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Introduction générale

Cette thèse s’inscrit dans la thématique de recherche du groupe Automatique de

l’IMS portant sur le diagnostic et la commande des systèmes pour l’aéronautique

et le spatial. Cette étude vise à concevoir et développer des architectures et des al-

gorithmes pour la commande et le diagnostic des systèmes aéronautiques critiques.

L’innovation porte sur une méthodologie de conception d’algorithmes de commande

tolérante aux défauts et de diagnostic à base de modèle non linéaire prenant en

compte les contraintes du processus de certification aéronautique. Au niveau appli-

catif, une rupture technologique a été réalisée pour systèmes critiques de vol tel que

les calculateurs embarqués. Le projet SYRENA (Safran-Turboméca) a constitué le

vecteur d’application et accentué la synergie entre le secteur de la recherche et du

développement industriel ainsi que les laboratoires de recherche académique.

Rappel de la problématique industrielle:

Les produits THALES concernés par l’application de ces travaux de recherche sont

essentiellement constitués par les calculateurs des systèmes de régulation moteur

(principalement turbines d’hélicoptères), les EECU (Electronic Engine Control Unit)

appelés parfois FADEC (Full Authority Digital Engine Control) et les actionneurs du

circuit air-carburant. Ces produits ont en commun d’être à proximité du dispositif

à piloter donc dans des environnements fortement contraints (EECU et actionneurs

situés sur le bloc moteur) et font parties des chaines critiques du système avionique.

Un dysfonctionnement de l’un de ces produits ne doit pas conduire à un évènement

catastrophique et doivent donc être tolérant aux défauts. Ces contraintes conduisent

aujourd’hui à des architectures complexes incluant des dissimilarités de conception

et comprenant des redondances matérielles. A ces contraintes s’ajoute une dispar-

ité des actionneurs à piloter (vérins hydrauliques, électriques, électrovanne) et des
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chaines de commande et d’acquisition principalement analogiques plus sensibles aux

perturbations électromagnétiques. Cela conduit d’une part à un circuit de câblage

important entre les capteurs/actionneurs et le calculateur, et à une chaine de condi-

tionnement et de traitement du signal plus complexe. La simplification des interfaces

entre capteurs/actionneurs et le calculateur doit permettre de réduire la complex-

ité des calculateurs (pour une éventuelle intégration dans le système avionique), de

diminuer la masse du harnais et d’améliorer la fiabilité globale du système (sous

respect des exigences de safety). De ce point de vue, l’intégration des fonctions

d’asservissement et de surveillance au sein même de l’actionneur et l’utilisation de

bus numérique constituent une piste à explorer. Ces technologies bien que déjà

présentes sur le marché industriel sont très peu appliquées au secteur aéronautique

en raison de la complexité du processus de certification.

Contenu du premier chapitre: diagnostic à base de modèles des systèmes

différentiels non-linéaires plats

Le chapitre 1 présente dans une première partie un rappel des propriétés des sys-

tèmes non-linéaires plats. Une application sur un modèle non-linéaire d’un moteur

pas-à-pas a été réalisée. Une linéarisation par difféomorphisme et bouclage endogène

est appliquée au système proposé dans le but d’utiliser son modèle linéaire équiv-

alent au sein d’algorithmes de diagnostic à base d’observateurs tel que le filtre de

Kalman linéaire.

Dans la deuxième sous-partie, un état de l’art des méthodes de diagnostic de défauts

est présenté. Les générateurs de résidus tels que l’espace de parité et les observa-

teurs présentent un intérêt particulier pour des applications embarquées au sein de

systèmes critiques de vol tels que les calculateurs de commande moteur.
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Contenu du deuxième chapitre: proposition d’une architecture de surveil-

lance d’un système critique de vol

Dans le chapitre 2, une architecture de surveillance de système critique de vol est

proposée et à fait l’objet d’un brevet. Un rappel sur la problématique de la criticité

et de la sureté de fonctionnement aéronautique est proposé en première partie. Afin

de prendre en compte la contrainte de sureté de fonctionnement dans la conception

d’un système aéroporté, les méthodes, outils et normes imposés par les organismes

d’aéronavigabilité, tels que la FAA, l’EASA et l’ICAO, sont présentés. Un exemple

d’allocation du niveau de sureté d’un actionneur de commande moteur d’hélicoptère

est réalisé. L’innovation de cette étude porte sur la proposition d’une architecture

calculateur permettant de réduire l’encombrement lié aux redondances matérielles

en remplaçant ces composants par des fonctions analytiques embarquées sur calcu-

lateur. La dualité: redondance matérielle et analytique est étudiée.

Contenu du troisième chapitre: réalisation du procédé expérimental

Figure 1: Schéma de principe du démonstrateur technique réalisé

3



Le chapitre 3 est dédié à l’élaboration d’un démonstrateur technique dont le

but est de détecter les défauts courts-circuit d’une phase statorique d’un moteur

pas-à-pas hybride. Le moteur électrique similaire à celui de l’actionneur de vanne

de dosage du circuit carburant de turbine d’hélicoptère, a été câblé de façon à

pouvoir générer des courts-circuits sur différents pourcentages de spires statoriques.

Les algorithmes développés dans le chapitre 1 ont été réalisés en simulation puis

embarqués sur une machine temps réel elle-même connectée aux capteurs du banc

d’essai(figure 1). Dans la dernière partie du chapitre 3, les performances de deux

méthodes de diagnostic à base d’observateurs de Kalman sont comparés. La première

fait appel à une linéarisation par difféomorphisme et bouclage endogène. Les résidus

sont obtenus avec un filtre de Kalman linéaire. La seconde méthode fait appel à

un filtre de Kalman étendu (EKF) dont le procédé de linéarisation n’est pas exact

générant des erreurs de linéarisation.
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Abstract: In this chapter, it is shown that differential flat

systems present useful properties for model-based fault di-

agnosis methods. At first, the principles of nonlinear and

multivariable flat systems are recalled in section 1.2. Dy-

namical inversion properties are considered for the lineari-

sation of flat systems, such as permanent magnet stepper

motors (PMSM). Next, the state of the art in current an-

alytical diagnosis methods is described in section 1.3, par-

ticularly addressing residual analysis methods. Observers

and parity space methods are then detailed for linear and

nonlinear systems.
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1.1 Introduction

The occurrence of faults on physical systems may downgrade their performance or

in the worst case lead to catastrophic events. Current control systems are designed

to ensure their stability and robustness but in the case of high-integration com-

plex aircraft systems e.g., engines, flight-control actuators or flight computer units

(FCU), monitoring functions are also required. Among current monitoring solutions

for engine and flight control computer units, material and analytic redundancy al-

low faults detection and isolation (FDI) to prevent from catastrophic events but also

to optimise maintenance. Material redundancy impacts the number of sensors and

physical components on board of an aircraft and require more space, weight and

power (SWaP). Therefore the use of analytical models in monitoring systems has

increased and may replace rows of redundant components in future aircraft systems.

This chapter is devoted to the presentation of model-based techniques for FDI pur-

poses [26], where models are considered as a set of differential equations describing

a physical system. Regarding FDI, fault-detection is based on the comparison of

sensor measurements and the measurement estimation processed by the mathemat-

ical model.

In section (1.2), a special attention is dedicated to the properties of nonlinear and

multidimensional flat systems. Two groups of nonlinear systems exist, namely:

• Strong nonlinear systems, for which specific analysis and processing tools are

necessary,

• Pseudo-nonlinear systems [45], which are equivalent to linear systems by co-

ordinate change and feedback,

but in our case, the study will deal only with pseudo-nonlinear systems. A nonlinear

system described by differential equations is differentially flat [41] if its dynamical

behaviour can be expressed by a set of nonlinear and smooth functions which are

also differentially independent. These functions are the "flat outputs" of the system.

7
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They depend on the states of the system and a finite number of the inputs time

derivatives. Therefore, each trajectory of a nonlinear system within the state space

can be determined by knowing its flat outputs without processing integral functions

on the dynamic of the system. The main objective of differential flatness is to

determine a set of flat outputs which permits a nonlinear dynamic inversion (NLDI)

[59] without generating a non observable zeros dynamic of the system.

In order to be compliant with linear diagnosis models, linearisation properties of

flat systems based on coordinate change and endogenous feedback are used to deter-

mine the linear equivalent system of a permanent magnet stepper motor (PMSM)

model. In section (1.3), model-based monitoring models are recalled. Residual gen-

eration methods are shown, including parity space, linear and nonlinear observers

such as the Standard Kalman Filter (SKF) and the Extended Kalman Filter(EKF).

Robustness and performances of NLDI and linearisation are discussed regarding the

tangent linearisation of the EKF.

1.2 Differential flatness of nonlinear systems

The concept of differential flat systems was introduced in the middle of the 1990’s

where the first application studies were realised in [20] for aerospace projects. The

development of the theory continued within the work of P.Martin [80] who con-

tributed to the formal concept of flatness presented by M. Fliess et al in [41]. Since

then, this concept has known many applications such as: robust system control

[63, 55, 49, 77, 78], fault tolerant control [58, 107], path planning [101, 85, 33, 104],

fault detection and diagnosis (FDD & FDI) [81, 39] and estimation of nonlinear

parameters [40].

1.2.1 Preliminary notions

To begin with, usual definitions of flat systems initially introduced by Fliess et al.

in [41] for nonlinear systems ruled by ordinary differential equations (ODE) are

8
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recalled. A nonlinear system is flat if there exist a set of differentially independent

variables called flat outputs. Their number equals to the number of inputs where the

states and the inputs can be expressed with the flat outputs and a finite number of

their time derivatives. As a consequence, control inputs and states can be processed

by planning only the trajectories of the flat outputs. Trajectory planning using

flatness properties was applied in [85, 104] and in the design of robust controllers

[55, 49].

Definition 1.1. (Differential flatness)

Considering the following nonlinear multivariable system:

ẋ = fn(xn, un) (1.1)

with
xn = (xn1 , . . . , xnn), xn ∈ Rn

un = (un1 , . . . , unm), un ∈ Rm
(1.2)

and

fn = (fn1 , . . . , fnm) (1.3)

is a smooth function of xn and un satisfying

fn(0, 0) = 0 (1.4)

where

rank

{
dfn
dun

(0, 0)
}

= m (1.5)

System (1.1) is differentially flat if there exists an output vector zn named flat output,

composed of m fictive outputs such as:

• State vector xn and control input vector un can be expressed with the flat out-

puts:

zn = (z1, . . . , zm) (1.6)
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and a finite number of their derivatives, as shown in equations (1.7).

• Flat outputs z are expressed with the state vector x, the control vector u and

a finite number of their time derivatives. These two conditions are given by:

x = B(z, ż, . . . , z(q))

u = C(z, ż, . . . , z(r))

z = A(x, u, u̇, . . . , u(p))

(1.7)

where p, q and r are integers, z(q) is the qth time derivative of z and

A = (A1, . . . , An), B = (B1, . . . , Bm), C = (C1, . . . , Cm) are smooth mappings.

Remark 1.1. Given a flat system, the number of components of a flat output is

equal to the number of independent inputs.

1.2.1.1 Flatness necessary and sufficient conditions

In this section, flat outputs processing algorithms introduced in [75] are applied.

Another processing method based on modules was described in [89]. The following

flatness necessary and sufficient conditions were established by J.Lévine in [73] re-

garding nonlinear systems.

In order to process flat outputs, external and local flatness properties were estab-

lished. The external flatness formulation definitions is based on the Lie-Bäcklund

equivalence of two implicit systems.

Assuming X a differentiable manifold of dimension n, TxX the corresponding tan-

gent space at x ∈ X and TX = ⋃
x∈X TxX its tangent bundle (see Appendix A.7).

The nonlinear implicit system1 (see Appendix A.3) is given by:

F (x, ẋ) = 0 (1.8)

1The inputs u do not appear in the implicit system.
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where F is a C∞ mapping from TX to Rn−m in a given neighbourhood of TX with

rank

(
∂F

∂ẋ

)
= n−m. Also,

X , X × Rn
∞ = X × Rn × Rn × . . . (1.9)

is considered as the manifold of infinite order jets [42], defined as the product of X

with an infinite amount of Rn and its general coordinates x̄ such as:

x̄ = (x1, . . . , xn, ẋ1, . . . , ẋn, . . . , x
(k)
1 , . . . , x(k)

n , . . .). (1.10)

The jets of infinite order allow expression of system (1.8) with its implicit equations

given in definition 1.2.

Definition 1.2. (Implicit system) An implicit system is composed of a triplet

(X, τX, F ) with:

X = X × Rn
∞ (1.11)

and

τX =
∑
i≥0

n∑
j=1

x
(i+1)
j

∂

∂x
(i)
j

(1.12)

its associated trivial Cartan field (see Appendix A.6), and F ∈ C∞(TX;Rn−m),

satisfying:

rank

(
∂F

∂ẋ

)
= n−m (1.13)

for a given neighbourhood of TX.

Considering two implicit systems (X, τX, F ) and (D, τD, G) with D = Y × Rp
∞,

dimX = n, dimY = p and rank

(
∂G

∂ẏ

)
= p − q, their equivalence conditions is

given by the Lie-Bäcklund equivalence definition as follows.

Definition 1.3. (Lie-Bäcklund equivalence) The two implicit controlled sys-

tems (X, τX, F ) and (D, τD, G) are Lie-Bäcklund equivalent (or L-B equivalent) at

(x̄0, ȳ0) ∈ X0 ×D0 if and only if:
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• there exist neighbourhoods X0 and Y0 of x̄0 ∈ X0 and ȳ0 ∈ D0 respectively and

a mapping

Φ = (ψ0, ψ1, . . .) ∈ C∞(X0;Y0) (1.14)

such as Φ(ȳ0) = x̄0 and2 Φ∗τD = τX,

• there exist a mapping

Ψ = (ψ0, ψ1, . . .) ∈ C∞(X0;Y0) (1.15)

such as Ψ(x̄0) = ȳ0 and Ψ∗τX = τD

Ψ and Φ are the Lie-Bäcklund isomorphisms and invertible at (x̄0, ȳ0). Both

controlled systems (X, τX, F ) and (D, τD, G) are locally L-B equivalent if:

(x̄,Ψ(x̄)) = (Φ(ȳ), ȳ) (1.16)

The system (X × U × Rm
∞, f̄), resp.(X × Rn

∞, τX , F )), where f̄ = (f, ḟ , f̈) with m

inputs, is differently flat if and only if it is L-B equivalent to the trivial system

(Rm
∞, τm), resp.(Rm

∞, τm, 0)), where τm is the Cartan field of Rm
∞such as:

τm =
∑
j≥0

m∑
i=1

y(j+1) ∂

∂y
(j)
i

(1.17)

y is called the flat output vector.

The flatness of the implicit system (X, τX, F ) corresponds to the fact that it is Lie-

Bäcklund equivalent to the trivial system (Rm
∞, τm, 0).

Definition 1.4. (Flatness, External Formulation [73]) The implicit sys-

tem (X, τX, F ) is flat at (x̄0, ȳ0) ∈ X0 × Rm
∞ if and only if it is L-B equivalent at

(x̄0, ȳ0) ∈ X0 × Rm
∞ to the trivial implicit system (Rm

∞, τm, 0). In this case, the Lie-

Bäcklund isomorphisms Φ and Ψ are called uniformization, as referred to Hilbert’s

22nd Problem [8]
2Φ∗τD is the image of the Cartan field τD by the mapping Φ
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The extension of the flatness external formulation to local flatness is given by the

following definition.

Theorem 1.1. (Local flatness) The implicit system (X, τX, F ) is flat at (x̄0, ȳ0)

with x̄0 ∈ X0 and ȳ0 ∈ Rm
∞ if and only if a local invertible smooth mapping Φ of Rm

∞

to X0 exists, with a smooth inverse such as:

Φ(ȳ0) = x̄0 (1.18)

and

Φ∗dF = 0 , (1.19)

where Φ∗ denotes the set of invertible elements of Φ.

Considering the definition of the following polynomial matrices:

P (F ) = ∂F

∂x
+ ∂F

∂ẋ

d

dt
and P (ϕ0) =

∑
j≥0

∂ϕ0

∂y(j)
dj

dtj
, (1.20)

equation (1.19) becomes:

Φ∗dF = P (F )P (ϕ0)dy = 0. (1.21)

Linear algebraic methods for polynomial matrices such as the following Smith de-

composition, allows description of a variational system P (F ) given by:

V P (F )U = (In−m, 0n−m,m). (1.22)

where n is the rank of the system and m the dimension of the output vector.

Assuming K, the ring of meromorphic3 functions from X to R, K
[
d

dt

]
the ring of

polynomials in d

dt
with coefficients in K, and Mn,m

[
d

dt

]
the module (see Appendix

3A meromorphic function on an open subset D of the complex plane is a function that is
infinitely differentiable and equal to its own Taylor series on all D except a set of isolated points,
which are poles for the function.
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A.4) of the matrices of dimension n×m on K

[
d

dt

]
. Matrices of Mn,n

[
d

dt

]
possessing

an inverse in Mn,n

[
d

dt

]
are called unimodular matrices (see Appendix A.5) and

form a subgroup Un
[
d

dt

]
of Mn,n

[
d

dt

]
. Using the previous notations, the matrices

P (ϕ0) ∈Mn−m,n

[
d

dt

]
satisfying equation (1.21) can be fully determined by solving

the following matrix equation:

P (F )Θdy = 0 , (1.23)

where Θ is a hyper-regular matrix (see Appendix A.5).

Lemma 1.1. Hyper-regular matrices Θ ∈ Mn,m

(
d

dt

)
satisfying (1.23) are given

by:

Θ = U

 0n−m,m

Im

W, (1.24)

where U ∈ R-Smith(P (F )) and W ∈ Um
(
d

dt

)
.

Assuming:

Û = U

 0n−m,m

Im

 . (1.25)

Lemma 1.2. For a given matrix Q such as Q ∈ L-Smith(Û), there exists a matrix

Z ∈ Um
(
d

dt

)
such as:

QΘ =

 Im

0n−m,m

Z. (1.26)

A necessary and sufficient condition for the implicit system (1.8) to be flat at x̄0 ∈ X0

is that the K

[
d

dt

]
-ideal, generated by the 1-forms ω, . . . , ωm (see Appendix A.8)

defined by:

ω(x̄) =


ω1(x̄)

...

ωm(x̄)

 = (Im, 0m,n−m)Q(x̄)dx|x0 = Q̃(x̄)dx|x0 . (1.27)
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is strongly closed in a neighbourhood of x̄0 ∈ X0. A flat output of the variational

system is obtained if dω = 0 by integration of dy where:

dy = ω. (1.28)

Definition 1.5. (Strongly closed set) If τ1, . . . , τr are r independent 1-forms,

the K

[
d

dt

]
-ideal generated by τ1, . . . , τr is the set made of the combinations with

coefficients in K

[
d

dt

]
of the forms η∧ τi with η arbitrary form of an arbitrary degree

on X0 and i = 1, . . . , r. This ideal is said to be strongly closed if and only if there

exists M ∈ Ur
[
d

dt

]
such that d(Mτ) = 0 with τ = (τ1, . . . , τr)T .

