= UNIVERSITE

PARIS
SUD

Université Paris-Sud

ECOLE DOCTORALE SCIENCES ET TECHNOLOGIES DE
L'INFORMATION, DES TELECOMMUNICATIONS ET DES

SYSTEMES (ED STITS)

LABORATOIRE DES SIGNAUX ET SYSTEMES (L2S)

DISCIPLINE : AUTOMATIQUE

Thése de doctorat

Soutenue: le 8 Avril 2015 par

Yijing Chen

Commande Nonlinéaire et Analyse de
Stabilité de Réseaux Multi-Terminaux

Haute Tension & Courant Continu
(Nonlinear Control and Stability Analysis of Multi-Terminal High
Voltage Direct Current Networks)

Composition du jury :

Directeur de thése

Co-directeur de thése :

Rapporteurs :

Examinateurs

Dr. Francoise
LAMNABHI-LAGARRIGUE

Dr. Gilney DAMM

Dr. Abdelkrim BENCHAIB

Dr. Anuradha ANNASWAMY
Prof. Fouad GIRI
Prof. Alain GLUMINEAU

Prof. Didier GEORGES
Prof. Riccardo MARINO

Directeur de Recherche, CNRS & L2S

Maitre de Conférences, HDR
Université d’Evry-Val-d’Essonn & L2S
Ingénieur de Recherche, HDR, Alstom

Senior Research Scientist
Massachusetts Institute of Technology

Université de Caen Basse-Normandie

Ecole Centrale de Nantes
ENSE3

Universita di Roma Tor Vergata






Acknowledgments

My deepest gratitude is to my three thesis supervisors, Dr. Francoise LAMNABHI-
LAGARRIGUE, Dr. Gilney DAMM and Dr. Abdelkrim BENCHAIB, for their
guidance, advices and assistance. It is my greatest pleasure to work with them.
Thanks a lot to Dr. Gilney DAMM for his unremittingly invaluable guidance and
comprehensive assistance. He is always ready to help me whenever I had scientific or
personal difficulties. He usually shared his experience with me and gave me constant
advice in research and career orientation. He never put undue pressure on me. It was
really a great chance to work with him. Thanks a lot to Dr. Abdelkrim BENCHAIB
for offering invaluable advice from the point view of industry. After every discussion
with him, I acquired a greater depth of understanding of my thesis work. Thanks
a lot to Dr. Francoise LAMNABHI-LAGARRIGUE who admitted me as a Ph.D.
candidate in L2S. She helped me a lot to deal with all the administrative trivial
things. She always tried her best to build a convivial ambiance for work. With her
support and trust, my Ph.D. years have become a pleasant life journey.

I would like to thank the members of the jury, Dr. Anuradha ANNASWAMY,
Prof. Fouad GIRI, Prof. Alain GLUMINEAU, Prof. Riccardo MARINO and Prof.
Didier GEORGES, for their comments, questions and suggestions. Special thanks
to Dr. Anuradha ANNASWAMY and Prof. Fouad GIRI, who spent a lot of time
and effort to review my thesis and gave advice to improve my work. Thanks a lot to
Dr. Anuradha ANNASWAMY who warmly hosted me during my visit to the active
adaptive control laboratory (AACLAB) at Massachusetts Institute of Technology
(MIT). She introduced me to the domain of adaptive control which is a powerful
tool to solve the system uncertainties. Thanks to this visit, I have the opportunity
to meet researchers in the Department of Mechanical Engineering and discussed
with them to expand my knowledge.

I am indebted to the former and the current faculty, personnel, Ph.D. students
from L2S, who constantly helped me. Special thanks to Jing DAT who used to be a
post-doc in L2S. He helped me to correct many bad writing habits when I wrote my
first paper. He also gave me lots of comments and suggestions on my dissertation and
other papers. I will always remember that even during the Christmas holiday, he still
corrected my dissertation and gave me feedbacks. Many thanks to Miguel Jiménez
Carrizosa for discussing with me. In fact, I did not take many courses in the field
of electrical engineering during my undergraduate and master study. Miguel shared
his professional knowledge of electrical engineering. 1 also want to thank Fernando
DORADO NAVAS, Mawulikplimi Komlan Crédo PANTAH, Van Cuong NGUYEN,
Alessio Iovine, Alexandre Azevedo, Yujun HE --- for their helpful discussions. I
would like to thank Mme. Maryvonne GIRON and Mme. Laurence ANTUNES for
helping me a lot to handle the visa paper work and renew of my "titre de séjour ".
I am grateful to my dear friends, Yuling ZHENG, Long CHEN, Chuan XU, Zheng
CHEN - ... Ishall evermore cherish the memory that we played badminton together.



ii

Last, my deepest gratitude is undoubtedly to my families who are always beside
me and support me. I want to thank my father, my oldest friend, who always
supported and encouraged me; my mother who always prayed for me and my sister
who always comforted me and straightened me out when I encountered unhappy
things. I'm so thankful that I have such wonderful families.



Abstract

Nowadays the world total electricity demand increases year by year while the exist-
ing alternating current (AC) transmission grids are operated close to their limits. As
it is difficult to upgrade the existing AC grids, high voltage direct current (HVDC)
is considered as an alternative solution to several related problems such as: the in-
crease of transmission capability; the interconnection of remote and scattered gen-
eration from renewable energy sources (in particular offshore); the interconnection
of different asynchronous zones. At present, over one hundred direct current (DC)
transmission projects exist in the world, the vast majority for two-terminal HVDC
transmission systems and only three for multi-terminal HVDC systems. The tra-
ditional two-terminal HVDC transmission system can only carry out point-to-point
power transfer. As the economic development and the construction of the power
grid require that the DC grid can achieve power exchanges among multiple power
suppliers and multiple power consumers, multi-terminal voltage-sourced converter
HVDC (MTDC) systems draw more and more attention. As a DC transmission net-
work connecting more than two converter stations, an MTDC transmission system
offers a larger transmission capacity than the AC network and also provides a more
flexible and efficient transmission method. Most studies in the field of MTDC sys-
tems have involved an empirical control approach, namely, vector control approach
consisting of several standard proportional-integral (PI) controllers. This control
concept is mainly based on the assertion that the system state variables exhibit the
performances with different dynamics. However, very rare relevant work has ever
presented a theoretically detailed explanation on the validity and the implications
of this assertion in the literature.

The research work in this dissertation was started with the intention of filling
some gaps between the theory and the practice, in particular: 1) to investigate var-
ious control approaches for the purpose of improving the performance of MTDC
systems; 2) to establish connections between existing empirical control design and
theoretical analysis; 3) to improve the understanding of the multi-time-scale behav-
ior of MTDC systems characterized by the presence of slow and fast transients in
response to external disturbances.

The main contributions of this thesis work can be put into three areas, namely
nonlinear control design of MTDC systems, analysis of MTDC system’s dynamic
behaviors and application of MTDC systems for frequency control of AC systems.

In the area of nonlinear control design of MTDC systems, based on different
nonlinear control design techniques, new control schemes have been proposed with
corresponding theoretical analysis. Besides, the developed control algorithms have
been tested by numerical simulations, whose performances are evaluated in compar-
ison to the performance of the conventional vector control method.

The main motivation for the topic on analysis of MTDC system’s dynamic behav-
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iors is the desire to provide a rigorous theoretical demonstration on the assertion
that part of system states’ dynamics are much faster than the rest. As a conse-
quence, it is possible to simplify the control design procedure. The contribution
in this area consists of three parts: 1) control induced time-scale separation for a
class of nonlinear systems; 2) analysis of time-scale separation for an MTDC system
with master-slave control configuration; 3) analysis of time-scale separation for an
MTDC system with droop control configuration. Theoretical analysis, mainly based
on singular perturbation and Lyapunov theories, have been carried out for each of
the aforementioned aspects and confirmed by various simulation studies. The study
of the first part has been mostly dedicated to propose a time-scale separation control
method which can drive a class of nonlinear systems to exhibit a multi-time-scale
performance. The theoretical results obtained from the first part have been applied
to investigate the dynamic behaviors of MTDC systems where the two main control
configurations, i.e. master-slave and droop control configurations, are considered.
Empirical vector current control designs have been proposed for each control con-
figuration. Theoretical explanations and fundamental analysis indicate that with
the proposed empirical control algorithms, the inductor currents indeed exhibit a
dynamic behavior with different dynamics. Furthermore, we have provided more
details on how and why these empirical vector current control designs work as well
as the rules of tuning the control parameters.

The final contribution relates to the application of MTDC systems where fre-
quency support strategy using MTDC systems has been introduced and analyzed.
The principle of the frequency control is to regulate the AC frequency by modulating
each AC grid’s scheduled (or prescribed) active power. A DC-voltage-based control
scheme for the AC frequency regulation is proposed, which achieves the objective of
sharing primary reserves between different AC areas interconnected via an MTDC
system without using remote information communication.
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This thesis was devoted to the study of Multi-Terminal High Voltage Direct
Current networks. The main contributions were in the field of nonlinear automatic
control, applied to power systems, power electronics and renewable energy sources.
In the current chapter, we first give a general introduction to HVDC technology
where its advantages and disadvantages are analyzed. Then, we present the related
research work on the control of HVDC. Finally, we elaborate the objectives and the
contributions of this dissertation.

1.1 History and background

Direct current (DC) technology was introduced at a very early stage in the field of
power systems. The first long-distance electrical energy transmission line was built
using DC technology between Miesbach and Munich in Germany in 1882. Since the
power losses in the transmission lines are proportional to the square of the current
flowing through the conductors, electrical power is usually transmitted at a high
voltage level so as to reduce these power losses. In the early days, due to technical
limitations, it was difficult and uneconomic to convert the DC voltage between the
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low voltage level for consumer’s use and the high voltage level for transmission. In
alternating current (AC) system, thanks to the invention of AC transformer, it is
possible to convert the AC voltage between different levels in a simple and economic
way. In addition, a three-phase AC generator is superior to a DC generator in
many aspects. For example, the AC generator is more efficient, has a much simpler
structure with lower cost and requires easier maintenance. Because of these reasons,
AC technology has become dominant in the areas of power generation, transmission
and distribution. Although AC provides many benefits, it still has some limitations
in practice, mainly in the following aspects [Siemens 2005, Andersen 2002]. :

e The efficiency of power transmission capacity is subject to the capacitive and
inductive effects of underground /undersea cables or AC overhead transmission
lines. For a long AC transmission system, the current that flows to charge the
line (or cable) capacitance could be remarkable, causing a significant amount
of energy losses as heat in the wires.

e [t is impossible to connect unsynchronized AC networks via an AC transmis-
sion link. The latter is only suitable for the connection between synchronized
AC networks with the same frequency where the phase difference between
these synchronized AC networks is also restricted to certain allowable range.

e AC transmission technology is not a very good choice for integrating mas-
sive renewable energy sources into the existing electrical grid. In particular,
since the renewable generation outputs are usually intermittent (for example,
the energy production of wind farms strongly depends on the wind speed),
the power variations seriously affect the AC voltage at the point of common
coupling (PCC) when the renewable power occupies a significant share of the
total electricity generation.

e For offshore applications, what implies the use of cables instead of overhead
lines, the well known limitations of using AC is very expensive while DC is
not concerned by these problems.

People have been therefore making efforts to find a satisfactory alternative to
AC transmission technology. In the past decades, significant advances have been
achieved in the development of high power devices [Long 2007]. This has provided
beneficial conditions for DC technology which could come again in sight in the ap-
plication of power transmission after years of silence.

The invention of mercury-vapor valves which could convert AC current to DC
current appeared in 1901 and made HVDC transmission possible [Rudervall 2000].
Several experiments with mercury-arc valves for DC power transmission have been
carried out in America and Europe before 1940. In 1941, a commercial HVDC sys-
tem was designed for supplying Berlin in Germany via a 115 km buried cable using
mercury-arc valves. However, it was never put in operation because of the war. The
first commercial HVDC transmission used to connect the mainland of Sweden and
the island of Gotland was put into service in 1954. Here, we also pay tribute to
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the father of HVDC, Uno Lamm, who made a significant contribution towards the
application of HVDC in practice [Wollard 1988, Lamm 1966]. Since then, several
HVDC transmission systems have been built with mercury arc valves up to 1972, the
installation of the last mercury-arc HVDC system in Manitoba, Canada. The solid
state semiconductor valves (thyristor valves) first appeared in 1970, and then soon
replaced the mercury-arc valves [Karady 1973]. Thyristor valves have many advan-
tages over mercury-arc valves. For example, it is easy to increase the voltage just by
connecting thyristors in series. The first HVDC system using thyristor valves were
put into operation in 1972. Today, most of existing HVDC projects are still based on
thyristor valves [Asplund 2007, Varley 2004|. Since mercury-arc valves and thyris-
tors can not achieve the operation of turn-off by themselves, both of them need an
external AC circuit to force the current to zero and hence, the converters based on
these two valves are known as line-commutated converters (LCCs) [Daryabak 2014].
During the conversion process of LCCs, the converters need to consume the reactive
power which is usually supplied by the AC filters or series capacitors embedded
in the converter station [Bahrman 2007]. In the late 1990’s, capacitor-commutated
converters (CCCs) were introduced where capacitors in series connected between the
thyristors and the transformers are used to provide the reactive power. The first
CCC based HVDC system was built in 1998 used to connect Argentina and Brazil.
In fact, CCCs have not been widely applied in the construction of HVDC systems
because of the advent of new power electronics in the mid 1990’s. The development
of high rated semiconductor devices such as integrated gate-commutated thyris-
tors (IGCTs), insulated-gate bipolar transistors (IGBTs), gate turn-off thyristors
(GTOs) etc. has marked the beginning of a new era in the area of HVDC sys-
tems [Andersen 2000, Poullain 2001, Flourentzou 2009, Andersen 2000]. The IGBT
differs from thyristor in that it has the ability to turn off by itself, which can be
used to make self-commutated converters. Converters built with IGBTs are known
as voltage-sourced converters (VSCs). The first complete VSC HVDC system was
built in Gotland, Sweden, 1999 [Eriksson 2001]. Since then, many VSC HVDC sys-
tems have been put into operation [Asplund 2000, Johansson 2004, Stendius 2006,
Dodds 2010]. The recent first three-terminal VSC HVDC system operated by China
Southern Power Grid has been put into service at the end of 2013, which is used
to feed wind power generated from Nanao island into the mainland of Guangdong
via a combination of underground cables, submarine cables and overheard lines
[Li 2014, Fu 2014].

1.2 Overview of HVDC technology

The most essential process in an HVDC system is the conversion of the energy
between AC and DC. The converter station located at the sending end is called
the rectifier (to convert the current from AC to DC) while the one at the receiving
end is called the inverter (to convert the current from DC to AC). As mentioned in
Section 1.1, there are two basic converter technologies in today’s HVDC transmission
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systems, LCC and VSC.

1.2.1 Line-commutated current source converters

Conventional (or classical) HVDC systems are based on LCCs with thyristor valves
which are used to achieve the operation of converting the current between AC and
DC |Carlsson 2003, Carlsson 2002, Varley 2004, CIGRE 2014|. The essential com-
ponent of LCCs is the three-phase or six-pulse bridge composed of six controlled
switches or thyristor valves. In order to operate at the desired voltage rating, the
thyristors are usually connected in series to build up a suitable thyristor valve. The
drawback of the six-pulse bridge is that considerable AC current and DC voltage
harmonics are produced due to each phase change every 60°. To deal with this
problem, two six-pulse bridges are connected in series to constitute a twelve-pulse
bridge. In this manner, with each of the two six-pulse bridges connected to one DC
rail, the 30° phase displacement can be achieved so that some harmonics can be
eliminated. In fact, the twelve-pulse bridge has become dominant in modern LCC
HVDC systems.

Since LCC can not be turned off by itself, an external relatively strong AC
voltage source is required to perform the commutation. As a result, it is impossible
to change the direction of the current. In an LCC HVDC system, in order to change
the power direction, it is necessary to change the polarity of the output voltage.
This leads to inherent difficulty when a weak AC system or a passive network is
connected to an LCC converter station. As a controlled solid-state semiconductor
device, the thyristor can only be turned on by control action and hence, LCC has one
degree of freedom, i.e. the firing angle, which represents the phase lag of AC current
behind the voltage. The only way to regulate the DC voltage rating across a valve
is by means of controlling the firing angle. More details of the control of firing angle
are well documented in the literature [Arrillaga 1998, Kimbark 1971, CIGRE 2014].

1.2.2 Voltage-sourced converters

Voltage-sourced converter is built up with fully controlled semiconductor de-
vices such as IGBT and GTO with the ability of turn-off compared to LCC
[Flourentzou 2009, Dodds 2010, Wang 2011]. As a result, an external AC volt-
age is no longer required since the converter based on IGBTs (or GTOs) are self-
commutated. The additional controllability (the operation of turn-off) gives many
advantages to the VSC:

e Pulse-width modulation (PWM) can be applied to the operation of VSC,
which works at higher frequencies than the line frequency and gives rise to
high dynamic performance [Trzynadlowski 1996]. With PWM, the VSC can
generate any voltage with desired phase angle and amplitude. Less harmonics
are produced compared to LCC with PWM.

e Because the AC current always lags behind the voltage in the operation of
LCC, the converter needs to consume the reactive power to keep the amplitude
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of AC voltage within acceptable range, while the VSC itself has no reactive
power need. Therefore, it is flexible to place the VSCs anywhere in the AC
system.

e Unlike LCC, a strong AC voltage source is not indispensable for the VSC
connected AC system and hence, there is no restriction on the inherent char-
acteristics of the connected AC networks.

e Since the VSC possesses two degrees of freedom, this converter has the ability
to control active and reactive power independently. This capability makes the
VSC act close to an ideal generator in a transmission network.

e The bidirectional power transmission can be achieved with the VSC by chang-
ing the current direct without changing the output voltage polarity.

More details of the operation of VSCs are presented in Section 2.

1.2.3 LCC vs VSC

Although the capability of turn-off produces many benefits for the VSC, it does
not mean that VSC can replace LCC. Both of the two converters are applied in
modern HVDC systems and they have their respective merits that meet different
requirements [Marques 2011, Rudervall 2000]:

e In recent years, significant advances and improvements in the thyristor tech-
nology have been achieved. In particular, the thyristor has a large capacity
that can withstand high voltage (up to 10 kV) and high current (4 kA) ratings.
Therefore, there is no special restriction on the power range of HVDC with
LCC since very high voltages can be achieved by connecting the thyristors in
series. Besides, the inductive and capacitive elements of the transmission lines
have no effect on the HVDC with LCC and hence, the power losses caused by
these elements do not limit the transmission distance. For these reasons, LCC
HVDC system is well established for long-distance bulk power transmission.

e VSC-HVDC technology is mainly used in medium-capacity power transmis-
sion based upon the considerations: 1) Unlike the thyristor, the IGBT has
a limit capacity with weak overload capability; 2) Due to the use of PWM
at high frequency, the switching losses of the VSC HVDC are higher than
the LCC HVDC. 3) A VSC HVDC system usually uses a special cross-linked
polyethylene (XLPE) cable which has a lower voltage capability compared to
the mineral-insulated (MI) cable used in LCC HVDC system.

e A VSC HVDC system can be used to supply the electrical power to passive or
weak AC networks with low short-circuit capacity. Since the semiconductor
devices used in the VSC are self-commutating, for the connected AC system,
a strong AC voltage source is not necessary.
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e At present, the vast majority of existing HVDC links are composed of two
converter stations, only carrying out point-to-point power transfer. As the
economic development and the construction of the power grid require that
the DC grid can achieve power exchanges between multiple power suppliers
and multiple power consumers, multi-terminal HVDC system consisting of
more than two converter stations have drawn more and more attention. VSC
HVDC technology is more appropriate than LCC HVDC to build a multi-
terminal HVDC system because of the following reasons: 1) For the LCC
HVDC, the only way of reversing the power direction is to change the DC
voltage polarity. However, in a multi-terminal HVDC system, the reversal
of one terminal’s DC voltage polarity gives remarkable disturbances to other
terminals and hence, it is essential to arrange the switching operation of each
terminals [Reeve 1980]. 2) For the VSC HVDC, the power direction can be
changed through the reversal of the current direction while keeping the DC
voltage polarity unchanged. Therefore, one terminal’s power direction can be
changed without considering other terminal’s power flow directions.

1.2.4 Advantages of HVDC over AC

As discussed in Section 1.1, the inherent drawbacks of AC encourage the develop-
ment of DC technology. The rationale for the choice of HVDC instead of AC is
often various and complex. The common applications in favor of HVDC are listed
as follows:

e Long-distance transmission:

For an AC transmission, the capacitive effect of long overhead lines not only
causes the additional power losses but also limits the transmission distance
while it has less impact on the HVDC transmission line. For these reasons,
HVDC technology provides bulk power transmission solution over very long
distances. From economic aspects, the costs of an HVDC transmission line are
less that an AC line for the same distance but the construction of a converter
station is expensive. A famous diagram as illustrated in Fig. 1.1 shows a
typical cost analysis for AC and DC [SIEMENS 2014]. Above the break-even
distance, the HVDC transmission line becomes an attractive solution with less
costs in comparison to an AC transmission line with the same power capacity.
Moreover, DC overhead lines occupy much less space than AC transmission
lines with the same power capacity. This reduces the visual impact and the
usage of rights-of-way. Therefore, it is possible to realize the power delivery
from remote power resources such as offshore wind farms or hydro-power plants
using lower visual impact and fewer transmission lines with HVDC.

e Underground or submarine transmission:

From the environment aspects, it is hard to upgrade the electrical grid with
overhead AC lines which require large transmission line corridors. It is rec-
ommended to use underground cables that can share rights-of-way with other
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Figure 1.1: AC versus DC cost.

utilities. As discussed above, the main drawback of underground or submarine
cable systems with AC lines is the remarkable power losses and transmission
distance limits caused by the capacitive effect. The VSC HVDC system with
XLPE cables provides a more flexible, efficient and reliable way to carry out
the power transfer via long-distance underground or submarine transmission.

e Asynchronous connection:

HVDC technology is the only way that can connect AC networks with different
frequencies. The advantage of this application is that a disturbance in one
AC area does not affect another, and thus the HVDC link can play the role
of a firewall to prevent cascading failure. In addtion, in an asynchronous
connection, back-to-back configuration is often used without transmission lines
to achieve power exchange.

e Renewable power transmission:

Due to environmental issues and the need to meet the increasing demand of
electricity, the development of renewable energy, which comes from continu-
ally regenerated resources such as sunlight, wind, tides and waves, is promoted
to achieve sustainability. In 2011, about 19% of worldwide electricity gener-
ation came from renewable energy, with 19% from hydroelectricity and 3%
from other renewable sources such as wind, sun and biomass [Network 2012].
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Renewable power generators are spreading across many countries and espe-
cially, wind power already occupies a significant share of electricity in Europe,
Asia and the United States. At the end of 2012, wind power grew at an
annual rate of 30% with a worldwide installed capacity of 282,482 MW. Tt
is expected that wind energy in 2020 should meet 15.7% of EU electricity
demand of 230 GW, and by 2030, 28.5% of 400 GW|Zervos 2009]. Large
wind farms consist of hundreds of individual turbines which are connected to
the electric power transmission network. In general, offshore wind is stead-
ier and stronger than onshore wind farms. However, on the one hand, off-
shore wind farms are usually located far away from the grid, and on the
other hand, wind power is consistent from year to year but has significant
variation over short time scales. This inherent characteristic could affect the
stability of the interconnected power grid when wind power provides large
share of electricity. It is a big challenge to integrate these long-distance scat-
tered offshore wind farms through AC networks |Ayodele 2011|. Based upon
the above considerations, multi-terminal VSC HVDC (MTDC) transmission
systems consisting of more than two converter stations provide an efficient
solution [Chaudhary 2008, Livermore 2010, Kirby 2002].

1.3 Literature review: related studies on control designs

The control design is always one of the most popular research topics in the area of
VSC HVDC systems. A large number of studies have been devoted to the control
of VSC HVDC systems from different points of view.

1.3.1 Control of a single VSC terminal

For any VSC HVDC system, the converter is the most basic component, whose
operation has a great impact on the system’s overall performance. Therefore, it is
particularly important to develop appropriate control structures for the VSC. There
are two most frequently discussed control methods, namely direct control method
and vector control method. The direct control approach is very straightforward
where the control inputs, the phase angle and the amplitude modulation ratio, are
directly derived from the measurements of the currents and the voltages at the
PCC [Ooi 1990, Ohnishi 1991, Noguchi 1998, Sood 2010]. The major advantage of
this control method is its simple structure easily implementable while the gravest
drawback is its incapability of limiting the current through the converter to protect
the semiconductor devices.

To overcome this shortcoming, the vector control method is widely used in the
context of the control of VSC [Lindberg 1994, Lindberg 1996, Blasko 1997, Li 2010,
Thomas 2001, Xu 2005, Beccuti 2010] where the VSC is modeled in a synchronous
reference dg frame. The main feature of this method is that it consists of two control
loops, namely the fast inner current loop and the slow outer loop, where the slow
outer loop provides the reference trajectories to the fast inner current one. Thanks
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to the fast inner current loop, this control structure has the ability to limit the
current through the converter.

Studies on comparing the direct control method and the vector control method
are carried out in [Sood 2010, Zakaria Moustafa 2008]. The conventional vector
control method is usually based on several standard PI controllers where a phase-
locked loop (PLL) is usually applied to provide a synchronous reference frame
[Lindberg 1994, Lindberg 1996, Blasko 1997|. However, several limitations of pure
PI control are presented in [Du 2005, Dannehl 2009, Durrant 2003], which show
that the maximum transferable power capability with the conventional vector con-
trol method is far less than the system’s maximum achievable capacity and the
system overall performance is remarkably disturbed by the system uncertainties.

Thus, some modified vector control methods are developed. In [Zhao 2013],
adaptive backstepping control technique is applied to the DC voltage outer loop
and the inner current loop to ensure the global stability. In [Li 2010], an optimal
control strategy using a direct current vector control technology is proposed where
the current loop can be a combination of different technologies such as PID, adap-
tive control, etc. In [Beccuti 2010], a nonlinear model predictive control method is
applied to the inner current loop without the need of a PLL. Since the conventional
vector control does not fully use the potential of the VSC, in particular, in the case
of connecting to a weak AC system, several other control methods are developed.
In [Zhang 2010], power-synchronization control with a new synchronization method
as an alternative to PLL is established, whose control concept is derived from the
behaviors of synchronous generators. This method is effective when a very weak
AC system is connected to the DC grid via a VSC [Zhang 2011a, Zhang 2011b|. In
[Mariethoz 2014], a VSC HVDC decentralized model predictive control method is
proposed with the purpose of achieving fast control of active and reactive power,
improving power quality, etc. In [Xu 2007b], a new direct power control is pro-
posed where the converter voltage is directly derived from the defined power flux.
This method is applied to the control of doubly fed induction generators (DFIG)
with good performance [Zhi 2007]. Furthermore, an improved DPC is presented
in [Zhi 2009]. In [Durrant 2006], both linear matrix inequality (LMI) and heuris-
tic schemes like genetic algorithm are presented and a comparison is carried out
between them.

1.3.2 Control of MTDC systems

As mentioned in the previous section, AC transmission lines are not feasible for
carrying out power transfer from large offshore power plants due to the requirement
of transmission lines over long distances. In order to connect those large-scale,
offshore and scattered energy sources such as wind farms to the grid, MTDC systems
provide a flexible, fast and reversible control of power flow. However, the operation
and the control of an MTDC system is still an open and challenging problem. For
example, since the semiconductor devices in VSC are very seusitive to overvoltage,
it is very important to restrict the DC voltage to an acceptable band.
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Several research works have proposed different control structures to ensure the
normal operation of an MTDC system. Master-slave control strategy (or constant
DC voltage control strategy) are applied in [Ekanayake 2009, Zhang 2012, Lu 2003,
Lu 2005] where one terminal called master terminal is arranged to control the DC
voltage at a constant desired level while the remaining terminals control their respec-
tive active power or other variables. The main drawback of this control approach is
that N-1 secure operation can not be ensured in case of outage of the master termi-
nal. Besides, since only the master terminal is used to ensure the power balance of
the DC grid and keep the DC voltage constant, it is needed a master terminal with
large capacity.

To avoid the above problems, some other control strategies are introduced.
In [Tokiwa 1993, Haileselassie 2008, Nakajima 1999, Mier 2012], a control strategy
called voltage margin method is developed. With this approach, the operation of
each converter is characterized by specific active power-DC voltage (P —Vp¢) curve.
With the voltage margin method, one VSC terminal, for instance, VSC 1, is initially
used to keep the DC voltage constant by adjusting its active power P; to counteract
disturbances. When Pj reaches its upper or lower limit, VSC 1 starts to operate in
constant active power mode and the DC voltage will rise or decrease until it reaches
another VSC terminal’s DC voltage reference setting, for instance, VSC 2’s DC volt-
age reference setting. Then, VSC 2 is responsible for the regulation of DC voltage
according to its P — Vpo characteristic. Furthermore, a modified two-stage volt-
age margin control is proposed in [Nakajima 1999] by considering each converter’s
inherent physical features.

Another control scheme, namely, DC voltage droop control method, whose con-
trol philosophy is to use more than one converter to regulate the DC voltage, is
widely applied in the context of MTDC systems [Karlsson 2003, Prieto-Araujo 2011,
Wang 2014a, Chaudhuri 2013, Bianchi 2011, Chen 2014, Haileselassie 2012b,
Wang 2014b, Eriksson 2014, Johnson 1993, Liang 2009, Rogersten 2014]. With this
control approach, some or all converters are equipped with a droop controller which
is characterized by P — Vpc or I — Vpe (current vs DC voltage) curve with the
slope Kdroop called the droop gain. This control method has the advantage of 1)
sharing the duty of eliminating the power imbalance of the DC grid between several
terminals; 2) taking actions only based on local information without remote com-
munication. In [Pinto 2011], each of the aforementioned control strategies is tested
and moreover, a performance comparison between them is also carried out.

Concerning the power relations between converter terminals, three DC voltage
control and power dispatch modes are established in [Xu 2011]. In the first mode,
one terminal, for instance, VSC 1, has priority over the other converters in car-
rying out the power transfer. When VSC achieves its active power’s upper limit,
another converter takes over the duty of transmitting the energy. In the second
mode, two converters transmit the energy according to a power ratio which can
be varied in real time. The third mode is the combination of the two mentioned
modes. In [Pinto 2013], a novel distributed direct-voltage control strategy is in-
troduced. The main idea of this control approach is to provide a specific voltage
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reference to each of the terminals which participate in the regulation of the DC
voltage. In [Rodrigues 2013], an optimal power flow control is proposed where the
convariance matrix adaptation (CMA) algorithm is applied to solve an optimal DC
load-flow problem and then provide the DC voltage references to the distributed
voltage control developed in [Pinto 2013].

The use of MTDC systems for connecting offshore wind farms have been
studied by a number of papers [Haileselassie 2012a, Li 2014, Karaagac 2014,
Haileselassie 2008,  Chen 2011,  Lie 2008, Prieto-Araujo 2011, Liang 2011,
Haileselassie 2009, Xu 2007a, Fu 2014] where the control structures are well
established and the simulation results are also carried out.

The above mentioned articles in this section are entirely dedicated to the control
design of VSC HVDC systems. There are also a large number of studies that focus on
the modeling of the VSC HVDC systems [Cole 2010, Beerten 2014], the protection
system [Kong 2014, Xiang 2015], the development of multilevel modular converters
(MMC) which generates less harmonics and reduces the losses of the semiconductor
devices [Shi 2015, Adam 2015, Ilves 2015], etc.

1.4 Motivations and contributions of the thesis

For years, people have been working on the development of a European supergrid
that allows the massive integration of renewable energy sources to meet the ever in-
creasing consumption of electricity. Due to some undesirable inherent characteristics
of the renewable energy sources, such as the variability of the generation output, the
conventional AC transmission lines are not quite suitable for the connection of large
shares of renewable energy sources while VSC HVDC systems provide an alternative
solution. Although numerous research studies on VSC HVDC systems have been
carried out, there are still many challenges and it is not yet totally feasible to build
such a supergrid.

1.4.1 DMotivations

This dissertation is motivated by the challenges in the control design of MTDC
systems and analysis of MTDC system’s dynamic behavior.

1.4.1.1 Control methods

As a system with complex dynamics, any operation of the VSC HVDC system may
give rise to both potential dangers of unexpected interaction and improvement of the
system performance. Therefore, developing control structures which are capable to
keep good performances like fast tracking or small overshoots, during disturbances
is always a challenge for the control of VSC HVDC systems.

As presented in Section 1.3.1, many control methods have been developed. How-
ever, most of them lack the corresponding theoretical support and usually need sig-
nificant efforts to adjust the controller. For example, though the traditional vector
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control method based on standard PI controllers has a simple structure, we need to
tune the PI control gains by using other procedures [Bajracharya 2008]. Reference
[Zhang 2011c| gives a stability analysis for power synchronization control method.
Nevertheless, this analysis is carried out by linearizing the system around the operat-
ing point and hence, the nonlinear behavior of the system can not be well exhibited.
Reference [Dannehl 2009] also presents a study on the limitations of vector control
method, but, similar to the case of power synchronization control method, this re-
search work is done via linearization and it is only valid for the behavior within
a small neighborhood of the operating point. It is worth considering that, when
designing a control structure, we should not only focus on the actual results (or
performances) of the control strategy but also on the theoretical explanation of the
control operating principle.

1.4.1.2 Dynamic behaviors

As discussed in the section of literature review, vector control method, which is
composed of two control loops, is the most widely used control approach for VSC
HVDC systems due to its simple structure and its capability to limit the current
through the converter. The rationale of this method is based on the assertion that
the dynamics of the inductor currents are much faster than the dynamics of the
capacitor voltages. As a result, the independent control designs of the two control
loops are achievable. However, there exist very few relevant studies in the literature
that have ever presented a detailed theoretical explanation on the validity and the
implications of this assertion. It is not clear if the time-scale separation between the
dynamics of the current and the voltage is an inherent characteristics or it exists
only under certain conditions. For example, as demonstrated in [Kimball 2008],
for some DC-DC converters, the dynamic separation between the system variables
exists only when the stability requirement is satisfied. If the time-scale separation
exists in a high-order system, this feature has a great significance to the analysis of
system’s behavior. Based on the time-scale separation, two (or more) subsystems of
lower orders can usually be deduced from the original high-order system and then,
we can use the behaviors of the low-order subsystems to approximate the behaviors
of the high-order original system. This greatly reduces the complexity of analyzing
the system’s dynamic performance. Therefore, the verification of the existence of
the time-scale separation is very desirable.

1.4.2 Contributions

The research work in this dissertation aims at filling some gaps between the theory
and the practice, i.e. 1) to investigate various control approaches for the purpose of
improving the performance of MTDC systems; 2) to establish connections between
existing empirical control designs and theoretical analysis; 3) to increase under-
standing of the multi-time-scale behavior of MTDC systems characterized by the
presence of slow and fast transients in response to external disturbances.
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The main contributions of the research work reported in this thesis can be put
into three aspects, namely nonlinear control designs of MTDC systems, analysis of
MTDC system’s dynamic behaviors and application of MTDC systems to provide
frequency support for AC networks.

1.4.2.1 Nonlinear control designs

In the area of nonlinear control design of MTDC systems, three nonlinear control
design tools, namely feedback linearization control, feedback linearization control
with sliding mode control and passivity-based state feedback control, are applied to
establish different control schemes with corresponding theoretical analysis. Besides,
the developed control algorithms have been tested by detailed and realistic numerical
simulations, whose performances are evaluated in comparison to the performance of
the conventional vector current algorithm.

1.4.2.2 Analysis of dynamic performances

The main motivation for the research work in the area of analysis of MTDC system’s
dynamic behaviors is the desire to provide a rigorous theoretical demonstration to
verify a common assertion used in the control design of VSC HVDC systems, that
is, the dynamics of the inductor currents are much faster than the capacitor voltage.
The contribution in this area consists of three parts: 1) development of a general
control theory that we named "Control induced time-scale separation” for a class of
nonlinear systems; 2) analysis of control induced time-scale separation for an MTDC
system with master-slave control configuration; 3) analysis of control induced time-
scale separation for an MTDC system with droop control configuration. Theoretical
analysis, mainly based on singular perturbation and Lyapunov theories, have been
carried out for each of the aforementioned aspects and clarified with various simu-
lation studies. The study of the first part has been mainly performed to propose a
time-scale separation control method which can drive a class of nonlinear systems
to exhibit a multi-time-scale performance. The theoretical results obtained from
the first part have been applied to investigate the dynamic behaviors of MTDC sys-
tems under the two main control configurations, i.e. master-slave and droop control.
Empirical vector current control designs have been proposed for each control config-
uration. Theoretical explanations and fundamental analysis indicate that with the
currently used empirical control algorithms, the inductor currents indeed perform a
dynamic behavior with different dynamics. Furthermore, more details on how and
why these empirical vector current control designs work have been also provided.

1.4.2.3 Frequency support

The final contribution relates to analysis of the application of MTDC systems for
frequency support strategy. A DC voltage based control scheme for the AC fre-
quency regulation is proposed, achieving the objective of sharing primary reserves
between different AC areas interconnected via MTDC system without using remote
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information though telecommunication. The frequency control principle is to regu-
late the AC frequency by modulating each AC grid’s scheduled (or prescribed) input
of active power.

1.5 Outline of the thesis

This dissertation is organized as follows: In Chapter 2 a brief introduction of VSC
HVDC technology is presented. In particular, the possible operation modes of the
VSC are discussed, which are essential for the design of a control system. In Chap-
ter 3 the dynamic model of a multi-terminal VSC HVDC system is established
based on a synchronous reference dq frame. This MTDC system consists of two
different AC networks connected via a generic DC grid. In Chapter 4 two most
used conventional control methods, namely direct control method and vector con-
trol method, are introduced. In addition, the merits and drawbacks of these two
methods are also discussed. In Chapter 5 three different nonlinear control structures
are proposed for VSC HVDC systems. With the help of numerical simulations, the
advantages claimed for each of the proposed controllers are verified in comparison
to the conventional vector current control method. In Chapter 6 the system dy-
namic behaviors are investigated. We first demonstrate that there exists a control
structure that can drive a class of nonlinear systems to exhibit arbitrary multi-time-
scale dynamics that were not natural to the system. Then, we apply the obtained
theoretical results to the MTDC system under two control configurations, namely
master-slave control configuration and droop control configuration. The theoretical
analysis of the time-scale separation between the dynamics of the system states are
also carried out for each of the aforementioned control configuration. In Chapter
7 the potential of VSC HVDC technology for frequency regulation is investigated
where a DC-voltage-based control scheme is proposed to make the interconnected
AC networks share their primary reserves. In Chapter 8 conclusions are drawn and
future work is discussed.

1.6 Publications

Most of the materials in this thesis have been published in the following articles:

e "Nonlinear Control Design for a Multi-Terminal VSC-HVDC System", Yijing
Chen, Jing Dai, Gilney Damm, Francgoise Lamnabhi-Lagarrigue, 2013 Euro-
pean Control Conference (ECC), July 17-19, 2013, Ziirich, Switzerland.

e "A detailed study on a DC-voltage-based control scheme using a multi-
terminal HVDC system for frequency control", Yijing Chen, Jing Dai, Gilney
Damm, Frangoise Lamnabhi-Lagarrigue, 2013 European Control Conference
(ECC), July 17-19, 2013, Ziirich, Switzerland.

e "Control Induced Explicit Time-Scale Separation to Attain DC Voltage Stabil-
ity for a VSC-HVDC Terminal", Yijing Chen, Gilney Damm, Abdelkrim Ben-
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chaib, Mariana Netto, Francoise Lamnabhi-Lagarrigue, 19th World Congress
of the International Federation of Automatic Control (IFAC), August 24-29,
2014, Cape Town, South Africa.

e "Feedback Linearization for the DC Voltage Control of a VSC-HVDC Termi-
nal", Yijing Chen, Gilney Damm, Abdelkrim Benchaib, Francoise Lamnabhi-
Lagarrigue, 2014 FEuropean Control Conference (ECC), June 24-27, 2014,
Strasbourg, France.

e "Multi-Time-Scale Stability Analysis and Design Conditions of a VSC Ter-
minal with DC Voltage Droop Control for HVDC Networks", Yijing Chen,
Gilney Damm, Abdelkrim Benchaib, Frangoise Lamnabhi-Lagarrigue, 53rd
IEEE Conference on Decision and Control (CDC), December 15-17, 2014, Los
Angeles, CA, USA.

e "Multi-Terminal High Voltage Direct Current Networks for Renewable
Energy Sources", Miguel Jiménez Carrizosa, Yijing Chen, Gilney Damm,
Abdelkrim Benchaib and Francoise Lamnabhi-Lagarrigue, ERCIM News
No. 97 special theme: "Cyber-Physical Systems", Link: http://ercim-
news.ercim.eu/en97/special /multi-terminal-high-voltage-direct-current-
networks-for-renewable-energy-sources
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In order to get a good understanding of VSC HVDC technology, this chapter
first introduces the main components of a VSC HVDC system in Section 2.1, each
performing a different function. Subsequently, the operating principles of VSC are
described in Section 2.2. Next, several configurations of HVDC systems are pre-
sented in Section 2.3. Finally, various control modes of VSC terminals are discussed
in Section 2.4.

2.1 Key components

A simplified representation of a VSC HVDC converter station is depicted in Fig.
2.1. The characteristics and purposes of the main components of a VSC HVDC
system are introduced in this section |Siemens 2005, Bahrman 2007, Dodds 2010,
Andersen 2002].

Transformer

A bank of transformers are installed to adapt the AC voltage level of the connected
AC grid to the rated DC voltage transmission level. Since harmonic filters are
located between the phase reactors and the transformers, harmonic currents have
little or no effects on the transformers. Therefore, ordinary transformers can be
used for VSC HVDC systems.

Harmonic filter

With VSCs, the generated harmonics are usually at high frequencies, which strongly
depend on the PWM method and converter topology. In a VSC HVDC system,
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Figure 2.1: A simplified representation of a VSC HVDC converter station. Usually,
the harmonic filters, the phase reactors, the converters and the DC capacitors are
located indoors while the transformers and the cooling system are outdoors.

shunt filters are used to reduce such high-frequency harmonic currents flowing into
the AC system so that the transformers are not exposed to harmonic stress.

Phase reactor

The phase reactors are composed by large inductances with small resistances. On the
one hand, the phase reactor can also reduce the harmonic distortions to smoothen
the phase currents like the harmonic filters. On the other hand, they play an essential
role in determining the dynamics of the converter on the AC side.

Converters

As the most important component in an HVDC system, the converters are used to
perform the conversion between AC and DC. Each valve in the VSC bridge consists
of series connected semiconductors (such as IGBT) to create a high-level DC voltage.
PWM technology is usually employed for the VSC to create the desired voltage and
to improve the harmonic distortion of the converter.

DC capacitor

The main purpose of the DC capacitors is to maintain the DC voltage within its
acceptable band by charging and discharging the capacitors. Besides, the DC ca-
pacitors can also reduce the voltage ripples generated by the converters.

DC cable

Solid-dielectric extrude polymer cables with prefabricated joints are used in VSC
HVDC systems. This kind of cables are much lighter, more flexible than mass-
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impregnated or gas-filled conductors. In addition, there is no need to worry about
the problem of leaking cable oil.

In this section, we just presented the components that have great effects on the
system dynamic modeling and steady-state analysis. Hence, some other indispens-
able elements of VSC HVDC systems, such as high-side breakers, valve coolers etc,
are not illustrated in Fig. 2.1.

