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Chapter 1

Introduction

For more than 150 years, after the world’s first commercial extraction of rock-oil by
James Miller Williams inOil Springs (Ontario, Canada) in 1858, exploration and mining
companies worldwide face the challenge of finding new oil reserves in order to satisfy
an ever-growing energy demand. The oil discovery rate had continued to grow, and
had peaked in the 1960s. Since then, it has declined with each passing decade. The
giant oilfields — a giant oilfield is defined as containing more than 500 million barrels of
ultimately recoverable oil — are less and less discovered and their production is dropping
throughout the years, as skewed in table 1.1. In sharp contrast, the average age of the
world’s 19 largest giant fields is almost 70 years, and 70% of the daily oil supply comes
from oilfields that were discovered prior to 1970 [199].

Today, most of the shallow and easily accessible basins have already been found.
The alternative way to find new deposits is to explore much deeper below the surface
in hostile locations and extreme or challenging environments (such as deepwaters, frigid
zones and hot dusty deserts), where accessing the explored area is often difficult, and
where the complex geologic structures make it harsh to prospect the subsurface and to
extract the hydrocarbon energy stored in the rocks. Therefore, the cost of drilling in
these complex topographies is rising as the number of major new discoveries is decreasing.
As a matter of fact, the cost of drilling an onshore well is about $3.5 to $4.5 million,
that of an offshore well ranges between $23 and $68 million, while the cost of deepwater
drilling, in a complex geology for example, can grow up to $115 million [36].

To face this challenge, Oil and Gas (O&G) firms are turning to modern exploration
technologies that includes sophisticated survey techniques and cutting-edge science in

date of discovery number of discoveries average production per field (MMbbls)

pre-1950s 19 557

1950s 17 339

1960s 29 242

1970s 24 236

1980s 15 176

1990s 11 126

Table 1.1: Statistics about the discoveries of giant oilfields until the 1990s, in terms
of number and current production in Million Barrels (MMbbls). From [199].



order to glean the location and character of crude oil deposits while reducing the uncer-
tainty of exploration, and thus improving drilling success rates. Indeed, the industry is
developing new seismic acquisition techniques and new imaging technologies that provide
vital information needed before drilling. More importantly, seismic imaging technologies
help to remotely identify oil accumulations trapped tens of kilometers underground and
undersea. The seismic acquisition is the process of sending acoustic waves through the
subsurface and collecting the echoes reflected by the rock layers, and seismic imaging
(or depth imaging) delineates the subsurface geologic structures from the collected data.
Amongst the seismic imaging techniques, Reverse Time Migration (RTM) is by far the
most famous computer based technique used in the industry because of the quality and
integrity of the images it provides. O&G companies trust RTM with crucial decisions on
drilling investments. However, RTM consumes prodigious amounts of computing power
across extremely large datasets (tens of terabytes of data), which requires large memory
capacities and efficient storage solutions. Throughout the last decades, theses heavy
requirements have somewhat hindered its practical success.

Given the enormous amounts of data that must be processed, analyzed, and vi-
sualized in the least amount of time, O&G organizations are today leveraging High
Performance Computing (HPC) technologies for seismic imaging, to stay ahead. In par-
ticular, organizations are deploying ever more powerful and highly honed computational
workflows on a variety of HPC facilities. With the advances in processor technology over
the past few years, today’s HPC clusters are capable of providing petaflops1 of compute
capabilities and are slowly heading to the exascale era2, making them an appropriate
match for the challenges in the O&G industry. Today, it is not unusual for O&G com-
panies to rely on clusters built around the latest multicore CPUs, with petabytes of
storage and with the fastest-available network infrastructures, in order to spread work-
loads across an array of compute nodes [57, 145, 172]. Additionally, O&G exploration
firms are trying to accelerate seismic processing workflows, such as RTM, by optimizing
their increasingly sophisticated algorithms to take advantage of hardware accelerators,
such as graphic processing units (GPUs) [23, 63, 147], field-programmable gate arrays
(FPGAs) [63] and the Intel Xeon Phi processors [84]. GPUs are the most widely de-
ployed, given the massively parallel nature of their architecture and hardware design
which makes them a good fit for RTM (and similar algorithms such as Kirchhoff migra-
tion) workloads.

However, the deployment of seismic workloads on high-end CPU clusters and GPU
based solutions have shown several restrictions in terms of performance, memory capac-
ities and power consumption. The use of GPU technologies also introduces additional
technical challenges to the table. Adapting seismic imaging applications to GPUs re-
quires mastering novel programming models such as CUDA and OpenCL which may
be considered as a difficult task for scientists (especially geophysicists) whose primary
concern is introducing more physics and accuracy to the algorithms. Besides, unlike
mainstream processors, a GPU acts like a co-processor in a system, and is intercon-
nected to the main CPU via a PCI Express bus (gen 2 or gen 3). This implies particular
manipulations, in terms of computations and memory management.

Recently, AMD has proposed the APU technology: a combination of a CPU and an
integrated GPU on the same silicon die, and in a small power envelope. With the APUs,

1A petaflops is 1015 Flop/s, a Flop/s is a measure of computer performance that corresponds to the
number of floating point operations a processor is capable to carry out per second.

2When HPC facilities will be able to achieve a performance at the order of exaflops (1018 Flop/s).
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AMD has introduced a new on-chip interconnect that puts together the CPU and GPU
featuring a unified memory between the CPU and the GPU. Throughout this work,
we therefore assess the relevance of APUs in the seismic workloads arena. By means
of memory, applicative and power efficiency benchmarks as well as a CPU/APU/GPU
comparative study on both the node level and the large scale level, we try to find out
whether the APU technology can deliver a compromise solution, in terms of applica-
tion performance, power efficiency and programming complexity, that is profitable and
valuable in an O&G exploration context.

The first part of the dissertation is dedicated to a state of the art review. We
start in chapter 2, by introducing the different stages of the modern seismic exploration
chain. We emphasize the workflow of the seismic migrations, that of the RTM in par-
ticular. Then we present the mathematical tools and numerical methods that are used
in a seismic exploration context. In chapter 3, we summarize the current advances in
HPC in terms of hardware architectures, programming models and power consumption.
We follow up in chapter 4, by giving an overview of state-of-the-art accelerated im-
plementations of the stencil computations (an important building block of the seismic
applications), as well as state-of-the-art accelerated RTM implementations and similar
workflows.

The chapter 5 is a detailed description of the position of this thesis as well as a
presentation of our contributions.

We follow up with the second part of this thesis, which is dedicated to our con-
tributions. In chapter 6, we start with a thorough evaluation of the APU technology.
The evaluation includes the assessment of the new memory model, a performance study
and comparison between CPU, GPU and APU by means of applicative benchmarks, a
power efficiency evaluation (where we describe our power measurement methodology),
the feasibility of the hybrid utilization (CPU+GPU) of APUs, and a performance study
of directive based implementations of the stencil computations. Then in chapter 7, we
study the performance, power efficiency and the programmability of two seismic appli-
cations at the node level: the seismic modeling, which is considered as the first step of
the seismic migration workflow, and the RTM. We conduct a performance and power
efficiency comparisons between the CPU, GPU and APU to assess the relevance of APUs
in this context. In the chapter 8, we extend our study to the large scale implementa-
tions of the seismic modeling and of the seismic migration (RTM) on a CPU cluster,
on a GPU cluster and on an APU cluster. We try throughout this chapter to find out
whether the RTM implementation on the APU cluster might be a valuable solution
that addresses the limiting factors on the CPU and GPU based solutions. Finally, we
conclude in chapter 9 with a mention to possible perspectives.
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Hydrocarbon exploration remains very challenging for the mainstream O&G industry.
Substantial efforts are put to maximize the production of discovered reservoirs and ex-
plore new ones, albeit very rare (see figure 2.1). The industry relies on geophysics and
more specifically on seismic exploration to transform vibrations, induced in the earth
from various sources, into interpretable subsurface pictures and models. The pressing
need for sharper and more informative structural images pushes the industry to perma-
nently innovate and tackle a host of grand challenges in terms of seismic technology: to
identify lithology (rock types), to infer petrophysical properties, to estimate the fluid
content etc.
In this chapter, we present a brief overview of the basic goals and procedures for seismic
exploration. We define the seismic migration operation since it is considered as the main
imaging tool for petroleum deposits mapping, and we emphasize on the Reverse Time
Migration (RTM) which is being increasingly used by the industry at the heart of a wide
range of seismic imaging applications. We also review some fundamental mathematics
associated with the wave propagation phenomenon, being the essential and mandatory
tool to help understand the physics behind the seismic exploration.
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Figure 2.1: Oil discoveries and oil production, 1930 to 2050. Extracted from [25].

2.1 Introduction to seismic exploration

The principal goal of seismic exploration, more commonly referred to as exploration
geophysics or also as reflection seismology and often abbreviated as seismic, is to obtain
structural subsurface information from seismic data i.e. data collected by recording
elastic or acoustic wave motion on Earth. Seismic is one of the geophysical methods,
summarized in table 2.1, used in hydrocarbon exploration. The primary environments
for seismic exploration are land (onshore), and marine (offshore). The land environment
covers almost every type of terrain that exists on Earth, each bringing its own logistical
problems. That includes jungle, desert, forest etc. The marine environment consists
essentially of seas and oceans. However, there are also transition zones (TZ), i.e. the
areas where the land meets the sea such as rivers, presenting unique challenges because
the water is too shallow for large seismic vessels but too deep for the use of traditional
methods of exploration on land.

Method Measured parameter Physical property

Gravity
Spatial variations in the strength of
the gravitational field of the Earth

Density

Magnetic
Spatial variations in the strength of
the geomagnetic field

Magnetic susceptibility
and remanence

Electromagnetic
Response to electromagnetic radia-
tion

Electric conductiv-
ity/resistivity and
inductance

Seismic
Travel times of reflected/refracted
seismic waves

Seismic velocity (and
density)

Table 2.1: A summary of the geophysical methods used in hydrocarbon exploration.
From the University of Oslo, Department of Geosciences.
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Figure 2.2: The seismic exploration workflow.

Seismic exploration allows the O&G industry to map out subsurface deposits of crude
oil, natural gas, and minerals by seismically imaging the earth’s reflectivity distribution.
It is also used by petroleum geologists and geophysicists to interpret potential petroleum
reservoirs, by extracting the seismic attributes out of the obtained images. The seismic
exploration workflow, as described in figure 2.2, consists of three main stages: seismic
acquisition, seismic processing and seismic interpretation1. For general informations
about seismic exploration, the reader is kindly referred to Biondi [41], Coffeen [65],
Sengbush [192] and Robein [181, 182].

2.1.1 Seismic acquisition

Seismic acquisition is the act of gathering data in the field, and making sure that it is of
sufficient quality (this requires pre-processing such as noise attenuation and filtering).
In seismic acquisition, an elastic or acoustic wavefield is emitted by a seismic source
at a certain location at the surface. The reflected wavefield is measured by receivers
located along lines (2D seismics) or on a grid (3D seismics). We refer to this process
as a shot experiment. After each shot the source is moved to another location and the
measurement is repeated. Figure 2.3 distinguishes between the land seismic acquisition
(onshore) and the marine seismic acquisition (offshore). In land surveys, the seismic
source can be a vibroseis or dynamite, the receivers are called geophones and are towed
by trucks. In marine surveys, the source is often an air gun and the receivers are
designated as hydrophones and are towed by vessels.

In order to collect data, many strategic choices have to be made. They are related
to the physics and the location of the survey area, to the geometry of the acquisition

1This categorization is becoming more and more obsolete as technologies, that repeatedly iterate
through those three stages, are emerging [179].

(a) Onshore seismic acquisition. (b) Offshore seismic acquisition.

Figure 2.3: Seismic acquisition steps at land (a) and at sea (b): 1) the seismic source
emits controlled energy; 2) the seismic energy is transmitted and reflected from the
subsurface layers; 3) the reflected energy is captured by receivers placed on the surface;

4) the acquisition systems record the data and pre-process it. From Sercel [193].
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Figure 2.4: Seismic acquisition geometries: from left to right, Narrow Azimuth Towed
Streamers, Multi-Azimuth, Wide Azimuth Towed Streamers. From PGS [174].

and to the accuracy of the targeted geophysical properties. These choices are often
driven by economic considerations, since the cost of a survey may vary from $18.000
to $45.000 per square mile [21]. For example, specific acquisition parameters such as
energy source effort and receiver station intervals, together with the data recording
or listening time, have to be carefully defined. In addition, in the old days 2-D seismic
reflection (see figure 2.5a) was the only tool for exploration because cost effective. Today,
conventional 2-D seismic is only able to identify large structural traps while 3-D seismic
(see figure 2.5b)2 is able to pinpoint complex formations. Therefore, 3-D reflection has
entirely replaced 2-D seismology in the O&G industry, albeit expensive. Furthermore,
the acquisition geometry determines the coverage azimuth range and the consistency
level of the illumination of reservoirs. Figure 2.4 represents schematic diagrams of the
common acquisition geometries used in the O&G industry. The reader can find more
detailed descriptions about the most common seismic acquisition geometries in [115].
Further, one can learn about cutting edge technologies in terms of seismic surveys, such
as coil shooting in [101].

The basic principle of the seismic reflection is explained in figure 2.5. We differentiate
between the 2-D seismic acquisition and the 3-D seismic acquisition, but the principle
remains the same in the two cases. We activate a source (S) to send artificially-generated
seismic waves into the subsurface. The waves get reflected off layer boundaries (called
reflectors in the seismic literature). We record the arrival times and amplitudes of the
reflected waves on the surface and detected by the receivers (R0..n).

The size and scale of seismic surveys has increased alongside the significant concur-
rent increase in compute power during the last years. The collected data, i.e. seismic
traces (see figure 2.6), is often humongous and was stored, in the past, in tapes and was
very hard to process by computers. Each seismic trace corresponds to a seismic signal
detected by one receiver throughout time. A wide variety of seismic data formats were
proposed to digitize the seismic data and standardize its manipulation; the most famous
ones in the industry are SEGY [191], SEP [200], SU [66] and RSF [148], to name a few.
So far, the choices of seismic survey parameters such as the shot position (the position of
the seismic source), the shot interval (the distance between two successive seismic per-
turbations), the receiver interval (the distance that separates two successive receivers
situated in the same streamer), the shooting frequency (the frequency of activating the
seismic source), etc. are of prime importance as they make immediate impact on the

2This is only a simplified illustration of the 3-D seismic reflection. In the industry, more than one
seismic source is required to conduct a 3-D survey.



Chapter 2. Geophysics and seismic applications 11
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(a)
(b)

Figure 2.5: Seismic surveys in 2-D (a) and in 3-D (b). The seismic source is the red
sign. Receivers are the orange triangles. Dotted black lines are basic representations
of the subsurface reflectors. Green lines represent the covered area. Dashed gray lines

illustrate the wave energy paths. The blue lines (in b) are called streamers.

generated seismic traces which are used in the following stages of the seismic exploration
cycle.

2.1.2 Seismic processing

In the seismic processing stage, we want to manipulate the gathered data, after acquisi-
tion, such that we generate an accurate image of the subsurface. A long run separates
the raw data from being transformed into structural pictures. Processing consists of the
application of a chain of computer treatments to the acquired data, guided by the hand

(a) From a land survey. (b) From a marine survey.

Figure 2.6: Example of seismic traces. Each wiggle is an illustration of the evolution
of the wave amplitude, as well as the wave travel time, as a function of the “offset” (in
meters) throughout time (in seconds) as measured by a given receiver. The offset is the
distance between each receiver and the seismic source. Source Drijkoningen, TU Delft

[78].
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(a) Signal deconvolution. (b) Seismic traces stacking.

Figure 2.7: Signature deconvolution and stacking. Source CGG.

of processing geophysicists. There is neither a standard classification nor an order to
define theses operations because they depend on the nature of the collected data, in the
one hand, and because processing is a subjective manipulation, in the other hand. We
try, throughout this section, to describe the most relevant processing routines and leave
the opportunity to the reader to dive into the geophysics literature [59, 127, 143, 181],
in order to learn more about seismic processing.

To begin with, the reflected seismic response can be a mixture of the seismic source
pulse, the effect of the Earth upon that pulse, and background noise, all convolved
together. The data is usually cleaned up from those spurious signals that might have
been accumulated during seismic surveys. For instance, the seismic source may introduce
signals, into the Earth, to which the underlying structures remain irresponsive because
they do not depend on the signal put in. Those signals have to be removed. This is
considered as pre-processing or data conditioning, and usually includes signal processing
techniques, such as signal deconvolution and anti-aliasing filtering. Figure 2.7a shows
an example of a seismic trace after applying a signal deconvolution.

Besides, seismic traces are usually sorted and those that share the same geometry
properties are stacked, i.e. the signals are summed, to attenuate the background noise
and thus increase the signal-to-noise ratio. The more seismic traces we can stack together
into one seismic trace, the clearer is the seismic image. Stacking can be done by putting
together traces from the same reflecting point (Common Reflection Point (CRP) stacking
or CRP gather), from the same shot position (Common Shot Gather (CSG)), from the
same midpoint (Common Midpoint (CMP) stacking) or from the same depth point
(Common Depthpoint (CDP) stacking)3 etc. [59]. Figure 2.7b emphasizes the noise
attenuation after the CRP stacking of six seismic traces.

Furthermore, before arriving at the receivers the seismic energy may be reflected
a number of times: this is known as the multiple reflections phenomenon (see figure
2.8) as opposed to primary reflections. For example, during offshore surveys, the energy
bouncing back-and-forth within the water produces false reflections and obscures the real
data. Multiple attenuation is needed to remove multiples embedded in the data without
interfering with primary events. This is referred to as Demultiple in the literature, and
many advanced numerical algorithms are proposed to do so, such as Surface-Related
Multiple Elimination (SRME) [144]. Note that some research, such as Guitton [99],
focus on imaging the multiples and integrating them to the primary reflections rather

3In the case where the reflectors are horizontal, CDP is equivalent to CMP stacking.
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Figure 2.8: Illustration of the multiple reflections. Source Ashton C. et al. [35].

than removing them. Another seismic processing is seismic traces interpolation. This
manipulation is used to enhance the energy and highlight the areas close to the subsurface
reflectors. Any missing seismic trace is filled in by signal interpolation.

At this point, the data is ready to more advanced processing operations such as
seismic imaging or inversions [44]. The main goal of seismic imaging is to transform the
pre-processed seismic traces to the most accurate possible graphical representation of the
Earth’s subsurface geologic structure. A key point in imaging is that the reflected wave
is proportional to the amplitude of the incidence wave. The proportionality coefficient
is called the reflection coefficient. Imaging has the objective of computing this reflection
coefficient. Hence, the final image is a representation of the reflection coefficient at each
point of the subsurface. This can be performed by means of seismic migration.

Migration is using the two-way travel time, amongst other attributes provided by
seismic traces, to place (or migrate) the dipping temporal events in their true subsur-
face spatial locations. Processing these reflections produces a synthetic image of the
subsurface geologic structure. We show in figure 2.9 an example of a seismic processing
chain. The traces in 2.9a are subject to a water bottom multiple reflection (arrowed).
In 2.9b, it is removed by demultiple and the image shows the result of suppressing the
water bottom multiple. The seismic traces are, then, enhanced by interpolation in 2.9c.
Finally, the image, in 2.9d most closely resembles the true sub-surface geology. It is ob-
tained after seismic migration. More advanced processing techniques, such as Prestack








(a)


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

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(b)






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
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


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(d)

Figure 2.9: The result of a sequence of seismic processing algorithms. (a) represents
the raw traces. From (a) to (b) demultiple is applied. From (b) to (c) interpolation is
performed. From (c) to (d) seismic migration is used to produce the final subsurface

image. Source CGG.
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Depth Migration (PSDM), can significantly improve seismic imaging, especially in areas
of complex geology. Finally, we recall the seismic processings are numerous and require
advanced mathematical algorithms. Those are often applied to 3D seismic data which
require enormous computing resources. Not to mention the massive volumes of data
involved.

2.1.3 Seismic interpretation

The final stage of the seismic exploration cycle is seismic interpretation. The purpose
of interpretation is to interpret the processed seismic images and integrate other geo-
scientific information in order to make assessments of where the O&G reservoirs may
be accumulated and to learn about their characterization. Interpreters or interpretation
geophysicists, are involved at this stage to analyse the seismic data. Relevant information
consist of structures and features which can be related to geological phenomena such as
faults, fractures, anticlines etc. This can deliver valuable insights about the nature of
rocks, about which time they were formed and about their environment.

Computer algorithms are used to help interpret seismic data. For instance, numeri-
cal algorithms are used for the calculation of seismic attributes such as amplitude, phase
and frequency based on the migrated seismic image. In practice, the seismic attributes
(especially the amplitude) are related to the subsurface reflectivity which in turn pro-
vides information about the rock and the pressure-formation. Other seismic attributes
are used in interpretation, namely coherence, dip and azimuth, and gradient correlation
cube. For instance, the coherence is an attribute that measures the continuity between
seismic traces in a specified window, applied on a seismic section. Figure 2.10 shows a
composite of a section of a 3D seismic cube and a section of the corresponding coherence
cube. For other examples of attributes calculation used in the interpretation stage we
refer the reader to Abdelkhalek [22].

2.2 Seismic migrations and Reverse Time Migration (RTM)

In section 2.1 we have mentioned that seismic migration is classified as a final processing
step in order to generate structural pictures of the subsurfaces. It is in fact the most
important routine of the whole processing flow. In this section, we give a short overview
of seismic migrations in general. We particularly insist on the Reverse Time Migration
(RTM), where we describe the components of its workflow along with its advantages
compared with the conventional migration techniques.

2.2.1 Description and overview of migration methods

The purpose of migration is to reconstruct the reflectivity distribution of the buried
structures on Earth, from the seismic data recorded at the surface. For that to do,
reflections events (especially non zero-offset reflections) are collapsed and moved, i.e.
migrated, to their proper spatial location. Schustler [188] explains how seismic traces
are migrated, and enumerates the challenges that might be related to migration such as
diffraction, out-of-plane reflections and conflicting dips.
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Figure 2.10: A seismic section (colored) superposed by its corresponding coherence
attribute section (grayed). The color bar is the amplitude and the gray scale is to

evalute the coherence. Courtesy of Abdelkhalek, Total S.A [22].

Migration relies upon pre-processed input data (seismic traces) and an accurate
velocity model. Synthetic velocity models were proposed (see figure 2.11) by the O&G
community in order to validate migration algorithms and display their potential power
for imaging complex structures. However, in the case of real data, the velocity model
of the subsurface is unknown. As a matter of fact, migration relies on various velocity
estimation procedures, e.g. iterative prestack migration [42], to aid in imaging. In
other words, migration is also a velocity analysis tool. Conceptually, migrations can
be categorized with respect to different parameters. From a dimensionality perspective,
migration is either 2D or 3D. 3D migration requires data to be acquired in 3D and
presents rich azimuth content.
From data stacking standpoint, migration can be prestack or poststack. In poststack

(a) The Marmousi model [116].
(b) The BP 2004 model [190].

Figure 2.11: Examples of synthetic velocity models provided by the O&G community.
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migration, the seismic traces are stacked in bins, each of which is reduced to only one
seismic trace. This is much less expensive to process but is also less accurate. In prestack
migration, traces are not stacked and every single trace is processed which require huge
computational effort.
Furthermore, we can categorize migrations upon wether they support or not lateral
velocity variations. Time migration is insensitive to lateral variation of the velocities and
is more appropriate to constant and depth dependent velocities. In the contrary, depth
migration can handle strong variations of the velocities and is thus more appropriate for
complex geological structures.
Mathematically, we can split migrations into two categories. The first one is Ray-based
migrations, such as Kirchhoff migration and Beam migration [105]. The second isWave-
field extrapolation migrations, such as One-way migration and Two-way migration [159].

Historically, migration was achieved by graphical methods in the 1960’s [194]. This
was followed by diffraction summations. In the 1970’s, several important developments
took place. Based on the pioneering work of Jon Claerbout [59, 60], migration methods
based on wave theory were developed. Claerbout derived migration as a finite-difference
solution of an approximate wave equation. Kirchhoff wave-equation migration (Schnei-
der [186], Gardner [89]), and frequency-wavenumber migrations (Gazdag [90] and Stolt
[202]) appeared shortly thereafter. Those were initially time migration methods, but
due to the pressing need for more accuracy they were changed into depth migrations.
In the early 1980’s, Baysal et al. [37] along with Whitmore [221] and McMechan [151],
proposed the Reverse Time Migration, based on the exact wave equation. The last
twenty years have seen extensions of these methods to three dimensions and to prestack
migration, and enhancements of their efficiency and accuracy. For further reading about
migrations, we refer to [42, 94].

2.2.2 Reverse Time Migration

RTM is a two-way wave equation based pre-stack or post-stack depth migration. RTM is
becoming more and more important as a tool of seismic imaging in the O&G industry. If
the velocity model is complex or is subject to strong velocity gradients, such complexities
will produce turning (or diving) rays and multiples when using conventional migration
techniques (detailed in [188]). The RTM addresses these issues by directly using the
two-way wave equation without any approximations or assumptions. The workflow of
the RTM technique is depicted in the flowchart 2.12. Note that we do not mention in
the figure that RTM also needs a velocity model as an input and that this workflow is
repeated for each shot experiment. First, the source wavefield, i.e the wavefield whose
origin is the seismic source, is propagated forward in time (we refer to this stage as
forward modeling or also seismic modeling). Then, the receiver wavefield, i.e. a wavefield
that is incident from the receivers, is then propagated back in time (this phase is called
backward modeling or retro-propagation). Finally, the imaging condition is applied with
respect to Claerbout’s [58] imaging principle: ”a reflector exists where the source and
the receiver wavefields coincide in time and space”.
As a matter of fact, the source wavefield and the receiver wavefield are cross-correlated
throughout time. We denote I(x, y, z) the reflectivity coefficient of the subsurface, i.e.
the resulting seismic image, at the coordinate (x, y, z). The source wavefield is presented
by a (R3,N) → R function S(x, y, z, t) and the receiver wavefield by a similar function
R(x, y, z, t), each at the coordinate (x, y, z) and at time t. We can identify the RTM as
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Forward modeling

Store wave-field

Backward modeling

Load wave-field

Imaging condition

Final subsurface image

Figure 2.12: The Reverse Time Migration flowchart.

the linear operator described in the equation (2.1).

I(x, y, z) =
∑

shot

∑

t

Sshot(x, y, z, t) ∗Rshot(x, y, z, t) (2.1)

However, in some cases especially for large impedance contrasts and complex geological
structures, the source and receiver wavefields can not be serrated efficiently. In these
cases, the cross-correlation described in equation (2.1) leads to low frequency artefacts
and illumination effects [123].
In order to eliminate the illumination effects, the image is often divided, after cross-
correlation, by the source illumination (see equation (2.2)), or by the receiver illumina-
tion (see equation (2.3)), or even better by a combination of both source illumination and
receiver illumination (see equation (2.4)). This calculation corresponds to the imaging
condition of the RTM algorithm.
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(2.4)

In the scope of this work we make use of the imaging condition defined in (2.2). We show
an example of the RTM technique in figure 2.13, where we present the three different
steps along with the resulting seismic image (see the dipping reflector).
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(a) Snapshot at t = 1.20 s of the source wavefield (left), the receiver wavefield (middle) and the
image progression (right). No reflector is imaged yet.

(b) Snapshot at t = 0.75 s of the source wavefield (left), the receiver wavefield (middle) and the
image progression (right). The bottom reflector is almost fully imaged.

(c) Snapshot at t = 0.30 s of the source wavefield (left), the receiver wavefield (middle) and the
image progression (right). All reflectors (the bottom and the shallow) are fully imaged.

Figure 2.13: A Reverse Time Migration example: the source and receiver wavefields
are correlated, at three subsequent time-steps, in oder to image two reflectors. Source:

Biondi [41].

2.3 Numerical methods for the wave propagation phenom-
ena

Most differential equations are much too complicated to be solved analytically, thus the
development of accurate numerical approximation schemes is essential to understand the
behavior of their solutions. The wave equation, being a Partial Differential Equation
(PDE), is no exception. This section presents an overview of the state-of-the-art numer-
ical methods used for seismic modeling and seismic imaging. Given that RTM is based
on the wave equation, we present the general equations that govern the propagation
of waves in elastic and acoustic media. These methods were widely studied for seismic
imaging and one can find more details in Virieux et al. [215] and in Carcione et al. [50].
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Figure 2.14: Particle motions for P (top) and S (bottom) waves. λ is the wavelength
and the simple strain illustrates a unit deformation. From [189].

2.3.1 The wave equation

2.3.1.1 Seismic waves and propagation media

Before introducing the theory that governs the wave propagation phenomenon, we briefly
recall the type of seismic waves and the nature of propagation media. A wave propa-
gation is called elastic when the traversed medium can change in shape as a result of
a deforming force otherwise the propagtion is acoustic. If the medium has constant
density, we call it homogeneous, heterogeneous if it has not. Besides, we call a medium
isotropic if it has the same physical characteristics independently of directions. In the
contrary, the medium is called anisotropic.
The seismic waves are either body waves, that is they travel through the interior of the
Earth, or surface waves if they travel along the Earth’s surface. We distinguish two
types of body waves: Compressional waves, also referred to as Primary (P) waves4, and
Shear waves, also called Secondary (S) waves. Figure 2.14 illustrates the propagation
directions of P and S waves for small elemental volumes (particles). P waves propagate
in parallel with the particle motion whereas S waves propagate perpendicularly to the
particle motion. In homogeneous and isotropic media the velocities of P and S waves

are, respectively, Vp =
√

λ+2µ
ρ and Vs =

√

µ
ρ , where λ and µ are the Lamé parameters,

and ρ is the density. Note that shear waves do not propagate in acoustic media (water
for example) because the shear modulus µ is null in fluids.

2.3.1.2 The elastic wave equation

The general wave equation is established using the Newton’s second law of motion and
Hook’s law, with some constraints considered: the media is elastic, isotropic and subject
to infinitesimal displacements in order to satisfy the elasticity condition. For the sake of
simplicity the motion of the wave is initially presumed to be one dimensional, the wave
equation will be later derived to the three dimensional case. We denote the particle
displacement η, the dimension of the wave motion Z, and the particle position is given
by the z coordinate. Newton’s law (2.5), for small elemental volumes, states that the
acceleration (γ) of a particle when multiplied by its mass (m) is equal to the sum of
forces applied on it (f).

f = mγ (2.5)

Considered that the pressure (p) is the force on an object that is spread over a surface
area and given that the particles are infinitesimal (we consider the unit surface), the

4Note that there are other types of wave, i.e. Love waves and Rayleigh waves, which are surface
waves that we deliberately ignore here.
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force is equivalent to the pressure differential. Similarly, here we consider studying the
wave kinematics in a unit volume thus the mass can be replaced by the density (ρ). Note
that the variables in the equation are scalar fields since we consider 1D case and that
in the 3D case vector fields should be considered instead. The equation (2.5) is then
equivalent to the formula (2.6).

∂∆p

∂z
= ρ

∂2η

∂t2
(2.6)

Hook’s law (2.7) states that the strain (deformation) of an elastic object or material is
proportional to the stress applied to it.

∆p = K
∂η

∂z
, (2.7)

where K is the Bulk modulus. The wave equation is thus derived as follows:

K
∂2η

∂2z
= ρ

∂2η

∂t2
(2.8)

Extending the equation to the 3D cartesian coordinate system (X,Y, Z), and using the
indicial notation implies the system of equations (2.9) and (2.10) [24, 38]:

∂σxx(x, y, z, t)

∂t
= (λ(x, y, z) + 2µ(x, y, z))

∂vx(x, y, z, t)

∂x
+

λ(x, y, z)

(

∂vy(x, y, z, t)

∂y
+
∂vz(x, y, z, t)

∂z

)

∂σyy(x, y, z, t)

∂t
= (λ(x, y, z) + 2µ(x, y, z))

∂vy(x, y, z, t)

∂y
+

λ(x, y, z)

(

∂vx(x, y, z, t)

∂x
+
∂vz(x, y, z, t)

∂z

)

∂σzz(x, y, z, t)

∂t
= (λ(x, y, z) + 2µ(x, y, z))

∂vz(x, y, z, t)

∂z
+

λ(x, y, z)

(

∂vx(x, y, z, t)

∂x
+
∂vy(x, y, z, t)

∂y

)

∂σxy(x, y, z, t)

∂t
= µ(x, y, z)

(

∂vx(x, y, z, t)

∂y
+
∂vy(x, y, z, t)

∂x

)

∂σxz(x, y, z, t)

∂t
= µ(x, y, z)

(

∂vx(x, y, z, t)

∂z
+
∂vz(x, y, z, t)

∂x

)

∂σyz(x, y, z, t)

∂t
= µ(x, y, z)

(

∂vy(x, y, z, t)

∂z
+
∂vz(x, y, z, t)

∂y

)

(2.9)

∂vx(x, y, z, t)

∂t
=

1

ρ(x, y, z)

(

∂σxx(x, y, z, t)

∂x
+
∂σxy(x, y, z, t)

∂y
+
∂σxz(x, y, z, t)

∂z

)

∂vy(x, y, z, t)

∂t
=

1

ρ(x, y, z)

(

∂σxy(x, y, z, t)

∂x
+
∂σyy(x, y, z, t)

∂y
+
∂σyz(x, y, z, t)

∂z

)

∂vz(x, y, z, t)

∂t
=

1

ρ(x, y, z)

(

∂σxz(x, y, z, t)

∂x
+
∂σzy(x, y, z, t)

∂y
+
∂σzz(x, y, z, t)

∂z

)

(2.10)

where vx(x, y, z, t), vy(x, y, z, t) and vz(x, y, z, t), are the components of the particles ve-
locity vector at time t; σij(x, y, z, t) with i, j ∈ (x, y, z)2 are the stress tensor components
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at time t (note that the tensor is symmetric, i.e. σxz = σzx); ρ(x, y, z) is the density of
the medium; λ(x, y, z) and the shear modulus µ(x, y, z) are the Lamé parameters that
describe the linear-stress relation [196].