If dω 6= 0, then it is necessary to find a base for which (1.28) can be integrated.

Therefore an integral factor M ∈ Um( d
dt

) verifying d(Mω) = 0 has to be found. The

K

[
d

dt

]
-ideal Ω, generated by the 1-forms (defined by (1.27)) is strongly closed in χ0

if and only if an operator µ ∈ L1 ((Λ (X))m), and a matrix M ∈ Um( d
dt

) exist such

that:

dω = µω, d(µ) = µ2, d(M) = −Mµ (1.29)

where L1 ((Λ (X))m) is the space of linear operators mapping the p-forms of dimen-

sion m of X, in (p+ 1)-forms of dimension m in X. d is the extension of the exterior

derivative d, whith coefficients in K

[
d

dt

]
.

As an example, the presented flat outputs processing method based on Smith de-

composition and 1-forms calculation is applied in the next section to a nonlinear

permanent magnet stepper motor (PMSM) model.

1.2.2 Flat outputs processing of a permanent magnet step-

per motor

Before processing the flat outputs of the PMSM, some fundamentals regarding the

different types of stepper motors are recalled. Stepper motors are electromechanical

converters which aim is to transform an electrical power into a linear or angular
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motion (Figure 1.1).

From the electro-technical point of view, its structure is very similar to the syn-

Figure 1.1: Electromechanical conversion scheme of a two-phased stepper motor [86]

chronous motor. Windings encircle the stator poles (mostly made of salient poles)

and the rotor can be made of permanent magnets (also called polarised or active

structure), or ferromagnetic parts (also called reluctant or passive structure). Three

main types of stepper motors exist:

• the variable reluctance stepper motor (VRSM), as shown in figure 1.2,

• the permanent magnet stepper motor (PMSM), as shown in figure 1.3,

• the hybrid stepper motor (HSM), as shown in figure 1.4.

The power supply of each winding generates a current i which generates a magnetic

field in a specific direction. Powering up each winding in a given sequence allows to

move the magnetic field of the stator along an elementary resolution called step. The

variation of the power sequence on each stator winding defines a rotating magnetic

field corresponding to a full step, half step or microstep. The discrete motion of the

magnetic field allows the rotor to rotate with a synchronising torque. For each type

of stepper motor, the torque is generated:

• by the stator field (current)-rotor iron interaction, in the case of a passive rotor

(Figure 1.2),
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• by the stator field (current)-rotor (magnetic) field interaction, in the case of a

permanent magnet rotor (Figure 1.3),

• by the two previous magnetic field interactions at the same time in the case

of a hybrid stepper motor (Figure 1.4).

1.2.2.1 Types of stepper motors

In the case of a passive rotor (Figure 1.2), when the current goes through winding 1,

the established magnetic field places the iron of the rotor in a position corresponding

to a maximum magnetic flow. The pole of the rotor is then aligned with the stator

Figure 1.2: 3-phased variable reluctance stepper motor (VRSM), reference: support
de cours, Haute École Spécialisée de Suisse Occidentale (HESSO), M. Correvon.

electromagnets. When the next phase commutation occurs, the rotor rotates of

a mechanical angle (step angle) αpm. The resulting synchronising torque from the

"current-iron" interaction is related to the variation of self inductance of the supplied

winding.

The difference of the three stepper motor types is related to the generation of the

electromechanical torque Tem which will next be described. The inductance L of

each stator phase is related to the reluctance4 R and the number of coils nc by:

L = n2
c

R
. (1.30)

In an unsaturated regime, the global magnetic flow is given by:

φ = φf + Ljik +Mkjik, (1.31)
4The reluctance R is related to the length of the material in which the magnetic flow runs, the

section of the material and the material permeability.
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where φf is the inductor flow related to the magnets, Ljik andMkjik are respectively

the flows related to self and mutual inductances L and M of phases j and k .

In the case of a 2-phased VRSM, the expression of the torque depends only on the

inductance of the electromagnets [86]. The torque is pure reluctant in this case and

is given by:

Tem = 1
2i

2
1
dL1(αpm)
dαpm

+ 1
2i

2
2
dL2(αpm)
dαpm

(1.32)

Figure 1.3: 3-phased permanent magnet stepper motor (PMSM), reference: support
de cours, Haute École Spécialisée de Suisse Occidentale (HESSO), M. Correvon

where Lj and ij are respectively the inductance and current of the stator phase

j. The next considered magnetic flows φ correspond to the flow generated by the

cumulated coils of each stator phase.

When the rotor is made of a permanent magnets (Figure 1.3), each magnet has a

constant permeability and the air gap is also constant (L and M are also constant).

Therefore the synchronising electromagnetic torque Tem is only related to the flow

φfj variation of the jth phase, between the rotor magnet and the active electromagnet

of the stator. It is also called hybrid torque and its expression, for a two-phased

motor is given by:

Tem = i1
dφf1

dt
+ i2

dφf2

dt
, (1.33)

The last polarised structure called hybrid (Figure 1.4), works mainly on the iron-iron

interaction (variable reluctance) but with a permanent magnet (rotor) excitation.

The torque of this type of motor contains three fundamental torques: the hybrid

torque (main torque in this case) as shown in equation (1.33), the reluctant torque
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Figure 1.4: 3-phased hybrid stepper motor, reference: support de cours, Haute École
Spécialisée de Suisse Occidentale (HESSO), M. Correvon.

given by equation (1.32) and the detent torque given by:

Td = −Kdsin(4nαpm) , (1.34)

where n is the number of rotor teeth and Kd is the detent torque constant.

1.2.2.2 Stator based (a,b)-model

For the following case, the inductances Li are constant and the rotor speed ω is

constant. The nonlinear PMSM bi-phased model can be expressed with electrical

and mechanical equations in the stator base (a,b) as follows [14]:


ua = Ria + nc

dφa
dt

ub = Rib + nc
dφb
dt

(1.35)

where (ua, ub) and (ia, ib), are respectively the voltages and currents. Subscripts a

and b correspond respectively to A and B phases. The magnetic flows φa and φb

depending on the cumulated coils of each phase are given by:


φa = φaa + φab + φam

φb = φbb + φba + φbm

(1.36)

considering:

• φaa and φbb the flow of each phase,

• φab and φba the mutual flow between two phases,
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• φam and φbm the mutual magnet-electromagnet flows.

Because A and B phases are in a ninety degree displacement (phase quadrature),

their mutual flows are equal to zero implying φab = 0 and φba = 0. Therefore

replacing the expression of the flow φ of system (1.36) in system (1.35) allows to

dissociate the voltage related to the main flow φ onto two voltages such as for one

phase:

nc
dφa
dt

= nc
dφaa
dt

+ nc
dφam
dt

(1.37)

where nc
dφaa
dt

is the voltage of the phase A winding and nc
dφam
dt

is the electromotive

force (e.m.f) ea. The inductance L is considered as a constant and is related to the

flow φaa and induction current ia by the following equation:

L = nc
dφaa
dia

. (1.38)

Also, according to the Faraday law (in current generator mode),

ua = nc
dφaa
dt

, (1.39)

where u is the e.m.f generated by a flow passing through nc coils. The development

of equation (1.38) implies:

L = nc
dφaa
dt

dt

dia
. (1.40)

Replacing equation (1.39) in equation (1.40) implies :

L
dia
dt

= nc
dφaa
dt

(1.41)

and therefore :

ua = L
dia
dt
. (1.42)

Using equations 1.41 and 1.37 in the first equation of system 1.35 gives as a result:

ua = Ria + L
dia
dt

+ nc
dφam
dt

(1.43)
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The last term of equation 1.43 corresponds to the e.m.f ea of phase A given by:

ea = nc
dφam
dt

. (1.44)

According to the Boucherot law, in the case of sinusoidal input voltage u(t), the

flow φ(t) has a sinusoidal wave form given by:

φ(t) = Φmaxcos(nθm) (1.45)

Therefore, the e.m.f equations (1.44) is given by:

ea = Kewsin(nθm) , (1.46)

where Ke is the e.m.f constant. Considering equations (1.46) and (1.41) and sup-

posing the windings inductances constant, system (1.35) becomes:


ua = Ria + L

dia
dt
− ωsin(nθm)Kt

ub = Rib + L
dib
dt

+ ωcos(nθm)Kt

(1.47)

whereKt is the torque constant, considered equal to the e.m.f constant, n the number

of rotor teeth, ω the angular velocity of the rotor and θm its angular position. The

e.m.f ea and eb are given by:


ea = −ωsin(nθm)Kt

eb = ωcos(nθm)Kt .
(1.48)

According to the fundamental principle of dynamics, the efforts are only related to

rotating motions implying:

Tm − Tr = J
dω

dt
(1.49)
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with Tm the motorising torque and Tr the resisting torque, considering

Tm = Tem + Td , (1.50)

where Td is the detent torque generated by the magnets. Without considering the

mechanical losses, the electromechanical torque Tem is given by:

Tem = eaia + ebib
ω

. (1.51)

The detent torque is equal to 10% of the global torque and is therefore neglected

implying Td = 0. According to equations (1.48) and (1.51), the electromechanical

torque becomes:

Tem = [−Ktiasin(nθm) +Ktibcos(nθm)] (1.52)

and the PMSM model satisfies:



ua = Ria + L
dia
dt
− ωsin(nθm)Kt

ub = Rib + L
dib
dt

+ ωcos(nθm)Kt

Jm
dω

dt
= [−Ktiasin(nθm) +Ktibcos(nθm)]−Bω

dθm
dt

= ω

(1.53)

where B is the viscous friction coefficient and Jm the motor inertia.
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1.2.2.3 Rotor-based (d,q)-model

Figure 1.5: (d,q)-transform of a PMSM model

The (a,b)- model can be transformed with a dq-transformation to allow expres-

sion of the state variables in the rotor frame (Figure 1.5). This change of coordinates

is realised by the following Park transformation matrix:

P (θm) =

 cos(nθm) sin(nθm)

−sin(nθm) cos(nθm)

 . (1.54)

The Park transform is applied to system (1.54) with the following equations:

P (θm)

 ua

ub

 = RP (θm)

 ia

ib

+ P (θm)

 L 0

0 L

 d

dt

 ia

ib

+

KtωP (θm)

 −sin(nθm)

cos(nθm)

 (1.55)

 ud

uq

 = R

 ia

ib

+ P (θm)

 L 0

0 L

 d

dt

P (−θm)

 ia

ib


+

KtωP (θm)

 −sin(nθm)

cos(nθm)

 (1.56)
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 ud

uq

 = R

 ia

ib

+P (θm)

 L 0

0 L


dθmdt d

dθm
(P (−θm))

 id

iq

+ P (−θm) d

dθm

 id

iq


+

Ktω

 0

1

 (1.57)

 ud

uq

 = R

 id

iq

+

 L 0

0 L

 d

dt

 id

iq

+ nω

 0 −L

L 0


 id

iq

+

Ktω

 0

1

 (1.58)

The electromechanical torque Tm can also be expressed in the (dq)-base. Considering

the park transformation matrix given by equation (1.54), the expression of iq is:

iq = −iasin(nθm) + ibcos(nθm). (1.59)

Replacing the expression of iq in the electromechanical torque equation (1.52) im-

plies:

Tem = Ktiq (1.60)

The motor model in the (dq) base is then given by:



ud = Rid + L
did
dt
− Lnωiq

uq = Riq + L
diq
dt

+ Lnωid +Ktω

Jm
dω

dt
= Ktiq −Bω

dθm
dt

= ω

(1.61)
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Considering the state vector:

x =



id

iq

ω

θ


, (1.62)

and the input vector defined by:

u =

 ud

uq

 . (1.63)

The nonlinear explicit state-space representation of the PMSM motor model is given

by: 

ẋ1 = nx3x2 −
R

L
x1 + 1

L
u1

ẋ2 = nx3x1 −
R

L
x2 +−Kt

L
x3 + 1

L
u2

ẋ3 = Kt

Jm
x2 −

B

Jm
x3

ẋ4 = x3

(1.64)

In this section, the PMSM model has first been expressed in the rotor base (dq-

base) and has been expressed as a nonlinear explicit state-space system. In order

to linearise this model by the differential flatness approach, the flat outputs of the

model will be processed as presented in section 1.2.1.1.

1.2.2.4 Flat outputs processing

In order to process the flat outputs of (1.64), it is necessary to process its implicit

form given by equation (1.8) such as:

F (x, ẋ) = 0. (1.65)

Assuming the nonlinear state-space expression of (1.64):

ẋ = f(x) + g(x)u, (1.66)
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The implicit form is then given by:

F (x, ẋ) =



0

0

ẋ3 −
Kt

Jm
x2 + B

Jm
x3

ẋ4 − x3


= 0 (1.67)

The variational system P (F ) expressed in (1.20) is then given by the following

matrix:

P (F ) =

 0 −Kt

Jm

B

Jm
+ d

dt
0

0 0 −1 d

dt

 (1.68)

According to (1.22), the Smith decomposition of P (F ) is processed with :

S(P (F )) = (I2, 02,2), (1.69)

the resulting U ∈ D − Smith matrix equals to:

U =



0 0 1 0

1
B + Jm

d

dt
Kt

0
d

dt
B + Jm

d

dt
Kt

0 1 0 d

dt

0 0 0 1



(1.70)
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According to equation (1.25), the corresponding Û matrix satisfies:

Û = U

 02,2

I2

 =



1 0

0
d

dt
B + Jm

d

dt
Kt

0 d

dt

0 1



. (1.71)

As suggested in Lemma 1.2, Q ∈ L− Smith(Û) is processed and is given by:

Q =



1 0 0 0

0 0 0 1

0 0 1 − d

dt

0 1 0 −

d

dt
B + Jm

d

dt
Kt



, (1.72)

and

R =

 1 0

0 1

 , (1.73)

which satisfies:

QÛR =

 I2

02,2

 . (1.74)

The following differential base ω is obtained with equations (1.28, 1.27) :

ω =
(
I2 02,2

)
Q



dx1

dx2

dx3

dx4


=

 dx1

dx4

 . (1.75)
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Hence, x1 = id and x4 = θm are the flat outputs of the PMSM. According to the

definition of flat outputs (1.7), the PMSM can be expressed with x1 = z1 and x4 = z2

and a finite number of their derivatives as shown below:



x1 = z1

x2 = Jm
Kt

z̈2 + B

Kt

ż2

x3 = ż2

x4 = z2

u1 = Rz1 + Lż1 −
nLJm
Kt

ż2z̈2 −
nLB

Kt

(ż2)2

u2 = ...
z 2
LJm
Kt

+ z̈2
LB +RJm

Kt

+ ż2(RB
Kt

+Kt)− nLż2z1

(1.76)

This subsection showed the flatness of the nonlinear stepper motor model (1.64).

Flat outputs (id, θm) were identified by processing the Smith decomposition of the

implicit form of the PMSM model.

In the next section, linearisation conditions of nonlinear flat systems will be dis-

cussed. Exact and pseudo- linearisation methods are presented.

1.2.3 Linearisation of flat systems

Linearisation methods have found many applications in the field of nonlinear system

control. System linearisation is realised regarding underlying questions concerning:

• the type of linearisation: is it approximate or exact? Is the linearisation

internal (input-state linearisation ) or external (input-output linearisation)?

• the goal: is there a local or aggregate linearisation required?

The approximate linearisation, around an equilibrium point, also known as quasi-

linearisation, is well suited for regulation issues with a running point near from the

equilibrium point. The exact linearisation is well suited for transitions of the equi-

librium point and trajectory tracking. Approximate and exact linearisation often

requires transformations such as static or dynamic state feedback and internal or
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external decoupling.

Stable input-output decoupling by state feedback of linear systems was at first

studied by P.L. Falb and W.A. Wolovitch [34] who expressed the necessary and

sufficient conditions. Then, W.M. Wonham and A.S. Morse [106] introduced a pre-

compensator and a dynamic feedback in order to reduce the constraints affecting

stability. A major drawback of this decoupling is, for certain cases, the observ-

ability loss of a part of the state vector when realising poles-zeros simplifications

in the closed loop transfer. The study of the finite zero dynamic of the transfer

matrix appears to be necessary in order to reach an internal stability. A method for

the realisation of a stable linear input-output decoupling was developed by W.M.

Wonham [105] which consisted in replacing the static state feedback by a dynamic

feedback.

Regarding nonlinear systems, A. Isidori et al [60] and R.M. Hirshorn [53] defined the

equivalent conditions concerning the decoupling matrix regularity. This method is

based on a coordinate change for the state and a static state feedback which permits

to decouple and linearise inputs-outputs transfers at the same time. In the case of

a non-observable state occurrence, the zero dynamic of the system, developed by

C. Byrnes and A. Isidori [17] is studied. Stability criterion on the zero dynamic

was then used such as exponential stability [17] or K-stability [19] to evaluate the

internal stability of the looped nonlinear system. Dynamic feedback was also used

for nonlinear input-output system inversion and decoupling by R.M. Hirshorn [54]

and S.N. Singh [97] and [98] . Also, J. Descusse and C.H.Moog [25], M. Fliess [37]

and H. Nijmeijer and W. Respondeck [87] defined nonlinear input-output systems

which can be decoupled by dynamic state feedback.

1.2.3.1 Coordinate change and static feedback linearisation

The aim of static feedback linearisation is to determine whether a system is linear

after applying a change of coordinates on the system’s states and inputs. In the case

of linear systems, a change of state coordinates x 7−→ x̄ is given with the existence
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of a invertible M matrix where dim(M) = n× n and such as:

x = Mx̄ (1.77)

The regular static feedback u 7−→ ū is defined by an invertible N matrix of order m

and a second matrix K with dim(K) = m× n such as :

u = Kx̄+Nū (1.78)

The global static feedback is given by the following system:

 x̄

ū

 7−→
 x

u

 =

 M 0

K N


 x̄

ū

 (1.79)

Assuming the following system:

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (1.80)

Linearisation of system (1.80) by static feedback consists in finding a state vector z

and an input vector v such that (1.80) is equivalent to the following linear system :

ż = Az +Bv (1.81)

The generalised form of (1.79) is given by the nonlinear transformations :

 x̄

ū

 7−→
 z = φ(x)

v = k(x, u)

 , (1.82)

where φ is a smooth mapping. It was shown by Charlet et al [20] that dynamic

feedback is useful only in the case of multi-input systems linearisation. Single-
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inputs systems are therefore considered such as :

ẋ = f(x) + g(x)u ,with x ∈ Rn, u ∈ Rm. (1.83)

In the case of single-inputs, system (1.83) is equivalent to a controllable linear system

by static feedback and diffeomorphism if the two following conditions are satisfied :

• Gn−2 has a constant rank and is involute on a neighbourhood V of the origin,

• the rank of Gn−1 is n,

where the distribution of vectors fields Gi is given by :

Gi = sp{g, adfg, . . . , adifg} (1.84)

with adifg the Lie bracket of f and g repeated i times and adif = [f, adi−1
f ].