2.2 Operating principles of VSC

The most common three-phase bidirectional VSC creates two voltage levels at the
AC side of each phase with a six pulse bridge as shown in Fig. 2.2. Each valve
in the six pulse bridge is made of a fully controllable semiconductor such as IGBT
with a diode connected in anti-parallel. The operations of turning on and off of the
self-commutated semiconductors result in a square waveform for each phase, which
is relevant to the DC voltage u.. For example, the square waveform of the converter
voltage in phase a can be expressed by

1
Vea = 5 UM sin(wet + d) + harmonics (2.1)

where m € [0, 1] is the amplitude modulation ratio, w, is the frequency of funda-
mental AC component and J is the phase angle between the fundamental component
of the converter AC voltage and the AC system voltage at the PCC. However, the
two-level bridge in the square wave operation usually produces large unacceptable
harmonics. Hence, the application of PWM technology can improve the harmonic
distortion of the converter with less low-frequency harmonics and give a fast re-
sponse [Trzynadlowski 1996]. By using PWM techniques such as sinusoidal PWM
(SPWM), ¢ and m are fed to the pulse width modulator to determine the phase shift
and the duration of firing pulses, respectively. Finally, the firing pulses are generated
and then sent to the converter to switch the IGBTs [Stijn 2010, Mohan 2003]. With
PWM, the IGBTs are usually switched on and off many times in order to create the
desired phase angle or amplitude.

2.3 Configurations of HVDC systems

Depending on the applications of HVDC, there are various configurations of HVDC
systems.

Monopolar system

Monopolar HVDC link as illustrated in Fig. 2.3 is the simplest and least expensive
configuration for HVDC link where a single conductor is used for power transmission
while the current return path is earth, water or a metallic conductor. This type of
HVDC link is mainly applicable for submarine cable transmission. Because of its
low cost, it also has the advantage in connecting two remote AC systems through
an overhead line with a distance of 300 to 3000 km and more.
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Figure 2.3: Monopolar HVDC link with earth, water or metallic return path.
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Bipolar system

With two sets of conductors as shown in Fig. 2.4, bipolar HVDC link is the most
common configuration for today’s HVDC systems. The current return path is usu-
ally provided by two earth electrodes or a metallic return conductor. One pole is
positive with respect to earth and the other is negative. Since the two poles are
independent of each other, a bipolar can operate as two monopolars. Therefore, in
case of outage or scheduled maintenance of one pole, it is still possible to transfer
the power by using the other pole with a reduced transmission capacity.

AC system 2 ,_;_HI I|F—,
—O | |5 @

Earth /Metallic

AC system 1

(Return path)

Figure 2.4: Bipolar HVDC link with earth or metallic return path.

Back-to-back system

Back-to-back HVDC link is usually a bipolar HVDC link without earth return as
shown in Fig. 2.5. It is especially suitable for connection between two asynchronous
AC systems with different system parameters (for example, different frequencies or
different voltage level). In a back-to-back HVDC link, the rectifier and the inverter
are usually located in the same area or the same building. In addition, the length
of the conductor line between the two converters can be kept as short as possible.
Therefore, the DC voltage transmission level can be freely chosen. In order to
reduce the number of the semiconductors and the size of valve hall, the DC voltage
is usually set to a low level and the DC current to a high level.

Multi-terminal system

Multi-terminal HVDC link is used to connect more than two converter terminals in
parallel, series or hybrid. Its main advantage is that the power exchange can be ful-
filled between multi-suppliers and multi-consumers. An example of three terminals
connected in parallel is given by Fig. 2.6.
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Figure 2.6: Multi-terminal HVDC link with three terminals connected in parallel.
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2.4 AC network and control modes of VSC terminals

Before discussing the control modes of a single VSC terminal, we introduce the types
of AC grid in the inverter and rectifier side.

2.4.1 AC network connected to VSC terminal

The strength of the AC network connected to the converter station at the PCC has
significant impact on the performance of VSC HVDC systems [IEE 1997]. If the AC
network gets most of the power from its own generators, the system electromotive
force (EMF) can be kept within an acceptable band by the AC network itself in
case of power variations in the DC grid. However, if the DC grid is the main source
for the AC network or the AC network has a high impedance, the power variation
in the DC grid may cause the system voltage and frequency to go beyond their safe
operating ranges.

The strength of the AC network relative to DC power at the PCC is commonly
described by the short circuit ratio (SCR) [Gavrilovic 1991], i.e. the ratio of the
AC network three-phase short circuit power in MVA at the PCC and the rated
DC power in MW. In general, three types of AC systems can be distinguished in
terms of SCR. A system with SCR larger than 3 is called a high SCR system (or
strong system) where an adequate inertia is available to maintain the frequency and
amplitude of the AC voltage at the PCC irrespective of the change of active or
reactive power. A system is said to be a low SCR system if the SCR is between
2 and 3. If a system has the SCR less than 2, we call it a very low SCR system
(or weak system). For example, an isolated island or an offshore platform belongs
to the family of weak systems. For this kind of system, any change in power flow
at the PCC may lead to AC instability. To avoid this risk, an AC frequency and
voltage controller need to be installed. It can be summarized that the interaction
between AC and DC becomes more sensitive to disturbances as the SCR of the AC
system becomes lower [Thallam 1992].

2.4.2 Control modes of VSC terminals

Consider a single line representation of the AC side of a VSC as illustrated in Fig.
2.7 where the reactance X includes the reactances of the transmission line, the phase
reactors, etc. The AC voltages of the AC network at the PCC and the converter
are denoted by Vi = Vi 1meZ0 and Ve = V. ;ms Z0, respectively.

The transmitted active power and reactive power at the PCC in steady-state
condition are given by

‘/S rms V¥ c,rms . .
P,= ———""38ind = Ppaxsind

X

2.2

Q o ‘/SQ,rms ‘/Le,rms‘/;,rms cosd ( )
TOX X

Vs,rms Vc,rms

where Ppax = is the maximum active power that can be transmitted
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Figure 2.7: A single line representation of the AC side of a VSC.

through the line. In addition, the power angle § can be deduced as

—) (2.3)

d = arcsin(
Pmax

From (2.2), it can be seen that Py and @ are determined by Vs ims, Verms and 0.
Usually, Vi rms is considered to be fixed at a constant level® and hence, P, and Q, are
controlled by regulating the phase angle § and the converter voltage Vi ms. From
(2.1), it can be seen that V. ;ms depends on the modulation index m. Therefore, P;
and Qs are actually controlled by the modulation index m and the angle §.

Based on the purposes of the converter, four possible control modes (control
objectives) exist [Akhmatov 2014, Zakaria Moustafa 2008]:

e Mode 1: AC voltage control mode

This control mode is particularly designed for the VSC connected to a weak
AC system. Since the weak AC system with high impedance relative to the
DC rated power is susceptible to AC/DC interactions, any disturbances either
from the DC side of the converter or the AC side may lead to instability of
the AC voltage (for example, voltage collapse, overvoltage, etc). Fortunately,
fast AC voltage controller provides an effective support for the operation of
the VSC which enables the weak AC system to operate at fixed magnitude.

e Mode 2: Active power control mode

As described in (2.2), it shows that the active power can be controlled by the
converter. An active power controller can be designed such that the active
power follows its reference which is provided by a higher control level (or a
central power dispatching station).

e Mode 3: Reactive power control mode

This control mode is used to regulate the reactive power at its reference. For
example, if the reference input for the reactive power controller is set to zero,
the reactive power can be kept at this value to obtain an unity-power factor.

'In general, this voltage is kept by the Transmission System Operator (TSO).
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This action is helpful in improving the power quality. Moreover, unlike LCC
HVDC systems, the VSC itself does not need reactive power support. Actually,
the VSC can work as a reactive power compensator to regulate the amplitude
of the AC system voltage by controlling the reactive power at the PCC.

Because of the ability to fully control the power flow, the VSC has become a
very important power flow controlling device [Van Hertem 2005]

e Mode 4: DC voltage control mode

It is very important to keep in mind that, the operation of VSC HVDC sys-
tem is always constrained by the DC voltage which is only acceptable in a
narrow operating band. As a result, for any VSC HVDC system with either
conventional two terminals or multi terminals, at least one terminal must be
equipped with DC voltage controller to ensure that the DC voltage always
remains in its acceptable range, what is obtained by the power flow balance
of the DC grid.

The dominant feature of VSC based on IGBTs is that both turn-on and turn-off
operations on the valves are available. Therefore, VSC possesses a second degree of
freedom compared to LCC. This additional controllability gives many advantages,
one of which is that the VSC has the possibility to control two output quantities.
According to the applications and the types of VSC connected AC systems, there
are possible combinations [Zakaria Moustafa 2008] for a single VSC operation:

e DC voltage and AC voltage control modes
e DC voltage and reactive power control modes
e Active and reactive power power control modes

e Active power and AC voltage control modes.

2.5 Chapter conclusions

In this chapter, we have introduced the key components of a VSC terminal, explained
the operating principles of the converter and classified AC systems into three types
in terms of SCR. According to various applications of VSC HVDC systems, four
different configurations have been presented. Furthermore, four possible control
modes for operating a VSC have been discussed. This chapter makes preparations
for the system modeling in the following chapter.
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In this chapter, an average state-space model is developed for multi-terminal
VSC HVDC systems. In the modeling, a synchronously rotating dq frame is chosen
so that the three-phase quantities can be transformed into two-phase quantities.
Using basic physical laws, the dynamics of the converter’s AC and DC sides are
modeled by differential equations. A generic topology for the DC network is consid-
ered and the properties of the DC grid are discussed. Furthermore, two most widely
used control approaches are also presented.

3.1 Preliminary knowledge

There exist different approaches to modeling VSC HVDC systems. In the detailed
modeling approach, every semiconductor device should be treated as an individual
unit, where the type of modulation (sinusoidal PMW or optimized PMW), the con-
verter switching level (two-level or multi-level) and harmonics with high frequency
need to be analyzed. Such a method results in a very complex model which needs a
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lot of memory and CPU times to run simulations. Compared to the detailed model-
ing approach, the time-averaged modeling approach [Middlebrook 1976] seems much
simpler and tractable while still enabling us to study the system behaviors related
to the fundamental frequency components of the voltage and the current. In the
time-averaged model, the VSC is viewed as a controllable AC voltage source from
AC side whereas it is considered as a controllable current source from DC side as
depicted in Fig. 2.2. By using the time-averaged modeling approach, there is no
need to consider the dynamics of each individual semiconductor device and more-
over, high frequency harmonics can also be neglected. This greatly simplifies the
modeling process, save simulation memory and accelerates the simulation speed.
Based on the above considerations, the time-averaged modeling approach is applied
in this thesis work. As a result, according to (2.1), the converter voltage v 45 and
the DC voltage u. in the time-averaged model satisfy

Ue,abc = iucmabc (31)
where mg,, mp and m. € [0, 1] are the modulation indices of the phase a, phase b
and phase c, respectively, determined by the amplitude modulation ratio m and the
phase angle §, according to the following expressions

Me= msin(wet + 0)
mp= msin(wet — 37 4 0) (3.2)
me= msin(wet + %7? +9)

In the remainder of this thesis, it is assumed that all VSC connected AC sys-
tems are under balanced network conditions. Thus, there is no negative sequence
component of the three-phase voltage or current, and the three phases have equal
voltage amplitudes with a phase angle of 120° between themselves.

3.2 Clarke’s and Park’s transformations

Clarke’s and Park’s transformations are widely used in many studies on synchronous
and asynchronous machines. Their basic principle is to transform a balanced three-
phase system into a two-phase system by simplifying the analysis of three-phase
circuit. The difference between both transformations is that Clarke’s transformation
is to project the three-phase quantities onto a stationary two-axis reference frame,
whereas Park’s transformation onto a rotating two-axis reference frame.

3.2.1 Clarke’s transformation

The stationary two axes of Clarke’s transformation are denoted by a— and f—,
which are orthogonal. In order to make the transformation invertible, the zero-
sequence component is usually added and then, Clarke’s transformation matrix can
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be expressed by

=

Tapo = TaﬁO Tabe = kc Labc (33)

= O =
[N |
! ‘&[\3\)—!
N ‘
w%w
w

where k. is a constant and z can represent the AC voltage, current, etc. The inverse
Clarke’s transformation is given by

5 1 0 1
-1 —1 1 3
aB0 — gkc -3 % 1 (3.4)

Let us take an example. Consider a balanced three-phase system whose voltages
and currents in a—, b—, and c—axis are given by

Vo= V/2Vims cos(wt + 4)
Vp= v/2Vims cos(wt — %ﬂ' + dq) (3.5)
Vo= v/2Vims cos(wt + %71' + dq)

and
ta= /2@ cos(wt 4 64 + @)
iy=V2Lms cos(wt — 37 + 64 + @) (3.6)
ie= /21 ms cos(wt + %71’ + 9, + 9)

where

e Vins and Iyyg are the root mean square values of the AC voltage and current,
respectively.

e w = 27f is the angular frequency in rad/s and f is the frequency of the AC
system.

e §, is the phase of v, and ¢ is the phase angle between the voltage and the
current.

Applying Clarke’s transformation to vgpe and igpe, we get

Vo= %kcﬂ‘/}ms cos(wt + d4)

U= %kc\/ivrms Sin((")t + 5‘1) (37)
and
Ta— %kc\/ilrms cos(wt + 6q + ¢) (3.8)
ig= 3keV/2ims sin(wt + 6 + ¢) .
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3.2.2 Park’s transformation

By rotating the two-phase af reference frame over an angle 6 according to the
formula

cos@ sind
Tdg = [— sinf@ cos 9} Tap (3.9)

it can be turned into a new reference frame represented by d— and ¢— axis.
The above transformation from «af reference frame to dq reference frame is called
Park’s transformation and its inverse is given by

cosf —s1n9] “ (3.10)

Tap = [sin& cosf
Applying Park’s transformation to v,g and ing in (3.7) and (3.8) yields

Vg= %kc\/ﬁ/}ms cos(wt + 0, — 0)

Uq: %kc\/i‘/}ms Sln(wt + 6(1 — 6) (311)

and
ig= 3ke/2Lms cos(wt + 64 + ¢ — 0)
ig= 2ker/2Lims sin(wt + 8, + ¢ — 6)

By setting the rotation angle 6 to wt, vg, become

(3.12)

V4= 3keV/2Vims €08 8,

Vg= %kc\/i‘/rms sin 6, (313)

which are two non time-varying constants.
Actually, the three-phase abc frame can be directly transformed into the two-
phase dq frame by

cosf  cos(f — & cos(f + )
Zag0 = Tigo Tape = ke |—sind —sin(0 — 25)  —sin(0 + 2) | zap (3.14)
V2 V2 V2
2 2 2
and the inverse is given by
cos —sind @
-1 2 -1 2 : 27 \/5
Tabe = Tygp Tdgo = §kc cos(f — &) —sin(d — 3F) ? Taq0 (3.15)
V2

cos(0+ %) —sin(0+ %)

2
Ifk. = \/; , the active power in dq frame has the identical magnitude as in abc frame,

Le. v4iq + Upip + Veiec = vgiq + vgiq. If ke = =, as seen in (3.11), the amplitudes of

the AC voltage in abe frame and in dq frame are the same. In the remainder of this
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2
thesis, k. is equal to —. In this case, the active power P and the reactive power @
in dq frame satisfy
P= %(vdzd + vglq)

O 5(qud Odiy) (3.16)

By comparing the expressions of the AC voltage in abc frame (3.5) and in dg
frame (3.13), it can be seen that the application of Park’s transformation reduces the
complexity of the AC voltage equations, i.e. three time-varying quantities are trans-
formed into two non time-varying quantities. This action favors the analysis of the
electrical system and the development of control system. Therefore, an equivalent
continuous-time averaged state-space model established in a synchronously rotating
dq reference frame will be presented for multi-terminal VSC HVDC systems in the
next section.

3.3 Three-phase synchronous reference frame phase-
locked loop

As discussed in Section 2.4, a strong AC network itself has the ability to maintain
the AC voltage at the PCC. Hence, when a VSC is connected to a strong AC system,
it must be synchronized to the frequency of the strong AC system to avoid the risk
of instability. This can be achieved with the help of three-phase synchronous refer-
ence frame phase-locked loop (SRF-PLL) technology, which is the most widely used
technique to synthesize the phase and frequency in electrical systems [Chung 2000].

In the SRF-PLL, the three-phase voltages are transformed into dq reference
frame by applying Park’s transformation. Then, the rotation angle 6 can be con-
trolled via a feedback path. The SRF-PLL system consists of three major parts:
the phase detecting device, loop filter, voltage-controlled oscillator (VOC), as illus-
trated in Fig. 3.1. The phase detecting device is used to generate a voltage, which is
designed as a function of the phase difference between the reference input 6 and the
PLL output 6, i.e. § = 6 — 6. The dynamics of the SRF-PLL system is governed by
the loop filter which also enables to eliminate high frequency signals. The design of
loop filter is very important, which should consider the trade-off between the filter
performance and the system stability. Usually, a typical proportional-integral (PI)
filter is chosen.

Phase detecting Loop VOC
device filter

A 2

Figure 3.1: A three-phase PLL system.
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3.4 Multi-terminal HVDC system model

A general configuration of an MTDC system with N strong AC systems (SAC), M
weak AC systems (WAC) and a DC network is depicted in Fig. 3.2 where each AC
network is connected by only one VSC converter.

System impedance

Figure 3.2: A multi-terminal VSC HVDC system with strong and weak AC systems.

By convention, the active power on the AC side and the current through the
phase reactor are positive if they flow from the AC side to the DC side via the
VSC. The DC current on the DC side is positive if it is injected into the DC grid
from the converter. For example, if the active power P, (or the DC current 4.4, ) of
SAC 1 is negative, then SAC 1 absorbs the power from the DC grid as a consumer.
Otherwise, it provides the power as a supplier.

3.4.1 Strong AC system side

The configuration of the i*" SAC connection terminal is presented in Fig. 3.3 where
the currents 44, 4. flow through the phase reactor made up of an aggregated resis-
tance Ry, and an aggregated inductance Lg,. Since the SAC enables to control its
AC voltage at the PCC in case of disturbances, the SAC can be modeled by an ideal
three-phase AC source with constant parameters. Consequently, the AC voltage
of the i*" SAC, i.e. Vsg, ,abe, Can be always maintained at fixed frequency f,, and
amplitude Vi, rms.

According to Kirchhoff’s circuit laws, the dynamics of the currents 7,4, 4. can be
expressed by

digi ,abc

gi dt = VUsg;,abc — Vcg;,abc — Rgiigi,abc (317)

where vy, ape are the converter voltages. Due to the application of PWM, the
relation between v.g, ope and the DC voltage u.y, can be provided by the amplitude
modulation ratio mg, and the phase angle d,, according to (3.1) and (3.2)



3.4. Multi-terminal HVDC system model 33

LCH;‘

Cgi+1\ Ucg;

A
gi.abc
Vsg:.abc Veg;abe J

mga" 531‘

Figure 3.3: A simplified schematic diagram of the i*" VSC connected strong grid.

1
Ueg,,abc = iucgi Mg, abc (3. 18)

where
Mg,a= Mg, Sin(wg,t + by, )
Mg,p= My, sin(wg,t — 37 + d,) (3.19)
Mg,c= My, sin(wg,t + 37 + ;)

with wg, = 27 f,.
Substituting (3.18) and (3.19) into (3.17) and then applying Park’s transforma-
tion (3.14), the dynamics of iy, . in the dg reference frame are described by

di d R, Vsg:d Ueq,:
g i : 59i cgi
—= ——lg,d T Wy lg;q T — Mg, d
dt Lgi Lgi 2L9i (3.20)
digq _Rgii Wiy g+ Usgiq  Ucg; m
= 9:iq 9: g 9:q
dt Ly, Ly, 2Ly,

It can be seen that the modulation indices my, 44 are turned into mgy,q and my,q

Mg = Mg g+ Mg,g <1 (3.21)

My,
dg;= arctan(ﬂ)
Mgiq

which satisfy

For the sake of simplicity, the rotating angle 6, of Park’s transformation is chosen
such that the d—axis is aligned to the phase a of AC voltage, which results in
Vsg;d = Vg;rms and vsg, = 0. As a result, from (3.16), the instantaneous active
power Py, and reactive power @)y, at the PCC are given by:

Pi: Y idi id
oo (3.22)

Qgi == ivsgidzgiq
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By virtue of the active power balance on both sides of the converter, the DC current

ieg; can be then deduced as

P,
L (3.23)

Ucg,

while the losses of the phase reactor and the VSC are neglected [Du 2005, Lee 2000].

Leg; =

3.4.2 Weak AC system side

In this thesis work, we choose VSC HVDC linked wind farm as a study case of weak
AC system connection [Chaudhary 2008|. The schematic diagram of wind farm with
VSC HVDC integration is illustrated in Fig. 3.4. Wind energy is converted into
electrical power by wind turbine generators. Actually, the generation capacity of a
single wind turbine is small. For example, the capacity of a large wind turbine is
about 5SMW. Hence, a wind farm (or wind power plant) usually consists of tens or
hundreds of distributed wind turn generators which are connected to the collector
bus. Since the voltage operating level of each single wind turbine generator is very
low, typically 690V, step-up transformers are needed to increase the AC voltage
level of wind turbine generator to the collector bus voltage level. Because system
impedance can be viewed as aggregated impedance, which contains the impedances
of generators, transformers, transmission lines, etc |[Gavrilovic 1991], the use of the
step-up transformers causes a high impedance leading to the wind farm with very
low SCR. Hence, it is reasonable to consider the VSC connected wind farm as a
good study example of weak AC network connection.

Collector bus

System impedance

Figure 3.4: A VSC connected to wind farm.

A simplified schematic diagram of the j®® VSC connected wind farm is shown
in Fig. 3.5. An aggregated output is used to represent all individual wind turbine
generator’s outputs. In addition, we consider that every wind turbine is based
on doubly-fed induction generator (DFIG)! [Xu 2007a]. Therefore, the wind farm
can be modeled as a controlled source described by I, ape [Pena 1996, Lie 2008].
Due to the use of step-up transformers, some high-order harmonics are produced.

!One of the most common technology used for large turbines.
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Consequently, the high frequency AC filter represented by a simple capacitor Cp,,
is used to eliminate those unacceptable harmonics.

. icw-
ij,abcv i ..,,_‘r
v i cW;,abc P
ij,abc swj,abc i J C J‘T

W
WWH _;-l— ch-
]

Crw; R, Lw,
Ifwj,abc 1

Figure 3.5: A simplified schematic diagram of the j'® VSC connected wind farm.
Similar to the modeling of strong AC system connection, the dynamics of the
current iy, abe flowing into the phase reactor represented by R, ;and Ly, satisfy

i, abe
3 ;
dt = VUswj,abc — Vewj,abe — ij Lwj,abe (3.24)

Lo,

where the converter voltages vey; abe are the functions of the DC voltage ucy,, the
amplitude modulation ratio m,,; and the phase angle J,,; according to (3.1) and
(3.2), expressed by
Vewj,abe = %ucwjm'wj,abc (325)

where

M= Map; SIN(Wap;t + Oy

M b= M, SN (Wit — 2r+ w;) (3.26)

Map;e= May; SIN(Wep; t + %7‘( + Ow;)
with wy; = 27 fy;. As discussed in Section 2.4, for the WAC connection, the VSC is
responsible for assuring the AC voltage at the PCC to operate at fixed frequency and
amplitude. So there is no need to synchronize the rotor frequency with the general
grid frequency f,, (usually 50 or 60 Hz), we can freely set w,;. For example, we
can employ an independent voltage controlled oscillator as an alternative without
using PLL technique [Zakaria Moustafa 2008].

The basic equation for the AC voltage vsy; abe at the PCC is given by

dvswj ,abc

waj T - Iw]',abc - iwj,abc (327)

After using Park’s transformation, the AC side of the VSC connected wind farm in
the dq frame is described by

digg.q Ry, Vswid  Uew,

4 flwg . swid — Yew;

dt Lyl Wt T o T yd
. J J J

diw;q ijz’ Wit Uswiq _ Mew; (3.28)
dt Ly, W0 T L 2L,
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and
dvsw-d 1 .
dt] = W, Vsw;q T m(led - ijd)
g g i ' (3.29)
dt = ~Wuw;Vsw;d + wa. (ijq - ijq)
J
where the modulation indices My, d and My, q Must satisfy
_ /2 2
M= [T, g —i—mw]_d <1
(3.30)

My,
Ow;= arctan(—=22)

In addition, according to (3.16), the active and the reactive power at the PCC
are given by

Py,—
ij =

(Uswjdiwjd + ’Usquiqu) (3.31)

[\G][S] ] [N)

(Usquled - Uswjdleq)

Similarly as in Section 3.4.1, the DC current lew; Can be deduced as

P,
: (3.32)

Uew:
cw;

Tow;, =
cw;

3.4.3 DC network

A generic DC network topology is formed by N SAC converter nodes, M
WAC converter nodes, P intermediate nodes and L transmission branches
[Prieto-Araujo 2011]. As depicted in Fig. 3.6, the i SAC converter node, the
7™ WAC converter node and the h'" intermediate node are characterized by their
corresponding DC voltages, i.e. ucg,, Uew; and ue, , and DC capacitors, Cy, and Cy,
and Cy,. The k™™ branch transmission line I, is modeled by a lumped m-equivalent
circuit [Beerten 2014] composed of the aggregated resistance R., and inductance
L.,. The branch current of [ is denoted as i.,. Every branch circuit is used to
connect two adjacent nodes and every node can be connected to a number of trans-
mission lines. As illustrated in Fig. 3.6, the green arrow means that the branch
circuit current is fed into the node, whereas the violet one represents the branch
circuit current discharges from the node. An example of such DC grid is presented
in Fig. 3.7, which consists of two SAC converter nodes (ucy, ,), two WAC converter
nodes (Ucw, ,), three intermediate nodes (uct, ,,) and seven transmission branches
(i¢ys k=1,---,7). It can be seen that the second intermediate node is connected to
three transmission branches (la, I5 and lg). Moreover, it has one incoming current
(i¢s) and two outgoing currents (i., and i, ).
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Incoming current:

6

Qutgoing current:
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Figure 3.6: DC circuit.

Incoming current: ——

Qutgoing current: ——
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Figure 3.7: An example of the DC grid.
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According to basic circuit laws, the dynamic equations for the DC network are

ducw,
"t ! g ’ (3.33)
Cy, Setn 1% 1

gt cty cty
ZCk —+ — .
=U; — U, — Reic,

where [ ('S and I (_ ) represent the node’s total incoming and outgoing transmission

branch currents respectively. U (+) and U(f) are the DC voltages of the two nodes
connected by [j.

In order to better understand the properties of the DC network, we analyze
its topology structure with the help of graph theory [Parthasarathy 1994|. In this
thesis, we study a class of DC networks which can be represented by a weakly
connected directed graph G without self-loops. This graph is labeled by G = (V, E).
V = {Vq, Vo, V3} is the set of the vertices where Vi = {vy, -+, un}, Vo =
{vnt1, -+, vvenm} and V3 = {vnimi1, -, Npmyp} correspond to the NV
SAC converter nodes, the M WAC converter nodes and the P intermediate nodes,
respectively. E = {ej, ---, er} is the set of the edges mapping to the L circuit
branches. The incidence matrix of G = (V, E) is denoted by H € RW+M+P)xL 354
its element in the {*" row and the k*" column, i.e. Hy, satisfies

1 if the branch current of e; flows into the node vy,
Hy;. =< —1 if the branch current of e; flows from the node vy, (3.34)
0 otherswise.

Consider the example illustrated in Fig. 3.7. The corresponding incidence matrix
H is of the form

l1 12 l3 l4 l5 lG l?

Ueg, (10 0 0
Ueg, 1 0 0 0
Uy | O 0 =1 0 0 0 -1

H= ue, 0 0 -1 0 0 0 (3.35)
U, | =1 0 0 1 0 1
Uy | 0 =1 0 -1 1 0
Ut N O 0 1 0 -1 0

As a result, the dynamics of the DC grid (3.33) can be rewritten in matrix
expression form

i=Az+ 9 (3.36)
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with the following definitions

22 [up ig)" € RN+M+P+L
A T
Uc= [ucg Ucw uct]
A T
Ucg= [ucm ucyw]
A T
Uew™ [Uews *+ Uewy,] (3.37)
N T
Uet= [uctl uCtP]
. . T
i [ie, -
92 [icm legy  Tew bewyy 0 ]T
L (€91 99N ew1 PiL
Cgl CgN Cwl CwM ( )
The matrix A is of the form
0 C'H
A — |ON+MEP) x (N 424 P) .
|: *L_lHT *L_lR (3 38)

where € € RIN+MAP)X(N+M+P) and [ R € REXL are the capacitor, inductance
and resistance matrices, respectively, which are given by

C= diag(cm T CQN Cuu e CwM Ctl e Ctp)
L = diag(Le, -+ Lc,)
R = diag(Rc, - - Rc,)

In general, the incidence matrix H of the weakly connected directed graph G
without self-loops has the following features

e Since the directed graph G is weakly connected, the numbers of the vertices
and the edges must satisfy L > (N + M + P) — 1.

e Every edge (transmission line) can only connect two vertices (nodes) and
hence, each column of H has only two non-zero elements, i.e. 1 and —1.

Based on these characteristics, we have the following results whose proofs are referred
in [Parthasarathy 1994, Bondy 1976].

Lemma 3.4.1. The vectors H(1,:), H(2,:), ..., H(N + M + P,:)? are linearly de-
pendent. In addition, we have Zij\Q{MJ“P H(i,:) = 0L. The rank of H, i.e. rank(H),
15 equal to N + M + P — 1.

Lemma 3.4.2. If any one row is removed from H, for example, the "™ row, i.e.
H(l,:), we obtain a reduced incidence matriz denoted by R(H); whose rank is still
equal to N + M + P — 1. It means that any (N + M + P — 1) row vectors of H are
linearly independent.

2See the notations.
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3.4.4 Domain of interest

It is worthwhile to keep in mind that taking into account physical considerations
|Mohan 2003], the feasible region of the state variables is not boundless [Stijn 2010,
Haileselassie 2012a]. Therefore, in this thesis work, we restrict the state variables to
some domains of interest. All DC voltage u.g,, Uew; and U, are considered on the
domain D, £ [Ue,mins Ue,max] € R where ue iy is positive. The current 4, 4, and
G dq aT€ defined on Digi, 4 € R and Diwj, 4 € R, respectively. All branch currents i,
are on the domain D;.. Consequently, the domains D) are defined as the domains
of interest, which are bounded.

3.5 Conventional control methods

It is essential for any VSC HVDC system the ability to counteract disturbamnces
with fast response, good transient and steady-state performances. This ability is
strongly dependent on the employed control system and hence, a study of control
system design for MTDC systems is necessary. Many researches have been devoted
to the control design of VSC HVDC systems. In this section, we briefly introduce
two conventional control methods, direct and vector control methods, which are
widely used and discussed.

3.5.1 Direct control method

Direct control strategy |Ohnishi 1991, Noguchi 1998| is realized by measuring and
comparing the controlled outputs to their references in such a way that the control
variables, i.e. the phase angle § and the amplitude modulation ratio m, can be
directly obtained by means of PI control technique, and then sent to the pulse width
modulator. Figure 3.8 gives the block diagrams of direct control method applied
to the four control modes (as discussed in Section 2.4.2) of the i*" VSC connected
strong grid [Sood 2010]. It can be seen that the errors denoted by () between the
measured values and the references denoted by (-)° are sent to PI controllers as
the inputs to generate the control variables of the converter. It is interesting to
remark that the choice of these PI controllers is completely arbitrary or empirical,
without vigorous mathematical proofs for their design. Nevertheless, the direct
control method has the following advantages:

e The design concept is quite simple and the controller is easy to be imple-
mented. The control variables are given by

592': Kgi,Pl(Pgoi - Pgi) + K, i511 f(PgOZ - Pgi)

Mg, = Kgi,pz( Zi - Qgi) + Kgmé f(QZZ - Qgi)

591‘: Kgi,ps (Uggi - uCQi) + K, 83 f(uggi - uc.gi)

Mg, = Kgi,m (Vgol-,rms - V:qz',rms) + K, 104 f(vgi,rms - Vtyi,rms>
where the control gains of the PI controllers, Ky, p , and Kg, ; ,,
It is shown that the formulas of d,, and mg, are indeed expressed in a fairly
simple way.

(3.39)

are positive.
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Figure 3.8: Block diagrams of direct control method.

e As seen in the control blocks, there are no other control loops. The direct
control method provides a direct and effective way to control both active
power (or DC voltage) and reactive power (or AC voltage) without using any
other intermediate variable such as the AC current.

e Since the control variables are deduced directly by using the measurements,
there is no need to use Clarke’s or Park’s transformation and hence, no PLL
is required in the control algorithm. This avoids an unfavorable influence on
the performance of the system due to the non-linearity caused by PLL.

However, the most serious problem of the direct control method is that it has no
ability to limit the current flowing into the converter, which may damage the con-
verter in case of over-current. In addition, because of cross-coupling between the
control variables as seen in (2.2), the active power and the reactive power can not
be controlled independently [Sood 2010]. For example, consider that the i*" SAC
connection terminal operates in active and reactive control modes. At an instant
t = t1, if Py is subjected to a step change, the control variable dy, varies corre-
spondingly. Because of the coupling relation described by (2.2), the reactive power
is readily influenced |Zakaria Moustafa 2008].

3.5.2 Vector control method

Vector control method [Lindberg 1994, Lindberg 1996, Blasko 1997] is the most
widely used control approach in today’s electric power system applications. This
control system has a cascaded control structure consisting of two loops, the in-
ner current and the outer control loops. The vector control structure involves the
field-oriented vector control technique, which is developed from the representation
described by (3.20) of the AC quantities in the dg synchronous reference frame. The
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detailed control diagrams of the i*! connection terminal are presented in Figs. (3.9)
and (3.10).

vsggd

i Pl control +

Lg;-a! > vcg;d
lg.d

,'Hz'fe‘

1 Pl control

I'Ez'q el vcg:-q

Figure 3.9: Inner current loop.

The vector control algorithm is based on the assumption that the dg currents
and the DC voltage are associated to fast and slow dynamics and hence, the inner
current and outer loops can be designed independently. To ensure a separation in
timescales between the dg current dynamics and the DC voltage dynamics, the size
of the DC capacitor should be characterized by a time constant 7 defined by

T = Cgiugate (340)
2Srate
which is the ratio of the energy stored in the capacitor at the rated DC voltage urage
to the rated apparent power Siate of the converter. The time constant is usually
chosen no less than 5 ms by taking into account practical constraints [Du 2003].

The main objective of the inner current loop is to design v.4,q4 and v.¢,4 such that
ig;a and ig,q follow their respective reference trajectories iy ; and iy . As illustrated
in Fig. 3.9, two PI controllers are involved and then, v.4, 44 are given by

_ . . ' L .
Vegd= Ky, py(iga — lgid) + Ky, i, f(lgid Zgid) + Vsg,d + Wy, Lg;lgiq

gid g _ (3.41)
Vegig= Kgipq (igiq — Z;q) + Ky, i, J(igiq — Z;q) + Vsgig — Wg, Lg;lg,a

Depending on the application (or control mode), the reference i;, 4 can be provided
by a DC voltage outer loop or an active power outer loop as
i;d: Kgi7PP<PgO¢ - Pgi) + ngyiP f(Pgoi - sz‘)

(3.42)
Z;id: Kgi,pu (uggi - uch‘,) + Kgi7iu f(uggi - ucgi)
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Figure 3.10: Outer current loop.

*
giq

Z;q: Kgi,pQ (le - ng) + K i51Q I(ng N le) (343)
lgiq= BKgipy (Vg(z,rms — Vg, ams) + Kg,iy fa/;»rms = Vgiems)

To obtain the best possible performance of the system, modulus optimum and sym-

while the reference i¥ ~are derived from a reactive outer loop or an AC voltage outer

loop as

metrical optimum techniques are usually applied to tune the control gains of the PI
controllers [Bajracharya 2008].

Compared to the direct control method, the vector control method has superior
advantages:

e The active power and the reactive power can be controlled independently by
using the inner current loop with feed-forward compensations to remove the
coupling terms.

e This method inherently has the ability to protect the converter against over-
current in case of disturbances due to the inner current control loop.

e It provides faster response and better performance than the direct control
method in case of variations in references or some other disturbances.

The vector control structure is basically composed by several standard PI con-
trollers, whose implementation and design are simple. Nevertheless, the use of such
pure PI controllers results in some limitations [Dannehl 2009, Durrant 2003]. On
the one hand, the performance of the vector control scheme is very sensible to the
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system uncertainties. On the other hand, in order to apply Park’s transformation,
a PLL is needed to provide a synchronous reference frame. The dynamics of the
PLL and AC filters increase the difficulty in the VSC control when the SCR of the
connected AC system decreases.

3.6 Chapter conclusions

In this chapter, we choose the averaged modeling approach to develop the dynamical
model for a multi-terminal VSC HVDC system. The modeling work mainly focuses
on three parts, i.e. the VSC connected strong AC networks, the VSC connected
wind farms and the DC network. According to the features of the VSC connected
AC systems, we have different considerations:

e For the VSC connected strong AC networks, the SRF-PLL is usually required
to detect the phase and frequency of the electrical circuit such that the VSC
can be synchronized to its connected strong AC system whereas there is no
need for the VSC connected weak AC network.

e For a strong AC system, we consider that its AC voltage at the PCC can
be kept by TSO at fixed frequency and amplitude. This is contrary to the
case of a weak AC system, which with high impedance is very sensible to any
disturbances (for example, the change of power flow), it is necessary in that
case to consider the dynamics of the weak AC system’s AC voltage at the
PCC.

For the sake of convenience, Park’s transformation is applied to transform the sys-
tem from the abc frame into the dq reference frame, which greatly simplifies the
expression of the dynamic equations. For the DC network, we map it to a weakly
connected directed graph and then use a incidence matrix to describe its topology.
It is much easier to analyze the DC grid in matrix form since there exist quite a lot
of results on matrix and graph studies.

Finally, a detailed averaged state-space model for the multi-terminal VSC HVDC
system described by (3.20), (3.28), (3.29) and (3.36) is established. We summarize
this model as follows

e The dimension of the full scale system is 3N +5M + P + L.

e The state variables are ig, 44, lwj,dgy Vsw;,dgs Yeg;s Yew;s Uety, and i, for i € N,
jEM,hePand k€ L3

e The control inputs are the modulation indices, i.e. my, 44 and My dg fori e N
and j € M.

e The external parameters I, 44, for j € M, are considered constant.

3Unless otherwise stated, the subscripts i, j, ¢t and k mean Vi € N' = {1,--- N}, Vj € M =
{1, ,M},YVheP={1,--- ,P}andVke L ={1,---,L}.
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e The values of all physical parameters, i.e. the resistances, the inductances and
the the capacitors, are positive.

Moreover, in this chapter, we have also presented two most investigated con-
ventional control strategies, direct and vector control strategies, and introduced
their control principles. In addition, we have also discussed their advantages and
disadvantages.
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Although the vector control method occupies a predominant position in the
field of control design for VSC HVDC systems, the limitations of this approach also
draw our attention [Dannehl 2009]. In particular, in [Dannehl 2009], it indicates
that the traditional vector current control is very sensitive to system uncertainties.
In [Durrant 2003], a detailed analysis of a VSC connected to a weak AC system
is carried out. It is shown that the dynamics of PLL and AC filter increase the
difficulty in the VSC control when the SCR of the connected AC system decreases.
In order to improve the performance of VSC HVDC systems, developing new control
structures has been a very popular research topic.

In this chapter, we propose new control structures by means of different nonlinear
control design tools for VSC HVDC systems.
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4.1 Feedback linearization control

Feedback linearization is well-known in the field of nonlinear control design. The
principle of this technique is to transform the nonlinear system fully or partly to a
linear one and thereafter, linear control, robust control or some other control tech-
niques can be applied. As presented in [Lee 2000, Kim 2010], feedback linearization
is applied to three-phase converters. However, only a single three-phase converter
station is considered in their study case. Reference [Moharana 2010] proposes a
nonlinear controller based on input-output feedback linearizaiton and sliding mode
control. However, in [Moharana 2010], the stability of the zero dynamics of the
system is not analyzed, which determines whether the feedback linearization is ap-
plicable for the control design.

In this section, according to the control objectives of HVDC systems, we develop
different nonlinear controllers by making full use of feedback linearization where the
corresponding zero dynamics are also analyzed.

Before designing the exact control structures to VSC HVDC systems, we give
a brief introduction to feedback linearizaiton for multi-input and multi-output
(MIMO) nonlinear systems [Khalil 1996, Isidori 1995, Slotine 1991, Hedrick 2005].

4.1.1 Theoretical results

Consider a class of MIMO systems

)+ S g "

T
y= [y1 o y) = @) e (@)
where the control input vector u = [ul e um] € R™ has the same dimension as
the output vector y. The functions f, g; and hj, © = 1, ---, m, are sufficiently

smooth in an open set D C R™. The mappings f: D — R” and ¢; : D — R are the
vector fields on ID. The derivative of the i*" output y; is given by

Ji = Lyhi(z) + YI21 Ly hi(x)u; (4.2)
where oh
Lhi(z)2 222 F ()
d . g?,g (4.3)
ng hl(‘r): o 9j (SIZ)

are the Lie derivatives of h;(x) with respect to f and g;. If all Ly hi(z) = 0, we
continue to differentiate y; until some u; explicitly appears in the %@h derivative of
y; as follows

) = LY hi(e) + Y77 Ly, (L hayuy (4.4)

(LY hy)
i—1 f v

where ng (L} h’L) = T
is called the relative degree (see Definition 13.2 in [Khalil 1996]) of the i*" output

gj # 0 for some j € {1, ,---, m}. In this case, ;
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yi = hi(x). After performing the above procedure for each output, we obtain m
equations in a similar form as (4.4), which can be expressed in matrix form

Yy =17+ Eu (4.5)

where the decoupling matrix £ € R™*™ and the vectors 7, [7 and w are given by

Ly (L3 ') - Ly (L ')
Loy (L7 h) -+ Ly (L) hn)
T
- 4.6
Y= Mm UG >] (4.6)
T
= [L’}lhl L}Mhm}
T
u=lur e )

If the decoupling matrix £ is non-singular in D, then the control vector u can be
designed as

u=E"tv-17) (4.7)
where v = [v; - vm]T is the additional input vector. Substituting (4.7) into
(4.5) yields

y?l) U1
— ... (4.8)
) Um

which results in a decoupled set of equations. The additional input v can be designed
using any linear method or other techniques. For example, if the control objective

is to make y follow the reference y; = [ydl e ydm]T, then v can be designed as
—1 -1
U1 —c1,0(Y1 — Yar) — - — Clm—l(yfy1 ) yfﬂl ))
- . (4.9)
m_1 m—
Um _Cm,O(ym - ydm) — = Cm,ﬂ/m—l(ygly ) — y((i;yn 1))
where the coefficients c(.) are chosen such that for all j € {1, --- ,m}
[0 1 0o - 0 ]
0 0 1 e 0
Cj=1| - e RV X% (4.10)
0 0 0 e 1
__Cj70 _Cj71 _Cj72 e _Cj»’ijl_
are Hurwitz. In addition, with the integrated tracking error e = [el em]T =

Y — Y4, v 18 then designed as

-1 -1
U1 —C1,o(y1 - yd1) — 61,m71(y§'“ )~ yf(llfl )) —knen

m—1 m—1
Um, *Cm,O(ym - ydm) — = Cm,ymfl(yr(;ly ) yg:n )) - klmelm

(4.11)
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where ej; satisfies

é]j = ej = yj — ydj (4.12)
Again, the control gains must be chosen such that for all j € {1, --- ,m}
[0 1 0 - 0 ]
0 0 | 0
C; = ... c ROG+Dx(v+1) (4.13)
0 0 o - 1
| —k1j —Cjo —Cia ot —Cja-1]

are Hurwitz. The term (—Fkrjer;) is used to eliminate the tracking error so as to
improve the robustness of the system.
If the relative degree of the whole system (4.1)

Y =220 (4.14)

is smaller than n, there exist internal dynamics of order n—~ which are unobservable.
We perform the change of variables

$1(x)
n e
z=T(z) 2|l- - —-| & bn—r(T) (4.15)
¢ _ _ _
I 3 |
and £ is taken as
& Yj
E2 |, 652 (4.16)
Em y§7j—1)
where ¢, k =1, ---, n — ~y, are chosen to ensure that the transformation T is a

diffeomorphism on D. In the new variable (n, &), the system (4.1) becomes

?7: \111(777 5) + ‘If2(7l7 f)u (4.17)
§j= Aj&j + Bjv;
where
[0 1 0] [0 ]
0 1 --- 0 0
Aj= |- oo oo oo | eRY%, Bj= || €RY (4.18)
0 0 o --- 1
(0 0 0 - 0] 1]

When the output y is identically equal to the reference yg, the system (4.17) is
degenerated into
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Figure 4.1: A resistive load Ry, is connected to the i SAC terminal.

