281-309, 2001.

A. Hoerl and R. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, vol.24, issue.1, pp.55-67, 1970.
DOI : 10.2307/1909769

T. Hong, P. Pinson, and S. Fan, Global Energy Forecasting Competition 2012, International Journal of Forecasting, vol.30, issue.2, pp.357-363, 2014.
DOI : 10.1016/j.ijforecast.2013.07.001

V. Kanade, B. Mcmahan, and B. Bryan, Sleeping experts and bandits with stochastic action availability and adversarial rewards, Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), pp.272-279, 2009.

J. Kivinen and M. K. Warmuth, Exponentiated Gradient versus Gradient Descent for Linear Predictors, Information and Computation, vol.132, issue.1, pp.1-63, 1997.
DOI : 10.1006/inco.1996.2612

R. Kleinberg, A. Niculescu-mizil, and Y. Sharma, Regret bounds for sleeping experts and bandits, Machine Learning, pp.245-272, 2010.
DOI : 10.1007/s10994-010-5178-7

R. D. Kleinberg, A. Niculescu-mizil, and Y. Sharma, Regret bounds for sleeping experts and bandits, Proceedings of the 21st Annual Conference on Learning Theory (COLT), pp.425-436, 2008.
DOI : 10.1007/s10994-010-5178-7

R. Koenker, quantreg: Quantile Regression, 2013. URL http://CRAN.R-project.org/ package=quantreg

R. Koenker and G. W. Bassett, Regression Quantiles, Econometrica, vol.46, issue.1, pp.33-50, 1978.
DOI : 10.2307/1913643

A. N. Kolmogorov and V. M. Tikhomirov, ?-entropy and ?-capacity of sets in function spaces, pp.277-364, 1961.

W. M. Koolen, D. Adamskiy, and M. K. Warmuth, Putting Bayes to sleep, Advances in Neural Information Processing Systems 25 (NIPS 2012), pp.135-143, 2013.

W. Kotlowski and P. Grünwald, Maximum likelihood vs. sequential normalized maximum likelihood in on-line density estimation, Proceedings of COLT, pp.761-779, 2011.

T. Launay, Bayesian methods for electricity load forecasting
URL : https://hal.archives-ouvertes.fr/tel-00766237

A. Liaw and M. Wiener, Classification and regression by randomforest, R News, vol.2, issue.3, pp.18-22, 2002.

N. Littlestone and M. K. Warmuth, The Weighted Majority Algorithm, Information and Computation, vol.108, issue.2, pp.212-261, 1994.
DOI : 10.1006/inco.1994.1009

G. G. Lorentz, Metric Entropy, Widths, and Superpositions of Functions, The American Mathematical Monthly, vol.69, issue.6, pp.469-485, 1962.
DOI : 10.2307/2311185

V. Mallet, Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation, Journal of Geophysical Research: Atmospheres, vol.113, issue.D22, 2010.
DOI : 10.1029/2008JD009991

URL : https://hal.archives-ouvertes.fr/inria-00547903

V. Mallet, G. Stoltz, and B. Mauricette, Ozone ensemble forecast with machine learning algorithms, Journal of Geophysical Research, vol.41, issue.1, 2009.
DOI : 10.1029/2008JD009978

URL : https://hal.archives-ouvertes.fr/inria-00565770

S. Mannor and G. Stoltz, A Geometric Proof of Calibration, Mathematics of Operations Research, vol.35, issue.4, 2010.
DOI : 10.1287/moor.1100.0465

URL : https://hal.archives-ouvertes.fr/hal-00586044

P. Massart, Concentration Inequalities and Model Selection, Lecture Notes in Mathematics, vol.1896, 2007.

N. Merhav and M. Feder, Universal prediction, IEEE Transactions on Information Theory, vol.44, issue.6, pp.2124-2147, 1998.
DOI : 10.1109/18.720534

C. Monteleoni, G. A. Schmidt, S. Saroha, and E. Asplund, Tracking climate models, Statistical Analysis and Data Mining, vol.7, issue.4, pp.372-392, 2011.
DOI : 10.1002/sam.10126

G. Morvai and B. Weiss, Nonparametric sequential prediction for stationary processes, The Annals of Probability, vol.39, issue.3, pp.1137-1160, 2011.
DOI : 10.1214/10-AOP576

R. Nedellec, J. Cugliari, and Y. Goude, GEFCom2012: Electric load forecasting and backcasting with semi-parametric models, International Journal of Forecasting, vol.30, issue.2, pp.375-381, 2014.
DOI : 10.1016/j.ijforecast.2013.07.004

J. Nowotarski and R. Weron, Computing electricity spot price prediction intervals using quantile regression and forecast averaging, Computational Statistics, vol.28, issue.3, pp.1-13
DOI : 10.1007/s00180-014-0523-0

A. Paterek, Predicting movie ratings and recommender systems -a monograph, 2012.

A. Pichavant, Construction modèle gam edf, Note interne EDF R&D, 2014.

A. Pierrot and Y. Goude, Short-term electricity load forecasting with generalized additive models, Proceedings of ISAP power, pp.593-600, 2011.