When the system satisfies the two previous conditions, it can be linearised by the

given feedback and diffeomorphism:

u = α(x) + β(x)v, (1.85)

ξ = φ(x) (1.86)

Determining the feedback and diffeomorphism consists of processing in a neighbour-

hood of V the following partial derivatives system:



Lgφ1 = 0

Ladfgφ1 = 0
...

Ladn−2
f

gφ1 = 0

(1.87)
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where β(x) is a square invertible matrix. α and β are given by:


α = −

Lnfφ1

LgLnfφ1

β = 1
LgLnfφ1

, φi = Li−1
f φ1, ∀i = 2, . . . , n (1.88)

where Lfg(x) is the lie derivative of the smooth function (g) along the vector field

f . Its expression is given by

Lfg(x) =
n∑
i=1

fi(x) ∂

∂xi
g(x) (1.89)

and u = k(z, v).

Remark 1.2. Only systems with linear inputs were considered in this case because it

corresponds to the system hypothesis established by Jakubczyk-Respondek and Hunt-

Su-Meyer. This result was generalised for nonlinear inputs systems [62] by setting

the distributions Gi to:

G0 = sp

{
∂f

∂u

}
(1.90)

Gi = Gi−1 + adfGi−1 , for i > 1. (1.91)

Definition 1.6. (Brunovsky form) A linear controllable system is equivalent after

static feedback and a change of base of its coordinates, to its Brunovsky form:


y(k1) = v1

...

y(km)
m = vm

(1.92)

where k1, . . . , km are the system controllability subscripts and v1, . . . , vm are the in-

puts of the equivalent linear system. Each input v equals to the k-derivative of its

corresponding output.

After diffeomorphism (see Appendix A.2) and static feedback, system (1.80) is

equivalent to a system containing a linear part and a nonlinear transformation given
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by: 
ż = Az +Bv

ξ̇ = a(z, ξ) + b(z, ξ)v
(1.93)

When a nonlinear system is not compliant with the conditions of the Respondek and

Hunt-Meyer theorem [63], the system is not locally linearisable but several partial

linearisations are possible. R. Marino [79] specified the size of the largest linearisable

subsystem. Stabilisation is therefore only possible for the linearisable part. The

behaviour of the non-linearisable part is moreover unknown and it is only possible

to remark the stability or instability of the system after feedback. Considering

this theorem, one might wonder if a partial static feedback linearisable system is

differentially flat. In the case of partially static feedback linearisable single-input

systems, B.Charlet et al showed that the extension to the dynamic feedback brings

no benefits to the linearisation problem. Such systems are therefore not linearisable

and constitute non flat systems. On the other hand, when multi-input systems are

considered, it is possible to linearise the input-state behaviour with an endogenous

dynamic extension realised by a dynamic state feedback as presented in the next

section. The system is linearisable regarding the state and the linearisation can

be processed on the equivalent system. If a multiple-input system is not dynamic

feedback linearisable it is not flat.

1.2.3.2 Endogenous dynamic feedback linearisation

Consider system (1.80). Dynamic feedback is given by a differential equation also

called dynamical compensator given by equation (1.94),

ż = β(x, z, v) (1.94)

and a feedback loop:

u = α(x, z, v). (1.95)
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The dynamic feedback is now expressed with (1.80, 1.93 and 1.94) by the following

system: 
ẋ = f(x, α(x, z, v))

ż = β(x, z, v).
(1.96)

System (1.80) is linearisable by dynamic feedback if system (1.96) is linearisable

by static feedback. If the linearised system is also L-B equivalent [41], it is an

endogenous feedback linearisation, meaning a Lie-Bäcklund isomorphism φ and its

inverse ψ exist such as:

(x, ū) = φ(x, z, v̄), ū = (u, u̇, ü, . . . , u(m)) (1.97)

and

(x, z, v̄) = ψ(x, ū), v̄ = (v, v̇, v̈, . . . , v(m)), (1.98)

which implies that z, v, v̇, . . . , may be expressed as a function of x, u and a finite

amount of derivatives of u.

Remark 1.3. Every nonlinear flat system is endogenous dynamic feedback linearis-

able and every endogenous dynamic feedback linearisable system is flat [73].

The previous linearisation methods are exact and allow, if linearisability conditions

are satisfied, the expression of an equivalent system independently of any equilibrium

point such as the tangent linearisation. The next section presents the case of pseudo-

linearisation, where not only the dynamic must be invariant along the equilibrium set

but also the whole linear tangent model must be fixed, with respect to an appropriate

coordinate frame. A pseudo-linearised system is still nonlinear but its non linearities

are of the first-order around any equilibrium point.

1.2.3.3 Pseudo-linearisation

Current linearisation methods such as tangent linearisation, allow definition of an

equivalent linear system in the neighbourhood of an equilibrium point of the system.
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The resulting linear system is then controllable only around this point. P. Mouyon

described [45] a linearisation method for multiple-input nonlinear systems, through

approximate linearisation of the state equations. The aim is to obtain invariance

along the equilibrium set of the whole linear tangent model independently of the

system’s poles. Therefore, considering the following coordinate change:

z = T (x) (1.99)

and the state feedback:

v = S(x, u) (1.100)

The linear tangent model of the closed loop system which shall be independent of

the equilibrium point an is given by:

δż = Aδz +Bδv, (1.101)

where A,B are constant matrices. The pseudo-linearised system is nonlinear but

its non linearities are of the first-order around any equilibrium point. The pseudo-

linearised system is given by:

ż = Aδz +Bδv + ε(z, v), (1.102)

such as ε(z0, v0) = 0 and dε(z0, v0) = 0. In the case of multi-inputs nonlinear systems,

projections of the partial derivative equations have to be solved in the tangent space

V and its orthogonal. This is why integration on the tangent space requires an

involution criterion regarding the projected fields. Considering the following tangent

model at the equilibrium set (x0, u0):

δẋ = F (x0)δx+G(x0)δu. (1.103)
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It has been shown that a system is pseudo-linearisable if and only if the distribution

of the following vector fields:

{G,FG, . . . , F ki−2G} ∩ TV (1.104)

are involutive, where TV is the tangent space to V and ki are the controllability

indices of (F,G) The rank of this distribution is given by :

rank
[
{G,FG, . . . , F ki−2G} ∩ TV

]
= card{j/kj < ki}. (1.105)

A controllability canonical form is chosen such as :



δż1 = δz2

...

δżn−1 = δzn

δżn = δv

(1.106)

which implies according to (1.103, 1.99 and 1.100) :



∂T1

∂x
(Fδx+Gδu) = ∂T2

∂x
δx

...
∂Tn−1

∂x
(Fδx+Gδu) = ∂Tn

∂x
δx

∂Tn
∂x

(Fδx+Gδu) = ∂S

∂x
δx+ ∂S

∂u
δu.

(1.107)

System (1.107) must be true independently of δx and δu, therefore:
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

∂T2

∂x
= ∂T1

∂x
F

...
∂Tn
∂x

= ∂Tn−1

∂x
F

∂S

∂x
= ∂Tn

∂x
F

and



∂T1

∂x
G = 0

...
∂Tn−1

∂x
G = 0

∂Tn
∂x

G = ∂S

∂u
.

(1.108)

The previous set of n − 1 first-order homogeneous equations satisfies for T1 at the

equilibrium point x0:

∂T1

∂x

[
G(x0), F (x0)G(x0), . . . , F n−2(x0)G(x0)

]
= 0. (1.109)

The other equations of the Ti gradients are given at the equilibrium point by:

∂Ti
∂x

= ∂T1

∂x
F n−1(x0), i = 2, . . . , n (1.110)

and the gradient of S by:

(
∂S

∂x
,
∂S

∂u

)
= ∂T1

∂x
F n−1(x0) (F (x0), G(x0)) (1.111)

T and S are then found by integration of (1.110) and (1.111).

In this section static feedback and dynamic feedback linearisation methods were

presented. Linearisability conditions must be satisfied and are not always easy to

demonstrate, in particular for multiple-input nonlinear systems. If such systems

are flat, it was previously shown that they are endgenous feedback linearisable and

therefore an equivalent linear system can be determined by finding an appropiate

feedback and a smooth mapping.

Endogenous feedback linearisation is applied in the next section to the flat HSM

model given in equation (1.112). It is shown that the system is static feedback

linearisable and can be expressed with an equivalent linear system given by the

Brunovsky form.
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1.2.3.4 Static feedback linearisation of a hybrid stepper motor

The flat PMSM model was given by the following equations where the states and

the inputs are function of the flat outputs z1 = id and z2 = θm and their derivatives

such as:



x1 = z1

x2 = Jm
Kt

z̈2 + B

Kt

ż2

x3 = ż2

x4 = z2

u1 = Rz1 + Lż1 −
nLJm
Kt

ż2z̈2 −
nLB

Kt

(ż2)2

u2 = ...
z 2
LJm
Kt

+ z̈2
LB +RJm

Kt

+ ż2(RB
Kt

+Kt)− nLż2z1

(1.112)

According to equation (1.85) and with β(x) invertible:

v = β−1(x) [u− α(x)] . (1.113)

Also,

v = β−1(x)u− β−1(x)α(x). (1.114)

By setting ∆(x) = β−1(x) and ∆0(x) = −β−1(x)α(x), (1.114) becomes:

∆0(x) + ∆(x)u = v. (1.115)

According to the Brunovsky form, equation (1.115) equals to:

∆0(x) + ∆(x)

 u1

u2

 =

 z
(ρ1)
1

z
(ρ2)
2

 =

 v1

v2

 (1.116)
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where ρ1 + ρ2 = n. Equation (1.115) implies:

 u1

u2

 = ∆−1(x)


 z

(1)
1

z
(3)
2

−∆0(x)

 (1.117)

with:

∆0(x) =


∆01(x)

∆02(x)

 (1.118)

where:

∆0(x) =


−R
L
x1 + nx3x2

−Kt (BL+RJm)
LJ2

m

x2 + B2L− JmK2
t

LJ2
m

x3 + nKt

Jm
x3x1

 (1.119)

and

∆(x) =


1
L

0

0 Kt

LJm

 (1.120)

According to equation (1.116) the equivalent linear system is given by:

 z1

z2

 =


1
s

0

0 1
s3


 v1

v2

 (1.121)

The presented flat HSM model is given by a linear Brunovsky form. It may be

observed that the dimensions of flat output z and input vector v are the same, as

explained for static feedback linearisation in the previous paragraph. It is shown

in the next section that endogenous feedback linearisation properties have inter-

esting applications in model-based fault detection and diagnosis (FDD & FDI).

Indeed, model-based diagnosis approaches of nonlinear observers such as the ex-

tended Kalman Filter (EKF) use approximated linearisation and may not always

meet the required stability and performance conditions. Linearising the model by

exact linearisation before synthesising the observer might increase the performance
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level of the system and reduce processing costs of the computer unit.

In the next section, a state of the art in current analytical diagnosis methods is

described, particularly addressing residual analysis methods for aircraft control sys-

tems such as actuators and sensors. Among fault detection and isolation (FDI)

methods, linear and nonlinear observers will be detailed [82, 72].

1.3 Model-based monitoring

The development of aircraft control systems such as electric engine computer units

(EECU), flight computer units (FCU) or actuators and sensors are designed regard-

ing high performance requirements.

Figure 1.6: Flight control actuator redundancies
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Reaching these goals led to an increase of complexity qualifying such systems as

high-integrity systems (HIS). HIS need to be as much fail-safe and fault-tolerant

as possible, implying on one hand physical redundancies which allow to ensure the

availability and integrity of a given system through the multiplication of rows of

actuators, sensors or computer units. Therefore, critical functions such as: the

motion of flaps or the velocity and altitude measurement are secured. The depicted

hydraulic actuators in figure 1.6 are controlled by redundant remote electronic units

(REU). On the other hand, embedded monitoring systems must be able to detect,

isolate and identify any fault occurrence [50] where:

• detection, consist in making a binary decision: a fault occurred on the system

or not,

• localisation, is the ability to determine the defect component,

• identification, is the ability of the system to process the fault behaviour in

order to reconfigure the system after the fault occurred. In this case, a fault-

model is required.

In most current monitoring systems, only the two first steps are designed. These

algorithms are denoted as fault detection and isolation (FDI) algorithms. FDI meth-

ods can be split into two main approaches: model-based and data based approaches

(Figure 1.7), presenting for each subset qualitative and quantitative methods.

According to linearisability properties of the flat HSM model shown in section 1.2,

a quantitative model-based approach such as the observer-based FDI method was

chosen to perform states estimations for this study. The description of other ap-

proaches shown in figure 1.7 can be found in [58, 26, 47]. Model-based monitoring

appeared in the early 1970’s and has since found much practical application in the

oil, aerospace, automotive, nautical and rail industries. The aim of model-based

diagnosis [57, 26, 102] is to allow detection of fault occurrences and to identify their

origin using fault detection, isolation and diagnosis algorithms (FDD & FDI). For

reasons of space weight and cost (SWaP), multiplying physical components is not
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Figure 1.7: Classification of fault-detection and isolation (FDI) methods

always possible. Therefore, modern monitoring units require analytic redundancy

(Figure 1.8). Analytic redundancy, also called software redundancy in computer

Figure 1.8: System monitoring scheme based on material and analytic redundancies

units, can bee used as a complement to physical redundancy. Dynamic models are

used to process estimates of measured variables. They are fed with the same inputs
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as the physical system and generate as a result an estimation of the system’s states.

The type of model-based approach that is chosen here is a residual generator as

shown in figure 1.9. A decision logic is required to detect and generate an alert in

the case of an actuator or sensor fault occurrence. Generally, decision logics allow

to detect faults when the residuals exceeds a certain threshold. Fault isolation is

then required in case of multiple fault cases to determine the type of fault. Residuals

must be both fault-sensitive, detecting each occurrence of a fault (performance goal)

and insensitive to noise (robustness goal). FDI systems are also designed regarding

the trade-off between false-alarm and non-detection rates (FAR & FDR).5 Among

Figure 1.9: Model-based fault-detection schematic

the depicted analytical fault-detection and isolation methods, the focus here will be

on observer-based methods which are interesting for flight-critical systems.

5FAR designs the rate of alarm generations by the FDI system when no fault occurred
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1.3.1 Residual generation

Among FDI methodologies, one of the most attractive is known as the Fundamental

Problem of Residual Generation (FPRG). Each residual is then made sensitive only

to a single fault thus ensuring fault isolation in the case of multiple faults.

1.3.1.1 The Fundamental Problem of Residual Generation

(FPRG)

The following nonlinear control-affine system is considered in this case [84] with:


ẋ = f(x) +

m∑
i=1

gi(x)ui +
mψ∑
i=1

li(x)ψi +
md∑
i=1

pi(x)vi

y = h(x)
(1.122)

where ψi is the faults vector and vi the disturbances vector and he l and p functions

are smooth manifolds. The FPRG consists in finding a filter such that the following

system:



 ẋ

ζ̇

 =

 f(x)

f̄(y, ζ)

+
m∑
i=1

 gi(x)

ḡi(y, ζ)

ui +
mψ∑
i=1

 li(x)

0

ψi +
md∑
i=1

 pi(x)

0

 vi

e = h̄(y, ξ) = he(xe)
(1.123)

exists in the neighbourhood of the origin xe, then the following properties are

satisfied:

1. if ψ = 0, then the residual e is not affected by ui and vj,

2. e is affected by ψ,

3. lim ‖ e(t, x0, ζ0, u, ψ = 0, v) ‖= 0, if there is no faults, the residual e converges

to zero for any initial set (x0, ζ0) chosen in a mapping containing the origin

(x, ζ)T = (0, 0)T and for all acceptable inputs, where, ζ ∈ Rq, 1 ≤ q ≤ n and

e ∈ Rs, 1 ≤ s ≤ p.
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Definition 1.7. (Fault sensitivity of the residual [22]) A residual r(t, u, y, v)

is not affected by v ∈ V if for any input u and output y, r(t, u, y, v1) = r(t, u, y, v2),

∀t ≥ 0, ∀{v1; v2} ∈ V 2. Else, if this condition is not satisfied, r is affected by v.

Three main approaches to residual generation have been identified :

• Parameter estimation, where the residual quantifies the difference between the

real parameter value and the model reconstructed parameter.

• State estimation, in which observers dedicated to linear and nonlinear systems

are used for state estimation. The error between estimate and the output

measure is the residual signal. The Kalman filters are used with stochastic

signals.

• Static parity space [51], in which only the output equation of a state space

model is considered. The parity matrix W is processed such as r = WCx =

Wy. W is chosen for compliance with the robustness and performance goals

required of the residual.

In order to improve the fault sensitivity of the residual, faults can be generated and

become part of the plant model as described in the next paragraph.

1.3.1.2 Fault modelling

There exist several ways to model faults, among them the following system extension

such as: 
ẋ = Ax+Bu+ Edd+ Eff

y = Cx+Du+ Fdd+ Fff
(1.124)

where d is the disturbance vector and the Ed matrix indicates which input is affected

by the disturbancy. The f vector is an unknown vector that represents all possible

faults and will be zero in the fault-free case. The Ef matrix indicates where the

fault occurs. Faults are divided into three categories:

• sensor faults: these are faults that directly act on the process measurement
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• actuator faults: these faults cause changes in the actuator

• process faults: they are used to indicate malfunctions within the process.

Figure 1.10: Additive and multiplicative faults

These faults can be seen as additive or multiplicative as shown in figure 1.10, where

yu(t) is an input signal without fault and y(t) is the defect signal affected by the

f(t) fault. In the case of multiplicative faults, a is a time invariant model parameter

(it can be a coil resistance for example) and u is an input signal non affected by

the fault. Fault modelling in a model-based diagnosis approach are based on the

following definitions:

Definition 1.8. (Fault) A fault is an unpermitted deviation of at least one char-

acteristic property(feature) of the system from the acceptable, usual, standard con-

dition.

Definition 1.9. (Failure) A failure is a permanent interruption of a system’s abil-

ity to perform a required function under specified operating conditions.

Definition 1.10. (Malfunction) A malfunction is an intermittent irregularity in

the fulfilment of a system’s desired function.

The link between fault, failure and malfunction is shown in figure 1.11. After

adding fault matrices in the system model, a decision has to be made regarding

certain requirements such as FAR and NDR or robustness and performance of the

FDI algorithm. The next subsection presents current fault-detection methodologies.