According to (4.7), @ and & are given by

5:1 Ydj
u=—-E", ¢4 52 , &= 0 (4.20)
Em 0

Actually, the autonomous system (4.19) is called the zero dynamics. Since £ can be
stabilized at its equilibrium € by designing a suitable expression for the additional
input v, the stability of the system (4.17) totally depends on the stability of the zero
dynamics (4.19). The system (4.1) is said to be minimum phase if the equilibrium
point of the zero dynamics is asymptotically stable. Moreover, the input-output
linearization is applicable to the system (4.1) when it is minimum phase.

4.1.2 Application to a VSC HVDC link connected to a resistive
load

4.1.2.1 Control design

A simple VSC HVDC link is considered as shown in Fig. 4.1 where a resistive load
Ry is connected to the i SAC terminal. As presented in Section 3.4.1, the system
can be modeled by

dig,d Ry, . . Usgid _ Ueg;
dt == Lgi Lgid + Wyilgiq + Lgi - 2ng mgid
dig,q Ry, . - Usgiq _ Ueg;
dr Ly, Ug — Wy;tgid T Ly, - 2L, Mygiq (4.21)
ducg, 1
Cosi 7@09* —ir)
a.  Cy ™
According to (3.23), icg, is deduced as
- 3 Usgidlgid + Usgiglgiq
iegi = 5 ™ (4.22)
and ¢y, is given by
ip = (4.23)

Ry,
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Since there are two control inputs my, 44, it is possible to control two outputs. To
ensure the normal operation of the system, the DC voltage transmission level must
be always kept within its acceptable range. As a results, u.g, is chosen as one output,
which is required to track the reference ug,, . For the purpose of good power quality,
the reactive power @)y, should be well-behaved. From (3.22), it is clear that iy, and
ig,q Tegulate the active and reactive power, respectively. Consequently, ig4,4 is chosen
as the other output, which is expected to follow the reference i, , given by

2 0,

3 Usg;d

o J—
tgiq =

(4.24)
where @)y, is the desired reactive power. For example, in order to get the unitary
power factor, Q. is usually set to zero.
By defining [:Jcl 9 :1:3] = [igid igiq ucgi], the system (4.21) can be rewritten
as
& = fo(x) + gamg,d + 9qgMyg;q (4.25)

where f(z), g4 and g4 are given by

Rgz’ . . 'Usgz-d
I, tgid T Woitgig T L
Ry, . . Usg;q
Jo = T Ty, g T Weitgid + Ly, (4.26)
L(é”sgidigid*‘vsgiqim — ooy
Cy; 22 Uegy Ry
and Y
cg;
2L, 9
; coi
9d = 0 v 9q = | T 2L, (4.27)
0 0
The two outputs in this case are defined as
N T . T
y= [y v2] =ligg Ueg] (4.28)

which are needed to be regulated at y° £ [yf yS]T = [igiq cgi

It is evident that 7, and 9, the relative degrees of u.4, and ig4,4, are equal to 2
and 1, respectively. The relative degree of the whole system is 3 which is equal to the
dimension of the system (4.21). This means that the system is feedback linearizable
and there is no unobservable dynamics. The decoupling matrix F is given by

]T

_ | Lgaligig) Ly, (ig.q)
b= Ly Ly, (teg,) Ly, Ly, (teg;) (4.29)
where
Lgd (igiQ): 0
qu (igiq): %
Lg, Ly, (teg))= — i 72 (4.30)
qu fo (ucgi): _ C’lgl. %vzggiq
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Since we only consider the case when w4, is positive, ' is invertible in the domain
of interest. Therefore, a nonlinear feedback control can be developed as

[mgid] _p [vl - sz(igiq)] (4.31)

Mg;q v2 — L?fx (teg,)
where R
. i . Vg id
Ly, (ig,q)= _fizgid + Wy, lgiq + Ls;.
1 3vgg, R, . . Vsg,
L2z (Ueg)= =~ 7i1d(_ = Lg;d T Wy;lgiq T ngd)
Cgi 2 Ucg; Lgi ng’
3 Usgiq ](_Z')'gz' ; ; Usgiq (4'32)
2 (_Lg lgiq — Wyilgd T L )}
cgi | i . i
_[§ Usgidlgid + Vsgiqlgiq 1 ]C%ucgi }
2 uggi Rload dt
The additional control inputs v; and vy are yet to be designed.
Consider the transformation
<1 igiq
2E2 || =T, = Ucg, (4.33)
Z3 uc.gi

which is a diffeomorphism on the domains of interest and then, the original system
(4.21) can be converted into the following expression

21: U1
Zo= 23 (4.34)
Z3= U2
We define the tracking errors as
— N
GI= 21 Tgig (4.35)
e9= 29 — uggi

To achieve zero steady-state errors, the integrated tracking errors

ern= ey

. 4.36
€r2= €2 ( )
are considered, which result in an augmented system described by

én=ex

€1= 11

é[2: €2 (437)

é2: z3

Z3= V2
Applying linear control technique, v1 and ve are designed as

v1= —knen — cip€l (4.38)

vo= —kraera — c20€2 — 2,143
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Figure 4.2: Model of VSC HVDC link connected to a resistive load using SimPow-
erSystems toolbox.

The control gains are chosen such that matrices C’; and Cé given by

0 . 0 1 0
C) = [_k » ] Cyo=1 0 0 1 (4.39)
n b —kro —cop —cC21

are Hurwitz. Now the controller composed by (4.31) and (4.38) has been developed.

4.1.2.2 Simulation studies

To evaluate the performance of the nonlinear controller, numerical simulations are
carried out by using SimPowerSystems toolbox of MATLAB/Simulink as depicted
in Fig. 4.2. Detailed parameters of the VSC link are provided in Table 4.1. The
DC voltage reference ugy, is set to 150 V and to get the unitary power factor, the
reference of g—axis ig,, is equal to 0 A. At the start of the simulation, only Switch
1 is closed and the other two switches are open and hence we have R; = Ry1. The
VSC HVDC link initially operates in a steady-state condition given by Table 4.2.
Figures 4.3-4.5 present the tracking performance of the system that responds to
the step change imposed on the DC voltage reference ug, while ig. . is always set
to zero. At ¢ = 0.8, ugy, is changed from 150 V to 151.5 V and then, at ¢ = 1.8
s, it is set back to 150 V. As depicted in Fig. 4.3, both PI and feedback nonlinear
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Table 4.1: Parameters of the VSC HVDC link.
Parameters Value
Power System Rating 4 KVA
Source Voltage Amplitude (Vg phase-to-phase) | 127 V
Source Voltage Frequency 50 Hz
Switching Frequency for PWM 1500 Hz
Transformer Primary Voltage 127V
Transformer Secondary Voltage o0 V
Inductance Ly, 2.1 mH
Resistance Ry, 0.142 Q
Rp, 4 150 ©2

Table 4.2: Initial values of the system variables.

Variables | Values
Ry, 150 Q
Ueg, 150 V
igiq 0A
i1 1A
ig;d 2.46 A

controllers have similar performance, 1.e. they make ucg, track its reference ugy, with
fast response and good transient performance. In addition, i4,, as displayed in Fig.
4.4 is always regulated at zero irrespective of the change in ug, . Asillustrated in Fig.
4.5, every time u.g, achieves a new steady state, i1 also arrives at a corresponding
steady state since in steady-state condition, i71 and ucg, satisfy u.y, = Rpir;.
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Figure 4.3: The response of DC voltage for the change of ug,,. (a) PI controller. (b)
Feedback nonlinear controller.
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Figure 4.4: The response of igq for the change of uf,. (a) PI controller. (b)
Feedback nonlinear controller.
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Table 4.3: Sequence of events applied to the VSC HVDC link.
t=1s | t=1.5bs | t=25s
Switch 2 | closed
Switch 3 closed

7 6.53 A

1.015

—(a)
—(b)
<
< 1.005 ]

0'998.5 1 15 2 2.5

Time (s)

Figure 4.5: The response of iy, for the change of u¢ .. (a) PI controller. (b) Feedback
nonlinear controller.

To test the robustness of both controllers in case of the variations in R, and the
step change in ig ., a sequence of events is applied to the system, as listed in Table
4.3. The simulation results are illustrated in Figs. 4.6-4.11 where the performances
of the conventional PI and feedback nonlinear controller are compared. Due to the
operations of Switch 2 and Switch 3, Ry, is changed from 150 Q to 75 Q at ¢t =1 s,
and then it is reduced to 50 Q at t = 1.5 s.

As shown in Fig. 4.6, the trajectories of u.g are always kept within the safe
operating domain [0.9ug,,, 1.1ug, ] under both controllers, but the response of ucg,
has better performance using feedback nonlinear controller. It can be seen that uc,
has a faster response and lower crest value under the feedback nonlinear controller
(see the red curve). Although both approaches are able to regulate i4,, at zero
before t = 2 s, for the PI controller, iy, is disturbed with remarkable transient
because of the unexpected change in Ry, (see the blue curves in Fig. 4.7 and Figs.
4.9-4.11). Att =2s, 17, is set to 6.53 A. As presented in Fig. 4.7, both trajectories
of i4,4 start to increase and then quickly converge to the new reference. During the
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g-axis current’s increasing period, we find that significant overshoots appear in the
trajectories of g, ir1, ir2 and ir3 under the PI controller (see the blue curve in
Fig. 4.6) whereas there is little or negligible influence on the responses of ucg,, ir1,
ir2 and ir3 under the feedback nonlinear controller. This phenomenon fully shows
that the PI controller can not keep the DC voltage unaffected in case of the change
of 14,4 while the feedback nonlinear controller provides a much better decoupling
characteristics of the DC voltage and g—axis current control. Moreover, Figs. 4.8-
4.11 illustrate that the feedback nonlinear controller gives a faster response (a faster
rising time) as well as a smaller undershoot to the DC current than the conventional
PI controller.

154
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150 pewtompirniy

DC voltage (V)
H
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©

146

1488 1 12 14 16 18 2 22 24
Time (s)

Figure 4.6: The response of DC voltage for the changes of Ry and ij . (a) PI
controller. (b) Feedback nonlinear controller.
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Figure 4.7: The response of iy, for the changes of Ry, and if, .. (a) PI controller.
(b) Feedback nonlinear controller.
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Figure 4.8: The response of 74,4 for the changes of Ry, and ij . (a) PI controller.
(b) Feedback nonlinear controller.
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Figure 4.9: The response of i, for the changes of Ry, and ig . (a) PI controller. (b)
Feedback nonlinear controller.
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Figure 4.10: The response of i for the changes of Ry, and ij .. (a) PI controller.
(b) Feedback nonlinear controller.
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Figure 4.11: The response of i3 for the changes of Ry and i ,. (a) PI controller.
(b) Feedback nonlinear controller.

4.1.3 Application to a VSC HVDC link consisting of a strong and
a weak AC system

4.1.3.1 Control design

Figure 4.12 depicts the equivalent system model of a VSC HVDC link connecting
two AC systems via a transmission branch.

: i ’
L, [ 1,
igi abc o R“h 1 Lcl S . v
Vsg,,abe Vegy,abe - J_ WA/ BT Ly, ,abc swl,abcf
g1 T 4 J‘ ﬁ‘Ie wy,abe
T Moo S e,y R 4 I C
Wi "W Fwy
Mgy 69'1. My, ij_

Figure 4.12: A VSC HVDC link consists of one strong and one weak AC system.

According to Section 3, the full state-space model of the system as depicted in
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Fig. 4.12 is expressed as

dig,q R Vsgrd W
g1 g1 . . Sg1 €91
= - tg1d + Wy tg1q + - Mg d
dt Lg1 g1 g1°919 Lgl 2Lg1 g1
di R v Ue,
914 91 ; . 5919 cg1
— = I — Welgd T — m
dt Ly, grd g7 Ly, 2Lg, gia
ducg, 1 (§ Usgidlgid + Usgiglgiq Yig)
at  C, 2 u ter
di g1 cg1
lcq .
dt = i3 (_Rcl leq + Ucw; — chl)
Cl . .
ducwl _ 1 (§ Vswidlwid T Vswyqlwig . ) 440
dt Oy, 2 ~la (4.40)
d w1 ucwl
Vswid .
= Ww Vswigq T (Iwyd = wid)
p dt C w1
Uswiq .
dt = —Wy, Vswid + C (leq - Zwlq)
di R Jfw1
lwid w1 - . Vswid Ucw
= - twid + wwllwlq + — M d
d.dt ]Iéwl Lwl 2Lwl
Lwyq wy . . Uswiq Ucw,
== lwiq — Wwylwid + - M, q
dt Ly, YU Ly, 2Ly,

For the SAC terminal, the converter is used to maintain ucg, at a set point ugy, . In

o
_v91

Vsg1d
Qg, can be kept at its set point ()7, . Hence, the SAC converter station operates in

DC voltage and reactive power control modes. For the WAC terminal, the converter
is dedicated to control the AC voltage vg,, 4 at the set points U(s)wl,dq so that the
WAC can operate at constant magnitude Vs, rms satisfying

addition, i4,4 should be regulated at —— in such a way that the reactive power

Vaurrms = 1/ (000,0)% + (Vun)? (4.41)

Meanwhile, the power P, generated by the wind farm can be totally transmitted
to the SAC via the DC grid |Lie 2008]. Therefore, the controlled output vector

. T . T
is defined as y = [yl Y2 Y3 y4} = [Zglq Ueg;  Vswid vswlq} and then, the
control structure is designed to make the output vector y track the prescribed point

T
o __ ;0 (o] o o
¥y = [291(1 Uecgy  Vswid vsw1q]

. A . . . . . T
By defining z = [zgld lgrg Ucgi te; Uews Vswid VUswig fwid zwlq] , the
system (4.40) can be formalized as

&= f(x) + g1mga + +92Mgiq + 93Muwd + GaMuw, (4.42)

with the trivial expressions for f and g1234. Calculating the derivatives of the
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output variables, we obtain

= Lf(iQW)
(2)+L91 (ig19)Mgid + Lgs (igiq)Mgig + Lgy (igiq)Muwid + Lgs (igig) Mg
Y2 = L}(ucm) + Ly, Ly (teg, )mg d + Lg, Lp(teg, ) g q

FLgy L g (tieg, )My d + Lg, Ly (tieg, ),

2)_ 12 Ly L Ly, L (443)
Y3 = f(”sw1d> + Lg, L (Vswia)Mgya + Lgo L (Vswid)Mgiq
(2)+L93 Lf (vswld)mwld + Lg4 Lf (vswld)mwlq
Ya = L?‘(/USUIIQ) + Lg, L (Vswiq)Mgrd + Lgo L (Vswiq)Mgiq
+L93Lf(vsw1q)mw1d + L94Lf(”sw1q)mw1q
where
) Ry, . v
Lf(’glq): _Lg1 lg1qg — Wgylgyd + zg1q
g1 g1
L (ig1q)= = 2291 s Lg, (ig1q) = Lgs(ig1q) = Lgy(igq) =0
g1
1 3vs,a, R d
L?(ucgl): Ci 9 ,:gl ( Lgl Yg1d + wgilg1q + 291 )
g1 cg1 g1 g1
3 Vsgiq ﬁsh . . Usgiq
+2 ucgl ( L91 Zglq 'w917’91d+ L )}
_(§ Usgidlgid T Vsgiglgiq ) duicg, dlq }
2 u? dt
g1
1 3vsg,4 1 3 vg
Ly L(teg )= ——— 2% Lo Li(teg,) = 2014
g1+ f\Ucgy Cg1 4 L91 g2 f\Ucgy Cgl 4 L91 (4.44)
Lgs Ly (ticg, )= Lg, Ly (tecg, ) =0
. I d 1 . Ry, . Vswid
L = wie - _ w1 1
(Usw1d) W Usung + wa1 wal (wwllwlq Lw1 fund Lw1 )
f(vsuud): LQQLf(US'LUld) = Lg4Lf(Usw1d) =0
L L =
. f(vsund) 2.Lwl Cfun
1.2 _ leq . 1 Vswiq . Ry, .

f(vswm) O, Wuilswd =~ ( ~ Wurtwd T fwiq)
fwi fwi w1

w1

Lg1Lf(Usw1d): Ly, Ly (Uswld) = ngLf(Uswld) =0

U
Ly, Ly (Vswid)= o7, agf
w1 w1

Therefore, the relative degrees of y1, 42, ys and y4 are 1, 2, 2, 2, respectively. The
system (4.40) has relative degree 7 in R?, which is smaller than 9, and hence, we
have internal dynamics of order 2. To characterize the zero dynamics of the system,
we restrict x to

* 9|, — ;0 — ,,0 — 1,0 — 2,0
ZF ={x € RY | igq =i, 4s Ucgy = UQps Vsund = Vo gs Vswiq = Vgt (4:45)

This process leads to

di 1 )
L= (=Reyicy + Uew, — uggl)
L o (4.46)
ducwl . 1 §Usw1dlw1d + Uswlqlwlq .

dt — Cy, (2 Uew, ~ fer)
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Linearizing (4.46) around the equilibrium denoted by [i, acwl}T yields the follow-
ing Jacobian matrix

R, 1
— Lcl Lcl
T=1 T 30 alin - gl (447
Cwl 2 Cle _%w1
where ﬁq acwl}T can be obtained by solving the following equations
0= —Reyic; + Uew, — agfh
0= §Ugw1d1w1d + vgwlq wig = (448)
2 Uew, “
The characteristic polynomial p(¢) of the matrix J is given by
p(t) = det(tI — J) =2 + aqt + ag (4.49)
where o o
o= RC1 3 Uswldlwld + Uswﬂllwlq
1= 5 —
L. 2 Cuy U, (4.50)
0= §Ugw1dlﬂild + v;)wlq]wlq ) Rc1 1 .
0 2 C’LUl azwl Lcl Cu)l LCl

Since g(“gwldfmd + Vo, qlwrq); the active power generated by the wind farm, is
non-negative, the coefficients ag and oy are positive. Therefore, the real part of all
eigenvalues of the matrix J is negative. The zero dynamics have an asymptotically
stable equilibrium point at ﬁcl ﬂcwl]T, which shows that the system described by
(4.40) is minimum phase.

Based on the above mentioned equations, the decoupling matrix Es is given by

Lgl (ig1q) Lg2 (igllI) Lgs (i91Q) L94 (iglq)
_ | LaLy (Ucm) Ly, Ly (ucm) Ly Ly (“091 ) Ly, Ly (u091 )
By = (4.51)
Loy L§(Vswya) Loy Lf(Vswia) LgsLf(Vswya) LgaLf(Vswya)
Lg1Lf(Usw1q) ngLf(Uswlq) Lgst(Usunq) Lg4Lf(Usw1q)

which is non-singular for positive ey, and ucg,. According to (4.31), the control
variables are given by

Mg d vy — Lf(igiQ)
2
Mgiqg| _ -1 | Y2~ Lf(ucgi) (4.52)
m 2 vg — L%(vswya) '
wid 3 f\Vswid
Mawiq V4 — L?(Usww)
Applying the (4.11) to the additional inputs v12 34 leads to
vi= —knen — c10(y1 — i q)
vo= —kpoers — c2,0\Y2 — uggl) - 02,1(92 - a(c)gl) (4 53)

(
(
v3= —krzers — c30(ys — v9,, 4) — €31(Y3 — V9, 4)
V4= —kraers — c40(Ys — Vo, 4) — C4,1(9a — Vg 4)
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with the integrated tracking errors

En=y1 —ig4
€12= Y2 — Uy,

. 4.54
€13= Y3 — Vg q (4.54)
6[4: Ya — Ugwlq
The control gains must be chosen such that the matrices Cj/», Jj = 1,2,3,4, are
Hurwitz where
0 1 0 ]
/ 0 1 /
~kn —eno] —krg  —ca0 —can
- - ' = 4.55
0 1 0 0 1 0 ( )
Cy=1 0 0 1|, C 0 0 1
—kiz —c30 —c3.1] |—kra —ca0 —ca1]

4.1.3.2 Simulation studies

Simulation studies of the VSC HVDC link depicted in Fig. 4.12 are carried out
where the values of the system parameters are provided in Table 4.4. The operation
of this two-terminal HVDC system is arranged as follows:

e The DC voltage of the SAC terminal is required to be maintained at .y =
ugg, = 150 V and the reactive power @)y, is regulated at Q4 = Qg =0 Var.

€g1

e The frequency of the WAC’s AC voltage at the PCC must be kept at 50 Hz. In
addition, Vi, rms is initially set to 40.82 V. At t =1 s and t = 1.5 s, Vi, rms
is changed to 60.23 V and 63.59 V respectively. According to (4.41), this can
be achieved by varying the values of v? as listed in Table 4.5.

swi.dq
In order to evaluate the performance of the nonlinear controller (4.52), two
control strategies are tested by comparison as presented in Table 4.6. The HVDC

= u‘c’g1 =150 V, ig4 =
= 0 V. Simulation results

system starts from a steady-state condition where u,g,

igiq = 0 A, Vswya = 15,4 = 40.82 V and vsw,q = V5,4

are plotted in Figs. 4.13-4.20.
As shown in Figs. 4.13 and 4.14, every time v

gwl,dq are subjected to a step

change, vgy, 44 can always converge to their new references under both control

strategies. But for the PI controller, vg,,q is readily influenced by the change of

o o
sSw1 swiq

reveals that the feedback nonlinear controller gives better decoupling characteristics
of d — ¢ voltage control than the PI controller.

v, g and Vg, ¢ is also disturbed remarkably when v is set to another value. t
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Table 4.4: Parameters of the VSC HVDC 1

ink with two terminals.

Parameters SAC terminal | WAC terminal
Power System Rating 4 KVA 4 KVA
Source Voltage Amplitude (Vipg phase-to-phase) 127V
Source Voltage Frequency 50 Hz 50 Hz
Switching Frequency for PWM 1500 Hz 1500 Hz
Transformer Primary Voltage 127V
Transformer Secondary Voltage o0 V
Inductance Ly, 2.1 mH 3.3 mH
Resistance Ry, 0.142 Q 0.165
Table 4.5: Values of Vg, dq-
vgwld (V) Ugwlq (V)
t=0s 40.82 0
t=1s 61.23 0
t=1.5s 61.23 20.41

Table 4.6: Two difference control strategies by comparison.

SAC terminal

WAC terminal

(a) | Feedback linearization control
(Mg, dq in (4.52))

PI control

(Mg, dq in (4.52))

(b) | Feedback linearization control | Feedback linearization control
(Mg g i (4:52))
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Figure 4.13: The response of vgy,q for the changes of vg, ; and vy, .. (a) Pl
controller. (b) Feedback nonlinear controller.
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Figure 4.14: The response of vgy, 4 for the changes of vg, , and vg, .. (a) PI

controller. (b) Feedback nonlinear controller.
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Figures 4.15-4.19 illustrate the responses of the AC voltage in abc frame. Figure
4.19 shows that the AC voltage at the PCC are always kept at f,, = 50 Hz. By
comparing Fig. 4.16 and Fig. 4.18, the feedback nonlinear controller gives a better
transient performance for vg,, q5c With a smaller overshoot than the PI controller
when v?, . is set to 4.08 V at t = 1.5 s.

swi1q

|

!

il

»»»»»»»»»»»»»»»»

‘ ’ |
L
-60- | W

60i ------------------------ W
w

Time (s)

o

Figure 4.15: The response of vy, abe for the changes of v;’wld and Ugung

using PI
controller.
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Figure 4.16: Zoom of the response Of sy, qbe for the changes of vy, , and vy
using PI controller.

swiq
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Figure 4.17: The response of vy, abe for the changes of vsw g and vy,
back linearization controller.

owyq using feed-
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75

70
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Figure 4.18: Zoom of the response of vgy, abe for the changes of vg, ; and vg, .
using feedback linearization controller.
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Figure 4.19: f,,, = 50 Hz.
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Since the SAC terminal uses the same control law in both control strategies, the
performances of u.,, are almost identical as illustrated in Figs. 4.20.

160
—(a)
—(b)
155 : 1
S
150
30
145¢ q
148.8 1 1.2 14 1.6 1.8
Time (s)
Figure 4.20: The response of uc,, for the changes of vg, ; and vg, .. (a) PI con-

troller. (b) Feedback nonlinear controller.

4.1.4 Application to an MTDC system using master-slave control
configuration

The use of feedback linearization for the MTDC system modeled by (3.20), (3.28),
(3.29) and (3.36) in Section 3 is under consideration in this sectiomn.

4.1.4.1 Master-slave control configuration

Before applying the theoretical results in Section 4.1.1, we first discuss the control
configuration for the normal operations of the MTDC system. It must be always
kept in mind that the DC voltage is accepted only in a narrow region, i.e. u..y € Dy,
as stated in Section 3.4.4. In order to keep the DC voltage within the acceptable
band, at least one of the converter stations in the MTDC system must be used to
regulate the DC voltage. For example, the SAC connected VSC operates in DC
voltage control mode as presented in Section 4.1.3. In this study case, a single
converter terminal is assigned to control the DC voltage at a constant level and the
rest of the converter stations work in other control modes. This control configuration
is called master-slave control. In addition, the terminal in charge of the regulation of
DC voltage, is called the master terminal. It is worthwhile to note that the master
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terminal takes responsibility for balancing the power flow of the DC network in case
of disturbances. Consequently, this terminal usually needs a large power capacity
to counteract all possible power imbalance.

The arrangement of VSC operation for the MTDC system is set as follows:

e The 15t SAC converter station chosen as the master terminal is used to main-
tain the DC voltage at the constant level ug, while the remaining SAC con-
verter stations operate in active control mode to control P, at Pg"pl. Addi-

tionally, all reactive power ()4, should be kept at their respective references

o
gi’

e Each WAC converter station must ensure that the magnitude and the fre-
quency of the AC voltage at the PCC, Vi rms and fwj, are kept constant.

This can be fulfilled by regulating vs,; 4, at their references Ugw,- dg-

As mentioned in Section 4.1.3, Qg can be kept at Qp by regulating i, at

2 Q. . o _ 210y
—5— —- Likewise, we make ig,4 track the reference i ; = -
3 Vsw;d ! 3 Vsw;d

purpose of controlling Py, at Py . According to the above arrangement, it is natural
to choose the output vector as

o) —
Ygiqg =

for the

AT » : T 2N+2M
Y= igg Ueg ig,d lGgpq Usw;d vsqu] € RN+ (4.56)
Obviously, the reference vector is set to

T
oAb |;0 o ;0 ;0 o o IN+2M
Y = |lg1q Ucq ngd Lynq Uswjd Usqu eR (457)

Through simple calculations, it is not difficult to get that the relative degrees of
Uegys Lgiqs Lgpds Lgpqy Vsw;d and Vsw,q are 2, 1,1, 1, 2, 2, respectively, and hence, the
order of the internal dynamics is N -1+ M + P+ L.

Before designing the exact control algorithm, we need the following feasibility
assumption.

Assumption 4.1.1. Consider the MTDC system described by (3.20), (3.28), (3.29)

and (3.36). For the prescribed references ugg, s Qg P;p, Qgp, v;’wj dg’ there exist

!Unless otherwise stated, the subscript p mean Vp € N_; = {2,--- ,N}.
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constants for the state variables denoted by (-) such that®

R, _ Vsa.d Upg,
_ gi ~ - 891 Cgi —
0= — g, + Wy, lg;q + - Mg;d
Lgi ng‘ 2ng‘
R v U
_ 9i ~ = 59:9 Cc9i ~
0= — ZZ!Jiq — Wy;lgid T == - My;q
]I%’gi Lg_@' 2Ly,
0= ——2 gw d T Ww;lw;q + Cewjd e wjd
ij 3 7 oW L., 2Lw]_ 3
0= _Rw]; o it Usw,q _ Ucw; _ (458)
Lw]- w;iq wj “W; Ly, 9 ij w;iq
. 1 _
0= wwj Usqu + Cf (Iw]d Zu)]d)
wi
0= Ww; Vsw;d + T(ijq ijq)
Wy
0= Az + 9
_ 2Q°.  _ 2P°  _ 2Q)°
where Ucg, = ugy , igq = —&, ig,d = —9 Ggpq = — Y and Vsw;,dg =
o 3Vsg1d 3Vsgid 3Vsgid
v .
swj,dq

By applying the theoretical results in Section 4.1.1, the following nonlinear feed-
back control algorithm

i 0 _@ !
Mgd _ 3 32L91 |:U91q - Lf(igllI)]
[Mgq] | Dsmd _ OVsgig Veg, — L} (ttegy)
L 4091 Lgl 405]1 Lgl
L [l o, 1
Mga|_ | 2Lg, u Vgpd — Lf(?gﬂd) (4.59)
~ Ly(igga)
LMgpq] 0 3L Vgpq Fgpq
- Ucwj 9 0 —1
mwjd . 2Lw]~ wa]- Uw‘jd - L?’ (Uswjd)
= U
Maw;q ] 0 ﬁ Vwjq — L?(Usqu)
L w; ™~ fw;

*Unless otherwise stated, the notation (-) represents the steady-state value (or equilibrium
point) of the variable (or vector) (-).
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with

R Vg
Li(igq)= — i —lgig — Wgilgid + 2
1 Lg 1 1 1 L

g1

3 Vsag1d R Vsgrd
g1 g1 - $g1

5 (— lgid + Wgylg g + )

L?” (uCgl ): Ci

3 a2 Uclgzl Lg, Lg,
v ] ) v
9 ;glq (- Lg1 tgrg — Worlgrd + zglq)}
€g1 g1 g1
(3 vsg1dlg1d + vsthlgﬂl ) duCgl + H( ) dic
2R uy, dt dt (4.60)
. 9p - . Vsgpd .
Ly(igya)= —szgpd + Wy, lgpq T I .
Rgp v 9
L.(i _ Y. _ . 59pq
#(ig,q) L, Lgpq ‘."gplgpd + L,
Iu)'d 1 Rw- Vsw,;d
L2 (Vo d)= Wao; Vs g + =—— — W g — ——lw.d k
f( swj ) ‘wj swid waj waj( Wit ij Wi ij )
Ly, q . 1 Vsw,q . Ry,
L?c (Usqu) Cf; — ww] Usw]d - wa. ( wa. — ww]- ijd - ij-zqu)
J J J

J

transforms the original system described by (3.20), (3.28), (3.29) and (3.36) into the
normal form (4.17). Moreover, these additional inputs v.) are designed as

Vg14= —Cg14,0 (Zglq glq) — k1g14€1g1q
Vegi = —Cegy,0(Ucgy — ggl) Cegy 1 (Tegy — uggl) — kicgi€rcq
Vg,d= —Cg,d,0(ig,d — iy ) krg,d€ig,d (4.61)
Ug,q= —Cg,q,0(igoq — gpq) kIg,q€1g,q '
vw] ijd 0(’Usu)] gw]d) ijd l(vswjd - i)gw].d) - k]wjdeled
Vuwjq= —Cu;q,0(Vsw;q — g ) — Cw;g 1 (Dswsq — ®§qu) — krw;q€Iw;q
with the integrated tracking errors
€1g1q= tgiq — i51q7 €Icgy = Ucgy — Uggl
éfgpd: igﬂd B i;pd’ élgpq = igpq - igpq (462)

_ o _ 0
CIw;d= Vsw;d — Uswjd7 €lwjd = Vswjq — VUsw;q

where the control gains c.) and k) must be chosen to satisfy (4.13).

When the output vector y is identically equal to the reference y°, the zero dy-
namics of the system is deduced as

Zr = Apzp + 0 + ﬂucgl = fzero(zr) (463)
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where we introduce the new variables

s 1T N+M+P+L-1
Zr= [ucg,r Ucw  Uct ZC] e RVFMALH
A T
uCg,T: [UCQQ o uCgN] .
v 7 o N
9,2 Legs tegy  ewn Lewpy 0psr)
L. 9N R 278 +
092 CgN Cwl CUJ]\/[ (4 64)
A o T :
Vusgg, = [0N+M+ffl H(l,l_)oucgl o Hi e
i/ A § (Usgpdzgpd + stpqq’gpq
C9p 2 chp
o o
. A 3 (Usw]-djwjd + vsquijq)
o ® 5

Uew;
cw;

The matrix A, is the submatrix formed by deleting the 1st row and 1st column of
the matrix A, which is still of the form

-1
A = 0(N+M+1jlelT(I§V;M+P71) er_If[]% (4.65)

where
Cr= diag(Cg2 T CQN Cwl T CwM Cpl T CPP)

and the matrix H, is the submatrix of H by removing the first row of H.
To check the stability of the equilibrium point of the zero dynamics, we linearize
(4.63) around its equilibrium point z, and then get the Jacobian matrix

— 8fzero -D Cler

Zr=2Zr — 4.66
) (4.60)

/ —L'HT —L7R

where D = diag(dy), k=1,--- ,N+ M + P — 1, is a diagonal matrix given by

W
dp-1) =z > PEN
C9p
d o, e M
G+N-1) =~ -5 JE
J ij %Uj
L dhN+m—1) =0. heP

3
PS)]- - i(vgwjdled + UgquleQ)
Lemma 4.1.2. Consider the MTDC system described by (3.20), (3.28), (3.29) and
(3.36). If the prescribed references ug,, , Q,, Py, Qg ”?wjd and vgy, 4 and the
system parameters are set such that the Jacobian matrix J is Hurwitz, the equilibrium
point of the zero dynamics (4.63) is asymptotically stable and hence the MTDC

system is minimum phase.
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Lemma 4.1.3. Consider the MTDC system described by (3.20), (3.28), (3.29) and
(3.36). If Py, p=2-- ,Nand P}, j=1,---,M are non-negative, the MTDC
system is minimum phase.

In order to prove Lemma 4.1.3, we need some properties of complex matrix as
referred in [Horn 1985]. We recall the following basic facts:

Definition 4.1.4. A matriz ¥ € C™" is said to be semi-positive definite if
Re(z V) is non-negative for every non-zero column vector x € C"*1. Moreover,
U € C™" s said to be positive definite if Re(x W) is positive for every non-zero
column vector x € C"™1. The set of the positive definite matriz ¥ is denoted as Pg.

Lemma 4.1.5. For any complexr matriz W € C" ™, 4t can be expressed as ¥ =
1 1
H(V) + S(V) where H(T) £ 5(\11 + U s a hermitian matriz and S(¥) £ =

(-
U is an anti-hermitian matriz.

Lemma 4.1.6. Matriz @ € C™*" is positive definite if and only if its hermitian
part H(V) is positive definite.

Lemma 4.1.7. If matriz T is invertible and U is positive definite, then THUT is
also positive definite.

Lemma 4.1.8. If Uy is positive definite and Vo is semi-positive definite, we have
Uy + Uy € P

Lemma 4.1.9. If U € Pg, then W is invertible and U1 € Pg.
Based on the above statements, we can now demonstrate Lemma 4.1.3 as follows.

Proof. Let us assume that there exists a particular eigenvalue of J denoted by
A= a+ jB € C, whose real part is non-negative, i.e. a > 0. Then, \ satisfies

det(\ — J) =0
Alternatively, it can be expressed as

M+D —C 'H,

detl| —igr A4 1R

)=0 (4.67)

We define ®; £ A\ + L™'R = A; + jAy where Ay 2 are expressed by

R R
Ay = diag(a + Lcl,... ,Oz—i-L—CL)ERLXL

c1 cr,

Ay = diag(B, -, B) € RF*E

Since the Hermitian part of ®; is equal to H(®1) = Aj, which is positive definite,
the complex matrix ®; is also positive definite (Lemma 4.1.6). Consequently, ®;
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must be invertible (Lemma 4.1.9) and det(®;) # 0. Then, Eq. (4.67) is equal to

M+D —C7'H, )

LIHY X+ L7'R

=det(\ + D + C, ' H, &7 'L H )det ()

=det(A\C, + C,.D + H. (AL + R)"*HI)det(®)det(C; 1)

det(

Again, we define ®3 = \C, +C,.D + H,(AL+R)"'HY \C,+ C,.D = A3+ jA, and
(AL + R)™! = A5 + jAg with the notations

A = aC, — C,D £ diag(o1, -+ ,oON$M4P-1)
(0]

o =Cy (o + "o, ) €N
(p—1) 9p a2 7’ P -1
cgp
o}

P'LU' .
ojyN-1) =Cu;(a+ 5—5-), jEM

Cl, U3,
4.68
J(h—i—N—i—M—l) :CphOé. h S 7) ( )
A4 - BC'I’ I R
« +
As = di Gk Ck RL*L
s = el 5 Rl ¥ (L) ©
Ae = di — Ck RLXL
o= L R ? + (Lo )P ©
Now, @5 can be rewritten as
Dy= B3+ j(Ay + H A¢HT
2 3+.7( 4+ 6 T‘) (469)

3= A3 + HyH|

where H are given by Hy = HTAé. Since Aé is a full rank matrix, i.e. rank(Aé) =
L, then rank(Hfo) =rank(Hy) = rank(H,) = N+ M + P —1 (see Lemma 3.4.2).
As aresult, H fH}F is invertible and positive. Because P;p and Pﬁjj are non-negative,
obviously, As is semi-positive definite and furthermore, by applying Lemma 4.1.8,
®3 is positive definite.

As presented in (4.69), we know that H(®2) = ®3 and then, according to Lemma
4.1.6 and Lemma 4.1.9, @, is positive definite and invertible. Therefore, the following
result is obtained:

det(A — J) = det(®y) det(®1) det(C 1) # 0

for a > 0. This leads to a contradiction to (4.67). Thus, all eigenvalues of the
Jacobian matrix ® must have negative real parts, i.e. a < 0. Hence, J is a Hurwitz
matrix. As a result, the origin of the zero dynamics (4.63) is locally asymptotically
stable. Finally, the MTDC system is minimum phase. The proof is completed. [
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Table 4.7: Control configuration for the four-terminal VSC HVDC system.

SAC 1 (master terminal)

SAC 2

Constant DC voltage control
Reactive power control

Active power control
Reactive power control

WAC 1

WAC 2

AC voltage control
(constant frequency and magnitude)

AC voltage control
(constant frequency and magnitude)

4.1.4.2 Simulation studies

To test the proposed nonlinear controller, an MTDC system with two SAC and
two WAC connected VSC terminals is simulated in Fig. 4.21 where the structure
of the DC grid is illustrated by Fig. 4.22. Based on the arrangement of the VSC
operation as stated at the beginning of this section, the control configurations of the
four terminals are listed in Table 4.7. The system parameters of the four terminals
are chosen according to Table 4.4.

Discrete,
5 = 1e-006

SAC 1 WAC 1

powergui
|+
+ l—l—- B+
A+
B
A
Mict -—-—|||
SAC 2 WAC 2
G+
>—,—- o
o
c
!
Cable Box 1.0

Figure 4.21: An MTDC system consists of two strong and two weak AC systems.
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Table 4.8: Initial values of the system state variables.

SAC 1 SAC 2
Uegy = Uggl =150V ’L'QQd = i;gd =6.53 A
ing=ig =08 | ipg =ity =0A
WAC 1 WAC 2
Vswid = Vg g = 4082 V | vgypq = vg,,,4 = 40.82 V
Uswig = Ugwlq =0V VUswaqg = Ungq =0V

I LT

444444444

;
o | wewess  wosue 2 Modute 2 ] Sh_Modue 0
4 " . e i
=
C s o o es
. o e L I I [ X A
[} — ? Y | - | lors) | - -
.............................. =il Sl w e

Figure 4.22: DC grid used to connect the four AC areas.

The performance of the feedback nonlinear controller is evaluated under different
scenarios and also compared to the performance of the same MTDC system using
PT control technique. Initially, the MTDC system operates in the steady state given
by Table 4.8. At ¢t =0.5 s, iggd is changed to a new reference value with an increase
of 50% and then, at t = 1 s and ¢t = 1.5 s, new reference values of vgy,q and vgy,g
Vg = 20.41 V.

are introduced, vg,, , = Vg, 4

The simulation results are plotted in Figs. 4.23-4.32. Figure 4.23 demonstrates
that both controllers can keep the DC voltage at u2, = 150 V. Compared to the

cg1
PI controller, the feedback nonlinear controller gives the response of u.q, a faster

o o 1
swrq and vy, . are subjected to a step

change at t = 1 s and t = 1.5 s respectively, since there is usually a compromise

convergence but a larger undershoot as v

between the settling time and undershoot (or overshoot).

Figure 4.24 clearly shows that the step changes of ¢ and vy, . greatly

i d’ Ugw
disturb the performance of 44, , under the PI controller Wi]lQile hav%flg negligible effects
on ig4,4 under the feedback nonlinear controller. This phenomenon indicates that
the feedback nonlinear controller has the benefit of providing a better decoupling
characteristics of the DC voltage and g—axis current control.

Figures 4.25 and 4.26 ( or Figures 4.29 and 4.30) depict the responses of vgy, 4q (
OT VUgy, dg) and show that the feedback nonlinear controller provides faster damping

and less overshoot than the PI controller. Besides, as plotted in Fig. 4.25 ( or Fig.
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4.25 ), the change of vy, , ( or vg,,, ) has a crippling effect on the performance of
Vswid ( OF Vsyoq) under the PI controller while vgy,q ( Or vsy,q ) under the feedback
nonlinear controller is always kept at its reference value. It reveals that the feedback
nonlinear controller also gives a better decoupling characteristics of vy, q and vy, q
(Or Vsyyd and vVgy,q ) control. As shown in Figs. 4.27 and 4.28 (or Figs. 4.31 and
4.32), the feedback nonlinear controller also improves the performance of the AC
voltage of WAC1 ( or WAC2) at the PCC in abc frame in comparison to the PI
controller.

160
—(a)
—(b)
155 ~ .
S
()
[@)]
£150
(o]
>
O
[a)
145F i
1485 1 1.5 2

Time (s)

Figure 4.23: The response of ucg,. (a) PI controller. (b) Feedback nonlinear con-
troller.
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81

15

05 1 |

—(@
—(b)

15
Time (s)

Figure 4.24: The response of i4,4. (a) PI controller. (b) Feedback nonlinear con-

troller.

50

sz d (V)

—(a
—(b)

38.8 1 1.2 1.4 1.6 1.8
Time (s)

Figure 4.25: The response of vgy,q4. (a) PI controller.
controller.