2.3.1.3 The acoustic wave equation

The acoustic approximation states that shear effects in the data are negligible and that
the dominant wave type is a compressional wave. Thus the shear modulus µ(x, y, z) is
null. The equations (2.9) and (2.10) are simplified as follows:

∂σxx(x, y, z, t)

∂t
= λ(x, y, z)

(

∂vx(x, y, z, t)

∂x
+
∂vy(x, y, z, t)

∂y
+
∂vz(x, y, z, t)

∂z

)

∂σyy(x, y, z, t)

∂t
= λ(x, y, z)

(

∂vy(x, y, z, t)

∂y
+
∂vx(x, y, z, t)

∂x
+
∂vz(x, y, z, t)

∂z

)

∂σzz(x, y, z, t)

∂t
= λ(x, y, z)

(

∂vz(x, y, z, t)

∂z
+
∂vx(x, y, z, t)

∂x
+
∂vy(x, y, z, t)

∂y

)

(2.11)

∂vx(x, y, z, t)

∂t
=

1

ρ(x, y, z)

∂σxx(x, y, z, t)

∂x

∂vy(x, y, z, t)

∂t
=

1

ρ(x, y, z)

∂σyy(x, y, z, t)

∂y

∂vz(x, y, z, t)

∂t
=

1

ρ(x, y, z)

∂σzz(x, y, z, t)

∂z

(2.12)

The equation (2.11) implies that ∂σxx(x,y,z,t)
∂t =

∂σyy(x,y,z,t)
∂t = ∂σzz(x,y,z,t)

∂t , which can lead
to the hyperbolic 1st order system:

∂p(x, y, z, t)

∂t
= K(x, y, z)

(

∂vx(x, y, z, t)

∂x
+
∂vy(x, y, z, t)

∂y
+
∂vz(x, y, z, t)

∂z

)

∂vx(x, y, z, t)

∂t
=

1

ρ(x, y, z)

∂p(x, y, z, t)

∂x

∂vy(x, y, z, t)

∂t
=

1

ρ(x, y, z)

∂p(x, y, z, t)

∂y

∂vz(x, y, z, t)

∂t
=

1

ρ(x, y, z)

∂p(x, y, z, t)

∂z

(2.13)

where p(x, y, z, t) =
σxx(x,y,z,t)+σyy(x,y,z,t)+σzz(x,y,z,t)

3 is the pressure field, and K(x, y, z)
is the Bulk modulus. To complete the equation we have to add the seismic source term
s(t), positioned at the coordinate (xs, ys, zs). The system of equations (2.13) becomes
the following 2nd order equation:

1

K(x, y, z)

∂2p(x, y, z, t)

∂t2
−∇.(

1

ρ(x, y, z)
∇p(x, y, z, t)) = s(t)δ(x− xs)δ(y − ys)δ(z − zs)

(2.14)
where ∇. is the divergence operator, ∇ the gradient operator and δ the Dirac delta

function. We define c =
√

K
ρ as the compressional particle velocity. The divergence and

the gradient operators are correlated and are replaced by the Laplace operator ∆. In
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the case where the density ρ is constant, the equation (2.14) becomes:

1

c2(x, y, z)

∂2p(x, y, z, t)

∂t2
−∆p(x, y, z, t) = s(t)δ(x− xs)δ(y − ys)δ(z − zs)

with : ∆p(x, y, z, t) =
∂2p(x, y, z, t)

∂x2
+
∂2p(x, y, z, t)

∂y2
+
∂2p(x, y, z, t)

∂z2
.

(2.15)

Note that the displacement field u(x, y, z, t), which determines the displacement of the
particles during the propagation, is governed by a similar equation as the equation (2.13).
Solving the pressure field p(x, y, z, t) is thus equivalent to solving the displacement field
u(x, y, z, t):

1

c2(x, y, z)

∂2u(x, y, z, t)

∂t2
−∆u(x, y, z, t) = s(t)δ(x− xs)δ(y − ys)δ(z − zs). (2.16)

This is the acoustic wave equation that we tend to solve numerically in the rest of this
section. It is also the equation used to simulate the wave propagation in the seismic
modeling and in the seismic imaging, i.e. in the Reverse Time Migration.

2.3.2 Numerical methods for wave propagation

Numerically, the solutions to the wave equation can be approximated using a wide va-
riety of numerical methods. Depending on the targeted accuracy and on the available
computational resources, one can consider a spectral formulation, a strong formulation
or a weak formulation. One can also adopt a time-domain approach or a frequency-
domain approach. The spectral formulation produces efficient results for simple geo-
logical structures whereas the strong formulation via finite-difference methods can give
a good compromise between the quality of images and the computational costs. On
the other hand, weak formulation via finite-elements, e.g. continuous or discontinuous
Galerkin methods, are more suitable for areas with complex subsurfaces. For a thorough
overview of the most common numerical methods used in resolving the wave equation
we recommend the following two readings [50] and [215]. In this section, we briefly
introduce the methods that we find most relevant to the acoustic wave equation solver.

2.3.2.1 Integral methods

These methods are based on the Huygen’s principle that states that every point in the
wavefield can be considered as a secondary source. For the integral form of the scalar
wave equation in homogeneous media we use the Green’s function G

G(x,xs, t) =
δ(t− |x− xs|/c0)

4π|x− xs|
(2.17)

p(x, t) =

∫ ∫

G(x,xs, t− t′) q(xs, t
′) dxs dt

′ (2.18)

Green’s function are used as a response to a source in the studied media. The source
location is xs. p is the pressure generated by the particles displacement in media, c0 is
the wave velocity and q is a mass flow rate per unit volume. These approaches are more
efficient in homogeneous medium.
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2.3.2.2 Asymptotic methods

They are also called ray-tracing methods and are used when the medium is heteroge-
neous. In such media, the Green’s functions cannot be computed simply. An example
of the asymptotic approach is the Kirchhoff approximation widely used in migration
as described in [41]. Kirchhoff approximations are based on the assumption of high
frequencies.

2.3.2.3 Direct methods

Direct methods are based on a discretization of the computational domain. The ap-
proximation of solutions to the PDE that defines the wave equation can be done using
strong formulations such as finite-difference and pseudo-spectral approaches. We can
also rely on weak formulations like finite-element and finite-volume methods. We also
need a time integration in order to approximate the wave equation. Depending on the
formulation chosen for the equation, the space and time derivatives can be either second
or first order. The source term is added to the right hand side of the PDE in order to
consider the inhomogeneous solutions.

2.3.2.3.1 Pseudo-Spectral Methods Pseudo-spectral (PS) methods also known
as the Fourier methods are strong formulations of partial differential equations. Using
these approaches, pressure values p(x) are approximated using basis functions ψj like in
equation (2.19)

p(x) =

N
∑

j=1

p(xj)ψj(x) (2.19)

In the case of regular grids, one can use Fourier polynomials as basis functions.
On the other hand Chebychev polynomials are used for irregular grids. In [135], we
have a description of the Fourier methods applied to forward modeling with comparison
with finite-difference and finite-element methods. Contrary to finite-difference, pseudo-
spectral methods are global. Modifications when they occur affect the whole computing
grid. When we opt for the pseudo-spectral methods, we reduce the number of unknowns.
We also reduce the number of grid points compared to finite-difference while achieving
the same accuracy.

Pseudo-spectral methods can show some limitations when the topography is com-
plex. Finer grid discretization in order to adapt to the complexity of the surface results
in higher computational cost. This impacts the efficiency of these numerical methods,
restraining them to relatively simple topographies.

2.3.2.3.2 Finite Difference Methods Finite difference methods (FDM) are also
strong formulations of partial differential equations. They are based on the discretization
of the computational grid where we compute values of the wavefield. Usually, Taylor
series expansions are used to compute the derivatives as well as to estimate the errors
due to numerical dispersions. For finite-difference, we have approximations of spatial
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derivatives using for example the equation (2.20) where ∆x is the spacing between two
values of the field u.

du

dx
= lim

∆x→0

u(x+∆x)− u(x)

∆x
(2.20)

The derivative can be approximated as given in equation (2.21). This is a forward
difference approximation.

du

dx
≈
u(x+∆x)− u(x)

∆x
(2.21)

One can have a backward difference approximation of the derivative like described in
equation (2.22)

du

dx
≈
u(x)− u(x−∆x)

∆x
(2.22)

Combining the forward (2.21) and backward (2.22) approximations one can have a cen-
tral approximation given by the equation (2.23).

∂u

∂x
=
u(x+∆x)− u(x−∆x)

2 ∆x
(2.23)

Thorough reviews on finite difference methods applied to the seismic wave equation in
general can be found in [173] and in [27]. In [158] and [128], studies of the FDM applied
in isotropic and anisotropic media are presented, and aspects ranging from the grids
used to the boundary conditions are discussed.

Major difficulties in FDM are due to the discretization grids. The space steps
are constrained by the minimal value of the velocity in the media. For heterogeneous
medium, the space discretization steps need to be very small which results in a huge
computational demand. FDM can be applied in both frequency and time domains.
Frequency domain may be more efficient than time domain in inversion problemswhen
multiple source locations are used [167, 177, 214]. In the case of forward modeling, time
domain is widely used since it is more adapted to the computation requirements of such
applications [158, 215]. FDM need to satisfy important conditions in order to guarantee
their effectiveness. It consists of stability, convergence and consistency.

• Stability means that the solution is bounded when the analytical solution of the
PDE is bounded.

• Consistency means that the truncation tends to zero when the spatial grid spacing
and the time spacing tend to zero.

• Convergence is satisfied when the approximated solutions, using finite-difference,
approach the analytical solutions of the partial differential equation.

For finite-difference methods, we can have either an explicit or an implicit scheme.
Explicit schemes use values of the wavefield at the previous time-step in order to update
a given grid point for the current time step. On the other hand, implicit schemes update
the whole grid at the current time-step by means of a linear system solving an inversion
of a matrix [55].

2.3.2.3.3 Finite Element Methods Finite-element methods (FEM) are a weak
formulation of partial differential equations. These methods use predefined functions as
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a starting point to approximate the wavefield. Finite-element approaches are more effi-
cient in complex topography than finite-difference and pseudo-spectral methods. They
allow a neater approximation of the surface. According to the conditions ensured in ap-
proximating the wave motion, the finite-element method can be adopted in the following
different ways.

2.3.2.3.3.1 Continuous Finite Element Continuous finite-element methods
such as spectral-element (SE) suppose that the wavefield is continuous on the boundaries
separating the elements where the values are computed locally from the elements where
the values are explicitly given.

2.3.2.3.3.2 Discontinuous Finite Element Discontinuous Galerkin methods
remedy to the strong affirmation we have in the continuous formulation of the standard
finite-element methods. These new methods introduce the notion of flux exchange in-
stead. Baldassari [36] presents more details about the Galerkin methods and uses them
in a Reverse Time Migration workflow.

2.3.3 Application to the acoustic wave equation

In this section we approximate the solutions of the acoustic wave equation (2.16) by
means of the Finite Difference Method. This choice is motivated by our desire to explic-
itly approximate the solutions of the wave equation and by the good tradeoff between
numerical accuracy and computational demand that FDM offer. We consider that the
medium is isotropic and that the density is constant. We consider that the propagation
space is a regular grid governed by a cartesian coordinate system. As a matter of fact,
this is the wave equation solver that will be used to evaluate the heterogeneous archi-
tectures considered in this work. However, we point out that the techniques detailed in
this section apply for more complex formulations of the wave equation, i.e. for variable
density media and elastic propagation.

2.3.3.1 Numerical approximation

For time discretization, a 2nd order explicit centered scheme is used, where we rely on
the Taylor series expansion to approximate the 2nd order derivatives of u(x, y, z, t), with
respect to time, between time t and time t+∆t as follows:

∂2u(x, y, z, t)

∂t2
≈
u(x, y, z, t+∆t)− 2u(x, y, z, t) + u(x, y, z, t−∆t)

∆t2
. (2.24)

This scheme is also known as the leap frog scheme. For the sake of simplicity, we denote
Un(x, y, z) the approximation of the displacement field at time t = n∆t.
For space discretization, we consider the grid spacings ∆x,∆y, and ∆z along the X, Y
and Z axis respectively. Let Un

i,j,k the value of the wavefield u at time t = n∆t at the

grid point (x = i∆x, y = j∆y, z = k∆z) (see figure 2.15). A centered pth order finite
difference scheme is used to approximate the 2nd order derivatives with respect to x, y
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Figure 2.15: Space discretization of a 3D volume.

and z as follows:

∂2u(x, y, z, t)

∂x2
≈

1

∆x2

p/2
∑

l=−p/2

alU
n
i+l,j,k

∂2u(x, y, z, t)

∂y2
≈

1

∆y2

p/2
∑

l=−p/2

alU
n
i,j+l,k

∂2u(x, y, z, t)

∂z2
≈

1

∆z2

p/2
∑

l=−p/2

alU
n
i,j,k+l

(2.25)

The finite difference coefficients, (al)−p
2
≤l≤ p

2
, with a−l = al ∀l ∈ [0, p2 ], are obtained by

Taylor series expansion. The table 2.2 summarizes the finite difference coefficients for
schemes with an order ranging from 2 to 8. In our case we chose p = 8. The choice
of the coefficients plays a primary role in terms of numerical dispersion of the finite

Scheme order a0 a1 a2 a3 a4
2 −2 1

4 −5
2

4
3

−1
12

6 −49
18

3
2

−3
20

1
90

8 −205
72

8
5

−1
5

8
315

−1
560

Table 2.2: Taylor coefficients for centered finite difference numerical schemes.
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difference scheme. Other coefficients and dispersion relations are also used to optimize
the numerical scheme [140].

Based on the discretization schemes (2.24) and (2.25), the acoustic wave equation
(2.16) is transformed into the following difference equation:

1

c2i,j,k

Un+1
i,j,k − 2Un

i,j,k + Un−1
i,j,k

∆t2
−∆Un

i,j,k = snδ(x− xs)δ(y − ys)δ(z − zs), (2.26)

where c2i,j,k is the indicial notation of the velocity squared c2(x, y, z) at each grid point,

∆Un
i,j,k = 1

∆x2

∑p/2
l=−p/2 alU

n
i+l,j,k +

1
∆y2

∑p/2
l=−p/2 alU

n
i,j+l,k +

1
∆z2

∑p/2
l=−p/2 alU

n
i,j,k+l is the

indicial notation of the Laplace operator, and sn is the simplified notation of the source
term s(t) at time t = n∆t. We conclude that the numerical solution of the acoustic
wave equation at time (n+1)∆t is determined as a function of the solution at time n∆t
and (n− 1)∆t as follows:

Un+1
i,j,k = 2Un

i,j,k − Un−1
i,j,k + c2i,j,k∆t

2∆Un
i,j,k + c2i,j,k∆t

2(snδ(x− xs)δ(y − ys)δ(z − zs)).

(2.27)
We changed the hyperbolic partial differential equation (PDE) (2.16) into a discrete
problem (2.27), which can be solved in a finite sequence of arithmetic operations, im-
plementable on a computer. In the rest of the document we make use of the equation
(2.27) with p = 8, i.e. the 8th order centered finite difference scheme, as the numerical
solver of the acoustic wave equation.

2.3.3.2 Stability analysis and CFL

We presented a numerical method, i.e. a centered finite difference scheme, to discretize
the acoustic wave equation. Finite difference discretization, as well as all the numerical
methods used to solve PDEs, are subject to numerical errors. An error is a difference
between the analytical solution of the PDE and the solution of the discrete problem. In
numerical analysis, a numerical scheme is proved convergent if and only if it is proved
consistent and stable (the Lax Equivalence Theorem [122]). To learn more about the
consistency, convergence and stability of the numerical methods we refer the reader to
[77]. In practice, consistency essentially requires that the discrete equations defining the
approximate solution are at least approximately satisfied by the true solution. For the
finite difference method, this is an evident requirement (Taylor’s theorem). Thus in order
to prove the convergence of our finite difference scheme we should define a quantitative
measure of its stability. We consider the CFL condition named after Richard Courant,
Kurt Friedrichs and Hans Lewy who described it in their paper [70]. It consists of the
following inequality:

(

c
∆t

h

)

≤ α, (2.28)

where ∆t and h are the discretization steps in time and space respectively, c is the maxi-
mum velocity and α is a constant that depends on the numerical scheme considered. By
von Neumann stability analysis, we extend the CFL condition to the 3D finite difference
wave equation solver as follows:

(

c
∆t

∆x

)2

+

(

c
∆t

∆y

)2

+

(

c
∆t

∆z

)2

≤ α, (2.29)
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where α = 4
(

∑p/2
l=−p/2 |al|

)

. Or in a more generalized formulation, presented in [141],

where the discretization step is assumed to be the same in all the directions, i.e. ∆x =
∆y = ∆z = h, and the number of dimension is Ndim:

(

c
∆t

h

)

≤ 2





∑p/2
l=−p/2 |al|

Ndim





1/2

. (2.30)

2.3.3.3 Boundary conditions

By solving the acoustic wave equation (2.16) we would like to simulate the wave propa-
gation in a half space, i.e the earth (land or sea) surface plus the underlying subsurface
structures. However, the numerical equation (2.27) is defined in a finite discrete do-
main. In order to simulate the half space constraint in the numerical equation, we need
to capture the reflected waves on the artificial domain sides and bottom of the numer-
ical grid. This can be done by adding absorbing layers to the computational domain
faces to progressively damp the energy coming from the incident waves. Berenger [39]
introduced in 1994 the Perfectly Matched Layers (PML) as an absorbing boundary con-
dition to simulate the propagation of the 2D electromagnetic waves. PML were then
extended to 3D wave propagations in general. Finite difference method is often used
in conjunction with PML in different variants. Convolution PML (CPML) can be used
to improve the behavior of the discrete PML which is completely independent of the
host medium. Thus, no modifications are necessary when applying it to inhomogeneous,
lossy, anisotropic, dispersive or non-linear media [183]. More recently a formulation of
the unspotted CPML that can easily be extended to higher-order time schemes, called
the auxiliary differential equation PML (ADE-PML), has been introduced in [134] for
the seismic wave equation. An improved sponge layer, called the split Multi-axial PML
(M-PML), has been suggested in [154].

Mathematically, the acoustic wave equation (2.16) is altered in order to add an
absorbing term (regular PML) [136]:

1

c2(x, y, z)

∂2u(x, y, z, t)

∂t2
−∆u(x, y, z, t) + 2γ(x, y, z)

∂u(x, y, z, t)

∂t
+

γ(x, y, z)2u(x, y, z, t) = s(t)δ(x− xs)δ(y − ys)δ(z − zs),

(2.31)

where γ(x, y, z) represents the damping coefficients. Numerically, when neglecting the
γ(x, y, z)2 term, the propagation in the absorbing layers is thus governed by the following
equation:

Un+1
i,j,k =

2

Γi,j,k + 1
Un
i,j,k −

Γi,j,k − 1

Γi,j,k + 1
Un−1
i,j,k +

c2i,j,k∆t
2

Γi,j,k + 1
∆Un

i,j,k

+c2i,j,k∆t
2(snδ(x− xs)δ(y − ys)δ(z − zs)),

(2.32)

where Γi,j,k is the indicial notation of γ(x, y, z). Finally, we recall that the wave propa-
gation in the rest of the computational domain is governed by the equation (2.27).
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The Top500 list [9], a LINPACK-based supercomputer ranking list that is updated ev-
ery six months, of November 2014 indicates that the computing landscape looks more
and more diversified. With the advent of powerful hardware accelerators, the HPC
facilities are turning heterogeneous, where commodity processors are usually used in
conjunction with auxiliary chips such as the Graphics Processing Unit (GPU) or the

Figure 3.1: A classification of the hardware accelerators that feature the Top500
supercomputers, based on the ranking list of November 2014.
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Field-Programmable Gate Array (FPGA) to enhance the performance of scientific ap-
plications. A quick glance at the chart presented in figure 3.1, which is a summary
of the most used accelerators in the latest Top500 supercomputers list, gives a better
idea about the recent trends in HPC facilities. Besides, leveraging the compute power
of such hybrid architectures can be challenging since various programming models are
to be considered. For example, the emergence of GPUs led scientific programmers to
introduce new programming models such as CUDA [4] and OpenCL [19]. Furthermore,
today we are about to reach a new milestone in the history of computing as the power
consumption seems to be a serious concern. Green500 [6], another list that provides
since 2007 a ranking of the most energy-efficient supercomputers in the world, is gaining
more and more interest inside the HPC community.

In this chapter, we give in section 3.1 a succinct overview of the most used processors
and hybrid architectures in the scientific community. We follow up with a summary of
the programming models used to leverage these architectures, in section 3.2. Then, we
finish the chapter in section 3.3 where we explain how does the power consumption
interfere with HPC.

3.1 Overview of HPC hardware architectures

In this section, we describe the recent advances of processors architecture with a special
emphasis on the GPU in a general purpose computation context (GPGPU), and on more
recent technologies such as the Accelerated Processing Unit (APU) proposed by AMD.
First, we quickly survey the latest developments in CPU architectures. Then, we give
an overview of the GPGPU ecosystem mainly dominated by the two vendors AMD and
NVIDIA. Finally, we introduce the APU technology in a nutshell and give details about
its underlying architecture.

3.1.1 Central Processing Unit: more and more cores

For decades, CPU manufacturers tended in their constant search for performance and
compute power to increase the CPU clock rates and we have seen through the history of
CPUs frequencies growing up to reach 4.4 GHz (with the turbo mode) at most. Moore’s
law, named after Gordon Moore who predicted in 1975 that the number of transistors
will be doubled every two years, has driven the CPU evolution for 40 years, where the
CPU sockets were getting more and more dense, in terms of transistors, thanks to the
transistor shrinkage.
However, during the last decade CPU sockets capacitance has started to stall due to
a physical constraint which is the power consumption. Indeed the power budget is be-
coming a leading design constraint when populating a piece of silicon with functional
circuits. Vendors started to realize that they could not keep raising the frequency any-
more without risking that circuits would be subject of overheating. Alternatively, they
dawned the multi-core age by reducing the frequency and by duplicating CPU cores, i.e.
independent processing units each having their own ALUs, FPUs and caches, on chip.
In figure 3.2 one can see that the direct result of power constraint is a stall in the CPU
frequency. The figure also shows the transition from mono-core CPUs to multi-core
CPUs that started during the last decade.
Furthermore, another factor that has also strongly influenced the design of modern CPUs
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Figure 3.2: The evolution of CPUs since 1970 in terms of power consumption, tran-
sistor density, frequency and number of cores. Source [106].

architecture is the mismatch between the CPU frequency and memory speeds (see figure
3.3). This clock rate gap forced the vendors to dedicate the major part of the silicon of
a CPU to hierarchical levels of caches. For instance, the size of the second-level cache
grew rapidly, reaching 2 MB in some instances [26]. In addition, multiplying the cores
within the socket is translated to more demand for data, and some vendors (such as
Intel) thus introduced a third-level cache. The figure 3.4 depicts the latency of the dif-
ferent levels of the state-of-the-art CPU memory hierarchy from registers to hard disks.
It also gives an idea about the average capacity of each memory level. The memory
latency is still much greater than the processor clock step (around 300 times greater or
more). The memory throughput is improving at a better rate than its latency, but it’s
still lagging behind the processor speed. Today, high performance CPUs (CPUs that are
used in HPC facilities) are often composed of one or multiple sockets, each of which has
multiple cores that range from two to twenty. They are featured by two or three levels
of caches. We sketch an abstract view of the architecture of modern CPUs in figure 3.5.
Most of the state-of-the-art CPU architectures fall in this example. Note that the L3
cache is optional since not all the CPUs are equipped with a third level cache.

Figure 3.3: The performance gap between the CPU clock rate and the DRAM clock
rate throughout the years, from [5].
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Figure 3.4: The average sizes and latencies of state-of-the-art memory hierarchy
elements. The time units change by a factor of 108 from the latency of disks to that of
registers, and the size units change by a factor of 1010 from the capacity of registers to

that of disks. From [110].

Intel launched successive families of high-end multi-core CPUs. Sandy Bridge was re-
leased in 2011, with up to 8 cores per CPU socket, 20MB of L3 cache and 150 Watts of
maximum TDP (Thermal Design Power). The Ivy Bridge family was the successor in
2013 and demonstrated between 3% and 6% of performance enhancement compared to
Sandy Bridge (clock to clock comparison). The number of cores per die was increased
(up to 18 cores) and the L3 cache sizes were increased up to 38MB while the power en-
velop was almost kept the same as the previous generations. Most recently the cutting
edge Intel CPU family, code named Haswell, was released. It features up to 18 cores per
CPU socket to deliver 8% more performance than that of Ivy Bridge.
Albeit not dominant in the HPC CPU market, AMD also lined up high-end CPUs for
HPC. The Bulldozer micro-architecture was released in 2011, it featured up to 4 cores
with a maximum TDP of 140 Watts. Bulldozer CPUs had up to 8MB of L3 cache. The
Piledriver family was released in 2012. Piledriver processors had up to 16 cores per die.
The Streamroller micro-architecture was released in 2014 to build the Warsaw Server
CPU product line. They were also featured by 12 to 16 CPU cores per socket, and
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Figure 3.5: An abstract view of the architecture of a multi-core CPU. N is the
overall number of CPU cores. L1, L2 and L3 refer respectively to the first cache level,
the second cache level and the third cache level. s is the maximum number of cores
that share one L3 cache (usually in one socket). WC are Write Combining buffers and

are often used for cache non-coherent memory accesses.
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Architecture AMD 10h

Model Phenom

Clock rate (GHz) 2.8

CPU #cores 6

Main memory (MB) 8096

Peak bandwidth (GB/s) 50

Single precision peak flops (GFlop/s) 134

Table 3.1: The technical specifications of the AMD CPU that is surveyed in the scope
of this work.

were reported to consume only 100 Watts of TDP. AMD plan to release the Zen micro-
architecture in 2016 which promises 40% of performance improvement over the previous
generations. Table 3.1 summarizes the technical specifications of the AMD Phenom TM
II x6 1055t Processor that is used in this study.

These architectures are slightly different but they all are subject to parallel pro-
cessing which can be exposed at multiple level. First, the Instruction Level Parallelism
(ILP) enables the processor to execute more than one instruction from the same thread
in parallel using one or multiple pipelines at the core level. Second, comes the Data
Level Parallelism (DLP) where the same instruction is executed on different data en-
tries (vector processing) using SIMD (Single Instruction Multiple Data) registers. The
third level of parallelism is the Thread Level Parallelism (TLP) which corresponds to
the capability of executing multiple threads on the same core, i.e. SMT (Simultaneous
Multi-Threading), to the parallel execution of multiple threads on different CPU cores
(in shared memory systems) or even to the parallel execution of multiple processes on
different compute nodes of a distributed machine (CPU clusters).

3.1.2 Hardware accelerators: the other chips for computing

It’s no secret that applicative workloads are becoming larger and more complex than
ever. In some cases, the traditional CPUs hardware cannot meet high computational
demands. As a matter of fact, high-performance computing applications are now de-
manding more than traditional CPUs can deliver, creating a technology gap between
demand and performance. This limits users from extracting the performance out of this
hardware. Application demands have outpaced the conventional processor’s ability to
deliver performance. An alternative solution is hardware acceleration that augments
mainstream processors with specialized coprocessors.
During the last decade, many vendors have proposed hardware accelerators based so-
lutions for general purpose computing. The Graphic Processing Units (GPUs) are the
most famous ones. NVIDIA and AMD are largely dominating the market by introduc-
ing successive GPU architectures for more than two decades now. In addition to GPUs,
high performance facilities are sometimes populated with other accelerators, such as
FPGAs and Intel Xeon Phi. Intel Xeon Phi processors are based on the MIC (Many
Integrated Core) architecture, which combines near 60 x86 cores on the same die. The
MIC products are not stand-alone processors yet, and they are used as an external PCI
Express card for computing. However, it is reported that the first stand-alone ones will
be launched in 2016. Moreover, other technologies that rely on founding a high number
of cores on the same chip start to emerge. The MPPA, a SOC (System On Chip) that
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Figure 3.6: An abstract view of the architecture of a modern GPU.

contains 256 cores and proposed by Kalray [8], is one of them.
Five out of the fastest ten supercomputers (based on the Top500 list of November 2014)
in the world are built upon hardware accelerators (mainly GPUs or Intel Xeon Phi).

In this section, we particularly focus on the architectures of GPUs. A GPU is a
processor optimized for graphics workloads. The GPU has recently evolved towards a
more simplifed architecture, typically it is composed of several massively parallel multi-
processors, also referred to as streaming multi-processors or compute units in the litera-
ture (we denote them as CU), each of which has a large number of processing elements
(we refer to them as PEs in this document) that all run the same instructions on differ-
ent data (SIMD). These compute units contain, in addition to the arithmetic and logic
units, branch units, memory fetch units and additional hardware that is not relevant
to general purpose computations. The GPU needs thread schedulers and some control
units to dispatch the work amongst the PEs. We give a simplified view of a common
architecture of modern GPUs in figure 3.6. Note that we describe only the relevant
hardware components and that the architecture may slightly differ from a vendor to
another. The GPU main memory, referred to as GPU global memory, is accessible by
all the threads on the GPU and has a high latency (at the order of 600 ns). Often the
local memory, i.e. a scratchpad memory that is local to each compute unit and thus is
accessible only by the threads that are allocated in the corresponding CU, is used as a
manually managed cache by first moving data from the global memory to the local mem-
ory and using that memory in any further calculations. This mitigates the impact of the
GPU main memory latency. For the same purpose, recently GPUs have been equipped
with a hierarchy of caches (L1 and L2). The registers (Register file) are private to each
thread and are used to store intermediate data and variables during computation.

The execution model of GPUs requires the deployment of a tremendous number
of threads (tens of millions) and keeping them active simultaneously on the hardware
without changing contexts. The schedulers are responsible for filling the stalls caused
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by memory accesses for instance by deploying more threads that are ready to use the
GPU cycles. This execution model gives rise to a natural parallelism, that can be
categorized as TLP, as the wraps or wavefronts (a collection of threads that are executed
simultaneously on a CU) execution are interleaved to hide latencies. On a lower level,
ILP can be exploited which implies using more registers per thread. Unlike CPUs, where
a large number of the transistors is dedicated to supporting non-computational tasks
like branch prediction and caching, GPUs use additional transistors for computation
achieving greater compute power with the same transistor count.
GPUs do not operate on the computer main memory. Often a GPU is connected to its
own off-chip memory (the GPU global memory) which is used to store data. The size
of this graphics memory varies but it is currently about 3 to 12 Gigabytes for high-end
GPUs. Before the GPU can start to work on a given data, that data first needs to be
moved to the GPUmain memory. The speed of that operation depends on the connection
between the main memory and the graphics board via the PCI Express bus. Therefore
it varies heavily to a maximum of 6 GB/s (PCI Express gen 2, 16x) or 12 GB/s (PCI
Express gen 3). When used in HPC, GPUs can have over an order of magnitude higher
memory bandwidth and higher computation power (in terms of GFflop/s) than CPUs.
For example a high-end Intel Ivy Bridge EX processor with 15 cores hits a theoretical
single precision performance of 672 GFlop/s and 25 GB/s of memory bandwidth, while
an NVIDIA K40m GPU offers 4029 GFlop/s of theoretical single precision performance
and near 320 GB/s of theoretical bandwidth.

During the last five years, NVIDIA has launched successively three GPU architec-
tures on top of which the company has released a brand (Tesla) that features double
precision, ECC memory etc. and that targets general purpose computing. Those GPUs
were extensively used by high performance facilities. The Fermi micro-architecture was
introduced in 2010 where each streaming multi-processor (SM) was composed of 32
PEs, also introduced by the vendor as CUDA cores. Each SM has 64 KB of scratch-
pad memory that can be partitioned by the users into level 1 cache and local memory
(depending on the GPU model). The single precision peak performance of Fermi GPUs
is 1.5 TF lop/s. Depending on the model, the GPU memory capacity was about 6 GB
and could deliver up to 192 GB/s of peak bandwidth. The following architecture was
Kepler, where NVIDIA had introduced a new generation of streaming multi-processors,
called SMX, each holding 192 CUDA cores. NVIDIA reported a 3× speedup in terms
of performance per watt. With Kepler architecture, NVIDIA has also introduced the
dynamic parallelism, which allows GPU threads to spawn new threads on their own and
launch kernels without the help of the CPU. In addition to the Hyper-Q technology,
which allows multiple CPU processes (can be MPI processes) to simultaneously utilize a
single GPU. Kepler GPUs peak at 4.5 Tflop/s in terms of single precision performance
and 320 GB/s in terms of bandwidth (depending on the model). More recently, the
Maxwell GPU architecture has been introduced. This GPU generation focuses more on
power efficiency. The second level cache size is increased up to 2 MB.