1.3.2 Fault detection

After generating the residual signals carrying the fault information, a decision con-

cerning the system’s health level has to be made. This boolean output is generated
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Figure 1.11: Consequences of a fault occurrence

by residual evaluation functions [3]. Model-based fault detection requires high-

fidelity modelling of the dynamics of the system, and generation of a residual signal

as fault sensitive as possible and insensitive to noise and disturbance. In a safe

mode, the residual is a stochastic signal and its mean value is close to zero. When

a fault occurs the signal mean value varies on the fault event, as shown in figure

(1.12). Statistical methods, such as normal distributions N(µ,E), are used in order

to process the signals average µ and its covariance matrix E. A simple way to detect

a fault is to generate an alarm when the residual exceeds a threshold, defined within

the systems specifications. As an example, let µ0 and µ1 correspond respectively to

the residual average without faults and with fault. Hypotheses H0 and H1 are such

as: 
H0 : µ = µ0

H1 : µ = µ1

(1.125)

If H1 is chosen while H0 is true, the decision is a false alarm.

If H0 is chosen while H1 is true, the decision is a non-detection.

It is important to note that the residual r may not always have a Gaussian distri-

bution [71].
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H0 decision H1 decision
H0 true (no fault) right decision false alarm
H1 true (fault) no detection right decision

Table 1.1: False alarm and non-detection hypothesis

A local representation of the residual can be given by:

rloc = 1√
N

N∑
t=1

r(t) (1.126)

where rloc is considered as a Gaussian signal only if N is great enough. Other

statistical based fault detection methods could be listed such as fixed threshold, the

student test, the generalized likelihood ratio test (GLR), sequential probabilty ratio

test (SPRT), the CUSUM test and Randomized Sub-Sampling (RSS)

1.3.3 Fault isolation

The final step of residual evaluation involves isolation of the faulty residual. Con-

sidering that several residuals are generated and each residual is processed to be

Figure 1.12: Signal mean change on fault occurrence
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Figure 1.13: Probability density of a variable and mean change detection

sensitive to one particular fault only. Once a fault occurred, many residuals are sen-

sitive to a same fault. Therefore, one residual is not sufficient to isolate the source

of the fault. A vector of residuals is generated and sensitive to several faults. If a

variation occurs on more than one residual at the same time, fault tables allow to

isolate the fault. It is then possible to determine if the fault is related to a sensor or

an actuator. Terms of "sensor faults" and "actuator faults" are used in fault-isolation.

Two main methods are described here:

• Residual structures

• Directional residuals

In the case of residual structures [83], a binary table is used to reflect the fault

affected to each of three residuals as shown in Table (1.2). When the ith residual

is sensitive to the jth fault, then the value "1" is placed to the corresponding cell.

Placing "0" means that the residual is not sensitive to the corresponding fault. Table

f1 f2 f3
r1 1 0 0
r2 0 1 0
r3 0 0 1

a)

f1 f2 f3
r1 1 1 0
r2 1 0 1
r3 0 1 1

b)

Table 1.2: Fault signatures on residual structures

(1.2) shows an isolability rank of two because two digits need to be changed to go
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from one fault vector to another. Both tables have the same isolability rank but

table a) contains more "0". Therefore, its configuration is preferred.

Definition 1.11. (Fault localisation) A fault is structurally localisable if all the

columns of the fault table are different.

1.3.3.1 Parity space

In the case of directional residuals, the residual vector r is collinear to the fault

vector W [i]
rf . The parity matrix W is processed such as r = WCx = Wy. W is

chosen for compliance with the robustness and performance goals required of the

residual. For static parity space, the residual is generated with the given model:

���

���
3

���
2]

�(�)

Figure 1.14: Directional residual collinear to a fault vector f2

y(t) = Cx(t) +Ddd(t) +Dff(t). (1.127)

Hence the residual r(t) given by:

r(t) = Wy(t) = WCx(t) +WDdd(t) +WDff(t), r(t) ∈ Rp−n (1.128)

with,

f(t) =


f1

...

fmf (t)

 , f ∈ Rmf . (1.129)

The parity matrix W ∈ R(p−n)×n is chosen such as the residual is insensitive to

disturbances d(t) and to the state which implies WC = 0, WDdd(t) = 0 and
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Wrf = WDf ∈ R(p−n)×mf . The parity vectors sensitive to faults are then given

by:

Wrf =
[
W

[1]
rf . . . W

[mf ]
rf

]
(1.130)

In figure (1.14), the isolated fault is f2 because the residual is collinear to W [2]
rf .

The next subsection deals with the application of residual generation methods to lin-

ear and non-linear observers. System controllability and observability fundamentals

are recalled in order to understand observers processing.

1.3.4 Linear observers

System monitoring using state-space representations consists in studying the co-

herency of the model behaviour regarding the real system. One of these approaches

is based on the comparison of measured variables and the on-line processed variables

from the model, while the physical system and the model are have the same inputs.

To process the outputs, it is necessary to know certain state-variables. A first step

in the computing model outputs is dedicated to the estimation of these unknown

states. The system which permits this processing is called observer. An observer

is defined as a dynamical system which takes as an input the known signals of the

physical system and which outputs converge to an estimation of the state variables,

or a subset of the state variables if certain states are not observable. Observability

definitions are recalled in the next subsection.

1.3.4.1 Observability

The following definitions are based on the work of Gauthier and Bornard as well as

Hermann and Krener [48, 52].

Definition 1.12. (Observability) The observability of a system is realised on its

fault-free model given by: 
ẋ = f(x, u)

y = h(x, u).
(1.131)
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System (1.131) is observable if any state is distinguishable from any other state.

Definition 1.13. (Indistinguishability) Two initial states are indistinguishable

if for any input, each state dedicated trajectory generates the same output.

Figure 1.15: Indistinguishable states

Also, for a given state x(t0) and a given input u(t0), there can only be one output

y(t0, t1). To consider global observability, all the states of system (1.66) must be

distinguishable. The definition of U−indistinguishability defines local observability.

Definition 1.14. (Local indistinguishability) Let U be a subset of X ⊆ Rn with

two initial states x1 and x2. The two states are U−Indistinguishable if ∀t ≥ t0, the

corresponding outputs y1 and y2 are identical for any bounded measurable control

t 7→ u(t) and if, ∀t ≥ t0, the paths of x1 and x2 belong to the subset U .

Observability is not affected by the inputs variations, therefore an observable LTI

system is globally observable. In the case of nonlinear systems, local observability

is considered.

Observability rank conditions : As defined for controllability in the case of LTI

systems, observability can be tested by determining the rank of the observability

matrix. The observability space O is generated by the constant matrix :

O =
(
C CA CA2 . . . CAn−1

)>
(1.132)
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the Kalman condition is then given by :

rank(O) = n. (1.133)

This condition was generalised to Multiple-Input and Multiple-Output (MIMO)

systems [27]. The extension to nonlinear systems was studied.

Observability of nonlinear affine systems : Considering the following system,


ẋ = f(x) + g(x)u

y = h(x, u).
(1.134)

The Lie derivative expression is given by:

Lfh(x, u) =
n∑
i=1

fi(x) ∂h
∂xi

+ ∂hi
∂u

u. (1.135)

The observability rank property allows to define the local observability of (1.134) if

the following conditions are satisfied:

Rank



Lfh1(x, u)

L1
fh1(x, u)

...

Lk1−1
f h1(x, u)

...

Lfhp(x, u)
...

L
kp−1
f hp(x, u)



= n, (1.136)

where L1
fh = dLfh is the co-vector given by the general form:

dLjfh =
∂Ljfh
∂x1

,
∂Ljfh

∂x2
, . . . ,

∂Ljfh

∂xn

 , (1.137)
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ki are the output derivative levels and also called the observability index. For ev-

ery system, the corresponding ki indexes need to be compliant with the following

statement [67].

Definition 1.15. (Observability indexes) The naturals (k1 . . . kp) are the observ-

ability indexes if they are compliant with the following properties:

• k1 ≥ k2 ≥ . . . ≥ kp,

• ∑p
i=1 ki = n,

• the Kalman criterion is satisfied.

1.3.4.2 The Luenberger Observer

The Luenberger observer is one of the most famous linear state estimators used in

model-based fault detection [4, 65]. It allows reconstruction of the state variables

based on a linear model of the system. Consider the following linear system:


ẋ = Ax+Bu

y = Cx.
(1.138)

The corresponding state observer is then given by:


˙̂x = Ax̂+Bu+ L(y − Cx̂)

ŷ = Cx̂,
(1.139)

where L is the observer gain. The state estimation error ex = x− x̂ satisfies:

ėx = (A− LC)ex. (1.140)

If the matrix (A−LC) is stable, then the state estimation error tends to zero. This

is true if (C,A) is observable. Considering a fault vector wf , impacting the state.
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System (1.138) becomes then:


ẋ = Ax+Bu+ Ewf

y = Cx,
(1.141)

and equation (1.140) becomes:

ėx = (A− LC)ex + Ewf . (1.142)

The state estimation error has become fault-sensitive and the output estimation

error ey = y − ŷ can be used as a residual for fault detection.

Remark 1.4. The use of observers for diagnosis does not necessarily require every

state to be observable from the state vector. If a measurement exists for an observable

state, a residual can be generated and fault detection can be processed for this state.

An observer which includes all the inputs and outputs of a system is called a Simpli-

fied Observer Scheme (SOS). This kind of observer does not allow fault localization,

since the states are sensitive to every type of faults. Therefore several rows of ob-

servers need to be synthesised in order to be sensitive to one particular fault, which

are known under the Generalized Observer Scheme (GOS) (Figure 1.17) and the

Dedicated Observer Scheme (DOS) (Figure 1.16). The DOS takes only one input

Figure 1.16: Dedicated Observer Scheme (DOS)

(or output) and is sensitive to only one specific sensor (or actuator) fault. In the
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Figure 1.17: Generalised Observer Scheme (GOS)

case of the (GOS), all the system’s inputs (or outputs), except one, are required

and if a fault occurs, the observer that doesn’t take into account the fault sensitive

output (or input) will not be affected. This is how the fault is then detected and

localised or identified.

1.3.4.3 The Standard Kalman Filter (SKF)

The Kalman filter [32] is used for estimating states when stochastic signals are con-

sidered. This linear states estimator takes into account state and measurements

disturbances and integrates a linear state-space model. The Kalman filter’s correc-

tion and update steps allow generation of a predicted state vector, which permits

to process the residual. This residual can then be used for the diagnosis of system

faults. When discrete models are considered for System (1.141), the prediction step

�� � �� 1 � �� 1 � 1
������	�
�
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�
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Figure 1.18: Time and measurement updates of the Kalman filter
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is given by: 
x̂−k = Akx̂k−1 +Bkuk

P−k = AkPk−1A
T
k +Qk,

(1.143)

whereQk and Rk are respectively the state and measurement noise covariance matrix

given by:


Qkδ(l) = E[w(k)w(k + l)T ]

Rkδ(l) = E[v(k)v(k + l)T ]

E[w(k)v(k + l)T ] = 0, (with δ(l)=1 if l = 0; 0 otherwise ).

(1.144)

Here, w(k) and v(k) are the Gaussian white noises corresponding to matrices Qk

and Rk respectively. The correction step is given by equation (1.145)


Kk = P−k C

T
k (CkP−k CT

k +Rk)−1

x̂k = x̂−k +Kk(yk − Ckx̂−k )

Pk = (I −KkCk)P−k .

(1.145)

Kalman filters can be processed for synchronous motors described in [5], but also for

asynchronous motors. For nonlinear systems, the Extended Kalman Filter is also a

very good solution and has many applications in industry [96].

1.3.4.4 Unknown Input Observers (UIO)

Another very powerful state estimator is the UIO because it fits well with determin-

istic and stochastic models. The aim of the UIO is to estimate the state vector while

minimizing the influence of unknown inputs such as noise, which are decoupled. The

structure of an UIO is given by :


˙̂x = Fx̂+ TBu+ (K1 +K2y)

ry = (1− CH)y − Cx̂
(1.146)
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where the decoupling matrices F ,T ,K1,K2,H must be chosen in order to respect

asymptotic convergence such as :



(HC − 1)Ed = 0

T = 1−HC

F = A−HCA−K1C is stable

K2 = FH.

(1.147)

Regarding nonlinear systems, the Extended UIO is also widely used such as the

EKF. For strongly nonlinear systems, extensions were developed for Lipschitz-non-

linearities [81, 2].

1.3.5 Observers for nonlinear control-affine systems

The case of nonlinear control affine systems has been studied the past 50 years [60,

40, 24] in order to design nonlinear observers.

1.3.5.1 High Gain Observers

High gain observers [48, 41] are designed to minimize the nonlinearities of the corre-

sponding system by applying a high gain on the linear terms of the system. Single

output systems are considered for this example with:


ẋ = f(x) + g(x)u

y = h(x).
(1.148)

System (1.148) is supposed to be uniformly observable, implying the manifold ψ(x)

such as:

ζ = ψ(x) =


h(x)
...

Ln−1
f h(x)

 . (1.149)
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The nonlinear system [6] is then expressed with ζ and x by:


ζ̇ = Aζ + Γ(ζ) +G(ζ)u

y = Cx
(1.150)

where, A =



0 1 . . . 0
... . . . . . . 0
... . . . 1

0 . . . . . . 0


, Γ(ζ) =



0
...

0

γ(ζ)


, G(ζ) =



ḡ1(ζ1)

ḡ2(ζ1, ζ2)
...

ḡn(ζ1, . . . , ζn)



and C =
(

1 0 . . . 0
)
.

It was shown by Gauthier et al that the following system :

˙̂x = f(x̂) +
m∑
i=1

gi(x̂)ui −
(
∂ψ

∂x
(x̄)
)−1

S−1
θ CT (h(x̂)− y) (1.151)

is a high gain observer for (1.148), where Sθ is the solution of :

CTC = θSθ + ATSθ + SθA. (1.152)

1.3.5.2 Sliding-mode observers

Sliding-mode observers [36, 100, 99, 28] are observers given by :


˙̂x = f(x̂, u) + ΛSgn(y − ŷ)

ŷ = hx̂
(1.153)

where the correcting part is not continuous, denoted by :

sgn(x) =


x if x > 0

−x if x < 0

not defined for x = 0

(1.154)
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Λ is a n× p matrix and

Sgn(y − ŷ) ,



sgn(y1 − ŷ1)

sgn(y2 − ŷ2)
...

sgn(yp − ŷ)


. (1.155)

1.3.5.3 The Extended Kalman Filter (EKF)

As shown in the linear observer section, the Kalman filter is used to estimate the

states of a system when disturbances occur on the measurements and the input

signals if the system is observable. The Extended Kalman Filter [70, 69] is an

extension of the standard Kalman filter to nonlinear systems. The non-linearities

are linearised locally with tangent derivatives with Jacobian matrices. Consider the

following discrete nonlinear system:


xk+1 = xk + Tsf(xk, uk) + wk

yk = h(xk) + vk

(1.156)

where:

• x̂k/k is the state estimated at tk,

• x̂k+1/k is the state estimated at tk+1 without correction,

• x̂k+1/k+1 is the state estimated at tk+1 with correction.

Time update (prediction) : During the time update step, the state vector is

estimated at time (k+ 1) regarding the state and the measurements realised at time

(k) such as:

x̂k+1/k = x̂k/k + Tsf(x̂k/k, uk). (1.157)
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The prediction error covariance matrix P is also processed in this step with :

Pk+1/k = AjkPk/kAj
T
k +Qk (1.158)

with Ajk and Hjk the Jacobians of f and h given by :

Ajk =
∂
(
x̂k/k + Tsf(x̂k/k, uk)

)
∂x

∣∣∣∣∣∣
xk=x̂k/k

; Hjk = ∂ (h(xk))
∂x

∣∣∣∣∣∣
xk=x̂k/k

. (1.159)

Measurements update (correction) : In this step, the Klaman gain is pro-

cessed where :

Kk+1 = Pk+1/kHj
T
k (HjkPk+1/kHj

T
k +Rk)−1. (1.160)

The correction of the state vector is then given by the next equation :

x̂k+1/k+1 = x̂k+1/k +Kk+1(yk+1 −Hjkx̂k+1/k). (1.161)

The last equation of the correction step consists in updating the prediction error

covariance matrix, P such as :

Pk+1/k+1 = Pk+1/k −Kk+1HjkPk+1/k. (1.162)

1.3.6 Robustness and performances evaluation

In order to demonstrate the robustness of the model-based diagnosis approach, the

linearisation process has to be stable at each state value (including at the system

equilibrium). The equivalent linear model obtained by endogenous feedback in sub-

section (1.2.3.4) is not affected by any non-linearity. For this study, the diagnosis is

realised with a cumulative sum and threshold comparison. If the residual exceeds

the defined threshold, then an alarm is generated. The threshold levels are compared

with two approaches. First, a linearisation of the stepper motor model is realised
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with an endogenous feedback. The equivalent system is then used with a standard

Kalman filter for fault detection by residuals generation of the flat outputs. The

second approach uses an EKF with the nonlinear model of the stepper motor. The

two linearisation approaches are then compared in Chapter 3.

1.4 Conclusion

In this chapter, fundamentals of differential flatness were presented and an example

was given with the processing of a hybrid stepper motor’s flat outputs. Different lin-

earisation approaches were given such as endogenous feedback, pseudo-linearisation

and tangent linearisation. The problem of local linearisation around an equilibrium

point is solved for certain nonlinear systems with cancellation of their non-linearities

by diffeomorphism and endogenous feedback. An example of linearisation of a step-

per motor was shown in the first section. In the second section, model-based diag-

nosis tools such as residual generators, state estimators and observers for linear and

nonlinear systems were shown.

In the next chapter, an aeronautical case study is described. The case of an elec-

tromechanical actuator used in a fuel circuit of a turboshaft engine will be presented.

A new actuator monitoring architecture then suggested. The safety assessment of

this new architecture will be discussed.
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Abstract: In Chapter 1, it was recalled that monitor-

ing systems designs of flight control systems are in certain

cases based on nonlinear analytical diagnosis methods. To

reduce complexity and processing costs, different linearisa-

tion methodologies (pseudo and exact linearisation) were

presented. Among them, linearisation by endogenous feed-

back of flat systems allow to determine an equivalent linear

and stable system.

In this chapter, flight-critical systems are introduced. It

is shown that analytical monitoring allows to reduce the

number of redundancies according to specific guidelines of

aeronautical safety standards such as ARP-4754. This in-

novation has been applied to a flight-critical actuator of a

turbo-shaft engine.