(b) Feedback nonlinear
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30

—(a)
—(b)
257 M _
207 [\‘/\ﬂ o NP ARA JAANARAAAIL
S
o, 15" 1
B4
>U)
10- 1
5, |
s 1.6 1.7 18 1.9 2

Time (s)

Figure 4.30: The response of vgyu,q. (a) PI controller. (b) Feedback nonlinear
controller.

50
S
£ 0
%N
>
'501 1.2 1.4 1.6 1.8 2

Time (s)

Figure 4.31: The response of vy, qbe using PI control technique.
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50
S
£ o0
5(\1
>
-0 1.2 1.4 1.6 1.8 2

Time (s)

Figure 4.32: The response of vy, qbe using feedback linearization technique.

4.2 Feedback linearization with sliding mode control

4.2.1 Control design

As presented in (4.31), the developed nonlinear controller strongly depends on the
system model, which requires the exact informations on the system parameters. For
the purpose of good robustness, sliding mode control is used to deal with the case
when the system parameters, Ly, Ry,, Cy, and Ry, are poorly known.

By applying the transformation T, in (4.33) and considering the integrated track-
ing errors (4.36), the original system (4.21) becomes

en= el
1= Ly, (igiq) + Ly (igig)Mgsq = h1 + 61 - gy

€12= €2 (4.70)
é2: z3 .

Z.Sj L%x (ucgi) + Lgdez (uCgi)mgid + qu sz (uCQi)mgiq
= ho + Poq - Mg,d + ¢2q " Mgiq

where hio and ¢12 are nonlinear continuous functions on ey, ,, e12 and e3 with
unknowns parameters. Let us impose two sliding surfaces as

S1= ap€r, -+ el

4.71
so=boer, + brea + 23 (471)
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where ag is positive and bg 1 are chosen such that the matrix

By = [_Obo _1171] (4.72)

is Hurwitz. The derivatives of the sliding surfaces are given by

51= age1 + h1 + @1 - mg,q

i 4.73
S9=boea + b123 + ho + Pag - Mg,q + P2g - Mg,q ( )

Let us consider the Lyapunov function V; = s7 + s3 and then, the derivative of V}
is deduced as

Vi= Wi + W,
Wi= si(ager + h1 + ¢1 - Mmg,q) (4.74)
Wa= sa(boea + b1z3 + ha + ¢4 - Mg,q + P2g - Mgyq)

From (4.30), it is clear that ¢; and ¢o4 are always negative and moreover, ¢, and
¢2q are continuous and invertible for positive g, .

Assumption 4.2.1. In the domain of interest as described in Section 3.4.4, hi, ho,
o1 and ¢o 44 satisfy the inequalities

’h1| < hl,maxa 0 < le,mm < |¢1| < le,mazv
’h2| < h2,max> 0< ¢2d,min < |¢2d’ < ¢2d,maa: (475)
0 < ¢2q,min < ‘¢2q’ < ¢2q,max

when the system parameters are bounded.
With Assumption 4.2.1, we can then define the control law for mg,, as
1
Mgiq = Bq —sgn(s1) (4.76)
¢1,min
where 3, are designed as

Bq = aole1] + himax + Bo, Bo >0 (4.77)

The control law for my,q is developed as

Mg;d = Pa sgn(s2) (4.78)
¢2d,min
where p
ﬂd = b0‘€2| + bl‘Z?)’ + h2,max + ;;Lm_axﬁq + ﬁ17 51 >0 (479)
Applying (4.76) to Wi, we obtain
Wy = Sl(a061 + hy + Bqﬁsgn(sl)) (480)

The sign of Wj can be analyzed as follows:
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o If 51 > 0, then sgn(s;) = 1 and recalling that ¢; is negative and ¢ min is
positive, we have

oo
1,min ¢
51=age1 + h1 + (aole1| + h1,max + So) L <o
(bl,min
o If 51 <0, sgn(s1) = —1 leads to
. o1
51 = aper + h1 — (agler| + h1max + Bo) >0
¢1,min
As a result, W1 = s151 is negative for all s; # 0.
Substituting (4.76) and (4.78) into (4.74) yields
Wo= sa(boea + bi1z3 + ho + ¢aq - Mg,a + P2q - Mg,q)
4.81
= 82(b062 + bi1z3 + ho + ﬁq ¢2q sgn(sl) + By $2d Sgn(SQ)) ( )
¢1,min ¢2d,min

Recalling (4.75) and the design of 35 in (4.79), we have the following results:

o If s9 > 0, sgn(sz) = 1 and then,

P2 4 (4.82)
¢2d,min

. P2q ®24

59 = boea + bizz + ha + B4 sgn(s1) + Ba <0 (4.83)
¢1,min 2d,min
o If 5o < 0, sgn(s2) = —1 and then, we have
. P2gq ®2d

So = boeg =+ 6123 + hy + ﬁq sgn(sl) — 5d >0 (4.84)

le,min 2d,min

Therefore, Wy = s9$2 is also negative for all so # 0. From the above analysis, the
controller defined by (4.76) and (4.78) will lead to the manifolds s; = 0 and sy = 0.
On these two manifolds, the behavior of the system is totally governed by

ern=ej
1= —apers1 (4.85)
€ra= €2

éa= —boer, — brea

whose equilibrium point is asymptotically stable.

Since the use of sign function sgn(-) usually causes the chattering problem
|Khalil 1996], in order to deal with this issue, a high-slope saturation function sat(-)
defined as
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_ s/l it (sl =
sat(s/p) = { su |l <p (4.86)

is applied instead and hence the controller is modified as

52
Mg,d = —Ba : sat(—)
¢2d,mm H2 (4 87)
By——sat (L) |
m . = — < P
9u qd)l,min H1

with positive p; and po.

4.2.2 Simulation studies

To assess the performance of the feedback linearization controller with sliding mode
control, numerical simulations are realized for a VSC HVDC link connected to a
resistive load by using MATLAB/Simulink. The system parameters are the same
as the case in Section 4.1.2.2.

The system starts from a steady-state condition, and then a sequence of events
is applied to the resistive load R as shown in Fig. 4.33. The control objectives are
to keep the DC voltage at ug, = 150 V and to get the unitrary power factor, i.e.

19 ., = 0 in spite of the variations in the resistive load. In Figs. 4.34-4.38, we show

]

9iq
the behaviors of the state variables. As shown in the plots, both u.g, and 4,4 are
well controlled at ugy, = 150 V and 4y, , = 0 respectively no matter how the resistive

load changes. Besides, as illustrated in Figs. 4.37 and 4.38, the control modulation
variables myg, 4, always satisfy the physical constraint , /mgi 4t mfm <1.
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Time (s)

Figure 4.33: Variations in the resistive load R.
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Figure 4.34: Response of ucg, (curve (a)) and its reference ug, (curve (b)).
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Figure 4.35: Response of ig,4.
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Figure 4.36: Response of ig,,.
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Figure 4.37: Response of mg,q.
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Figure 4.38: Response of mg,q.
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4.3 Passivity-based control

As presented in Section 4.1.4, when the output is defined as (4.56), in order ensure
the asymptotic stability of the equilibrium point of the zero dynamics (4.63), the
prescribed references ug, , Qg P;p, Zp, ”?w_,— g and vgwj q
must be chosen such that the Jacobian matrix J in (4.66) is Hurwitz. It implies that

and the system parameters

these prescribed references can not be set arbitrarily. To overcome this shortcoming,
we want to find a specific output ys such that the stability of the equilibrium point
of the zero dynamics is irrelevant to the choice of the prescribed references. In this
section, we will demonstrate that this can be achieved by means of passivity theory.

In fact, there have been several studies on the passivity-based control (PBC)
design for a class of switched power converters which can be described in port-
Hamiltonian form [Perez 2004, Hernandez-Gomez 2010, Escobar 1999]. Apart from
the prior research work, we first design a passive output derived from a storage
function and then, further investigate the corresponding zero dynamics. Since some
variables to be controlled belong to the state variables of the zero dynamics and
the convergence rate of the zero dynamics are determined by the system inherent
characteristics, additional control inputs are introduced to modify the dynamics and
improve the performance of those desired controllable variables of the zero dynamics.

Recall the dynamics of the DC grid (3.33) where 4.y, and ic,, are obtained from
(3.23) and (3.32) by neglecting the losses of the phase reactor and the VSC. In fact,
taking into account these losses and according to the power balance on both sides
of the converter station, .4, also satisfies

2
. . _ ucg'L .
i(vCQidzgid + UCS]iqZQiq) - R + Ucg;Leg;
equl,g; S——
S—— Active power injected to the DC grid

Active power on the AC side of the converter loss of the VSC

(4.88)

where the equivalent resistance Reqyi () 15 used to represent the loss of the converter.
According to (3.18), the converter voltages veg, 4 are expressed as

1

Vegs,dg = §“cgi Mg, ,dg (4.89)

and then, substituting (4.89) into (4.88), we deduce

. 3 . . Ueg,
Geg; = —(Mgdig;d + Mg,qligiq) — Cg./ (4.90)
4 Requi,g;

A similar procedure is done to obtain a new formulation for Gew; as

uC’wj

(4.91)

. 3 . .
tew; = Z(mw]'dz’u}jd + mquleq) TR
equi,w;

Now, based on (4.90) and (4.91), a new model for the DC grid is established as

Z2=Apz+ Y, (4.92)
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where A, and 9, are given by

9= [ 3(mg,dig,d + Mgiqigiq) (M, dlu,d + Mawjqlusg) 0 g
P 40y, 4C,, (P+L)
-D, C'H
Ap= [—LlHT ~L'R
D,= C_lRe_qlui c RIN+M+P)x(N+M+P)
Requi: dia«g(‘ Tty Requi,gia te Requi,wjy vy 0y ey 0) (4 93)

Let us consider the dynamics of vgy, dq in (3.29). Similar to the modification of
the dynamics of the DC grid, here we use the equivalent resistance Ry,,; to represent
the losses of the filter and hence, vsy, 44 are modeled by

dvswjd 1 Uswj d

= . . ——(Lyod — tpsd —
dt Wy ey Cru, (g = Byu, ) (4.94)
d’[)squ_ 1 I R Usqu .
. —Wuw; Vsw;d + C » ( wijq — twiq — waj)

In this section, the passivity-based state feedback control design is developed
based on the above new DC grid and AC voltage model.

4.3.1 Steady-state analysis

The same master-slave control configuration is used in this section as in Section
4.1.4. In addition, in order to make all SAC systems operate with unity power

factor, we set

0 =0 (4.95)

gi
Similar to Assumption 4.1.1, to ensure the operating feasibility of the MTDC system,

we take the following assumption.

Assumption 4.3.1. Consider the MTDC system described by (3.20), (3.28), (4.94)
and (4.92). For the prescribed references ugg, s Qg P;p, Qgp, v;’wﬁdq, there exist
equilibrium values for the state variables such that

Usgid  Ucg; _

0= — L5, g4+ weigq+ — Mg.d
i 9i79iq 9i
égi Lgi 2_Lgi
- - Vsqg.: Ueg;
N Gi = E $9:q cgi —
0= _ngiq — Wg;lg;d T L. 9 Mgiq
Rgz' gi 9i
0= — wjg T W g + Usw;d _ Ucw; T
T L, Wt Tt T T o,
J _ J _ J
_ _Rw]._‘ = Vsw;q _ Ucw; _ (496)
0= ——lw,;q — Ww,;lw;d + —— May;q
_ 1 = Usw;d
0= Wu; Vsw;q + c (Tw;d = Tw;d — 55—
fw Byu,
i - Vsw,q
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o [0} o
where Teg, = UC, , Ggg = — 205, =0, 4,4 = E by g = — 2Qg” = 0 and
cg1 = Yegrs tgrg = T3 = U, tgpd = »lgpq T T3 =
VUsgrd Usgid

= — 0
vswj,dq - Uswj,dq‘

Under Assumption 4.3.1, the steady-state values of i, 4, and the control vari-
ables are deduced as

- swj;d
'ijd: ijd + wajw’w]'vgqu - R
i (4.97)
tw.g= 1 C o, W, V2 Uswjg
wiq™ twjqg = Cfw;Ww; Vg .q —
j waj
and
Mg;d= (—Rygiiga + Lg,wg,igq + Vsg;d)
cgi
— 2 - ry
Mgiq= » (—Rygiigiq — LgiWgilgid + Vsgiq)
6297" (4.98)
— _ — - o
Moy ;d= (_ijled + ijwwjzqu + Uswjd)
C’LUJ‘
2 - _
_ . . o
Muy;q= E(—ijleq — ijwwjled + Usqu)
J

Substituting (4.97) and (4.98) into (4.96), we find that the DC grid in steady state
satisfies

2

= - 2 52 2 TR /ani

(’Usgidlgid + Usgiqlgz‘q) - Rgi (Zgid + Zgiq) + g[H(’L’ :>lcu0gi - R ] =0
equl,g; _9

- - - — 2 . - _ u j

(Ugwjdled + vgquzqu) — Ry, (Z?Ujd + 2121)jq) + g[H(N + gy )iclicw; — Re;ﬁ] =0
— ’ J
H(N+M+h,:)i.=0
H(:, k) Ta. =0
(4.99)

Note that the above expression (4.99) contains several quadratic terms. It implies
that the MTDC system has more than one equilibrium point that corresponds to
the prescribed references [Lee 2003, Zonetti 2014]. But, not all of these equilibrium
points are achievable. As presented in [Lee 2003], there are two possible steady-state
values for the d—axis current. However, the larger one is physically impossible, mak-
ing the converter operate beyond its ability. The choice of the reasonable equilibrium
point is determined by the system physical characteristics, the feasibility of the mod-
ulation technique (see (3.21) and (3.30)), etc. But this issue is beyond the scope of
this thesis. Here, we make the following assumption on the equilibrium point.

Assumption 4.3.2. Consider the MTDC system described by (3.20), (3.28), (4.94)
and (4.92). For the prescribed references ugg, s Qg P;p, ZP, v?w_j7dq, for every state
variable, only one steady-state value exists in their respective domain of interest

defined in Section 3.4.4.
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95

4.3.2 Passive system

Let (1) = (-) — () denote the error between the variable (-) and its steady-state

value. By considering the steady-state condition (4.96), (-) satisfies the differential

equations

* R, . - ~ 1

T gi : _ ~ ~

lgid= —7 lgid T Wgilgiq — (Mg;dlicg; + Mg,dcg;)

égi 2%91'
s Gi ~ ~ . -
lgia= T Lgiqg — Wgilgid — Y7 (Mgiqlicg; + Mg,qticg,)
gi gi
. wj ~ Uswjd 1 _ ~ ~
ijd— _Twzwjd + ijzqu + ? - Tw(mwjducwj + mwjducwj)
j W j
i ———ijg — Wt +v5qu_71 (M qUcw; + M, qUew, )
wja= T wjq wjlw;d I3 oL wiqUew, wiqUew,
wj Wy wj

. ~ Vsw,d
3 . ~ : j
vswjd— ijvsw]-q - wa (ijd + wa )

j Jw;

. 1 - Vsw,;
L o ~ y 374
Vswjq= ~Ww;Vsw;d — Cf ( wjiq + wa )

. - wj j
5= A7+,

where 7§p is given by

Up(N

E

3

Up(i) = 10 (Mygdigid + Mg,dig,d + Mgiqigq + Mgigigq)s

9i

3
10, ¢

Up(N + M +h) = 0.
Up(N +M + P +k)=0.

(4.100)

ieN

mwjdiwjd + mwjdiwjd + m’qui’qu + mquiqu)a j € M

heP
kel

In addition, setting 1y, 4g = M, dg = 0, we get the unforced system of (4.100) as

3 . ~ 1
: i : _ ~
lgid= — 7 lgid T Wgilgiq — Mg;dUcg;
Lgi 2ng
FL T S S N
94— T, 94 9igid 27, 9iqteg;
Ji gi
< Rw ~ ~ Uswjd _ ~
Lwid L. bwid + Ww;lwiqg + L, - 2L, My ;dUcw;
J ~
L P SOLLL L B S
wjq w;q w; bwsd - w;qUcw
3 ij j 1 j Wy ijj 2L, j j
~ Vsw.d
~ j
Vsw;d= Ww; Usw;q C (Zw]d )
wj

(4.101)
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where ¥}, is expressed as

Y . 3 _ ~ — ~ .
19?(1) = 4C (mgidzgid + mgiqlgiQ)7 ieN
gi

Up(N +5) = (Mo, dluw; d + Mgl ) jeM

3
AC,,
Op(N+M+h)=0,(N+M+P+k)=0. heP, kel

Take

S S Ll + )+ 5 S0 Ly ) + ()
U 2~ (4.102)
i) Z] 1 Caog [(Bsu;a)? + (Tsuya)? ]+§ 2:TAs

as a storage function candidate with

A~ C O(N+M+P)xL
OLx(N+M+P) L

The function V is positive definite and its derivative along the trajectories of (4.100)
satisfies

— >N Ry, [(ig,a )2 + (igig)?] — 300 Ru[(iwya)® + (iayq)?]

_ 5
2 N (ucgz) 2 (Gew, )
= Z] ! Requl w;

2 2 !

Vsw + (Vsw.q

ot fd)R o |- 25 R ie? (1.103)
fw;

1y ;. _. . - _ ~
+? > iz [Mg,d(Tegig,d — Ucg; Zgid) + Mg,q(Teg;igiq — Uegilgiq)]

M~ - . ~ - - . :
+§ 2 =1 M d(tiew; twjd = Uew;tw;d) + Mg (lew; twjq — Uew;tw;q)]
Taking the output vector y, as

T c R2N+2M

= [Ypg Ypul . .
ypg— [Ypgrd Ypgrq *** Ypgid Ypgia *** Ypgnd Ypgndl GTR .
Ypw= [ Ypurd Ypwiq - Nypwjd Ypw;q 1 Ypwprd yprq]~ €eR (4.104)
Ypgid= *(chﬂgid — Ucg;igd); Ypgiq = i(ucgﬂgiq — Ucg;lgiq)

Ypw,;d= i(qu]'ij'd - qu]‘ij'd); Ypwjq = i(ucwjleq - ucwjleq)

V then satisfies
V=LV +LyVu<ylu (4.105)
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with

L,V= yg N ) ~ v - ~
LfV: =2 _im1 Ry [(igia )2 + (iQiQ)Q] - 22711 Ry, [(iwjd)Q + (iqu)2]
(licg,)? _ 2 (e, )
-3 Zz | ijl o
Reqm,gz 3 Requl w;

('Usw]d)2 + (Usqu)

_ijl[ Riw. |- Zk 1 Ck(zck)Q

J
T c R2N+2M

(4.106)

u= [ug ]
Ug= [Mgyd Mgyq =+ Mgyd Mgyg)” € RPN
U= [mwld Mawiq ** Mawyd mqu}T e R?M

It can be seen that the MTDC system has the Kalman-Yacubovitch-Popov (KYP)
property and it is passive with the passive output vector y,,.

4.3.3 Control design

Since the steady-state values of all DC voltages are positive, u..) > 0, here we
change the output vector to

y= [yg yw]T c R2N+2M
Y9= [Yg1d Yora "~ Ygid Yoia ** Yond Ygna) € R
Yw= [ywld Ywiq = Yw;d Ywiq ° Ywpd waq]T S R2M
Ygid= Qgidlcg; — lgid; Ygiq = Qgiqleg: ~ lgiq (4.107)
ywjd: (}wjducwj - Z'chﬁ_ yqu = aquucwj - Z'qu
Qg dq= Zgi,dq; Q. dg = vaj,dq
cg; Ucw;

Comparing y, in (4.104) and y in (4.107), it is easy to find that

2 2
Ygi.da= — Ypgidas Ywjdg = — Ypw;,dg (4.108)
Uecg; Ucw;
Accordingly, the reference of y is y° = Oany21r)x1- Let us restrict y = y? and then,
by performing the change of variables

igi,dq = Qg dqUcg; — Yg;,dq> /Lw],dq aw],dqucw] ywj7dq (4109)
we obtain the following equations

0 = Yg,d= a1g9,Mmg,d + a29;Mg;q + [g,d

0 = Ygiq= a3g;Mg,d + Qag;Mg;q + foiq (4.110)
0= ywjd: A1lw; Muw,d + A2w; Muwj;q + fwjd

0= yqu: A3w; M ;d + Adaw; Mawjq + fqu



98 Chapter 4. Control methods based on nonlinear control design tools

where
3 0g,d Ucg;
a = — (6% Uea.:
1g; 4 Cgl ( gideg; ygzd) + 2ng
3 ag,q
@29:= 4 Cgf (Qtg,qUcg; — Ygiq)
9i
3«
aggz_ Z Cgi (agiducgz ygzd)
3 oy, Ueg,
A4g:= 3 C,, (tg,qUcg; — Ygiq) + oL,
3 Q. d [
j j
3 Qy.d
A2w; = Z Cuj (aquucwj yw]q)
j
3 Oy
A3w; = 1 ;Jq (awjducw] wad)
W
3 awj]q Uew;
A4w; = Z C (aw]qucwj yqu) + o ( )
wj wj 4.111
Qg.d Ucg; . . R i
fgid: C? [_Ri + H(Z7 :),LC] + Lg (agldung ygld)
9i equl,g; Vsard gi
89i
wg, (QgiqUcg; = Ygiq) — Lg
9i
foia= C? . [_R Cg, + H(i,:)ic] + Lig(agiqucm — Ygiq)
gi equi,g; 9i
Ysgiq

+Wg; (agiduCQi - ygid) T
9i

Oy d Uew:; o R,.
fwjd: éﬂj [_R CU.JJ + H(N + j, :)Zc] + Tw](awjducwj - ywjd)
wy equl,w; v J wy
sw;
_ij (aquucwj - yqu) - L -
wj
Qg Uew S Ry,
Jwiq= c ’ [—R “— + H(N + j,:)ic] + Tj(aquucwj — Yw;q)
wj equi,w; v wj
sw;
Fww; (Qw;dUew; — Yw;d) — . 34
wj
Let us denote
Egi _ |:algi a2g¢:| : ij _ |:a1w]~ CL2'wj:| : (4112)
a3gi a4g7; 0/311)]' a'4w]-

Lemma 4.3.3. The decoupling matrices Eg, and E,; are nonsingular at ygq =
Ygiq =0 and Ywid = Yw,;q = 0.

Proof. The determinants of £y, and E,, are equal to

Ucg;  Ueg; 3o 3a i
Ag,=det(Ey,) = ng’ [2£g + 1 C (agiduCQi — Ygid) + 1%(0491:11%91' ~ Ygiq)]
9i gi 9i gi
C Uew s 3 Qi
ijz det(ij) = 221:] [221;] 1 C (Oéwjducwj - y'Ude)
J J
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Setting Yg,d = Ygiq = 0 and Yu;d = Yuw,;q = 0 yields

Agioz Agi ’ygid:y{]iqzo

Ueg, Ucg, 3 (ag,aq)? 3 (agiq)”
= 9 [ =LA *( gZd) Ueg; + 7( glq) chi]
2Ly, 2Ly 4 Gy, 1 Gy (4.113)
ijO: A’wj ‘ywjd:yqu:()] .
Ucw; [ Ucw; 3 (awjd)2 3 (Ozw].q>2

2w, 4 Oy U T A0, e

J

" 2L,

Because ucg; and uey, are positive, Ag,o # 0 and Ay,o # 0 are always positive. [J

Since Ay, (Ayw;) are continuously differentiable for (aga, Qgiqs Ygidr Ygiq) €
IBOégicl XBO‘giq X ]Bygid XBygiq ((awjd’ aqu’ yw]’d’ yij) € ]Bawjd X]Baqu XBywjd XByqu
) where these B(.) C R are open connected sets, based on Lemma 4.3.3, we have the
following lemma.

Lemma 4.3.4. There exist a series of connected sets Sy C B such that the
decoupling matrices By, and B, are nonsigular for (ag,a, 0giqs Ygid> Ygiq) € S%id X
Sag,q X Syg.a X Syg,e and (Cwjd, Cwiqs Ywids Ywjq) € Sawjd X S, g X Sy, a X Syy,q- In

J
4q CONtain the origin. S%id, Sag,qs S and Saqu contain

addition, Sy, ,, and Syw]- Qwjd

to.d  la: Lw.d Lw,q
9i 9i9q J and — J

= , , respectively.

— y _
Ucg;  Ucg; ucwj ucwj

Since the solution of the state variables is restricted to (4.110) when the output
vector y is identically equal to y°, the control modulation indices must satisfy

1
Mg;d= A (a49ifgid - a29¢fgiq)|ygid=ygiq=0

Gi
1
mgiq: r(aﬁlgi fgzd - a29i fgiq) |ygid:y9iq:0
" (4.114)
Maw;d= Tw(a4Wj fw]-d — Q2w fqu)|ywjd:yqu:0
J
1
mqu: E (a4w] fw]d - a?wj fqu) |ywjd:yqu:0
J

Substituting (4.114) into the MTDC system, the zero dynamics are characterized
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by
sy 1 Vsw;d
dtJ = Wuw;Uswjq + m(Ide Oéw]ducw] — Rf;])
dUsw q 1 Vsw g
dt] wwj"l)swjd + Ciwj(fqu — aquucwj — Rf;] )
AUeq, 1 1 Ueo, o
C, —9— o Uegi Hi
9i dt Aglo 2L ][ Requihgi + (7/7 )ZC}
1
_EE[L ( !Qh'd + Q?]iq) - ?(Usgidagid + Usgiqagiq)]
AUey 1 1 Uy i
C . J: J +H N+ .’: Z
wj dt Aw 0 2ij [ Requi w; ( J ) c]
173 Ry,
_ vao 4[Lw Uc’w]( 5d + Oéw]q) Lw- (Uswjdawjd + Usqu()équ)]
J J 5
d
Cth ut;th: H(N+M_|_h’ :)ic
Uck .
LCkT;: —Re ey, — H(:, k) u,
(4.115)
With

9 B 2
W= ZJ Iwa][(Usw7d) +(U3w]q)2]+ Z] 1Cwykwf(“0wﬂ) (4.116)

+5 Zh 1Cth3(u6th) + 35 Zk 13 Ck(lck) + 35 Zz 1091kgz(u691)2

as a Lyapunov function candidate for the zero dynamics (4.115) where

= (g + loma? + P g,
boi= {57 Ll + 2l0g0)? + (005 L,

Ko
(4.117)

The derivative of W along the trajectories of (4.115) is given by

2
3Requi,wj

———— + Ry, (02, + a2 )](ag,)* —
3Requi,g, gl(agld agzq)](“gl)

(ﬁswj d)2 + ('Dsqu)Q
Ry,

W= — Z;Vil[
-l
=35l

+ ij( id + aw]q)}(awj)Q
2

3 Bex (ier)? (4.118)

<0

which shows that the MTDC system with the output vector y in (4.107) is weakly
minimum phase. Furthermore, we have the following result.

Lemma 4.3.5. The equilibrium point of the zero dynamics (4.115) is asymptotically
stable.

Proof. 'This lemma can be proved using Barbalat’s lemma. Since W is non-positive,
we then have W (t) < W (t = 0), which means that all variables (-) in W are bounded.
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Based on (4.118), W can be computed, which is composed only of bounded terms.
Hence, W is also bounded. As a consequence, W is uniformly continuous in time.
Applying Barbalat’s lemma, we have W — 0 in (4.118) as ¢ — oo, which implies
that

Tew; = 0; g, = 0; ey, — 05 Tsuya = 05 Tsuyzq — 0 (4.119)
and .

acwj_> 0; ﬁcgi — 0; gck — 05 QL}swjd — 05 ésqu — 0 (4'120)
Combining (4.115), (4.119) and (4.120), we can obtain

HT4. — 0 (4.121)

with unknown @, . Since Lemma 3.4.1 states that rank(H) = N+ M +P—1> P,
Uct,, — 0 is the only solution of (4.121). As a result, only the trivial solution exists
for W = 0 and then the lemma, is proved. ]

Based on Lemma 4.3.5, we can also get that only the trivial solution of the
unforced system (4.101) can stay in the set {y = y° = O@nyom)x1} Where y is
defined as (4.107). Finally, we can conclude that the error system (4.100) is zero-
state observable.

According to Theorem 3.2 in [Byrnes 1991], the control variables 7. can be
developed as

mgiq ¢9iq(y9iq) ’ mqu ¢wjd(yqu)
where ¢.) are any smooth functions such that ¢((0) = 0 and
Yg:dPgid(Ygid) > 05 Yg,qPg,q(Ygiq) > 0
ywjd¢wjd(ywjd) > 0; yqu¢qu(yqu) >0
for each nonzero y(.). Then, m() can be deduced as
Mgq Mgiq bgi0(Ygia)] " [Muwjq Maw;q Pw;d(Yw;q)
In fact, the choice of ¢, is free. In this thesis, we choose the easiest way to design
the control variable as
Mgid= —Cg,d,0 * Ygid — Kigia - €1y,,4
Mg,q= —Cg,q,0 * Ygiq — Kgiq - €lyg.q

(4.124)
Muw;d= —Cw;d,0 * Yw;d — kijd : erwjd

m’qu: _ijq,() : yqu - k[w]'q : elyw].q
with positive control gains c(.y and kj() and the integrated tracking errors

6Iyg.d: ygld7 é[ygiq = ygiq
k2

erwjd: ywjd; elyqu = yw]'q
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4.3.4 Control of zero dynamics

Substituting (4.109) and the control algorithm (4.124) into (4.92) and (4.94), the
dynamics of the DC grid and the AC voltages vsy, 4¢ Will be governed by the zero

. . . lg; T, d
dynamics (4.115) if y,, 44 and v, 4 exactly converge to zero (or if EIECU PO, i
Ucg; Ucwj
perfectly follow o, 4q and av; 44, respectively). Therefore, by controlling the output
variable at zero, we can indirectly drive ucg,, 44 ods Lgiq and the AC voltage Vsw; dq

to the prescribed references (-)° given by (4.57). From Assumption 4.3.1, we get

igiq = 0 and hence oy, = = 0 can be directly obtained. However, there is

Ucg,
still a need to deduce ag,q angl Qu; dg Dy solving (4.96). Due to the uncertainties
on the system parameters or unmodeled elements in the power system, it is usually
difficult to get the accurate values of ag,q and ;4 and then steady-state errors
may exist. Furthermore, the convergence rate of the uncontrolled zero dynamics
totally depends on the system inherent characteristics, which would be very slow.
Therefore, we expect to regulate the behaviors of the states of the zero dynamics
and to achieve good tracking performance, i.e. to make ucg,, ig,d, ig;q and the AC
voltage vsy; dq follow their respective prescribed values (-)° by designing ay,q and
Qup; dg- In the following part, we consider the case that ig,q # 0. If Pg"pd are set to
= 1}
zero for some SAC terminals, then the corresponding a,q = Ygid _ 2F =0

Ucg, 3acgp Vsg,d

can be directly deduced without further design.

As mentioned in the previous section, the control goal is to make wucg, ig,d,
igiq and vy, 4q track their respective references. Thus, we substitute ag, = 0,

he ch f the variables i, 4 = q Yot _ e
the change of the variables lg,d = Olg,dUcg, Al = Qg,d 7t

2 into the zero
dt
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dynamics (4.115) and then obtain the following transformed zero dynamics

d’l)swjd_ 1 I % 'Uswjd
a Ww; Vsw;q + m( w;id — awjducwj - waj )
dvsw:q y Vsw,q
7J: — Wy, Uswljd + m(leq — Qg lhew; — Rf;j>
du, 2L U )
Cy, d;gl -1 ?;(h {[_R cg.1 + H(1,:)ic]
- + 7(a>k d)2 equl,gl
2L, 49
3
_§[R91 Ucgy (azld)Q - vsglda;d]}
dig.d 2L L gpd
C 9p — 9p _ 9p + Oé* H i,: 7,
ot Ly §(a* )? : Requig, )t (4.125)
2Ly, 4 9ed
3 .
2 [Royiga(0,0)” = %, a(0sg,a0 a)]}
AUy, 2L,,. U,
Coy—gr = T3 {2+ H(N +35,2)ic]
I _ * 2 * 2 equi,w;
32Lw]- * 4[(awjd) + (Oéqu) ] J
_E[ijucwj<(a'z;jd)2 + (a;kujq)Q) - (Uswjda*wjd + Usquafujq)]}
d
Ch, ;;th = H(N + M + h,)ie
1 .
Lckd—;k: —Re i, — H(:, k)Y u,
Now, the transformed zero dynamics (4.125) is considered as a new system where
Qg,q and o, 4, are replaced by oz;_ g and a;j dg 0 emphasize that they are consid-

ered as control inputs. It can be seen that the number of control variables (oz; d
and OCZ)]-, dq) equals the number of controlled variables (ucg,, ig,qa and vsy, dq) and
moreover, afuj dg ATe directly collocated with vy, 4q. We can use two steps to design

the control variables.

4.3.4.1 Step 1: design of O‘Z;j,dq
We first design ajj%dq to {egulate Usw;,dg While a7, are considered equal to the
igid

steady-state values ag,q = =
Ueg;

Feedback linearization control

Here, the input-output feedback linearzation method is applied to design a;"% dg- It
is natural to choose the output

pr— DY T
yw— [ywl wa] (4126)

Yw; = [vsw‘jd 'Usqu}T
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Then, following the input-output feedback linearization procedure, the control law
for ozj;}j dg 18 deduced as

Vsw;d
— J
Oﬁz;jd_ [ijd - R + wajwwjvsqu - wajvaw.d}
cw; fw; J
1 v (4.127)
= lwq— =222 —C ~-C ]
Qg™ wie T R fw;Ww; Vsw;d fw;Vauwq
Ucw; fw;
where N
b — a8 o
elawjd_ evswjd - Uswjd - vswjd
anjd: _Caw]-dA' evswjd - klaw]-d : ejaw]-d
b —_ = o
elaqu_ evsqu - Usqu - ’l)squ
vaqu: _Caw]-q ' e”Usqu - k]oequ : e[aqu
with positive control gains Cory, aq and k Ton, aq-
. * =%
If the tracking errors €0, dq approach zero, we then take Oy dg = V) dg where
o
v
% swjd 0 _
a’wjdi 7[ijd - R + wajwwjvsqu + klaw]-delawjd]
tew, o i (4.128)
1 SW4
— % 34 o z
), = —|ly.q — — Cl Wiy, U k €
Wil Ucw, | i Ryu, Sy @w;Vsw;a F Klow,q Io‘qu]
which are calculated by restricting Vsw;,dg = v;’wj’ dg and
o
1 Vsw;d
0=wu, % ,+ =—UTpq— Q" Uy, — =)
5 Ysw;iq wj wjd " CW;
! waj ! ng)j
1 Vsw.q
0=—wwv? + —=——Tuw,q— al Jlew;, — =)
j Yswid wjq wiqtcw;
J waj J waj
Recall that the steady-state values of &}, , q satisfy
VEl
Ew-d Vsw.d
= _ J _ J o =
awjd - 0 - 0 [ijd - R + Cf’ij’wjvsqu + klawjdelawjd]
Ucw; cw; fw;
Z'w'q 1 @sw'q
~ _ 34 . 34 o >
O[qu - = - = [ijq R wajwwjvswjd + klaquelaqu]
Ucw; Ucw; fw; : :
and hence, &, dg Can be rewritten as
VEl
ar ! i
w]‘d wjd
Clw] - (4.129)
e .
aqu_ s ijq
J
In addition, we can also obtain
=%
8aw]d 1 -
= — Twid
Oy (U2 7
P cw;) (4.130)
O[qu 1 =
= Zw_q
Qe (Uewjyz
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Then, the zero dynamics of the system (4.125) are characterized by

1
du 2L U .
Cgl dCQI - 1 ?f]l {[_ R Cg_l + H(la :)10]
t + 7(a* d)Q equi,g1
2L, 4 9
3 * *
_5[R91 Ucegy (O‘gld)Q - vsgldagld]}
dig 4 2L 1g.d . ]
Cgp 9p® _ 9p {- 9/). + agde(p, ie]
dt 1 3 R
+ S (ar )2 equi,g,
2Lgp 4° 9
Sip o 4131
_i[RgPngd(agpd)Q @y d(vsgpdagpd)]} ( )
1
AUy 2L.,. Uew: o
ij dC;UJ: T 5 — lUJ2 - : {[_Recji’]w. +H(N+],)Zc]
wj
3 =~ =% =% =%
_i[ijucwj((awjd)Q + (aqu)Q) - (vgwjdawjd + Ugw]-qaqu)]}
d
Cth u;th - H(N =+ M + hv )Zc
1
Le, d;k = —Re i, —H(:, k)T,

The stability of the equilibrium point of the zero dynamics (4.131) is verified by
linearizating (4.131) around the equilibrium point and we can obtain the following
Jacobian matrix

— C™13,%H

N= | gyt iR

where X1 o 3 are given by

Z:1 - diag(a%, Tty O—}VJrMJrP)
22 - diag("%v R} 012V+M+P
Y3 = diag(c?, , 03)
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with the elements

1

1 _ 2L91 091 1
0] = 1 3 [R .
+ 7( * )2 equl, g1
2L, 4 9
1
_ 2L9pcgp 1
v 1 + §(Oé* )2 [Requiyp
2Ly, 4 9ed

3 *
+ §R91 (agq;d)QL

3 x
+ iRgp(%pd)Q]’ pENA

1

2Ly, Cy, 1 _ _
ON+j = 71 3 — {R — + ij((awjd)Q + (O‘qu)Q)
— + *[((jéwjd)2 + (aqu)Q] edthws

[(vgwjdgwjd + Ugw]-qgqu) - 2R’w]‘((gw]‘d)2 + (gqu)2)]a ] € M

heP

\ §N+ =1. heP
1:

p
UN+j: ) ]EM

3
3
3
O—(N+M+h):1' hGP

The terms Ry, ((iw;a)? + (iw;a)?) and Ry, ((iw;q) + (iw;q)) represent the losses and
the decrease of AC voltage caused by the reactor phases. An optimized HVDC
transmission system should have lower losses than AC lines for the same power

capacity. The losses in the converter station are only about 0.6 % of the transmitted
power [ABB 2014]. As a consequence, it is reasonable to consider that

/Ug’wjdgwjd + Ugqugqu - 2ij((gwjd)2 + ({qu)2)> 0
v;’wjd + vgqu — 2Ry, (z'wjd + iw;q)> 0
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Lemma 4.3.6. The system described by (4.125) with control variables a;j dg and

output y,, in (4.126) is minimum phase .

Proof. To demonstrate this lemma, we only need to prove that the Jacobian matrix
J1 is Hurwitz. Similar to demonstrate Lemma 4.1.3, we also assume that there exists
an eigenvalue of Ji denoted by A = a + 8 € C whose real part is non-negative, i.e.
a > 0. By definition of eigenvalues, we have

M+ 3 *0_12223H

det(AI — Jp) = det( LUHTS;! A+ LR

) =0 (4.132)

As described in the demonstration of Lemma 4.1.3 in Section 4.1.4.1, ®; £ X\ +
L7'R = Ay + jAy are positive definite where Aj 5 are given by

R

c1 CL, LxL
e L+ — e R
LC1, LCL)

Ay = diag(B,--- , 8) € RW*

Ay = diag(a +

Therefore, det(\ — Ji) is equivalent to

det(A\ — J;)
=det(\ + X1 + C '8N HOT L HT S5 Y det (1)
=det(C 159030 Ndet(A\X; 12,1 O%3 + 2318108 25 + HOT L HT ) det (1)

Since C' and X3 are diagonal, the above expression can be rewritten as

det(A\ — J;)
=det(C™159)det(\X;'C 4+ 25,1C8y + HOT 'L HT )det(®4)

We introduce

Oy = \OS; 2055 + HO LT HT
ACS; 4+ 51055 = Az +jAy
OT'LT = (AT +R) = A5+ jAg

Recalling the expressions of C, ¥; and 39 (37 and X9 are positive definite), it is
evident that A5 and Az are semi-positive definite where A3 is given by

A3 = diag(o1, -+, oNyMLP)
and Aj is expressed in (4.68). Now, ®5 can be rewritten as

Po= P3 + j(A4 + (23H)A6(23H)T)

Dy= A} + AV + H HT (4.133)
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where A} is a diagonal matrix whose first element on the main diagonal is o1 > 0
and all other elements are zero. Ag and Hy are given by

Let us define
oy =Ay+ HeHf
which is semi-positive definite. Then the determinant of @4 is calculated as
det(®4) = ordet(R(Hy)1R(Hy)]) + det(HsH[)

Recall that R(Hy); is the matrix obtained by removing the first row of Hy. Since
1 1

Az is a full rank matrix, i.e. rank(A2) = L, then rank(HfH}F) = rank(Hy) =

rank(H) = N + M + P — 1 and as a results, det(HfH?) = 0. According to Lemma

3.4.2, the rank of R(Hyf)1 is N + M + P — 1. Consequently, R(H)1R(H)T is
invertible and positive definite. Because of the positive o1, we then have

det(®4) = o1det(R(H 1\ R(Hy)]) + det(H,HY)
= o1det(R(H) 1 R(Hf){) > 0

and hence, the semi-definite matrix ®, must be positive definite. Recalling that
®3 = @y + A} as derived from (4.133), ®3 is also positive definite (see Lemma
4.1.8). Since the hermitian part of @9, i.e. H (Do), is 3 which is positive definite,
we get the result that @5 is also positive definite (see Lemma 4.1.7). Therefore, we
deduce that

det(A\ — Jy)
=det(®o)det(Pq)det(C155) #0

for « > 0. This leads to a contradiction to (4.132). Thus, we must have that the
real part of all eigenvalues of Jy is negative, i.e. a < 0. Finally, we prove that Jy is
Hurwitz and as a result, the equilibrium point of the zero dynamics is asymptotically
stable. The proof is completed. O

Adaptive control

Let us revisit the zero dynamics (4.125) which is a multiple-input and multiple-
;‘Lj7dq'

by using the feedback linearization technique, a;ﬁ dq 15 designed as (4.127) which

strongly depend on the system parameters, Ry, Cru,, w; and I, 4. However,

output (MIMO) system with the control variables « In the previous part,

due to the ageing of the facilities, the system parameters are usually slowly varying.
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In particular, Ry, used to model the losses of the filter is very hard to obtain its
exact value. Several studies have been carried out to deal with the uncertainties
of the system parameters [Ruan 2007, Hernandez-Gomez 2010, Durrant 2004]. In
Section 4.2, the sliding mode control method is also applied to make the system more
robust. In this part, the adaptive control method is proposed to adjust the system
parameters for enhancing the dynamic performance of the system [Narendra 2012].