AMD GPUs are evolving along generations and the way they are structured varies
with the device family. Each GPU family is based on a GPU micro-architecture. In
the Evergreen family, processing elements are arranged as five-way very long instruction
word (VLIW) processors. Consequently, five scalar operations can be co-issued in a
VLIW instruction. Then, the Northern Islands GPU family has come up with a new
design, in which the processing elements of one multi-processor are arranged as four-way
VLIW processors. Northern Islands GPUs have two wavefronts schedulers. We generally
refer to the hardware design of Evergreen and Northern Islands GPUs as vector design.
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Architecture Cayman Tahiti

Model HD6970 HD7970

GPU family name Northern Islands Southern Islands

Clock rate (GHz) 0.88 0.925

Compute units 24 32

Off-chip memory (MB) 2048 3072

Local memory (KB) 32 64

Peak bandwidth (GB/s) 176 256

Single precision peak flops (GFlop/s) 2700 3700

Table 3.2: The list of the AMD GPUs that are surveyed in the scope of this work.

As a matter of fact, Evergreen and Northern Islands are based on a vectorized micro-
architecture called TeraScale graphics that defines a relaxed memory model without
caches.
Recently, AMD has released a new micro-architecture name Graphics Core Next (GCN).
The first GCN based GPU family is introduced in 2012 and is called Southern Islands.
The processing elements are not VLIW processors anymore, and are arranged as four
separate lanes of scalar processing elements. The wavefronts schedulers are doubled (four
schedulers). The Southern Islands architecture is sometimes referred to as the scalar
design (in reality it is a dual scalar/vector hardware design) in the literature. For most
AMD GPUs, the processing elements are arranged in four SIMD arrays consisting of 16
processing elements each. Each of the SIMD arrays executes a single instruction across
a block of 16 work-items. That instruction is repeated over four cycles to process the
64-element wavefront. In the Southern Islands family, the four SIMD arrays can execute
code from different wavefronts. AMD continued to release GCN based GPUs with the
Sea Islands and Volcanic Islands families in 2013 and 2014. Table 3.2 summarizes the
technical specifications of the AMD GPUs surveyed in the scope of this work. Note that
the main difference between the AMD GPUs and NVIDIA GPUs consists in the size of
the SIMD arrays and in the number of the thread schedulers.

3.1.3 Towards the fusion of CPUs and accelerators: the emergence of
the Accelerated Processing Unit

Hardware accelerators are becoming a customary component on mainstream HPC facili-
ties. Thanks to their huge compute power and to their high internal memory bandwidth,
GPUs are considered as a compelling platform for computationally demanding tasks.
However, a GPU is not a stand-alone processor and require a commodity CPU, to which
it is connected via the PCI Express bus, to operate. In 2011 AMD has released a new
technology that promises to improve the GPU architecture: the Accelerated Processing
Unit (APU). An APU is a new kind of processor that combines the advantages of a
CPU and a GPU. The AMD APU has a multi-core CPU and a GPU, all fused in the
same silicon die, which eliminates the need to use the PCI Express bus as the CPU
and the integrated GPU can both have access to the system main memory. In order to
distinguish between the traditional GPUs, referred to as discrete GPUs in the rest of
the document, from those merged within APUs, we call the latter integrated GPUs.
The figure 3.7 shows a minimal description of the architecture of the AMD APU. In
this figure, we represent an APU with a quad-core CPU, but in general AMD APUs
are released in many variants (two CPU cores or four CPU cores). The integrated GPU
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Figure 3.7: A high level illustration of the architecture of the early generations of
AMD APUs. In this example the APU has four CPU cores. The integrated GPU has
access to the main system memory, through the UNB (Unified North Bridge), using
either the Onion memory bus or the Garlic bus. The integrated GPU does not have

caches, the TEX L1 are the texture caches.

does not have an off-chip memory, instead it has access to the system memory by means
of two new memory buses introduced by AMD: the Onion bus and the Garlic bus.
Memory accesses through Onion are coherent with the CPU cores caches, whereas those
performed through the Garlic bus are not. The theoretical peak bandwidth of the mem-
ory buses depends on the clock rate of the DRAM installed in the system. For example,
with a system memory clocked at 1833 MHz, the theoretical memory bandwidth of
Onion is 8 GB/s. Garlic, being a wider bus, peaks at 25, 6 GB/s. The main APU
feature that AMD advanced, at the beginning of the project roadmap, is to allow CPU
cores and GPU CUs to share a unified memory space. However, merging two different
memory addressing systems is a challenging task at both hardware and software stacks.
At an early stage of the project, the system main memory is partitioned. We represent,
in the figure 3.8, the different memory partitions of an APU. The CPU cores, in a sim-
ilar manner to regular multi-core CPUs, have access to the system memory, commonly
named host memory. The integrated GPU has a dedicated subset of the main memory
that is referred to as “GPU memory” and often called device memory. This memory is
accessible by the integrated GPU multi-processors at full bandwidth of the Garlic bus.
Furthermore, in order to allow the integrated GPU to access the host memory without
explicitly copying data in the GPU memory, the device-visible host memory partition
can be used. Similarly, the CPU can map the host-visible device memory (also known
as GPU persistent memory) into its virtual memory space in order to share data with
the integrated GPU without explicit copies. The memory buffers that are created in
either the host-visible device memory or the device-visible host memory are called “zero-
copy” buffers. Note that in the early generations of APUs, the host-visible memory and
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Figure 3.8: An illustration of the different memory partitions of an APU. The sys-
tem memory and the host-visible device memory are visible to the CPU cores. The
GPU memory (being a sub-partition of the system memory) and the device-visible host

memory are visible to the integrated GPU compute units.
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Figure 3.9: A high level illustration of the architecture of GCN based APUs. The
GPU can access the “host coherent memory” using the Onion+ memory bus.

device-visible memory have a limited size (between 512 MB and 1 GB).
APUs are evolving with respect to the AMD CPU roadmap along with that of the dis-
crete GPUs with one generation above. Put another way, the latest integrated GPU
is usually one generation older than the latest discrete GPU. The first generation was
code-named Llano and released in late 2011. Llano was a first shot with an integrated
GPU based on the Evergreen architecture and had five GPU CUs. The second gener-
ation was Trinity (released in late 2012) with an integrated GPU that belongs to the
Northern Islands family and had six GPU CUs. The Trinity and Llano APUs are both
based on the vectorized micro-architecture family (TeraScale graphics) and both have
the same memory subsystem (described in figure 3.7).
In 2014, AMD announced an important upgrade in the APU roadmap and launched
an APU code-named Kaveri, a combination of four Streamroller CPU cores and eight
Sea Islands GPU CUs. With the Kaveri APU, AMD made the move from TeraScale
graphics to the newer GCN (specifically the GCN 1.1). Kaveri shares the same GPU
micro-architecture as that of the latest discrete GPU lineup. After Kaveri, AMD is
synchronizing the architecture of their APUs and discrete GPUs, thus optimizations
made for their discrete GPUs will immediately feed back into their APUs. The dif-
ference between the Kaveri implementation of GCN and the discrete GPUs one, aside
from the association with the CPU in silicon, is the addition of the coherent shared
unified memory. As a matter of fact, thanks to GCN, caches are added to the integrated
GPUs and the memory subsystem has changed. We illustrate in figure 3.9 the new
APU architecture. Memory accesses through the Onion bus require sweeping over the
GPU L2 caches as well as the CPU caches. Given that GPU L2 caches and CPU caches
are not synchronized, the Onion memory bus does not ensure coherency anymore. A
third memory path Onion+ is added and has the same bandwidth as Onion. Onion+
memory accesses bypass the GPU L2 caches which allows coherency since only the CPU
caches are checked before memory accesses. The memory accessed through Onion+ is
referred to as “host coherent memory” in the literature [29]. Furthermore, the sustained
bandwidth of the Onion bus is enhanced and peaks at 60% of the maximum sustained
bandwidth of the Garlic bus. Besides, within the Kaveri APU the entire system memory
is pageable and is addressable by both the CPU cores and the GPU compute units.
Today, the APU project still has an active roadmap. AMD unveiled in 2015 another
generation of APUs code-named “Carrizo” [1]. The memory subsystem of the Carrizo
APU is updated. The memory buses Onion, Onion+ and Garlic are replaced by a unique
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Figure 3.10: The architecture of the upcoming APUs. All memory accesses are
performed through a unified memory bus Onion 3.

memory bus labeled Onion 3. All the memory accesses are managed by the same mem-
ory controller and are coherent with both CPU and GPU caches. The figure 3.10 is a
representation of this the new APU design. Furthermore, AMD plans to launch a high
performance APU with a similar memory subsystem as that of Carrizo but populated
with a big number of GPU multi-processors and equiped with stacked memory (also
known as High Bandwidth Memory (HBM)). The new chip is labeled “Zen APU”. We
summarize the different APU generations released from 2013 and the upcoming gen-
erations scheduled for 2016 in the figure 3.11. In the scope of this work, we only
investigate the first three APU generations, i.e. Llano, Trinity and Kaveri. The table
3.3 summarizes the technical specifications of each one of them.

Figure 3.11: An illustration to summarize the APU roadmap from 2013 to 2016 and
the different features.
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Architecture Llano Trinity Kaveri
Model A8-3850 A10-5700 A10-7850K
CPU architecture AMD 10h Piledriver Streamroller
CPU #cores 4 4 4
CPU clock rate (GHz) 3.0 3.8 3.8
Integrated GPU architecture Evergreen Northern Islands Sea Islands
GPU clock rate (GHz) 0.600 0.711 0.720
Compute units 5 6 8
Integrated GPU memory (MB) 512 512 2048
Local memory per CU (KB) 32 32 64
Peak bandwidth (GB/s) 25.6 25.6 25.6
GPU single precision peak flops (GFlop/s) 480 546 734

Table 3.3: The list of the AMD APUs that are surveyed in the scope of this work.

Figure 3.12: AMD’s Kaveri die with two Streamroller CPU cores and a Sea Islands
GPU, from [2].

Figure 3.13: Intel’s Haswell GT2 die with a HD Graphics 4200 GPU, from [2].
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Finally, other vendors considered integrating CPUs and GPUs in the same silicon die
in a design similar to that of the APU. The Intel Sandy Bridge, Ivy Bridge and Haswell
processors are actullay a combination of CPU cores and integrated GPUs. Although
the integrated GPUs of Sandy Bridge and Ivy Bridge were not often used for general
purpose computations, the hardware design of the Haswell processor (see figure 3.13)
may gain interest within the scientific community [7]. We can see from the die shot
presented in the figure 3.12 that AMD has dedicated a proportionally larger amount of
the chip to graphics than Intel has. Besides, AMD has put more GPU cores on the die
than Intel has done. However, Intel has integrated more CPU cores, albeit generally
slower in terms of frequency than the AMD CPU cores of the APU, on the silicon die.
It is also to be noted that the Haswell memory system is different from that of the
Kaveri APU as Intel has introduced a level 4 cache (for Iris Pro models only) that can
be shared between the CPU and the GPU. Furthermore, NVIDIA has started to put
serious efforts to rethink the interaction between GPUs and CPUs. On the one hand,
NVIDIA has started pairing CPU cores and GPU cores on the same die. For instance
the Tegra X1 is a combination of a Maxwell GPU and two to four ARM CPU cores
designed by NVIDIA and code-named Denver-CPU. On the other hand, NVIDIA has
released a high speed interconnect, labeled NVLink, that replaces the PCI Express bus
and expect to ensure data sharing between a discrete GPU and a CPU at rates five to
twelve times faster than the PCI Express Gen 3 interconnect.

To sum up, fusing CPUs and GPUs in the same die is a step in the right direction for
efficient computations without data transfers overheads. However, the APU project is
still a work in progress, the APUs are an order of magnitude less compute powerful than
discrete GPUs and their memory bandwidth does not match that of the discrete GPUs.

3.2 Programming models in HPC

The trend towards heterogeneous computing has implied an increasing need for a spe-
cialized software infrastructure, such as parallel programming languages, compilers and
APIs (Application Program Interfaces) to leverage massively parallel hardware. In this
section we provide an overview of the common programming models that are used to
target heterogeneous platforms in a scientific computation context. First we present the
programming languages and APIs that are dedicated to develop applications on hard-
ware accelerators. We particularly emphasize the abstractions provided by the Open
Computing Language (OpenCL). Then we briefly present high level approaches such as
directive based compilers.

3.2.1 Dedicated programming languages for HPC

3.2.1.1 Overview

Many existing scientific applications have been adapted to make effective useof multi-
core CPU platforms using a wide variety of programming models. OpenMP [11] is the
de-facto standard for writing shared-memory thread-parallel programs. By means of
a language extension based on high-level constructs and directives, OpenMP makes it
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easier to parallelize loops and application hotspots amongst the CPU cores. OpenMP is
usually used jointly with the Message Passing Interface (MPI) library in CPU clusters
in order to exploit both the intra-node parallelism and the inter-node parallelism.
As an alternative to the OpenMP+MPI model, programming concepts that are based
on the PGAS (Partionned Global Address Space) have arisen. PGAS is a program-
ming model that assumes a global memory address space that is logically partitioned
amongst a set of threads each of which has a local view of that space. For example,
Coarray Fortran (CAF) [3], which is now integrated into the Fortran 2008 standard
proposal, extends the Fortran language syntax with a construct called coarrays, which
are essentially data structures that are shared between different images (processes) of
a program. Accesses to these coarrays result in remote memory accesses. Similarly,
UPC [10] is an extension to the C language offering benefits of the PGAS model to pro-
grams written primarily in C. In UPC, program instances are called threads and data
is divided up between shared and private spaces. In addition, language qualifiers are
provided which describe whether data is shared and how arrays should be distributed
among the available threads. The number of threads can be specified at both compile
and runtime. PGAS based approaches are attractive in terms of programmability but
still suffer from portability issues.

When it comes to hardware accelerators, programming a parallel chip that is not a
CPU can be challenging and requires unusual approaches. This can apply rather to any
kind of accelerator, such as GPUs or FPGAs. While many of the technologies in general
purpose GPU programming (GPGPU) are new, GPUs do have a relatively long history
dating back to at least 1987 [47]. However, it was not until the beginning of the 2000’s
that the OpenGL [129] API and DX11 DirectCompute [157] added programmable shad-
ing to their capabilities, exposing GPU programming to the mass market. Until CUDA
(Compute Unified Device Architecture) [4] and CTM (Close To Metal) [28]1 emerged
in 2006, programmable shaders were practically the only way to program the graphics
cards in mainstream computers. Shaders were not designed for general purpose com-
puting and so put limitations on what could be done. While NVIDIA has improved the
CUDA platform, AMD has evolved CTM to CAL (Compute Abstraction Layer) as part
of the Stream SDK in December 2007 [28]. In June 2008, Apple and AMD along with
various industry players in GPU as well as in other accelerator technologies formed the
OpenCL (Open Computing Language) working group [19] under the Khronos Group.
Khronos is responsible for other well known industry open specifications and made a
choice to drive the OpenCL specification.
OpenCL and CUDA have since then become increasingly popular in the high perfor-
mance computing community. They are extensions to high level languages (C, C++)
which simplifies their learning curves. Theses technologies allow users to adapt complex
scientific applications to GPU architectures by rewriting codes in an SPMD fashion.
But, GPUs are architecturally different: GPUs from NVIDIA and AMD have different
architectures and furthermore even GPUs from the same vendor are different. Hence,
the user may need to optimize the same OpenCL or CUDA code for each individual
architecture in order to get the best performance. CUDA and OpenCL have few dif-
ferences in terminology, but otherwise CUDA and OpenCL written programs roughly
operate similarly. The most important difference, and also the main reason to choose
OpenCL, is that CUDA only targets NVIDIA GPUs while OpenCL is heterogeneous
and can be ran on various GPUs, CPUs and other processors.

1CTM was introduced by ATI. AMD announced the acquisition of ATI Technologies on July 2007.
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In the following we briefly describe the CUDA programming model and then give
more details, in a separate section, about the execution and memory models of OpenCL.
According to the NVIDIA literature [18], each multi-processor within a GPU contains
multiple streaming processors or CUDA cores, that share the instruction stream, each of
which has a pipelined arithmetic logic unit (ALU) and a floating point unit (FPU). The
code that gets executed on the GPU is also called a kernel. This kernel is launched on a
grid of thread blocks. The threads operate in warps, i.e. a collection of 32 threads that
execute simultaneously the same instructions. The warps inside the same block can be
synchronized, but no synchronization is possible between blocks. The different blocks
are placed on the different multi-processors by a scheduler that deactivates stalled warps
waiting for input to or output from memory and launches thread warps that are ready
for execution to hide latency. The same physical multi-processor can execute several
blocks, and the order in which blocks are assigned to multi-processors is undefined. The
memory available on the graphics card is shared between threads and thread blocks.
Each thread has its own registers, whose access is instantaneous (0 cycle) but whose
total number is limited. Each thread block can use a small amount of low-latency on-
chip shared memory, which can be read from and written to by all the threads of the
same block. This is an efficient way for threads within one block to exchange data.
Read/write accesses to it are always very fast (4 cycles), however the cost of some access
patterns is higher than others.

3.2.1.2 The OpenCL programming model

OpenCL is an industry standard used for task-parallel and data-parallel heterogeneous
computing on a variety of modern platforms such as multi-core CPUs, GPUs, FPGAs,
the Cell processor and other processor designs. OpenCL provides a software abstraction
in the form of a compute model and a memory model that aim at characterizing the
most common architectures of mainstream HPC platforms. Besides, OpenCL defines a
set of core functionalities that is supported by all devices, as well as optional function-
alities that may be implemented using an extension mechanism that allows vendors to
expose unique hardware features and experimental programming interfaces. In practice,
OpenCL offers a broad set of programming APIs and compilers to leverage heteroge-
neous compute facilities by exposing their underlying architectures to the programmers.
Although OpenCL cannot mask significant differences in hardware architectures, it does
guarantee portability. This makes it much easier for developers to begin with a correctly
functioning OpenCL program tuned for one architecture, and adapt it to other architec-
tures. It is to be noted that although OpenCL ensures the code portability, it does not
guarantee the portability of the applications performance due to the rapid evolution of
HPC architectures.

The figure 3.14 illustrates the OpenCL compute and memory models in details. The
OpenCL programming model abstracts CPUs, GPUs, and other accelerators as device.
OpenCL devices are usually driven by a commodity CPU refered to as a host. Each
device comprises general compute units (CUs), each of which has multiple processing
elements (PEs). The processing elements of the same CU use SIMD execution of scalar
or vector instructions. Every instance of an OpenCL kernel (a function that executes on
OpenCL devices), called work-item, executes on a PE, simultaneously with other work-
items on the other PEs of the same device, and operates on an independent dataset.
Work-items are further grouped into workgroups. Each workgroup executes on the
same compute unit by groups of work-items. On AMD hardware, those groups are
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Figure 3.14: Illustration of the OpenCL compute and memory models.

called wavefronts and each has 64 work-items. Those in NVIDIA GPUs are the warps
as defined by the CUDA programming model.
OpenCL defines four types of memory that devices may incorporate: a large high-latency
global memory, a small low-latency read-only constant memory, a shared local memory
accessible from multiple work-items within the same workgroup, and a private memory
which is usually the register file accessible within each work-item. Local memory may be
implemented using either high-latency global memory, or may be implemented with fast
on-chip memory. Applications can query device attributes to determine the properties
of the available compute units and memory systems, using them accordingly.

Before an application can compile OpenCL programs, allocate device memory, or
launch kernels, it must first load an OpenCL platform (vendor dependant) and then
create a context associated with one or more devices. The devices are picked by the
programmer with respect to the application needs. Memory allocations are associated
with a context rather than a specific device. Once a context is created, OpenCL programs
can be compiled at runtime by passing the source code to OpenCL compilation functions
as arrays of strings. After an OpenCL program is compiled, kernel objects can be
extracted from the program. The kernel objects can then be launched on devices within
the OpenCL context by enqueuing them into OpenCL command queues associated with
the target device. OpenCL host-device memory transfers operations are also submitted
to the device through the command queues. To illustrate the difference between a serial
code and an OpenCL code, we present in figure 3.15 two implementations (in serial and
in OpenCL) of the SAXPY algorithm. Note that the loop in the serial code is replaced
by an SPMD code in OpenCL. For more information about OpenCL we refer the reader
to [19] and to [29]. Note that for hardware accelerators, on accelerator clusters the
mentioned programming models are usually used in conjunction with MPI in order to
implement large scale accelerated applications.
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void saxpy(int n, float a, float *x, float *y){

for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

}

__kernel void saxpy(float a, __global float *x, __global float *y){

int i = get_global_id(0);

y[i] = a*x[i] + y[i];

}

Figure 3.15: A code snippet of the SAXPY algorithm implemented in serial (up) and
in OpenCL (down). Only the OpenCL kernel is considered and the host code is not

presented.

3.2.2 Directive-based compilers and language extensions

GPUs based systems have emerged as promising alternatives for high performance com-
puting thanks to the high compute capability and high internal memory bandwidth
of GPUs. However, their programming complexity poses significant challenges for de-
velopers. Several directive-based GPU programming models have been proposed such
as OpenMPC [138], hiCUDA [108], PGI Accelerator [97], HMPP [83], OpenACC [13]
and OpenMP 4.0 [14]. to provide a better productivity than existing ones. General
directive-based programming systems usually consist of directives, library routines, and
designated compilers. A set of directives are used to augment information available to
the compilers, such as on mapping loops onto GPU and data sharing rules. Those di-
rectives are to be inserted into a piece of C, C++ or Fortran source code in order to
automatically generate corresponding host and device codes (CUDA, OpenCL, assembly
code ...).

Directive-based models provide different levels of abstraction, and require much less
programming efforts. The most important advantage of using directive-based GPU pro-
gramming models is that they provide very high-level abstraction on GPU programming,
since the compiler hides most of the complex details specific to the underlying GPU ar-
chitectures which helps programmers focus on the productivity of their programs and
easily maintain legacy codes. However, a lower level of abstraction is not always counter
productive, since it may allow more control over various optimizations and the features
specific to the underlying GPUs to achieve optimal performance. An extension to HMPP
[83], called HMPPcg, has been proposed in order to give more control to the user at
a lower level of abstraction. It is to be noted that despite attractive, merly inserting
directives into real world scientific applications often do not outperform the performance
provided by dedicated programming models such as CUDA and OpenCL [205].

3.3 Power consumption in HPC and the power wall

Until recently, most HPC facilities have focused more on the search for performance
rather than on power efficiency. With the cost of power increasing throughout the years
(see figure 3.16), it is becoming crucial to also evaluate HPC systems on power con-
sumption grounds. For that to do practical methods have to be established to measure
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Figure 3.16: Spending of power as a ratio to server spending. Data provided by IDC
(International Data Corporation) based on the average configuration of data-centers of

6000 nodes. From [68].

power consumptions of such systems. Today, one of main prerequisites to hit the exas-
cale computing era is to tear down the “power wall”. In this section we briefly underline
the physical limits that have historically impacted the design of HPC facilities.

We have mentioned that single thread performance scaling was given by Moore’s
law. In conjunction with Moore’s law, Dennard scaling, i.e. a scaling law named in 1974
after Robert H. Dennard, states that transistors power use is proportional to the die
area as the transistors get smaller [161]. The relationship between processors frequency
and power is emphasized by Martin [161] and defined as P = fCV 2+V Ileakage, where P
is the power in Watts, f the processor frequency, C the total capacitance, V the supply
voltage and Ileakage the leakage current. V Ileakage is the static power dissipation and
was usually neglected for device structures larger than 65nm [161] when evaluating the
power consumption. In practice, this is no longer sustained since 2005 because of the
exponential growth of the leakage current [161] which can’t be neglected anymore as the
vendors moved to sockets of size less than 40nm and below. Semiconductor processes are
about to reach a physical limit, in terms of overheating, of what silicon can withstand
with current cooling techniques, consequently the processors frequencies are stalled (see
figure 3.2). Processors technology can no longer be counted upon for advances in terms
of frequency, instead the focus must shift to energy efficiency. This limitation is relatively
alleviated by the evolution the multi-core CPUs throughout the late years, as CPU cores
are lowered in terms of frequency and are more an more multiplied on the silicon dies.

Today, processor designers are facing a new challenge when trying to design future
exascale systems that are required to deliver 50 GFlop/s/W [212]. In order to reach
this target, energy efficiency must improve by a factor of over 20× given that current
multi-core CPUs offer between 1 to 2 GFlop/s/W (current GPUs offer between 3 to 5
GFlop/s/W ). Villa et al. [212] predicted that processor technology improvement alone
will only provide approximately 4.3× of the required improvement in energy efficiency,
that an additional 1.9× factor can be extracted from circuit improvements, enabling
operation at lower V , and that a further 2.5× contribution to energy efficiency must
come from the design of system architectures (memory, disks, interconnect etc.).
Although power hungry (between 230 and 300 W of maximum power consumption as
opposed to approximately 150 W TDP2 for high-end multi-core CPUs) modern GPUs,
with their low frequency and high density in terms of processing cores (more compute
powerful than CPUs), are proved to be more power efficient than CPUs for a broad
range of applications. Several researchers have conducted comparisons between the

2Thermal Design Power
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power consumption of GPUs with that of CPUs and other processors such as Cell or
FPGA [53, 92, 114, 170, 211, 224]. For massively parallel applications GPUs have been
found to be more energy efficient than CPUs. Besides, APUs, with a TDP ranging
between 60 W and 95 W (for the Desktop and Server lineups) and a single precision
peak performance hitting the 1 Tflop/s, can be an attractive solution to be considered
to implement energy efficient scientific applications as its estimated theoretical power
efficiency is approximatively 10 GFlop/s/W . Note that these expectations are condi-
tional and depend on how far are the sustained power efficiencies (measured) from the
theoretical numbers.
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In this chapter a selection of seismic exploration related applications is given. We fo-
cus on the optimization carried on those applications by means of High Performance
Computing. We start in section 4.1, with a building block of wave equation solvers:
stencil computations. Then, we continue with a summary of accelerated implementa-
tions of the Reverse Time Migration, in section 4.2. These implementations are driven
by the introduction of more physics in the wave equation solver, by advances in High
Performance Computing and by a series of technical challenges that characterize the
RTM workflow, i.e. a high computation cost, a tremendous memory requirement and
extensive I/O operations. We close the chapter in section 4.3 with a quick presentation
of some state-of-the-art applications whose workflow is similar to that of the RTM or
which are based on wave equation like solvers.

4.1 Stencil computations

Stencil computations (SC) are a building block and a common kernel to a broad range
of scientific applications. More importantly, they are at the heart of seismic modeling
and RTM applications. Although this class of computation is characterized by regular
and predictable memory access patterns, it has a low flop/byte ratio which requires
to precisely tune the data layout and optimize the memory accesses according to the
different hardware architectures. Therefore, extensive efforts have been made to optimize
SC on homogeneous and heterogeneous architectures. In this section we give an overview
of state-of-the-art implementations of SC.
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On the CPU based node level, some popular techniques are often used, including
cache oblivious [87], temporal blocking [160], SIMD vectorization and register blocking
[81], to reduce the different cache levels misses and ameliorate the performance of SC on
CPU. A multi-level SC parallelization approach is proposed in [80]. It combines inter-
node by domain decomposition, intra-chip parallelism through multithreading and data-
level parallelism by making use of SIMD vectorization. Datta et al. [73] introduce the
cache blocking and the time skewing techniques for SC optimization. The authors used
these techniques to effectively maximize cache resources by tiling in both the spatial and
temporal dimensions. In [81], the authors added to these techniques software prefetching
(by using intrinsic functions provided by compilers) to reduce the memory accesses
overhead and increase temporal locality in SC. Other researches that are focusing on
the same optimization techniques for SC can be found in [149, 164, 180, 203, 222]. To
learn more about how these techniques are practically used in SC we refer to Farjallah
[84] where a thorough description about the time skewing and cache oblivious algorithms
is given. Some works are focusing in performance modeling of SC, such as in [133, 137]
and in [201] where an ECM (Execution-Cache-Memory) performance model for SC is
presented.
On the CPU multi-node level, MPI based SC implementations were proposed. For
instance, in [54], the authors implemented SC based on a 3D domain decomposition,
using MPI, on an Intel Xeon 5355 CPU cluster composed of 128 nodes. In addition to the
optimization techniques such as the temporal blocking, cache oblivious and vectorization
that were applied locally to each MPI sub-domain, the authors relied on overlapping
the MPI communication with computation in order to achieve good strong scaling.
The authors reported that up to 32 nodes the strong scaling was linear and that the
performance decreased for 64 and 128 nodes due to the increase of the network traffic
that became very high compared to the SC computation time.

SC are also constantly adapted to accelerators and heterogeneous architectures. On
the GPU based single-node level, the natural parallelism offered by the GPU hardware
design, including the DLP while executing on the GPU SIMD arrays, and by the GPU
thread schedulers, including TLP while overlapping the executions of the wave-fronts,
is exploited. Besides, Volkov [217] showed that the ILP can be also employed, by loop
unrolling and instruction interleaving, in order to increase the occupancy rather than
by filling the GPU cores with more and more threads. Furthermore, Micikevicius [156]
introduced, a short time after the emergence of the CUDA programming model, an ad-
vanced parallelization of the 3D finite difference computation (based on SC) on NVIDIA
GPUs. He made use of a 2D grid of threads that traverses the 3D data volume slice-
by-slice, relying on the GPU shared memory and on the data access redundancy (that
characterizes SC) to maximize the throughput. He demonstrated a performance of 2.400
millions of output points per second on a single Tesla 10-series GPU (out of a maximum
theoretical throughput of 3.000 millions). He also introduced the register blocking tech-
nique: a sliding memory window is privately used by each GPU thread to reduce the
memory access penalties when traversing the slowest memory dimension. Additionally,
in [120] the authors extended Datta et al. work for GPUs by proposing a multi-level SC
parallelization framework targeting GPUs (single nodes). For that to do, the authors
introduced the out-of-core technique to allow processing domains bigger than a single
GPU memory capacity (each of their GPUs features 3 GB of GDDR5 SDRAM).
Given that SC are subject to a relatively little computation performed per grid point,
one of the primary performance challenges is efficient data movement. There are two
aspects to efficient data movement: data transfer between the host memory and device
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memory through the PCI Express bus, and onboard data transfer between the device
memory and the GPU cores. Hiding the latency of the latter is covered by the use of
the GPU shared memory and the use of register blocking as discussed above. However,
the bandwidth of the PCI Express bus is over an order of magnitude slower than the
bandwidth between the GPU memory and the GPU cores, and its latency remains a
bottleneck for SC [23]. In [147], the authors demonstrated that the PCI Express bus
memory traffic incurred up to 23% of performance loss of SC on an NVIDIA GTX 590
GPU. The impact on the performance is found even more important with the out-of-core
technique, which requires extensive memory traffic between the CPU and the GPU, as
mentioned in [121]. Therefore special emphasis needs to be given to limiting and over-
lapping PCI traffic. In SC one approach is used to limit the PCI traffic by running as
much stencil computations on the device as possible. This is referred to as the temporal
blocking method [72]. Another method that is used in SC, is the asynchronous transfers
which can be used to overlap PCI memory transfers with computation on the device
(and host) [121].
On the GPU multi-node level, a variety of studies focused on coupling GPU program-
ming models with MPI in order to leverage large scale GPU clusters for SC. Multi-GPU
implementations require dividing the subdomain of each MPI process into its interior
and boundary regions. Exchanging the boundary regions between the different GPUs
incurs memory traffic on the PCI Express bus and MPI communications between the
compute codes (usually performed by the CPU). In [150], the authors introduce Physis,
an automatic translation framework that generates and MPI+CUDA SC code based on
a used-written code. The framework automatically manages the MPI communications
and the boundary exchanges including the memory transfers through the PCI Express
bus. It also allows the programmer to overlap the PCI Express memory transfers with
the computation of the interior regions. The authors showed that the framework ensured
60% of the performance of a hand-tuned SC code on 256 GPU nodes of the TSUBAME
2.0 cluster. Similar frameworks such as PARTANS and SkelCL, a framework that is
based on the OpenCL programming model, are proposed in [147] and [43]. In [72], the
temporal blocking method is extended to the multi-GPUs implementation of SC in order
to reduce the MPI communication overhead. Furthermore, in [118] the authors propose
an SC algorithm where they overlap both the PCI Express memory traffic and the MPI
communication with computations on the GPU. They show a sustained performance of
2.4 TF lop/s and a linear strong scaling on 64 nodes of the NCSA Lincoln Tesla C1060
based cluster. A similar approach is presented in [197], where the authors used the
communication-computation overlap to achieve a single precision performance of 1.017
PFlop/s on 4000 GPU nodes of the TSUBAME 2.0 cluster.

Finally, some researches such as in [225] compare the performance of SC on cutting
edge CPU and GPU technologies (on a single node). A highly efficient parallel vector-
ized (using SSE and AVX) implementation was developed on Intel Sandy Bridge CPU
(i7-2600K) and on AMD Bulldozer (FX-8150). On the GPU most of the techniques
described above were applied on NVIDIA Tesla M2070 and GTX 480 GPUs. A compar-
ative table, between the performance of four NVIDIA GPUs and four Intel CPUs, was
presented where the authors show that the GPU implementation offers a 3× speedup
compared to the CPU implementation in single precision.

To summarize, given that SC have a low compute intensity, efforts are generally
invested to minimize the data access redundancy. On the GPU implementations the
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PCI Express bus is often identified as the bottleneck that hinders achieving good per-
formances. Techniques such as out-of-core, temporal blocking, and register blocking are
often used to optimize SC performance on GPUs.