64



Chapter 2: Flight-critical actuator diagnosis

2.1 Introduction

The rapid growth in the volume of air traffic over the past decades, coupled with

the ever-present mandatory objective to reduce the number of fatal aircraft acci-

dents has led to a significant increase in aircraft safety requirements and regula-

tions. In addition, compliance with the safety regulations must be demonstrated

through a complex certification process, and significantly impacting system engi-

neering methodologies for modern avionic equipment. The design and development

of Safety Critical Systems (SCS), such as avionic equipment, Engine Computer

Units (ECU), Flight Computer Units (FCU), actuators, direct-drives, servo-valves

or electronic components (Figure 2.1) is today challenged by the severe environ-

mental constraints, high performance standards and rugged safety requirements on

software, hardware and system architectures [91, 92, 94]. Since any failure occurring

on a safety-critical system can lead an aircraft to a catastrophic event (failure causes

a crash) due to non-availability and/or non-integrity causes, FCS equipment must

be designed to fully comply with all safety requirements starting from the inception

phase.

The aim of this chapter is to describe the realisation of a possible flight-critical

actuator architecture based on a combination between analytic and material redun-

dancy. Terms and definitions related to flight critical systems are first recalled in

section 2.2. Leading FCS design methodologies and tools are also presented in order

to explain how safety standards are taken into account in the design of complex

FCS. A case study is realised in section 2.3 on a fuel valve actuator of a biturbine

helicopter. The actuator safety analysis shows the impact of a possible fault occur-

rence on the biturbine which explains the criticality levels of such actuators. Finally,

a new safety compliant actuator monitoring architecture is proposed in section 2.4.

This architecture has also been subject to a patent [13] developed with THALES

Systèmes Aéroportés and the IMS and ESTIA-Recherche Laboratories.
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2.2 Flight critical systems overview

As an introduction to this study, relevant safety related definitions regarding FCS

are recalled in this section. These terms are defined by SAE standards [91, 92]

regarding environment, hardware and software considerations. Other terms are also

described in [68, 16].

2.2.1 Definitions

Safety and flight-critical systems : [16] In the event of their failure, these are

the systems that may either directly or indirectly lead to situations in which human

life is put at risk, damage to the natural environment occurs, or large economical

loss is suffered. Complex safety or flight-critical systems are defined as those that

cannot be shown only by test or where the logic is difficult to comprehend without

the aid of analytical tools.

Figure 2.1: Some safety critical systems in current aircraft

Complexity : System complexity grows together with the size of the software ap-

plications, the number of functions, and the number of states of the system, often

making comprehension and verification of digital functions difficult. Also, discrete

behaviour is related to complexity of highly integrated systems because small input

variations may cause greater variations on the system’s output. Verification and

validation of such complex functions become therefore more difficult. Another term

which specifies complexity is invisibility. Indeed, as software is not physically visi-
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ble, it has to be represented by many different Unified Modelling Language (UML)

diagrams and visualised by overlapping different functional views such as data flow

or control flow. Complex and high integrity systems were developed in many indus-

trial fields such as aerospace, automotive and many transport domains. An example

of complexity growth is shown by the increase of flight software size (number of

Non-Comment Source Lines (NCSL)) in NASA space missions (Figure 2.2) :

Figure 2.2: Complexity-related software growth in NASA space missions, (Source:
From Dvorak, D.L., Editor (2009). NASA Study on Flight Software Complexity)

Availability : The availability of a system can be evaluated by the probability of

its working correctly over a certain time frame.

Security : A secure system does not permit the occurrence of unauthorized access

to information. Regarding security, the feared occurrence is a malicious attack but

regarding safety the feared event is a failure.

Integrity : Integrity issues appear if there is an occurrence of inappropriate infor-

mation alterations. As an example, data integrity refers to the possibility that a

system will detect faults and recover by correcting the resulted errors. If a computer

unit processes erroneous data, the system’s integrity is not satisfied.

Reliability : Reliability is the ability for a given system to operate correctly over a

given period of time. Reliability depends on time and can also be defined as a failure

rate, where the failure rate corresponds at the time when the systems encounters a

failure. For example, safe systems are not necessarily reliable. If a system is fail-
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safe, there is no failure occurrence possible, therefore the reliability is null. In a

series of system blocks, the reliability function R is given by :

R(t) =
N∏
i=1

ri(t). (2.1)

For parallel blocks, reliability becomes:

R(t) = 1−
N∏
i=1

(1− ri(t)), (2.2)

where ri is the number of failures in the ith data group or subsystem block. Many
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Figure 2.3: a) Failure rate variations; b) Aviation risk acceptability

components vary as shown in figure 2.3-a. Their lifetime is divided in three domains.

First, components show high failure rates related to possible defects that remain

from the manufacturing phase, also called infant mortality. The end phase is called

the wear-out and is related to ageing. The failure occurrence probability P follows

an exponential law given by:

P (t) = 1− e−λt (2.3)

where λ is the failure rate (the amount of failures during operating time). If

λt ≤ 10−2 then P (t) ≈ λt. For a given system, failure rates and the severity levels

are related and allow to define an acceptability area (Figure 2.3-b). Let’s assume

that a failure occurrence leads the system into the unacceptable domain. Generally,

it is only possible to get back to the acceptable area by reducing the failure rate
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which implies to reduce the severity level.

Figure 2.4: Main aviation fatal accident causes

Incident and accident : An incident is an undesired event which might lead to

integrity issues such as erroneous data flow for example. The catastrophic accident

of the NASA space shuttle Challenger was the result of chain events implying the

incident of lift-off when the ambient temperature of the fuel was low. As a result,

the flight 51-L exploded 73 seconds after lift-off causing human losses and the loss of

a multi-billion-dollar shuttle. As shown in figure 2.4, the origin of aircraft accidents

is related to multiple causes. The main accident cause is due to human error. Flight

critical systems such as cockpit displays, Flight Computer Unit (FCU) or Electronic

Engine Computer Unit (EECU), have to be affected by a very low failure rate per

flight hour.

Dependability : [16] A dependable system can be defined as a system for which

reliance can justifiably be placed on the service it delivers. Dependability is also

defined by its attributes which are safety, reliability, availability and security.

Airworthiness : This term is used to regroup aircraft related regulations (FAA

and EASA), standards, safety design rules and certification processes.
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Fail-Safe : Fail-safe systems are systems able to recover in a fail-safe state after a

single or multiple failure occurrence.

Fault avoidance : In the system design phase, formal methodologies are used to

ensure that a system is fault free.

Fault removal: Aims to remove faults from a system once they have been entered

as a consequence of improper design or wrong implementation.

Fault detection: In this case, faults are detected while the system is active.

Fault prediction : Fault prediction consists in evaluating the likelihood that a

given system will fail at a certain time. Fault prediction can be used for evaluating

the probability of a failure occurrence or to realise a system verification test after

an estimated time period (Figure 2.5).

Figure 2.5: Probabilities of failure occurrence with and without test

Fault tolerance : It qualifies a system which is able to operate correctly in the

presence of faults. Redundant systems are often fault tolerant.

Fault coverage : It is related to fault -detection, -avoidance,-removal,-tolerance or

prediction and is a measure of the degree of success of each of these functions.

Active failures : It is a failure which is detected during the system’s activity.

Hidden, dormant or latent failures : For flight critical systems, dormant failures

are not detected during the flight. As an example, the loss of monitoring including

passivation means or the loss of redundant paths are considered as dormant failures.

Human error : Systematic faults generated by human activity (i.e. a mistake in

specifications, design, manufacturing, a mistake in operating or during maintenance
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actions).

System error : It is the consequence of a fault occurrence (Figure 2.6). As an

example, a fault caused an inability for a system to open a valve on command, which

is considered as an error.

Figure 2.6: Possible fault consequences

Dissimilarity : Dissimilarity can be used as well in hardware design as for soft-

ware. Software dissimilarity is achieved by realising two different solutions by two

different teams. The two software run separately and their outputs are compared

or added in order to ensure integrity.

Development Assurance level (DAL) : In the safety assessment process, the

probability of a failure occurrence regarding the severity is allocated to grades de-

noted as development assurance levels. Figure 2.7 shows a severity allocation table

comparing multiple variables such as the failure rate and the probability range.

Figure 2.7: FAA and EASA severity allocation

71



Chapter 2: Flight-critical actuator diagnosis

2.2.2 Aviation safety standards and airworthiness

2.2.2.1 Regulation authorities

International airworthiness organisations exist in order to establish system design

safety and environmental standards and certification requirements as depicted in

figure 2.8. The international civil aviation is governed by the convention of

Figure 2.8: International civil airworthiness organisation

International Civil Aviation, also known as the Chicago Convention. Under this con-

vention, standards and recommended practices are given for international aviation.

The International Civil Aviation Organisation (ICAO) has six strategic goals: safety,

security, environmental protection, efficiency, continuity and rule of law. These ob-

jectives must then also be ruled by the organisations which depend on it such as the

EASA and FAA. Other countries such as Canada publish their own airworthiness

codes.

2.2.2.2 Sources of specifications and recommended practices

As defined in the main ICAO objectives, a system must be, among other criterion,

safety compliant. Safety is not a certification but one mean of compliance (MOC) for
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Figure 2.9: Safety integration in flight systems design

certification between others. Figure 2.9 shows how different standards are used for

safe design process. In order to assess safety requirements in system design, several

layers must be completed sequentially and on parallel (Figure 2.10). Routinely, a

Figure 2.10: Safety assessment and development process
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first reliability analysis is realized where the failure rates are processed. These rates

are associated in the Failure Modes and Effects Analysis (FMEA) phase. The Pre-

liminary Safety System Assessment (PSSA) and Safety System Assessment (SSA)

phases are described in the guidelines of the SAE ARP4761 [95] standard together

with the Common Causes Analysis (CCA). These guidelines help in the safety de-

velopment process of the system. When these elements are established, the Fault

Tree Analysis (FTA) is realised with having previously completed the Functional

Hazard Assessment (FHA). The next step consist in performing the Common Mode

Analysis (CMA). If multiple redundancies are required, common modes are forbid-

den, in order to be compliant with integrity and availability criterion. Many tools

where developed in industry to perform these tasks, which are recalled in the next

subsection. They are based on the knowledge of past accidents, and improvements

made on previous technologies.

Summarising, aviation standards and guidelines are established by international reg-

ulation authorities (ICAO, FAA and EASA) in order to give mandatory objectives

regarding environment [91], software [92], hardware [93], design [94] and safety [95]

constraints. Systems integrating these constrains in their design are denoted as high

integrity systems [68], implying the use of system engineering (SE) methodologies

in industry.

The next section is dedicated to recall main SE methodologies including methods,

tools and processes used in aerospace industry. The patented [13] architecture pro-

posed in section 2.4 emerged from the next presented SE methodologies.

2.2.3 System engineering methodologies

During the 60’s, system engineering (SE) approaches have been set up in order to

manage the complexity of great industrial projects (e.g. architecting NASA space

transportation systems, flight control systems or engine control systems). A com-

plexity not only defined by technological performances of systems (and software)

but also including tasks definition, processes and methods, tools, need analysis,
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Figure 2.11: System engineering methodologies scheme

product life-cycle management, system verification and validation models, system

safety requirements, collaborative work management, human skills and knowledge.

According to the Association Française de l’Ingénierie Système (AFIS) standard,

System engineering is defined as the relationship between processes, methods and

tools (Figure 2.11) [31] where:

• Processes (Figure 2.12), are logical sequences of tasks answering to «what task

is realised?» (e.g. conceptualizing, develop, operate and maintain, replace or

dismantle), and must be compliant with the ANSI/EIA 632, ISO/IEC 15288

and IEEE 1220 standards where ISO/IEC 15288 [61] is the standard for the

description of life-cycle of systems, ANSI/EIA 632 [1] is a set of processes for

engineering or re-engineering a System and IEEE 1220 [56] is the standard for

system management,

ISO/IEC 15288
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Figure 2.12: Leading process standards for system management
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• Methods and support processes are also supported by tools; they enable the

realization of systems by integrating tasks of processes, following one or several

models (Royce’s waterfall [90], Forsberg and Moog’s Vee [44, 43], Bohem’s

spiral [15]). Methods answers to «How shall tasks be done?»,

• Tools, enable tasks to be processed according to a particular method. Most

System Engineering Tools (SET) are software designed to assist engineers

in the modelling and simulation stages of the product, known as «Con-

cept Stage», «Development Stage», «Production Stage», «Utilization and Sup-

port phases»and the «retirement phase». Tools enable to answer to previous

«what?», and, «how?», and enhance tasks efficiency.

According to [31], these terms are often erroneously considered with methodologies,

which should be understood as a «collection of related processes, methods and tools».

2.2.3.1 Leading System Engineering Methodologies

SE Methodologies cover up a large scale of system conception and management

methods, tools and processes in order to solve the problem of system complexity re-

garding the size of industrial projects and their heterogeneity, such as multi-physical

domains, project costs or safety constraints. SE Methodologies also involve system

integration, which implies a multitude of sub-systems constituting a global system

working homogeneously within its environment. While system complexity is grow-

ing, major SE leaders such as the International Conference on System Engineering

(INCOSE) and AFIS Societies become a reference in their discipline. Currently,

Model-Based System Engineering (MBSE) methodologies depicted in table 2.1 are

used in industry. Model Driven Architecture (MDA) has been adopted by the Object

Management Group (OMG) to designate MBSE and relies on a shifted code-centric

to model-centric development approach systems [21]. MDA’s goals are basically to

enable system portability, interoperability and re-usability through its architectural

design approach. MBSE also enable to elevate the engineering process to the associ-

ation of design, specification, integration, validation and operation of systems [31].
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MBSE Methodologies Description

IBM Technologic Harmony - SE Subset of a software/system
development process

INCOSE Object Oriented Systems
Engineering Method (OOSEM)

Top-down approach, using OMG
SysML used for specification, system
analysis, design and verification

IBM Rational Unified Process for
Systems Engineering (RUP SE) for
Model-Driven Systems Development
(MDSD)

RUP is a methodology which is both
a process framework and process prod-
uct from IBM Rational designed for
software development projects manage-
ment

Vitech MBSE Methodology

Methodology based on 4 interdepen-
dent activities (Source requirements
analysis,functional/behaviour analysis,
architecture), linked through a common
system design repository

JPL State Analysis (SA) Methodology emphasizing a model and
state based control architecture

Dori Object Process Methodology
(OPM)

OPM is defined as a system develop-
ment approach and a life cycle sup-
port, based on Object-Process Dia-
grams (OPD) and Object-Processed
Language (OPL)

Table 2.1: MBSE methodologies used in Industry

2.2.4 Leading system engineering tools

The achievement of such methodologies could not arise without dedicated tools and

software. We have seen that tools support methods and that tools are part of

methodologies. In many industrial domains, tools are used for various applications

such as:

• Analysis and environment identification,

• Requirement Management,

• Functional & Physical Architecture,

• Component Design,

• System Performances Estimation,

• Prototyping,
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• HIL (Hardware In the Loop) Simulation.

Category SE Tools Developer

Requirement Management
Doors Telelogic

Reqtify TNI

Modelling and specification

Artisan studio Atego

SCADE ESTEREL Technologies

Rhapsody IBM

SysML OMG

Atelier B ClearSy

Simulation & Verification

Matlab-Simulink Mathworks

AMESIM LMS

Scilab Scilab

Rational StateMate IBM

Dymola/Modelica Dassault Systèmes

Architecture/Cosimulation Cosimate ChiasTek

Prototyping and HIL Simulation

DSPACE DuraSpace

SolidWorks,CATIA Dassault Systèmes

Nastran FEMAP Sigmeo

Syndex INRIA

Real-time target machine Speedgoat

Table 2.2: Main MBSE methodologies used in industry

For each stage of the system development cycle, several tools exist (Table 2.2) and

offer the possibility of having a relatively appropriate overview of the future system’s

functionalities, performances regarding cost, safety and reliability. The following

example (Figure 2.13) [66] points out the integration of some of the previous tools

in the SE process.

The OMG SysMLTM (System Modelling Language) tool, which is one of the

most used tool in industry, is a Model-Based integration platform that performs
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Figure 2.13: Tool integration in the SE process

the integration of Dynamical, Cost, Manufacturing and CAD (Computer Aided De-

sign) models. Integration is enabled through a Framework, which is made of the

main system development phases, such as System Requirements, Functional Anal-

ysis, Simulations & Engineering and System Architecting. SE approaches used in

industry consist in elaborating a functional need analysis followed by a functional

architecture, which is then submitted, to experts who are affected to one specific

non-functional viewpoint (e.g. availability, fault tolerance, system integrity).

The use of SE methodologies is a valuable asset in the design of complex and high-

integrity systems. It was shown in this section that leading SE tools and methods

allow to realise multilayer aircraft systems designs. These systems must also inte-

grate requirements and constrains defined by aviation regulation standards. The

respect of safety requirements in the design of flight-critical systems is a major task

in aerospace industry and is realised with the presented SE tools and methods.

The next section presents the application of safety assessment of a flight-critical ac-

tuator used in a helicopter engine based on a SE method. The severity is evaluated

regarding aviation regulation standard ARP4761 [95].
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2.3 Safety assessment of a turboshaft fuel valve

actuator

The aim of this analysis is to confirm that a fault occurrence on the fuel system

actuator might lead to a catastrophic event, characterizing therefore the actuator

as flight-critical. Failure modes and rates of the actuator will be determined in this

study regarding the NSWC [88] standard. The fault tree analysis (FTA) of the fuel

system permits then to process the failure rate at each subsystem level. This section

also shows the required redundancy level of a safe fuel system actuator.

2.3.1 Current system description

In order to meter the fuel flow in helicopter engines, also called turbo shaft en-

gine, different components and sub-systems interact in the global metering system

architecture (Figure 2.14):

Figure 2.14: Turboshaft fuel control scheme
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• The Electronic Engine Control Unit (EECU) is an electronic device

on board of the helicopter that manages engine related sensors and actuators

and integers the fuel actuator control unit, monitoring functions and fault

management control;

• The actuator, an electromechanic or hydromechanic drive, is enslaved by

the EECU. It receives the rotation command related to the fuel flow valve.

The motion and position of the fuel valve is given by the actuator in order to

change the fuel flow (Figure 2.15);
ncipe système

uble canal

Commande du MPP 

boucle ouverte : pas 

d'asservissement sur X

Fail-Freeze sur pann

a)

a)

b)

c)

d)

e)

f)

b)

Figure 2.15: a) Fuel metering system(source: Turboméca) ; b) Stepper motor com-
ponents

This fuel valve actuator is made of a hybrid stepper motor containing a hull

(a) and (e), a rotative shaft (the rotor) mounted with its bearings (b) and

made of two magnetized gears. The stator (d) is made of windings (f) in order

to generate electromagnets when the wires are electrically supplied.

• Sensors (e.g. Hall-Effect Sensors) are used for phase commutation with brush-

less motors and also position monitoring.