We recall the dynamics of vgy,; 44 given by

dvswjd_w y n 1 I ot 1  Usw;d 1
dt - v g, T Red e G T Ry Cr,

J
d’l)squ_ e I L] —a* u 1 _ Vsw;q
a = w; Vsw;d wa w;q wjq eW; waj waj wa]'

J

(4.134)

with the uncertain Cfy;, Ww;, Rfw; and Ly, 4q- Our task here is to design afﬂj dg

to make Vsw;,dg track their respective references vg’wﬁ dg- Then, the output tracking

errors are given by

_ 0
Coanya= Vgl = Urya (1135)

— o
evsqu_ Usqu - Usqu

Augmenting (4.134) with the integrated output tracking errors

e]'Uswjd: evswjd

. . (4.136)
['Usqu_ VUswjq
results in the following extend open-loop system
_ [0 1 0 0 1 [ 0 ]
e.Ivswjd 0 1 O wwj eI”swjd Iw]d
Uswjd wa]-waj Usw;d + wa]
é[vswj q 0 0 O 11 eh,squ I O
Uswjq 0 Wap,; 0 Usw,q w;d
i ’ Crw; Bfuw, L Cuw,
. . Ar; (4.137)
. 1 0 _Ugwjd
+ waj Uew; Ay d 4 0
0 O1 Ucw; Oy g —Vgw;q
0 _ 0
i Cfuj]
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Let us consider the reference model

elvsw]-d,m 0 1 0 O elvswjd,m
bswjd,m _ _kIOéwjd _Caw]-d 0 0 Usw;d,m
éIUsqu,m 0 0 0 1 elvsquym
Vsw;q,m 0 0 _kfaqu _Caqu Usw,;q,m
ne (4.138)
__ 0
0 Uswjd
o
Caw]-dvswd + O
o
0 _Usqu
o
CaquUSIUq O

It is evident that Ay, is Hurwitz. If all system parameters are known, ay; 4q can
be developed as

_ Cf'wj ijd Usw;d

— + W Vs
Ucw; waj waijwj et

+Cawjd ' e'Uswjd + klawjd ’ eIawjd}

4.139
o = Cruj (fwjq — Vswyq ( )
T wew; Cru; CruyRpw,
+Cawjd ’ evswjd + k]awjd : elawjd}
so that the closed-loop of the system (4.137) becomes
élvswjd e]vswjd 0 _v;)wjd
Vs, Vs, Canya VS 0
. swjd :Amj swjd + (o ]8 Swq + e (4140)
eI'U.squ ejvsqu USIU]'(]
Q.)S’qu Vsw;q Caquvgwq 0

which exhibits the same behavior as the reference model (4.138). However, in the
current study case, since the system parameters are unknown, the controller is
designed as

. ~ . ~
aw;'d— 7[ijd - wajwwjvsqu + waj(caw-d “Cugyq T klaw-d ) elaw-d)]
. ucwj waj J J J J

1 .- Vsw; N A
* 54 ~
Qoiq= [Iw'q - = - wajwwjvswjd + waj (Caqu " Cuswjg + kIaqu : elaqu)]

Ucw; ’ waj
(4.141)
which is based on the estimate of the parameter (-) denoted by (-). Due to the

1 .
nonlinear terms B and Cfy,wy,;, the parameter adjustment of the controller
fw;
(4.141) is a nonlinear parameterized adaptive control problem. For the sake of
simplicity, we perform the change of variables

1

¢1j = ijd; ¢2j = ijq§ 1/}3j = ?
wj

i Yy = Cluw; Wy (4.142)
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and then, rewrite the controller (4.141) in these new variables as
1 . . . .
O[;kujd: le - ¢3jvsw]~d + w4jvsqu - wajvozw].d]
Yowg = ) . (4.143)
a’TJJ]‘q: [TZJQJ- - 1/}3jvsqu - 1/}4jvswjd - waj'v()équ]
Ucw;

Now, the parameter adjustment of the controller becomes a linear parameter adap-
tive control problem. Substituting (4.143) into the zero dynamics (4.125), we get

1 0 0 0 0
éIUSWjd 0 Ofwj 0 0 eluswjd waj c °
Vsw;d Cruw, A Vswyd | Cru, aw;dVswg
€lvsusq o 0 1 0 Y €rvg, 0
’[)squ 0 0 0 wa] 'Usqu waj 15}
L waj - waj Sega e i
[0 0 0 0 _
1 1 1 Y1, —° d
0 — Vswid v T 5Wj
N Cw; C'tuw; 53 Ctuw, o Yo, n 0
0 (1) . 0 . 0 1@3 y —vgwj q
0 - P 2| L 0
I waj wa swjq waj Uswj d_ J
(4.144)
which can be rewritten as
1 0 0 0
e‘IUswjd O Cf’u)] 0 0 eIUswjd
'e’Uswjd — wa] Am evswjd
€lvgu;q 0 0 1 A 0 T le Tvsu,q
évsqu O O 0 waJ evsqu
L Cruw; | i (4.145)
0 0 0 0
1 1 1 iy
0 ———Vswid = VUsws, o
+ Cf wj C'f wj o Cf wj i %}21’
0 0 0 0 @Z)3j
1 1 1 &
_ _ 4,
i Cru,  Cpuy ™0 " Cpy, 0] 5

where 12)(,) = — 1@(,) denotes the error between the parameter’s estimated value
and its actual value. Although the exact value of Cf,; is unknown, we can confirm
that Cy,, is positive. The classical adaptive law can be given by
(f’fwj: sgn(Cry;) = 1
#lj: _Cljevswjd
%J‘: TC2€vsu5q (4.146)

¢3j: C3; (evsw].dvswjd + evsquvsqu)

¢4j: Cq; (evsu)quswjd - eUswjdvsqu)
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where the adaptive gains c1234; are positive. We consider a quadratic positive
definite function as

1 1 1
V: icfwj (e’l2)sw7.d + egswjd) + ikjo‘wjde%’umujd + §k1awj-q€%’vsqu (4 147)
L o= 1 72 72 72 )
+261j Vi, + 202, Vs, + 2cs, Vs, + 2c1, v,
whose derivative is deduced as
V :_Cawjde’l%swjd - Caquez%sw],q S O (4]‘48)

Since V is non-positive, we have V(t) < V(t = 0) and hence Cosu; dgr CT0s; dg
and 1/;172,374]. are bounded. Furth9rmore, V can be calculated, Which contains only
bounded terms. Consequently, V is also bounded and then V is uniformly con-
tinuous. Based on Barbalat’s lemma, we get V — 0 ast — oo. It reveals that
Coajdg 0 as t — oo. Finally, the adaptive controller is developed, which is
composed by (4.143) and (4.146).

4.3.4.2 Step 2: design of g

o
swjdg’

behavior is governed by the zero dynamics (4.131) whose state variables, ucg, , ig,,

From the previous section, we get that, when vg,; 4, converge to v the system

Uew;, Uety, and 4., are uncontrolled. Again, we want to regulate these states via
o - In this part, the control algorithm for of , is based on (4.131) where o7 , are

considered as control variables and d;‘l}jy 4o are considered equal to their steady-state

q

values Qu;dg = ——
Ucw;

We first consider using the following simple proportional controllers for oz;_ d

x ~ _
ag1d_ —kpucgl;u’cgl + Qg d

4 o (4.149)
agpd: —kpigpdlgpd + Og,d

with positive control gains ]fpucgl and k‘pigpd. From (4.149), it can be seen that

~ ~ % .
when g, and iz, converge to zero, a gid also converge to their steady-state values.
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Substituting (4.149) into (4.131) results in the following closed-loop system

1
du 2L U .
Cy, dctg1 =71 3 = R {[_R Cg} + H(1,:)ic]
o7, + Z(_kPucgl Ucgy + dgld)z edu.g1
g1
3 N _ - _
_§[R91u091 (_kPucgl Ucgy + @gld)z - Usgld(_kpucgl Ucg, + 0gya)l}
1
dig 4 2L ig,d
Cgp ;tp = 1 3 = ~ ~ {[_R gp.
f + Z(_kpig”ngpd + Oégpd)2 cdaut9e
9p N
+(_kPigpd7:gpd + @gpd)H(p7 :)ic]
3 . ~ _
+§[(Uspd — Rgngpd)(_kPigdegpd + Oégpd)2]}
1
AUy 2L, Uew; o
ij dcl;w]: 1 3 3 = B {{_R Cu_}] ) +H(N+]7>ZC]
5L + 1[(0‘:1jd>2 + (aq*yjq)2] et
wj
3 _ x _ _
_i[Rw]- Ucw; ((O‘Z;jd)2 + (aqu)2> - (Ugwjda:;}jd + vgquaz’jq)]
d
Cy, “?h = H(N + M +h,)ic
1) .
Lckd—;k: —Reyic, — H(: k) ue

(4.150)
To check the stability of the above closed-loop system, we linearize the system

(4.150) around the equilibrium point and then get the following Jacobian matrix

Ty — -0, 0‘1@2@3H
>~ |- 'HTe5'0y -L7'R
where ©1 234 are given by
61 = dlag(e%a Tty 6]1V+M+P)
92 — diag(U‘%, ‘T U?V-i—M—i—P) (4 151)
03 = diag(of, -+, 0}) '
04 = diag(of, -+, a‘i)

Keeping in mind that the steady-state value of iy, 4 equals its prescribed setpoint

. _ _ = . _ Lg;d
gpd and the relation between dg,q, ticg; and ig,q satisfy ag,q = 9% then we can

CGi

1
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deduced the elements of ©1234 as

1

2L4,Cyy 1

1 +3

2L 4

1

B 2L,,Cy, [ 1
| 3

ST Z(%Pd)Q

3

= 2 Requi,gl 2

(tgya)

g1

3 _
+ §Rgp (Oégpd)z

fiequi,g,J

9p

3
+ kpigpd [7

5 . Q(Usgpd — Rgpggpd)@gpd + H(p, Z)gc],

1
2L, C, 1

3 ~ {R i,wj
+ (0,02 + ()2 et

1
Onyj = 1
2Ly,

9(1N+M+h) - (i

2Lg,

1 3, _ ’
+ Z(O‘gld)2

1
2L,
1 3,_ ’
+ Z(O‘gpd)2
1
0 2L,
N+ 1 3 * 2 * 2 ’

91:17
05 = ag,q, pEN_4
jEeEM
heP

Qﬁ =1 +kPigpdanp7 P e N_1
jeM
heP

4
9N+j = 17

4 _
Oniariny) = 1
When the system is in steady state, we have

. ngd
Requj:!]p

B 3
+ SRy, (O‘g1d)2 + 5

3
+ —

_ .3 L
+ Oégde(P, :)'Lc - §[Rgplg,,d(agpd)2

(vsgld - 2Rglggld)kjpucg1:|7

5 jeM

heP

(4.152)

— Qg,d(Vsg,d0yg,a)] =0
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which leads to

= u 3 . _
H(p,:)ic = 4 7(Rgp7/gpd - Usgpd)agpd (4.153)
fiequi,g,J 2

Substituting (4.153) into 0; in (4.152) yields

1
2L,,C,, 1 3.

e S v et LA G
1 %A equi,gp 4.154
oz, 4% 30

. u
+kPigpd[§(Usgpd - Rgplgpd)agpd + ﬁ]}
IpP

To ensure the stability of the closed-loop system (4.150), the control gains must
render the Jacobian matrix Jo Hurwitz.

Lemma 4.3.7. By choosing kpigpd such that

1+ kPig_gdﬂcgp> 0
1 3 B 3 = _ ch
T + iRgp (Ozgpd)Q + kPigpd[g(vsgpd - Rgngpd)agpd + R7p]> 0
equi,g, €qu,gp

(4.155)

Jo 1s Hurwitz.

Proof. When kp;, 4 satisfies (4.155), then ©4 becomes positive define. By the def-
inition of O 2 (see (4.151)), both of them are diagonal and positive definite. By
following the similar procedure used in the proof of Lemma 4.3.6, we can prove that
Jo is Hurwitz. O

The above description clearly shows that the simple proportional controller
(4.149) can stabilize the zero dynamics (4.131). To get good tracking performance,
we use the PI controllers to replace the proportional controllers as

Clucg, — Uegy
* _ — 77 —_—
Xgrd= ~ kPucgl Ucgy kIucgl €lucg,
eligpd: Zg,,d

* . 7 _ . .
agpd— _kPngngpd kI’Lgpdellgpd

(4.156)

with the integrated errors and positive control gains kp(.).

Of course, there are different approaches to choosing the PI control gains. As
presented in [Lee 2003], the absolute tracking results for Lur’e plants is applied
to get a criterion for tuning the control gain. It can also be used to deduce the
constraints for kp() and kp(.) via linearization. In this thesis, we are not tangled
on this issue. Finally, the overall control structure are built, which is composed of
(4.122), (4.156) and the adaptive law (4.146).
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Table 4.9: Initial values of the system state variables.

SAC 1 SAC 2
Ueg, = U2y, =150 V Ggod = ig,q = 13.1 A
igig =19, =0A Ggoqg = lgyg =0 A
WAC 1 WAC 2
Vswid = Vg g = 40.82 V| Vsypd = 05,4 = 40.82 V
Vswiqg = Ugwlq =0V Uswaq = Ungq =0V

4.3.5 Simulation studies

In this section, we first apply the passive control scheme which is composed of
(4.124), (4.127) and (4.149) to the MTDC system described by Fig. 4.21 and then
apply the adaptive passive control scheme which consists of (4.124), (4.143), (4.146)
and (4.149) to the same MTDC system.

4.3.5.1 Performance evaluation of the passive control strategy

The proposed passive control scheme composed of (4.124), (4.127) and (4.149) is
applied to the MTDC system described by Fig. 4.21 in Section 4.1.4 where two
WACs and two SACs are considered. To evaluate the performance of the proposed
control scheme, several scenarios are studied in the simulations.

Scenario 1: DC voltage regulation and power reversal operation

Initially, the MTDC system works in the steady state as illustrated in Table 4.9. At
t=0.5s, ig, 4 is set to —6.53 A from 13.1 A. It means that the 2°4 SAC connected
VSC is required to operate in the inversion mode as a power consumer from the
rectification mode as a power supplier. Then, at ¢ = 1 s, a new reference value of
Ucg, 18 given with an increase of 5%.

The simulation results are shown in Figs. 4.39- 4.44. As shown in Fig. 4.39, both
controllers can make ucg, always track its reference ug,, . However, when the power
reversal happens in the 24 SAC connected VSC terminal, the trajectory of Ueg,
under the feedback nonlinear controller drops very fast and has an unacceptable
undershoot. Compared to the feedback nonlinear controller, the passivity-based
controller gives a much better performance with a faster convergence and keeps g,
within its acceptable region. As illustrated in Figs. 4.40 and 4.41, the changes of ug,,
and ig , have negligible effects on the performance of 44,4 (and ig,q) under feedback
nonlinear controller while remarkable overshoot (and undershoot) appears when
the passivity-based controller is used. These phenomena imply that the feedback
nonlinear controller always provides a better decoupling characteristics of the DC
voltage (or the AC d— axis current) and the AC ¢g— axis current control than the
passivity-based controller. Figs. 4.43 and 4.44 depict the response of vy, ape under
the feedback nonlinear controller and the passivity-based controller. Both of them
ensure that the WAC connected VSC terminal operates at the fixed AC voltage
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magnitude and the fixed AC frequency in spite of the change of DC voltage or the
power reversal of the 2" SAC connected VSC terminal.
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Figure 4.39: The response of u.g, (a) Feedback nonlinear controller. (b) Passivity-
based controller.
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Figure 4.40: The response of i4,, (a) Feedback nonlinear controller. (b) Passivity-
based controller.
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Figure 4.41: The response of ig,q (a) Feedback nonlinear controller. (b) Passivity-
based controller.
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Figure 4.42: The response of i4,, (a) Feedback nonlinear controller. (b) Passivity-
based controller.
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Figure 4.43: The response of vy, qbe using feedback nonlinear controller.
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Figure 4.44: The response of vy, qbe using passivity-based controller.

Scenario 2: AC voltage regulation

To evaluate the capability of the passivity-based controller in terms of AC voltage
regulation, the step changes of vg, , and vg,,, are considered in this scenario. Sim-
ilar to Scenario 1, the MTDC system initially operates in the steady state provided
by Table 4.9. At ¢ = 0.5 s and ¢t = 15, vg, ; and vg,,, are changed to 61.24 V
and 20.41 V respectively. The simulation results are plotted in Figs. 4.45-4.49. The
transient response of u.g, is illustrated in Fig. 4.45. It is evident that the perfor-
mance of u.y, under the passivity-based controller is much better than the feedback
nonlinear controller. Less oscillations, smaller overshoots and faster response con-
vergence are found in the trajectory of wu.y, under the passivity-based controller.
Similar to the results in Scenario 1, Figs. 4.46-4.49 clearly show that the feedback
nonlinear controller gives a better decoupling characteristics of the AC d— axis and
g— axis voltage control.
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Figure 4.45: The response of u.,, (a) Feedback nonlinear controller. (b) Passivity-
based controller.
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Figure 4.46: The response of vg,, 4 (a) Feedback nonlinear controller. (b) Passivity-
based controller.
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Figure 4.47: The response of vsy,4 (a) Feedback nonlinear controller. (b) Passivity-
based controller.
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Figure 4.48: The response of vg,,q (a) Feedback nonlinear controller. (b) Passivity-
based controller.
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Figure 4.49: The response of vgy,q (a) Feedback nonlinear controller. (b) Passivity-
based controller.

4.3.5.2 Performance evaluation of the adaptive passive control strategy

Simulations are carried out to compare the performance between the adaptive con-
troller and the nominal controller where Ry,, and Ry, are unknown. For the
nominal controller, Rf,, and Rpy,, are considered equal to their nominal values
R, nom = 5 Q and Ry, nom = 8 €2 respectively. The MTDC system initially op-
erates in the steady state provided by Table 4.9. Then, a sequence of events applied
to Ry, and Ry, are depicted in Figs. 4.50 and 4.51.

The simulation results are shown in Figs. 4.52-4.59. As presented in Figs. 4.52
and 4.55, only when the actual values of Ry, and Ry, equal their nominal values,

the nominal controller can make vgy,q and vgy,q accurately track their reference

o
Swa

see the trajectories of vgy, ¢ and vgy,q during the intervals [0.5, 0.7] s and [0.9, 1.1]
s in in Figs. 4.52 and 4.55.) Thanks to the adaptive law, vsy,q and vew,q can
be always kept at their reference values after short transients under the adaptive
passivity-based controller. Figs. 4.53 and 4.56 also clearly show that the nominal
controller can not make the amplitude of WAC’s AC voltage at the PCC operate at
constant level while the adaptive passivity-based controller has this ability in spite
of the change of Ry, and Ry,,.

trajectories vy, , and vy, ;. If this is not the case, the steady-state errors exist (

Figures 4.58 and 4.59 illustrate the actual system parameters and their estimated
values. Interesting, we find that the estimated values (3, and 13,) are not exactly
equal to their actual values (3, and 3,). This phenomenon does not surprise us
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Figure 4.50: Variations in Ry, .
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Figure 4.51: Variations in Rp,,.
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Figure 4.52: The response of vg,, ¢ (a) Nominal passivity-based controller (b) Adap-
tive passivity-based controller (c) Reference values of vg, ;= 40.82 V.

since the adaptive law (4.146) is used to provide the way to adjust the parameters
of the passivity-based controller but does not ensure that the estimated parameters
converge to their actual values.

4.4 Chapter conclusions

This chapter has presented different control strategies for VSC HVDC systems. The
input-output feedback linearization technique is first applied to the control design.
Comparing to the conventional Pl controller, the feedback nonlinear controller gives
a better decoupling characteristics of the system state control. Since the perfor-
mance of the feedback nonlinear system is relevant to the system structure and
parameters, in order to make the system be more robust, sliding mode control is
used combined with feedback linearization. Due to the use of sliding mode control,
the uncertainties of the system parameters and other possible exogenous inputs are
taken into account. As stated in Section 4.1.4, if it is natural to choose the con-
trolled variables as the output (see (4.56)), the input-output feedback linearization
is applicable only when the system is (weakly) minimum phase (see Lemma 4.1.2).
This restricts the choice of those prescribed references. To deal with this problem,
we find a passive output defined by (4.107) by means of passivity theory. It turns
out that the MTDC system with the passive output is munimum phase. Following
the input-output feedback linearizaiton procedure, the control algorithm (4.122) is
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Figure 4.53: The response of vy, 45 under the nominal passivity-based controller.
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Figure 4.54: The response of vy, 45 under the adaptive passivity-based controller.
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Figure 4.55: The response of vgy,q4 (a) Nominal passivity-based controller (b) Adap-

tive passivity-based controller (c¢) Reference values of Vgppq = 40.82 V.
50
S
Q
8 O
;N
%]
>
=04 0.5 0.6 0.7 0.8 0.9 1 1.1

Time (s)

Figure 4.56: The response of vy, qpc under the nominal passivity-based controller.
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Figure 4.57: The response of vy, 45 under the adaptive passivity-based controller.
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developed. When the output perfectly approaches to zero, the dynamics of ey, , 7,4
i,

and vgy, 4q are eventually governed by the zero dynamics (4.115). Regulating “9i.dq

C9i

lg,.d . g ig;.d . "
and 2% {6 the desired g idq and f’ q, obtained from the steady-state condition
Ucw; Ucg; Ucw;
(4.96), indirectly drives ucg,, ig,4 and Vg, dq to the prescribed values. However,

due to the uncertainties of the system, it is usually difficult to get the accurate

lg,.d ig;,dg
values of 2% and 2222 Moreover, the convergence rate of the uncontrolled states

ucgi ucw]
of the zero dynamics totally depends on the system parameters. Thus, to get a

better tracking performance and improve the dynamics of those uncontrolled state

variables, the control law (4.156) for o , and ., 4, is derived based on the zero
9i,dq -4

dynamics.
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A common assumption used in the vector current control design (see Section
3.5.2) of VSCs is that the reactor phase currents have much faster dynamics than
the capacitor DC voltage. Hence, the two loops, i.e. the inner and the outer loop,
can be designed independently. Interestingly, no relevant work has ever mathemat-
ically explained the validity and the implications of this hypothesis. The main idea
of this chapter is to provide a detailed theoretical analysis, inspired by a long stand
practice that consists of empirical design of two control loops for the VSC termi-
nals. Furthermore, experience has shown that such loops, when heuristically tuned,
often display very different dynamics. Here, we acknowledge this practice and give
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explanation and fundamental analysis on why and how this empirical control prac-
tice works, and how to rigorously design the algorithms. In particular, we formalize
this intuition from practitioners into a control scheme that artificially induces two
different time scales to the closed-loop system. From the theoretical analysis, the
time-scale separation between the system state variables are clearly illustrated by
means of singular perturbation theory. In this way, the controller allows the full-
scale system to be divided into a boundary-layer and a reduced model. These two
models are the key point in the designing of the full control scheme, and they greatly
reduce the complexity of the task. Furthermore, in this chapter, our analysis allows
to determine strict attraction regions based on well determined control gains, such
that there is a clear trade-off between system performance (actuators constraints
and as a consequence cost) and the size of the region of attraction of the controllers.

5.1 Control induced time-scale separation for a class of
nonlinear systems

5.1.1 Introduction and motivation

This section aims at providing a multi-layered control architecture for a class
of underactuated nonlinear systems. The control of such systems, for exam-
ple several robotic systems and even the well known pendulum-cart problem
[Spong 1994, Spong 1995, Ortega 2002], is classical. Nevertheless, it is rather dif-
ficult to propose systematic control design approaches for them. One of the main
reasons for this difficulty comes from the interconnection between subsystems. In
fact, most analytical approaches based on rigorous mathematical techniques rely on
trajectory design. However, the trajectories are usually difficult to develop due to
the subsystems’ interaction. Furthermore, if additional subsystems are added or
control goals are required, the existing control algorithms need to be re-designed,
which involves extra re-engineering efforts. This motivates the development of a
more flexible and more functional control structure.

Inspired by "plug and play philosophy" [Pernebo 2002, Bendtsen 2013,
Riverso 2013], we desire to build a control structure that consists of a "fundamen-
tal" control module and various "outer" control modules as shown in Fig. 5.1. In
this way, when a new objective, such as Objective 1 (see Fig. 5.1), is required,
we just need to connect the corresponding outer control module, i.e. Outer control
module 1, to the fundamental control module without decommissioning the whole
existing control structure or re-designing a new control algorithm from the full-scale
model. Thus, it is recommendable to develop new control functionality based on the
existing fundamental module. This control design concept is attractive since it can
greatly reduce the complexity of the algorithm. However, the difficulty here is how
to design the fundamental and the outer control modules since such interconnected
control scheme may easily lead to a circular reasoning, and to stability issues.

For years, multi-time-scale analysis has been exploited to derive modular struc-
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Fundamental Control
Module

Module 2

Figure 5.1: A description of the proposed control scheme.

tures [Simon 1962]. In a mathematical sense, dynamical systems that exhibit multi-
time-scale behavior can be described as singularly perturbed systems. The most
prominent feature of singularly perturbed systems is that the derivatives of their par-
tial states are multiplied by a small positive parameter € which is used to quantify the
time-scale decomposition [Del Vecchio 2013, Chen 2013, Yang 2011, Petersen 2013,
Teel 2003]. Based on singular perturbation theory, lower-order subsystems in differ-
ent time scales can be derived to approximate the behavior of the original system.
The main results of singular perturbation theory have existed for several decades
[Kokotovic 1968, Kokotovic 1976, Kokotovic 1999, Khalil 1996] and they have been
widely applied in the context of the dynamic modeling and analysis of power sys-
tems [Kokotovic 1980, Winkelman 1980, Xu 1998, Peponides 1982, Martinez 2007,
Xin 2010, Pekarek 2002, Xu 2000]. In [Kokotovic 1980], an iterative approach for
time-scale separation is proposed, which improves the accuracy of the lower-order
subsystems. Furthermore, an application of this iterative separation method is pre-
sented in [Winkelman 1980] where a 20" order model of a three-machine power
system is analyzed as a two-time-scale and a four-time-scale systems. Reference
[Xu 1998] investigates the reformulation of a full model of generators and their
controllers, which demonstrates that singular perturbation method can provide an
effective approach to simulating the system behavior. Recently, singular perturba-
tion theory is also employed in analyzing some power electronics. In [Kimball 2008],
singular perturbation theory is applied to analyze DC-DC converters and a rigorous
demonstration of the time-scale separation is also given. In those prior works, the
considered power systems or power converters can be usually modeled by a standard
form of singularly perturbed system, which means that € can be directly obtained
from the system model. However, many nonlinear systems are not expressed in
the standard form. It means that € cannot be deduced directly from the system
parameters. In this case, high-gain technique, which has the ability to reduce some
effects of disturbances, provides a design approach such that the multi-time-scale
dynamics can be created by the control gains. There are many studies devoted to
the use of high-gain feedback applied to control problems [Khalil 1987, Marino 1985,
Young 1977, Marino 1988, Krishnamurthy 2007, Krishnamurthy 2013|. Our inter-
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est here is the linkage between the high-gain technique and the singularly perturbed
system. In general, a nonlinear system with a high-gain control can be analyzed as
a singular perturbed system [Marino 1985, Krishnamurthy 2013].

In this thesis, we further investigate the use of high-gain and singular pertur-
bation techniques to develop a systematic control method for a class of nonlinear
systems with multiple inputs and multiple outputs. The control system is desired
to separate the original system into different time-scale subsystems, with the aim
of creating a "plug and play" characteristic. Here we define a class of nonlinear
systems in the form

= fi,y) + g1z, y)u (5.1)

Y= f? (I‘, y)
where x € D, C R" and y € D, C R™ are the state variables and v € D,, C R" is
the control input. fi2 and g; are continuously differentiable in their arguments for
(t, z, y) € [0, tf] x D, x Dy. This type of nonlinear system is similar to underactu-
ated mechanical system [Spong 1994 where the system’s degree of freedom is larger
than the actuated degree of freedom. In addition, part of the state variables, i.e. x,
is collocated with the input u. We first divide the full system into two subsystems,
i.e. a driving subsystem and a driven subsystem represented by the dynamics of
x and y in (5.1), respectively and then, we develop a subcontroller such that the
driving subsystem quickly enters an arbitrary manifold z* yet to be designed. Dur-
ing the design process of such subcontroller, the dynamics of 2* are neglected. The
fundamental control module is then established, which is composed of the driving
subsystem and its subcontroller. The interaction between the fundamental and the
outer control modules is given by x*. Different outer control modules could provide
different corresponding manifolds. It is true that not all * from the outer modules
can be accepted by the fundamental control module. Therefore, in this work, a rig-
orous theoretical analysis based on singular perturbation theory is carried out, from
which conditions on the design of the fundamental and the outer control modules
are derived to ensure the system stability. We further investigate the importance of
the time-scale separation between the fundamental and the outer control modules
based on Lyapunov theory.

5.1.2 Problem formulation

Considering the nonlinear system (5.1), we assume that it can be expressed as

1= fui(z1, 22,91, ¥2) + g1 (21, T2, Y1, Y2)u (5.2)
Zo= fra(x1, 22, y1,Y2) + g12(21, T2, Y1, Y2)u

1= for(z1, 22, Y1, y2) (5.3)
Yo= fao(x1,22,y1,Y2)
where the system states x and y are partitioned into two vector parts, 1 € Dy, C
RP 290 € Dy, CR"P y1 € Dy, C R™P=" and yy € D,, C R"7P. pis a non-
negative integer and satisfies n — m < p < n. In addition, D, and D, satisfy D, =
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{(z1, z2) | 21 € Dy, and x3 € Dy, } and Dy = {(y1, y2) | y1 € Dy, and yo € Dy, }.
The functions f;; and g1; with 4,7 = 1,2 are continuously differentiable in their
arguments. We define the control output as

52 [z o] €R™ (5.4)

Let s°, i.e. [z9 yg]T, be a prescribed setpoint. The main purpose of this work is to
establish a flexible control scheme that regulates s at the prescribed setpoint s° and
at the same time, ensures the system stability. Here, we first introduce the following
assumptions to describe the characteristics of the system (5.2)-(5.3).

Assumption 5.1.1. For a given s° = [29 y9]7
values of T1, To, Y1, Y2 and u such that

, there exist corresponding steady

0= f11(Z1,Z2, Y1, 72) + 911(Z1, T2, U1, §2)U
0= fi2(Z1, T2, Y1, J2) + g12(Z1, T2, U1, §2)U
0= fo1(Z1, %2, Y1, Y2) (5.5)
0= f22(Z1, T2, Y1, ¥2) '
l‘(l): T
Y5= 92

where 1 € Dy, , T2 € Dy,, y1 € Dy, and yo € Dy,. We denote Py = (71 Zo 71 92"

as the equilibrium point.

Under Assumption 5.1.1, the existence of the equilibrium point of the system
(5.2)-(5.3) is ensured, which implies the physical feasibility of the system.

Assumption 5.1.2. f;;, g1 and their partial derivatives up to the first order are
continuously differentiable and bounded in [0, tf] X Dy, X Dy, X Dy, x Dy, where
i,j =1,2.

I

Assumption 5.1.3. For (z, y) € Dy x Dy, g1 = [g11 g12]" is non-singular and gl_1

1§ continuously differentiable.

With Assumptions 5.1.2-5.1.3, the functions f;;, g1; and gfl are locally Lipschitz,
as continuous functions are locally bounded and hence their gradients are locally
bounded as well.

Assumption 5.1.4. Consider the following subsystem with Assumption 5.1.1

1= fo1(2f, x2,y1,92) (5.6)
Yo= fo2(2%, 22, Y1, y2)
where x2 can be viewed as the auxiliary control input. It is obvious that P, = (U1 gQ}T
is an equilibrium of the subsystem (5.6) as xo = To. We suppose that information

of 2 = ha(y1, Y2, 29,y5) € Dy, is available such that:

1) The function hy yet to be designed has continuous first partial derivatives with
respect to its arguments. In addition, when ya =y, we have

hQ(’glv Y2, aj‘lja y(Q)) = X2
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2) Py = (g1 9o]T is an equilibrium of the following closed-loop system

1= for1 (29, h2,y1,92) (5.7)
Vo= fa2(x7, ha2,y1,92)

Moreover, Py is exponentially stable in a region (y1, y2) € By, x By, where
By, C Dy, and By, C D,,.

To get a better understanding of Assumption 5.1.2-5.1.4, we consider the follow-

[.%"1:|_ [:le'Q + T1Y1 — 2:| n I:.%'l 0 :| I:ul]
io| | 234wy — 1 Y1 w12 (U2
Y1= T1y1 — T2
s= [z yﬂT
where 15 € [0.5,1.5], y1 € [0.5,2] and s° = [1 1]
Assumption 5.1.2 is satisfied due to the boundedness of x12 and y;2. Since
(Z1, T2, Y1, Y2, U1, u2) = (1,1,1,1,0,—1) that satisfies (5.8), Assumption 5.1.1 is also
verified. The inverse matrix of g; can be deduced as:

1
= 0
91_1 = _xi’lJl 1
x%xz 12
which is continuously differentiable for ;9 € [0.5,1.5] and y; € [0.5,2]. Thus,
Assumption 5.1.3 is satisfied. When z9 = 1, the subsystem of (5.8) becomes:

ing example

(5.8)

=z — 1 (5.9)
In this way, 2 is the auxiliary control input of (5.9). Then, x1 can be designed as:

—(pn—1)+1
w1 = hy = (y1—1)+
Y1

such that the closed-loop system of (5.9) becomes:

7 =—(y1—1)

whose equilibrium g = 1 is exponentially stable. Finally, Assumption 5.1.4 is veri-
fied.

5.1.3 Control design

In general, control algorithms are strongly related to the system control objectives.
Once these control objectives are changed, the existing controller usually has to be
decommissioned and then, new control algorithms need to be re-engineered from
scratch. For example, considering the studied system (5.2)-(5.3), there exist two
different outputs, i.e. s1 = [z} y3]7 € R™ and s = [27 y3]T € R" where 2] € RP1,
2?2 € RP2 and p; # pa. We apply input-output feedback linearization methodology
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to design the control scheme. When the system is required to track the reference
from s; to sg, the entire control scheme must be redesigned since the corresponding
Lie derivatives are totally changed. Here, we aim at establishing a more flexible
control scheme such that different control objectives can be achieved based on the
existing control structure.

The described system (5.2)-(5.3) has fewer control inputs (n) than state vari-
ables (n + m). In addition, v has an explicit effect on z and they have the same
degree of freedom. The above aspects prompt us to divide the full system into two
interconnected subsystems. The state variable x collocated with the control input u
is called the driving state. We denote the dynamics of 1 2 described by (5.2) as the
driving subsystem. As seen in (5.3), x1 and x5 can be viewed as the control inputs,
which implies that v indirectly influences the behavior of y through x. Hence, y
and (5.3) is called the driven state and the driven subsystem. Such solution to the
division of the full system into two parts is inspired by underactuated mechanical
systems [Spong 1994].

We suppose that the proposed control scheme can make the system (5.2)-(5.3)
exhibit a multi-time-scale behavior where the driving subsystem has much faster
dynamics than the driven subsystem. Based on this assumption, the two subsystems
can be then designed independently.

5.1.3.1 Design of the driving subsystem
Step 5.1.5. For a given xg € D, let us impose the following autonomous system
& =—A1(x —x0) + ri(x, zo) (5.10)

where A1 = diag(ay;) € R™*™ yet to be designed. We denote a; = min(aq1,- - , ain).
The system (5.10) is designed as

1. ri(x,xz0) is a continuously differentiable function and ri(xzg,z9) = 0. As a
consequence, for a positive 1, there exists by > 0 such that, when x € By, =
{z € Dg| ||z — x0|| < b1}, we have

[Ir1 (2, o) || < mllz — zol| (5.11)
2. a1 1is assigned to satisfy
Mt <a

where c1 s a positive parameter.

Lemma 5.1.6. The equilibrium point x = xg of (5.10) is exponentially stable in
B, .

Proof. We choose the Lyapunov function as

Vi(x —xo) = %(1‘ — xQ)T(I — x0)
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The derivative of V; along the trajectory of (5.10) is

A< —[ A4l [l — 2ol 2 + (& — 20) 1 (2, 20)

5.12
< —(a1 —y)llz — 2|2 = —e1l|z — o) (5.12)

Hence, Lemma (5.1.6) is proved. O

The values of v1, a1 and by are strongly dependent on each other. For erample,
considering the following system

it=—ar+12°—=x

we then have o =0, a1 = a and r = 2> — 2. If 1 = 3, there exists by = 2 such that
(5.11) is satisfied. In this case, ai should be chosen larger than 3+ c1. If a larger 1
s given, i.e. y1 = 8, a new by = 3 is then deduced. We obtain a new condition for
ai, t.e. ay > 94 cy. It is clear that a larger vy, results in a smaller feasible region
for ay.

When 1 is fized, the linear term —A(x — x¢) dominates the behavior of the
autonomous system (5.10) in B,,. Consequently, the dynamics of (5.10) can be
requlated by Aj.

Step 5.1.7. Supposing that there exists o reference x* € D, and with the acknowl-
edge of (5.10), we then develop a subcontroller u = hy(xz,y,z*) as

u= gy (z,y)[~Ai(e — o) + (e, 2%) = filz,y)] (5.13)
such that the closed-loop system of the driving subsystem becomes
t=—-Ai1(x —2%) 4+ ri(z,z")
The only information on z* is that it has a much slower dynamic than z. As
seen in (5.13), the derivative of x* is neglected in the subcontroller.

5.1.3.2 Design of the driven subsystem

Step 5.1.8. The main task in this step is to develop the unknown reference x* that
must be tracked by the driving subsystem. Since we suppose that x* has a very slow
dynamic, a large a1 can then be chosen such that the state variable of the driving
subsystem x quickly enters x*. Then, the driven subsystem becomes

ylz f21($T737§7y17y2) (5 14)
yQZ f22(x>{7x§7y17y2)

which is called the reduced model. Because x1 is required to track its reference tra-
jectory, x7 can be directly given by:

x] =9 (5.15)
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Thus, the reduced model (5.14) becomes

ylz f21(33(177$§7y1792) (5 ].6)
92: f22($§7$§7y1792)

According to Assumption 5.1.4, there exists

xy = ha(y1, y2, 29, 5) (5.17)
such that the reduced model (5.14) is exponentially stable.

Until now, the entire control algorithm is developed, consisting of two subcon-
trollers, i.e. u = hi(x,y,z*) and =* = [z9 ha(y1, 2, 2$,99)]7, which are derived
from two lower order subsystems, i.e. the driving and the driven subsystems. As
mentioned in the previous section, the driving subsystem (5.2) with its subcon-
troller w = hq composes the fundamental control module and the reduced model of
the driven subsystem (5.14) with its subcontroller x* constitutes the outer control
module. Furthermore, the proposed control structure has plug and play capabilities.
When a new objective is required, we only need to design a new corresponding outer
control module that provides a new z* to the fundamental control module without
abandoning the whole existing control structure. Different outer control modules
share the same fundamental control module. 2* is thus considered as the tie that
binds the fundamental and the outer control modules together. In addition, the new
outer control module is designed based on the reduced model where the dynamics
of x are neglected. This greatly simplifies the problem.

5.1.4 Theoretical study

During the design procedure in Section 5.1.3, we assume that the dynamics of the
driving and the driven subsystems can be divided into different time scales with
the aid of the proposed control methodology. In this section, we first verify this
assumption by means of singular perturbation theory. Subsequently, we carry out
a theoretical stability analysis, from which sufficient conditions for the construction
of the fundamental and the outer control modules are derived.

5.1.4.1 Multi-time-scale dynamics

In this section, we present how the system (5.2)-(5.3) exhibits a multi-time-scale
behavior under the proposed controller. Substituting the control algorithm (5.13),
(5.15) and (5.17) into the original system (5.1), we then obtain the following closed-
loop system
= —Ai(x — ")+ ri(z,z%)
Y= f2 ('T» y)

Let us introduce a new variable € which satisfies

(5.18)

e-a1=1
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The system (5.18) can be rewritten as

ei= —Aic(x — %) + ery(z, z*)

= fa(z,y) (519

where A;. = diag(eay;). Denoting a1;,, = €ay;, we then have ay;. > 11, for all i =
1,---,n. When ¢ is small enough, our problem (5.19) becomes a standard singular
perturbation problem. By setting € = 0, the driving subsystem is degenerated into
the algebraic loop, i.e. Aj(z —2*) = 0, from which we can get the isolated root
x = z*. We call z* the quasi-steady state of z. By recalling that z] = z¢ in (5.15)
and x5 = hg in (5.17), we substitute x = z* into the driven subsystem and then
obtain

y = f?(xil)7h2(y7x(f7yg)7y) (520)

Due to Assumption 5.1.4, the equilibrium point P, of the reduced model (5.20) is
exponentially stable in B,,. In addition, we denote the solution of (5.20) as y".

In order to analyze the closed-loop system (5.19) more conveniently, we introduce
the following new variables

fl =T — x’{; (EQ = X9 —x;; I = [531 i’Q]T
JL=y1 =5 G2 =ya— U2 §= [ 52]”
In these new variables, the system (5.19) is rewritten as

dz*
dt (5.21)

ei= —A1.7 + er (z +x*,2*) — ¢
J= fo(& + 2%, 5+ 7)
with 2* = [2¢ ho(§ + 9)]T. The origin is the equilibrium point of the system (5.21).
Moreover, there exist maps such that D, — Dz and D, — Dj. The (asymptotic)
stability of the origin of the error system (5.21) implies the (asymptotic) stability
of the equilibrium P; of the system (5.18).
Let us introduce a new time scale 7 which satisfies
dx dzT
E— = —
dt dr
In the 7 time scale, the variables ¢, § and z* are considered slowly varying. We
rewrite the dynamics of Z (in (5.21)) in the 7 time scale

dx h
& Ani+ ery (T +a*,2%) — [0 %?
Y

dr fQ]T

When setting ¢ = 0 and freezing t, y and x* at their initial values, we get the
boundary-layer system
dz

— = —Ad (5.22)

!See the definition of a1 in (5.10).
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whose equilibrium is exponentially stable, uniformly in (,7). Substituting & = 0,
the reduced model of (5.21) is deduced as

= fo(a?, ha(§ + 7,29, 45),5 +7) (5.23)

The above system has an exponentially stable equilibrium at the origin for all §(tg) €
By, where By, can be deduced from B,, based on Assumption 5.1.4.
Now, we can state the following result.

Theorem 5.1.9. Consider the nonlinear system (5.19) with Assumptions 5.1.1-
5.1.4 where x € D, and y € D,. For any given Ai., there exists a positive €* and
a region Ryy C Dy x Dy such that for all 0 < e < &* and (x(to),y(to)) € Ray, the
trajectories of the state vartables can be approxrimated by

x(t) =a"(t) + z(t/e) + O(e)
y(t) =y"(t) + O(e)

where x7¢(t) = [x9 ha(y"(t), 23, y9)].

Proof. As presented in the previous parts:

e The reduced model (5.20) has a unique solution 3" that converges to P;.

e The equilibrium of the boundary-layer model (5.22) is exponentially stable,
uniformly in (¢, 7).

Theorem 5.1.9 is then proved by direct apprehension of Theorem 11.1 in
[Khalil 1996]. O

From the above description, x exhibits a multi-time-scale behavior. During
the initial interval, x quickly converges to its manifold x*, which represents a fast
dynamic. After the decay of the fast transient Z(t/¢), = remains close to z* in
the future time. It is notable that the small positive parameter ¢ in the singularly
perturbed system (5.18) is not derived from the physical system, but is created by
the subcontroller u = hy(x,y,z*). It is shown that, even though the system has no
inherent multi-time-scale dynamics, we can artificially create them by the proposed
control strategy.

5.1.4.2 Stability analysis

Theorem 5.1.9 guarantees the existence of the proposed time-scale separation con-
troller. In this section, we carry out a detailed stability analysis, from which suffi-
cient conditions on the developed controller can be derived by means of Lyapunov
theory.
In order to facilitate the analysis, we rewrite the system (5.21)
8.%1: —A%ai'l +eri
dAp, g

. (5.24)

6.%2: —A%ai‘z +Eryp —¢€

Zj: Aan? + QS(Q)
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where
[A%E 0
0 A2
o(9) = fa(7, ha(§ + 9, 27,93), 9 + )
f(@+2%0+7) = fo(@+ 2%, +9)— fo(2", 7+ 9) +¢
Af257
ha (G + 7,25, 95) = ha(§ + 9,25, y5) —ha(7, 27, y3) +ha

] = Ay [rin o)t =1

Ath

}_L2 = h2(§7 .’I}T, yg)

dAp,g
It can be seen that the terms e—2% and A,z in (5.24) reflect the dynamic inter-
actions between the driving and the driven subsystems. Moreover, Ay,z and Ay,
satisfy

1Apzll = 0 when [[Z]| =0
|&ny5]] = 0 when [|g[| =0

Since ha(y + y,29,99) and fo(Z + 2*,7 + y) are continuously differentiable, there
exist positive L1z and L1 such that

1A poal|< Lazl|z]]

- 5.25
1Ansll< Lugllg] (5.25)

for # € Oz C Dz and § € Qi3 C Dy.
Since the reduced model (5.23) is exponentially stable in B,, C Dy, there exists
a Lyapunov function Vj satisfying

allgl]? < Va(@)< eaf|g|?

oVe . 12
B0 o)< —esllyl] (5.26)
122)1< calg
c
a5 1= 4(1Y
for positive constants ¢;,i =1,--- ,4.