4.2 Reverse time migration

We try throughout this section to describe the common trends followed to efficiently
implement RTM algorithms in a HPC context. First, we underline the evolution of the
complexity of RTM algorithms during the last decades. Then, we detail the different
strategies used to circumvent well known bottlenecks such as the massive memory de-
mand. Finally, we enumerate a selection of the state-of-the-art RTM implementations
and related works on mainstream CPUs and also on hardware accelerators.

4.2.1 Evolution of RTM algorithms

Historically, the evolution of seismic imaging algorithms was dictated by the advances
of the hardware design and compute capabilities. Indeed, the development of high
performance facilities and storage capacities allow to design and implement more and
more advanced RTM algorithms.

• More physics is introduced into the numerical solvers as complex media such as
anisotropic and elastic are considered. This can drastically increase the complex-
ity of the imaging algorithms and the compute power requirements. Figure 4.1,
extracted from [48], depicts the compute resource requirements as a function of
the complexity, in terms of computation, of the imaging algorithms over the recent
years. Resource needs increase exponentially as the explored media is more subject
of geophysical complexity. The figure is also an illustration of the trends in seismic
imaging from asymptotic imaging to the visco-elastic full wave inversion (FWI),
i.e. an algorithm used for velocity estimation based on information extracted from
seismic traces.

• RTM where the simulation frequency, i.e. the seismic source frequency, ranges from
30Hz to 50Hz and above, which is considered as a high frequency, is nowadays
feasible. This produces high resolution subsurface images with neater seismic
attributes which leads to a better reservoir definition. Figure 4.2 presents three
different images obtained after running RTM with three different frequencies. It
shows the impact of the high frequencies on images resolution and the estimated
needs on compute power.

• The large compute power available today implies the evolution of the seismic data
used as input for imaging. Indeed, rich azimuth data recording methods are more
often used such as WATS (Wide Azimuth Trailed Streamers) or coil shooting for
full azimuth coverage [101]. Those extend the conventional Narrow Azimuth Towed
Streamers surveys used in the oil and gas industry and require more compute
power.
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Figure 4.1: The evolution over the last two decades of the seismic imaging algorithms
with respect to the technology and compute power advances throughout time.

4.2.2 Wave-field reconstruction methods

The high-level workflow of the Reverse Time Migration was schematized by the flowchart
presented in the figure 2.12 in section 2.2. To apply the imaging condition, RTM needs
the source wavefield and the receiver wavefield at the same time, e.g. at each time-step
from the initial time-step until the maximum recording time. Given that the source
and receiver wavefields are advanced along opposite time directions, the propagation
history (snapshots) of the source wavefield needs to be saved. This means that we need
to save these values for each time step which results in tremendous usage of memory

(a) RTM with an average fre-
quency of 18Hz, needs at
least 100 Tflops of compute

capacity

(b) RTM with a high fre-
quency of 35Hz, needs at
least 1.5 Pflops of compute

capacity

(c) RTM with a very high
frequency of 55Hz, needs at
least 10 Pflops of compute

capacity

Figure 4.2: Impact of the RTM frequency on the image resolution and on the high
performance resources requirement. Example performed on a 3D model of size 1700×

860× 600. Source Total S.A.
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space [142]. The wavefield snapshots are usually too big for the volatile memory and
for the storage capacity of the present hardware: take an example of a 3D grid model
of 1000 × 1000 × 500, the number of time-steps is usually in the order of 10000, which
means that to save the propagation snapshots we need about 20 TB of memory or
hard disk space. As a consequence, effective algorithms are adopted to reconstruct
wavefields before the imaging condition stage, in such a way that large migrations could
be performed within minimal memory configurations. Anderson et al. [31] summarize
the common trends to alleviate the memory requirements of RTM. Dussaud et al. [82]
also describe these approaches and give their computation and storage complexities.
Hongwei et al. [112] give pros and cons of each method and introduce new ones that are
hybrid combinations of the conventional methods.
In the rest of this section, we quickly review six of the different algorithms used to
reconstruct the receiver wavefield. The discussed solutions tend to find the right trade-off
between storage and computation time, while making compromises that are satisfactorily
for imaging. We do not present them in a particular order, rather we approximate the
computation complexity of each one of them, along with the storage complexity and the
impact on the final images quality.

4.2.2.1 Re-computation of the forward wavefield

At each time-step during the backward modeling, the source wavefield is re-propagated
forward from t = 0 until the current time-step is reached. Then the imaging condition
for the current time-step is computed by correlating the source and receiver wavefield.
In terms of computation, this method has a theoretical complexity of

∑N−1
t=0 (N − t) =

O(N2) [207] which is an unacceptable computational burden. No storage of the source
wavefield is needed during the forward modeling. However, since the source and receiver
wavefields are correlated at every time-step, the migrated image is at its highest quality.

4.2.2.2 Storing all the forward wavefield

The source wavefield is saved after each time-step during the forward modeling. During
the backward sweep the wavefield snapshots are loaded from memory or disk and are
correlated with the receiver wavefield values in order to produce the final image. This
approach requires prohibitive storage space and extensive I/O operations (the storage
complexity is O(N)) and thus is not appreciated in an industrial context where real
datasets are used. The computation complexity of this option is only O(N) [207] but
it requires much larger amounts of storage. Similarly to the previous algorithm, this
method ensures high quality images.

4.2.2.3 Selective wavefield storage (linear checkpointing)

During the forward modeling, the source wavefield is stored every kth time-step with
k > 1. The choice of the value of k is based on the Nyquist sampling theorem. During
the backward propagation, the needed forward value is loaded every kth time-step and
the imaging condition is performed at the same frequency. At the end of the day the
missing parts of the final image are filled by interpolation. This method is adopted
by a number of commercial RTM implementations. The computation complexity of
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Figure 4.3: The flowchart of the linear checkpointing strategy for RTM. t is the
time-step index and k is the number of time-steps that separates two successive store

operations of the source wavefield.

this method is the same as the previous one (O(N)) but offers a k−fold reduction
in memory usage (O(N)/k)[207] at the expense of image accuracy. Sun et al. [220]
give more details about this method. Given that this method is the most used in the
industrial and commercial seismic solutions, we illustrate its workflow in the flowchart
4.3.

4.2.2.4 Checkpointing

The idea behind checkpointing in RTM is based on the adjoint state method [176]. The
imaging condition is seen as an objective function whose adjoint needs to be computed
using a time-reversal method proposed by Griewank [95, 96] and ameliorated in [30, 31].
Griewank’s method has application to automatic differentiation of computer algorithms,
Symes [207] used it to advance the optimized “checkpointing” method for RTM. During
the forward modeling, some time points are set as checkpoints. During the backward
propagation the source wavefield values are reconstructed by forward modeling from the
nearest checkpoint in time. The receiver wavefield is retro-propagated as described in
the previous methods. Several source wavefield values are computed several times in
this method, but some internal buffers can be used to reduce the “re-computation ratio”
(the number of times the same wavefield value is computed). The trade off between
the number of checkpoints and the number of buffers should be carefully chosen for
the checkpointing to be optimal, as the recomputation ratio is too high if the number of
checkpoints is not enough, while the memory demand is too high if too many checkpoints
are set. The computation complexity depends on the number of the checkpoints (c) and
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on the number of the intermediate buffers (b). The storage complexity of this approach
is O(N)/c. However, it is to be noted that the high quality of images is preserved since
no interpolation is involved.

4.2.2.5 Boundaries storage

Clapp [62] suggested another approach to reconstruct the source wavefield during the
backward modeling. His approach concerns the computational grid with damping zones
(boundary conditions). Damping is required to remove the artifacts due to reflections
on the grid boundaries (see section 2.3.3.3). During the forward propagation, only the
slices that separate the damping zones from the rest of the compute grid are saved.
During the backward modeling, the source and receiver wavefields are progressed in the
same direction. The source wavefield is thus reconstructed by back-propagation after
restoring the boundary slices from memory or disk. This approach reduces significantly
the storage space needed even if it implies more computation complexity. This method
is further investigated by Dussaud et al. in [82] and by Hongwei et al. in [112].

4.2.2.6 Random boundary condition

Another approach to circumvent the I/O bottleneck of the imaging condition is the Ran-
dom Boundary Condition (RBC) introduced by Clapp [61]. RBC increases the computa-
tion complexity but suppresses the need to store the source wavefield during the forward
modeling. Clapp proposes another boundary condition that distorts the reflections in
order to minimize artifacts rather than damping the energy whenever a wavefield hits
the boundaries. During the forward modeling the source wavefield is propagated to the
maximum record time and is pseudo-randomized on the grid edges. During the back-
ward step, the source and the receiver wavefields are back-propagated simultaneously.
Fletcher et al. [85] propose a similar approach with time-varying boundary conditions.

Apart from these wavefield reconstruction methods, there are many researchers try-
ing to solve the I/O problem for RTM differently. For instance, Guan et al. propose
a multi-step RTM [98] algorithm, where the velocity model is divided into regions in
depth with respect to its geological complexity (water layer, shallow sediments etc.).
RTM generates an image for each region separately and then the final image is aggre-
gated. This multi-step approach reduce the memory requirement since the computation
and storage complexity are driven by the minimum velocity of each region.
Data compression is another solution, and can be used with all the previous methods in
order to accelerate the I/O operations. Sun et al. [220] introduce a strategy based on
a loss-less compression algorithm that reduces storage significantly at a little computa-
tional cost.

4.2.3 RTM on multi-cores and hardware accelerators

Reverse time migration is at the heart of seismic imaging algorithms, a workflow that
is known to be time consuming and to generate a tremendous amount of temporary
data during computation. Over the recent years, the HPC ecosystem has become so
diversified that it is difficult to choose the right hardware that may deliver the most
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cost-optimal and high performance seismic imaging solution.
Along with the solutions based on multi-core CPUs, a proliferation of alternatives has
emerged. Some of them leverage the hardware accelerators such as GPUs and FPGAs
(Field Programmable Gate Arrays), others exploit the emerging Intel Xeon Phi technol-
ogy to prepare the RTM for the exascale computing era [165]. Besides, many metrics
can be used to evaluate the performance of these applications, namely the floating point
performance, the cost in terms of hardware, the power consumption etc.
The parallelization of the RTM application starts at the shot level. The computation
of shots being independent, multiple shots are usually processed simultaneously and
the final image is obtained by the aggregation of the results of each one of them (in
the case of pre-stack migrations). Researches thus often focus on optimizing the work-
flow conducted in one shot. Within a single shot, if the computation holds in a single
node, then the shared memory programming models like OpenMP for example are used.
Otherwise, domain decompositions are usually applied on distributed memory machines
(often using MPI).

4.2.3.1 RTM on multi-core CPUs

The evolution of multi-core CPUs and the rise of novel technical features, such as the use
of wide SSE/AVX vectors, the use of instruction level parallelism (ILP) as well as the
hardware and software prefetchings, push researchers to constantly redesign RTM algo-
rithms. Efforts are put at the different levels of mainstream CPU clusters architecture:
at the network (inter-node) level, at the node (intra-node) level and at the core/thread
level by leveraging SIMD capabilities, i.e. vectorization.
On the single-node level, a TBB [117] based implementation of a pre-stack Reverse Time
Migration, on a 8-CPU shared memory computer, is presented in [119]. The authors
rely on the re-computation of the forward wavefield to perform the imaging condition.
Their implementation offers a speedup of 4× compared to a sequential implementation.
On the multi-node level, some CPU implementations rely on a large scale design on
distributed machines. In [213], the authors propose a distributed 3D acoustic finite
difference modeling algorithm using a 1D domain decomposition approach and imple-
mented it using the PVM message-passing library. They demonstrate parallel efficiency
up to 94% on an IBM SP-2 cluster. In [175], the authors study the same algorithm and
propose an MPI implementation where they compare the domain decomposition strate-
gies. They proved that checkerboard partitioning (3D domain decomposition) gives the
best performance and that it has the most suitable memory access pattern for such
studies. In [172], the authors introduce a counter intuitive approach to optimize a 3D
isotropic RTM code on a Blue Gene/P (BGP) supercomputer, based on over partition-
ing the computational domain. Over partitioning, which means that the global domain
is partitioned into very small sub-domains (1000 times smaller than for standard RTM),
helps storing the wavefield snapshots on the main memory of the compute nodes, sup-
pressing the need for hard disks. The high speed network (5.22 TB/s per rack) that
features BGP attenuates the overhead incurred by communications. The authors also
present optimizations including load-balancing, cache tiling and SIMD. They demon-
strate throughput of up to 40 Billions stencil updates per second per node along with
strong scalability. In [145], the authors extended the research conducted on BGP to
the next cluster generation. They advanced a multi-level parallel RTM algorithm on a
Blue Gene/Q machine that peaks at 204.8 TF lops in single precision. They achieved a
14.93× speedup over the performance previously obtained on BGP machines [171, 172].
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In [57], the authors implement the 3D seismic modeling problem and 3D RTM, using
the Fourier method to solve the wave equation and MPI to deploy the applications on
a Linux cluster. The implementations make use of all-to-all MPI non-blocking com-
munications. The authors demonstrate that a performance improvement of up to 40%
can be achieved by using non-blocking all-to-all communications and by introducing the
MPI communication-computation overlapping capability. In [178] the authors report
their experience of optimizing a seismic acoustic modeling application on the multi-core
architecture of PARAM Yuva II [15]. Their application was developed using a hybrid
OpenMP +MPI programming model. They used MPI for domain decomposition across
parallel nodes. At the node level the performance was improved using OpenMP rather
than MPI as they showed that OpenMP offered a better performance on the node level.

4.2.3.2 RTM on GPUs

In search for more performance, application developers have turned to hardware accel-
erators to implement seismic applications. Thanks to their huge compute power and
more importantly to their high memory bandwidth which is typically an order of magni-
tude higher than that of high-end CPUs, various RTM implementations on GPUs have
emerged during the last years.
For GPUs, the challenge is often to optimize the small memory space available on the
GPU devices (compared to the size of the datasets used in RTM) and to mitigate the
overhead due to data transfers through the PCI Express bus when saving wavefield
snapshots on the intra-node level, and when exchanging the boundary regions on the
inter-node level. As a matter of fact, in [166] the authors conducted strong scaling experi-
ments on a large scale GPU implementation of a 3D acoustic RTM in the TSUBAME-2.0
[210] cluster. They showed that the speedup in strong scaling was not proportional to
the number of GPUs (N) but rather is proportional to N2/3 because of the PCI Express
overhead generated by the data snapshotting. In [86] an overview of an implementation
of RTM on NVIDIA Tesla C1060 GPUs using the CUDA programming model is pre-
sented. A multi-GPU variant is also presented in order to process a set of Rich-Azimuth
data. The authors advance a 4× speedup by comparing four GPUs against eight CPU
cores. The authors also underline a computational overhead in moving data to and from
GPU devices. In [111], the authors present a proof of concept of a pre-stack RTM on
GPUs. The GPU performance is shown to be an order of magnitude higher than that
of a traditional CPU. In [142], the authors also developed a pre-stack RTM algorithm
on the NVIDIA Tesla C2050 GPU. The FDM was used to solve the wave equation and
a TTI media is considered. The authors adopted a random boundary condition in order
to circumvent the I/O bottleneck of RTM. In their approach RBC reduced the CPU-
GPU traffic via the PCI Express by almost 50% at the expense of extra computations.
Only the 2D case was studied, for the 3D case a hybrid pseudo spectral/finite difference
approach was targeted as a future work. A similar work was achived by the authors of
[130], but the wave equation was fully solved by using pseudo spectral numerical meth-
ods. In [23], the 3D acoustic seismic modeling and RTM are implemented in CUDA and
deployed on a GPU cluster (5 NVIDIA Tesla S1070). The implementation is based on
a finite difference approach on a regular mesh for both 2D and 3D cases using single
precision computations. The authors showed a 30× (resp. 10×) performance speedup
compared to a CPU cluster (10 Intel Xeon 5405 CPUs) for modeling (resp. for RTM).
This research was extended by Abedlkhalek in [22] where the author conducted strong
scaling tests of the seismic modeling (equivalent to the forward modeling, the first step
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of the RTM algorithm) on 16 NVIDIA Tesla S1070 GPUs, and showed that the MPI
communications (plus the PCI Express bus overhead generated to retrieve the boundary
regions from the GPU memory to the CPU memory) hindered the achieving of a linear
scaling. In [155], the authors accelerate a 3D finite difference wave propagation in a
heterogeneous elastic medium on 4 NVIDIA GPUs. Despite the complexity of putting
together the elastic wave equation solver, the authors demonstrated a speedup between
20× and 60× compared to a serial CPU implementation. In [162], the authors present
performance optimizations for TTI RTM algorithm on hybrid CPU+GPU (NVIDIA
M2090) based architectures and demonstrate around 4× performance gain over CPU
only runs. The imaging condition is handled by the CPU while the wave propagation
is performed by the GPU. Similarly, in [168] the authors present a hybrid CPU+GPU
approach to implement the Kirchoff migration algorithm. The authors used a cluster
of 64 nodes each of which has an NVIDIA C1060 GPU and a Xeon 5410 CPU and
demonstrated a speedup of 20× compared to a CPU only version. Other related works
can also be found in [219].
Finally, some researches are focusing on leveraging GPUs using high level programming
models such as directive based ones (OpenACC, etc.). Sayan et al. [93] share their
experience about high-level directive based GPU programming models in a seismic con-
text. They implement building blocks of the RTM algorithm in OpenACC. The authors
conclusions suggest that the OpenACC implementation offers a 1.7× speedup compared
to a highly optimized OpenMP CPU code. However, it is 1.5× slower than a hand-tuned
CUDA code. Besides, in a study [40], conducted by CAPS Entreprise jointly with Total,
Bihan et al. made use of the HMPP [83] workbench to accelerate an MPI+Fortran
implementation of RTM on an NVIDIA Tesla S1070 server with four GPUs and two
bi-socket Intel Hapertown CPUs (each socket has four cores). HMPP was only used to
manage the memory transfers between the CPUs and GPUs, namely to partially overlap
the PCI Express memory traffic with GPU computation. The algorithm core functions
were hand-written and hand-tuned in CUDA an plugged into the HMPP workbench.
The authors advanced that one GPU is 3.3× faster than eight CPU cores, and that the
performance of the four GPUs is 2.1× higher than the sixteen CPU cores. They also
reported that the accelerated implementation on GPUs scales less efficiently than that
on the CPU cores, due to the extra cost of the communications between the GPUs that
need to go through the hosts CPUs.

4.2.3.3 RTM on other accelerators

GPUs are not the only accelerators that are used in an exploration geophysics context.
Researchers rely also on co-processors such as the Intel Knight Corner (Xeon Phi). In
[84], Farjallah conducted a co-design study applied to the Reverse Time Migration in
isotropic and anisotropic media. A cluster of Intel Knight Corners (Stampede hosted in
TACC) was used to adapt the RTM algorithm to the many-core architecture and evaluate
its parformance. The author used a hybrid MPI+OpenMP programming model. Other
works focused on porting the RTM workflow on Xeon Phi namely in [34] and in [178].

FPGAs (e.g., Xilinx [20], Altera [17], etc.) are different accelerators based on a
reconfigrable hardware [109]. Given that the FPGA substrate can be configured to
perform highly parallel tasks with a high degree of customization in a very low power
envelope, FPGAs have become an attractive option for seismic applications. However,
programming with FPGAs can be challenging and thus high level programming models
(that support FPGAs) are needed to exploit this hardware design. We can refer to
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a selection of works that focused on optimizing RTM and other seismic applications
on FPGAs, namely [51, 56, 79, 88, 185, 195]. The common trends when it comes to
implementing seismic applications on FPGA, is to use software pipelining to increase
the throughput and fixed-point data representation to reduce the memory usage. Many
authors reported a speedup between 20× and 30× of FDTD (Finite Difference Time
Domain) applications, compared to a 3 GHz commodity CPU.

Another hardware design that attracted the O&G industry is the Cell/B.E. archi-
tecture, proposed by IBM, Sony and Toshiba [124]. For example, in [32] the authors
present a mapping of the computational kernel of RTM on the IBM Cell/B.E. processor.
Their implementation achieved close-to-optimal performance, and the kernel (proved to
be memory-bound) achieves a 98% utilization of the peak memory bandwidth. The Cel-
l/B.E. implementation outperforms a traditional processor (PowerPC 970MP) in terms
of performance (with an 8× speedup) and in terms of energy efficiency (with a 5.3×
increase in the GFlop/s/W delivered).

In a different fashion, some researchers conducted more general studies to show how
a key application in the O&G industry can be effectively mapped to different accelera-
tor architectures, and to analyze performance and drawbacks. Generally, comparisons in
terms of architectural design, power consumption and programmability are presented. In
[33], the authors give a comparative study of different implementations of a 3D acoustic
RTM over homogeneous processors (multi-core platforms) and over a selection of hard-
ware accelerators: a Cell/B.E. processor, a GPU and an FPGA. They demonstrate that
the accelerators outperform traditional multi-cores by one order of magnitude. However
to achieve this a great development effort is required, mainly because the programming
environments are too specialized. The authors recommend the need for automatic tools
and high level compilers for accelerators in order to allow a more feasible scientific pro-
gramming on these platforms. Clapp et al. [63] identify four potential implementation
bottlenecks that characterize the second-order acoustic RTM algorithm.
First, they claim that optimizations and algorithmic techniques are concentrated on re-
ducing the total number of operations and figuring out how to minimize the need to
read from or to write to disks. They enumerate optimization techniques used for their
RTM CPU implementation such as cache-oblivious approaches and seismic properties
compression.
Then, they give some implementation details on streaming computing devices such as
GPUs and FPGAs. According to the authors GPUs are suitable for small problems since
their implementation suffers from multiple limitations. The amount of memory, through-
out the different levels of the GPU memory hierarchy, is limited which constraints the
size of the stencils and makes techniques such as data compression hard to put together.
Large domains have to be spread through multi GPUs creating a bottleneck either over
PCI, especially when storing the wavefield snapshots, or the network. Complex boundary
conditions are less practical because of the SIMD programming model. The correlation
phase (imaging condition) is also constrained by the memory bandwidth.
Finally, they present optimizations techniques on FPGAs such as data streaming on
each direction through the 3D volume, multiple steps streaming, hardware support for
reconfigurable number format and bit width where they demonstrate that 24-bit fixed
point numbers achieve acceptable accuracy for RTM. But they underline that FPGA
programming is complicated even although in recent years various efforts has been put
to develop high-level compilers for FPGA programming.
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4.3 Close to seismics workflows

Finite-difference techniques in the time domain (FDTD) applies also to another vari-
ety of numerical simulations in different scientific fields, such as computational fluid
dynamics, astrophysics, electromagnetics and earth gravity. For instance, in [69] the
authors propose a finite difference GPU implementation to simulate the calculation of
the forward modeling of gravitational fields. Maxwell’s equation is solved in [126] us-
ing finite difference approximation. Maxwell’s equation solvers are used to solve the
transient electromagnetic problems that provide valuable information about the mul-
tidimensional conductivity of the subsurface [67]. These methods are also used for oil
discoveries. Navier-Stokes equations [52] are also solved by finite difference and is exten-
sively used in computational fluid dynamics. In [107] the authors use a finite difference
scheme to perform a room acoustic simulation, implemented on an NVIDIA Tesla K20
GPU. Most of these implementations may benefit from the researches conducted on
optimizing the RTM workflow, and similarly these works and many others usually use
the same physics or similar solver to those used by the seismic applications and by the
RTM workflow particularly. Their conclusions, optimization techniques and performance
studies on GPUs are helpful to our study.
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We presented in chapter 4 a selection of the state-of-the-art seismic applications and in
chapter 3 an overview of the HPC facilities that are often leveraged to accelerate such
applications and enhance their performance. In this chapter, we specify the context of
this thesis within the HPC ecosystem applied to seismic and geophysics and present the
contributions. Lastly, we give a technical description of the surveyed hardware and the
numerical configuration of the seismic material used in this thesis.

5.1 Position of the study

Processing a seismic survey of few tens of squared kilometers generates tens of terabytes
of temporary seismic data in order to build the seismic traces, and requires days of
computer processing on mainstream CPU clusters. Improving the performance of seis-
mic applications, RTM in particular, is synonymous to reducing the production cost
and to adding more physics to the algorithm, therefore accelerating the RTM algorithm
is a research topic that continuously attracts the HPC community and the industry.
Researchers closely follow the HPC trends, survey the latest developments in terms of
hardware design and programming models.
During the last decades, solutions for seismic based on hardware accelerators have
emerged. One can find state-of-the-art RTM implementations that leverage GPUs, FP-
GAs, Cell processors and many others. Given the massively parallel nature of the RTM
algorithm the GPU based solutions dominate the arena. With GPU platforms, the seis-
mic surveys can be processed in a matter of hours. However, introducing such a “fancy”
hardware design into the scientific community doesn’t come without cost.
Indeed, RTM implementations have been adapted to GPU programming models, such
as CUDA, which requires important programming and software maintenance efforts.
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Besides, GPUs have a limited size dedicated memory with respect to the memory re-
quirements of the RTM and the seismic applications. To the best of our knowledge the
largest amount of memory that features a single GPU is 12 GB (NVIDIA Tesla K40)
at the time of writing, whereas it is customary that a HPC compute node comprises
up to 64 GB of RAM memory which is more than 5× bigger than the maximum GPU
memory. Consequently, scientists have to rely on techniques such as the out-of-core al-
gorithms, or on using more and more GPU nodes in order to allow the RTM application
to process big domains (tens of Terabytes) which often decreases the efficiency of RTM
GPU implementations.
Moreover, albeit energy efficient as one can notice that the first ranked system in the
Green 500 list of November 2014 relies on AMD FirePro S9150 GPUs, GPUs often draw
about 3× higher power compared to high-end CPUs, when used for extensive compu-
tations. We recall that today, a GPU consumes between 230 W and 300 W (maximum
power consumption) and needs to be driven by a CPU which itself usually consumes
about 100 W TDP (or even more). We can then tell that the computing elements of a
system that contains a high-end GPU draws about 400 W, which leads to the conclusion
that GPU based systems are power hungry.
Furthermore, GPU implementations of RTM, as much as for the rest of seismic appli-
cations, require a specific memory management that involves memory transfers through
the PCI Express bus and duplicating the memory arrays used by the RTM algorithm
in the GPU memory. It had been shown that the PCI Express memory traffic can be,
depending on the number of compute nodes and on the data snapshotting frequency, a
bottleneck to the stencil computations and also to the large scale RTM GPU implemen-
tations [23, 63, 147]. Although numerous software solutions such as temporal blocking,
overlapping the PCI Express memory traffic with computation, out-of-core etc. are
proposed to address this issue, they require extensive programming efforts.

Very recently, the APU technology; a combination of a CPU and an integrated
GPU proposed by AMD, has replaced the PCI Express bus by a faster interconnect
between the CPU and the GPU, allowing the latter to access the system memory. The
APU features a unified memory space that can be addressable by the CPU cores and by
the integrated GPU cores which allows to support applications with extensive memory
requirements, such as the RTM, to exploit the entire system memory available for com-
putations. Besides, the chip is also considered as a low power accelerator since APUs
only draw between 60 W TDP and 95 W TDP. On the one hand, this is mainly due
to the low frequencies of integrated GPUs (∼ 700 MHz in average) compared to those
of discrete GPUs (∼ 1000 MHz), and on the other hand to the fact that the CPUs
of APUs are chipped with a minimal configuration and with a small power envelope
compared to high-end CPUs.
In addition, with its new memory model, the APU can be considered as an attractive
hardware solution to the PCI Express bottleneck. However, APUs are almost an order
of magnitude less compute powerful and have a lower memory bandwidth than discrete
GPUs.

In this thesis we therefore study the feasibility and the interest of AMD APUs in a
geophysics exploration context, with a special emphasis on the RTM application, from
single precision performance, power efficiency and programming model perspectives.
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5.2 Contributions

In this section, we briefly describe the contributions of this thesis as they are detailed
in the next chapters of this document.

In chapter 6, we evaluate the APU in terms of architecture and memory model by
means of a set of memory and applicative benchmarks. We have mentionned that with
the APU, AMD has introduced a new memory model within the family of the hardware
accelerators that allows the CPU and the integrated GPU to share data. We focus, in
section 6.1, on demystifying this memory model and on studying how it evolves through
the APU generations. We also study how exactly the memory objects can be exposed
simultaneously to the CPU cores and to the GPU cores, especially for the early gen-
erations of APU where memory operations are subject to many limitations (limited in
size, only a very small partition being shared between CPU and GPU). For that to do,
we introduce different data placement strategies, with which we evaluate the memory
bandwidth of the different memory locations of the APU: namely the GPU memory, the
host-visible device memory and the device-visible host memory. We investigate when
and how the Garlic and Onion buses are used to access memory and how do they affect
applications performance on APUs.
Given that the APUs are less compute powerful and less memory efficient than discrete
GPUs, we aim to ensure that the APU remains a competitive solution for high perfor-
mance computing. To this purpose, we implement, in section 6.2, two highly optimized
applicative benchmarks in OpenCL: a matrix multiply kernel and a 3D finite differ-
ence stencil kernel. The matrix multiply kernel is a compute bound application that
we mainly use to benchmark the compute capabilities of the APU (as a matter of fact
we only use the integrated GPU of the APU). The finite difference kernel is a memory
bound kernel whose performance on the APU is mainly driven by the choice of the APU
memory locations where data is stored. The choice of the finite difference stencil kernel
is also motivated by the fact that it consists a building block of the seismic applications
that we survey in the scope of this work. For both the applicative benchmarks, we
adapt their implementations to high-end CPUs, to the successive AMD discrete GPUs
and AMD APUs, that rely on different micro-architectures with different performance
guidelines, and evaluate their performance accordingly. Being more compute powerful
than high-end CPUs, we expect the APU to outperform the CPUs for both the matrix
multiply and the finite difference stencil kernels. We evaluate the interest of the new
memory model of the APU, as we consider in our study the memory transfers overhead
incurred by copying the matrices back and forth between the main memory and the GPU
memory (in the case of the matrix multiply kernel) and by the data snaphotting (in the
case of the finite difference stencil kernel). In the discrete GPU implementations, this
overhead is caused by the data traffic that goes through the PCI Express bus, however
the overhead might be mitigated or even non-existent (if zero-copy memory objects are
used) in the APU implementations. Therefore, in the case of the finite difference stencil
OpenCL kernel, we focus on the impact of the data snaphotting on the sustained per-
formance and underline how and under what conditions the APU can eventually help
alleviate the PCI Express overhead reported in the discrete GPU implementations of
such applications. We conduct a comparative study, based on the single precision per-
formance, between the performance of the two benchmarks on a high-end AMD CPU
(AMD Phenom TM II x6 1055t Processor), on two AMD GPU families (Cayman and
Tahiti), and on three AMD APU generations (Llano, Trinity and Kaveri). We also show
the impact of the data placement strategies on the performance of the matrix multiply
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and the finite difference stencil kernels.
Besides, given the low power feature of the APU and the importance of the power wall
in the HPC community, we also study, in section 6.3, the power efficiency of the two
applicative benchmarks on the latest, at the time of writing, APU generation (Kaveri)
and on the latest discrete GPU generation (Tahiti), by comparing their power efficiencies
against that of the CPU.
Moreover, the theoretical performance of the integrated GPU of an APU represents the
main (more than 80%) compute power of the chip. However, the lasting 20%, provided
by the CPU cores, can be used for useful computations or tasks. We investigate, in
section 6.4, the potential of the hybrid utilization of the APU by proposing a variant of
the finite difference OpenCL kernel implementation that uses both the integrated GPU
and the CPU for stencil computations. We propose a general hybrid strategy that can
be used to spare stencil-based workloads between the CPU cores and the GPU cores
within an APU. In addition we present two possible deployments of this strategy. The
first one is task parallel oriented, where diverging control flows are routed to CPU cores
as they are less expensive on CPUs than on GPUs (the execution of diverging wave-
fronts or warps are serialized on GPUs). The second is data parallel oriented, where
the computational burden is spread over the GPU and the CPU by dividing the domain
with respect to the ratio of the theoretical performance of the integrated GPU to that
of the CPU.
Furthermore, we try to define which programming model is more suitable, in terms of
programming complexity and performance portability, for the APUs and for the discrete
GPUs. We particularly focus, in section 6.5 on comparing OpenACC against OpenCL
in terms of performance and ease of programmability. For this comparison we use,
other than the OpenCL implementation, three OpenACC implementations of the finite
difference stencil algorithm, with gradual complexities. The first implementation is a
straightforward OpenACC version where we use exclusively OpenACC directives to ac-
celerate the stencil computations workload. In the second one, we use the HMMPPcg
extension in conjunction with the OpenACC directives in order to have more options in
terms of GPU optimizations. In the final version, not only we use both OpenACC and
HMMPPcg, but also we manually modify the initial code to introduce more optimiza-
tions that cannot be realized using the OpenACC standard, such as increasing the ILP
and using the GPU local memory.

Based on the conclusions of chapter 6, we study, in chapter 7, the performance,
power efficiency and the programmability of two seismic applications, namely the seis-
mic modeling and the RTM, on the node level. We present the seismic modeling as a
first step of the RTM algorithm and thus we focus only on the main computation, that
is the wave equation solver which is based on 3D finite difference stencil computations.
Then, we implement the RTM using the linear checkpointing method, described in sec-
tion 4.2.2.3. This method is the most used in the industrial and commercial seismic
solutions. Besides we think that it represents an acceptable trade-off between the com-
putation and storage complexities. As opposed to the seismic modeling, we take into
consideration in the study of RTM algorithm the extensive need for I/O operations,
such as saving the source wavefield and reading the receiver wavefield, that are used
for data snapshotting. Those require memory transfers through the PCI Express bus
in the discrete GPU implementation. Therefore, we assess their impact on the RTM
performance.
Furthermore, we compare the performance and the power efficiency of the seismic mod-
eling and the RTM applications on a compute node based on a Kaveri APU against
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those of a compute node built on top of an AMD Phenom TM II x6 1055t Processor
and those on a Tahiti discrete GPU based compute node.