This architecture reveals different types of constraints due to its multi-physical na-

ture and the multidisciplinarity related to each block unit, regarding:

• Safety, which implies system availability and integrity;
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• Equipment and software certification: the DO-178B [92] standard implies soft-

ware equipment certification, while the electronic and mechanic components

have to be validated by testing them directly (heat, pressure, EMC, EMI);

• System performances, consisting of various kinds: temporal, where the aim is

to ensure the stability, precision and response time (e.g. actuators are time-

critical airborne systems therefore their response time must be less than 10ms).

Also the frequency domain is concerned regarding signal bandwidth, noise and

disturbances. Other important performance criteria relays on the mechanical

part regarding mass and energy optimization;

• Fault tolerant control, fault diagnosis, fault detection and isolation due to many

causes (mechanical, electrical, vibrations). For avionics, failure rates are about

10−9 to 10−5 per flight hour depending on the equipment criticality level;

Each of the presented components is likely subject to failures. In order to integrate

and assess failures probability in the system design, failure modes and analysis

(FMEA) are realised. The next section presents the FMEA of the fuel system of a

helicopter engine.

2.3.2 Failure Modes and Effects Analysis

The hybrid stepper motor (HSM) can be affected by multiple failures which might

be related to electrical or mechanical components. The presented failure (Table 2.3)

modes be based on an AC-motor, although it will be general enough to be applied

to most electric motors. Therefore, regarding the stepper motor which is built in the

actuator, the proposed failure modes of the NSWC standard is not to be considered

for certain cases. As an example the stepper motor does not have any brushes and

collector so a failure mode related to this component is not considered. Failure modes

of electric motors and shown in table 2.3 are given by the Naval Surface Warfare

Center (NSWC) standard [88]. Knowing the stepper motor FMEA, the Functional

Hazard Assessment (FHA) starting from the stepper motor to the turboshaft engine
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will be presented in figure 2.16.

FAILURE MODE FAILURE CAUSE FAILURE EFFECT
- Worn bearing
- spalling
- creeping or spin

- Poor lubrication
- Contamination
- Overloading or high
temperature

- Noisy
- Heat build-up
- Armature rubbing stator
- Seized

- Open winding
- Shorted winding

- Excessively high
temperature

- Motor is not running

- Cracked housing - Fatigue
- External shock
- Vibration

- Leakage of dust into
motor
- Shorted or seized

- Sheared armature shaft
- Cracked rotor
-laminations

- Fatigue
- Misalignment
- Bearing failure

- Seized
- Armature rubbing
stator

- Worn sleeve bearing - Excessive load (belt
tension)
- Frequent starts and
stops under heavy
loads
- Poor lubrication

- Seized
- Noisy
- Heat build-up
- Armature rubbing
stator

Table 2.3: Electric motor failure modes
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Figure 2.16: Failure rate processing and engine effect analysis
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In order do determine the failure rate at each level of the system, the fault prop-

agation is realised by a tree analysis starting from a single components of the HSM.

The next section shows how the fault propagation affects the helicopter engine1.

A second FTA related to the actuator is now detailed. The failure effects of the fuel

system FTA become the final events of the stepper motor FTA (Figure 2.18).

2.3.3 Fault Tree Analysis (FTA)

In this section, the FTA of the fuel system and the actuator based on the FMEA

was realised within the SYRENA (Turboméca) project which yields the following

Fault Tree Analysis.

In the FTA, each event has a failure rate which is processed at each AND and OR

gates with elementary probabilities given by the following equations :

P (A ∩B) = P (A|B).P (B)

P (A ∪B) = P (A) + P (B)− P (A ∩B).
(2.4)

P (A ∩B) = P (A).P (B) if the events are independent (P (A|B) = P (A)),

P (A ∪B) = P (A) + P (B) if the events are mutually exclusive (P (A ∩B) = 0).

1The acronyms of the turboshaft effects are given by:
IFSD: In Flight Shut-Down
LOPC: Loss Of Power Control
OSP-UAC: Spurious activation of two engine overspeed protections.
LRU: Line Replaceable Unit
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Figure 2.17: Fault tree analysis of the fuel system
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Figure 2.18: Fault tree analysis of the hybrid stepper motor

Once the FTA is established, the rates of each subsystem level and at each

logical AND/OR nodes can be processed. The next section describes the failure

rate processing of an electric motor. Each component (mechanical or electrical) has

a failure probability which is known and can be integrated in a global rate equation

dedicated to the electric motor.
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2.3.4 Failure rate processing

According to the NSWC standard [88], failure rates λ of electrical motors are pro-

cessed with the following equations:

λM = λBE + λWI + λAS + λST + λGR (2.5)

where:

λM stands for the total failure rate for the motor system, failures/million hours;

λBE is the failure rate of bearings and equals to 1 failures/million hours;

λWI represents the failure rate of electric motor windings, 6 failures/million hours;

λAS is the failure rate of the armature shaft, 2 failures/million hours;

λST is the Failure rate of the stator housing, 0.001 failures/million hours.

The FTA and failure rates of the system is known which allows to realise the full

functional hazard analysis (FHA) by evaluating severity and DAL levels of the sys-

tem. The next section shows this evaluation for the fuel system.

2.3.5 Development Assurance Level assessment

Once the FTA was updated by identifying the possible effects from actuator faults

to the engine failures, the severity allocation to the encountered events must be

established. In this study, we were responsible of the safety analysis of the hybrid

Figure 2.19: Hazard assessment on events affecting one or two engines
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stepper motor (HSM). In the Functional Hazard Assessment (FHA) phase, safety-

critical events were established, according to known aeronautical actuation control

systems. The updated FMEA table is given in figure 2.19. According to dependabil-

ity attributes such as integrity and availability, degrees of architecture redundancies

can be chosen depending on the severity of the feared event. The stepper motor of

the actuator is safety critical and the FMEA and FHA shows that a fault occur-

rence can lead to a catastrophic (CAT) or major (MAJ) event. As shown in figure

2.20, triplex and quadruplex architectures are the most suitable candidates for high

integrity related systems. Indeed, adding dissimilarity and redundancy for a given

Figure 2.20: Safe architecture design

system architecture reduces the probability of a feared event. As previously seen on

figure 2.7, the catastrophic and extremely improbable event is allocated to a DAL-

A level, in compliance with safety standards ARP4754. The path leading to this

event starts from the stepper motor of the fuel valve actuator. Therefore a DAL-A

compliant redundancy architecture is required in order to minimize the CAT failure
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event probability of 10−9 failure probability per flight hour. Regarding fuel system

actuators, the impact of high integrity and availability levels leads to an increase of

the number of redundancies. A significant number of actuator redundancies have

been realised for flight control and as an example, redundancies of flight-control

actuators are compared in the next section.

2.3.6 Current actuator redundancies in flight control

An important number of accidents are related to loss of control in flight

(LOC-I), where a technical malfunction is the initial event and responsible for loss

of control. History of flight control systems [30] has shown significant improvements

on flight control, especially with the emergence of fly-by-wire where flight surfaces

are partially electrically supplied, reducing the number of mechanical components.

Actuators monitoring is also improving due to more electrical measurements and

physical and analytic redundancies.

2.3.6.1 Flight control surfaces

Figure 2.21: Flight control surfaces
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Two types of flight control surfaces can be identified on an aircraft (Figure 2.21) :

• primary flight control surfaces, allowing to control the aircraft trajectory by

rotating along pitch, yaw and roll axis,

• secondary flight control surfaces, allowing the aircraft to change its velocity

during flight and landing.

These surfaces are controlled by redundant actuators and dedicated computer units

shown in the next paragraph.

2.3.6.1.1 Remark : In a healthy flight situation, the horizontal stabilizer is con-

sidered as a secondary flight control surface. When a fault occurs on the elevators,

it can be used as a primary flight control surface. This was built in the Airbus A380.

2.3.6.2 Flight control actuator redundancies

Actuators dedicated to the two types of flight control surfaces can also be distin-

guished. Figure 2.22 shows actuator redundancies for primary and secondary flight

controls of the Airbus A340 [30]. These actuators are supplied by three independent

Figure 2.22: Fly-by-wire system architecture including redundancy components and
reconfiguration scheme (A340), source: [30]
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hydraulic circuits (blue, green and yellow) for dissimilarity and availability reasons.

According to the ARP4754 standard, it is shown that several redundancy combina-

tions are possible. The main idea of the developed patent in section 2.4 is based

on this property. A safe architecture is not unique but has to be compliant with

safety requirements. In this section, two existing redundancy architectures which

are currently used for flight control actuators are presented, the triplex-AND voter

and the Dual Active/Passive architecture. According to the ARP4754 standard, it

is shown that several redundancy combinations are possible.

2.3.6.3 Triple Modular Redundancy: the Triplex-AND voter

Figure 2.23 shows an example of a two out of three (2 oo 3) triplex-AND voting

architecture. In this case, two actuator outputs are compared to a failure threshold.

When the output signal overtakes the threshold, the fault is detected. For system

integrity reasons, the fault still needs to be localised. Therefore, a third actuation

channel is required at least. The outputs are compared two by two allowing the

identification of the faulty channel. Other voting systems including more than three

channels exist such as the two out of five voters (2 oo 5).

DAL A

DAL A

Actuator 1

Technology 1

Control input 1

Technology 1

DAL B

3 way 

voter

Control surface 

(flap, valve…)

Actuator 2

Technology 1

Control input 2

Technology 1

DAL B

Actuator 3

Technology 2

Control input 3

Technology 2

DAL BDissimilar Architecture

Figure 2.23: Triplex-AND voter
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Figure 2.24: DAL allocation requirements of the ARP4754 standard

2.3.6.3.1 Safety and availability requirements

Safety requirements expressed by the Development Assurance Levels (DAL) (Fig-

ure 2.24) must be taken into account in the design of a triplex-AND voter. In order

to ensure the required severity level DAL-A on the controlled surface system (in-

cluding the control surface, the voter and the three actuators), the control input

generation block and the corresponding actuator must be dissimilar (no common

modes) and DAL-B compliant, as shown in figure 2.23. Therefore, the three actu-

ation channels must be DAL-B compliant to ensure the global DAL-A level of the

triplex-AND voter. Dissimilar designs also require different technologies in software

and hardware development. Availability is satisfied in this case by the presence of a

minimum of two actuators. If the main actuator fails, a back-up actuator is avail-

able.

The next solution proposes a flight control design based on two redundant actuators.

2.3.6.4 Quadriplex-dual redundant actuator architecture

The presented configuration is based on a AIRBUS Common(COM)/Monitoring

(MON) (Figure 2.25). Four control channels are controlling two physical actuators

(Quadriplex-dual) which are driving the same surface. Each actuator is independent

and monitored by algorithms located either in the ECU or FCU, or directly in the

Actuator housing. For the same dissimilarity reasons as the triplex-AND voter,

no common modes are tolerated, hardware and software parts are developed with

different technologies. Also, a multiple state control switch permits, for a determined

threshold value, the monitoring unit to disable the main drive unit and switching
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Actuator 1 control

inputs

Actuator 2 control

inputs

Motor 1 control

inputs signals

Motor 2 control
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Output angular 

position 1

Output angular 

position 2

Figure 2.25: Quadriplex-dual redundant actuators

the main control path to a downgraded backup mode.

The global DAL A is satisfied with a combination of dissimilar DAL B on COM and

MON blocks. Monitoring and drive unit functions are based on the same properties

but with different technologies.

Most of these algorithms are based on linear dynamical systems and can not be rid

of model uncertainties due to the real nonlinearity of the actuator. Dissimilarity in

this type of architecture is necessary in order to be compliant with integrity and

availability requirements.

The next proposed monitoring architecture is based on the previous material and

physical redundancies and the ARP4754 standard.

2.4 Proposal of a safe and robust architecture

The previous seen quadruplex-dual redundant actuator architecture presents major

drawbacks such as:

• a significant increase of weight, size, power and cost due to the redundancy of

physical components,
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• an increase of system complexity,

• a fault occurrence implying the direct inhibition of one actuator reduces evi-

dently the availability level of the flight or engine control function.

The proposed architecture (Figure 2.26) shows improvement on the previous mul-

tiple redundant systems. The motor of the actuator is monitored by a dedicated

Actuator control

inputs

Motor 1 control

inputs signals

Motor 2 control

inputs signals

Output angular 

position 1

Output angular 

position 2

Figure 2.26: Suggested actuator redundancy architecture

analytic embedded (AEM) model which is a software program and also used for

analytic redundancy. The model algorithm allows to correct the control input by

sending a correction signal in order to maintain the actuator availability level in the

case of a fault occurrence. If the acceptability range is overtaken, the actuator is

finally inhibited. Embedding such analytical functions imply major improvements

regarding:

• Availability preservation : Correcting the actuator input by the decision

of the analytic model allows to maintain the system availability if a fault occur

instead of inhibiting the main actuation channel.

• Sise, Weight and Power (SWaP) and cost decrease : The proposed

monitoring functions can be embedded directly on the FCU, the ECU or on a
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local computer unit. Instead of using physical components for system redun-

dancy, software functions are used in this case. On current quadriplex-dual

redundant architectures there would be a win of two physical monitoring chan-

nels. Instead of correcting by switching the faulty actuator "OFF", the motor

control voltage is adjusted by a correction signal sent by the analytic embedded

model.

• Servicing and maintenance decrease : By correcting the control in-

put signal on a fault occurrence, the maintenance frequency on the actuator

channels could decrease, allowing to shorten aircraft ground time, which also

implies an important cost reduction for airline companies. This solution also

allows to improve predictive maintenance and reduce corrective maintenance

by its capability of recording corrected faults events. The system awareness is

thereby more reliable and efficient.

• Integrity improvement : The dissimilarity of the proposed architecture

reduces the presence of common modes reducing therefore the probability of

faults occurrences. Regarding the computer unit, the software must be de-

signed by two separate teams. Each actuator has its own dedicated monitor-

ing unit which is embedded directly with the actuator and also different for

each actuator (they are therefore called smart actuators). All software and

hardware components must be of different technologies to maintain integrity.

• Monitoring robustness : Monitoring algorithms are based on input recon-

struction by endogenous feedback developed in Chapter 1. As explained in the

previous chapter, the actuator model is linearised with an exact linearisation

method which was proven to be stable.

Also, the use of linear equations in the algorithm allows to ease measuring

noise attenuation which implies a more accurate fault diagnosis. The result-

ing equivalent linear model is then used in the monitoring function of each

actuator.
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This architecture proposal has led to a patent deposition with THALES Systèmes

Aéroportés, the IMS Laboratoy (Université de Bordeaux) and the ESTIA Recherche

Laboratory (Bidart) [13].

To conclude on this innovation, the proposed architecture allows to reduce the

number of physical redundancies without downgrading the safety of the architecture.

This is possible because of the monitoring models used in analytic redundancies. The

term "analytic sensor" also designate the developed models. Originally, this archi-

tecture was designed regarding aviation regulation standards ARP4754 but it was

also patented for each industrial domain dealing with critical systems. As perspec-

tives for analytic embedded models (AEM), several functions related to fault tolerant

control could be developed such as fault recovery, mechanism reconfiguration, health

monitoring and prognostic. In order to reduce the complexity of aircraft certification

processes, AEM could be able to record the correction information before looping it

with the actuator control input.

2.5 Conclusion

In this chapter the design of a monitoring system for critical systems was described.

First, safety critical systems were presented in the case of fuel systems and flight

system control of different air planes and helicopters. In the first section, definitions

and safety assessment methods provided by international airworthiness organisations

were given. Also, a review on current system engineering tools and methods used

in industry was developed in the second subsection of this chapter. In the second

section, the case study of the safety assessment of a flight critical stepper motor

was realized. The analytical models developed in Chapter 1 were proposed for

a safe architecture based on analytical redundancy. The Development Assurance

Level of the Architecture was also discussed. To conclude, analytic redundancy

is a major advantage for safety critical architectures because analytic monitoring

might lead to a decrease of the number of material redundancies actually present

in current flight critical architectures. On the other hand, difficulty of analytic
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redundancy designs relies in the exactitude of the model of the monitored system.

As described in Chapter 1, the proposed architecture was designed with a safe and

robust linearisation method reducing disturbances and fault-detection thresholds.

As a result of this architecture, a patent dedicated to critical systems has been

submitted .

In the next Chapter, I realised a testing bench in order to be able to generate faults

on a hybrid stepper motor windings of a flight critical actuator. The proposed

diagnosis algorithms presented in Chapter 1 were embedded on a real-time machine,

representing a Flight-critical Engine Computer Unit, as depicted in Chapter 2. The

aim of this experience is to demonstrate the improvement of diagnosis results by

reducing dedicated algorithms complexity.
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Abstract: This chapter is dedicated to the experimen-

tal setup of the fault diagnosis algorithms based on en-

dogenous feedback linearisation. Within an aeronautical

context regrouping an aeronautics industry, THALES Sys-

tèmes Aéroportés and the two laboratories: IMS from the

University of Bordeaux and ESTIA Recherche (Bidart), a

test bench was required to demonstrate the robustness and

performances of fault detection algorithms applied to a hy-

brid stepper motor (HSM) with short-circuited windings.

In the first section, the Matlab Simulink model of the fault

diagnosis algorithms of the HSM will be detailed. The sec-

ond section describes the design and mechanical assembly

of the test bench. The last section is dedicated to the

results analysis and a general conclusion will be given re-

garding the efficiency of exact linearisation in model-based

diagnosis approaches.
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3.1 Introduction

The experimental setup was realised to demonstrate on a test bench the efficiency of

analytic redundancy for a faulty HSM of a flight critical actuator. The stator wind-

ings were uncoiled in order to test the behaviour of the motor when short-circuits

occur. This fault type represents 40% of electric motor faults and is not negligible.

An endogenous feedback linearisation of the motor model is realised in order to

compare the diagnosis performances of linear and nonlinear observers such as the

standard and extended Kalman filters (SKF and EKF). The linearised model will

be used with the SKF and the resulting measurements estimates will be compared

to the estimates of the nonlinear EKF. Diagnosis performances will be evaluated

regarding the amplitudes of the detection thresholds.

In section 3.2, the chosen control method of the stepper motor based on path plan-

ning is described. The control inputs are generated by a model on a host PC which

is connected to a real-time machine. Sensors calibration and faults generation is also

detailed. The integration and validation steps are realised with a healthy stepper

motor. In section 3.3 fault-detection based on endogenous feedback linearisation and

a standard Kalman filter is presented. The measurement estimations are compared

in healthy and faulty cases. Next, in order to realise a comparative analysis, the

above filter is replaced by an EKF without dynamic inversion. Both filters are thus

compared regarding the efficiency of residual generation.
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3.2 Actuator model validation and integration on

test bench

In order to validate the presented diagnosis algorithms with measured values, I

designed and assembled the following test bench. The related specifications are

given in Appendix C.

3.2.1 Test bench design

Algorithms are designed in the MATLAB/Simulink environment on a host PC (Fig-

ure 3.1) and then embedded on a physical real-time machine. This Hardware In the

Figure 3.1: Hardware In the Loop (HIL) integration in the test bench design

Loop (HIL) approach allows to monitor sensor outputs and the processed variables

of the dynamical models in real-time. Model parameter tuning is also possible in

real time. The required communication ports between the host PC and the real-time

machine, sensors and the motor control board are given in Appendix C.