According to Taylor’s theorem, ¢ can be rewritten as

(9) = Apy + 94(9)7 (5.27)

which is called the Peano form of the remainder where

lim g, () = 2
lim g,(5) = 0 (5.28)
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Equation (5.28) means that, for any given L4 > 0, there exists a positive by such
that

9@l < L1y (5.29)

for all § € By, = {§ € Dy| ||9]] < b2}. Tt is worth noting that the values of L1z and
L5 depend on €z and Q5. In general, a larger ©43(15) may result in a larger
L13(L1g). The constants ¢;,4 = 1,--- ,4 are also strongly related to Q.

We take
V =dVi(z) + (1 — d)Va(9)

as a Lyapunov function candidate for the closed-loop system (5.24) where d € (0, 1).
The first part of V, V1(Z), is derived from the boundary-layer model (5.22). Ac-
cording to Lemma 5.1.6, the origin of the system

xL =-A1Z+nr (53)

is exponentially stable in le which corresponds to Bg,. The second term V3 is
obtained from the reduced model. The composition of V(Z,7) in this way provides
us a easier way to search the feasible region of ¢.

The derivative of V along the trajectories (5.24) can be then deduced as

. 7 OA
V =d[—iT Ay + 3T — 25 2 (A s + ¢)]

5
oV-
a? (Ajys + ) (5.30)

+(1—d)

Applying the inequalities (5.12) and (5.26) to (5.30), we have

V<~ derll] - (1 - el + (- )52 s
— d~T‘9g’f2y (Ays + Agll + go)
< darl3lf* - (1= dealll + (1 - )1
+ dlaal] | 7221 [[1A el
(ol + 4ol 131 (531)

When & € By, Nz, § € By, N By, NQ15 NNy, and by using (5.25), (5.26), (5.29),
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the inequality (5.31) satisfies

V < —dei[|E]]* — (1 = d)es||g]]* + (1 — d)eaLng||]] [1Z]]
+ dLygLg||Z2|] [|Z]]
+ dL1g(L1g + omax(Ag))||Z2]| [|7]]
< —dey|JE]]* — (1= d)es|gl]* + (1 — d)eaLra||gl] ||1Z]]
+ dLgLyg|[E|* + dL1g(L1g + omax(Ap))||Z]] 117]]
= —d(ar — 1 — LigL1y)||Z|]
— (1= d)es||gl]* + kIl ]] 1|7 (5.32)

where k1 = (1 — d)cyLiz + dL1g(L1g + omax(Ag)). Considering Young’s inequality
for the product

i~ 1, . m, _
#1311 < ol + 2 P (5.3)

where m is positive, the derivative of V satisfies

V < — kol|2]* — Ksl|91]® (5.34)
where
k1
ke = d(ar —m = Liglig) — 5 -
k
ky=(1—d)es — =2

Theorem 5.1.10. Consider the nonlinear system (5.2)-(5.4) with Assumption
5.1.1-5.1.4. Select the control gain matriz Ay of the subcontroller (5.13) such that ko
and ks are positive. Then, the equilibrium point (x9,Z2,71,y3) of the system (5.2)-
(5.4) is asymptotically stable under the proposed time-scale separation control scheme
(5.13), (5.15) and (5.17). Moreover, we can obtain an estimation of the region of
attraction R = {(z,9) € D; x [)Ng|V(i'lyj) < €} where € = minger;, ger, V(Z,9)
with Rz = By, N Oz and Rg = Byl N By2 N ng N Qgg.

Proof. The proof is simple. For any fixed c3, we can always find an m such that ks
is positive. Once m is chosen, ks is positive by choosing

R

a1 > al =
! L™ 2dm

(’)/1 + ngle)) (5.35)

and as a consequence, € < £* = s

1
For all (Z,y) € R, it follows that for all solutions starting from R, V is non-
positive. Hence, R is the region of attraction [Khalil 1996] and the equilibrium
point of the system (5.2)-(5.4) is stable. Since (Z,g) = (0,0) is the only invariant
set such that V = 0 by solving (5.34), all solutions starting from R converge to
the equilibrium point. Finally, the asymptotic stability is established and a feasible
region (5.35) for a; ( and then for ¢) is also found. O
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We note that the feasible region (5.35) of a; strongly depends on the choice of
subcontroller x5 = ha(y,x{,y9). If we want to stabilize the reduced model (5.23)
in a larger region, we may need a larger L4, c3 and c4. Alternatively, if we want
to accelerate the speed of the convergence of the reduced model, it is necessary to
increase omax(A1g). Such scenarios may result in a larger aj. However, sometimes,
a very large a; may cause a large peak value of the control input u, which is not
desired. Thus, it is very important to consider associated factors when we choose
ai.

5.1.5 Study cases

In order to get a better understanding of the proposed control algorithm, two ex-
amples are studied in this section.

5.1.5.1 Example 1

Consider the following nonlinear system

T1= X129 + T3U
To= x1 + T3 (5.36)
T3= T2 + T3

Two control objectives exist:
Objective 1: making y = x3 track the reference z§;
Objective 2: making y = x9 track the reference z9.

We first use the input-output feedback linearization method to design the control
structure and then apply the proposed time-scale separation control scheme.

Feedback linearization control: When z3 is the output, the system (5.36) is
feedback linearizable since the relative degree of y = x3 is three. Then, a controller
based on input-output feedback linearization method can be developed

U= L v
L e+ (537)

where

v = —bo(xs — 23) — bi L}(y) — baL}(y)

L}c(y) = T2 + T3

Lfc(y) =1 + x9 + 223

L:;’c(y) = 2129 + 21 + 229 + 313
LgL?‘(y) = I3

The controller (5.37) is tested by numerical simulations as illustrated in Fig. 5.2.
The parameter values are listed in Table 5.1. The simulation results clearly show
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Table 5.1: The parameter values.
CC% bo b1 b2
-3 10125 | 075 | 1.5

3
% =%
1 2.8
2.6¢ 1
2.4
1 2.2
2
% 10 20 0 % 10 20 30
Time (s) Time (s)
(a) The response of ;. (b) The response of xs.
9l 3
- =
r
_X3 2-8 -
2.5 1 2.6
- M
x
2 524
©
o
x
-3 2.2+ 1
2
=% 10 _ 20 0 % 10 20 30
Time (s) Time (s)
(¢) The response of x3 and its reference y°. (d) The response of u.

Figure 5.2: Simulation results by using feedback linearization.
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that the controller (5.37) derived from the input-output feedback linearization
method can make the system track its output trajectory.

Next, we consider that Objective 2 is to be achieved, i.e. make o track its
reference y° = 2. In this case, the relative degree of y = 9 is two, smaller than
three. Thus, the zero dynamics exist and satisfy

3 =x3+y° (5.38)

As seen in (5.38), since the zero dynamics are unstable, the system (5.36) is not
feedback linearizable [Isidori 1995].

From the above description, when the control objective is changed, the input-
output feedback linearization method is not practicable and we must re-design the
entire control algorithm to achieve the new control objective. In the following sec-
tion, we demonstrate that the proposed time-scale separation control method can
realize these two objectives by just modifying the outer control modules.

Time-scale separation control: Since z; is directly collocated with the con-
trol input w, z; is considered as the driving state while x2 and y are the driven
states. The task of the fundamental control module is to make x; quickly enter
the manifold x7 yet to be designed. Here, let us impose the following autonomous

system
T1= T1%2 + T3U
5.39
= —ki(z1 —z7) (5.39)
where 71 = 0. Then u can be obtained by solving (5.39)
1
u=—[-ki(z1 — 27) — z122] (5.40)
x3

Note that the dynamics of z7 is neglected in u. When z; quickly enters its manifold
x], we get the reduced model

Tom (5.41)
T3= T2 + I3

where z7 is considered as an additional control input for the reduced model (5.41).
In order to achieve Objective 1, we only need that the reduced model converges to
x4. Re-applying time-scale separation to (5.41), we design x] such that zo quickly
enters its manifold z3 yet to be designed.

$2:$T+$3

= —ko(xo — 75)
Then, z7] is obtained as
x] = —ko(xg — x5) — x3 (5.42)
At the same time, a sub-reduced model is generated as

T3 = :U; + x3 (5.43)
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Table 5.2: The values of control gain (1).
ki | ka2 | ks

Set 1| 4 | 2 |0.125
Set2 | 20| 2 | 0.125

Table 5.3: The values of control gain (2).
ki | ko | ks
Set 1| 4 | 2 | 225
Set 2 | 20| 2 | 2.25

Finally, 25 can be designed as
xy = —ky(z3 — 23) — 23 (5.44)

such that the equilibrium of the sub-reduced model (5.43) is exponentially stable.
In this case, the controller is composed by (5.40), (5.42) and (5.44). The system
exhibits a three-time-scale behavior under the proposed controller.

Simulations are carried out with two sets of control gains as listed in Table 5.2
where k1 in Set 2 is larger than in Set 1. Simulation results are presented in Fig.
5.3. Since both sets provide the same values of control gains to the reduced model,
i.e. ko and ks, the quasi-steady-states of x1, 2 and x3 with k; = 4 are identical to
those with k; = 20. As shown in Fig. 5.3(a)-5.3(c), a larger ky leads to a smaller
discrepancy between the values of the state variables and their corresponding quasi-
steady-state values, which exactly corresponds to our theoretical analysis.

During the design process, the time-scale separation algorithm is applied twice
and x; and xo exhibit three-time-scale and two-time-scale behaviors, respectively.
This example reveals that we can divide a full-scale system into multi-time-scale
subsystems by re-using the proposed control approach such that these subsystems
can be designed independently.

Now, when Objective 2 is to be achieved, we just need to design a new z] based
on the reduced model (5.41) as

x] = —ko(xe — 29) — (k3 + 1)(z3 + x9) + 2§

which can make z2 in the reduced model converge to 5.

Simulations are also carried out with two sets of control gains as listed in Table
5.3. As illustrated in Fig. 5.4, we get some similar results as in the case of Objective
1. The actual values of the state variables could be better approximated by their
respective quasi-steady-state values with a larger k.

As mentioned in the previous section, although a larger k1 can make the system
give a fast response, it may also lead to a larger peak value of the control input
during the transient. As depicted in 5.3(d)-5.4(d), the crest value of u with k1 = 20
is larger than that with &k = 4.
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Figure 5.3: Simulation results by using time-scale separation control: y = .
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Figure 5.4: Simulation results by using time-scale separation control: y = .
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5.1.5.2 Example 2
The second example is expressed as

T1= X129 + T3U
To= x1 + T3 (545)
jjgz o — I3

which is required to achieve the same control objectives as in Example 1.

Feedback linearization control: When x3 is defined as the output in Ob-
jective 1, (5.45) is feedback linearizable and hence, a controller by means of in-
put/output feedback linearization is developed as

u

= m(—[f}(l‘g) +v) (5.46)

where

v=—by(x3—23) — b1L}c(ﬁU3) - b2L?($3)

L}c(acg) =z — 3

L?c(xg) = 1172 + 273

L:}(xg) = 21Ty — X1 + 229 — 323
LgL?c(zg) = 13

When Objective 2 is to be achieved, the relative degree of y = x9 is also 2 as in
Example 1. However, the zero dynamics here are expressed by

T3 = —x3 + wg (5.47)

whose equilibrium is exponentially stable. Hence, input/output feedback lineariza-
tion can be applied. The controller is developed as

u= LgL;(m)(—Lfc(@) + ) (5.48)
where
v=—bo(xg —x9) — blL}(azg)
L}(xg) =x1 + T3
L?c(xg) = x129 + Ty — T3
LyL¢(x2) =23

It is clear that, when the new control objective (Objective 2) is to be achieved,
the existing control law (5.46) becomes invalid and should be rejected. The con-
trol design must be re-engineered to develop a new control algorithm (5.48). For a
system of very high order, it is very time-consuming to re-design the control struc-
ture. However, the time-scale separation control scheme proposed in this section
can effectively avoid a control re-design from scratch.
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Time-scale separation control: First, we design the fundamental module as
in Example 1

T1= X122 + T3U
5.49
= —ki(z1 —z7) ( )

and then u can be obtained by solving (5.49)

u=—[—ki(z1 — 2]) — z129)
T3

When z; quickly enters its manifold =7, the following reduced model is generated

(iQ:l'){-i-a}g

¢3:$2—x3

In order to attain the control objective 1, the same procedure is used to design x]
as in Example 1

x] = —ko(xg — x5) — x3
where x5 satisfies
x5y = —ks(xs — x8) + x3
If the control objective 2 is to be achieved, we just need to develop a new z7] as
x] = —ko(xg — 29)

for the fundamental module without decommissioning the entire existing control
structure.

From this example, the advantage of the proposed control structure is explicitly
presented. In order to make the system achieve different control objectives, we only
need redesign the subcontroller of the reduced model and provide the new manifold
x* to the fundamental control module.

In the following sections, we will apply the obtained theoretical results to explain
why the vector control structure for VSC HVDC systems can consist of two control
loops with different dynamics and to demonstrate how the system exhibit a multi-
time-scale performance.

5.2 Control induced time-scale separation for MTDC
systems using master-slave control configuration

In the present section, based on the previous theoretical results, we give a detailed
description on how the MTDC system exhibits multiple time-scale dynamics using
master-slave control configuration. Furthermore, a theoretical stability study is
also performed where the stability limitations on this control configuration are also
analyzed.
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5.2.1 Control design

We consider each VSC terminal as an individual unit, which is of the form

j:l[z']: fl[i} (%m) + 91[4] (1‘1[1]7 chi)uw} (5.50)
o) = Jai) (@215)s i) + G20) (T2(j]s Yaps)s Uew,; U

where we use the following definitions
AT . T . AT, . T
210 = liga igig] 5 Top) = [lwgd duq]
= (Mg Mgg] ;o) = [musa Mgl (5.52)
A

I Ty, = [ijd Iw]'q]

The expressions of fy;], f23[]; 915 and go[;) are obviously obtained from the MTDC
system described by (3.20), (3.28) and (3.29), which are continuous differentiable
in their respective arguments for iy, 44 € ]Digi’dq, lw; dg € Diwj’dq, Vsw;,dq € ]D)Uswj%dq,

A
Yol [Uswjd Vswjq

Ue(-) € Duc and My, dgr Mw,,idg S [—1, 1].
For convenience, we also introduce

w2 oy e 2Ny zop) o TaplT = g wap]”
w2 fuapy e wngyy g o uaplt = gy uag]”

Therefore, the overall model of the MTDC system described in Chapter 3 can be
expressed by a general form (5.50), (5.51) and (3.36).

Now, we are ready to develop the control algorithm by following the procedure
presented in Section 5.1 as

e Step 1: We divide the full-scale system into two subsystems, i.e. the driving
subsystem (5.50) and the driven subsystem (5.51) and (3.36), where the driving
subsystem is directly collocated with the control inputs wuy;; and ugp).

e Step 2: Assume that the proposed control algorithm is explicitly designed with
the purpose of making the driving subsystem have much faster dynamics than
the driven subsystem. Based on the dynamic separation, we then obtain a
boundary-layer and a reduced model where two subcontrollers are designed to
control both models, respectively.

e Step 3: Substituting the two subcontrollers into the original model, a standard
singularly perturbed system can be deduced. Applying singular perturbation
theory, we derive sufficient conditions on the proposed control algorithm to
ensure the asymptotic stability of the MTDC system.

Note that, in Step 2, we assume that the state variables in the driving subsystem
have faster dynamics than those in the driven subsystem. In fact, this assumption is
only used to help us design the control system. In the section of theoretical analysis,
we will demonstrate that the controller based on this assumption indeed makes the
system exhibit a dynamic behavior characterized by the presence of fast and slow
transients.
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5.2.1.1 Design of the driving subsystem

We assume that there exists a reference trajectory for the driving subsystem as

>

z* = [$T[1] ClU’f[N] x§[1] @[MﬂT
which is yet to be designed. The only information on z* is that it is a function of
the state variables of the driven subsystem with slow dynamic. We then design the
subcontrollers wyj; = hy) and ugp;) = hypy) such that the closed-loop of the driven
subsystem becomes

1= v (5.53)

T2[]= V2]
where we introduce the auxiliary inputs vy and wvo[;). Since gy and gof;) are
invertible, by combining (5.50) and (5.53), the subcontroller of the driving system
is designed as

hyp= 9711[ g — fii]

(5.54)
ha(j1= 9a15) [vzm Japj)]

The design of vy, vap5 € R? are free. We only need them so that the above au-
tonomous system (5.53) at least locally exponentially converges to x* when x* is
constant. To illustrate our control scheme more clearly, we design

éfﬂfl[i]: T1[i) — xi[i]
V1[4 = _Kl[i] (xl[i] - ff[i]) - Fl[i]efﬁﬁ[z‘] (5.55)
Clay) = T2lj] ~ Toy
vap)= —Kapj)(2apy) — @3p51) — Tapjleray,
where the control gain matrices are of the form
Kip= diag(k[li}l’ k[li}Q); K2[ } - diag(kﬂ, kﬁ) (5.56)

whose diagonal elements are positive.

5.2.1.2 Design of the driven system

With the aid of the subcontroller (5.54), we assume that x quickly enters the man-
ifold z* and then substitute = z* into the driven subsystem (5.51) and (3.36),
leading to the following reduced model

Y= o) (€55 vaps))

5.57
2= Az 4+ 9(z T3 H) ( )

with (N + 3M + P + L)' order.
According to the master-slave control operation defined in Section 4.1.4 and the
design procedure presented in Section 5.1.3.2, we then set

w0 . % -0
Lgpd = Ygpd Ygia T giq (5.58)
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As a consequence, some components of the vector z* are directly given by the
prescribed reference values. But we still need to design z ¢ and zw dq Which are
considered as the control inputs of the reduced model (5. 57) The control goal now
is to make g, and Vsw; dg 1D (5.57) track the prescribed output reference, i.e.

5o = |ug, v° cee 0 (5.59)

cg1 swi,dq swy,dq

via z L and iy Input-output feedback linearization is therefore applied for the

w; dq
reduced model as?

ducg, . 13 USgldi;d + Usglqigw H(1. i
— == —H(1,:)ic)
dt Cy, "2 Ucg,
= Vegs
dvsw id 1 .
Tj = (,ijvsqu + m([wjd - Z’Z)Jd)
= Vw;d
dvsw-q 1 .
TJ = —wwj’ljswjd + m([qu - ZTU]'(I)

Taking into account the integrated tracking error, the additional inputs v() are
designed as
€lcgy = Ueg, = ucm — Uy,
Veg1 = kgldﬂm - kQQdeIcgl
€ Lw,d= Usw;d = Vsw,d — Vdw,d (5.60)
Vw;d= —Kw,;dVsw;d — Kwyjd€rw;d '
€1w;q= Usw;q 2 Usw;q — ”gqu
Vuwjq= —KuwijqUswiq = KuwsjqClwjq
with positive control gains kg 4, Kgod, kw,;,dg and Ku,; dq- Then, by solving (5.60),
i;l 4 and z;ﬁ dq aTe computed as

AT v
e ) 89149 -0
Zgld 3 (Cgl Vegy + H( ) ) - Zglq
VUsg1d Vsgrd (5 61)
-k .
'le wajwwj Uswjq — wajijd + ijd
e
b= _wajwwjvswjd - wajvw]'q + ijq

Finally, the full control scheme is established, composed by (5.54), (5.58) and (5.61).
For each VSC terminal, the controller uy) just relies on local information without
the knowledge of other terminals. This can prevent the possible time delay of
information exchange from the collective model.
The manifold z* is deduced from the lower-order reduced model (5.57) instead
of the full-scale model (5.50), (5.51) and (3.36), and it greatly simplifies the control

2Recall the definition of H in Section 3.4.3.
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design. Clearly, z* is a function of the state variables of the driven system, i.e. yo[;
and z. It is worthwhile to note that using a reduced model will introduce errors in
the system. Such errors may cause stability problems which will be studied in the
next section.

5.2.2 Theoretical analysis

Before stating the main results of this section, we recall that, to ensure the physical
feasibility of the MTDC system, Assumption 4.1.1 still holds and the equilibrium
point is denoted as

P=- ggid ggiq gwjd gqu S Vguyyd Vswyq g}T (5.62)

In this section, we will demonstrate how the proposed controller divides the MTDC
system into different time scales and furthermore, the stability of the equilibrium
point P; will be also studied.

5.2.2.1 Two-time-scale dynamics

The aim of this section is to show how the MTDC system exhibits a multi-time-scale
behavior. To establish this result, we substitute the control algorithm (5.54), (5.58)
and (5.61) into the original system consisting of (5.50), (5.51) and (3.36), resulting
in the following closed-loop system

: _ *

il[z‘]z _Kl[i] (»ﬁ[i] - xf[i]) - Fl[i]elrl[i]
Clagy = T2[j] — x;[j]

1= —Kapy) (a5 — 23157) — Dapjieray,

é[wjd: vswjd - Ugw].d (563)
é]qu: Vswjiq — Ugqu

élcsh: 11091

Y11= 3151 + Ly,

2= Az + 9

with (9M + 5N + P + L)' order. The equilibrium point of the above closed-loop
system is denoted as P».
Let us introduce a small scalar parameter ¢ satisfying

€ kpin =1

where ki, = min(k’[li]l, k[lz]z, k:fﬁ, k[232]) We then rewrite the dynamics of ;) and zy[;
in (5.63) as
ety = —Kupp) (1) — 23p) — elagera,

. | (5.64)
edop)= —Kopj)(wapj) — 25p)) — elgj€1my,
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where the new control gain matrices are defined as

Kl[z] = dlag(k[z ) ) £ di ( [l]vdfm)
22 :
EKopj) = diag(kf), ki )é ag(eky), ki)
7.21
ki kit K K >

Now, as an alternative expression, the closed-loop system (5.63) can be rewritten as

éffﬁm: 1) — T

EX1[)= —Kl[i} (l’lm - f{m) - Erl[i}elxlm
effﬂzm: Lalj] — T

edyj)= —Kapj)(wap) — 23157) — elgpj1€ray,
éled: 'Uswjd - U;)wjd

(5.65)

, — o
elw]-q— Usqu - Usqu

élcglz acgl
Y1 = fagg) + Luy,
z= Az -+

which is of a standard singularly perturbed form when ¢ is small enough. We call
x* as the quasi-steady state of x. It is worth noticing that, the small parameter ¢,
which is used to qualify the time-scale separation, is not derived from the physical
system parameters but is arbitrarily created by the designed subcontroller (5.54).
For convenience, we introduce the following new variables

551[@'} = T1[) — ff[i]

Talj) = Tafj) — T[5)
that shift the quasi-steady state of = to the origin. In these new variables, the
driving subsystem (5.64) becomes

IR TR T g (5.66)
Yora= —KoraZorq — Lot _Cfl%m
ETa[4)= 2[j]%2[4] — €L 2[]CIagy — €

Now we define t as the time-scale variable for slow dynamics and introduce a new
time variable 7 for fast dynamics as

dr dx . _ ~ ) .
at T tT [y -+ F oy - Fopa]” (5.67)
We then express (5.66) in the 7 time scale as
dzyp — dwlm
- = KT — elugerayg -
d 1[4]
diyy Cfﬁ% (5.68)

7 = ~Bap)Tay) = elapjierayy —e— =
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As € — 0,a boundary-layer system is deduced from (5.68), given by

di -
W Ry
dg;[‘ (5.69)
1 -
e S ]

whose equilibrium point is globally exponentially stable. Meanwhile, when = enters
its manifold x*, the closed-loop system (5.65) is degenerated into a (5M + N + P +
L + 1)™ order reduced model expressed by

; _ o
6I'w]~d* vswjd - Uswjd

: _ 20
efqu_ Usqu Usqu

€legr = Ucg, (5.70)
y2[j]: [ijd ijQ]T
i=Az 4+

where ¥ is given by

g = 3Vl Vsgialg ieN
’ 2 Cgi (ﬂcgi + ﬂcgi) 7
/ . §(1~)Swjd + vgwjd)i;kyjd + (65qu + T)gqu)i'fuiq ] e M (5 71)
N+j ) ij (acwj + acwj) ) .
,N—i-M—i-h =0, heP

Inyrrpik =0, kel

Remember that iy ;, and iy, are given by (5.58) and (5.61). We denote the solu-
tion of the reduced model (5.70) as (ygfﬂ (t),z"¢(t)) and then, 2"¢ = x*(ygfﬂ (t),z"¢(t))
describes behavior of 2* when (ya(;(t), 2(t)) = (yg[eﬂ (t),2"¢(t)). As a result, accord-
ing to Theorem 5.1.9 in Section 5.1.4.1, we are ready to state the following result:
Theorem 5.2.1. Consider the system (5.63). For fized control parameters Kl[i};
Kg[j], kg, 2d kwlj,dq and kw2j7dq, there ewists a region Ryy. and a positive constant
e* (or k) such that for all0 < e < &* (or kX, < kmin), if the system (5.63) starts
from Ry, we have

Yap) ()= 5, (t) + O(e)
z(t)=2"¢(t) + O(¢) (5.72)
x(t)=a"(t) + (1) + O(e)

where T(T) is the solution of the boundary-layer model (5.69).

Theorem 5.2.1 clearly indicates that the state variables of the driving system, i.e.
all dg currents, exhibit a two-time-scale behavior. They start with a fast transient
Z(7) and then remain close to z"¢(¢) which presents a slow transient. If we want a
remarkable time-scale separation, a smaller € (or a lager kpiy) should be chosen. In
the 7 time scale, all y; and z seem slowly varying.
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5.2.2.2 Stability analysis

The previous section shows that the exact solution of the original system (5.63) can
be approximated by the solutions of the boundary-layer and the reduced model. In
this section, we carry out a detailed stability analysis.
To simplify the analysis, we perform the change of variables
Ya[j] = Y2[j] — Y2141
Z=2z2—2z

and then, rewrite the system (5.63) in these new variables as

€1y = T1[i)

F = —Kyd — T i
1= TREPE] T e T T gy
é1902[3']: 532[]1 %
c e dzyp
Top)= ~ 2Pl T L2l Cleay T T gy (5.73)
é]w]-d: ﬁswjd
éleq: ?squ
€legi= Ucegy
Yolj)= Vwlj) T BijTar)
Z=AZ4+ 0"+ Az + 90
where )
B[j]: _TIQXQ; Vawlj] = [ijd ijq]T
TR L - (5.74)
V= [0 - YN Opyr)]
PE WY - O Oper]”
with the elements
3 §Usg¢d€gid + Ugsz'qggiq ie N

o 2 Cgi (ﬁCgi + ﬁC!h‘) ’

3 (6swjd + 27swjd)%ujjd + (f[)squ + T}squ)zqu

Ony; = = . jEM
YT Cou, (G, + T, ! (5.75)
* 3 Usgidz;-d + Ugsiqlziq . .
791' = — = — 5 1 6 N
2 Cgi (ucgi + uCQi)
" 3 (/ijSIUjd + /T}S'Ll)jd)i;kﬂjd + (f)squ + T}Squ)i;kvjq ] e M

N+ =3 Co; (ticw, + Tew,)

It is important to remark that since x* is the control signal of the slow subsystem,
its derivative would be very small compared to the derivative of x.
We rewrite the first four equations of (5.73) in a novel matrix form

o= A+ 0, (5.76)
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where
dx¥,. dx*..
— .. 1 23] g7
0, =1 0241 p” O2x1 o ]

A,, = diag(--- Am[z‘] T Aacz[j])

O2x2  Ioxo } [02x2 Iryo ]
Ax i — ; A;v i —
0 [_FWJ — Ky W Doy — Ky

The last five equations of (5.73) can be expressed in the following form

(= A+

. _ - 5.77
Zr=ArZ + 0+ ArZy + 0, + 09, + Vi, ( )
where
CZ [elcgl {chl c ehlujd ﬁswjd T Clwjg f[}squ o '}T
= _ = ~ ~ T
U¢=[091 -~ 0 —mlw]’d -0 —mleq o]
_ H(1,1 H(1,L)
Vi,= [ON+M+P-1 ( )Ucm : )chl]T
Ley Ley 5.78
. H(1,1) H(,L) . (5.78)
Vi,= [ON+M+P—1 Ucg, Uicg, |
L, L.,

AC: diag(Agl Aw1d T Ade Awu] T AwMQ)
0 1 0 1
e )
” _kgld _kgzd 7 _kw1j7dq _kw2j7dq

The vectors 3y, Yy and z, are the sub-vectors formed by deleting the first component
of ¥, 9* and Z (see (5.75)), respectively. The matrix A, is given by (4.65) in Section
4.14 as

-1

Now, the original closed-loop system (5.63) is transformed into the new form com-
posed of (5.76) and (5.77). Note that the above error system (5.76) and (5.77)
has an equilibrium at the origin, the asymptotic stability of which would imply the
asymptotic stability of P, of the original system (5.63). If T1[;) and Top;) quickly con-
verge to zero, the error system (5.76) and (5.77) is degenerated into the following
reduced model )
= A o (5.80)
Zr=AvZr + 0 + Az + Vi, + Vi,
which consists the external and internal dynamics represented by ¢ and Z,, respec-
tively. As ¢ converges to zero, the dynamics of the reduced model (5.80) is governed
by the internal dynamics

Gr= ArZe + 0Fco + ArZe + U, (5.81)

Similar to Lemma 4.1.2 in Section 4.1.4, we have the following result:
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Lemma 5.2.2. Consider the system (5.73). If the prescribed references ugg,s Qg
Pgop, QZ,,; Ugwjd and vgqu and the system parameters are set such that the Jacobian
matriz of the internal dynamics (5.81) at the origin

-D C'H,

I = ~L7'HT —L7'R

(5.82)
is Hurwitz, where D = diag(dy), k =1,--- ,N + M + P — 1, is a diagonal matriz
given by

1o}
djp-1y =3 PEN

c9p
0

w4 .
dov-n =g g JEM
3w

3
Py, = 5 (0w, atuwa + Viuelwsa)

then, there exist control matrices Ky, Ky, 'y and o) such that the origin of
the system (5.73) is locally exponentially stable. As a consequence, the equilibrium
point Py of the MTDC system (5.50), (5.51) and (3.36) is locally asymptotically
stable under the control algorithm (5.54), (5.58) and (5.61).

Proof. According to Taylor’s theorem, the reduced model (5.77) can be expressed
in the Peano form of the remainder as

¢l [Ac 0][¢ L [¢ 0 A
Lﬂ =la, g ) TR T A v a] T (5:83)

where 9* and ¢(Z,, () satisfy

_ i Tgy i

g (Lo low twn dww g T
092 CQN C’wl CwM (P+L)

V4 Az + 05, =0

¢ 217 |—0

For any positive Ly, , there exists a positive bg, such that:
o1l < Lg,, ¥ [C 2] € By,
where
By, = { €& 12T < by, }-

Ac 0
A, J
any symmetric matrix @), > 0, there exists P, > 0 satisfying the Lyapunov equation
P.H+ HT'P, = —Q,. Let

We denote H & [ ] and hence, H is Hurwitz since A and J are Hurwitz. For

Ve =[¢ Z]P[¢ )T
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be a Lyapunov function candidate for the reduced model (5.83) and then, we have

_dVr

el = T AQCH + NP+ oT P E)

< _()‘min(Qr) - 2L¢1HPTH)|HC ET]THQ

for all ||[¢ Z]7|| < bg,, where Ly, is chosen such that

B1 2 Amin(Qr) — 2L, ||Pr[]) > 0
For the subsystem (5.76), we choose
Vy = %TP%%
as a Lyapunov function candidate where
P, = diag(- - - Py -+ Py - )
Py, = diag(Ty, Iox2) Pi,, = diag(lapy), Iox2)
Then, the derivative of V}, is deduced as®

d‘/}) . ~T 1. ~ ~de*
it =273 diag(K ), Kop5))7 + 27 o
=l

~ ~ X
< ~ b2 + 21131 117

Now, we propose a Lyapunov function V' based on V,. and V}, for (5.73)
V=01-d)V,+dV, 0<d<1 (5.84)

where d is yet to be designed. The derivative of V' along (5.76) and (5.77) becomes

gV S5y Vs,
V= (= d) g Uy + 10 ) + e

d *
< —(1=d)B1]|[¢ Z]"|? — 2dkmin| ||| + 24| |Z]| - H%H
+ 2(1 - d)K ET}TPT‘[&C igr]T (585)

We have that [0 9,]7 vanishes at ||Z|| = 0 and moreover, J; and 9. are continuously
differentiable functions. Hence, there exists a Lipschitz parameter Lo such that:

1[0¢ 9,17 < Lo||7]|, ¥ & € Bs, .

where

Bz, = {z] |[Z]] < bz}

3Recall the definition of 7 in (5.67).
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Since x* is a function of (¢ z,), we then have:

de®  Oz* . . .
dt 8[( ZT]T[C Zp]
8 *
- ol

*

Concerning the term 7, there exists a positive by, such that

ox
I[¢ 2]

ox* T
||W|| < Lz, V| [C Z]" || < b,

Taking the above mentioned inequalities into consideration, V in (5.85) becomes

V< —(1 = d)Bll[¢ 2] I1P — 2dkmin |2
+2d Ls (|| HI + Lo )| |Z]| - [[[C 271 + 2(1 — d) L[ B || - 2] - [11C 2" ]

- 5.86
=—[|l[¢ 2 ]TH 11Z](] |:(1 —d)p — B2 :| |:” € Z?“}TH:| ( )
" _BZ 2dkmin ||j”
where (5 is a positive constant given by
P2 = dL3(HH|| + L¢1) + (1 - d)LQHPrH >0
The quadratic expression (5.86) is negative definite as
53
Foin > kil & =2 .

for all ||Z]] < bz, and [|[¢ 2]7|| < min(bs,, be,). In addition, we can obtain an
estimation of the region of attraction

R ={(5, ¢, 2) €D, x D¢ x D,,|V < €} (5.88)

where the sets D) € R) are bounded and connected containing the origin and ¢
is given by
¢ = min Vix, C, =
FEBo,[C 2| TEBy, SR

For all initial points starting from the attraction region R, when the inequality (5.87)
is satisfied, the solution of the problem (5.73) converges to the origin. Consequently,
when the control gains of the control algorithm (5.54), (5.58) and (5.61) are chosen
such that (5.87) is satisfied, the equilibrium point P; of the MTDC system (5.50),
(5.51) and (3.36) is locally asymptotically stable. O

Theorem 5.2.3. Consider the MTDC system (5.50), (5.51) and (3.36). If Py,
p=2,---,N and qu}j, j=1,---, M are non-negative, then, the gontml algorithm
(5.54), (5.58) and (5.61) exists such that the equilibrium point Py of the MTDC
system (5.50), (5.51) and (3.36) is locally asymptotically stable, with a region of
attraction given by (5.88).
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Proof. We have proved that, when Pgop, p=2---,N and ng, j=1,---,M are
non-negative, the Jacobian matrix J is Hurwitz (see the demonstration of Lemma
4.1.3 in Section 4.1.4) O

5.2.3 Plug-and-play operations

Consider that the MTDC system (5.50), (5.51) and (3.36) with the proposed control
algorithm (5.54), (5.58) and (5.61) initially operates in a steady-state condition. If it
is required to add or remove a VSC terminal, we propose a plug-and-play operation.

5.2.3.1 Adding one terminal

we first consider plugging in a WAC connected VSC terminal at t1, whose AC side is
characterized by a(ar41]s Yo[nr41) and U205 415 1€+ g yq,dgs Uswary1,dg and My, dg-
On the DC side, a WAC converter node is associated to the plugged WAC connected
VSC terminal, characterized by ucw,,,, and Cy,,,,. In particular, the (M + 1)1
WAC converter node is physically coupled to the DC network by a branch, which
is used to connect the plugged node to other existing nodes. The extra branch is
ey and Lep . The new WAC connected VSC terminal
is equipped with local controller wugpys41) with the control gain matrices Koz 1),

characterized by i, ,, R

Lorg1)y Awprir,dg- Here we need to check whether this new terminal could be
added to the existing MTDC system without affecting the existing stability of the
system. The procedure is summarized as follows:

Step 1: Modify the DC network model (3.36) and then compute the new
equilibrium and the new Jacobian matrix J. If J is Hurwitz, go to the next
step. Otherwise, we stop here and declare that the new WAC connected VSC
terminal can not be added.

Step 2: When the new Jacobian matrix J is still Hurwitz, we define a desired
region of attraction R’ for the new system with N + M + 1 terminals and then
the feasible region for kp;, could be estimated from Condition (5.87). There-
fore, it is possible to extend the MTDC system by adding the new terminal.

5.2.3.2 Removing one terminal

We consider removing a WAC connected VSC terminal. For example, the k™ one
is expected to be disconnected at t5. Meanwhile, the branches used to connect this
terminal node to other nodes are removed as well. Then, a new modified MTDC
system is generated. We first check if the corresponding Jacobian matrix J of the
new MTDC system is Hurwitz. If this is not the case, we can not remove the
k"™ terminal. When the new J is Hurwitz, we then estimate the new region of
attraction R’. If the state of the MTDC system at ¢; is still in R, the unplugging
of the terminal is allowable. Otherwise, the operation of removal may trigger the
instability of the system.
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Table 5.4: The VSC terminal parameters.

SAC 1 SAC2 | WAC 1
Ryw | 99 mQ | 94 mQ | 8.4 mQ
Lgyw | 32mH | 3.1 mH | 27 mH
fow | 950 Hz 50 Hz 60 Hz
Cyw | 204 pF | 204 pF | 27.2 pF

Table 5.5: The transmission branch parameters.

Branch 1 | Branch 2
R, 0.27 Q 0.33 O
L. | 0045 H 0.055 H

5.2.4 Simulation studies

In this section, we apply the proposed control scheme to an MTDC system composed
of a WAC connected VSC terminal, two SAC connected VSC terminals and two
transmission branches as shown in Fig. 5.5. System parameters are listed in Tables

"091 RC1 +1Lc1 icl icwl

SAC P S < WAC
_Ll L u
1 T cg1 CW1/-|— 1

if-'gz R(_‘z + jLCZ

2

2 -|JI"~‘9'2 2

Figure 5.5: An MTDC system with a WAC and two SAC terminals.

5.4-5.5. The base quantities used in the per-unit system are given by Table 5.6.

The 15 SAC connected VSC terminal is used to control the DC-bus voltage
at ug,, = 1 p.u.. The 2nd GAC connected terminal guarantees a constant power
output Py, = 0.2 p.u. injected to the DC grid. Both SAC terminals are required
to have the unitary power factor, i.e. igl.aq = 0 p.u. The WAC terminal is used
to control its AC voltage at the prescribed values of vy, ;, =1 p.u. and v, , =0
p-u.. To clarify the theoretical analysis, several scenarios are considered in this
section. In addition, all simulations are carried out with the same control gains
where4 Klm = K1[2] = Kg[l] = 1972 IQXQ, 1—‘1[1} = ]_—‘1[2} = Fgm = 1.86 x 104 : IQXQ,
kgid = kuwyid = kwing = 40, kgyd = Kuwyyd = Kwapq = 400 and hence € = 5.071 x 10~

“Recall the definitions of the control gains in (5.60).
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Table 5.6: Base quantities in the per-unit system.
AC side || Sp = 3000 VA Vi, —33884V | I, =590 A
DC side || Sgep = 3000 VA | Viep = 700V | Tgep = 4.29 A

5.2.4.1 Scenario 1: Verification of time-scale separation

Simulation results are shown in Figs. 5.6 and 5.7. Let us first focus on the responses
of iy, 4 and ., 4 whose trajectories display two-time-scale behaviors. In contrast to
the two states i,,q and i,,4, whose initial conditions are their prescribed initial
values, L.e. iy;dy = 0.3 p.u. and iy, q, = 0.02 p.u., their quasi-steady states iy 4

and ;¢ do not start from the same initial conditions but from /¢ , = 0.4638 p.u.
wiq wido

and iy, 40 = —0.202 p.u. since the initial values of 7" , ~are determined by the

initial values of v"°

sw1,dq
discrepancies may exist between i, ¢4 and ¢

as mentioned in Section 5.2.2.1. As a consequence, large

re
w1,dq

As illustrated in Fig. 5.8, the trajectories of 7., 44 start with very fast transients

at the initial instant.

from the initial values iy, qq(to) to @7 4, during the boundary-layer interval. After

. ) : e
the decay of the transients, i,,, 44 remain close to Ty dq

and @75, ;, converge to their steady values, i.e. 4,4 = 0.4667 p.u. and iy, = —0.2528

p.u. as shown in Figs. 5.7(c)-5.7(d). A similar two-time-scale behavior can be found

and subsequently, both 7., 44

in the response of iy, 4. Unlike the dgq currents, vy, dq, Ug, , and uy, start from the

TN re re
same initial values as Vgtoy dg U 2

respectively. Simulation results (not presented here) show

and ;. In addition, they uniformly converge
gzeul,dm ugfg and u:Uel’
that while keeping kg, 4, kw1d; Kwirgs Kgads Kwsrd and ky,,q unchanged, we can reduce
the errors between the dg currents and their quasi-steady states by increasing the

control gain matrices K[y}, Ky and Koy)-

to v

5.2.4.2 Scenario 2: Variations of the controlled current source

Variations in the controlled current source are considered in this scenario. Simula-
tion results are illustrated in Fig. 5.9-5.10. This scenario reflects the unpredictable
variation of power produced by a wind farm. Pr, in Fig. 5.10(c) represents the
generated power from the controlled current source, which is equivalent to P, i.e.
the active power of the WAC terminal at the PCC. The DC-bus voltage is always
controlled to the set value of 1 p.u. by the 15* SAC terminal irrespective of variations
of Py, as depicted in Fig. 5.9(a). In this study case, the 15 SAC terminal operates
as the slack bus to tolerate the power imbalance caused by Pr, and in addition, this
terminal is responsible to keep the voltage of the DC network constant, in spite of
the uncontrollable variations of the wind power generation. Therefore, Py, varies
with Py, while the active power of the 2°¢ SAC terminal (P,,) remains around its
setpoint (0.2 p.u.). Moreover, the DC voltages of other nodes are also kept around
1 p.u. as plotted in Figs. 5.9(c) and 5.9(d). As seen in Figs. 5.7(a) and 5.7(b),
Usw; dg &t the PCC are always regulated at their setpoints, which means that both
the amplitude and the frequency of the AC voltage at the PCC are controlled at the
desired values. However, as illustrated in Fig. 5.10(d), extra reactive power Q. is
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Figure 5.6: Simulation results with constant I, 44 (1).
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Figure 5.7: Simulation results with constant I, 44 (2).
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Figure 5.8: Zooms of responses of iy, 4q and 7, ;4. during the initial interval.

needed to maintain the AC voltage. Finally, a similar conclusion can be drawn as
in Scenario 1, that is, the behaviors of the state variables can be well approximated
by the solutions of their reduced model.