P. Pompey, A. Bondu, Y. Goude, and M. Sinn, Massive-Scale Simulation of Electrical Load in Smart Grids Using Generalized Additive Models, Modeling and Stochastic Learning for Forecasting in High Dimension, 2014.
DOI : 10.1007/978-3-319-18732-7_11

M. Raginsky, R. F. Marcia, J. Silva, and R. M. Willett, Sequential probability assignment via online convex programming using exponential families, 2009 IEEE International Symposium on Information Theory, pp.1338-1342, 2009.
DOI : 10.1109/ISIT.2009.5205929

A. Rakhlin and K. Sridharan, Online nonparametric regression, Proceedings of COLT 2014), pp.1232-1264, 2014.

A. Rakhlin, K. Sridharan, and A. B. Tsybakov, Empirical entropy, minimax regret and minimax risk, Bernoulli, vol.23, issue.2, 2013.
DOI : 10.3150/14-BEJ679

S. Rakhlin, O. Shamir, K. Sridharan, F. Pereira, C. J. Burges et al., Relax and randomize : From value to algorithms, Advances in Neural Information Processing Systems 25, pp.2141-2149, 2012.

G. Ridgeway, Generalized boosted models: A guide to the gbm package, 2005.

J. Rissanen, Universal coding, information, prediction, and estimation. Information Theory, IEEE Transactions on, vol.30, issue.4, pp.629-636, 1984.

V. Rivoirard and G. Stoltz, Statistique mathématique en action, 2012.

W. Rudin, Functional Analysis. McGraw-Hill Science, 1991.

G. Shafer and V. Vovk, Probability and finance: it's only a game!, 2005.
DOI : 10.1002/0471249696

Y. M. Shtarkov, Universal sequential coding of single messages. Problems of Information Transmission, pp.3-17, 1987.

G. Stoltz and G. Lugosi, Learning correlated equilibria in games with compact sets of strategies, Games and Economic Behavior, vol.59, issue.1, pp.187-208, 2007.
DOI : 10.1016/j.geb.2006.04.007

URL : https://hal.archives-ouvertes.fr/hal-00007536

M. Talagrand, The generic chaining, 2005.

V. Thouvenot, A. Pichavant, Y. Goude, A. Antoniadis, and J. M. Poggi, Electricity forecasting using multi-step estimators of nonlinear additive models, 2015.

R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, vol.58, issue.1, pp.267-288, 1996.

A. B. Tsybakov, Introduction to Nonparametric Estimation, 2009.
DOI : 10.1007/b13794

T. Van-erven, P. Grünwald, W. M. Koolen, and S. De-rooij, Adaptive Hedge, Advances in Neural Information Processing Systems 25, 2011.

V. Vovk, AGGREGATING STRATEGIES, Proceedings of the Third Workshop on Computational Learning Theory, pp.371-386, 1990.
DOI : 10.1016/B978-1-55860-146-8.50032-1

V. Vovk, A Game of Prediction with Expert Advice, Journal of Computer and System Sciences, vol.56, issue.2, pp.153-173, 1998.
DOI : 10.1006/jcss.1997.1556

V. Vovk, Derandomizing stochastic prediction strategies, Proceedings of the tenth annual conference on Computational learning theory , COLT '97, pp.247-282, 1999.
DOI : 10.1145/267460.267473

V. Vovk, Competitive On-line Statistics, International Statistical Review, vol.20, issue.2, pp.213-248, 2001.
DOI : 10.1093/comjnl/42.4.318

V. Vovk, On-line regression competitive with reproducing kernel hilbert spaces. arXiv, 2005.

V. Vovk, Metric entropy in competitive on-line prediction. arXiv, 2006.

R. Weron and A. Misiorek, Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models, International Journal of Forecasting, vol.24, issue.4, pp.744-763, 2008.
DOI : 10.1016/j.ijforecast.2008.08.004

O. Wintenberger, Optimal learning with bernstein online aggregation. Extended version available at arXiv:1404, pp.1356-2014
URL : https://hal.archives-ouvertes.fr/hal-00973918

S. N. Wood, Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, 2006.

S. N. Wood, Y. Goude, and S. Shaw, Generalized additive models for large datasets, Journal of Royal Statistical Society, Series C, 2014.

S. Yasutake, K. Hatano, S. Kijima, E. Takimoto, and M. Takeda, Online Linear Optimization over Permutations, Algorithms and Computation, vol.7074, pp.534-543, 2011.
DOI : 10.1007/978-3-642-25591-5_55

Z. Zhou, Ensemble Methods: Foundations and Algorithms, 2012.

M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, Proceedings of the 20th International Conference on Machine Learning, 2003.