The functional scheme designed for the test bench realisation is described in fig-

ure 3.2. Blocks 1, 2, 3, 13, 14, 15, 16 correspond to the developed model functions,
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presented in Chapter 1. The remaining blocks represent the physical components of

the test bench. First, path planning (angular position, speed, acceleration and jerk)

Figure 3.2: Physical components and analytical functions interactions

of the rotor angular position are processed. As a result, the motor control inputs

(voltage signals) are processed according to the dynamical equations of the motor.

The real time machine converts the logical PWM sequence onto physical signals

which are connected to the power board of the motor. Physical signals are then

measured by the sensors and finally acquired and processed by the embedded model

on the real time machine. The next section describes the path planning equations

enabling frequency modulation of the input signals.

3.2.2 Path planning of control inputs by dynamic inversion

The trajectories of angular position, speed, acceleration are obtained by integration

of the angular jerk equation where the jerk must be a continuous and differentiable

function. The jerk is considered as a piecewise cosine function. The maximum am-

plitude of the angular jerk is processed regarding maximum acceleration (amax) and
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speed (ωmax) inputs. The corresponding acceleration and jerk period T is deter-

mined by tuning the smooth jerk equation ((3.1)) regarding the values of amax and

ωmax. These particular jerk equations were chosen in order to be compliant with

continuous differentiations. The angular jerk equation is given by:

j(t) =



jmax

(
1− cos

(2πt
T

))
2 , if t 6 T

−
jmax

(
1− cos

(2πt
T

))
2 , if T < t 6 2T.

(3.1)

The integration of j(t) gives the angular acceleration, shown in the following equa-

tion :

a(t) =



jmax

t− Tsin
(2πt
T

)
2π


2 , if t 6 T

−

jmax

t− Tsin
(2πt
T

)
2π


2 + jmaxT , if T < t 6 2T.

(3.2)

The motor is supposed to start at null speed, implying : ω(0) = a(0) = j(0) = 0.

The angular velocity is then given by :

ω(t) =



jmax

t22 −
T 2cos

(2πt
T

)
4π2


2 , if t 6 T

−

jmax

t22 −
T 2cos

(2πt
T

)
4π2


2 + Tjmaxt−

T 2jmax
2 , if T < t 6 2T.

(3.3)

In order to express the trajectories j(t), a(t) and ω(t) as a function of amax and

ωmax, the maximum acceleration amax is first expressed as a function of jmax and T
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according to equation (3.2) at t = T such as :

amax = Tjmax
2 (3.4)

Also, according to equation (3.3), ωmax is processed at t = 2T and is given as a

function of jmax and T by :

ωmax = 4π2T 2jmax + T 2jmax
8π2 . (3.5)

The expression of jmax and T can be processed as a function of amax and ωmax by

solving equations (3.4 and 3.5). Hence :


T = 4ωmaxπ2

amax(1 + 4π2)

jmax = a2
max(1 + 4π2)

2ωmaxπ2 .

(3.6)

These processed trajectories are shown in figure 3.3 and were normalised for a bet-

ter visibility. Using the dynamical inversion of the stepper motor model given in
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Figure 3.3: Normalised reference trajectories

Chapter 1, the voltage trajectories can be processed at desired maximum angular

speed ωmax and acceleration amax as described in the next section.
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3.2.3 Dynamic inversion based model linearisation

In this approach, no motor-load was considered. According to figure 3.4, the al-

gorithm allowing to process the ua and ub voltage trajectories is described by the

following steps:

• processing the inputs v1 and v2 of the linear equivalent model of the HSM,

• the direct current id is set to 0 and the quadratic current iq is expressed by an

equation containing ω. It was shown in chapter 1 that the motor model was

flat with flat outputs z1 = id and z2 = θ,

• the linearisation functions ∆(x) and ∆0 defined in Chapter 1 allow the pro-

cessing of the vd and vq voltages which are then changed into ua and ub by

Park transform,

• a PWM signal generation algorithm allows to generate the pulse trains of the

generated ua and ub voltages,

• finally, the PWM pulse trains are generated by the real time machine and used

directly with the power board of the stepper motor.

Figure 3.4: Control signals generation and linearisation
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The following plots (Figure 3.5) show the resulting generated voltages and cur-

rents.
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Figure 3.5: Processed and measured voltages (a,b) and currents (c,d); Measured
direct and quadratic voltages (e) and currents (f)
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3.2.4 PWM signals processing for power board inputs

The normalised voltage signal corresponds to the duty cycle variation of the Pulse

Width Modulation (PWM) generator. To generate the PWM signal with the real

Figure 3.6: PWM signal generation with duty cycle variation

time machine, a clock compare value has to be taken into account by the following

equation:

Compare value = round

(
FPGA frequency

2× PWMfrequency
− 1

)
. (3.7)

The PWM trains are generated by the real time machine, corresponding to a digital

signal with logical high and low states respectively equal to 5V and 0V. The sequence

allows to switch on and off the transistors T of the double H-bridge (Figure 3.7).

In order to create a positive current (ia) in the A phase of the motor, T1 and T4

are set to ON simultaneously and T2 and T3 are switched off. Controlling the HSM

by PWM allows to set maximum angular speed and acceleration parameters. The

frequency of the generated voltage signals is modulated with the acceleration and

speed trajectories as shown in figure 3.8.
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Figure 3.7: Double H-bridge of a bipolar stepper motor
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Figure 3.8: Normalised Ua signal generation at wmax = 10 rad/s and amax =
20 rad/s2 (a) and amax = 100 rad/s2 (b)

The next section describes the realisation of sensing functions, the required filters

for noise cancellation and the set-up allowing to generate a certain percent of short

circuits in a stator coil.

3.2.5 Sensors measurements validation

Hall effect sensors: To realise current measurement, Hall-effect sensors were

used generating a voltage signal which is proportional to the current. The voltage
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to current ratio is realised within the simulation model after signal acquisition.

Torque sensor: The torque constant Kt of the stepper motor model had to be

confirmed by measurement. A two-shaft torque sensor was used were one shaft is

connected to the load and the other to the motor shaft with flexible joints as shown

in figure 3.9. To measure the torque constant, the load side is intentionally jammed

Figure 3.9: Mechanical test bench

and the motor is powered. The equation:

Tmax = Kt × Imax (3.8)

is used for different values of the maximum torque Tmax and maximum current Imax.

As a result, the mean value of Kt was found to be Kt = 0.0137 Nm/A.

3.2.5.1 Sensor noise filtering

To measure the voltages in each phase of the stepper motor, instrumentation am-

plifiers are used as shown in figure 3.10. The main drawback of motor control by

PWM is the resulting noise on the measured signal.

The voltage signal frequency is :

fv = ω

2π , (3.9)

and equals fv = 1.59 Hz, with an angular speed ω of 10 rad/s. In order to remove the

PWM noise on the voltage measurement, two analog low-pass filters were realised,
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one for each phase. The cut-off frequency fc has to be far bellow the PWM signal

frequency (fPWM = 30 kHz) and is given by :

fc = 1
4πR1(C3 + C1

2 )
, (3.10)

with:
C1 = C2

C3 = 10C1

R1 = R2.

(3.11)

Best results on the measured output voltage Vo were obtained with a cut-off fre-

quency of fc = 203.94 Hz with C1 = 22 nF, C3 = 220 nF and R1 = 1.69 KΩ.

Figure 3.10: Input Low-Pass filter

3.2.5.2 Initial position settings

An absolute encoder (Figure 3.9) was used to measure the position of the rotorshaft.

Next are given the features of the encoder :

• Supply voltage DC 7 - 30 V

• Max. current w/o load 50 mA, 100 mA

• Resolution 13 Bit
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• Output: Gray code

• Drives: Clock and Data / RS422

The gray code to angle conversion is realised in the simulation model by dividing

the output signal by 213 and then multiplying by 2π.

The encoder does not count turns and restarts from zero when a turn is completed.

In order to fit the measure signal with the processed reference signal, an unwrapping

function is realised after acquiring the measurement as shown in figure 3.11.

Figure 3.11: Unwrapped angle measurement

The processed reference position starts from zero radians at each new simulation.

Because the encoder starts the measurement from the last position, the angular

offset is measured in an initialisation phase before each simulation start and is then

added to the processed angular position function. The initialisation phase is realised

before each simulation run with a state chart and lasts one second. As a result the

compared reference and measured angular position are shown in figure 3.12

In this section, the use and calibration of the test bench sensors allowing the real-

time machine to acquire and process the measurement signals, was described. These

measurements can then be processed by the embedded diagnosis algorithms devel-

oped in Chapter 1.

The generation of faults on the stepper motor is described in the next section.
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Figure 3.12: Measured and processed angular position, without (a) and with (b)
position initialisation

3.2.6 Stator fault generation

The generated faults are shortened windings events. The stator coils of the stepper

motor was undone and rebuilt to allow controllable switches (see Appendix C) to

shorten a certain percentage of wires in one phase. As a result, a current increase

is expected.

3.2.6.1 Realisation of a shorted stator winding

To realise the new stator windings for short-circuits tests, a hybrid stepper motor

was uncoiled and rebuilt with unconnected wires (figure 3.13). The stator coils are

connected with switches which will be turned on and off depending on the expected

shorted coil percentage as shown in figure 3.14.

3.2.6.2 Fault scenarios

Each shortened coil correspond to 8 % of the global phase coils. The test is realised

according to the following table:

The state "0" of a switch correspond to the "OFF" state where the circuit is open.

Logically, "1" correspond to the "ON" state and the circuit is closed. In the proposed
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Figure 3.13: On the left-hand side a two phased stator with 8 plots (4 per phase).
On the right hand side the uncoiled stepper motor for short circuits testing.

Figure 3.14: Short-circuit wiring scheme of one stator phase

Figure 3.15: Stator fault scenarios

configuration, switches "SWii" and "SWij" are always activated in an opposite way

such as there is no open circuit in the stator phase.

Also, the switches were selected in order to be:

• able to let the current flows in both ways because the stepper motor is bipolar,

• able to support about 2.5A peak (defined by the motor power board specifi-

cations),

• controllable with logical voltage states (0/5V).
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Controllable Reed relays were therefore chosen to realise this task and are controlled

by the real-time machine, where the logical ON/OFF sequence is defined in the

embedded simulation model.

A coil is model as an RL circuit. When a short circuit occurs, the number of coil

turns is reduced. The resulting winding has its resistance Rw multiplied by the

percentage of shortened turns and the resulting inductance L is multiplied by the

square of the same percentage. The wire resistance Rw is given by:

Rw = R0
l

S
(3.12)

where R0 is the resistivity of the material (Copper for example) in (Ohm.m),

l is the length of the wire in meters and S is the section of the wire in square meters.

If the number of wires is reduced by its half, the resistance is divided by two because

the length l is divided by two.

The inductance L is given as a function of the number of turns nL and the reluctance

R of the material in which the magnetic flow ψ evolves (equation 3.13)

L = n2
L

R
. (3.13)

So if nL is reduced by 50%, the resulting inductance Lr is equal to

Lr = 0.25L. (3.14)

In this section the experimental set-up was described and model generated signals

based on dynamic linearisation were validated with the corresponding sensor mea-

surements. To realise the faults testing scenarios, a stepper motor was uncoiled

allowing controllable switches to shorten a specific percentage of a stator phase

windings.

The next section describes the integration and validation of diagnosis algorithms

presented in Chapter 1. Two nonlinear observing methods are compared. At first, a
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residual generation method is proposed, based on a standard Kalman Filter and the

endogenous feedback linearised stepper motor model. Residuals and detection re-

sponses are then compared to a nonlinear Extended Kalman Filter (EKF) regarding

diagnosis performance indicators.

3.3 Diagnosis algorithms integration and valida-

tion on bench

The proposed diagnosis method is realised regarding the direct current estimate

îd. According to observer-based residual generation (Chapter 1, Section 1.3), the

residual results from the comparison between the measurement and the measurement

estimate.

3.3.1 Residuals generation based on dynamic inversion and

a standard Kalman filter

The linear equivalent model of the stepper motor was determined in Chapter 1 by

considering the nonlinear flat system :



x1 = z1

x2 = Jm
Kt

z̈2 + B

Kt

ż2

x3 = ż2

x4 = z2

u1 = Rz1 + Lż1 −
nLJm
Kt

ż2z̈2 −
nLB

Kt

(ż2)2

u2 = ...
z 2
LJm
Kt

+ z̈2
LB +RJm

Kt

+ ż2(RB
Kt

+Kt)− nLż2z1

(3.15)

where the flat outputs are (z1, z2) = (id, θm). It was shown that there exist an

invertible function β(x) and a matrix α(x) such as the linear equivalent model of

system (3.15) is given by:

v = β−1(x) [u− α(x)] , (3.16)
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implying

v = β−1(x)u− β−1(x)α(x). (3.17)

Equation (3.17) can then be expressed as:

∆0(x) + ∆(x)u = v. (3.18)

The Brunovsky form of equation (3.18) is given by:

∆0(x) + ∆(x)

 u1

u2

 =

 z
(ρ1)
1

z
(ρ2)
2

 =

 v1

v2

 (3.19)

where ρ1 + ρ2 = n.

Replacing ρ1 and ρ2 by their values implies the following linear system:

 z1

z2

 =


1
s

0

0 1
s3


 v1

v2

 . (3.20)

The linearisation was applied to the test bench motor as depicted in figure 3.16.

Inputs (v1, v2) were processed with the measurements outputs of the sensors in

order to realise a linear Kalman filter based on the linearised stepper motor model.

3.3.1.1 Validation of linear system inputs reconstruction

The reconstructed inputs (v1, v2) corresponding respectively to the time derivative

of id and the angular jerk (which is the third order time derivative of the angular

position θm), are shown in figure 3.17. Reconstructed (v1, v2) inputs are compared

to their corresponding signals obtained by time derivatives. The test starts at t = 2

seconds. The observed peak (Figure 3.17-a) is related to the acceleration of the

stepper motor (equation (3.15)). Indeed the current increases to generate a start-

ing torque, enabling the motor to go from the steady state to a constant angular

speed. When the continuous state is reached, the angular acceleration is equal to

117



Chapter 3: Experimental setup

Figure 3.16: Input reconstruction of the linearised model
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Figure 3.17: (a) Reconstructed input v1 and derivative of id comparison ; (b) Re-
constructed input v2 and 3rd-order derivative of θm comparison

zero implying that v1 also converges to zero in continuous state. The angular jerk

(figure 3.17-b) varies also from steady state to continuous state when constant speed
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is reached and the signal converges to zero.

3.3.1.2 Measurement estimates validation

To estimate the measured id current, the following state (A), control (B) and mea-

surement (C) matrices were used by the standard Kalman filter, with the state space

system given by equation (3.20) and the state vector X = (z1 z2 ż2 z̈2)T :

A =



0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0


B =



1 0

0 0

0 0

0 1


(3.21)

C =

 1 0 0 0

0 1 0 0

 . (3.22)

The state and measurement covariance matrices (Q,R) were tuned in order to op-

timise the time response of the measurement estimation and the noise amplitude

with the following matrices:

Q =



0.05 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


R =

 1 0

0 1

 . (3.23)

The resulting measurement estimate of the direct current id is shown in figure 3.18-a.

The residuals of id shown in figure 3.18-b, reveal a mean change at t = 6 seconds,

corresponding to the fault occurrence. It is observable that the higher the percent-

age of shorted coils, the greater the amplitude of the current. Indeed, when a short

circuit occurs, the resistance of the phase winding decreases suddenly which gener-

ates a current increase. These results will be compared with an extended Kalman

filter (EKF) in the next section where the inputs are the quadratic and direct volt-

ages (vd, vq) obtained with a Park transform of the measurements of (ua, ub), and
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Figure 3.18: Estimated and measured id current in healthy mode (a); Residuals of
id at different percentages of shorted stator coils (b)

the measurements of flat outputs (id, θm) as shown in figure 3.19.

Figure 3.19: Residual generation based on the EKF
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According to the recalled nonlinear model (3.24) of the HSM:



ẋ1 = −R
L
x1 + nx3x2 + 1

L
u1

ẋ2 = −R
L
x2 + nx3x1 −

Kt

L
x3 + 1

L
u2

ẋ3 = Kt

Jm
x2 −

B

Jm
x3

ẋ4 = x3

, (3.24)

the Jacobian matrices (Aj) and (Hj) are given by:

Aj =



−R
L

nω niq 0

−nω −R
L
−nid + Kt

L
0

0 Kt
Jm

− B
Jm

0

0 0 1 0


Hj =

 1 0 0 0

0 0 0 1

 , (3.25)

and the state and measurement covariance matrices (Q2, R2) are given by:

Q2 =



100 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


R2 =

 0.0001 0

0 0.0001


(3.26)

Performance of threshold-crossing based detection will be discussed regarding false-

alarms and detection speed trade-offs in the next section.

3.3.2 Diagnosis models comparison

The residuals generated by the SKF (after dynamic inversion) and EKF are com-

pared for different percentages of shorted stator windings.

3.3.2.1 Residual thresholds crossing

In this case, a fault is generated at t = 6 seconds. To detect fault occurrences, alarms

are generated by threshold-crossing. Thresholds were determined by observation
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in order to have the shortest time response and a minimum of false alarms. It is
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Figure 3.20: Residual (a) and alarms (b) generation for 8% of shorted windings in
one stator phase

observable in figure 3.20-b that false alarms occur at the lowest percentage of shorted

windings in the case of the EKF, due to a lower zero-convergence of the residual.

For all cases, the shortest time response of fault detection is obtained with the SKF

with dynamic inversion and linearisation of the model. Regarding non-detection,

the lower the amplitude of the residual on fault occurrence, the greater the risk

of non-detection. Indeed, if a greater threshold is selected, and the amplitude of

the residual is below the threshold, no alarm will be generated. For all fault cases,

the residual obtained by dynamic inversion and SKF has the greatest amplitude

on a fault event allowing a better adaptability regarding time response and non-

detection trade-offs as shown in the figure 3.22. The coloured cells correspond to

the best result.
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Figure 3.21: Residuals (a, c, e) and alarms (b, d, f) generation for 16%, 24%, 32%
of shorted windings in one stator phase
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Figure 3.22: Diagnosis algorithms performance table

3.3.3 Conclusion

In this chapter the validation and integration of fault diagnosis algorithms on a test

bench were realised where faults are shorted stator windings of a hybrid stepper

motor (HSM).

In the first section, the control of the deteriorated (but functional ) HSM was accom-

plished by path planning on a simulation model embedded on a real-time machine.

The wiring scheme of the bench was also presented.