5.2.4.3 Scenario 3: Unplugging and plugging a terminal

In this study case, we evaluate the performance of the control scheme when consid-
ering the unplugging of the 24 SAC connected VSC terminal and then plugging it
back. Such unplugging and plugging operations can be highlighted as depicted in
Fig. 5.12(d). At t = 2 s, the 2"d SAC terminal is disconnected and at the same
time, the branch 2 is also removed from the MTDC system. Consequently, the WAC
terminal now is the only power supplier for the 15¢ SAC terminal. As seen in Fig.
5.12(d), during t € [2, 4] s, Py, is almost equal to P,,. At t =4 s, we re-use the
branch 2 to connect the 24 SAC terminal to the DC network. Now, the 2" SAC
terminal and the WAC terminal feed the power to the 15 SAC terminal together. In
Figs. 5.11(a) and 5.11(c), the DC voltages are well regulated around 1 p.u. during
the whole simulation with some short transients. As shown in Figs. 5.11(d) and
5.12(a), the dg components of the AC voltage at the PCC are also well controlled
at their setpoints. The simulation results present that, with the aid of the proposed
control strategy, the unplugging and plugging operations of the 2"d SAC terminal
have negligible effects on the normal operations of the MTDC system.
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Figure 5.9: Simulation results with variations in the wind power production (1).
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Figure 5.10: Simulation results with variations in the wind power production (2).
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Figure 5.11: Simulation results with unplugging and plugging the 2" SAC connected

VSC terminal (1).
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5.3 Control induced time-scale separation for MTDC
systems using droop control configuration

As described in the previous sections, for an MTDC system, the control of DC
voltage is indispensable. In Sections 4.1.4, 4.3 and 5.2, we have discussed the
master-slave configuration. In this control configuration, only one VSC terminal
(the master terminal) is used to regulate the DC voltage at a constant level while
the other terminals operate in other control mode. The responsibility for main-
taining power flow balance obviously falls on the master terminal. However, the
disconnection of the master terminal leads the DC voltage beyond the safe domain
of operation and thereby, damages the components of MTDC systems. In order
to overcome this drawback, DC voltage droop control configuration [Wang 2014a,
Prieto-Araujo 2011, Chaudhuri 2013, Bianchi 2011, Egea-Alvarez 2013, Chen 2014,
usually characterized by power vs DC voltage (P vs U) or current vs DC voltage (I
vs U) curves, becomes an alternative method, in particular for a large network.

In a DC voltage droop control scheme, more than one terminal is in charge of
regulating the DC voltage and hence, the burden caused by power imbalance could
be shared between several terminals. Additionally, this control method takes actions
only based on local information without relying on remote communication. In droop
control, the droop gains specify the system operation in steady-state condition and
also have a great effect on the system transient performance. Different methodologies
of choosing droop gains have been investigated. In [Prieto-Araujo 2011], a criterion
for tuning the droop gains based on the performance specifications is proposed. In
[Bianchi 2011], the droop gains are obtained by solving a constraint convex opti-
mization problem. Reference [Chaudhuri 2013] develops an adaptive droop control
scheme according to each terminal’s available spare capacity. However, prior studies
are usually under the unproven assertion that the dynamics of the inductor currents
are much faster than the dynamics of the DC network. Therefore, the currents
through the converters are assumed to equal their references and then, the dynamic
interaction between AC and DC sides of the converters can be neglected.

Similar to the study on master-slave control configuration in Section 5.2, in
this section, we acknowledge this assertion, then explore and explain the droop
control induced time-scale separation. To achieve this aim, we will carry out a full
theoretical analysis of the time-scale separation between the system state variables,
mainly based on the theoretical results in Section 5.1. Furthermore, we will also
demonstrate that the control gains have different effects on the system performance.
For example, the droop gains play a major role in regulating the DC grid dynamics.
Another objective of this section is to study the effects of the control gains, especially
the droop gains, on the system stability.

5.3.1 VSC operation

The greatest difference between master-slave and droop control configuration is that
the latter involves more terminals in the regulation of the DC voltage. This difference
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leads to different VSC operation in droop control configuration, which is summarized
as follows:

e Same to master-slave control configuration, to ensure that the power gener-
ated by the wind farms can be totally delivered via the DC grid, all WAC
connected VSC terminals are still used to maintain their AC voltage magni-
tudes and frequencies constant at the PCCs, achieved by regulating vy, dq at

the prescribed values v?

swj,dq’

e Every SAC terminal is equipped with the DC droop controller such that the
duty of eliminating the power imbalance of the DC grid is shared between the
SAC terminals. Moreover, the reactive powers of all the SAC terminals at the
PCCs, 1.e. Qy,, are required to track the reference values (g, .

5.3.2 Droop control structure

The control design of droop control configuration is similar to that of master-slave
control configuration in Section 5.2.1, which consists of two control loops, a fast
inner current and a slow outer control loop, where the dynamics of state variables
in the fast control loop are much faster than those in the slow control loop. But, in
droop control structure, a droop law is implemented in the slow outer control loop
of all SAC terminals, which generates the reference to the fast inner control loop.

5.3.2.1 Design of the fast control loop

As mentioned in Section 5.2.1.1, the control inputs m.) 4, are directly collocated
with the dg currents i) 4,. Hence, a sub-controller can be developed such that
i(.),dg quickly converge to their reference trajectories i’{_) dq Vet to be designed.

We first define the dg current tracking errors by

. ek
ezgi,dq = lgidg ~ lg;,dgq

. e
Ciw;,dq = twj,dg T Lw;,dg

With the introduction of the integrated tracking errors e Tig. aq and e Tiy; aq> A1 QUG-
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mented dq current subsystem is then generated by

In practice, the dynamics of ¢*

as slow compared
be designed as

2L,.
_ 9
Mg;d = u : (_

Cgi
2L9i

Mgiq » (—
Cgi
_ 2L,

Mhw;d = Uecw; (
j
2Lw]

Muw;q = (

Uew ;
cw;

with positive cont

5.3.2.2 Design

The main task of

ig;d
ig 4+ Usgid  Mgsdlicg;  ig,a
- gid 9i“9iq -
ng' ng‘ 2Lgi dt
'L'g,iq
-k
Ry, . Weig.q+ Usgig  MgiqUeg;  Yigig
9:tg;
iwid
;%
iji i n Vswid — Mw;dUcw; leUjd
G G _ _
L, 7 WiTad Ly, 2Ly, dt
iwyq
K
wji O I Vsw;q My qUhcw; dleq
——lw.qg — Tw.d — —
Ly, wid w3t Ly, 2Ly, dt
9:.dq A0d zw dq are usually neglected and considered

to g, dg and G, dg- As a result, the modulation indices can then

R
9i 59;
7 tgid + Wg;lg;q + I + klgzd@zg 4t k2gzdehq )
gi gi
R Vgq,
i - . $9:q ) )
7. teia ~ Woilgid + 7 + K1giqCigyq + k2g,q€lig;,)
I_é’; gl Vewd (5.90)
J J
I, Zde + W, bw;q + Lo + klwideiwid + kaideliwid)
J
Rw Vsw
j . 74
—Tw_lw]-q — W, lw;d T L. + RtwigCing + F2wigCliv,g)
J J

rol gains Kig, dg; K2g;.dgs k1w, dg and kaw; dg-

of the slow control loop

the slow control loop is to provide the slowly varying dq current

references to the fast control loop. Most importantly, the dg current references need
to be designed such that all control objectives are achieved. Since the operations of
SAC terminals and WAC terminals are different, the design principles of iy, dq and
’L;Z] dq are also different.

Design of zw dq

We assume that i, 4, can quickly converge to their reference trajectories i, idq under

the sub-controller

(5 90). From there on, the AC voltage dynamics (3.29) of the wind
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farm at the PCC become

dv d 1 .
il W, Usw,q + 7(ijd - va'd)
W Cruy ] (5.91)
Usw,q 1 - '
dt] — _wwjvswjd + m([w]g — ijq)

where 7, ;, can be viewed as the control inputs. We call (5.91) the reduced model

of (3. 29) since the dynamics of 4y, 4q are neglected and i, 4, are replaced by zw dq-

The control objective of WAC termlnals is to keep vgy; 4 at their reference values
vgwj,dq
want to develop i, . da in such a way that vs,, 4q in (5.91) can be controlled at vsw dq-

Similar to the de81gn procedure of the fast control loop, we define the output tracklng

in spite of variations in the power productions of the wind farms. We then

errors of voltage at the PCC as

o o
evswj,dq - ’Uswj,dq - Uswj,dq (592)

We then augment (5.91) by taking the integrated tracking errors into account

delvswjd
J dt 'Usw]d o
eUsw -d 1 % v id
= (ijd + wajwwjvsqu - Zw-d) - e
it~ Cpa, ) dt (599
deh,sw 4 ’
dt = e'er q
dev dgq 1 dvgw
swidg " i q
T Cu, inga = O Doyt = Thza) = =55
dvgwj,dq

) . o _ . »
Since the prescribed values v ow;,dg A€ constant, we have = 0. Finally, 7, g,

i dt
can be designed as

o
ijd— ijd + waj (kldjevswjd + kZdj eIUswjd + Waw; Usqu)

-k

(5.94)
e Cuw; (kig, Cvsuq T kg, Clvsw;q — Ww; Usw; d)

with positive kl,dqj and kg’dqj such that the equilibrium of the augmented model
(5.93) is exponentially stable.

Design of iy,

As mentioned before, a droop law is implemented in the slow outer control loop of
all SAC terminal so that all SAC terminals participate in the regulation of the DC
voltage in case of power imbalance. The droop control is usually expressed by DC
voltage versus active power characteristic [Haileselassie 2012b].

P, = Pgoi + Ky, (uggi — Ucg,) (5.95)

where ug, and Pp refer to the reference values of DC voltage and active power

respectively. The droop gain Ky, is the ratio of the change in DC voltage to the
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change in active power. According to (5.95), the varying reference for i4q can be
expressed by

-0

i;d = lg,q — ka; (Ueg;, — u(c)gi) (5.96)
where 4y ; is obtained from (3.22) and expressed as

_ 2P

3Vsg,d

-0
tgid

In addition, the relation between K,4, and kg, is given by

1

Vsg;d

2
kg, = = ,
d =3 d;

The reference of ig4,, is directly provided by the prescribed reference value

Tgiq™ Tgiq o
g (5.97)

3 Usg;d

5.3.3 Theoretical analysis

As the master-slave control structure in Section 5.2.1, the developed droop control
design concept is also mainly based on the assumption that a dynamic separation in
time scales is imposed between the fast and slow control loops. As a consequence,
z and Vg, 4q can be considered as constant in the fast control loop, while the dg
currents can be replaced by their references in the slow control loop.

In this section, we give a detailed theoretical analysis to demonstrate the va-
lidity of the time-scale separation assumption in droop control configuration and
furthermore, to investigate the possible limitations on the droop gains.

5.3.3.1 Equilibrium analysis

Before going further, we give a brief analysis of the equilibruim point. Substituting
the controller composed by (5.90), (5.94) ,(5.96) and (5.97) into the plant model de-
scribed by (3.20), (3.28), (3.29) and (3.36) leads to the following augmented closed-
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loop system
de Iigz' d
g

lg;d
9i@ _ S )
dt - 7klgidelgid kQQidelzgid

deh-giq_ A
+ T Tlgiq

1,
giq . _ .
dt - _klgiqelgiq k29iqehgiq

deliwj d

Ji = Gl
Z.wjd_ k k
- 1wjdeiwjd - 2wjdefiwjd

d dt
€liy,.
LN (5.98)
b :
Lw q
j
dt = kleqeiqu k2w]q€hw q
delvswjd
dt Vsw,;d
AVgw.d Ciy.a
¢ _
Fra— k1d; Vswd k2dj61vswjd Cru,
dery,, ,
Tat Cosw;q
e
dvsqu_ —kig.€ — kog. € S L
dt - IQj 'Uswj-q 2‘13‘ I'Usqu waj
2= Az + 9

It will be more convenient in the following analysis to divide ¢ into two parts as
U =10y + Uy

Recalling icg, in (3.23), icw, in (3.32), by dq 11 (5.94) and 4y, 4. in (5.96) and (5.97),
the new variables ¥, and ¥, are given by

199 = 1991 + Q992 + 19937 Uy = ﬁwl + 1911)2 + 791173 + Q9w4

with
3 USQleZLd + USQiiniq Z E N
. M
1991 (Z): QCgi Ucg;
0. otherwise
3 Ueg, — ULy,
K3 gi .
. — 720 'Usgidkdiia 1N
Vg, ()= gi Ueg;
0. otherwise
3 Usgideigid + 'Usgiqeigiq ie N
. M
1993 (Z) = 2091’ Ucg;

0. otherwise
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and . .
{ 3 vswjdled + Usquleq e M
D, (j + N)={ 2C I €
w (J + )_ wj Ucw;
0. otherwise
3 Ugwijfijwj eUsqu + e'USwdewjd
207113‘ Ucw;
Vo (J + N)= Cvayaw;q = Vaw;q Oy Wu; €v,ua
ucw]- ’
jeM
0. otherwise
3 Uswjd(kldj evswjd + k2d} elvswjd)
2Cw.7' Ucw;
Bl Ny 4 Uty Coneyo + R €vnny) |
Ucw;
jeM
0. otherwise
. 3 VswjdCiuge F Usqueiwﬂ, JEM
19104 (.7 + N): 2ij ucwj
0. otherwise

It is obvious that, if the dg currents quickly enter their respective manifolds, i.e.
€iy. qq — 0 and Cinyag 0, ¥4, and 9, converge to zero. Moreover, ¥, and 9,
also go to zero as Coauydg 0. These results are helpful for the theoretical analysis

in the next part.

When the closed-loop system (5.98) is in the steady-state condition, the following

algebraic equations

AZ+ 9, + 0y =0

(5.99)

must hold®. Since Py = 3/2(”89idigid + Vsgiqlg;q)s 59 and 9, can be then expressed

as )
0
P A A T TP
g(i)= Cy, g, 2C,, 7
0. otherwise
P{f)j e M
_ — je
ﬁw(]—i-N): ijucwj J
0. otherwise

where we introduced the new variable

Recall that the notation (-) denotes the steady-state value of the variable (-).

(5.100)
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From the algebraic equation (5.99), it is shown that the prescribed values (), the
DC grid topology and the droop gains k4, determine the steady-state values of the
system variables and the distribution of power sharing together in case of power
imbalance. The control gains kg, daq, k2g;.dgs K1w;.dg> k2w, dgs K1,dg; and ka aq; have
no effect on the steady state of the system. However, as (4.58) in Section 4.1.4 and
(4.96) in Section 4.3.2, solving equation (5.99) to get the exact steady-state value is
not easy and is not considered in this section. More details about this issue can be
referred in |[Wang 2014a, Haileselassie 2012b].

To ensure the operating feasibility of the MTDC system, we assume that 4,4,
ijdq, Ucg;, Uew;, Ucty, and Eck exist and belong to their respective safe operating
domains. The equilibrium of the closed-loop system is denoted by S.

In stead-state condition, From the droop law (5.95), we have

Py, = P2 + Ky, (u2, — icg,) (5.101)

Consider that the MTDC system initially (t = ¢¢) operates in a steady-state con-
dition, if the production of the wind farms increases at the instant ¢1, this makes
the SAC terminals absorb more power from the DC grid. When the MTDC sys-
tem achieves a new steady state at t2, we have P, (t2) < P, (to) (for example,
P,,(to) = —100 MW and Py, (t2) = —200 MW). According to (5.101), we can de-
duce that the DC voltage also rises to a new level and that g, (t2) > @, (to). It can
be summarized that wu.y, will rise if more power is injected into the DC grid, and
vice versa. This statement will be illustrated by numerical simulations in Section

5.3.4.

5.3.3.2 Multi-time-scale dynamics

In this section, a theoretical analysis to describe the dynamic separation in time-
scales is carried out. We present that two different dynamics are created by the
designed control algorithm in Section 5.3.2. In particular, the two time-scales are
quantified by the fast control gains ki1, aq, k24,,dq kle,dq and kgwj,dq.

In order to make the analysis convenient, we perform a change of variables.
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Then, the first eight equations of the closed-loop system (5.98) can be rewritten as

dejigid
=€, 4
at .
deiq_d dzg,d
g o . i
dt - klgidelgid kQQidelzgid dt
de[igiq
at o
deigiq _ kj k‘ di;‘q
dt “R1giqCig;q — R29:qClig;q — d
de ¢ (5.102)
eliwjd ’
dt = eiwjd
3k
dei, q iy a
FT —k’ledeiwjd - k‘zwjdenwjd ~
deliwﬂ
a Ciujq
dei, , diy,
—I = _klw:qeiw.q - k2w-q61iw.q - !
dt J g J J dt

This shifts the quasi-steady states of the dq currents to the origin. Denote k1 =
min(kig;d, k2g,q> F1w;d> k2w;q) and then introduce a new variable ¢ satisfying ek; = 1.
The subsystem (5.102) is given by

where

d€[l’gid
= ei
g;d
o dif, 4
—= _klgidei 4 5k2gid€Ii 4 € -
dt 9i 9i dt
de[igiq
= eigiq
o diz,,
E—— = _klgiqeigiq - €k29iqe“giq T
eliwjd ’
= eiuwd
! ' di*
€ wjd:—l?: e. . —¢ck eri. , —€ wid
dt 1wjd led 2wjd 'ijd dt
de“w]q
eiw_q
&t ' di
€ e L —k e ek e g—24
dt 1lw;qCiw . q 2w;q Izqu dt

kigia = ekigia 2 1; Kigiq = €kigiq 2 1

klw]-d = Eklw]-d > 1; kleq = Ekleq >1

We define a new time variable 7 as

dy dy
&2 104
“at T dr (5.104)
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Substituting (5.104) into (5.103) and then setting ¢ = 0, we obtain the following
autonomous system

deig d E
ddT - - lgidezg d
eim _
dr = klgzqelg q
o (5.105)
dr 7k1w‘}dezw d
dei,, , _
i1 _ .
dr kleqezqu

which is called the boundary-layer model of the system (5.98). When ¢ — 0, it
seems that the time variable ¢ and the slow state variables are frozen at their initial
values. By using Lyapunov analysis, the origin of the boundary system (5.105)
is exponentially stable. When the dq currents quickly converge to their reference
trajectories during the initial interval, the full-scale system (5.98) is degenerated
into the following reduced model

delvswjd
T: evswjd
AV d
i __
d dt = —kldj evswjd - deJ eI'Usw]-d
ety 100
it U
dv
SWid__ —kl N —k‘g Clugy
dt 4j “Vswja 157 0swja
dZ / /
= Az + 9y + 1y,

where ¥y = g, + Vg, and 9y, = Uy + Vuy + Vo In addition, the solution of the
reduced model (5.106) is denoted by (-)"¢. Now, we can state the first result of this
section.

Theorem 5.3.1. Consider the system (5.98) where all state variables are restrict
to their respective safe operating domains for t € [tg, t1]. There exists a positive
constant £* such that for all 0 < ¢ = 1/k; < €, the system (5.98) has a unique
solution on [to, t1], and the trajectories of the state variables can be approzimated

by

. g% rey _ 5. i

bgi,dg lgivdq(z ) Cig,dg = O(e
. _ g% re re . _
ij,dq ij,dq(z ’ vswj,dq) ele,dq_ O(e

_ e
VUsw;,dq vswj,dq_ 0
z—2"=0(e

)
; (5.107)
)

held uniformly for t € [ty, t1] where €iy, 4q GNA éiwj,dq are the solution of the
boundary-layer model (5.105)

6isu,dq: iy, dq (to) eXP(_I_flgmqu)

~ - 5.108
Civag™ Ciu, g (to) exp(—klwwqu) ( )
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Proof. 1t is obvious that the origin of the boundary-layer model (5.105) is globally
exponentially stable. Besides, the reduced model (5.106) has a unique solution.
Therefore, the approximations (5.107) can be deduced from the theoretical results
in Section 5.2.2.1. O

In terms of (5.107), the dg currents exhibit a two-time-scale behavior by pre-
senting a slow and a fast transients. It is the dg current tracking errors, é\i% 4, and
é\iwj, 40 that characterize the part of fast dynamics. It is shown that i(.) 4, start with
a fast transient which exactly corresponds to the solution of boundary-layer model
(5.105) during the initial interval. After the exponential decay of the fast transients
é\igi, da (83@1-, )5 4(),dq Temain close to their respective manifolds Z?) dq 11 the future
time.

As expressed in (5.108), the control gains k1, dq, k2, dg> K1w;,dg and k2w, dq Play
a major role in regulating the fast transient performance and hence we call them
the fast control gains. The control gains k1,dq]-, kgydqj and kg,, dominate the slow
transient performance, and they are consequently called the slow control gains.

5.3.3.3 Stability analysis

For the sake of simplicity, we introduce a new variable

€, =2—2 (5.109)
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Now, the closed-loop system (5.98) becomes

deligid
= €5, 4
at o .
deiq_d ng,d
J _— . _ . _ K3
dt - klgidelgid kQQideIlgid dt
deligiq
it o
deiyy, . di ,
dt TR1giqCig,q — K29:qClig,q — dt
deliwjd
dt = eiwjd
deiwjd dZ”TUjd
FT _kledeiwjd - kajdeIiw].d ~
dehqu
i = eiqu (5.110)
dei,, , diz, ¢
== —FK1w;qCin., — F2w;qCliv., — -
dt 7 J J J dt
delvswjd
=€
4 dt 'Usw]'d
evsw d tw,d
= —kiq4,€ — kog.€ —
dt 1d; Vsw;d 2d, Ivswjd wa7
dery,., .
a Cvsw;q
deysqu k k 62‘qu
e e _ e _
dt 1q] 'Usqu 2‘1j IUsqu wa]-
de
dtZ: Ae, + Az + 94 + Yy

where the equilibrium of the original closed-loop system, S, is shifted to the origin.
We call (5.110) the error system of the closed-loop system. In terms of those tracking
errors, the varying reference trajectories (5.94) can be expressed by

- . o
ijd _wajwwj (Usqu + evsqu) + ijd

+kldj e’Uswjd + kZdj eIUsu;jd

. (5.111)
ZZ}jq :—wa]'W'wj (Ugw]_d + evswjd) -+ Iw].q
+kf1q]- evsqu + k?qu ejvsqu
i 1 1 de ’dq
Since ij,dq are considered constant or slowly varying and then d;f = 0, the
derivatives of the dq references are given by
dZ;d _ deugi
dt 4 gt
dzg q
at 0
diy, 4 dey,, , de,,, . (5.112)
—= fw;Ww; + k1g. ———— + kad. €y
dt J J t J dt J swjd
d/l”)lkl) ; 67.1 .d dev
q sw sw.iq
dtj - _waj Ww; dt . kl%‘ dt —+ kQQj Cosuw.q
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Note that the asymptotic stability of the origin of the error system (5.110) would
imply the asymptotic stability of the equilibrium S of the original closed-loop system
(5.98). Hence, we investigate the stability of the error system (5.110) instead of the
original closed-loop system (5.98).
converge to zero, a new reduced model is deduced from the

If €ig, dg and €iu dg

error system as

derv,u;q (5.113)

dt = _qui evsqu - quj eIUsqu

o = Ae, + Az + 9, + U,

where 9}, = Uy, + Uy, and ¥}, = Y, + Vu,. The reduced model (5.113) can be
divided into two parts, the external dynamics represented by €0, dq and €100 dg
and the internal dynamics represented by e,. As the external variables converge to
zero, i.e. Cogu; dg 0 and Clog, g 0, the behavior of the reduced model (5.113)
is governed by the internal subsystem

de,,
dt

where ¥y = 99 and ¥y, = ¥y,. We call (5.114) the zero dynamics of the reduced
model (5.113).

In the reduced model (5.113), we remark that the dynamics of the external
variables are controlled by kl,dq]. and k27dq]. while kg, have a great effect on the
dynamics of the internal variables (or the dynamics of the DC grid). It can be
summarized that the control gains have different impacts on the system performance.

= Ae. + Az + 9, + 9, £ frero (5.114)

Lemma 5.3.2. Consider the reduced model (5.113). Fiz positive control gains k1,24;
and ki 2q;, Vj € M. Select the droop gains kg, that satisfy the following conditions:

o Vi e N, kq, is chosen such that

where
P + §v k ug, =0
gi 2 8gidVd; min Yeg; —
o There exists at least one SAC terminal whose droop gain satisfies
kdq > kdqmin (5.116)

where g € N.
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Then, the origin of the reduced model (5.113) is locally asymptotically stable.

Proof. A similar approach used in the proof of Lemma 4.1.3 is applied here. For
the system described by (5.113), if the zero dynamics (5.114) is locally asymptoti-
cally stable, then the origin of the system (5.113) is locally asymptotically stable.
Therefore, to establish the claim, we first study the stability of the zero dynamics
(5.114). This is done by linearizing the zero dynamics (5.114) around the origin.

zZero

The Jacobian matrix | lle.=0 is expressed by

z

8fzero]| o D C_IH
de, == |_-1gT _[-1R

O (5.117)

where D = diag(dy), k=1,--- ,N + M + P, is a diagonal matrix given by

3
Poz‘ + 7vsgidkdiu0i
d;i = — i 2 — i , 1€ N
Cgiugi
Py, .
d(j+N):_Cwﬂ2 g jeM
5 Yw;

Let us assume that there exists a particular eigenvalue of ® denoted by A = a+jf5 €
C, whose real part is non-negative, i.e. a > 0. Then, \ satisfies

det(A\l —®) =0
Alternatively, it can be expressed as

M~-D —C'H

det(| ;vgr ar4 1R/

=0 (5.118)

We define ®; 2 X[+ L 'R= A, + jA2 where A o are expressed by

R, R, LxL
oot 2L eR
L, LCL)

Ay = diag(B,- -, B) € RE*E

Ay = diag(a +

Since the Hermitian part of ®; is equal to H(®1) = A1, which is positive definite,
the complex matrix ®; is also positive definite (Lemma 4.1.6). Consequently, ®;
must be invertible (Lemma 4.1.9) and then, Eq. (5.118) becomes

M—-D —C'H )

L~'HT M+ L7 'R

=det(\[ — D+ C ' HO ' L HT )det(®,)

=det(\C' — CD + H(AL + R) "' HT)det(®)det(C™)

det(
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Again, we define

$y=\C - CD+ H\L+ R)"'HT
AC —CD= A3+ jAy (5.119)
(AL + R)~'= A5 + jAe

with the notations

A3 =aC — CD £ diag(o1, -+ , 0N M+P)
)

3
Pgoz_ + §Usgidk'diugi .
O'i:Cgi(Od—F Cgl’ljgl ), ZGN
O(j+N) :ij<a+ uijg )a JEM
Cuy U, (5.120)
U(h+N+]V[) = C'pha. h € P
A, = BC
alL. + R
A = di Ck Ck c RLXL
5 = diag(or— RCB)LQ ¥ (,BLck)Q)
Ag = diag( Lk ) € REXE

(Lo, + Rey)? + (BLey)?

Due to (5.116), we assume that kq, > kg, min, ¢ € N, where

3
Pg"q + ivsqukdq_minugq =0 (5.121)
Now, ®5 can be rewritten as

(I)QZ @3 —|—]<A4 —+ HA6HT)

: 5.122
3= A{+ Ay + HyH] (5:122)

where Af is a diagonal matrix whose ¢'" element on the main diagonal is o, and

’ ’ 1
other elements are zero. A4 and Hy are given by A = A3 — Al and Hy = HA2.
Let us define &4 = Ag—l—HfHJT and then the determinant of ®4 can be calculated
as

det(®4) = oq det(R(Hy) R(Hy)L) + det(H HJ)

Since Aé is a full rank matrix, i.e. rank(Aé) = L, then rank(HfHJif) =rank(Hy) =
rank(H) = N+ M + P — 1 and as a result, det(HfH]T) = 0. Similar to Lemma
3.4.2, by removing any one row from Hy, such as Hy¢(j,:), j € T, the rank of
the reduced matrix R(Hy); is N + M + P — 1. Consequently, R(Hy);R(Hy)? is
invertible and positive definite. Since kg4, satisfies (5.121), we get o, > 0 and then,
det(®4) = oy det(R(Hf)qR(Hf)qT) > 0. On the other hand, ®; and Al are semi-
positive definite because of (5.115) and (5.116) and hence, ®, is positive definite.
Recalling that ®3 = &4 + Ag,, it turns out that, ®3 is also positive definite. As
presented in (5.122), we know that #(®2) = ®3 and then, according to Lemma 4.1.6
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and Lemma 4.1.9, ®2 is positive definite and invertible. Therefore, the following
result is obtained:

det(M — ®) = det(Po) det(®;) det(C™1) # 0

for a > 0. This leads to a contradiction to (5.118). Thus, all eigenvalues of the
Jacobian matrix ® must have negative real part, i.e. a < 0. Hence, ® is a Hurwitz
matrix. As a result, the origin of the zero dynamics (5.114) is locally asymptotically
stable. Thus, the reduced model (5.113) is also locally asymptotically stable. The
proof is completed. O

Now, we can introduce another result of this section.

Theorem 5.3.3. Consider the MTDC system modeled by (3.20), (3.28), (3.29)
and (3.36) with the control strategy (5.90), (5.94), (5.96) and (5.97). Select the
droop gains that satisfy the conditions (5.115) and (5.116) in Lemma 5.5.2. Then,
there exist the control gains kig,q, k2g,q, K1w;ds K2wiq, k’Lde and k1,2qj such that
the equilibrium S of the closed loop system (5.98) is locally asymptotically stable.
Thereby, the proposed control strategy can stabilize the MTDC system.

Proof. As previously mentioned, to study the stability of the origin of the error
system (5.110) is equivalent to investigating the stability of the equilibrium S of the
closed-loop system (5.98). So we still focus on the stability property of the error
system (5.110).

We rewrite the last equation in (5.110) in the following special form

de,
dt

= frero + Vg5 + Dy + Dy + Dy (5.123)
According to Taylor’s theorem, f,.r, can be expressed by

frero=® €+ feero- €2
where fzem satisfies

lim || foerol| = 0

lle=[|—0

It means that, for any given «g, there exists a region B., such that
Hfzero” < (%)) (5124)

for all e, € B.,. In addition, since ® is a Hurwitz matrix, for any positive definite
matrix G,_, there exists a positive definite matrix F,, such that

F. .+ ®TF, = -G, (5.125)
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To simplify the notations, we introduce the following variables

A T
eig,dq_ |:€Zgl,dq ehgpdq eZgN,dq eth,dq]
T

A

ezw,dq_ |:61wlydq ehwl,dq 6ZwM,clq eth,dqi|
T

A

evw»dqi |:ev5w11dq erswl ,dq e evsij,dq eI'Ustw,dq]

Consider a Lyapunov function W = dWj + (1 — d)Ws where d € (0, 1). W; and
Wy are designed as

L 7 T
Wy :i(eingigdeigd + eigq igqCigq
+ eg;]dFiwdeiwd + eg:uq Fiwq eiwq)
and
W—}(eTF v, + el F, e, +elF.e,)
2 — 2 Vwd ™ Ywd ~Vwd Vwq ™ Ywg Vwg zt€ez-Z
where
. ; » 1 0
Eg,dq: dlag(Fi’Lg’dq); Fizg,dq = |:O kQQi dq:|
F;, ,=diag(F/ ); F/ = L0
twidg bw,dg”’ " tw,dg 0 k2wj,dq
Fopae= diag(Fgw,dq)
1
1+ 1
F'] . kl,dq]'
Yundg T 1 k s n k2,dq,
1,dg; 2dg; T 7
9 4 kl’dq]
It is clear that F;_ , , Fi, , and F,, , are positive definite. Then, the derivative of

d
W along the trajectories (5.110) can be calculated by d—vz/ = Dy + D3 where

Dy =11 +1
dn;
_ T 1 d T
Dy =€ Fi, dtg + €,

+el' F Wiy

iwq twq

dni T dniw
e M

+ e,’ll)—‘ququnqu + e’UdeFvwdnvwd
+€gFez (fzero “ ey + 1993 + 191[)2 + 1911)3 + 'lgw4)

F;

with
T
LA gk cee g
Mig,aa= [nglq 0 Lgndg 0}

ok ok T
[Zwl,dq 0 - bwyydg 0}

A eiwl,dq ein,dq
T [7%1 0 - g

(1>

niw,dq
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and the other expressions are given by

_ M 2 2 2
Fl_ B ijl(kld] evswjd + k2d] eIijd + quj evsqu
2 T
+k:2qje[ijq) — e, Ge e,
_ N 2 2
Po= =3 i1 (kigacs, , + ki)
M 2 2
o ijl(klwﬂdezw]d + klwiqeiwiq)
) ) kig. dg O
X I ) 7 _ gi,aq
G’g,dq_ dlag(ngvdq)’ Gig,dq - [ 0 0
; ; k1w, 0
T J J _ |Muwj,dg
le,dq_ dlag(Giw’dq)? Giwydq - |: 0 0

Gopag= dlaLg(G{,wdq)7 G%w’dq _ [ 16qu b ]
,aq;

Since the dq current reference trajectories only depend on the state variables with
slow dynamics, we then have

dmgd _ dmgd dez dnigq _ dmgq dez

dt de, dt’ dt de, dt
dniwd _ dThwd devwd _|_ dnzwd dequ dniwd dez

At dey,, dt | dey, dt | de. dt (5.126)
dniwq — dniwq devwd + dniwq dequ + dniwq deZ
dt dey,, dt dey,,, dt de, dt
From the aforementioned sections, we know that
[[9gall = 0 as |[e;,,]| = 0 and [les,,[| — 0
[P, ]| = 0 as [lei, || = 0 and [le;,, || =0
[[Pws || = 0, [[Jusl] = 0 as [lev, || = 0 and [[ey,,[| =0
and then there exist positive B, £k = 1,--- ,8 and convex regions IB% i’ Eeiw i

B., such that
Yw,dq

10511 < Bullegall + Balleig, |
[[Pwill < Bsllei,qll + Ball€iy, |l
[Pwa | < Bsllev,all + Bolleve,l|
[Dws || < Brllev,qll + Bsllev,, |l
for all €igaq € IB%% dg * Ciudg S Beiw,dq

larger size of By, leads to larger values of .
Applying the above inequalities and (5.124) to (5.123), we then get that

and ey, , € Eevw,dq‘ Note that, in general, a

de,,

1

< I@I] - [lez|] + aollez]] + Bulleigyll + Balleiy ]

B3] |€iall + Bl iy || + Bsll€vnall + Boll€vus| (5.127)
+B7/lev,all + Bsllevy, ||
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holds for all e, € B,_, €igaq € Beig,dq s Ciag € Beiw,dq and vy qq € Bevw,dq‘

Taking (5.112), (5.126) and (5.127) into account, it can be verified that there
exist positive parameters bi, for k =1,--- ,L+ 3,4 € N, and clj, forl =1,---,8,
J € M such that Dy satisfies the inequality

‘D2 S ZZZI leigid|(bﬁ|6igid’ + bz2|e7;giq‘ + b§|eucgi‘

+2L%%maq+zﬁ4§w%A+éMwn

(5.128)
.(C§|€Uswjd| + Ci|elvswjd| + Cg|evsqu| + cé|elvsqu‘
+C?7|€iwjd‘ + Cé|eiqu’)]
for all e, € B, C B._, €igaq € Beig,dq C B@z‘g,dq y Ciyag € Beiw,dq - Beiw,dq and

€vyaq € Be, u C Be,, - These positive coefficients (b} and ¢]) are determined by
the size of the domains B.), the droop gains kq,, k1,24;, k1,2¢;, the system parameters
and the prescribed setpoints while they are independent of kiy, dg, k2g;,dgs K1w;.dg
and kaw; dg-

Using Young’s inequality

1 2, M 2
. < Lad
][ - [yl < 2”IISEII + 511yl

for the cross terms in (5.128) where p is a positive constant which can be chosen
arbitrarily, we obtain

Dy <T3+Ty (5.129)
with
N bzi i 2 bé 2
1—‘3: ZZ:l 5Vi ‘eigid’ + 21/1 ‘ei.%ﬂ’
. 2 (5.130)
M djl J 2 d% J 2
+Zj:1 ?Rl‘eiw]-d| =+ ?H2|eiqu‘
and , .
L= SV, | Doy, P+ TE, it e, P
=1 2V§ Ucg; t=1 2Vtz+3 ey
& &
M 23 2, Y4 2
+ Z]:l 2,‘{/‘% levswjd’ + 2,‘<;‘ZL ‘elvsu;jd‘ (5131)

5 6
where v(,y and £ have the same role as p1, and can be chosen arbitrarily.

& &
+27ljj’€’l)squ|2 + 2[:}"611}5qu’2]

In order to make the derivative of W negative except at the origin, we first deter-
mine the values of droop gains kg, , kLgd]., kquj and the size of region of attraction

Ratt =B X Beiw dq x B, X Bez

e e
g,dq Yw,dq
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Then, the values of bi; and clj can be estimated. Subsequently, we choose large
70 and K() such that I'y + T’y < 0. Once kg, k?Lde, kl,ij, the size of region of

. . . bt .
attraction Rau, v(.) and k() are determined, no matter what values of EIV{, ;yé,
d ;L by by &

?1/{]1 and 52% are, we can always find 51% < kig,d, 521/5 < Kigiqs 51/-@{ < kluwd

j
and @Ki[ < k‘leq and hence, I's + I's < 0. Consequently, there exist k14,4, k24,4
E1w,;d, k‘gwi'q, kiLde and k’Lqu such that the derivative of W is non-negative. In
addition, W = 0 contains no trajectory of the system except the trivial trajectory.
All solutions starting from Rg will converge to the origin. According to LaSalle
theorem, the origin of the error system described by (5.110) is locally asymptotically
stable. Thereby, the equilibruim S of the original closed-loop system (5.102) is also
locally asymptotically stable. Finally, we can say that the control strategy can
ensure the asymptotic stability of the MTDC system. 0

There is a trade-off between the size of Ry4 and the performance of system. If
we want to get a large region of attraction, then we will have large values of k14, 44
and k144 As seen in (5.90), large kg, 4 and k1,4 maybe lead to large peak
values of the control variables.

5.3.4 Simulation studies

In this section, the MTDC system as depicted in Fig. 5.13 consisting of two WAC
and two SAC connected VSC terminals is simulated.

Figure 5.13: An MTDC system with two WAC and two SAC terminals.

The values of the parameters are listed in Table 5.7 and Table 5.8.

The AC line-line voltage of both SAC terminals is 415 V. The base quantities of
the per-unit system applied to the simulations are presented in Table 5.9. The base
quantities of the AC and DC currents are calculated as Inc base = Sac,base/ Vac,base
and Idc,base = Sdc,base/vdc,base~
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Table 5.7: Parameters of the DC network.
H Resistance R, ‘ Inductance L.

Iy 0.01 6 mH

ly 0.02 12 mH
l3 0.15 Q 9 mH

ly 0.14 Q 8.4 mH
l5 0.16 Q2 9.6 mH
lg 0.18 10.8 mH
l7 0.19 11.4 mH

Table 5.8: Parameters of the VSC terminal.

| Ry (Rw) | Ly (Lw) | Gy (Cu) |
SAC1 || 9.9 mQ 6 mH 68 uF
SAC2 || 94mQ | 12mH 20 uF
WAC 1 || 8.4 mQ 9 mH 27 uF
WAC2 || 89mQ | 84mH | 20 uF

As described in the previous section, the wind farm is modeled as a controlled
current source and hence, I,,, 44 and I, 44 Tepresent the power productions of the
wind farms. The setpoints and the initial values of I, ,q4 are given by Table 5.10.
Iy, 4 and I,,,4 are set to zero. Furthermore, some system variables’ initial values are
provided by Table 5.11. For all the simulations in this section, the integral parts
of the fast control gains are set to zero, i.e. kog, dqg = kow;dg = 0. Three different
sets of control gains as presented in Table 5.12 are chosen to verify the theoretical
analysis.

5.3.4.1 Verification of two-time-scale behavior

The control gains in Set 1 are considered for the converters in this part. The
simulation results are displayed in Figs. 5.14-5.15. The trajectory of i4 4 in Fig.
5.14(a) clearly exhibits a two-time-scale behavior. It starts with a fast transient
After the decay of this fast
dynamic, 44,4 is on or close to its manifold i} ; in all future time. Figure 5.14(c)
illustrates the error between ig,q and 4 ;. At the initial instant, |iga — 1} 4| is
nearly 0.29 p.u.. After ¢ = 0.06 s, the discrepancy between the two trajectories is
less than 0.015 p.u.. It turns out that during the initial interval [0, 0.06] s, the
trajectory of i4,4 approaches that of i;ld. It is seen that the exponential decay

during the initial interval as shown in Fig. 5.14(b).

Table 5.9: Base quantities used in the per-unit system.

AC side || Sacpase = 4.5 kVA | Vicpase = 4154/2/3 V
DC side Sdc,base = 3 kVA Vdgbase =700V
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Table 5.10: Setpoints and initial values of the current source.

Ly, 7 Ugy
SA'1 _0-4Sac,base 0 V:ic,base
SAC 2 _0-5Sac,base 0 Vdc,base
Ugwjd Q}gqu ijd
WAC 1 Vac,base 0 0~4Iac,base
WAC 2 Vac,base 0 0~5Iac,base
Table 5.11: Initial states of the MTDC system.
i!]ld i92d iund Z'wgd
-0.2 p.u. -0.1 pu. 0.3 p.u. 0.3 p.u.
Vswid Vswiq Vswad Uswaq
0.7 p.u. 0.01 p.u. 0.7 p.u. 0.01 p.u.
Ucgy Ucgs Ucw, Ucws
1.043 p.u. | 1.043 p.u. | 1.043 p.u. | 1.043 p.u.

Table 5.12: Control gains applied to the MTDC system.

’ H ka, kd, ‘ klgi,dq (kle,dQ) ‘
Set 1 || 10-kq, .. | 10-kq, .. 1000
Set 2 || 10kq,, | 10-ka,, . 300
Set 3 || Lka,.. | 2ka,.. 1000
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of the fast transient during the initial interval corresponds to the solution of the
boundary-layer model. However, such two-time-scale behavior is not significant in
the DC voltage and the AC voltage, which are considered to have slow dynamics.
As depicted in Figs. 5.15(a)-5.15(c), there is no apparent fast transient that can
be found between the trajectories of uey, and ugg, (Vsw,a and vl ;). It can be
observed that ucg, and vg,,q are well approximated by the solution of the reduced

re re
o and Vgiord-

o M re
Vg, q together with vig .

model, i.e. u Moreover, vg,, 4 asymptotically converges to its setpoint

-0.2 ‘ ‘ ‘ i -0.2 ‘ ‘ ‘ i
0 _|gld (p.u.) 0 _|gld (p.u.)
-0.25 _igld (p.u.) 0.25 _igl 4 (Pu)
-0.3 1 -0.3
-0.35 1 -0.35]
0.4 -0.4f
-0.45 ] -0.45
0% 02 04 06 08 1 0% 001 002 003 004 00
Time (s) Time (s)
(a) Responses of ig4,4 and iy, 4. (b) Zoom of ig4,q and iy, 4.
* 0-3 *
—Error:i i (p.u.) —Error:i_ - (p.u.)
8,9 9, 0.25 9,9 9,
0,2 1 0.2
0.15
0,1 1 0.1
0.05
0.01§ | | |
-0.05¢ 1
i i _010 i i i i
0 0,06 0.2 0.5 0.02 0.04 0.06 0.08 0.1
Time (s) Time (s)
(c) Error between iy, 4 and iy, 4. (d) Zoom of the error between iy, 4 and i}, 4.

Figure 5.14: Simulation results with the control gains in Set 1 (1).
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(b) Zoom of ucg, and ugg,.