Finally, in chapter 8 we extend our study of the seismic modeling and RTM ap-
plications to the large scale implementations. We implement the two applications on a
high-end CPU cluster, on a discrete GPU cluster and on an APU cluster. The specifica-
tions of these clusters are detailed in section 5.3.1. For the CPU cluster, we modify a flat1

Fortran MPI implementation that is used, in production by the Total Advanced Com-
puting Research Group, in order to meet our needs. Then, we propose an OpenCL+MPI
implementation for the APU and discrete GPU clusters. For the APU cluster we con-
sider studying the impact of using the zero-copy memory objects on the performance
and on the scaling of the seismic applications. We also highlight the relevance of zero-
copy memory objects to the RTM algorithm, since they help address the total memory
available on a compute node and expose it to the integrated GPU cores, which reduces
the number of nodes needed to process one seismic shot profile.
We enumerate the MPI communications related issues, such as load balancing and MPI
synchronization problems, that arise in the context of the seismic applications. We rely
on an explicit mechanism, based on OpenMP, that allows overlapping the MPI com-
munications with computations and show its impact on the performance of the seismic
modeling on the CPU cluster and more importantly on the APU and GPU clusters,
where the CPUs are idle while the GPU cores are handling the computations. Filling
the CPUs with useful tasks (MPI communications) concurrently with the GPU com-
putations can enhance the performance of the seismic applications on the hardware
accelerators based clusters.
We also introduce the asynchronous I/O operations into the RTM algorithm and illus-
trate its impact on the performance of the application on the surveyed hardware. In
the GPU and APU implementations, we emphasize how the asynchronous I/O can be
delegated to the CPU while the GPU is updating the next time iteration, and on how
it may improve the performance on the APU and GPU clusters.
Finally, in order to evaluate the performance of the seismic modeling and RTM, we con-
sider the strong scaling and the weak scaling scenarios. We also conduct a comparaison,
based on the strong scaling performance numbers, of the three clusters with respect
to three metrics: the first metric is performance where we compare the performance
numbers on the same number of nodes on the CPU, APU and GPU clusters; the second
is power efficiency where we choose the number of nodes that approximately draw the
same amount of TDP power on each cluster (we did not have the appropriate tools to
accurately measure the power consumption of each cluster), and the third one is the
“production efficiency” where we compare the performance multiplied by the total num-
ber of shots that a cluster, with a given number of nodes, can process.
Throughout this chapter, we investigate whether the RTM implementation on the APU
cluster can be a solution that addresses the memory limitation, the high power consump-
tion and the PCI Express issue that characterizes the discrete GPU implementation of
the RTM.

5.3 Hardware and seismic material configurations

In this section we present the specification of the surveyed hardware in the scope of
this work, as well as the numerical configuration of the seismic materials used in our

1MPI is used even for the cores within the same socket rather than OpenMP.
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Owner Total S.A

Name PANGEA

Location Pau, France

Vendor SGI

Number of nodes 6900

Processors/node 2×Intel Xeon CPU E5-2670 8C 2.6 GHz 2-way SMT

Peak performance
-Per node: 340.78 GFlop/s
-Total: 2296.32 TFlop/s

Memory/node 64 GB

Interconnect InfiniBand FDR

Local storage/node 500 GB

File system Lustre 3.0

Software
Linux OS, Intel compiler version 14.0
Intel MPI version 4.3, LSF

Table 5.1: The CPU cluster hardware specifications.

Owner Total S.A

Name DIP

Location Houston, USA

Vendor Cray

Number of nodes 80

Processors/node
1×NVIDIA Tesla K40s GPU 745 MHz PCI Express gen 3
1×Intel Xeon CPU E5-2680 v2 10C 2.8 GHz 2-way SMT

Peak performance
-Per node: 4291 GFlop/s (GPU) + 224 GFlop/s (CPU)
-Total: 352.7 TFlop/s

Memory/node 32 GB + 12 GB GDDR5

Interconnect InfiniBand DDR

Local storage/node 500 GB

File system Lustre 2.0

Software
Linux OS, Intel compiler version 14.0
Cray MPT version 6.3.1, Slurm, OpenCL 1.1

Table 5.2: The GPU cluster hardware specifications.

benchmarks and performance evaluations.

5.3.1 The hardware configuration

In this section we summarize the specifications of the hardware used to conduct all the
performance studies in this work. The hardware include a high-end CPU cluster, an
APU cluster and a discrete GPU cluster.
The clusters are mainly used to generate the performance results of the multi-node
implementations of the seismic applications presented in chapter 8. Note that the spec-
ifications of the hardware used in chapters 6 and 7 are introduced in chapter 3. The
table 5.1 presents the specifications of the CPU cluster used for the CPU implementa-
tions of the seismic applications. Table 5.2 illustrates the specifications of the discrete
GPU cluster used for the deployment of the GPU implementations of the seismic appli-
cations. Finally, the table 5.3 summarizes a description of the technical characteristics
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Owner Total S.A

Name RDHPC

Location Houston, USA

Vendor Pinguin Computing

Number of nodes 16

Processors/node 1×AMD A10-7850K Radeon R7 4C+8G APU

Peak performance
-Per node: 737.28 GFlop/s (GPU) + 118.4 GFlop/s (CPU)
-Total: 13.37 TFlop/s

Memory/node 32 GB

Interconnect InfiniBand DDR

Local storage/node Diskless

File system Lustre 2.0

Software
Linux OS, Intel compiler version 14.0
Intel MPI version 4.3, Slurm, OpenCL 1.2

Table 5.3: The APU cluster hardware specifications.

of the APU cluster used in this work to evaluate the AMD APUs.

5.3.2 The numerical configurations of the seismic materials

In this section we present the numerical configurations of the seismic materials that are
used to drive the simulation of the wave propagation or as input data in the seismic
applications workflows.

5.3.2.1 The seismic source

We have mentioned in section 2.3.1 that the wave equation (2.27) requires a second term,
i.e. a function s(t) over the time t, which simulates a seismic source that periodically
injects vibrations on the subsurface. In this study, we chose to add the Ricker wavelet
to the wave equation (2.27) as a second term. The Ricker wavelet is a variant of the
second derivative of the Gaussian function with respect to time. The analytic expression
of the amplitude A of the wavelet we use is A = −(1 − 2π2f2t2)e−π2f2t2 , with f the
peak frequency and t the time index. In figure 5.1 we depict the evolution of the seismic
source function over a 500 time-step interval. The figure is accompanied with a summary
of the numerical parameters of the seismic source function.

5.3.2.2 The velocity model and the compute grids

In the scope of this work we use the synthetic velocity model 3D SEG/EAGE salt
model. It is used, throughout this document, to simulate the wave propagation in an
isotropic medium with a constant density. Figure 5.2 is a graphic representation of this
model which we refer to as V in the rest of the document for the sake of simplicity.
Note that we use the SEP format [200] and that we use the same grid orientation as
conventionally used in seismic acquisition geometries [45]. The velocity model is used
as the representation of the earth reflectivity in the process of seismic modeling and of
seismic migration as input data for the wave equation solver that we are considering in
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parameter value description

type Ricker the name of the source function used in this work

frequency 20 Hz the frequency of the seismic perturbation

amplitude 1 the maximum amplitude of the source function

Figure 5.1: The configuration and the evolution with respect to time of the Ricker
wavelet used as a seismic source in this study. Only a 500 time-step interval is pre-

sented.

reference dx dy dz #grid points size #nodes

Ω8×8×8 8 m 8 m 8 m 1112× 3443× 534 7870 MB

CPU cluster: 1-64

GPU cluster: 8,16

APU cluster: 8,16

APU cluster (with zer-copy): 1-16

Table 5.4: Numerical parameters of the compute grid, used in the seismic mod-
eling application, with respect to the strong scaling scenario.

this study. This model was built by the SEG research committee, and created as part
of the Advanced Computational Technology Initiative. The figure is accompanied with
a table that summarizes the pertinent SEP parameters that describe the geometry of
V. V is approximately 8.5 km wide by 27 km long by 4 km deep. The discretization
parameters, the number of grid points and the memory size of the compute grids used for
the seismic modeling application in the multi-node strong scaling scenario are detailed
in table 5.4. To help read this table, and the others following, we summarize the used
notations and their signification in table 5.6. Those of the RTM in the strong scaling
scenario are presented in table 5.5. Note that the number of grid points, in each direction,
of a given compute grid is determined after dividing the length of the velocity model
(in meters) in the corresponding dimension by the corresponding spatial discretization
step (in meters) along the same direction. Moreover, we recall that the smaller are
the spatial discretization steps the bigger is the compute grid and, due to the CFL
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parameter value description

n1 676 number of grid points along the first dimension (CDP)

n2 676 number of grid points along the second dimension (LINE)

n3 201 number of grid points along the third dimension (DEPTH)

d1 12.5 m length of the grid step along the first dimension (CDP)

d2 40.0 m length of the grid step along the second dimension (LINE)

d3 20.0 m length of the grid step along the third dimension (DEPTH)

Figure 5.2: V, the velocity grid of the problem under study: 3D SEG/EAGE salt
model . LINE is the inline axis where the streamers are numbered (in meters). CDP is
the cross-line axis where the receivers in each streamer are aligned (in meters). DEPTH

designs the depth of signals (in meters).

reference dx dy dz #grid points size #nodes

Ω9×9×9 9 m 9 m 9 m 997× 3060× 474 5517 MB

CPU cluster: 1-64

GPU cluster: 8,16

APU cluster: 8,16

APU cluster (with zero-copy): 1-16

Table 5.5: Numerical parameters of the compute grid, used in the seismic migra-
tion application (RTM), with respect to the strong scaling scenario.

dx spatial discretization step along the X direction.
dy spatial discretization step along the Y direction.
dz spatial discretization step along the Z direction.

Table 5.6: Summary of the notations used to define the compute grids.
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reference dx dy dz #grid points size #nodes

Ω16×16×16 16 m 16 m 16 m 556× 1721× 267 983 MB
CPU cluster: 1
APU/GPU clusters: 1

Ω16×16×8 16 m 16 m 8 m 556× 1721× 534 1967 MB
CPU cluster: 2
APU/GPU clusters: 2

Ω16×8×8 16 m 8 m 8 m 556× 3443× 534 3935 MB
CPU cluster: 4
APU/GPU clusters: 4

Ω8×8×8 8 m 8 m 8 m 1112× 3443× 534 7870 MB
CPU cluster: 8
APU/GPU clusters: 8

Ω8×8×4 8 m 8 m 4 m 1112× 3443× 1068 15740 MB
CPU cluster: 16
APU/GPU clusters: 16

Ω8×4×4 8 m 4 m 4 m 1112× 6886× 1068 31480 MB
CPU cluster: 32
APU/GPU clusters: ∅

Ω4×4×4 4 m 4 m 4 m 2224× 6886× 1068 62660 MB
CPU cluster: 64
APU/GPU clusters: ∅

Table 5.7: Numerical parameters of the compute grids, used in the seismic mod-
eling and in the migration application (RTM), with respect to the weak scaling
scenario. The number of nodes in the APU and GPU cluster goes only up to 16 which

is the maximum capacity of the APU cluster.

condition 2.3.3.2, the longer is the simulation. In our study, we manually set the total
number of numerical iterations to 1000 in all the test cases and the frequency of the data
snapshotting to 10. Besides, the memory footprint of each compute grid (the size column
in the tables) corresponds to the size of only one instance of the compute grid, while in
the implementations of the seismic applications multiple instances of each compute grid
are used.
For the weak scaling scenario the compute grids numerical specifications are depicted in
table 5.7. Note that for the APU and GPU clusters we limit the number of used nodes to
16 which is the maximum capacity of the APU cluster (RDHPC) that we have in hands
(see table 5.3). For the sake of clarity and to help reference the compute grids in the
rest of the document we give a name to each numerical configuration of a compute grid.
For example Ω16×8×8 refers to the compute grid that is built with dx = 16, dy = 8 and
dz = 8. When comparing CPU, APU and GPU on a single node in chapter 7, we make
use of Ω16×16×16 for seismic modeling and for seismic migration, given that it represents
the biggest compute grid that can fit on a CPU node, on a GPU node as well as on an
APU node. Whereas when comparing the efficiency of multi-node implementations in
chapter 8, we use Ω8×8×8 for the seismic modeling in the strong scaling scenario, and
Ω9×9×9 for the RTM in the strong scaling as well. The compute grid Ω8×8×8 (resp.
Ω9×9×9) corresponds to the biggest configuration that a CPU node can hold in the case
of the seismic modeling application (resp. in the case of the RTM).
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In this chapter we evaluate the APU technology by means of memory, applicative and
power consumption benchmarks. We also evaluate the CPU-GPU hybrid utilization
of the APU and leverage the OpenACC directive-based programming model to imple-
ment the applicative benchmarks and evaluate their performance on APUs and discrete
GPUs. Albeit the newness of the AMD APU architecture, some related works to this
chapter can be found in [71], were an empirical study is conducted in order to charac-
terize the efficacy of the AMD APU by means of a set of benchmarks (FFT, Molecular
Dynamics, Scan and Reduction). The authors inferred that the APU have reduced the
overhead incurred by the PCI Express data transfers for discrete GPUs by as much as
six-fold. They also showed that the APU can be attractive for memory bound bench-
marks, namely Scan and Reduction, where it delivers 3× higher performance than that
of discrete GPUs.
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First, we particularly focus, in section 6.1, on the impact of the different APU mem-
ory partitions on applications performance by presenting the different data placement
strategies. Then, we evaluate in section 6.2 the performance of a compute bound appli-
cation (matrix multiply) and a memory bound one (3D stencil) on APUs by conducting
a performance comparison against AMD discrete GPUs and an AMD CPU. This section
summarizes the results that were published in: “H. Calandra, R. Dolbeau, P. Fortin,
J.-L. Lamotte and I. Said. Evaluation of successive CPUs/APUs/GPUs based on an
OpenCL finite difference stencil. 21st Euromicro International Conference on Parallel,
Distributed and Network-Based Processing, 2013” where the work on the first two APU
generations, i.e Llano and Trinity, was published. After the publication, the work was
extended to the third APU generation which is Kaveri. Besides, we briefly emphasize
in section 6.3 the low power consumption of APUs by measuring the power efficiency
of the applicative benchmarks on CPU, on discrete GPUs and on APUs. Furthermore,
the section 6.4 presents the potential of hybrid CPU-GPU utilization. This section was
subject to the following publication: “P. Eberhart, I. Said, P. Fortin, H. Calandra.
Hybrid strategy for stencil computations on the APU. 1st International Workshop on
High-Performance Stencil Computations, 2014”. Finally, we evaluate in section 6.5 the
performance of APUs and of discrete GPUs when using a directive-based programming
model, i.e. OpenACC coupled with HMPPcg in the scope of this work, and compare it
against the corresponding OpenCL performances.

6.1 Data placement strategies

We have mentionned in section 3.1.3 that the APU memory system is different from that
of a discrete GPU. On the one hand, the CPU (host) and the GPU (device) are fused
in the same socket and the PCI Express interconnection between them is removed, but
on another hand, the memory address space is not unified as the integrated GPU has
its own dedicated memory partition which is a sub-partition of the system memory, as
shown in figure 3.8. Not only data can be explicitly copied from the system memory to
the integrated GPU partition and vice versa but also zero-copy memory objects can be
shared between the CPU and the integrated GPU [29] by using the “host-visible device
memory” or the “device-visible host memory” memory partitions (see figure 3.8). In ad-
dition, GPU read-only zero-copy memory objects are stored in the USWC (Uncacheable,
Speculative Write Combine) memory, an uncached memory (part of the device-visible
host memory) in which data is not stored into the CPU caches. This memory partition
is subject to CPU contiguous write operations using the write combine buffers (WC in
figure 3.8) to increase memory throughput. Besides, subsequent GPU reads from this
memory are fast as the Garlic bus is used. We refer to the different memory locations of
the APU as a lower case letter: c refers to the regular cacheable CPU memory (always
pinned here for efficient CPU-GPU data transfer), z to the device-visible host memory
employed as cacheable zero-copy memory objects, u to the device-visible host memory
employed as uncached zero-copy memory objects (USWC), g to the regular GPU mem-
ory and p to the GPU persistent memory. We summarize these notations in table 6.1.

In order to test the performance of the read and write accesses to these buffers, we
developed an OpenCL benchmark, a data placement benchmark, that makes the inte-
grated GPU copy data from an input buffer stored in one APU memory location to an
output buffer that lies in another APU memory location. For both the input and output
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Figure 6.1: The data placement benchmark times. The size of the used buffers
is 128 MB. The tests are performed on three APU generations: Llano, Trinity and

Kaveri.
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c Cacheable CPU memory

z Device-visible cacheable memory

u Device-visible uncached memory

g GPU memory

p GPU persistent memory

Table 6.1: A summary of the APU memory location symbols.

buffers, cg (respectively gc) denotes an explicit data copy from the CPU partition to
the GPU partition g (resp. from the GPU partition g to the CPU partition c), whereas
z, u and p refer to the corresponding zero-copy buffer. For example, zgc describes the
following data placement strategy: the input buffer is in z memory location, the output
buffer is first created in the GPU memory (g) and then, is explicitly copied to the CPU
memory (c). We tried different data access strategies: cggc, zgc, ugc, zz, uz, up and pp.
We show the results in figure 6.1 for the three APU generations surveyed in this work:
Llano, Trinity and Kaveri. We recall that the technical specification of the surveyed
hardware is summarized in table 3.3.
In the figure, init is the input buffer initialization (using a CPU parallel memcpy op-
eration) time, iwrite is the input buffer transfer time (if needed) to the GPU memory,
kernel is the execution time of the OpenCL kernel, oread is the output buffer transfer
time (if needed) back to the CPU and obackup is the time of an extra copy from the
output buffer to a temporary buffer in the CPU memory in order to measure the time
of reading from the memory location in which the output buffer is saved. In some cases,
a map operation (resp. an unmap operation) is required before iwrite or oread (resp.
after iwrite or oread). These operations have negligible times compared to the other
operations and therefore are not presented in our results. We use system wallclock for
timing this benchmark, as well as for the rest of the tests presented in this section. All
the tests are run multiple times (up to 40) after devices “warm up”. Note that the size of
each buffer used in this benchmark is 128 MB. Besides, the tests on Llano and Trinity
were conducted on a Windows operation system, with an AMD Catalyst OpenCL driver
version 11.4, since the zero-copy memory buffers were supported in Windows only at
the beginning of the project. On the contrary, the tests on Kaveri were ran on a Linux
operating system with an AMD Catalyst OpenCL driver version 15.4.

We note that GPU reads from USWC are as fast as GPU reads from GPU memory,
CPU writes to GPU persistent memory are fast but reads are very slow (see obackup in
figure 6.1). Note that the obackup time depends mostly on the operating system and on
the OpenCL driver which explains the different times measured on Llano, Trinity and
Kaveri. This difference is of a minor interest for us as our main purpose is to highlight
that CPU reads from the GPU persistent memory are very slow: they indeed bypass
CPU caches. The figure also shows that contiguous CPU writes to USWC (u) offer the
highest bandwidth for init. We particularly focus on the OpenCL kernel times which
are represented by the blue bars in figure 6.1. In the one hand, we note that the kernel
time varies with respect to the data placement strategies, namely the GPU memory
accesses to z (via Onion with a sustained bandwidth between 6 GB/s and 16 GB/s) are
slower than accesses to u (via Garlic with a sustained bandwidth that ranges between 18
GB/s and 23 GB/s) and g, except for the Kaveri APU where memory accesses to z are
slightly faster than those to u. In the other hand, it also varies with respect to the APU
generations: the kernel time when using the zero-copy memory buffers (zz) decreases
from an APU generation to the next. With Llano the zz kernel time is 239% slower
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than that of the explicit copy (cggc). With Trinity the ratio is reduced to 149% and
with Kaveri it is further reduced down to 51%. This means that the bandwidth of the
Onion bus is getting enhanced and is approaching that of the Garlic bus: within the first
APU generation (Llano) the bandwidth of Onion is roughly 50% of Garlic bandwidth,
while that of the most recent one at the time of writing (Kaveri) is 60% of the Garlic
bandwidth.

To conclude, the data placement is to be considered as a relevant factor when it
comes to applications performance on APU, especially for memory bounds ones. Re-
lying on zero-copy memory objects implies the usage of cache coherent memory buses
which substantially reduces the sustained bandwidth especially for the APU early gen-
erations but slightly enhanced with the Kaveri APUs where the bandwidth of zero-copy
memory objects roughly represents 60% of the maximum bandwidth. However, zero-
copy memory objects have the advantage to allocate a major part of the main memory
that is addressable by the integrated GPU. Ultimately in this work we will inspect the
impact of data placement strategies on the seismic applications performance, and in
a more general note in the rest of the chapter we select the most relevant placement
strategies: cggc, ugc, uz and up to evaluate their impact on a selection of applicative
benchmarks (see section 6.2).

6.2 Applicative benchmarks

In this section we present two applicative benchmarks that we use to evaluate the perfor-
mance of three APU generations, namely Llano, Trinity and Kaveri, two discrete GPU
generations, Cayman and Tahiti, and one AMD CPU which is the AMD Phenom TM
II x6 1055t Processor . We chose to use a single precision matrix multiplication OpenCL
kernel and a single precision 3D finite difference stencil OpenCL kernel. We put a special
focus on the possible memory transfers between the CPU and the GPU that are required
by the two benchmarks. Those memory transfers have immediate impact on the APU
and discrete GPUs performances, and can be used to highlight the main differences be-
tween the memory model of the two architectures. Therefore we include the CPU-GPU
transfer times in the benchmark results in this section. For each benchmark, we pro-
vide a quick description of the implementation choices and optimizations. Our major
optimizations include use of vector instructions, tiling in the local memory, software
pipelining, register blocking and auto-tuning. The OpenCL kernels are highly tuned
in order to provide a fair performance comparison between all tested devices. We also
show some performance numbers on each tested device and we emphasize the impact of
data placement strategies on APUs performance. Finally, we compare the performance
of the integrated GPUs against those of the CPU and the discrete GPUs.

6.2.1 Matrix multiplication

This section shows the implementation details and performance numbers of a matrix
multiplication OpenCL kernel on the surveyed hardware: an AMD Phenom TM II x6
1055t Processor CPU (see table 3.1 for the technical specifications), two discrete GPUs
(Cayman and Tahiti whose technical specifications can be found in table 3.2) and three
APUs (Llano, Trinity and Kaveri presented in table 3.3).
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6.2.1.1 Implementation details

We consider to compute single precision matrix multiplications as C = C+A×B where
A, B, and C are all square NxN matrices (see [218] and [163]). This corresponds to the
BLAS SGEMM routine. The floating point computation and data storage complexities
of the matrix-matrix multiplication algorithm are respectively O(N3) and O(N2). This
algorithm is known to be compute bound and its compute intensity is O(N)1. First,
we implement a straightforward version in a data parallel fashion where each work-item
computes X (X = 2 or X = 4) elements of C. X refers to the ILP (Instruction Level
parallelism) [216] which may be a relevant performance factor in some implementations.
This implementation is an OpenCL baseline for all architectures and will be referred to
as scalar. Second, we explicitly vectorized the code using the OpenCL float4 data struc-
ture in order to take advantage of the VLIW4 or VLIW5 based architectures (only the
Cayman discrete GPU, and the Llano and Trinity APUs). We call this implementation
vectorized. Note that in both scalar and vectorized the C matrix is naturally parti-
tioned due to the OpenCL execution model that gathers work-items in workgroups.
Next, we apply a blocking algorithm that splits A, B besides of C matrices into square
sub-matrices, which often has higher performance on systems with a memory hierarchy,
on the vectorized implementation. Blocking matrix-matrix multiplications exploit more
data reuse and achieve higher effective memory bandwidth. The matrices A and B
are partitioned into blocks stored in the local memory and these blocks are laid out as
OpenCL workgroups. This version is referred to as local vectorized. Besides, we imple-
ment another version, called image, using OpenCL image 2D memory objects. These are
arranged with a cache friendly tiled layout format and can provide additional memory
bandwidth in certain cases by using the texture caches on GPUs, coupled with texture
sampling hardware for reading from these caches [46]. Finally, we chose to consider
an additional implementation, labeled local scalar, for the GCN based hardware (the
Tahiti discrete GPU and the Kaveri APU). In this implementation, we make use of the
OpenCL local memory but without explicitly vectorizing the code as it is the case in the
local vectorized version. We expect that the local scalar take advantage from the scalar
design of the GCN micro-architecture based GPUs, and can highlight the architectural
differences between the TeraScale graphics micro-architecture based GPUs and those
designed on top of GCN.
For each implementation we use auto-tuning to find the best values for the following
parameters: workgroup sizes, ILP factor, instruction scheduling, and local memory sizes
(for local vectorized only). Note that each test is ran over a total of 100 times (or iter-
ations) after issuing devices “warmup”. Each performance result is the average of the
total number of iterations. This benchmark protocol also applies to the rest of the tests
presented in this chapter.

6.2.1.2 Devices performance

We first consider timing the kernel execution only. We try square matrices with dimen-
sions NxN (N varies between 64 and 4096).

Figure 6.2 summarizes the performance of the different OpenCL implementations
on the CPU. We compare them against an OpenMP C code, compiled with gcc version

1On some GPUs however, this kernel can be memory bound because of their huge compute power
(with respect to their internal memory bandwidth).
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Figure 6.2: The performance numbers of thematrix multiplication OpenCL kernel,
along with OpenMP and GotoBLAS implementations, on the AMD Phenom TM II

x6 1055t Processor as a function of N , the dimension of the used square matrices.

4.6.1 and a highly efficient GotoBLAS 2 based SGEMM implementation. The perfor-
mance numbers (GFlop/s), of the CPU as well as those of the rest of architectures, are
calculated based on the theoretical number of floating point operations issued by the
applicative benchmark (matrix multiplication in this case and an 8th order stencil in
section 6.2.2).
We note that OpenCL is faster than OpenMP mainly because of the natural OpenCL
blocking on the C matrix. The local vectorized implementation is more efficient than
the vectorized for large matrices thanks to the blocking on matrices A and B. But the
GotoBLAS clearly delivers the highest performance.

For our GPU implementations, we made use of the AMD Catalyst driver version
13.4, except for the Tahiti GPU for which we provide the performance numbers based
on both the drivers 13.4 and 15.4, and for the integrated GPU of Kaveri where we
upgraded the driver to version 15.4 (the most recent driver at the time of writing).
We also used the AMD OpenCL Math Library (clAmdBlas) SGEMM implementation
(version 1.6) to compare our implementations against it. Discrete GPU results are
shown in figure 6.3 and figure 6.4. The first is about the Cayman performance, where
the scalar version performs poorly on this vector architecture. The vectorized version
is more efficient than the local vectorized, which is unexpected, but its performance
is comparable to the clAmdBlas performance. Thanks to the texture memory, the
image implementation is the fastest. Figure 6.4 is about Tahiti performance. We
note that the local vectorized version gives better results (up to 1.740 TFlop/s) than
the vectorized version and also than clAmdBlas. The OpenCL images and the texture
caches do not provide a huge performance enhancement (the image version delivers 1.950
TFlop/s), such that in Cayman, as both reads and writes are systematically cached on
Tahiti. After upgrading the driver to version 15.4 and adding the local scalar version, the
performance numbers of the matrix multiplication OpenCL kernel on Tahiti are updated
and presented in figure 6.5. We notice a 15% to 25% improvement of the performance

2http://www.tacc.utexas.edu/tacc-projects/gotoblas2
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Figure 6.3: The performance numbers of the matrix multiplication OpenCL kernel
on the Cayman discrete GPU as a function of N , the dimension of the used square
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Figure 6.5: The updated performance numbers (after upgrading theOpenCL driver
to version 15.4) of the matrix multiplication OpenCL kernel on the Tahiti GPU

as a function of N , the dimension of the used square matrices.

of the image, vectorized and local vectorized versions. As a matter of fact, the image
still delivers the best performance (2.2 TFlop/s) followed by the local vectorized version
with 2.05 TFlop/s. The scalar version is subject to a higher performance enhancement
percentage (50%) and the local scalar version delivers 2× higher performance than that
of the scalar one. Even after upgrading the driver, the vector versions of the matrix
multiplication OpenCL kernel still perform very well on the scalar design and offers
better performance numbers than the scalar ones (by a factor higher than 3), while we
are expecting the latter to perform better on a GCN based GPU. We were unable to
explain these results. It is probably due to the fact that AMD OpenCL driver versions,
that we are using, don’t take enough advantage from the new hardware design of the
early instances of GCN based GPUs.

Finally, figures 6.6, 6.7 and 6.8 illustrate the performance results of the integrated
GPUs of Llano, Trinity and Kaveri respectively. The scalar version delivers a low
performance on the three APU generations. While this result is expected for Llano given
that its integrated GPU is based on a vectorized micro-architecture and thus the code
needs to be explicitly vectorized, it is less expected to obtain such poor performance on
Kaveri whose integrated GPU is based on the GCN micro-architecture. Similarly to the
Cayman GPU, the performance of the vectorized version is comparable to the clAmdBlas
performance. For both Llano and Trinity the vectorized version is more efficient than the
local vectorized implementation. On the contrary, the local vectorized implementation
performs up to 29% better than the vectorized version on the Kaveri APU. Furthermore,
we have mentionned that we also consider the local scalar version for the Kaveri APU in
order to benifit from, in addition to the scalar design of the Sea Islands GPUs, the local
memory. As a matter of fact, the local scalar implementation has delivered even poorer
performance than that delivered by the scalar version on both Llano and Trinity APUs,
thus we chose not to add it to the plots in figures 6.6 and 6.7 for the sake of clarity. In
the case of the Kaveri APU, the behavior of the local scalar is different as it gives up to
3× higher performance numbers than the scalar version as it can be seen in the figure
6.8 (used with the driver version 15.4). This may give some indications that the scalar
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Figure 6.6: The performance numbers of the matrix multiplication OpenCL kernel
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Figure 6.8: The performance numbers of the matrix multiplication OpenCL kernel
on the Kaveri integrated GPU as a function of N , the dimension of the used square

matrices (the OpenCL driver version 15.4 is used).

memory access to the local memory in the Sea Islands GPU family (as well as in all the
GCN based GPUs) are better handled than in the previous generations which explains
the different behavior of the Kaveri APU compared to both Llano and Trinity.
We also notice that the use of OpenCL images enhances substantially the performance
on Llano and Trinity, and relatively the performance on Kaveri. However, copying
OpenCL images back and forth between CPU and GPU incurs a very large overhead
which lowers the overall performance with communication times considered. For this
reason, we do not use the image implementations in the rest of this section.

6.2.1.3 Impact of data placement strategies on performance

In order to measure the impact of the data placement strategies on the matrix multipli-
cation APU performance we try the four scenarios selected in Section 6.1: cggc, ugc, uz
and up with both vectorized and local vectorized implementations. A and B correspond
to the input buffers, whereas C is an input/output buffer. We exclude the image from
this survey because OpenCL image memory objects loose their intrinsic properties when
saved in some memory locations within the APU such as USWC. Note that the possi-
ble communication times are included in the following performance numbers. Figures
6.9, 6.10 and 6.11 show the performance numbers of the two implementations coupled
with the four data placement strategies on Llano, Trinity and Kaveri respectively. We
conclude that in order to obtain the best SGEMM performance on Llano and Trinity
integrated GPUs, we have to use the vectorized implementation coupled with either the
cggc or uz data placement strategy depending on the matrices sizes. When it comes
to the performance on the Kaveri APU, the figure 6.11 indicates that the local vec-
torized implementation gives the best performance when the cggc strategy is applied.
However, we noticed that the performance of the OpenCL kernel (computation only)
of the benchmark, when the zero-copy memory objects are used, is comparable to that
when explicit copies are employed (cggc). As a matter of fact the performance of local
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Figure 6.9: The impact of data placement strategies on the performance of the
matrix multiplication kernel on the Llano APU.
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Figure 6.10: The impact of data placement strategies on the performance of the
matrix multiplication kernel on the Trinity APU.

vectorized-zz is 3% lower than that of local vectorized-cggc on Kaveri, wheareas
on Llano the vectorized-uz performance is 36% lower than that of vectorized-cggc.

6.2.1.4 Performance comparison

The purpose of running the matrix multiplication OpenCL kernel on discrete GPUs and
on an AMD CPU is to evaluate the APU performance by conducting a comparaison
between CPU, APUs and GPUs. Figure 6.12 illustrates a performance comparison of
all the tested devices with the best implementation on each of a complete matrix mul-
tiplication (with possible communication times). comp-only refers to the performance
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matrix multiplication kernel on the Kaveri APU.
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of APUs without taking into consideration the communication times. Ideally, the up-
coming AMD APUs (Carrizo and Zen APU) that feature a unified memory system will
have a comparable performance to these results (llano(comp-only), trinity(comp-only)
and kaveri(comp-only) in figure 6.12). Before the Kaveri APU, the CPU was the most
suitable choice for small matrices sizes (below 192), since communication times associ-
ated to the GPUs are important. It is no longer the case if we take into consideration the
performance numbers obtained on the Kaveri APU, which outperform those of the CPU
and that for all the matrices sizes. For medium-sized matrices (between 192 and 700),
the Kaveri APU with a unified memory system (kaveri(comp-only)) may outperform
both discrete GPUs and the CPU. Large matrices have to be sent to and processed by
discrete GPUs.