In the second section, the validation and integration of diagnosis algorithms where

realised. The linearisation of the HSM model by endogenous feedback presented in

Chapter 1 was validated on the test bench. The inputs reconstruction of the equiv-

alent linear system by dynamic inversion was also successfully completed. Next,

a linear Kalman filter was used for residual generation. Fault detection was then

realised by threshold crossing of the residual mean on a fault event. The same diag-

nosis approach was then realised with an extended Kalman filter (EKF), based on

the nonlinear model of the HSM. False alarms, response time and residual amplitude

change were compared for the two model based diagnosis methods. According to

the test bench results of figure 3.22, the performances of dynamic inversion coupled

to the SKF based diagnosis showed the following observations:

• There are no false alarms,

• The residual is fault sensitive,

• Low thresholds can be used,

• Input and states reconstruction is possible. In the case of system control

purposes, only three sensors are required (currents and position sensors),
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• There are no linearisation errors due to the linear equivalent model.

Regarding the EKF:

• False alarms occurred at low fault amplitudes,

• Fault-detection response time is slower than in the SKF based algorithm,

• Comparing to the SKF, the residual has a lower amplitude on a fault occur-

rence. Non-detection might result as a consequence

As described in Chapter 1, the linear model is equivalent at every value of the

states paths, and not only at its equilibrium status. The linearisation process of

the EKF is approximated and generates estimation errors [50] which might impact

the robustness of the diagnosis. The inputs of the equivalent linear model were

reconstructed with two methods, one based on endogenous feedback linearisation

and the second one based on successive time derivatives of the flat outputs of the

system. The last method is not suited for observer based diagnosis because the

inputs are reconstructed with outputs measurements which are acquired after the

fault event. As a result, the residual is not fault sensitive and no mean change is

observable.
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Conclusion and perspectives

In the presented study, endogenous feedback linearisation was applied to a stepper

motor of a flight critical actuator in order to improve model-based diagnosis algo-

rithms. The proposed models were developed and tested on a test bench which was

also designed and assembled. In the first Chapter, the fundamentals of differential

flatness were presented and an example was given with the processing of a hybrid

stepper motor’s flat outputs. Different linearisation approaches were given such as

endogenous feedback, pseudo-linearisation and tangent linearisation. The problem

of local linearisation around an equilibrium point is solved for certain nonlinear sys-

tems with cancellation of their non-linearities by diffeomorphism and endogenous

feedback. An example of linearisation of a stepper motor was shown in the first sec-

tion. In the second section, model-based diagnosis tools such as residual generators,

state estimators and observers for linear and nonlinear systems were shown.

In the second chapter, the design of a monitoring system for critical systems was

described. First, safety critical systems were presented in the case of fuel systems

and flight system control of different air planes and helicopters. In the first section,

definitions and safety assessment methods provided by international airworthiness

organisations were given. Also, a review on current system engineering tools and

methods used in industry was developed in the second subsection of this chapter. In

the second section , the case study of the safety assessment of a flight critical stepper

motor was realized. The analytical models developed in Chapter 1 were proposed

for a safe architecture based on analytical redundancy. The Development Assurance

Level of the Architecture was also discussed. To conclude, analytic redundancy is a

major advantage for safety critical architectures because analytic monitoring might

lead to a decrease of the number of material redundancies actually present in current
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flight critical architectures. On the other hand, difficulty of analytic redundancy de-

signs relies in the exactitude of the model of the monitored system. The proposed

architecture was designed with a safe and robust linearisation method reducing dis-

turbances and fault-detection thresholds. As a result of this architecture, a patent

dedicated to critical systems has been submitted.

In the third chapter, fault diagnosis algorithms were validated on a test bench where

faults are shorted stator windings of a hybrid stepper motor (HSM).

In the first section, the control of the deteriorated (but functional ) HSM was accom-

plished by path planning on a simulation model embedded on a real-time machine.

In the second section, the validation and integration of diagnosis algorithms where

realised. The linearisation of the HSM model by endogenous feedback presented in

chapter 1 was validated on the test bench. The inputs reconstruction of the equiv-

alent linear system by dynamic inversion was also successfully completed. Next,

a linear Kalman filter was used for residual generation. Fault detection was then

realised by threshold crossing of the residual mean on a fault event. The same diag-

nosis approach was then realised with an extended Kalman filter (EKF), based on

the nonlinear model of the HSM. False alarms, response time and residual amplitude

change were compared for the two model-based diagnosis methods. As described in

chapter 1, the linear model is equivalent at every value of the states paths, and not

only at its equilibrium status. The linearisation process of the EKF is approximated

and generates estimation which might impact the robustness of the diagnosis. The

inputs of the equivalent linear model were reconstructed with two methods:

• the first one was based on endogenous feedback linearisation,

• and the second one was based on successive time derivatives of the flat outputs.

The second input reconstruction method is not suitable for diagnosis aims. Indeed,

the reconstructed inputs are also affected by faults which does not allow the gener-

ation of a fault sensitive residual.

There are numerous perspectives resulting from this study. Indeed, health monitor-

ing functions of critical systems need to be improved.
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• The proposed algorithms can be extended with prognostic and ageing func-

tions [103] in order to increase the systems health awareness,

• components lifetime can be optimised in order to reduce system maintenance

operations,

• mechanism reconfiguration and recovery after fault detection can be coupled

to the developed diagnosis algorithms for fault tolerance,

• the designed test bench could be improved by developing an electrical board,

reducing the amount of wires generating measurement noise and voltage off-

sets,

• the developed diagnosis algorithms could be evaluated on a flight critical pro-

cessor or FPGA regarding processing costs.

Also, a patent and international communications resulted from this work [12, 13,

11, 9, 10]. The patent is currently extending from Europe to an international appli-

cation.
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Differential geometry notions

A.1 Differentiable manifold [73]

Given a differentiable mapping Φ from Rn to Rn−p (0 6 p < n), we assume that

there exists at least an x0 satisfying Φ(x0) = 0 and that the tangent linear mapping

DΦ(x) has full rank (n − p) in a neighbourhood V of x0. The set X defined by

the implicit equation Φ(x) = 0, is called differentiable manifold of dimension p.

Otherwise stated:

X = {x ∈ V |Φ(x) = 0} (A.1)

If in addition Φ is k-times differentiable (respectively analytic), X is considered

as a Ck differentiable manifold, k = 1, . . . ,∞.

Example A.1. The sphere of R3 centred at C, of coordinates (xC , yC , zC), and of

radius R, given by {(x, y, z) ∈ R3|(x− xC)2 + (y − yC)2 + (z − zC)2 −R2 = 0}, is a

2-dimensional analytic manifold.

A.2 Diffeomorphism

Given two manifolds M and N, a differentiable mapping f : M −→ N is called a

diffeomorphism if it is a bijection and its inverse f−1 : N −→ M is differentiable

as well. If these functions are k-times continuously differentiable, f is called a Ck-

diffeomorphism.

Remark A.1. As a consequence to the invertibility property of a diffeomorphism,

the Jacobian matrix of a diffeomorphism can not have its determinant equal to zero.
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A.3 Implicit Function Theorem [73]

Let Φ be a k-times continuously differentiable mapping, with k > 1, from an open

set U ⊂ Rn to Rn−p with 0 6 p < n.

It is considered that there exists at least an x0 ∈ U such that Φ(x0) = 0. If for

every x in U the tangent linear mapping DΦ(x) has full rank (equal to n− p), there

exists a neighbourhood V = V1 × V2 ⊂ U of x0 in Rn = Rp × Rn−p, with V1 ∈ Rp

and V2 ∈ Rn−p, and a k-times continuously differentiable mapping Ψ from V1 to V2

such that the two sets {x ∈ V1 × V2|Φ(x) = 0} and {(x1, x2) ∈ V1 × V2|x2 = Ψ(x1)}

are equal.

The function locally satisfies Φ(x1,Ψ(x1)) = 0 and the "dependent variable" x2 =

Ψ(x1) is described by the p (locally) independent variables x1.

A.4 Module on a commutative ring

The notion of module is the natural generalisation of a vector space.

Definition A.1. Considering A, a commutative ring. The A-module (M,+, .) is a

set defined by an internal law + and an external law A×M −→M , (α,m)7−→ αm

satisfying:

• (M,+) is an Abelian group.

• α(m+m′)= αm+ αm′

• (αβ)m = α(βm)

• 1.m = m

for all α, β ∈ A and all m, m′ ∈M
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A.5 Particular matrices

Definition A.2. (Hyper-regular matrices) A matrix M ∈ Mp,q

[
d

dt

]
is said

hyper-regular if and only if its Smith decomposition leads to (Ip, 0p,q−p) if p < q, to

Ip if p = q, and to

 Iq

0p−q,q

 if p > q.

Definition A.3. (Unimodular matrices) A unimodular matrix M is a square

integer matrix which determinant is equal to -1 or 1.

A.6 Trivial Cartan field [73]

The trivial vector field on X × Rn
∞ is defined by:

τX =
∑
i≥0

n∑
j=1

x
(i+1)
j

∂

∂x
(i)
j

(A.2)

Regarding the trivial vector field τX corresponds the trivial system ẋ(j) = x(j+1)

for all j, for which any infinitely differentiable function t 7−→ x(t) on X is an integral

curve. Moreover, h being an arbitrary function, its Lie derivative along τX is given

by:

LτXh =
∑
i≥0

n∑
j=1

x
(i+1)
j

∂h

∂x
(i)
j

= dh

dt
, (A.3)

and τX can thus be identified as the differential operator d

dt
. The associated implicit

system is empty, i.e. given by F ≡ 0.

A.7 Tangent space and tangent bundle

Considering a given differentiable mapping Φ from Rn to Rn−p (0 6 p < n),

with at least an x0 satisfying Φ(x0) = 0. The tangent linear mapping DΦ(x) of

Φ at x, expressed in the local coordinate system (x1, . . . , xn), is thus the matrix(
∂Φj

∂xi
(x)
)

16i6n, 16j6n−p
. It is also assumed that DΦ(x) has full rank (n − p) in
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a neighbourhood V of x0, so that the implicit equation Φ(x) = 0 defines a p-

dimensional manifold denoted by X. It is verified that a normal vector at the point

x to the manifold X is a linear combination of the rows of DΦ(x). Indeed, let y(t)

be a differentiable curve contained in X for all t ∈ [0, τ [, with τ > 0 sufficiently

small, such that y(0) = x. Therefore Φ(y(t)) = 0 for all t ∈ [0, τ [ and thus

Φ(y(t))− Φ(x)
t

= 0. (A.4)

Letting t converge to 0, we get

DΦ(x).ẏ(0) = 0 , (A.5)

where

ẏ(0) , dy

dt |t=0
, (A.6)

proving that the vector y(0), tangent to X at the point x, belongs to the kernel

of DΦ(x) (Figure A.1). Doing the same for every curve contained in X and passing

Figure A.1: Tangent and normal spaces to a manifold at a point

through x, it immediately results that every element of the range of DΦ(x) is or-

thogonal to every tangent vector to X at the point x.
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The tangent space to X at the point x ∈ X is the vector space TxX = kerDΦ(x)

and

the tangent bundle TX is the set

TX =
⋃
x∈X

TxX (A.7)

.

Taking into account the fact that DΦ(x) has rank n− p in V ,

dim(TxX) = dim(ker(DΦ(x))) = p, ∀x ∈ V (A.8)

.

A.8 Differential form[73]

A differential form of degree 1, or 1-form is defined by a C∞- section ω of the

cotangent bundle T ∗X, i.e. a mapping for which, to each point x ∈ X, there

corresponds an element ω(x) ∈ T ∗X, ω(x) being a linear combination of the local

basis co-vectors of T ∗X with C∞ coefficients on X. The set of C∞-sections of T ∗X

is a vector space noted Λ1(X). The duality pairing between a 1-form

ω =
p∑
i=1

ωidxi (A.9)

and a vector field

f =
p∑
i=1

fi
∂

∂xi
(A.10)

is given by

< w, f >=
p∑
i=1

fiωi. (A.11)

A 1-form is not generally the differential of a function, as we now show, and

consequently, Λ1(X) contains more than the differentials of functions.
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Stepper motor data-sheets

B.1 Model parameters

Parameter Description Value Unit

R0 Stator winding resistance 8.7 Ω

Temp Ambient temperature 20 ◦C

Li Inductance of the ith winding 8.5 · 10−3 H

Vbus Supply voltage 24 V

Imax Maximum current amplitude 0.55 A

Ntr Number of teeth per rotoric wheel 50 N/A

Nsr Number of steps per revolution 200 Steps/revolution

Ns Number of stator teeth 40 N/A

Ke emf constant 7.3 · 10−3 V · rad−1 · s−1

Kt Electromechanical torque constant 7.3 · 10−3 Nm/A

θa Mechanical step angle 1.8 Deg

Tdf Dry friction torque 1 · 10−9 Nm

B Viscous friction torque of the motor 5.7 · 10−4 Nm
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Parameter Comment Value Unit

n Electrical periods per revolution 50 N/A

Thold Holding torque 8.7 · 10−2 Nm

Td Detent torque 8 · 10−4 Nm

Tem Electromechanical torque 4 · 10−3 Nm

Tm Motor torque 8.7 · 10−2 Nm

Jm Motor inertia (without load) 1.1 · 10−6 Kgm2

jmec Load mounting backlash 1 · 10−5 Deg

KLM Stiffness ratio (load/motor) 10 · 0.15 180
0.1pi Nm/rad

JL Load inertia 3 · 10−6 Kgm2

Trdf Reference dry friction torque of the load 6 · 10−5 Nm

Trvf Load viscous friction torque 2 · 10−4 Nm

p Number of poles pairs 50 N/A

m Number of windings 2 N/A

ωmax Maximum angular velocity of the rotor-shaft 7 rad/s

Table B.1: Model parameters
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Test bench specifications

C.1 Hardware inputs and outputs

Figure C.1: Sensors inputs and outputs
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C.2 Bench wiring diagram

Figure C.2: Wiring diagram
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C.3 Power board specifications

Figure C.3: Texas Instruments DRV8412 power board

The following features of the power board are required to control the bipolar hybrid

stepper motor of the test bench:

• Dual H-Bridge Power Stage,

• 52 VDC maximum input voltage,

• 6A peak with a 3.5 A maximum continuous output current,

• Maximum of 500 KHz driver switching frequency,

• 12V control voltage can be supplied externally or regulated from the DC bus,

• Over current protection on the inverter stage.
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C.4 Real time machine specifications

In order to be able to interface the models on the host PC and the physical compo-

nents of the test bench, the following specifications were required:

• an interface with the Matlab Simulink xPC Target environment. Speedgoat

toolboxes and I/O modules are selectable from the xPC Target environment.

• an Intel Core i7 3.5 GHz CPU.

The inputs and outputs (I/O) connectivity were determined regarding the sensors

and motor board connectivities and performances. The Solution proposal of the

Speedgoat real time machine contained analog and digital I/O given by:

• 16 analog inputs, differential, 16-bit, ±10V , ±5V , ±2.5V (software selectable)

• 4 analog outputs, single-ended, 16-bit, ±10V , ±5V , ±2.5V (software se-

lectable)

• 8 digital input, TTL

• 8 digital output, TTL

• 6 PWM generation, TTL. A PWM channel contains a 32-bit deep counter and

the PWM control logic. The input clock for the counter and PWM control

logic is 33MHz, which is sufficient compared to the 500 KHz PWM frequency

limit of the stepper motor power board,

• 3 SSI Master, TTL. A differential to single ended adapter was required in order

to connect the RS422 Absolute encoder, delivering a differential signal. The

number of bits is software-tunable and limited to 32. A minimum of 13 bits is

required by the absolute encoder.

• 34 digital input/output TTL.

The connexion between the host PC and the target machine is established with an

Ethernet cable.
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C.5 Controllable switches: Reed relays

The following datasheets presents the specifications of the Reed relay used in the

test bench.

Figure C.4: TE Reed relay data sheet (source: http://www.mouser.fr/TE-
Connectivity/)

When a current flows trough ports 2 and 6 of the wiring scheme depicted in fig-

ure C.4, the circuit is closed between ports 1 and 7 but also between ports 14 and

8. Otherwise, the circuits are open.
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Algorithmes et architectures pour la commande et le
diagnostic des systèmes critiques de vol

Résumé : Les systèmes critiques de vol tels que les actionneurs électromé-
caniques ainsi que les calculateurs de commande moteur (ECU) et de vol (FCU),
sont conçus en tenant compte des contraintes aéronautiques sévères de sureté de
fonctionnement. Dans le cadre de cette étude, une architecture calculateur pour
la commande et la surveillance d’actionneurs moteur et de surfaces de vol est
proposée et à fait l’objet d’un brevet [13]. Pour garantir ces mesure de sureté, les
ECU et FCU présentent des redondances matérielles multiples, mais engendrent
une augmentation de l’encombrement, du poids et de l’énergie consommée. Pour
ces raisons, les redondances à base de modèles dynamiques, présentent un atout
majeur pour les calculateurs car elles permettent dans certains cas de maintenir les
exigences d’intégrité et de disponibilité tout en réduisant le nombre de capteurs ou
d’actionneurs. Un rappel sur les méthodes de diagnostic par générateurs de résidus
et estimateurs d’états [58, 26, 47] est effectué dans cette étude. Les propriétés
de platitude différentielle et la linéarisation par difféomorphisme et bouclage
endogène [80, 41, 73] permettent d’utiliser des modèles linéaires équivalents avec les
générateurs de résidus. Un banc d’essai a été conçu afin de valider les performances
des algorithmes de diagnostic.

Mots-clés : diagnostic, inversion dynamique, platitude différentielle, sys-
tèmes critiques de vol.

Algorithms and Architectures for Control and Diagnosis of
Flight Critical Systems

Abstract : Flight-Critical Systems such as Electromechanical Actuators driven
by Engine Control Units (ECU) or Flight Control Units (FCU) are designed and
developed regarding drastic safety requirements. In this study, an actuator control
and monitoring ECU architecture based on analytic redundancy is proposed. In
case of fault occurrences, material redundancies in avionic equipment allow certain
critical systems to reconfigure or to switch into a safe mode. However, material
redundancies increase aircraft equipment size, weight and power (SWaP). Moni-
toring based on dynamical models is an interesting way to further enhance safety
and availability without increasing the number of redundant items. Model-based
fault detection and isolation (FDI) methods [58, 26, 47] such as observers and
parity space are recalled in this study. The properties of differential flatness for
nonlinear systems [80, 41, 73] and endogenous feedback linearisation are used with
nonlinear diagnosis models. Linear and nonlinear observers are then compared
with an application on hybrid stepper motor (HSM). A testing bench was specially
designed to observe in real-time the behaviour of the diagnosis models when faults
occur on the stator windings of a HSM.

Keywords : diagnosis, dynamic inversion, differential flatness, flight criti-
cal systems.
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