(a) Responses of ucg, and u

1.1 i i i i 1.1
1 7‘ . 7\
[

0.9 —szld (p.u.) 1 0.94 —vswld (p.u) 1
_v;;ld(p.u.) _v:Nd(p.u.)
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(c) Responses of vsw,a and vy, 4. (d) Zoom of vsw,a and vy, 4.

Figure 5.15: Simulation results with the control gains in Set 1 (2).
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5.3.4.2 Evaluation of the system performance in case of disturbance

At t =2 s, 1,4 is changed to 0.6 p.u. because of the increase in the active power
generated by the wind farms. Consequently, both SAC connected VSC terminals
should share the duty of eliminating the power unbalance caused by this increase
of the power production. The simulation results are presented in Figs. 5.16-5.17.
Since more power needs to be transmitted via the DC grid, in order to make the
MTDC system operate normally, the two SAC terminals should absorb more power
from the DC grid. As shown in Figs. 5.16(a) and 5.16(b), i4,q attains a new steady
value around —0.5 p.u. from —0.4 p.u. and 592(1 is also changed from —0.5 p.u. to
—0.6 p.u.. According to (5.101), if more power is absorbed by the SAC terminals,
this forces the DC voltages to rise and reach new steady levels. This phenomenon
is clearly presented in Figs. 5.17(a) - 5.17(c). The new DC voltage transmission
level is now about 1.05 p.u. which deviates from the setpoints ug, o = 1.0 p.u.. As
seen in Fig. 5.16(c), 44,4 arrives around 0.6 p.u. to response to the change of I, 4.
On the other hand, vsy,q 18 always well controlled around its setpoint vg, 4, = 1.0
p.u. irrespective of the variation in I, 4 after a short transient as depicted in Fig.
5.17(d).

By contrast to the increase in I, 4, at ¢ = 4 s, I,q drops from 0.5 p.u. to
0.3 p.u.. The simulation results are summarized in Fig. 5.18. Since the generated
power from the wind farm 2 decreases, i,,,q starts to decrease and then converges to
a new steady state of about 0.3 p.u. as shown in Fig. 5.18(c). From Figs. 5.18(a) -
5.18(b), ig,q is changed from —0.5 p.u. to —0.4 p.u. and ig,q varies from —0.6 p.u.
to —0.5 p.u. This means less power is received by the two SAC terminals because
less power is injected into the DC grid. Additionally, in order to comply with the
droop law (5.95), the DC voltages also drop and then get to a new steady state
(~ 1.0 p.u.) as displayed in Figs. 5.18(d) - 5.18(f).

To evaluate the capability in terms of AC voltage regulation, at t = 6 s, a new
setpoint vg, ;= 0.9 p.u. is sent to the 15 WAC terminal. Now vg,, 4 i required
to be stabilized around this new reference point. The transient response of vgy,q
is illustrated in Fig. 5.19(a). It is found that vsu,q and vy ; quickly converge to
the new setpoint with an acceptable undershoot. Since I, 4 is unchanged during
the interval [6, 7] s as depicted in Fig. 5.19(b), the change of vZ, ; has no effect
on the steady state of i,,4. According to (3.31), less power flows through the 15
WAC terminal due to the decrease of the AC voltage at the PCC, which implies
that the total transmitted power reduces. Therefore, both SAC terminals get less
power than before and then, ¢4, 4 and i4,4 start to decrease until converging to new
steady states as seen in Figs. 5.19(c) and 5.19(d). Similar to the results in Figs.
5.18(d) - 5.18(f), the DC voltages start to drop and remain around 0.985 p.u. as
shown in Figs. 5.19(e) and 5.19(f).

The responses of each terminal’s active power at the PCC are plotted in Fig.
5.20. It is clear that the two SAC terminals participate in balancing the active
power of the DC grid. When the power injection grows, both SAC terminals share
the incremental power and then absorb more power from the grid. Conversely, if
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the power injection reduces, both SAC terminals decrease their power absorption
accordingly.

0.6f | ]

0.4 , .

0.2} _PQll (p.u.)|
—P, (p.u)

O’ 92 4
PWl (p-u.)

0.2 _P. (pu)|

2

-0.4 .

Y o —————

-0.6 I | I I I I I 1

0 1 2 3 4 5 6 7 8

Time (s)

Figure 5.20: Responses of active power during the interval [0, 8] s.

5.3.4.3 Dynamics regulation

As stated in Section 5.3.3, we indicate that the control gains play different roles in
regulating the system dynamics. This will be verified by the comparisons between
different sets of the control gains.

We point out that the fast transient of the dg currents corresponds to the solution
of the boundary-layer model and then the fast dynamics can be regulated by the
fast control gains. To clarify this issue, the comparison between Set 1 and Set 2 is
carried out where kyg, 4q and k14; dq in Set 1 are larger than in Set 2. The simulation
results are displayed in Fig. 5.21. During the initial interval, the two trajectories in
Fig. 5.21(a) start from the same initial point around 0.285 p.u.. It is evident that
the blue one has a faster rate of decay than the red one because of larger ki4,4 in
Set 1 than in Set 2. As seen in Fig .5.21(b), the blue curve enters the error band
[—0.005, 0.005] p.u. at around ¢ = 0.25 s and then remains in this band in the future
time, but in contrast, the red curve reaches this error band only after t = 0.41 s.
A similar phenomenon can be observed in the response of the error between i, 4
and iy, ; as plotted in Figs. 5.21(c) and 5.21(d). Both curves in Fig. 5.21(c) have
the same initial value of 0.385 p.u.. Since k4,4 in Set 1 is larger than in Set 2, the
response of the error represented by the blue curve drops faster than that described
by the red one. Additionally, as seen in Fig. 5.21(d), after ¢ = 0.2 s, the blue curve
stays in the error band [—0.005, 0.005] p.u.. The red one needs 0.41 s to get into
this error band and then remains in it. The simulation results clearly show that the
fast control gains play a critical role in the regulation of the fast transient of the dg
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Figure 5.21: Comparison between Set 1 and Set 2.

As expressed in (5.113), the behavior of the reduced model is regulated by the
droop gains ky,, k1,4q; and k2 44, Furthermore, the dynamics of vy, 44 in (5.113)
heavily depend on kl,dq]. and kquj, while the zero dynamics (or the dynamics of the
DC network) strongly rely on the choice of the droop gains k4. To demonstrate
the above points, two sets of control gains, i.e. Set 1 and Set 3, are chosen for
comparison. The only difference between them is that k4, in Set 1 is larger than in
Set 3.

The simulation results in Figs. 5.22-5.23 show the effect of the droop gains on the
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system performance. From Figs. 5.22(a) and 5.22(c), both u¢y, and ue,, with Set 1
and Set 3 are asymptotically stabilized around 1.0 p.u.. However, it can be observed
that the blue trajectories remain in the domain [0.99, 1.01] p.u. after ¢ = 0.05 s,
whereas the red ones need nearly 1.9 s to stay in the same region. Moreover, as seen
in Figs. 5.22(b) and 5.22(d), the response of ucg, (Ucyw,) with Set 1 is much steeper
than that with Set 2 during the initial interval. The above description indicates that
the performance of the state variables related to the zero dynamics can be improved
by increasing the values of k4, appropriately.

Let us now focus on the responses of the AC voltage as depicted in Figs. 5.23(c)
- 5.23(f). Interestingly, as seen in Fig. 5.23(c), the response of vgy,q with Set 1 is
very close to that with Set 3. In particular, as seen in Fig. 5.23(d), the two curves,
the blue one and the red one, almost coincide with each other. A similar result can
also be obtained for wvgy,q from Figs. 5.23(e) and 5.23(f). This implies that the
droop gains have little effect on controlling the AC voltage. It is k1 4q; and kg 44,
that are predominant in the regulation of the AC voltage.

5.4 Conclusions

Vector current control has been widely applied in the context of VSC control, whose
principle is based on the assumption (or empirical practice) of time-scale separation
between the system state variables. However, this hypothesis (or experience) has
been rarely theoretically studied. This chapter has bridged the gap between the
theory and the practice.

First, in Section 5.1, a general control design problem was studied where a time-
scale separation based control structure consisting of two loops, the fast inner and
the slow outer loop, was established for a class of nonlinear systems. Further theo-
retical studies have been carried out, showing that the proposed control algorithm
can divide the dynamics of the system’s state variables into different time scales and
the original closed-loop system can be divided into two models, the boundary-layer
and the reduced model. Interestingly, by analyzing the two models, we find that
the control gains in both control loops have different effects on the system behavior.
The state variables with fast dynamics exhibit a significant two time-scale dynami-
cal behavior by presenting a fast and a slow transient. Moreover, the fast transient
exactly corresponds to the solution of the boundary-layer model, whose dynamics
are dominated by the control gains of the fast inner loop.

Then, we have applied the theoretical results to the control of MTDC system
where two mostly used control configurations, master-slave and droop control config-
uration, have been investigated in this chapter. According to the different VSC op-
erations of the two control configurations, two different time-scale separation based
controllers are presented. As stated in Lemma 5.2.2 of Section 5.2, we point out
that in master-slave control configuration, the developed controller can make the
system exhibit different time-scale dynamics when the system’s physical structure
and the prescribed (or scheduled) references satisfy certain conditions. In addition,
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Figure 5.22: Comparison between Set 1 and Set 3 (1).
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we find that in this control configuration, with the proposed controller, there exist
some uncontrolled internal dynamics (for example, the state variables of the DC
grid) whose behavior strongly depends on the system inherent characteristics.

Subsequently, we have applied the theoretical results of control induced time-
scale separation to droop control configuration. As stated in Lemma 5.3.3 of Section
5.3.3.3, the proposed time-scale separation controller has no specific requirements on
the system parameters, topology or those prescribed references. Unlike master-slave
control configuration, the dynamics of the DC grid are determined by the droop
gains and hence, there is no uncontrolled internal dynamics. The theoretical studies
carried out in this chapter have been verified with simulation results where various
simulated scenarios have been considered.
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As presented in the previous sections, the developed controllers are used to
guarantee the operation of the system states around their prescribed references which
are given by a higher control level. In this chapter, we will propose a possible method
based on frequency control for computing the active power references. The main
idea of this approach is to make the non-synchronous systems interconnected via
an MTDC system share their primary reserves by modifying their scheduled power
references. A DC-voltage-based control scheme, only needing local information, is
introduced to regulate the AC frequency, for which a sufficient condition on tuning
the control gains are derived to ensure the system stability.

6.1 Introduction and motivation

In an AC system, the frequency, as an indication of power balance, is common ev-
erywhere on the time scale of a few milliseconds. With this common frequency, all
generating units within the system can sense a power imbalance and adjust their
power output to counter this disturbance. This mechanism of restoring power bal-
ance is commonly called primary frequency control, and the region of variation of
generators’ output is referred to as primary reserve. With the current practice of
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transferring a scheduled power among the AC areas through HVDC links, the fre-
quencies of the areas are independent of each other, and thus generators in one area
are not sensible to other areas’ power imbalances. The advantage of this practice
is that a disturbance in one area does not affect another, and thus the HVDC link
can play the role of a firewall to prevent cascading failure. However, in the case
of a severe power imbalance, the generating units within the affected area may not
be strong enough to restore the power balance in time, and the resulting frequency
excursion may be so large that invasive and expensive corrective measures (e.g. load
shedding) have to be triggered. Such undesirable scenarios may be avoided if the
HVDC system can be controlled in real time in such a way that the interconnected
AC areas can share their primary reserves.

References [Hamzei-nejad 1986, Dai 2010 proposed frequency controllers that
modify the active power transferred by an HVDC link. These proposed controllers
require other AC areas’ frequency measurements. Due to the time-delay of informa-
tion communication, the controllers may destabilize the overall system. To become
independent of remote information, [Rashed 2008] proposes a controller, named the
DC-voltage-based controller, which takes actions only based on local information,
requiring no communication among the AC areas. The theoretical stability proof
in [Rashed 2008| is only valid for the special case of identical parameters of the AC
areas, which is unrealistic in practice. In addition, the choice of the control gain
in [Rashed 2008] was also rather empirical, and no proper approach to tuning the
control gain was given.

In this work, we study a more general case without any restrictions on AC area
parameters. A rigorous stability analysis is given to ensure safety and reliability.
Moreover, we investigate the feasible region for the control gains based on Lyapunov
theory and LMI techniques [Boyd 1994].

6.2 Modeling

The work in this chapter is based on the following consideration:

e We do not distinguish the difference between the SAC and WAC connected
VSC terminals. Every converter station is considered to be a black box. Since
the control of the VSC terminal has dynamics in the ms range (see the sim-
ulation results in the previous sections), much faster than the problem of
frequency control, the dynamics of the converter stations are neglected. We
assume that any active power references generated by the frequency control
can be perfectly tracked by the converter stations.

e The dynamics of the DC grid is neglected where each DC circuit branch is
simply represented by an aggregated resistance.

As depicted in Fig. 6.1, we consider a simplified MTDC system consisting of
a DC grid, N AC areas, and N VSC converters where Pidc represent active power
injections to the HVDC grid. By convention, if PidC is negative, AC area i absorbs
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power from the HVDC grid as a consumer. Otherwise, AC area i provides power as
a supplier.

AC1

pge

d

‘ Converter 4 H Converter N ‘

Figure 6.1: Diagram of an MTDC system with N AC areas.

6.2.1 DC grid

Each DC voltage is denoted as V;. Thanks to VSC converter and PWM technology,
all converters can independently control their V;. The power injected to the DC grid
from AC area i, P, satisfies Ohm’s law

N

Vi(Vi = Vi)

de __

Pe=) = (6.1)
k=1 v

where the aggregated resistance R;; represents the transmission line between AC
areas 1 and k. Obviously R;p = Ry;. If AC areas i and k are not connected directly,
Rjx is infinity.

6.2.2 AC areas

Fach AC area is modeled as an aggregated generator and a load. The equation of
motion of the generator is

QWJZE = 27Tfn0m’l' — 27TDg¢ (fz — fnom,i) (62)

where Py,;, J; and D, are the mechanical power input, the moment of inertia and
the damping factor of the aggregated generator of area i, respectively. f; is the
frequency of AC area ¢ and f,om,; is its nominal value. Fj, is the power consumed
by area i’s load. In addition, J;, Dy, and fyom,; are considered as known parameters.
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The primary frequency control is realized by the speed governor of the generator,
which modifies P, in response to a deviation of f; from fyom,;. This dynamics is
AP,

modeled as P Fot
T ] _ Ps_ _p. . _ nomy, J — Jnom,i
Tt i " 0; fnom,i

where T, ; is the time constant of the servomotor, Pj, is the scheduled value for
Pr.., Puom, is the nominal power of the generator and o; is the generator droop.

(6.3)

By combining (6.2) and (6.3), the whole system is represented as

2nJ,—= i _ 92D (f — )
i dt 27Tfnom,z‘ i gl(fl fnom,z) (6 4)
T deZ:PS _p _Pnom,i fi_fnom,i ’
Tt i " 0 fnom,z'

for = 1,---,N. f; and P, are the state variables. By substituting (6.1) into
(6.4), V; explicitly appear in the system model, and they are considered as the
control inputs.

6.2.3 Reference operating point

The reference operating point defined here corresponds to the steady state of the
system, which is qualified by specific values of input parameters P, Py, and the
variables fi, Pn;, P, V;. We here use the same notation (-)° as in the previous
section to denote the reference values of the system variables.

We usually expect that the system would operate in nominal condition and
hence, the reference values of f{ and Py, are naturally set to their nominal values,
ie.

7= Foma
i — Jnom,i
o _ po

Since the reference operating point is a steady state, we have

P — Pf = P°
= i — 97Dy (£ — fromi
27Tfnom,i " gZ(fZ f om,z)

0= PT%Z o Pﬁ% _ Pnom,i on - fnom,i (65)

ag;
‘7'0(‘{0 _ Vo)
dc,0 N i i
]DZ» = k=1 7’{

fnom,i

V2 can be obtained by solving (6.5). Since the above algebraic equations are in

quadratic formula, finding the proper solution for V.° can be turned into an opti-

mization problem. Here, we will not focus on this issue.

6.3 Control strategy

Consider that the MTDC system initially operates at the reference operating point.
Then, one of its AC areas is subjected to a disturbance that takes form of a step load
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change, i.e. P, # FP. Tt is true that this load change can be satisfied by the primary
frequency control of its own area (P,,,). However, in case of a large disturbance,
if we rely only on F,,,, the resulting frequency deviation may be so large that it
endangers the correct operation of the system. Thus, our objective is to improve
the transient frequency profile by calling for other area’s primary reserves so that
the frequency excursions in area ¢ are less pronounced.

6.3.1 Control law

The control objective is to regulate each converter’s DC voltage V; only based on
local measurements f;, i.e. V; is a function of f; only. Therefore, a DC voltage based
controller is designed as

Vi=Ve+ai(fi = f7) (6.6)

with positive gain a; > 0.

Under this controller, due to the physical coupling of the HVDC grid (6.1), the
resulting power injected to DC grid P2 can be regulated by controlling V;. This
method leads our whole system to achieve the objective of sharing every area’s
primary reserve. However, we are not sure whether f; and F,,, are ultimately
bounded around the reference operating point under the control law (6.6) with an
arbitrary positive control gain «;.

6.3.2 Choice of control gains

In this part, we give a detailed analysis for choosing the control gain «; to guarantee
ultimate boundedness of f; and P,,, under (6.6).

To simplify our problem, at first, we shift the reference values to the origin by
introducing the following new variables

Ddc__ pdc de,0
P{*= P - P
Py=P, — Py

Pri= m; PT?M (67)
Vi=Vi=V?
Recalling (6.1), P can be expressed in these new variables as
N o~ ~ — o~ ~
~ V24 2V,Ve — ViVi — V;Ve — Vi, Ve
Pidc _ Z ( + 1 k k kVi ) (68)
P R

An error system of the original system (6.4) is generated in terms of the new variables
by applying (6.5) and (6.8)

fz‘ I—au‘fz’ + a2ipmi — a2i151i — a2
s (V24 2V = ViVl = ViV = Vi)
i Rix

(6.9)

P =—ay4; fi — a5 P
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D,. 1 P, i
g nom,i .

a9 = ——5———, Q4 = —————, A5; = —. It is worth-
Ji ’ 47T2Jz'fnom,i ’ Tsm,igifnom,i ’ Tomi

while to note that aq;, a9;, a4, as; are strictly positive, and it can be seen that the

where ay; =

control input V; explicitly appears in the system (6.9).
As seen in (6.9), Py; is viewed as a nonvanishing perturbation which is uniformly
bounded if a load demand imbalance exists, i.e. P, — P # 0. As a result, the
system (6.9) can be considered as a perturbation of the nominal system
fi :—aufi + agi Pri — ag;-
(ZN V2 +2VVP — ViV = ViV — Vka)

ki Rk (6.10)

P =—ay4; fi — a5 P

If the origin of the nominal system (6.10) is asymptotically stable under the con-
trol law, then the perturbed system (6.9) is ultimately bounded around the origin
[Khalil 1996]. Thus, the problem becomes to investigate a feasible region for «; such
that the origin of the nominal system (6.10) is asymptotically stable under (6.6).
In the following part, two methods are devised to search a feasible region for «; by
means of analyzing the stability of the nonlinear system (6.10).

6.3.2.1 First approach - linearization of injected DC power flow

The first approach consists in analyzing the stability of the nonlinear system via
linearization. Let us linearize (6.8) around the reference operating point resulting
in

pidC_ZQV; ey ZR

k;ﬁl ik
N N
VO 0
= Z Vi Vi Vi (6.11)
‘ Rk,
k#i k#i
To simplify the notation, we define
: 3 5 1T
f=1h N .
~Pm [ le NPmNT (612)
Pdc [Pldc ]c\lfc
~  ~ 1T
v=[ Vv

and then write (6.11) compactly in vector form as

N N
~ Vo -
e = diag(V;°)LV + diag(V;")diag() o )V diag(D R—’“)V (6.13)
. Lk
k#i k#i
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where L € RV*V is the weighted Laplacian matrix describing the topology of
HVDC grid, defined as

1

_ k y
Ll — R, 7
S =1
J# Rij
With the new notations
Noq Ny
V = diag(V;"); R =diag()_ ——); V= diag(d_ ==)
kot Rik ki Rik

the nominal system (6.10) can be expressed in matrix form as

i

P,

SR AR S

where A; = diag(ai;), A2 = diag(ag;), Ay = diag(as;), As = diag(as;), Aa =

diag(a;). In addition, according to the control algorithm given by (6.6), V in (6.14)
can be expressed as

V =[4, 0 [f] (6.15)

Substituting the control law (6.15) into (6.14) leads to the following closed-loop
system

f = A [Iéfn] (6.16)

Pr,

where A is given by

A — —A1 — AQ(VL +VR— VR)Aa A2
- —A, —As

A Lyapunov-based method is used to find a feasible region for A,. Taking
W = fTA,f + PL A,P, (6.17)

as a Lyapunov function candidate, the derivative of W along the trajectories of
(6.16) is

W =— fTE,f —2PT A Ay P, (6.18)
where F}, is a symmetric matrix, expressed as
F,=2A1A,+ AQ<LV + RV — VR)A2A4 + A4A2(VL +VR-— VR)Aa

If there is a region for A, such that F,, is positive definite, the origin of the closed-
loop system (6.16) is then asymptotically stable. Thus, our problem becomes to find
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a feasible region for a such that F, > 0. This leads to a linear matrix inequality
(LMI) problem. The objective is now to find a diagonal A, such that the following
inequalities

A>0

hold. The above LMI problem can be solved for typical values. As seen in (6.19), it
is shown that the feasible region for A, is determined by all the AC areas parameters
and the reference operating values of the system variables.

6.3.2.2 Second approach - nonlinear approach

It is well known that the approximation of the nonlinear system (6.10) by its lin-

earized system (6.14) is valid only in a neighbourhood of the origin. Thus, to study

the global behaviour of the system under the control law, another approach based

on Lyapunov theory is devised to study the stability of the nonlinear system (6.10).
We rewrite P2 (6.8) in a vector form as

P = diag(V;)LV + diag(V;)LV?° + diag(V,?) LV (6.20)

where
veo v vyl

The matrix form of the system (6.10) is given by

f = [‘Al Az} {f } - [AQ] - (diag(V;)LV + diag(V;)LV° + diag(V°)LV)

b, | =41 —As] [P 0

(6.21)

Substituting V; = oy f; and diag(V;) = Andiag(f;) into the above expression, then
the closed-loop system is obtained as

o A 1 A i A B G e

where H(f) and Hy(f) take the form

i

P

Hi(f) = AsAydiag(f;)LAq 4+ Agdiag(V?) LA,

H2 (f) = AgAadiag(fi)LVO

To investigate the stability of the closed-loop system (6.22), the same Lyapunov
function candidate

N N
W = Z a4¢fi2 + Z CLQZ‘PTQM (623)
=1 =1
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is chosen as in Section 6.3.2.1. Then, the derivative of Lyapunov function is
W= —2f" A Auf — FrAHf — fTHT Aof — fRAuHy — HY Asf — 2PL A5 Ao Py,
where
FPAH f= 08 agasi(ai fE+VEF) | X

Ve -V,
fTA4H2— Zz 1a4za21azf <Z;c\;éz lkk>

N Oéifz‘ - akf k
R;
To facilitate our analysis, we rewrite W as
W = —M;, — My —2PL A5 AP, (6.24)
where My and M» are given by

M= fTA AL + [T AHf + JTHT Asf
My= fTA ALf + fTA4Hy + HJ Ayf

It is possible to rewrite M; and M> in a total sum square form as

. . . aifi — o f)
My =3, ay (aliff + 2azi(ai ff + VP fi) - (Zgﬁ kakfk>>
VO

~ \%
My =37 au f} <a1i + 2ag;; <Ziv¢l l}g’“))
Z

As a consequence, we get

My + Mo
- VO _ VO -
=i ag <2a1ifi2 + 2az; <Z]k\;éi Zk) aif?
Ry
v 1 N Tk
+2az; (Zk;ﬁi R a?f? — 2az04 kR f? (6.25)

oufif
+2as9; <Zk7€z R> VOOéZfQ) Zfil 2a4ia2ivio <Z]]€V7AZ ];%f];f )

Applying arithmetic geometric mean inequality

b o (o ol (626)
to My + Ms in (6.25) yields
My + M
zzﬁil ay; <2G1¢fi2 + 2a9; <Z;]§V¢Z VZOR_ZkaO> aif2
+2as; <Zi\;§l R12> a2 f3 — 2ag;0 (Zé\;l akfk) f? (6.27)

(2

o akf aku
a0 <ZI€7éZ Rik) K alf?) ZZN o2l (ij\;l Ry, Rz‘kk>
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The last term of (6.27) can be written as

2
N N Oékf akf .
D i1 04i02;V <Z k

MU R Rik

" B (6.28)
k 4k 02 Py
=iy (0 (Sl ) o (S T ) 7

Ry, a4; Ry
Therefore, M1 4+ M> satisfies

My + My
N N Vi -W 2
>> il a4 (2a1i + 2ay; <Zk¢i - o > @i + 2a; (Zk# Rir > 2fi
(2 ik

o 1 6.29
—2a;0 (Z]k\;éz kfk) + 2az; (Zi\;i R'k) Vi (6.29)

N Qg N QagaorVy f2
—aV; (Zk;ﬁz‘ Rm) T <Z’“¢i %Rki)> I

Finally, a feasible region for «; is found, denoted by
Ve -V,
2(111' + 2(121' (Zi\;z Zk) (67
zk:
apfr
ik

1 «
+2az; (Z]kv;éi Rk) Vea; — ag VP Z]kv;éi RZ)
(] 7.

VO
% <Z]kv;£z Gkt Ty > > 0}

agi Ry

Qai :{Oéi eR

(6.30)

Therefore, for any o; € €1y, we have W < O,V[f, ﬁm] # 0 and as a conclusion, the
origin of the nonlinear system (6.10) is asymptotically stable. In a way, once «a; are
determined, we can get an estimation of the region of attraction 2. for the state
variables

7D —aifi + anfi ai;
Qc :{[f,Pm] €R2N Zk#z Rlc < ;i a9;

N V=V 0 6.31
_( e Rzk Zk#z i VZ ( )

Ve N O 1 N aapa2eViO\
20&1’ <Zk7ﬁ2 Rzk) 2a4ia2i (Zk‘;ﬁl Rzk )y b )

6.3.3 Algorithm for the definition and verification of control gains
and the associated region of attraction

It is not easy to use (6.30) and (6.31) directly to get a feasible region due to their
complicated expressions. Though a feasible region can be easily found by the linear
method (6.19), we can only approximate the nonlinear system (6.10) by its lineariza-
tion in a small neighbourhood of the origin, of which we do not know the size. Thus,
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Table 6.1: Parameter values of each AC area (‘-'means dimensionless).

Area .
Parameter 1 5 3 1 5 Unit
From 50 | 50 50 | 50 | 50 Hz
Ps, 50 | 80 50 | 30 | 80 | MW
Poom 50 | 80 50 | 30 | 80 | MW
J 2026 | 6485 | 6078 | 2432 | 4863 | kg m?
D, 48.4 | 146.3 | 140.0 | 54.9 | 95.1 | W s?
§ 0.02 | 0.04 | 0.06 | 0.04 | 0.03 -
Tom 15 | 20 | 25 2 | 1.8 s
P, 100 | 60 40 | 50 | 40 | MW

when determining the gains a;, we need to combine these two methods together. In
general, the feasible region obtained by linear method is larger than the nonlinear
method. At first, we use linear method to get a feasible value for «;, then we put
it into the nonlinear result (6.30) and (6.31) to check if this value satisfies the non-
linear method’s condition such that the system is stable when the state variables
are in their domain of interest. For example, the domain of interest of fz is defined
by fl € [—1, 1]. If this is not the case, we choose a smaller value for «; and verify
(6.30) and (6.31) again. We repeat this procedure until a proper o is obtained.

The feasible region of the control gain « given by this thesis is determined by the
choice of Lyapunov function. The one used here has two advantages. First, as seen
in (6.18), there is no cross term (f7P,,), which greatly simplifies the calculation.
Second, the feagsible region thus obtained is not so small. However, the feasible
region of the control gain is only a sufficient condition, which guarantees ultimate
boundedness of the closed-loop system. Thus, with an « outside this feasible region,
the system does not necessarily become unbounded.

6.4 Simulation studies

The controller studied in the previous section is tested by computer simulations.
The simulated example concerns an MTDC grid of 5 AC areas, whose parameter
values are presented in Table 6.1. The system is supposed to initially operate at the
reference operating point. Then at time ¢t = 2 s, the load demand of AC area 2 has
a step increase by 30%.

Figs. 6.2 and 6.3 illustrate the frequency and the mechanical power response
without any controller, i.e. «; = 0. In Fig. 6.2, the minimum value of fs is less
than 49 Hz, which is beyond frequency safety range 50+1 Hz, and the final value is
49.5615 Hz. The peak value of P, is nearly 106 MW and the final value is nearly
97.6 MW.
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Figure 6.4: Active power injections P of 5 AC areas without any controller.
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Figs. 6.6 and 6.7 illustrate the frequency and the mechanical power response
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Table 6.2: Values of «o; calculated by LMI.
o1 o | a3 | o4 | Op

1700 | 397 | 185 | 548 | 868

when the controller is implanted. Table 6.2 shows the values for «; calculated by
LMI techniques. The proposed «; are in their feasible region that can make sure
that the system is stable. Note that, the minimum value of f5 is between 49.4515
Hz and 49.452 Hz which is in the safety range and the final value fy is 49.7299 Hz.
P2 has a peak value of nearly 92.5 MW, and is stabilized at 91 MW. The above
results show that our controller makes a significant improvement for fs not only in
the transient performance but also in the steady-state performance compared to the
case without sharing the primary reserves (see Fig. 6.2).

Comparing the trajectories of P in Figs. 6.4 and 6.8, when the frequency
control is applied to counteract the sudden load change of AC area 2, the power
injection of every AC area gives a corresponding response, which is sent to their
respective converter stations.

6.5 Conclusions

In this chapter, we addressed the problem of developing a frequency controller that
provides the active power reference values to the VSC and shares primary reserves
between the AC areas connected by an MTDC system. In the case of a power imbal-
ance, the controller reduces the burden of the affected AC area by making the other
AC areas collectively react to that disturbance. In addition, the proposed control
law is only based on local measurements without needing remote communication,
thus avoiding the disadvantages caused by time-delay.
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7.1 Conclusions

In the last decades, the development of VSC HVDC systems becomes a very im-
portant topic in scientific researches. Due to their flexibility, controllability and
efficiency, VSC HVDC systems have been greatly promoted in today’s electrical
networks. In particular, there is a growing need to integrate large-scale offshore
renewable energy sources via MTDC systems, whose generation outputs are usually
intermittent. Nevertheless, the MTDC technology is not yet mature enough for wide
commercial applications. There are still many issues that need to be solved. This
dissertation is dedicated to the challenges in the control of MTDC systems.

This thesis started by giving a brief introduction to HVDC technology where
the limits of the classical AC transmission technology are shown and the rationale
of HVDC systems is discussed. Besides, the comparisons between AC and DC
as well as LCC and VSC are also listed. Then, we introduced several existing
control structures of VSC HVDC systems according to their research groups in
the literature review. Interestingly, we found that most of the control methods
only focus on the operating results but neglect related theoretical analysis. As
a consequence, extra time-consuming processes are usually needed to accompany
these control approaches to achieve good performance. At the end of Chapter 1, we
defined the objectives of this thesis: 1) developing new control methods for MTDC
systems to improve the overall performance; 2) providing theoretical explanations
for the system dynamic behaviors to give new insights into how and why the existing
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conventional (or empirical) control structures work; 3) fully developing the potential
of MTDC systems for AC frequency regulation; 4) Developing a new control theory
named Control Induced Time-Scale Separation. This general control theory was
created aiming at the MTDC system, but indeed applies to a very broad class of
nonlinear systems, and allows plug-and-play capabilities. In addition, it fits well in
a Systems of Systems framework.

In Chapter 2, we first gave an overview of the VSC technology to get a good
understanding of the classic operation of VSC HVDC systems. Then, we introduced
two different types of AC networks which are distinguished by their Short Circuit
Ratio. In line with the control objectives and the type of the connected AC network,
possible control modes of a single VSC terminal were discussed, which offer a basic
knowledge for the control design of MTDC systems.

In the modeling, the time-averaged modeling method which is the most generally
used modeling approach in the context of power systems was chosen and presented in
Chapter 3. This modeling approach is much simpler and tractable than the detailed
modeling one. In this thesis, the proposed MTDC system consists of N strong AC
networks, M weak AC networks and a DC grid. One of the main contributions of this
thesis is that a generic topology is considered for the structure of the DC grid, which
can be mapped to a weakly connected directed graph. Thus, our research is not only
suitable for the radial topology but also for the meshed topology. In addition, all
connected AC networks are considered in balanced three-phase condition and hence,
Park’s transformation is applied to project all three-phase quantities onto a rotating
two-axis reference frame. The overall modeling work is divided into three parts: 1)
modeling of the strong AC network connected VSC terminals; 2) modeling of the
weak AC network connected VSC terminals; 3) modeling of the DC grid. At the end
of Chapter 3, an averaged state-space model of high order for the proposed MTDC
system was established.

In Chapter 4, two of the most widely used conventional control methods for VSC
HVDC systems, namely direct and vector control methods, were discussed. Both
advantages and disadvantages of the aforementioned control methods were analyzed.
Based on the existing problems of the two control approaches, new improved control
strategies were proposed in this dissertation.

In Chapter 5, new control structures by means of different nonlinear control
design tools for VSC HVDC systems were developed. We started by applying feed-
back linearization technique to the development of a nonlinear controller, which can
partly transform the nonlinear MTDC model to a linear one. A theoretical analysis
of the nonlinear feedback linearization controller was carried out, which indicates
that the stability of the equilibrium of the zero dynamics determines the stability of
the overall system. Furthermore, a sufficient condition on the system parameters was
derived to ensure the stability of the zero dynamics. The performance comparisons
between this nonlinear controller and the conventional vector controller were given,
which show that the nonlinear control provides much better decoupling characteris-
tics of the DC voltage and the AC g—axis current control or the AC voltages vgy;a
and vsy,q control than the PI controller. Besides, during the simulation process, we
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found that when a new operating point of the MTDC systems is to be achieved, it is
usually needed to recalculate the proper PI control gains for the conventional vector
controller to obtain an optimal performance. However, this is time-consuming and
usually requires extra efforts. For the nonlinear feedback controller, we usually have
no need to deduce new control gains for different operating conditions. In order to
make the system more robust, a sliding mode control technique was applied to de-
velop a novel controller where the uncertainties of the system parameters and other
possible exogenous inputs were taken into account. During the design procedure of
the feedback linearization controller, we naturally chose the controlled variables as
the output. However, the theoretical analysis clearly shows that the MTDC sys-
tem is not always minimum phase. There exists a restriction on the choice of the
prescribed references and the system parameters (see Lemma 4.1.2). To overcome
this problem, a passive output was deduced by means of passivity theory so that
the MTDC system with the passive output is always minimum phase. Then, a new
control strategy based on the input-output feedback linearizaton and the passiv-
ity theory was devised. Simulation studies were also carried out to evaluate the
performance of the passivity-based state feedback controller.

In Chapter 6, the dynamic behaviors of the proposed MTDC system were ana-
lyzed. It is interesting to remark that these dynamics have never been extensively
rigorously studied in the literature. The research done on this issue is one of the
main contributions of this dissertation summarized as follow:

e Control induced time-scale separation design for a class of nonlinear
systems

A control induced time-scale separation method was developed for a class
of nonlinear systems, which enables the system to exhibit a multi-time-scale
behavior characterized by the presence of fast and slow transients. Based on
singular perturbation theory, a detailed theoretical analysis was performed,
which shows that the time-scale decomposition of the system dynamics is
qualified by the control gains of the driving subsystem. Besides, with the
help of the proposed controller, the original system can be divided into two
low-order subsystems and then, the behaviors of the system states can be
approximated by the solutions of the two simpler subsystems. Furthermore,
we gave an analytical expression to illustrate the trade-off between the system
performance and the region of attraction.

e Analysis of the conventional control structures and the dynamics of
the MTDC system

For an MTDC system, the concept of the conventional vector control method is
mainly based on the assertion that the dynamics of the system state variables
can be divided into different time scales and hence, the two control loops
can be designed independently. However, very few research has ever verified
and explained this assertion. In this dissertation, we applied the theoretical
results obtained from the study on the time-scale separation controller to
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bridge the gap between the practice and the theory where the master-slave and
the droop control configurations were studied. From the theoretical analysis
of the two control configurations, we identified several points: 1) how and
why the system exhibits a multi-time-scale behavior; 2) the rules of tuning
the control gains such that parts of those gains regulate the fast transient and
the remaining determines the behavior of the slow transient; 3) the existence
of uncontrollable state variables when the master-slave control configuration
is used. Moreover, we pointed out that the master-slave control configuration
based on vector control method is not always applicable for the MTDC system.
The stability of the MTDC system with the master-slave control configuration
can be ensured only when the system parameters and the scheduled references
satisfy certain conditions while for the droop control configuration, there is no
special limitation on them.

In Chapter 7, a potential application of MTDC systems was introduced where an
AC frequency support strategy via the MTDC system was proposed. This strategy
enables the asynchronous AC systems to share their primary reserves via an MTDC
system. The control method used in this application, namely the DC-voltage-based
controller, is based on local measurements without needing any remote communica-
tion, and avoids possible problems caused by time-delay. Simulation studies showed
that the proposed control strategy achieves the control objective with satisfactory
performances.

7.2 Perspectives for future work

This thesis have met some challenges in the area of MTDC systems. However, there
still exist many issues to be investigated.

7.2.1 Further research on the droop control configuration

In Section 5.3, we discussed the dynamic behavior of the MTDC system under the
droop control configuration. We found that the choice of the droop gains has great
impacts on: 1) the steady-state values of the system variables; 2) the distribution of
power sharing between the interconnected AC networks in case of power imbalance;
3) the dynamics of the DC grid. In this thesis, the droop gains are considered
constant. It would be interesting to consider the droop gains not as constants but as
variables, which could vary according to different operating conditions. For example,
each converter terminal has a different capability against the power imbalance. The
droop gain of each converter terminal could vary depending on its existing available
headroom of the capacity.



7.2. Perspectives for future work 229

7.2.2 Further research on the connection of other types of weak
AC systems

One of the most important applications of VSC HVDC systems is to connect island
systems. It would be interesting to consider that the MTDC system has one or more
converter terminals connected to islands. Moreover, various components related to
the island, such as the synchronous generators, the passive loads, can be taken
into account. It is worthwhile to note that the passive loads are usually unknown
and hence, during the control design for the island connected converter terminal,
adaptive control technique could be applied to improve the system performance.

7.2.3 Further research on the operation of MTDC systems

In Section 4.1.4.1, we presented that the MTDC system has plug-and-play capabili-
ties. This ability is very important for the extension of the existing MTDC systems.
In this thesis, we provided a qualitative approach to determine whether an AC sys-
tem could be added or removed. One of possible further work is that a quantitative
approach need to be developed from a security point of view.

7.2.4 Further research on system modeling

In this thesis, the ideal three-phase AC source was used for every strong AC network
and the controlled three-phase current source was used for every weak AC network.
Therefore, we can take the dynamics of the generator and the wind turbine into
consideration when modeling an MTDC system. This would help us study the
system behaviors and the interactions between AC and DC.

7.2.5 Implementation on a real MTDC system

In this thesis, the developed nonlinear controllers were tested by using SimPowerSys-
tems toolbox of MATLAB/Simulink. From the simulation results, both advantages
and disadvantages of each control method are clearly presented. However, due to
the limit of the condition, these control methods are not yet implemented on a real
MTDC system. It will be interesting to test these proposed controllers on a real
MTDC system.

7.2.6 Control induced time-scale separation for the MMC

Compared to the VSC with PMW technology, multilevel modular converter (MMC)
has attracted a lot of attention due to its less generated harmonics and losses of
the semiconductor devices. Since the MMC has a more complicated structure than
the VSC with two (or three) voltage levels, in future work it is possible to apply
the obtained theoretical results on the control induced time-scale to analyze the
dynamic behavior of MMC in an easy way.
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Appendix

A.1 Notations

For a matrix A € R™™_ A;; is the element of A in the i*" row and the 5" column.
A(:,i) and A(j,:) denote the ith column and the j*" row of A, respectively. A
diagonal matrix A € R™™"™ is represented by A = diag(a;), ¢ = 1,--- ,n. A(l :
s,k : h) is a submatrix of A where A(l : s,k : h)iyj = Agpi—1)(ksj—1)- Given

a set of matrix Ay € R™>*™ k = 1,--- nand N = > }'_, my, the notation
A = diag(Ay) represents A € RV*N where we have A(1 : mq,1 : my) = Ay and
AT my+ 10 my Y my 1 8 my) = Ay for k=2, - n, and

the other elements of A are zero. The transpose of A is denoted by AT. The inverse
of A is denoted by A~!. The notation rank(A) means the rank of A. 0,x,, € R™*™
represents a zero matrix, with all its elements equal zero. I, x, € R™*™ represents
the identity matrix. 0, € R™ represents a zero vector, with all its elements equal
zero. For z = [x1 -+ )T € R, ||z]| = \/2? + -+ + 22. For a complex number
x € C, the real part of x is denoted as Re(z) while its imaginary part is denoted as
Im(z). For A € R™" ||A|| = \/Amax (A7 A) where AY is the conjugate transpose
of A and Amax(+) represents the maximum eigenvalue of matrix (-). The notation
D, C R"™ denotes the safe operating domain of variable x € R", which is convex.
The notation Z represents the value of x in steady-state condition and the initial
value of z is denoted by z(tg). =
variable z. x* means the reference trajectory of the variable x. % is the estimate of
x. Any complex matrix A can be expressed as A = H(A) + S(A) where H(A) =
1/2(A + AM) is a hermitian matrix and S(A) = 1/2(A — AY) is an anti-hermitian
matrix. For any matrix A, R(A); is a reduced matrix by deleting the I*!
A. The maximum and the minimum values of a set of variables (a1, ---, a,,) are
denoted as min(ay, ---, an,) and max(ay, -+, am).

© is the prescribed (or reference value) of the

row of
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Appendix

B.1 Proof of Lemma 4.1.6

Proof. For any vector x € C", x # 0,,, we have
(AH(0)2)H = eHH(0)
= 2 ()2
Hence, z7H(¥)x is a real number. Similarly, we can obtain

(zHS(W)x)H = 2HS(0)H

= —H1S(W)z
Thus, 27 S(V)z is an imaginary number. So we get Re(zf ¥z) = zHH(V)z. As a
result, Re(z" W) is positive if and only if 2 H (¥)x is positive. O

B.2 Proof of Lemma 4.1.9

Proof. Since W is positive definite, H(W) is also positive definite and hence there
exists an invertible matrix @) such that

In addition, Q”S(¥)Q is also an anti-hermitian matrix. Hence, there exists a
unitary matrix U such that

UHQES(W)QU = diag(jby, jbo, -, jbg, 0, ---, 0)
where j = /=1, b; # 0 (i = 1, ---, k) are real numbers and k = rank(S(¥)).

Moreover, we have
UM QU H(W)QU = Inxn
Let us denote P = QU and as a consequence, P is invertible. We then have
PEYP = PHH (V)P + PES(W)P
= diag(jb1 + 1, jbo+1, -, jbp+1, 1, -+, 1) & T
Since matrices T and P are invertible and we also have
¥ = (pHy~lpp-1

U is invertible. Moreover, because H(T') is positive definite, according to Lemma
4.1.6, T is also positive definite. Finally, we get the result that ! is also positive
definite. ]
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