6.2.2 Finite difference stencil

In this section, we describe the implementation details of a 3D finite difference stencil
OpenCL kernel. We optimize and adapt the OpenCL kernel to the surveyed hardware
with the help of auto-tuning, and present the performance results accordingly. Besides,
we study the impact of data snapshotting on the performance of the different architec-
tures, and the impact of the data placement strategies on the performance of the APUs.
Finally, we conduct a comparison between the performance numbers of the 3D finite
difference stencil kernel on CPUs, discrete GPUs and APUs.

6.2.2.1 Implementation details

Finite difference stencil computations are the core of a wide range of physics simulations,
e.g. RTM. They approximate the derivation operators in physics equations into linear
combinations on a discrete domain. Due to their regularity, they are very well suited
for efficient executions on the massively parallel architecture of GPUs and APUs.
A stencil computation of an element in a 3D NxNxN regular mesh is a linear summa-
tion of its value and its neighboring values, along each dimension, weighted by specific
coefficients. The building block, i.e. the differentiation operator, of our targeted seis-
mic applications is a 3D 8th order centered stencil as illustrated in figure 6.13a. We
choose to evaluate such an operator whose workflow is presented in algorithm 6.1. The
algorithm depicts the linear combination, which may correspond to a given time-step
t of a numerical simulation, applied to one grid point of a computational domain u0
situated at the position (x, y, z). The floating point computation and data storage com-
plexities of the stencil kernel are both O(N3). The compute intensity is thus O(1) and
this algorithm is memory bound. We apply a 2D work-item grid on the 3D domain and
we first implement a scalar version in which each work-item computes X columns of
the domain (X refers to the ILP and is determined via auto-tuning and is either equal
to 2, 4 or 8) along the Z dimension which corresponds to the largest strided memory
accesses [74]. All memory accesses are issued in global memory. Second, we explicitly
vectorize the code and each work-item processes X columns of float4 elements along the
Z dimension. In most cases X is equal to 2 or 4. This implementation is referred to as
vectorized. Finally, we implement a blocking algorithm [156]. Data is fetched slice by
slice from global memory and stored in local memory and each work-item sweeps along
the Z dimension and blocks the grid values in the register file in order to reuse data
(see figure 6.13b), and computes X float4 elements at a time. This implementation is
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Algorithm 6.1 The 3D 8th order centered finite difference stencil operator applied to
one grid point u0(x, y, z) at a time-step t.

1: function fd stencil compute(u0, x, y, z, t)
2: return coef0 ∗ u0(z, y, x) ⊲ coefn, n ∈ [0..4] are the stencil coefficients
3: + coef1 ∗ (u0(z, y, x+ 1) + u0(z, y, x− 1)
4: +u0(z, y + 1, x) + u0(z, y − 1, x)
5: +u0(z + 1, y, x) + u0(z − 1, y, x))
6: + coef2 ∗ (u0(z, y, x+ 2) + u0(z, y, x− 2)
7: +u0(z, y + 2, x) + u0(z, y − 2, x)
8: +u0(z + 2, y, x) + u0(z − 2, y, x))
9: + coef3 ∗ (u0(z, y, x+ 3) + u0(z, y, x− 3)

10: +u0(z, y + 3, x) + u0(z, y − 3, x)
11: +u0(z + 3, y, x) + u0(z − 3, y, x))
12: + coef4 ∗ (u0(z, y, x+ 4) + u0(z, y, x− 4)
13: +u0(z, y + 4, x) + u0(z, y − 4, x)
14: +u0(z + 4, y, x) + u0(z − 4, y, x))
15: end function

(a) Memory layout. (b) Blocking algorithm.

Figure 6.13: The memory layout and the memory blocking layout of the 3D 8th order
finite difference stencil.

referenced as local vectorized. Similarly to the matrix multiplication kernel, we consider
the local scalar version for the GCN based hardware, namely for the Tahiti GPU and
for the Kaveri APU. Note that we also use auto-tuning to adapt at best the stencil
implementations to each architecture.

6.2.2.2 Devices performance

We first show the performance numbers of each tested device based on the kernel exe-
cution time only. We use 3D domains with N × N × 32 sizes (N ranging between 64
and 1024). We use the AMD Catalyst OpenCL driver version 13.4 except for the Kaveri
APU, where we use the driver version 15.4, and where we consider the local scalar imple-
mentation similarly to section 6.2.1. Moreover, we update the performance numbers of
the Tahiti GPU using the driver version 15.4, and thus present its performance numbers



Chapter 6. APU evaluation 90

 2

 4

 6

 8

 10

 12

 14

 16

 18

 64  128  256  512  1024

G
F
l
o
p
/
s

N

scalar

vectorized

local vectorized

openmp

Figure 6.14: The performance numbers of the 3D finite difference stencil OpenCL
kernel, along with an OpenMP implementation, on the AMD Phenom TM II x6

1055t Processor as a function of the problem size N×N×32.

using both 13.4 and 15.4 driver versions. We also consider the local scalar version for
Tahiti, given that in the following sections and in the rest of the document we restrict
our study to the most recent hardware coupled with the most recent driver at the time
of writing.

Figure 6.14 summarizes the performance of the different OpenCL implementations
on the CPU. We compare them against an OpenMP Fortran 90 code (compiled and
vectorized with Intel Fortran Compiler). Here again the OpenCL vector implementa-
tions outperform the OpenCL scalar version thanks to their use of SSE instructions.
The vectorized implementation efficiently relies on CPU caches and delivers the best
performance being faster than or as fast as the OpenMP implementation.

Figures 6.15, 6.16, 6.18, 6.19 and 6.20 illustrate the performance numbers of Cay-
man, Tahiti, Llano, Trinity and Kaveri respectively. Based on the performance results
obtained using the driver version 13.4, we note that for discrete GPUs, as well as for
the two integrated GPUs of Llano and Trinity, the local vectorized implementation is
more efficient than the vectorized one thanks to the blocking in the local memory, which
is an expected behavior. In addition, the scalar implementation gives low performance
numbers on the GPUs based on the GCN micro-architecture (with a scalar design), i.e.
Tahiti, where the performance of the scalar implementation is almost 2× slower than
that of the vectorized and almost 4× slower than that of the local vectorized. The best
performance of Tahiti, based on the figure 6.16, reaches up to 484 GFlop/s and that of
the Trinity APU reaches up to 50 GFlop/s.

The figure 6.17 represents the updated performance numbers obtained on Tahiti
when using the driver version 15.4. We can instantly observe that the new driver helped
benefit from the scalar design of the Tahiti GPU. The scalar versions either perform
as good as the vectorized versions or outperform the vectorized implementations. As a
matter of fact, the local scalar version gives the best performance numbers that reach 544
GFlop/s which represents a performance enhancement of 12% compared to the numbers
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Figure 6.15: The performance numbers of the 3D finite difference stencil OpenCL
kernel on the Cayman GPU as a function of the problem size N×N×32.
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Figure 6.16: The performance numbers of the 3D finite difference stencil OpenCL
kernel on the Tahiti GPU as a function of the problem size N×N×32.

obtained with the driver version 13.4. In one hand, this leads to the conclusion that
the vectorization is no longer needed to deliver the best OpenCL performance of the 3D
finite difference kernel out of the Tahiti GPU. On the other, it shows that applications
performance is sensitive to driver upgrades which implies that the drivers we are using
in the scope of this work, are stable enough on GCN based GPUs.
When it comes to the performance numbers of the 3D stencil kernel on the Kaveri APU,
presented in figure 6.20, we reached the same conclusions we have elaborated based on
the performance results on Tahiti using the driver version 15.4. We can notice that
in figure 6.20 the local vectorized delivers better performance numbers compared to
the performance of the vectorized version thanks to the blocking algorithm of the local
vectorized implementation. Besides, the scalar design of Sea Islands GPUs seems to be
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Figure 6.17: The updated performance numbers (after driver upgrade to version
15.4) of the 3D finite difference stencil OpenCL kernel on the Tahiti GPU as a

function of the problem size N×N×32.
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Figure 6.18: The performance numbers of the 3D finite difference stencil OpenCL
kernel on the Llano APU as a function of the problem size N×N×32.
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Figure 6.19: The performance numbers of the 3D finite difference stencil OpenCL
kernel on the Trinity APU as a function of the problem size N×N×32.
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Figure 6.20: The performance numbers of the 3D finite difference stencil OpenCL
kernel on the Kaveri APU as a function of the problem size N×N×32 (the OpenCL

driver version 15.4 is used).
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Figure 6.21: The impact of data placement strategies on the performance of the
3D finite difference stencil kernel on the Llano APU, with respect to the frequency

of data snapshotting.

more beneficial to the performance of the 3D stencil kernel. Indeed, both of the scalar
and local scalar versions outperform the implementations that are based on explicit
code vectorization, i.e. the vectorized and local vectorized. Furthermore, the local scalar
implementation delivers higher performance numbers compared to the scalar version.
The local scalar implementation gives the best 3D stencil performance numbers for
medium and big problem sizes (with N > 128) that reach up to 85 GFlop/s. Finally,
it is to be noted that OpenCL image memory objects provided very poor performance
for large domains, as opposed to the matrix multiplication kernel. Therefore, we do not
consider using them for the stencil kernel.

6.2.2.3 Impact of data placement strategies on performance

Stencil computations are usually used in iterative methods. Between two subsequent
iterations data need to be resident on the CPU memory in order to be used in further
operations such as imaging condition in the RTM application. We call this process
data snapshotting (see section 2.2). The frequency of data snapshotting can also be an
important performance factor as the memory model of the APUs is different from that
of the discrete GPUs. We run the best two implementations of the stencil OpenCL
kernel on APUs, i.e vectorized and the local vectorized implementations for Llano and
Trinity and the scalar and the local scalar implementations for Kaveri, while taking into
consideration the data placement strategies selected in section 6.1 in one hand, and the
frequency of data snapshotting in another. Note that we use one input buffer and one
output buffer. In figures 6.21, 6.22 and 6.23, we show the performance results of the
kernel ran on a 1024 × 1024 × 32 grid, respectively on Llano, Trinity and Kaveri, as
a function of the number of stencil computation passes performed before the snapshot
(frequency of data snapshotting). Note that the communication times (possibly required
to retrieve the snapshot on the CPU) are included in those numbers. We conclude
that in order to obtain the best stencil performance on APUs, we have to use the local
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Figure 6.22: The impact of data placement strategies on the performance of
the 3D finite difference stencil kernel on the Trinity APU, with respect to the

frequency of data snapshotting.
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Figure 6.24: Performance comparison of the 3D finite difference stencil best
implementations on CPU, GPUs and APUs as a function of the data snapshotting
frequency. The OpenCL driver (version 15.4) used by the GCN based devices (the
Kaveri APU and the Tahiti GPU) is newer than the driver used by the other devices

(version 13.4).

vectorized implementation coupled with the cggc data placement strategy for both Llano
and Trinity APUs. However, the uz strategy (with zero-copy memory buffers) applied
to the local scalar implementation on Kaveri gives higher performance numbers than
the other data placement strategies when considering a snapshot retrieval after every
1 to 3 computations. Based on these numbers, the Kaveri APU is the first APU that
allows a performance gain of the finite difference stencil kernel when zero-copy memory
objects are used. Finally, it is important to mention that the data placement strategy
zz, which allows on the Kaveri APU to map the entire system memory to the integrated
GPU memory and also allows to use the zero-copy memory objects in both read and
write accesses, delivers exactly the same performance numbers as the uz and thus it is
not added to the figure 6.23 for the sake of clarity.

6.2.2.4 Performance comparison

Finally, the figure 6.24 illustrates a performance comparison of all the tested devices as
a function of the frequency of data snapshotting using the best implementation on each.
According to the figure 6.23, the best performance numbers of the 3D finite difference
stencil kernel on Kaveri, with respect to the data snapshotting frequency, are obtained
by combining local scalar-uz (for the data snaphotting frequencies ranging from 1 to
3) and local scalar-cggg (for the data snaphotting frequencies ranging from 3 to 10).
Therefore, the red solid line in figure 6.24 illustrates this combination. We recall that,
the domain size of the used grid in this test is 1024x1024x32.
We notice that integrated GPUs outperform the CPU implementation for all the data
snapshotting frequencies, and that the best performance is always delivered by the Tahiti
discrete GPU, except for the case K = 1. Indeed, for a high rate of data snapshotting,
more specifically for a snapshot retrieval after every stencil computation, the Kaveri
APU outperforms the discrete GPUs. The upcoming APUs are expected to feature a
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perfectly and fully unified memory, which would allow even higher performance (equal
to the kaveri (comp-only) in the figure 6.24) for lower data snaphotting frequencies.

As a conclusion, we can advance that the APU can be an attractive solution for a
the finite difference kernel with a high rate of data snapshotting, even though a high
rate of data snapshotting does not necessarily correspond to that used in realistic stencil
based seismic applications such as the RTM (the frequency is more between 10 and 18).
Depending on the snapshotting frequency, the uz or the zz data placement strategies may
deliver higher performance numbers than the straightforward cggc strategy. However,
the uz placement strategy can not be used when implementing the RTM on APUs,
since memory buffers involved in this strategy can not be accessed in both read and
write modes, which is required by the RTM algorithm. Therefore, for the rest of the
document, we will rather consider the zz strategy (along with cggc) which also allows
the integrated GPU to allocate large read-write memory buffers which is more suitable
to the seismic applications in general and to the RTM in particular.

6.3 Power consumption aware benchmarks

In this section we try to quantify the power efficiency of the AMD APUs and compare
it against that of discrete GPUs and that of CPUs. For that to do, we chose to measure
the power consumption of the two applicative benchmarks, i.e. the matrix multiply
and of the 3D finite difference stencil, and compute the power efficiency (using the
Performance Per Watt (PPW) metric) based on the best performance obtained on each
platform, which are detailed in section 6.2. It is to be noted that we chose to restrict this
evaluation to the most recent hardware generation of each architecture. Consequently,
only the AMD Phenom TM II x6 1055t Processor , Tahiti and Kaveri are surveyed.
Besides, we start this section with a tutorial where we describe our approach for power
measurement, and where we enumerate state-of-art metrics used to evaluate the power
efficiency.

6.3.1 Power measurement tutorial

Recently, the awareness about power consumption has sustainably raised. The Green500
list [6] ranks computers from the TOP500 list of supercomputers in terms of energy
efficiency. The inaugural list was elaborated in 2007 and a new era of green computing
has began. A detailed guide [91] is published in order to define the requirements a
supercomputer should meet to be part of the Green500 ranking.
Several methods for measuring power usage on current architectures have been proposed
[49, 100, 204]. They differ in the tools used for measuring power consumption (hardware
based methodologies or software based methodologies) and in the various places where
valid measurements can be collected (depending on the size of the HPC facility: a cluster,
a rack, a cabinet, a workstation or a hardware component such as a CPU, an APU and
a GPU).
Despite these efforts, in the HPC community, the measurement process remains an
ad-hoc process and is slowly being standardized. Yet many questions can’t be easily
answered: how should the tested hardware be configured? What power consumption
should be measured, that of the compute elements or that of the whole system? When
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should the power be measured? For a certain portion or for the entire execution of an
application?

6.3.1.1 Metrics for power efficiency

Having defined how to measure power consumption of a HPC facility, the question
remains how to use the collected data in order to conduct a fair comparison between
the different technologies. Many metrics can be used to calculate a power efficiency and
evaluate the power consumption of a given compute node.

• Performance Per Watt (PPW ): measures the rate of computation that can
be delivered by the compute node (in Flop/s) for every watt of power consumed.

• Energy Delay Product (EDn): represents the energy consumed by the ap-
plication multiplied by its execution time (to the power of n with n = 1, 2...).
According to [113], this is biased towards large supercomputers. A large n value
not only emphasizes the performance aspect of a HPC system, but it also exag-
gerates the performance gained from the massive parallelism. More specifically,
the EDn metric with n > 2 increases exponentially with respect to the number of
processors in a supercomputer.

• Power Delay Product: the product of the execution time with the dissipated
power. This is appropriate for the evaluation of low-power systems. Indeed, since
the power consumption numbers are relatively small, the execution time can be
used as a multiplier to increase those numbers.

In the scope of this work we make use of the PPW metric to evaluate the power efficiency
of the surveyed hardware.

6.3.1.2 Proposed methodology

This tutorial serves as a practical guide for measuring the power of a system as a whole.
That is, the measurement is not only restricted to the processor handling computations
on a given computer, but encompasses all the computer including its memory, its hard-
drives, etc. This choice is motivated by the fact that a discrete GPU is not standalone
and needs a CPU to drive it during computations. This CPU consumes power and its
power drawing should be taken into consideration. We refer to the section 3.3 for more
details. We consider measuring the consumption of one compute node at a time, i.e. a
computer that contains either a CPU, or a CPU and a discrete GPU or an APU, using a
hardware based methodology. The collected data can then be extrapolated to estimate
the consumption of a bigger HPC facility. Minimum equipment requirements are the
followings.

• The compute node to be tested: this can be a cluster node or a workstation
that contains a high performance CPU, a discrete GPU (with a commodity CPU)
or an APU.
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Vendor #Outlets Price

APC by Schneider Electric 10 $1300

Server Technology 10 $1200

Raritan 8 to 16 $755

Watts Up? 1 $235

Table 6.2: Power meters major vendors.

• A digital power meter: that is an interface that measures and monitors the
current and voltage delivered to the compute node. As a matter of fact, power
meters often report the active power (also referred to as real power) and appar-
ent power of a given power supply unit (PSU). The active power is measured in
Watts and is the power drawn by the resistive electrical components of a system
doing useful work. The apparent power includes, on top of the real power, the
power drawn by the reactive components (such as inductors and capacitors). The
apparent power is measured in Volt-Amperes (VA). The ratio of real power to
apparent power is defined as the power factor. The closer the power factor of a
PSU is to 1, the lower cost (in terms of electric bills) it would incur. The power
factor usually ranges between 0.8 and 0.9 on modern computer PSUs. Besides, it
is crucial to make sure that the PSU that is installed on a given computer suits
its main processor in terms of electric efficiency. The electric efficiency, of a PSU,
is the ratio between the DC power it converts and the input AC power it pulls
from of the wall outlet. In order to standardize the efficiency of PSUs, the 80 Plus
certification [16], a convention used by the PSU manufacturers to validate that
their PSUs were at least 80% efficient at 25% of full load, was created. Say, we
would like to connect a 500 W PSU to an APU based computer that draws at
most 60 W for a particular computation workload. Given that 25% of 500 W is
100 W, the PSU will be likely inefficient (its electric efficiency will be below 80%).
However, a 200 W PSU would be much more efficient for this configuration.
A digital power meter can be a simple power outlet or a Power Distribution Unit
(PDU) designed to distribute and monitor power within a rack of compute nodes
providing a remote access to the collected data. Common interfaces include RS-
232, USB or a LAN network-controller accessible through a variety of protocols:
Telnet, SSH, SNMP or HTTP. This allows an administrator to access a PDU from
a remote terminal. Table 6.2 summarizes the list of the major power meters ven-
dors. In the scope of this work a Raritan PX (DPXR8A-16) PDU is used, and
only the active power is measured.

• A power meter software: used to process the collected data by the power meter.

• A logging PC: an isolated workstation exclusively used for sampling and logging
the power measurement data.

• Applicative benchmarks: an appropriate workload that can be submitted to the
compute node and keep it busy while recording the power measurement samples.
For the sake of fairness, it is recommended to use the same execution environment
for all the hardware components. It is also recommended to choose the most
highly optimized application implementation (which may require different APIs or
compilers) on each hardware configuration.
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Figure 6.25: Connecting the power meter. The compute nodes are not necessarily
homogeneous, they might be populated by CPUs, discrete GPUs or APUs.

The digital power meter should be, first, connected to the measured unit (compute node).
Second, it can be connected to the logging workstation after choosing the communication
protocol. Finally, the meter should be plugged to the AC power outlet. Figure 6.25
illustrates the connection between the different devices. Note that in the scope of this
work, three compute nodes based on three different processors (a CPU, an APU and
a discrete GPU) are connected to the power meter. Besides, it is to be noted that
all the affected hardware should be powered off prior these operations. Following, we
enumerate the power measurement steps that we recommend to follow before any power
consumption aware benchmark.

1. Turn the power meter on.

2. Launch the logger software on the logging PC.

3. Start recording the power measurement samples: the logging workstation probes
the meter in order to extract many measurement samples.

4. Immediately, launch the applicative benchmarks on the compute node. It is im-
portant to consider running several iterations in order to keep the node loaded and
generate realistic measurements.

5. Stop recording the power measurement samples once the applicative benchmark
has returned.

6. Save the performance numbers of the applicative benchmarks.

7. Calculate the unit average power (or any other mean operator such as RMS) from
the recorded power measurement data. It is recommended to remove the first and
the last samples as they may be inaccurate due to synchronization problems.

In Figure 6.26 we present a simplified model of a classic compute node. Hardware
components are symbolically classified in two categories:

• computing components , that is the processing units that can be present in a
workstation and used for compute such as CPUs, APUs or GPUs. We refer to the
power consumption of this category as Pcomputing;



Chapter 6. APU evaluation 101

processing unitO 

processing unit1

processing unitn

power supply unit

memory

storage devices

computing components functional components
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Figure 6.27: The composition of the tested compute nodes.

• functional components , are the other major components required for a system
to function correctly (i.e power supply unit, memory, storage devices etc). We
refer to the power consumption of this category as Pfunctional.

Thus the power consumption of a system Psystem can be defined as following:

Psystem = Pcomputing + Pfunctional (6.1)

Given that we only measure the Psystem and that we aim to accurately compare the
Pcomputing of the different hardware configurations, the affected compute nodes should,
ideally, have similar functional components. This can be done by installing the same
hard drives and amount of memory in each system. Note that the power consump-
tion of systems that use discrete GPUs as co-processors should include both the power
consumption of the CPU and that of the GPU power since GPUs are not standalone.

6.3.1.3 Hardware configuration

We illustrate the hardware configuration of the three systems that we study in this sec-
tion in figure 6.27. The System 1 contains the AMD Phenom TM II x6 1055t Processor
CPU, the System 2 has the Kaveri APU as main processor (note that the memory is
over-clocked in this system in order to obtain the best memory bandwidth possible) and
the System 3 is equipped with the Tahiti discrete GPU along with a commodity CPU
(AMD Phenom TM II x6 1055t Processor). System 1 and System 3 even have the same
CPU and the same mother board, while the mother board of System 2 is different as the
APU requires a special socket and chipset. Besides, the PSU of each system should be
carefully picked with respect to the corresponding maximum power load. As a matter
of fact, System 1 is equipped with a 500 W PSU, that of System 2 is 200 W and the
System 3 has a 750 W PSU, all of them are 80 Plus certified.
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Figure 6.28: Performance comparison of the matrix multiply power efficiency (PPW)
on the AMD Phenom TM II x6 1055t Processor , the Tahiti discrete GPU and the

Kaveri APU as a function of N , the dimension of the squared matrices.

6.3.1.4 Choice of applications and benchmarks

The applications should keep the processing units busy enough to report relevant mea-
sures. If one application is not time consuming, it is highly recommended to subse-
quently run it several times. In the scope of this work, all the memory transfers between
CPU and GPU are considered when measuring the power consumption. In addition the
I/O operations, such as data snapshotting for stencil computations, are also taken into
considerations as they are relevant to the algorithms of the studied applications.

6.3.2 Power efficiency of the applicative benchmarks

We now focus on measuring the power efficiency of the matrix multiply and of the 3D
finite difference stencil on the different hardware configurations detailed in figure 6.27.
We follow the tutorial described in section 6.3.1 to measure the power consumption
and the performance numbers of the best implementation of each benchmark on each
hardware configuration. We then determine the power efficiency by computing the PPW
of the matrix multiply and of the 3D finite difference stencil on CPU, APU and discrete
GPU. The figure 6.28, represents the power efficiency of the matrix multiply application.
First, we note that the AMD Phenom TM II x6 1055t Processor CPU offers a very low
power efficiency (approximately 0.8 GFlop/s/W ) compared to that of Tahiti and Kaveri,
despite the excellent performance numbers delivered by the GotoBLAS implementation.
This is due to the high power envelope measured on the System 1 (up to 145 W ).
Second, the figure also demonstrates that the AMD discrete GPU Tahiti delivers a high
performance efficiency that reaches up to 5 GFlop/s/W . Finally, the red plot in the
figure shows that the Kaveri APU surpasses the Tahiti GPU in terms of power efficiency
which reaches 7 GFlop/s/W for medium sized matrices. We note a withdrawal for big
sized matrices, this is due to quick jump in terms of power consumption (from 42W up to
50W ) when the matrices are big (N ≥ 1024). It is to be noted that the data placement
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Figure 6.29: Performance comparison of the 3D finite difference power efficiency
(PPW) on the AMD Phenom TM II x6 1055t Processor , the Tahiti discrete GPU and

on Kaveri APU as a function of N , as a function of the snapshotting frequency.

strategy used here is cggc which was found, in section 6.2.1, to be the strategy that
generally offers the best performance. However, we noticed that the power consumption
of the APU is not affected by the choice of the data placement strategy.

Similarly, we present the power efficiency numbers of the 3D finite difference stencil
application in figure 6.29. At first glance, we realize that the power efficiency of the 3D
finite difference stencil is almost 4× lower than that of the matrix multiply benchmark.
This is due to the fact that the 3D stencil application is memory bound which incurs
lower performance numbers in the one hand, and higher power envelope (for example
on Kaveri the 3D stencil application draws up to 62 W as opposed to 50 W for the
matrix multiply application). This is due to the fact that a floating point operation
consumes less than a memory access, especially when the memory location has a high
overhead. The power efficiency of the AMD Phenom TM II x6 1055t Processor CPU is
very poor (less than to 0.08 GFlop/s/W ) compared to the power efficiency of the rest
of the tested hardware. The power efficiency of the Tahiti discrete GPU merely reaches
1.1 GFlop/s/W . That of the Kaveri APU is slightly higher than that of the Tahiti GPU
for all the data snapshotting frequencies and goes up to 1.25 GFlop/s/W .

As a conclusion, we demonstrated that despite the 3.3-fold difference in terms of
sustained performance between the APUs and the discrete GPUs (see figure 6.24), the
APUs are more power efficient than discrete GPUs for memory bound and compute
bound workloads, and that for all the data snapshotting frequencies in the case of the
3D finite difference stencil kernel. The gain factor in terms of power consumption of the
Kaveri APU compared to the discrete GPUs goes up to 3.59× (see figure 6.29). The
upcoming APUs (such as Carrizo and the Zen APU) can be even more power efficient
and may deliver higher PPW. Therefore, it is mandatory to take into consideration
the low power consumption, seen as an important asset of the APU technology, while
studying the performance of seismic applications on APUs, further in this document.
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6.4 Hybrid utilization of the APU: finite difference stencil
as an example

This section corresponds to a Master 2 thesis conducted by P. Eberhart in summer
2013.
The AMD APU has both CPU and GPU cores, and shared memory between them.
Until now, we have only considered using the integrated GPU of the APU in order to
implement the matrix multiplication and the 3D finite difference stencil OpenCL kernels.
We have shown in section 6.2.2 the potential of APU integrated GPUs for the 3D finite
difference stencil application, especially when considering the data snapshotting. But,
apart from handling the GPU, the CPU cores are idle during the computations on the
integrated GPUs. In this section, we extend the 3D finite difference OpenCL kernel
and try to use both the CPU and the integrated GPU of the APU to gain further
performance.
First, we propose a general hybrid strategy to spare stencil-based workloads between
CPU and GPU cores within an APU. Then, we describe the changes that we had to
conduct on the 3D finite difference kernel and show the performance numbers on the
CPU of the APU and on the integrated GPU of the APU separately. Finally, we apply
the hybrid strategy on the modified 3D finite difference kernel in order to exploit both
the CPU and the integrated GPU, and we show the obtained performance numbers.

6.4.1 Hybrid strategy for the APU

In order to use the CPU and the GPU concurrently, we propose a hybrid strategy as to
share an application workload between the APU CPU and the integrated GPU. Before
developping such a strategy we recall some OpenCL pittfalls that should be considered
in hybrid implementations.

The CPU can be seen as an OpenCL compute device along with the GPU. OpenCL
kernels can be executed on CPU and on GPU, and synchronized through the runtime.
On an AMD CPU, a thread will execute one by one each work-item of a given work-group
until completion or encountering a barrier. As the work-items are executed one at time,
there is no overhead on CPU due to diverging control flows among the work-items. Here,
it has to be noticed that the AMD OpenCL SDK used at the time of writing (version
2.6) does not provide implicit vectorization among multiple work-items on CPU. To use
the SSE instructions on the CPU, we therefore need to rely on explicit vectorization by
means of vector types (float4). Moreover the CPU caches enable to offset the overhead
of irregular memory accesses. Besides, local memory is redundant on CPU with the
caches of each core, especially since a work-group is executed on a single core.

On AMD GPUs, wavefronts in which work-items execute different control flows will
have their executions serialized over the different control flows. The partial SIMD exe-
cution of a GPU will force diverging control flows to be serialized (compute divergence).
Furthermore, on a GPU, global memory accesses are optimal when work-items in a
given wavefront access a contiguous and aligned memory area at the same time (coa-
lesced memory accesses on NVIDIA GPUs). Conditional control flows would induce an
overhead due to the divergence in memory accesses (memory divergence).

For finite difference stencils, as the costs of computation and memory divergence
are lower on CPU, specific treatments on the domain boundaries could be executed on
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Figure 6.30: Example of data-parallel and task-parallel deployments on a 2D domain.

the CPU, while keeping the regular parallel execution within the domain on the GPU.
For example, when simulating a wave propagation on an infinite or semi-infinite domain
with stencils, the domain borders act as reflectors. To correct this, PMLs are usually
used as boundary conditions (see section 2.2). We can imagine a scenario where the
interior region of the domain is updated by the GPU and the PML regions by the CPU.
In the rest of the chapter, we refer to splitting tasks between the CPU and the GPU
as a task-parallel hybrid deployment. Alternatively, the CPU can simply be used for its
additional compute power and memory bandwidth in a data-parallel deployment where
we can divide the compute domain into two regions to be executed on the CPU and
on the GPU, in a data-parallel fashion (see figure 6.30). To choose between these two
alternatives, we propose the strategy presented in figure 6.31. First, we determine if
the application is compute-bound or memory-bound. For this purpose, we compare
the arithmetic intensity (ratio of the number of memory accesses over the number of
arithmetic operations) and the hardware specifications of the integrated GPU. We then
try to quantify the divergence, either through a profiler, or through code analysis or
even thanks to programmer indications. For a memory-bound application, we only
consider divergent memory accesses, whereas we look only at divergent computations
in the compute-bound case. If the divergence is high enough according to empirical
thresholds, we choose the task-parallel deployment. Otherwise, the data-parallel one
will be preferred. Similar works can be found in [64], where the authors rely on the
“computational density” metric in order to characterize whether a workload is better
suited for the integrated GPUs of APUs or for discrete GPUs.
Our strategy could be implemented in a generic software platform. In this work, we will
only apply and try to validate this strategy on the 3D finite difference stencil OpenCL
kernel presented in section 6.2.2 on the Trinity APU (at the time of this work the Kaveri
APU was not released yet).

The hybrid strategy applied to stencil computations requires to read from an input
buffer and write to an output buffer, for both CPU and GPU. As the buffers will swap
between input and output at every iteration, buffers need to be zero-copy and read-write
enabled. u memory, being read-only from the GPU, is not a valid choice, only z and p
are both zero-copy and read-write enabled from CPU and GPU. It has been shown in
section 6.2.2, that p is significantly slower than z for CPU reads. The input and output
buffers will thus be allocated as z buffers. Furthermore, it has been demonstrated that



Chapter 6. APU evaluation 106

Figure 6.31: Hybrid strategy for the APU.

on the Trinity APU, the z memory can be as interesting as the g memory (see figure
6.22), only when snapshotting is performed at every iteration. Memory accesses via
Garlic (g memory) are indeed much more efficient than via Onion (z memory) on the
Trinity APU. On the Kaveri APU, we have shown in section 6.2.2 that the performance
gap between z and g memory locations is reduced, which widens the interest of using z
memory and justifies our hybrid approach based on zero-copy buffers.

In order to study our strategy, we had to modify the 3D finite difference OpenCL
kernel used in section 6.2.2. To study the effect of memory access divergence, we use
here a basic stencil with a parametrizable size. This enables us to control the amount of
divergence by changing its size. To ensure the best control over divergence we therefore
do not use PMLs here. As opposed to the 3D finite difference stencil kernel studied in
section 6.2.2, we do not use halos either (additional points on the borders of the domain
containing only zero values) on the buffers, as they would cancel memory divergence.
We will use a laplacian stencil (see figure 6.13a). For low divergence, we will use an 8th

order stencil, and a 64th order stencil for high divergence.

6.4.2 Deployment on CPU or on integrated GPU

We first study CPU-only and GPU-only computations. We determine which ones are
the most efficient in order to use them as the basis for our task-parallel and data-parallel
hybrid approach. We investigate different deployment techniques following [209]:

• complete, one single kernel executed on the 3D whole domain;

• inout, one kernel executed on the inside of the domain and another one encom-
passing all the borders;

• sides, one kernel executed on the inside of the domain and one for each of the six
borders in 3D.

complete will be the basis for the data-parallel deployment, and the task-parallel de-
ployment will be developed on the most performant between inout and sides. We
consider the OpenCL kernel versions scalar, vectorized and local vectorized as described
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(b) 64th order stencil.

Figure 6.32: Performance results of stencil computations on the integrated GPU of
Trinity.
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(b) 64th order stencil.

Figure 6.33: Performance results of stencil computations on the CPU of Trinity.

in section 6.2.2. It has to be noticed that our kernel source codes are fully parametriz-
able. This enables us to define the size of the stencil and the size of the work-group at
kernel compilation time by using the C pre-processor. We can then easily optimize the
size of the work-groups for the Trinity APU via an exhaustive search. The domains are
three-dimensional and of size N3. Due to the existence of vectorized instructions on both
the CPU and GPU, the vectorized kernel performs consistently better than the scalar
one thanks to the SSE instructions and the GPU vector processing units (performance
tests not presented). The local vectorized version does not offer performance gain over
vectorized either. On the CPU, the redundancy of local memory with caches implies
indeed an overhead. On the GPU, there is also no performance gain for local vectorized
with a 8th order stencil (note that the domain size (N3) is different from that used in
figure 6.19 (N2 × 32)). For a 64th order stencil, the amount of local memory required
decreases the occupancy, hence the low performance. We will therefore consider only
the vectorized kernel through the rest of this section.

Figures 6.32a, 6.32b (resp. 6.33a and 6.33b), present performance results of our
different deployments on GPU only (resp. on CPU only). This enables us to study
the divergence impact on each architecture separately. On GPU, sides is topped by
the other strategies, due to the cost of launching the multiple kernels and the low
occupancy of the kernels on the borders. On a 8th order stencil (see figure 6.32a),
complete performs better than inout. When the size of the stencil is increased to 32
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Figure 6.34: Performance results of compute-bound stencil computations (8th order
stencil).

(see figure 6.32b), memory divergence rises and inout almost catches up with complete
but does not outperform it: this is due to the fact that the AMD GPUs are only
slightly sensitive to memory divergence [29]. On CPU, performance drops very fast
when the domain enlarges (see figures 6.33a and 6.33b), because a smaller domain,
fitting almost entirely in cache, allows for a better memory bandwidth. There is nearly
no difference between the performances of the three strategies, as they were designed to
handle divergence and CPU hardware is not sensitive to divergence. Domains with sizes
which are multiples of 128 offer low performance, probably due to the under-utilization
of the interleaved memory banks. The effects are especially noticeable for the 64th order
stencil computations, which are subject to higher cache pressure.

We have observed so far the effect of memory divergence on stencil computations,
but the little sensivity of AMD hardware to memory divergence has lessened its im-
pact. To more clearly witness the impact of our strategy, we have also studied artificial
compute-bound stencils with compute divergence. In this purpose, we first include com-
pute divergence in our kernels by dividing the computation into seven distinct parts: the
inside of the domain, and each of the six sides. To ensure that the compute divergence
will not be made negligible by the memory-bound nature of our stencils, we artificially
raise the arithmetic intensity. To do so, we compute each point of the domain several
times and accumulate all the results, while keeping the values necessary for the compu-
tation in registers. In the memory-bound stencil, for each point in our domain, there
were 26 memory accesses (25 reads and one write) for 36 arithmetic operations. For the
compute-bound stencil, the number of memory accesses remains the same, whereas the
number of arithmetic operations is multiplied by the number of iterations. The Trinity
APU integrated GPU has a maximum memory bandwidth of 25.6 GB/s, meaning it can
access 6.4 G floats per second. With a peak performance at 546 GFlop/s, its theoretical
threshold between memory-bound and compute-bound applications is around 85 float-
ing point operations per memory access. The arithmetic intensity of our previous basic
stencil computation was 1.4, which is clearly memory-bound. With 128 iterations our
new articifical stencil computation has an arithmetic intensity of 177 which is clearly
compute-bound. For these compute-bound stencils, we also study our three deployment
strategies and we set the 8th order stencil. The relative performance of the three strate-
gies are then similar to the previous ones on both the GPU and the CPU (see the figures
6.34a and 6.34b). On the GPU, sides is again performing worse than inout, inout being
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Figure 6.35: Performance results of hybrid deployments of stencil computations

closer to complete. On the CPU, there is no difference in the performance results of the
three strategies, since the CPU is again not sensitive to divergence.

6.4.3 Hybrid deployment

Our two strategies for hybrid deployments, task-parallel and data-parallel, execute one
or several kernels on both CPU and GPU. For the task-parallel deployment, we choose
the inout strategy, as it consistently performs better than sides. We modify it to
make the CPU execute a divergent kernel on the borders of the domain, while the GPU
executes a regular kernel on the inside. For the data-parallel one, we divide the domain
into two subdomains and execute the same kernel on them. We divide the domain
along the Y axis, as cutting along the X axis could split up float4 values, and as
the Z axis is the axis work-items iterate along. We synchronize the execution of the
kernels by using a blocking function, clFinish, to ensure that the two execution queues
(CPU and GPU) are completed. According to the OpenCL specification, clFinish
also ensures that memory writes are visible to both the CPU and GPU. As noted by
[75], the OpenCL standard (version 1.2) does not specify a way to share a buffer for
concurrent accesses by multiple devices (on distinct data within this buffer). However,
the AMD implementation of OpenCL makes it possible by not deleting the reference to
the physical location of the buffer when unmapping. In their case, simply unmapping
the buffer from the device allowed them to use it simultaneously on the GPU, as a
device, and on the CPU, as a host. In our case, we similarly write to the shared buffer
concurrently by the CPU and the GPU, both used here as OpenCL devices, and we have
consistently checked the correctness of our hybrid computations.
For the data-parallel deployment, we also need to determine the optimal ratio between
the parts of the domain that will be computed by the CPU and by the GPU. At first,
we had chosen the theoretical peak performance ratio of the CPU and the GPU, but the
use of the profiler has shown an imbalance in the execution times. We have then chosen
the ratio of the actual performance of the CPU-only and of the GPU-only vectorized
(complete) kernels: these have been confirmed empirically as nearly optimal, by running
several performance tests with various ratios. For the memory-bound case, we have thus
a 0.8 ratio for the GPU, and 0.95 in the compute-bound case.
According to the AMD profiler, executing a kernel on the CPU used as a device preempts
the CPU and hence prevents the CPU host from enqueuing GPU kernel executions. A
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possible solution would have been the OpenCL device fission of the CPU, separating
it into different devices, keeping one core for the host and executing the kernel on the
remaining three. In our case, enqueuing the GPU kernel first was adequate, as we have
to synchronize at each iteration and cannot enqueue more than one GPU kernel at a
time.

We now compare the APU hybrid performance (for 8th order stencils) with an
execution on the APU integrated GPU only with buffers allocated inz memory. For the
memory-bound case (see figure 6.35a), we see a better performance in the task-parallel
deployment on smaller domains, but this drops when the domain gets larger and the
GPU occupancy rises. When the GPU is full enough, the CPU will not perform fast
enough to keep up, and overall performance will decrease. The data-parallel deployment
performs better when the domain gets larger, as the relative cost of synchronization gets
lower when computation time increases. We obtain a 20% to 30% better performance
compared to GPU only (with buffers in z memory).
For the compute-bound case (see figure 6.35b), the task-parallel deployment is slowed
down by the CPU’s lower compute power. Even for the data-parallel deployment, the
cost of synchronization is too high due to the imbalance in the ratio between the CPU
and the GPU. This may be due to the lack of optimization of the source code for the
CPU: whereas its compute power is 18% of the APU, its kernel performance is only 5%
of that of the integrated GPU.
Finally, it has to be noticed that the GPU-only performance (with buffers in z memory)
is here lower than the GPU-only performance (with buffers in g memory) presented in
figures 6.32a and 6.34a. g memory offers indeed a better bandwidth than z memory
on the Trinity APU. However, those previous results with g memory do not take into
account the cost of the snapshotting necessary to applications such as the RTM. In
section 6.1, g memory has been shown to perform currently better than z memory even
when the snapshotting frequency is high, but we already showed that with the Kaveri
APU the bandwidth of such zero-copy (z) memory has been significantly improved.

In this section, we studied how to use both the CPU and the GPU of the APU
for stencil computations. We provided a strategy for hybrid deployments of stencil
computations that takes into account the compute-bound or memory-bound nature of
the application and its amount of divergence. We proposed two possible deployments,
a task-parallel one and a data-parallel one, and balanced the use of the CPU and the
integrated GPU in order to exploit at best the APU. When considering a classic memory-
bound stencil, we obtained an up to 30% performance gain compared to a GPU only
deployment (with buffers in z memory). Given that the theoretical single precision of
the CPU of the Trinity APU represents 18% of the overall theoretical performance of the
APU, one can infer that not only the hybrid approach has improved the performance
of the stencil computations by using more resources, but also it accelerated the GPU
computation since the branch divergence is reduced.
However, our strategy seems to be valid in the memory-bound case with a high rate
of memory and compute divergence, but requires further investigation for the compute-
bound case on the APU. More precisely, the OpenCL kernel for the CPU should better
exploit the CPU caches as well as the CPU prefetch feature, and hence offer much better
performance. In the future, we first could try to confirm the validity of our strategy on
real world applications such as the RTM. We could also plan to apply this strategy on
other hybrid hardware, such as the Intel multicore CPUs with integrated GPUs or the
Tegra X1 GPU from NVIDIA with both GPU and ARM CPU on the same chip (such
future work is not covered by the scope of this thesis).
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To conclude, hybrid computations on APU can be reliable under several assump-
tions: a high rate of memory and computation divergence is required along with a highly
optimized CPU code. Given the low compute power of the CPUs of the actual AMD
APUs, and given that the finite difference stencil, that we use in the seismic applications,
is of a low order (8th order) and is not subject to a high rate of divergence, we decided
to dedicate the CPU resources of the APU rather to auxiliary tasks, other than compu-
tations, such as I/O operations and MPI communications in the case of the multi-node
implementations of the seismic applications (namely for the RTM).

6.5 Directive based programming on the APU: finite dif-
ference stencil as an example

This section corresponds to a Master 1 internship conducted by the student R. Dang.
We evaluate the performance and the programmability of the 3D finite difference bench-
mark using a directive-based approach. An OpenACC 3D finite difference kernel is
proposed, where a list of implementations and optimization techniques are detailed.
The implementations include three versions with a gradual increase in terms of pro-
gramming complexity. The first is a plain OpenACC implementation, the second one is
an implementation based on both OpenACC and the HMPPcg extension in order to gen-
erate optimized OpenCL kernels, and the third one makes use of OpenACC, HMMPcg
and modifies the initial code in order to exploits the GPU local memory and increase
the ILP factor. Besides, a performance comparison between the OpenCL performance
numbers, more specifically those of the local scalar version as we only survey the GCN
based GPUs, and those of the 3D finite difference OpenACC implementations on the
Kaveri APU and on the Tahiti discrete GPU is presented.

6.5.1 OpenACC implementation details

We start this section with a quick description of our OpenACC implementation of the
3D finite difference stencil application. We also describe our optimization techniques
while giving details about the OpenACC programming paradigm. For a thorough un-
derstanding we refer to the OpenACC literature that can be found in [13]. For this
evaluation, we make use of the CAPS Compiler (version 3.3), provided by CAPS En-
treprise, to generate OpenCL kernels from an initial implementation in C code of the
3D finite difference stencil application.

To begin with, the straightforward implementation of the 3D stencil kernel consists
in delimiting the main loop nest, presented in the figure 6.36, with a “kernels” OpenACC
construct as shown in figure 6.37a. The “parallel” OpenACC directive can be used as
well in order to map the loop to an accelerator (see figure 6.37b). In the figure 6.37, the
construct “gang” refers to a group of threads that operates over a number of processing
elements as with workgroups in OpenCL. The “kernels” construct indicates that a region
in the code may contain parallelism, and the compiler identifies the loop nests that can
be converted into parallel kernels, in a CUDA or OpenCL fashion, that run on GPU.
However, with the “parallel” construct the programmer explicitly identifies one loop
nest as having parallelism, in an OpenMP fashion, and the compiler generates a parallel
kernel based on the body of the construct. We chose to use the “kernels” construct.
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for(z = 0; z < dim[2] ; ++z) {

for(y = 0; y < dim[1]; ++y) {

for(x = 0; x < dim[0]; ++x) {

update_cell(uo, ui, x, y, z);

...

}

}

}

Figure 6.36: The main loop nest in the 3D finite difference stencil code. x, y and z
are the grid indexes along the X, Y and Z axises respectively. uo is the 3D domain to

be updated (inside the update cell() routine) based on the inputs in ui.

#pragma acc kernels {

#pragma acc loop gang

for(y = 0; y < dim[1]; ++y) {

#pragma acc loop gang

for(x = 0; x < dim[0]; ++x) {

for(z = 0; z < dim[2] ; ++z) {

update_cell(uo, ui, x, y, z);

...

}

}

}

}

(a) Using the kernels construct.

#pragma acc parallel {

#pragma acc loop gang

for(y = 0; y < dim[1]; ++y) {

#pragma acc loop gang

for(x = 0; x < dim[0]; ++x) {

for(z = 0; z < dim[2] ; ++z) {

update_cell(uo, ui, x, y, z);

...

}

}

}

}

(b) Using the parallel construct.

Figure 6.37: The initial OpenACC implementation of the 3D finite difference stencil
main loop nest.

Note that the order of the loop over X, over Y and that over Z are reorganized. This
allows each work-item to sweep over the Z axis during computation as it is the case in
the OpenCL implementation of the 3D finite difference stencil, detailed in section 6.2.2.
Furthermore, in order to enhance the memory allocation and transfers between the host
memory and the GPU memory, namely when performing data snapshotting, we added
a user managed OpenACC “data” region (using the “data” construct). As a matter
of fact, memory buffers are automatically allocated and then copied to the accelerator
memory prior to any kernel execution by the OpenACC runtime. They are released at
the end of the kernel execution. In our case we would like to keep the memory objects
persistent in the GPU memory throughout the kernel executions of successive iterations.
Thanks to the “data” clause the memory arrays are created only once and before the
first iteration, and released after the last one. The updated OpenACC pseudo-code is
partially presented in figure 6.38. Note that the data snapshotting is performed using
the “update” directive. The “create” directive is used to allocate copies of the memory
objects on the GPU memory when the data region is reached for the first time, the
“present” data clause means that the memory objects are already present in the GPU
memory which prevent creating them every time they are accessed, and the “delete”
clause indicates that the memory objects on the GPU memory have to be released.
Besides, in order to efficiently gridify the 3D finite difference stencil main loop nest, i.e.
mapping the loop nest to grid of GPU threads, and determine the appropriate workgroup
size, we made use of the “gang”, “worker” and “vector” directives. The CAPS compiler
translates the gang construct into the total number of workgroups, the vector construct
into the size of the first dimension and the worker construct into the size of the second
dimension of a workgroup. It is to be noted that this may change from an OpenACC
compiler to another as the OpenACC standard does not give strict recommendations
on how these directives should be interpreted. The figure 6.39 shows an example of
the gridification of the 3D finite difference main loop nest into 400 workgroups, each
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being of dimension 32 × 8. In the figure, the “independent” construct specifies that
the loop iterations are data-independent and can be executed in parallel, overriding
compiler dependence analysis. Note that similarly to the OpenCL implementations, the
best workgroup dimensions are determined by auto-tuning.

The next step is to use the HMPPcg extension in order to have much more control on
how the OpenCL kernels should be generated. To be able to use the HMMPcg clauses,
one should first use the gridification mechanism provided by HMMPcg instead of that
provided by the OpenACC standard. This can be done using the “gridify” construct
which we found very useful to express 2D gridifications (as opposed to OpenACC which
is not straightforward). The HMPPcg gridification parameters should be defined at
compile time with the help of the options “-Xhmppcg -grid-block-size,SIZEXxSIZEY”
where SIZEX is the first dimension of a workgroup and SIZEY is the second. An
example of an implementation using the HMPPcg directives is presented in figure 6.40.
We relied on the HMPPcg directive “unroll” which is intended to unroll the the inner-
most loop, and thus increase the register exploitation and decrease the impact of the
conditional test at the end of each iteration of the loop. With this technique, we aim to
improve the performance. Note that in this version we keep using the OpenACC data
clauses in order to handle the memory transfers.

#pragma acc enter data create(ui[0:size], uo[0:size])

...

for(it = 0; it < N; ++it) {

#pragma acc kernels present(ui[0:size], uo[0:size]) {

#pragma acc loop gang

for(y = 0; y < dim[1]; ++y) {

#pragma acc loop gang

for(x = 0; x < dim[0]; ++x) {

for(z = 0; z < dim[2] ; ++z) {

update_cell(uo, ui, x, y, z);

...

}

}

}

}

...

#pragma acc update host(uo[0:size])

...

}

#pragma acc exit data delete(ui[0:size], uo[0:size])

Figure 6.38: The modified OpenACC implementation of the 3D finite difference
stencil main loop nest in order to enhance memory transfers between the host and the
GPU memory. size is the size of the domain, it is the iteration index and N is the

number of iterations.

#pragma acc kernels {

#pragma acc loop independent, gang(400), worker(8)

for(y = 0; y < dim[1]; ++y) {

#pragma acc loop independent, vector(32)

for(x = 0; x < dim[0]; ++x) {

for(z = 0; z < dim[2] ; ++z) {

update_cell(uo, ui, x, y, z);

...

}

}

}

}

Figure 6.39: The gridification of the 3D finite difference stencil main loop nest using
OpenACC constructs only.
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Finally, in order to try to apply the same performance optimizations that we adopted
in the OpenCL implementations we had to alter the initial code. First, we tried to
make use of the local memory. For this purpose, the OpenACC standard provides the
directive “cache”. Unfortunately, after an early experiment the CAPS compiler seemed
to ignore this construct. As an alternative, we relied on the HMPPcg directive “shared”.
Introducing the “shared” clause required the modification of the initial code. Some
HMMPcg intrinsics, such as RankInBlockX() and RankInBlockY () should be added
in order to distinguish the threads local coordinates to workgroups from the threads
global coordinates. Besides, we had to explicitly add the code that copies data from
the global memory to the local memory to the initial serial code. Thus, it goes without
saying that this version affected the initial code and required the modifications of the
latter in order to reproduce the same OpenCL local scalar kernel discussed in section
6.2.2. As a matter of fact we almost had to re-write the initial code. We present a code
snippet of this implementation in figure 6.41. Besides, we also tried to increase the ILP.
For that to do, we had to modify the initial code by breaking the innermost loop into two
loops, having the second one sweeping over a temporary array whose size defines the ILP
parameter, and which contains the intermediate results of the computation performed
on multiple grid points at the same time.

To summarize, we started with a straightforward implementation where few Ope-
nACC directives are added to the CPU code in order to express parallelism and map

#pragma hmppcg gridify(y,x),

for(y = 0; y < dim[1]; ++y) {

for(x = 0; x < dim[0]; ++x) {

#pragma hmppcg unroll(8)

for(z = 0; z < dim[2] ; ++z) {

update_cell(uo, ui, x, y, z);

...

}

}

}

Figure 6.40: The gridification of the 3D finite difference stencil main loop nest using
HMPPcg.

#pragma hmppcg gridify(y,x), shared(buffer), private(id_x, id_y)

for(y=0; y<dim[1]; y++){

for(x=0; x<dim[0]; x++){

#pragma hmppcg unroll(8)

#pragma hmppcg set id_x = RankInBlockX()

#pragma hmppcg set id_y = RankInBlockY()

for(z=0; z < dim[2]; z++){

if(id_x < 4)

L(buffer, id_x-4, id_y) = O(i, z, y, x-4);

if(id_x >= size_bloc_x - 4)

L(buffer, id_x+4, id_y) = O(i, z, y, x+4);

if(id_y < 4)

L(buffer, id_x, id_y-4) = O(i, z, y-4, x);

if(id_y >= size_bloc_y - 4)

L(buffer, id_x, id_y+4) = O(i, z, y+4, x);

L(buffer, id_x, id_y) = O(i, z, y, x);

#pragma hmppcg barrier

....

update_cell(uo, ui, x, y, z)

}

}

}

Figure 6.41: The implementation of the 3D finite difference main loop nest using
HMPPcg and modifying the initial code.
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Kaveri (GFlop/s) Tahiti (GFlop/s)

OpenACC only 32.28 213.52

OpenACC + HMPPcg 42.13 254.55

OpenACC + HMPPcg + code modification 38.73 247.73

Table 6.3: Performance comparison of the different OpenACC implementations of the
3D finite difference application on Kaveri and Tahiti. The numbers correspond to the

average performance of 100 iterations of stencil computations.

computations to the GPU. Then we presented a list of optimization techniques, with a
gradual increase in terms of complexity. Some implementations have affected the ini-
tial code, which became very verbose to some extent, but they are meant to provide
performance enhancement.

6.5.2 OpenACC performance numbers and comparison with OpenCL

In this section we evaluate the performance of the different OpenACC implementations
of the 3D finite difference stencil application detailed in section 6.5.1. We compare the
OpenACC performances with respect to the OpenCL performance numbers obtained in
section 6.2.2. We chose to consider a domain size of 1024× 1024× 32 as a use case for
our evaluation. The performance numbers on Tahiti are obtained using the AMD Cat-
alyst driver 14.4 and those on Kaveri are obtained using the AMD Catalyst 15.4. Each
OpenACC implementation is auto-tuned in order to determine the best gridification pa-
rameters as well as the most appropriate loop unrolling level in order to deliver the best
performance possible. Besides, given that we only survey the GCN based GPUs, the
OpenCL vectorized implementations are not considered in this performance comparison.
In table 6.3, we summarize the performance numbers of the three OpenACC implemen-
tations, detailed in section 6.5.1 on both the Tahiti discrete GPU and the Kaveri APU
(integrated GPU only). The complexity, in terms of programmability, of the OpenACC
implementations increases from top to bottom in table 6.3. We notice that the evolution
of the performance on both Kaveri and Tahiti are quite similar. The OpenACC imple-
mentation coupled with the HMPPcg extension offers the best performance on both the
APU and the discrete GPU. The modification of the initial code by adding the local
memory did not provide any performance enhancement. Note that trying to increase
the ILP didn’t help either and provided even lower performance numbers than those
presented in table 6.3. Not to mention that it almost required to rewrite the initial code
(see figure 6.41).
In order to evaluate the performance of the OpenACC implementations on both Kaveri
and Tahiti, we compare it against the performance of the best OpenCL implementations
on both the APU and the discrete GPU, which is given by the local scalar version. We
can see in table 6.4 that the OpenACC + HMPPcg implementation delivers approxi-
mately half the performance of the best OpenCL implementation on both Tahiti and
Kaveri. As a matter of fact, the OpenCL implementation makes use of the local memory
and includes other optimizations such as using the register blocking and increasing the
ILP, while we did not manage to benefit from the local memory in the OpenACC im-
plementation (see table 6.3). Besides, we were unable to reproduce the register blocking
and neither were we able to take advantage from increasing the ILP.

To sum up, we have proposed three directive-based implementations of the finite
difference stencil kernel, with an increasing level of programming complexity. We have
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Kaveri (GFlop/s) Tahiti (GFlop/s)

OpenACC 42.13 254.55

OpenCL 85.06 544.09

Table 6.4: Performance comparison between the OpenACC best implementation and
the best scalar OpenCL implementation of the 3D finite difference application on Kaveri
and Tahiti. The numbers correspond to the average performance of 100 iterations of

stencil computations.

evaluated them on the Kaveri APU and on the Tahiti discrete GPU. We have shown that
the OpenACC standard does not provide enough directives to optimize the generated
OpenCL kernels and to expose the hardware features to the programmer (for example
to explicitly use the local memory). Consequently, the HMPPcg directives (we recall
that HMPPcg is not a standard), have to be used in conjunction with OpenACC in
order to reach the best performance. Besides, modifying the initial code in order to use
the local memory with OpenACC and to increase the ILP did not provide any perfor-
mance enhancement compared to the OpenACC + HMMPcg implementation, although
it required a tremendous programming effort. Finally, we noticed that the OpenACC
standard did not restrict enough how the directives should be interpreted, especially
when defining the gridification parameters (with “gang”, “worker” and “vector” direc-
tives), which would impact the performance portability of the GPU applications.

As a conclusion, given that the hardware accelerators programmability, that of APUs
in particular, is driven by the preferred trade-off between performance enhancements and
programming efforts, the obtained OpenACC performance numbers are encouraging
thanks to the huge difference in terms of efforts compared to OpenCL (almost 15×
less lines of code). However, given that the best floating point performance is our main
concern when deploying seismic applications on APUs, we choose to rely on the OpenCL
programming model in the rest of our study.
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In this chapter we focus on real world seismic applications that we study in the scope
of this work, namely seismic modeling and seismic migration. We implement seismic
modeling and seismic migration applications on CPU, on APU and on discrete GPU.
A special emphasis is placed on optimizing the seismic application at the node level on
the APU and on the discrete GPU using OpenCL, while the CPU implementation (also
based on OpenCL) is more used for the sake of comparison.
First, we describe the algorithm of the seismic modeling and give implementation and
optimization details on APUs and on GPUs. Besides, we elaborate a comparison at
the node level between the different architectures (an AMD Phenom TM II x6 1055t
Processor , a Tahiti GPU and a Kaveri APU). The comparison includes an OpenCL per-
formance evaluation and a power efficiency study. Moreover, we implement the seismic
modeling using a directive based approach with OpenACC and we compare its perfor-
mance against that achieved with OpenCL. Based on that comparison, we assess the
two programming models in terms of ease of programmability.
Second, we use the seismic modeling core algorithm to build the forward modeling and
the backward modeling stages of the seismic migration, more specifically of the RTM
(see section 2.2.2). Similarly to the seismic modeling application, we evaluate the per-
formance and the power efficiency of the RTM at the node level and compare the results
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of the different architectures. In addition, we compare the performance delivered by
OpenACC against that obtained using OpenCL, with an emphasis on the programming
efforts required by the two programming models.

7.1 Seismic modeling

In this section we describe the different steps of the seismic modeling algorithm. We
only focus on the heart of the application, which is the wave propagation, that will
be further used by the RTM application. Besides, we give a succinct overview of the
OpenCL implementations on the surveyed hardware, and evaluate their performance
results and their power efficiency. Finally, we also compare a proof-of-concept OpenACC
implementation of the seismic modeling with the OpenCL implementations in terms of
performance and programmability.

7.1.1 Description of the algorithm

The seismic modeling, or the forward modeling as presented in section 2.2, is a numerical
simulation of a propagation of a source wavefield on a given medium (in our case the
medium is isotropic). The propagation is governed by a wave equation solver and by the
subsurface reflectively, often emulated by synthetic velocity models. By seismic modeling
we actually approximate the solution of the wave equation (2.16), using the Laplace
operator to compute the spatial derivatives and the Leap-Frog scheme to compute the
derivatives with respect to time. We present in algorithm 7.1 a high level description of
the seismic modeling algorithm. The computation involves two arrays of the wavefield
u0 and u1 that are interleaved throughout the simulation iterations in order to compute
the temporal derivatives. The source term of the equation (2.16) is introduced in the
subroutine add seismic source(). We make use of the Ricker wavelet, illustrated in the
figure 5.1, as a seismic source. The wave propagation is performed in the subroutine
update wavefield() where the stencil computations, described in section 6.2.2, are used.
Figure 7.1 shows the structured grid, Ω16×16×16 (see section 5.3.2.2) used to compute
the discretized wavefields on each time iteration. The gray grid is augmented with
additional layers (the light blue layers) on the bottom and on the sides. These layers
are artificial and are used for the perfectly matched layer (PML) boundary conditions
applied to the wave equation solver. The grid also features a free surface or a zero-
stress boundary condition (the purple layer) on the top. This is to simulate the flat free
surface of the earth or sea in which the seismic energy is not reflected nor refracted.
The gray region is updated using the subroutine compute core() and the blue one is
updated using compute pml(). Usually, the source wavefield is then periodically stored
on disk (subroutine save seismic trace()), with respect to a snapshotting frequency, in
order to construct the seismic traces that may be further used for seismic migration or
full wave inversion. However, in this section we only focus on the core algorithm of the
seismic modeling, i.e. the update wavefield() subroutine, as it is the building block of
the RTM which is our main interest in this chapter. As a consequence, our evaluation of
the seismic modeling does not involve data snapshotting (no I/O operations). In other
words, the subroutine update wavefield() is not considered in this section, we rather
present it to give the reader a complete picture of the seismic modeling algorithm. We
consider that the medium is isotropic and we make use of the 3D SEG/EAGE salt model
presented in figure 5.2 as a velocity model.
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7.1.2 Accelerating the seismic modeling using OpenCL

When it comes to the OpenCL implementations, for the seismic modeling application
we only consider the scalar version and the local scalar version, as described in section
6.2.2, since we target only GCN micro-architecture based AMD GPUs. However, we still
need the vectorized version for the CPU implementation in order to benefit from the
explicit vectorization (see figure 6.14). We apply a 2D work-item grid on the 3D domain
and we rely on the same optimization techniques applied to the 3D finite difference
stencil kernel. The seismic modeling kernel involves more memory accesses, compared
to the stencil kernel, as more memory objects are used namely for the source term, the
velocity model and for arrays related to the computation of the PML regions. Besides,
updating the wavefield on the PML regions requires more floating point operations
(higher compute intensity compared to the core regions). In addition, as shown in
algorithm 7.1, the seismic modeling kernel is subject to a conditional statement in order
to evaluate whether a grid point is situated in a PML region or not, which incurs two
different computations accordingly. Depending on the width of each PML region (18
grid points for Ω16×16×16), this may cause more or less GPU divergence in the OpenCL
implementations. Moreover, we implemented the subroutine add seismic source() in
OpenCL, with the help of OpenCL tasks, because only few grid points (8 grid points)
are concerned with this computation.
We considered running 1000 time iterations of the seismic modeling OpenCL kernel on

Algorithm 7.1 High level description of the one-node seismic modeling algorithm.

1: for t ∈ [0..T ] do ⊲ [0..T ] is the simulation time-step interval
2: if mod(t, 2) == 0 then ⊲ t is the time-step index
3: add seismic source(u0, t) ⊲ u0 is the wavefield array at time-step t
4: update wavefield(u1, u0, t) ⊲ u1 is the wavefield array at time-step t− 1
5: save seismic trace(u1, t) ⊲ this involves I/O operations (not used in here)
6: else
7: add seismic source(u1, t)
8: update wavefield(u0, u1, t) ⊲ u0 and u1 are interleaved
9: save seismic trace(u0, t)

10: end if
11: end for
12:

13: procedure update wavefield(u, v, t)
14: for z ∈ [0..nz − 1] do ⊲ z is the array coordinate in Z
15: for y ∈ [0..ny − 1] do ⊲ y is the array coordinate in Y
16: for x ∈ [0..nx− 1] do ⊲ x is the array coordinate in X
17: laplacian = fd stencil compute(v, x, y, z, t) ⊲ see algorithm 6.1
18: if (x, y, z) ∈ PML region then ⊲ propagate the wave in PML regions
19: compute pml(u, x, y, z, laplacian, t)
20: else ⊲ propagate the wave in core regions
21: compute core(u, x, y, z, laplacian, t)
22: end if
23: end for
24: end for
25: end for
26: end procedure
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Figure 7.1: Ω16×16×16 : the computational domain of the problem under study.

the AMD Phenom TM II x6 1055t Processor CPU, the Kaveri APU and on the Tahiti
GPU. We used the AMD OpenCL driver version 15.4 on both Kaveri and Tahiti, and we
vary the different parameters such as the workgroup dimensions and the ILP in order
to perform auto-tuning and find the appropriate combination that delivers the best
performance on each architecture. Besides, our first OpenCL implementations use one
kernel as to implement the seismic modeling application. We also considered a different
OpenCL approach where we deploy multiple OpenCL kernels, one to update the gray
area of the compute grid 7.1 and one kernel to update each PML layer, which makes
six OpenCL kernels in total. This approach may reduce the impact of the computation
divergence that may occur within the OpenCL workgroups deployed when the seismic
modeling application is implemented in one OpenCL kernel.

The table 7.1 summarizes the performance numbers of the two different OpenCL
approaches (one OpenCL kernel or multiple OpenCL kernels) on the Kaveri APU. Note
that the performance numbers (GFlop/s) are mainly calculated based on the theoretical
number of floating point operations issued when solving the wave equation (given that

Kernel version #Kernels DPS LX LY ILP comp-only (GFlop/s)

scalar one cggc 32 8 1 28.41

local scalar one cggc 32 8 1 26.11

scalar one zz 128 2 2 12.26

local scalar one zz 256 1 2 14.09

scalar multiple cggc 64 1 2 32.03

local scalar multiple cggc 32 2 1 26.14

scalar multiple zz 128 1 8 13.14

local scalar multiple zz 64 1 2 15.57

Table 7.1: Performance parameters and results of the seismic modeling OpenCL
kernels on Kaveri. The numbers marked in bold are the best achieved performance

numbers for each configuration.
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other minor operations, such as those related to adding the seismic terms to the equa-
tion, are very minority). Consequently the number of flops required to update one grid
point in the core region corresponds to 4+3 ∗ (3 ∗ p/2+1), p = 8 being the stencil order
(see equation (2.27)) and to 26+3∗ (3∗p/2+1) if the grid point is in a PML region (see
equation (2.32)). For each approach we present the performance numbers of the scalar
and the local scalar versions both coupled with two different data placement strategies
(DPS) cggc and zz. We recall that zz involves zero-copy memory objects (see sec-
tion 6.1) which would allow to process bigger compute domains on APUs. Besides, the
zero-copy memory would be beneficial if I/O operations are considered in the algorithm.
However, this is not the case in our implementations as we only focus on the compu-
tations related to the wave propagation, i.e. the OpenCL kernels performance. But,
the I/O operations (via data snapshotting) will be considered in our implementations of
RTM in the next section. Thus, it is expected that the seismic modeling implementations
based on the zz DPS would be less efficient on APUs, than those relying on cggc. In
addition to the performance numbers, the best auto-tuning parameters combination is
also given in the table 7.1. The column LX indicates the size of one OpenCL workgroup
along the X axis, the column LY indicates the size of one OpenCL workgroup along the
Y axis and the ILP column shows the level of instruction parallelism used in each case.
We present the performance numbers of the computation of the wave simulation, i.e the
performance of the subroutine update wavefield() (the comp-only column in the table).
First, the table shows that as opposed to the 3D finite difference stencil OpenCL kernel,
the scalar version slightly outperforms, by 8%, the local scalar version when the cggc

data placement strategy is used. This may be induced by the fact that the GPU local
memory is only used to copy the wavefield arrays (u0 and u1) from the GPU global
memory, while the other arrays, which are the velocity model array, the source array
and the PML arrays (2 arrays), are accessed directly in the global memory. However,
when the zz strategy is applied the local scalar version is more efficient as it is the case
for the 3D finite difference stencil kernel. This is most probably due to the high latency
of the z memory as it is accessed by the GPU cores within the system memory via the
Onion bus. This latency is alleviated when the wavefield arrays are copied to the local
memory, which is closer to the GPU cores and thus has a much lower latency than the
z memory. Consequently, the wavefield updates are faster in the local scalar version.
Second, we notice that using multiple OpenCL kernels offers up to 12% of performance
enhancement. As a matter of fact, processing the core regions is almost 3× faster than
processing the PML regions and delivers an OpenCL performance that is comparable to
that of the 3D finite difference stencil kernel. Besides, updating the PML arrays sepa-
rately may reduce the GPU divergence which eventually enhances the multiple OpenCL
kernels implementations. More importantly, the multiple OpenCL kernels approach is
expected to be more efficient in the multi-node implementation since not all the six PML
faces are required to be locally updated by each compute node.
Finally, using the zero-copy memory objects cut the performance almost to half. In-
deed, the seismic modeling OpenCL kernels are memory bound and therefore their
performance is mainly driven by the memory bandwidth. Given that the z memory
bandwidth is almost 1.6× lower than that of the g memory (see section 6.1), it comes
as no surprise that the ratio between the performance obtained using the zz DPS and
the one with the cggc DPS ranges between 0.5 and 0.6.

Similarly, we present in table 7.2 the performance numbers of the seismic modeling
application on the Tahiti GPU. Here again we notice that the scalar version delivers
the best performance (the scalar implementation is 12% more efficient than the local
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Kernel version #Kernels LX LY ILP comp-only (GFlop/s)

scalar one 64 4 2 140.53

local scalar one 64 1 1 124.76

scalar multiple 64 2 2 144.02

local scalar multiple 256 1 1 117.10

Table 7.2: Performance parameters and results of the seismic modeling OpenCL
kernels on Tahiti. The numbers marked in bold are the best achieved performance

numbers.

scalar). Besides, the multiple kernel approach offers an enhancement of almost 4%, only
for the scalar version.

As a conclusion, we have shown that the multiple OpenCL kernels can slightly
enhance the performance at the node level (only with the scalar implementation for the
discrete GPUs, and with both the scalar and local scalar implementations, coupled with
the two data placement strategies: cggc and zz, for APUs). Therefore, the scalar version
with the multiple OpenCL kernels is to be used for the multi-node implementation of
the seismic modeling application (see chapter 8).

We present in figure 7.2, a performance comparison of the seismic modeling OpenCL
kernel on the CPU, on the APU and on the discrete GPU based on the best numbers
obtained on each architecture. When it comes to the performance of APU, we distin-
guish the case where the cggc DPS is used from that with the zz DPS. The Phenom
CPU performance numbers, presented in the figure, are obtained after deploying the
OpenCL kernel on the CPU (with explicit vectorization and without using the local
memory). Note that we also deployed a flat MPI version on the CPU and achieved
similar performance numbers as the OpenCL version. For the multi-node CPU imple-
mentation, we will rely on the flat MPI version only (see chapter 8). We recall that the
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Figure 7.2: Comparison between the performance numbers of the seismic model-
ing OpenCL kernels obtained on the Phenom CPU, on the Kaveri APU and on
the Tahiti discrete GPU. On the APU two data placement strategies are considered:

cggc and zz.
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performance results are obtained when considering only the computations related to the
wave propagation. Therefore, while running the seismic modeling OpenCL kernels we
did not consider data snapshotting (no I/O operations), nor did we consider memory
transfers from CPU memory to GPU memory, i.e. PCI transfers for discrete GPU or
explicit data copies from the c memory to the g memory for APUs.
The figure shows that the CPU performance numbers are small (roughly equal to 2.5
GFlop/s) which is almost 57× (resp. 13×) slower than the Tahiti GPU (resp. than the
Kaveri GPU). Moreover, the Tahiti discrete GPU, which we recall is theoretically an
order of magnitude more compute powerful than the Kaveri APU, performance results
are 4.5× higher than the performance of the APU obtained when using the cggc DPS.
Since we have mentioned that the zz DPS reduce the performance of the APU to half
as compared to the cggc DPS (it is also illustrated in the figure, see Kaveri-cggc and
Kaveri-zz), the Tahiti discrete GPU is 9.2× faster than the Kaveri APU when using the
zero-copy memory objects.

7.1.3 Performance and power efficiency

In this section we add the power consumption factor to our performance study. We
measured, following the methodology presented in section 6.3, the power consumption
of the seismic modeling application on the different architectures and deduced the per-
formance per Watt based on the OpenCL performance numbers presented in tables 7.1
and 7.2. The figure 7.3, shows a comparison between the power efficiency of the Phenom
CPU, the Kaveri APU (while considering the two data placement strategies: cggc and
zz) and the Tahiti GPU (for the discrete GPU the measured power includes the power
consumption of the main CPU that is managing the GPU). Besides, the numbers on top
of the histograms represent the measured power consumptions in Watts of each system.
One can notice that given the low performance of the CPU and that it consumes about
130 W, the power efficiency of the seismic modeling on the Phenom CPU is very low.
Besides, we notice that the choice of the data placement strategy on APUs does not
impact the power consumption (we have measured 60 W of power consumption for both
the cggc and zz strategies). Therefore, the ratio between the power efficiency of the
seismic modeling on the Kaveri APU with the cggc DPS, and that using the zz DPS
is the same ratio observed between the performances of the two strategies. Finally, the
Tahiti discrete GPU offers a higher power efficiency compared to the Kaveri APU. This
is a natural conclusion given that we only consider the performance of the OpenCL
kernels and that the discrete GPU outperforms the APU by a factor of 4.5×. However,
the gap between the power efficiencies (1.4×) of the two processors is smaller than that
between their OpenCL performances.

7.1.4 OpenACC evaluation and comparison with OpenCL

In this section, we evaluate the OpenACC implementation of the seismic modeling ap-
plication on the Tahiti GPU and on the Kaveri APU. We extended the OpenACC code
used for the 3D finite difference stencil presented in section 6.5. We also consider the
same three OpenACC variants “OpenACC only”, “OpenACC + HMPPcg” and “Ope-
nACC + HMPPcg + code modification”. Note that the modification of the initial code,
in the third version, involves increasing the ILP by explicitly rewriting the loops, and
also using the GPU local memory. In table 7.3, we summarize the performance numbers
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Figure 7.3: Comparison between the performance per Watt numbers of the
seismic modeling application obtained on the CPU, APU and GPU.

of the three OpenACC versions (computation times only). The table also present the
number of lines of code (LOC) that were added to the initial Fortran CPU code of the
seismic modeling application, in order to adapt it to the GPUs and to the APUs. As
it was the case for the OpenACC implementation of the 3D finite difference stencil,
the best OpenACC performance of the seismic modeling application is obtained when
using OpenACC coupled with HMPPcg and that for both Tahiti and Kaveri. Besides,
increasing the ILP and relying on the local memory, not only did require an extensive
effort to modify the initial code (74 LOC added) but also it did not help deliver higher
performance than that of the “OpenACC + HMPPcg” version (only 29 LOC). In table
7.4, we present a comparison between the best OpenCL performance numbers and the
best OpenACC numbers of the seismic modeling application. The table also shows the
number of OpenCL LOC and OpenACC LOC added to the initial code of the seismic
modeling application. For both Tahiti and Kaveri, OpenACC offered almost half the

Kaveri (GFlop/s) Tahiti (GFlop/s) #LOC

OpenACC only 15.18 60.22 25

OpenACC + HMPPcg 17.61 77.77 29

OpenACC + HMPPcg + code modification 13.43 53.19 74

Table 7.3: Comparison of the different OpenACC implementations of the seismic
modeling application on Kaveri and Tahiti, in terms of performance and of numbers

of lines of code added to the initial CPU implementation.

Kaveri (GFlop/s) Tahiti (GFlop/s) #LOC

OpenACC 17.61 77.77 29

OpenCL 32.03 144.02 762

Table 7.4: Comparison between the best OpenACC implementation and the best
scalar OpenCL implementation of the seismic modeling application on Kaveri and
Tahiti, in terms of performance and of numbers of lines of code added to the initial

CPU implementation.
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OpenCL performance. However, the OpenCL performance comes with adding 762 LOC
to the initial code which is 26× the number of OpenACC LOC added.

7.2 Seismic migration

In this section, we extend our study to the seismic migration application. We give an
overview of the RTM algorithm which involves data snapshotting. Besides, we eval-
uate the performance and the power efficiency of the application in OpenCL on the
different architectures. Finally, we implement the RTM in OpenACC and compare its
performance and ease of programmability against those of the OpenCL implementation.

7.2.1 Description of the algorithm

In this section we focus on the seismic migration also presented in section 2.2. The seis-
mic migration can be seen as two successive sweeps of the seismic modeling. In the first
sweep, referred to as the forward sweep or “FWD”, the wave equation is solved exactly
like in the seismic modeling application. In the second sweep, called the backward sweep
or “BWD”, the wave equation is solved backward in time. We present in algorithm 7.2 a
high level description of the seismic migration workflow. Similarly to the seismic model-
ing, the computation involves two arrays of the wavefield u0 and u1 that are interleaved
throughout the simulation iterations in order to compute the temporal derivatives. The
forward sweep is similar to the seismic modeling workflow. However, during this work-
flow snapshots of the source wavefield are periodically stored on disk (this was not the
case in the seismic modeling application). We recall that we use the “selective wavefield
storage” method with a data snapshotting frequency of 10. During the backward sweep,
the snapshots, saved during the forward sweep, are read from disks in the subroutine
read seismic snapshot(). Then, we inject the seismic traces (those usually represent
the data collected after a seismic survey) on the receivers positions. This is held in the
subroutine add seismic receivers(). After propagating the receiver wavefield backward,
the imaging condition is performed in the imaging condition() subroutine (on the CPU)
by correlating the source and receiver wavefields.

7.2.2 Accelerating the seismic migration using OpenCL

We considered the same testbed as that of the seismic modeling. The same versions
and optimization parameters are also used for the seismic migration. However, in the
case of the seismic migration we also consider the data snapshotting in the algorithm,
which incurs I/O operations and may require memory transfers between CPU and GPU
in the APU and discrete GPU implementations. It is to be noted that the computers
that contain the surveyed processors (AMD Phenom TM II x6 1055t Processor , Kaveri
and Tahiti), are connected to an NFS file system and run under a Linux OS (Ubuntu
14.04). We summarize the obtained performance numbers on Kaveri in table 7.5 and
those on Tahiti in table 7.6. We differentiate the performance of the OpenCL kernels
(“comp-only”) from that of the whole application (“overall”). Besides, we distinguish
the performance of the FWD from that of the BWD.
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For the “comp-only” case, we came to the same conclusions observed for the seismic
modeling application. As a matter of fact, the best performance numbers are obtained
when considering the scalar implementation on both Tahiti and Kaveri with the cggc
data placement strategy. Besides, the local scalar version is more beneficial to the APU
when using the zero-copy memory objects. In addition, the multiple OpenCL kernels
approach offers up to 12% of performance enhancement for the APU and only up to 3%
for the discrete GPU. Moreover, when using zero-copy memory objects the performance
of the seismic migration on the Kaveri APU is almost reduced to half, which is due to
a two fold difference in terms of memory bandwidth between the z memory and the
g memory on APUs. Furthermore, while the forward and backward performances are

Algorithm 7.2 High level description of the one-node seismic migration (RTM) algo-
rithm.
1: for t ∈ [0..T ] do ⊲ the forward sweep (or FWD)
2: if mod(t, 2) == 0 then ⊲ t is the time-step index
3: add seismic source(u0, t)
4: update wavefield(u1, u0, t) ⊲ see algorithm 7.1
5: save seismic snapshot(u1, t) ⊲ this involves I/O operations
6: else
7: add seismic source(u1, t)
8: update wavefield(u0, u1, t)
9: save seismic snapshot(u0, t)

10: end if
11: end for
12:

13: for t ∈ [T..0] do ⊲ the backward sweep (or BWD)
14: read seismic snapshot(tmp, t) ⊲ tmp is used to read snapshots
15: if mod(t, 2) == 0 then
16: add seismic receivers(u0, t)
17: update wavefield(u1, u0, t)
18: imaging condition(u1, tmp, t)
19: else
20: add seismic receivers(u1, t)
21: update wavefield(u0, u1, t)
22: imaging condition(u0, tmp)
23: end if
24: end for
25:

26: function imaging condition(u, tmp)
27: img = 0 ⊲ img is the final image
28: for z ∈ [0..nz − 1] do ⊲ z is the array coordinate in Z
29: for y ∈ [0..ny − 1] do ⊲ y is the array coordinate in Y
30: for x ∈ [0..nx− 1] do ⊲ x is the array coordinate in X
31: img(z, y, x) += u(z, y, x)*tmp(z, y, x)
32: end for
33: end for
34: end for
35: return img
36: end function
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very close on the Kaveri APU, they are different on the Tahiti GPU (the bwd sweep
performance numbers are often 8% lower than the performance numbers of the fwd
sweep) which is unexpected.

For the “overall” case, one can notice that for the Kaveri APU the performance of
the fwd sweep is often higher than that of the bwd sweep, especially when the cggc

DPS is used. After investigation, we found out that the cost of the data snapshotting
during the fwd sweep (write I/O operations) is higher than that during the bwd sweep
(read I/O operations), which explains the performance difference between the two steps
of the RTM algorithm. However, the fwd and bwd performances on the Tahiti GPU are
very comparable, as opposed to the “comp-only” case. It is to be noted that the overall
times of the seismic migration on discrete GPUs include the data snapshotting times
(which incurs an overhead spent in transferring data back and forth between CPU and
GPU via the PCI Express bus). It can be seen in table 7.6, that the performance of the
“overall” is almost 4× lower than the performance of the OpenCL kernels. This clearly
emphasizes the impact of the PCI Express bus and of the extensive I/O operations on
the performance of the RTM on discrete GPUs. This difference is much more smaller
in the case of the APU when using the cggc DPS, since the table 7.5 reports that the
overall performance is, at worst, 2× lower than the performance of the OpenCL kernels
of the seismic migration on APUs. Indeed, the explicit copy from CPU memory to GPU
memory on APUs is equivalent to a regular copy from or to the system RAM which has a
higher sustained bandwidth than that of the PCI Express bus. Besides, the performance
difference is even much lower (only up to 23%) when the zz DPS is applied. As a matter
of fact, this is due to that data copies from the CPU to the GPU are no longer needed
in this case, since the GPU cores directly access the CPU memory through the Onion
bus.

Finally, the figure 7.4, shows a CPU, APU and GPU performance comparison of
the seismic migration. In the “comp-only” case, we notice that similarly to the seismic
modeling, the CPU delivers a poor performance compared to that of the Kaveri APU
and that of the Tahiti GPU. The figure also reports almost the same performance ratios

Kernel type #Kernels DPS LX LY ILP comp-only (GFlop/s) overall (GFlop/s)

scalar One cggc 32 8 1
fwd 28.45 fwd 16.43
bwd 27.55 bwd 13.93

local scalar One cggc 32 8 1
fwd 26.84 fwd 15.22
bwd 26.33 bwd 13.66

scalar One zz 128 2 2
fwd 12.60 fwd 10.01
bwd 12.81 bwd 10.00

local scalar One zz 256 1 2
fwd 14.56 fwd 11.26
bwd 14.13 bwd 10.42

scalar Multiple cggc 64 1 2
fwd 32.45 fwd 16.89
bwd 31.39 bwd 14.98

local scalar Multiple cggc 32 2 1
fwd 26.81 fwd 15.40
bwd 26.02 bwd 13.34

scalar Multiple zz 128 1 8
fwd 13.99 fwd 11.03
bwd 13.84 bwd 10.60

local scalar Multiple zz 64 1 2
fwd 15.25 fwd 11.61
bwd 15.18 bwd 11.21

Table 7.5: Performance parameters and numbers of the seismic migration appli-
cation on Kaveri. The numbers marked in bold are the best achieved performance

numbers for each configuration.
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Kernel type #Kernels LX LY ILP comp-only (GFlop/s) overall (GFlop/s)

scalar One 64 4 2
fwd 140.59 fwd 29.60
bwd 135.08 bwd 29.95

local scalar One 64 1 1
fwd 124.78 fwd 28.22
bwd 116.80 bwd 28.43

scalar Multiple 64 2 2
fwd 144.52 fwd 29.97
bwd 138.86 bwd 29.19

local scalar Multiple 256 1 1
fwd 117.04 fwd 28.01
bwd 107.92 bwd 27.06

Table 7.6: Performance parameters and results of the seismic migration application
on Tahiti. The numbers marked in bold are the best achieved performance numbers.

than the seismic modeling. Indeed, the performance of Tahiti is 4.4× (resp. 9.3×)
higher than that of the APU with the cggc DPS (resp. zz DPS) and given that only
the computation times are considered. In the “overall” case and because of the impact
of the PCI Express bus and I/O operations on the discrete GPUs performance, the ratio
decreases down to 1.8× (resp. 2.5×) when considering the cggc DPS (resp. zz DPS)
for the APU. Finally, we recall that the “overall” performance depends on the data
snapshotting frequency used in the RTM algorithm. In our case we used a frequency
of 10 which corresponds to the case K = 10 in the figure 6.24. As a matter of fact,
similarly to that case we observed that the GPU outperforms the APU.

To conclude, we can advance that the multiple OpenCL kernels approach can help
improve, as much as for the seismic modeling, the performance of the seismic migration
at the node level. Therefore, we will rely on the same approach for the multi-node
implementations. Besides, we have shown the impact of the PCI Express bus and of the
I/O operations on the performance of the RTM on discrete GPUs, while we assessed the
relevance of APUs on how they help mitigate this impact (when using both the cggc and
the zz DPSs), even though their overall performance falls behind that of the discrete
GPUs.
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seismic migration application obtained on the CPU, APU and GPU.

7.2.3 Performance and power efficiency

In this section, we measure the power consumption of the seismic migration on the
Phenom CPU, on the Kaveri APU and on the Tahiti GPU. We recall that we measure
the power consumption of each system as a whole, thus in the case of the discrete GPU
based system, the measured power includes the power drawn by the CPU that manages
the GPU. We correlate the power consumption measurements with the best OpenCL
performance numbers, based on the overall timings presented in tables 7.5 and 7.6, in
order to elaborate a performance per Watt presented in figure 7.5. The figure shows,
here again, that the power efficiency of the seismic migration on the Phenom CPU is
very low (roughly 0.013 GFlop/s/W for both fwd and bwd). Besides, one can notice
that the APU (while using the cggc DPS) is almost 2× more power efficient than the
GPU which are both more than an order of magnitude more efficient than the Phenom
CPU. As a matter of fact, even when using the zz DPS, the APU is 23% more energy
efficient than the discrete GPU. This implies that the APU is an attractive solution for
seismic migration when both performance and power are concerned.

7.2.4 OpenACC evaluation and comparison with OpenCL

In this section we show the OpenACC performance numbers of the seismic migration
application (the performance of the subroutine update wavefield() only). Similarly to
the seismic modeling, we consider three OpenACC implementations. We summarize
the performance numbers of the three variants in table 7.7. We also give the number
of LOC that are added to the initial code and that for each OpenACC based imple-
mentation. We can see that the best performance is obtained when using OpenACC
coupled with HMPPcg (almost a 28% of performance enhancement compared to the
“OpenACC only” version, at the expense of adding 4 LOC). As a matter of fact the
performance of the forward sweep as well as that of the backward sweep are “naturally”
almost equal to the OpenACC performance of the seismic modeling. Finally, in table
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Kaveri (GFlop/s) Tahiti (GFlop/s) #LOC

OpenACC only
fwd 15.18 fwd 60.71

30
bwd 15.01 bwd 59.91

OpenACC + HMPPcg
fwd 17.83 fwd 77.98

34
bwd 17.70 bwd 77.13

OpenACC + HMPPcg + code modification
fwd 13.43 fwd 53.95

79
bwd 13.68 bwd 52.81

Table 7.7: Comparison of the different OpenACC implementations of the seismic
migration application on Kaveri and Tahiti, in terms of performance and of numbers

of lines of code (LOC) added to the initial CPU implementation.

7.8 we compare the OpenACC performance against the OpenCL performance of the
seismic migration. When considering the computation times only, the best OpenACC
implementation, which adds 34 LOC to the initial code, offers half the performance of
the best OpenCL implementation of the seismic migration for both the Kaveri APU and
the Tahiti GPU. However, the best OpenCL implementation of the seismic migration
application required adding 779 LOC to the initial Fortran code.

7.3 Conclusion

To sum up, in this chapter we evaluated the seismic modeling and the seismic migration
(RTM) applications at the node level. The evaluation included an OpenCL performance
study as well as power efficiency measurements, both conducted on an AMD Phenom
TM II x6 1055t Processor , on a Kaveri APU and on a Tahiti discrete GPU. It also
comprised a comparative study between OpenCL and OpenACC based implementations
of the both applications in terms of performance and programming efforts. The study
showed that the hardware accelerators outperform the CPU and that the discrete GPU
naturally delivers better performance than the APU, especially when considering the
computation times only. However, it was shown that the PCI Express bus and the
extensive need for I/O operations had seriously impacted the performance of the RTM on
the discrete GPU, while the APU alleviated this impact. As a matter of fact, when using
the zero-copy memory objects, the overhead due to the memory traffic between the CPU
and the GPU is removed, but the performance of the APU is cut to half as compared
to when using the cggc DPS. Besides, the APU was found an attractive solution for
the seismic migration as far as both the performance and the power consumption are
concerned. Moreover, this study showed that the directive based approach offered only
half the OpenCL performance, since we were unable to reproduce the same optimizations

Kaveri (GFlop/s) Tahiti (GFlop/s) #LOC

OpenACC
fwd 17.83 fwd 77.98

34
bwd 17.70 bwd 77.13

OpenCL
fwd 32.45 fwd 144.52

779
bwd 31.39 bwd 138.86

Table 7.8: Comparison between the best OpenACC implementation and the best
scalar OpenCL implementation of the seismic migration application on Kaveri and
Tahiti, in terms of of performance and of numbers of lines of code (LOC) added to the

initial CPU implementation.
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we used in OpenCL by means of the OpenACC directives, and even by modifying the
initial code. However the directive based approch required much less programming
efforts than implementing the applications in OpenCL (26× less LOC). Finally, this
chapter helped to collect the recommendations to follow, at the node level, in terms of
optimization techniques and auto-tuning parameters that we will use in the multi-node
implementations of the seismic applications in chapter 8, where we will focus more on
large scale related optimizations (MPI communications, domain decomposition etc.), and
will investigate the interest of APUs in terms of achieving efficient scaling as compared
to discrete GPUs.
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Subsurface high-quality seismic images can be challenging to obtain, especially when
the source and receivers aperture is very large or when rocks or salt domes bury the
oil or gas reservoirs. In order to improve the speed, quality and accuracy of subsurface
images and interpretations we rely on large scale high performance compute facilities.
In chapter 7 we discussed implementation details and shared performance numbers of
the seismic applications on the node level. In this chapter we discuss a selection of well
known problems in the HPC community related to large scale deployments of scientific
applications in section 8.1, then try to take the seismic applications beyond the single
node optimizations, in sections 8.2 and 8.3, which is considered as one of the main
contributions of this work.
In details, we first sketch the most relevant guidelines in order to implement efficient large
scale depth imaging applications on multi-node hybrid architectures. Those include the
mainstream CPU clusters, GPU clusters and APU clusters. We discuss the architectural
challenges and the algorithmic problems related to these implementations such as domain
decomposition, load balancing, ghost region exchange, and communication overhead.
Then, we propose a large scale implementation of the seismic modeling application
where MPI communications are overlapped with useful computation. We demonstrate
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the reliability of this approach through a set of scalability tests. In addition to CPU
clusters, we adapt the implementation to discrete GPU clusters and APU clusters. We
show performance numbers of scalability on the different architectures followed by a
performance comparison between the best variant on each platform.
Finally, given that the seismic modeling is a building block of the seismic migration,
we extend the seismic modeling to propose a large scale implementation of the seismic
migration. Besides the details that we point out for the seismic modeling we focus on
several issues that are specific to the migration application such as the impact of IO
operations, incurred by the enormous temporary data (Terabytes of data) generated
during computation, on the application performance and scalability.
This chapter, jointly with the previous one, was subject to the following publication ”I.
Said, P. Fortin, J.-L. Lamotte and H. Calandra. Leveraging the Accelerated Processing
Units for seismic imaging: a performance and power efficiency comparison against CPUs
and GPUs (submitted on October 2015 to an international journal).”

8.1 Large scale considerations

This section elaborates on some common practices often applied on large scale scientific
applications with numerical solvers. Those are general considerations but may take
special forms with depth imaging applications.

8.1.1 Domain decomposition

In the context of geophysics exploration, it is crucial to implement numerical methods
to model seismic wave propagation in large structures at scales of, at least, tens of
kilometers. The velocity model 3D SEG/EAGE salt model , presented in figure 5.2, of the
problem under study is approximately 8 km width by 27 km length by 4 km depth (note
that the size of the compute grids related to this model depend on the discretization
steps, see table 5.7). Furthermore, the numerical solution of the underlying PDE of
the wave phenomena, cannot be processed on a single computer because of the huge
memory and compute requirements. For instance, the compute grid Ω4×4×4, presented
in the table 5.7 of the section 5.3.2.2, may be of size 2245×6885×1068 which represents
more than 16.5 billion grid points. Given that we consider a fine grid spacing (4m in each
direction) and that multiple instances of Ω4×4×4 are needed by the wave equation solver,
almost a terabyte of data is required in order to perform RTM on the 3D SEG/EAGE
salt model .

For this purpose, the wave equation solver has to be deployed on the large scale (up
to 64 nodes in our case) and involve processing large quantities of input data that can not
be stored in one computer. Rather it has to be distributed on many compute resources
in a data parallel fashion, i.e., by multiple processors working on different parts of the
data. As a matter of fact, this is the dominant coarse-grained parallelization concept in
scientific computing on distributed memory architectures. The SPMD (Single Program
Multiple Data) programming model is used, as usually the same code is executed on
all processors. This general strategy is referred to as the domain decomposition method
[139].
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(a1) X-slab (a2) Y-slab (a3) Z-slab

(a) 1D or “Slabs” decomposition.

(b1) XY-pole (b2) ZX-pole (b3) ZY-pole

(b) 2D or “Poles” decomposition.

(c) 3D or “Cubes” decomposition.

Figure 8.1: Domain decomposition strategies of 3D cubic domain of size L× L× L,
into N subdomains. In this example, the number of subdomains (N) is not the same

in each strategy.

By domain decomposition, a large discretized computational domain, e.g. a volume
that defines discrete positions or amplitudes of physical quantities on a structured or
an unstructured grid, is split into a set of sub-grids usually named subdomains that are
distributed across the compute nodes. Usually the subdomains interact during the com-
putation since most of the numerical methods, such as Finite Element Method (FEM),
Finite Difference Method (FDM) and Finite Volume Method (FVM), involve neighbor-
ing computations and require communication between the compute nodes.

How exactly the subdomains should be formed out of the original grid may be a
challenging problem to solve since the data volume to be communicated is often propor-
tional to the inter-domain surface area. Furthermore, the decomposition may depend
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Communication volume: g(L,N) Ratio

Slabs g(L,N) = L.L.2.d = 2dL2 fL
2dN

Poles g(L,N) = L. L√
N
.d.(2 + 2) = 4dL2N−1/2 fL

4dN1/2

Cubes g(L,N) = L
3√N

. L
3√N

.d.(2 + 2 + 2) = 6dL2N−2/3 fL
6dN1/3

Table 8.1: Communication volume and computation-to-communication ratio, per sub-
domain, after domain decomposition of a cubic compute grid of size L × L × L into
N subdomains. d is the number of grid points needed to fulfill the computation de-
pendency on each direction of each grid dimension.f is the number of floating point

operations needed to perform one elementary computation.

on the underlying hardware characteristics, such as the amount of memory available for
computation and the hardware and software prefetching in the case of CPUs [84].

A thorough analysis is generally needed to determine the optimal decomposition for
a given numerical problem and a given hardware architecture. Figure 8.1 summarizes
the most common domain decomposition strategies depending on whether the domain
cuts are performed in one, two or three dimensions. In the subfigure 8.1a, the different
possibilities of decomposing a computational grid into slabs or layers are presented.
The domain can also be split along two physical dimensions as shown in the subfigure
8.1b to form a set of poles. The original domain can also be divided into cubes as
depicted in the subfigure 8.1c. Note that when we refer to cubic subdomain or cube
domain decomposition, we do not mean that subdomains have to be perfectly cube-
shaped but rather have rectangular faces. Suppose that the original domain is a cubic
domain of size L × L × L and decomposed into N subdomains (we consider here that
the size of the compute grid remains unchanged). The maximum number of grid points
to be communicated by one subdomain with its neighbors, is referred to as g(L,N)
(inspired from [102]) since it depends essentially on L and on the decomposition factor
N . Note that we assume that each subdomain collaborates with the maximum number
of neighbors possible which is two in the case of slabs, four in the case of poles and six
in the case of cubes. In the table 8.1, we give the expression of g(L,N) in each domain
decomposition strategy. d represents the degree of data dependency, on each direction of
each grid dimension, required in order to perform an elementary computation. Note that
both the data required to be sent and the data required to be received are considered
in the evaluation of d, and that for a given degree d, d buffers are used to exchange the
data. For example in the case of a 2nd order stencil or a Jacobi solver d = 2 (which
means that one buffer is used to send data, and that one buffer to receive data), in the
case of an 8th order centered finite difference stencil scheme, which is the building block
of the wave equation solver we use, d = 8.

The idea behind searching the optimal domain decomposition strategy is to mini-
mize the inter-domain surface area and the overall communication volume on the one
hand, and to increase the ratio of computation over the communication volume on the
other hand. We plot in figure 8.2a the evolution of the volume of data to be communi-
cated (in grid points) per subdomain as a function of the decomposition factor N . The
computation to communication ratio per subdomain is shown in figure 8.2b. For the
sake of example we pick L = 100, d = 8 and f = 41 (the number of operations used in
an 8th order stencil computation). We notice that the 1D decomposition incurs an N -
independent communication overhead. This may harm the scalability, especially when
the compute grid size remains the same, since the cost of communication is constant
whereas the computation cost per process decreases (see figure 8.2b) which saturates
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Figure 8.2: The impact of domain decomposition strategies on the communication
volume(a) and computation to communication ratio(b) per subdomain, with L = 100,

d = 8 and f = 41.

the performance as N gets bigger. In the contrary, the negative power of N appearing
in the expression of g(L,N) in both the ”slabs” decomposition and the ”cubes” decom-
position dampens the communication overhead as N increases as it is pointed out in
the figure. More importantly, the cubic domain decomposition plot (red line) presents
the steepest decline in figure 8.2b compared to that of the 2D decomposition, and has
the smallest communication volume, when N is greater than 10 or 11. It also shows the
best computation to communication ratio when N increases (see figure 8.2b).

Theoretically, we thus conclude that the 3D domain decomposition ensures the best
scalability for large scale implementations. In [102], the authors present a detailed com-
parison of the different strategies through a 3D Jacobi solver. They also demonstrate
that the best performance is often obtained with cubic subdomains or pole decomposi-
tion, given that some specific requirements can be fulfilled, e.g. the latency cost of the
underlying network is dominated by the cost of its bandwidth.

In practice, hardware characteristics may sometimes influence the performance of
such strategies. For example, emerging high-end processors feature hardware prefetching
capabilities, that is a mechanism to pre-load data and reduce cache misses latencies. In
this case, ”poles” decomposition is more suitable if the prefetch dimension, which is
usually the fastest in terms of memory accesses, is not partitioned. Furthermore, if
accelerators such as GPUs or Intel’s MIC are used, the communication model g(L,N)
have to be altered since a PCI Express communication is needed to transfer data from
the host (CPU) to the accelerator. In [23], Abdelkhalek et al. use a 1D domain
decomposition in order to mitigate the impact of PCI Express, which incurs additional
communications to copy data from the CPU to the GPU prior computation, on the
performance of their multi-GPU implementation of the seismic modeling application.
Those copies would involve regions that are not contiguous in memory, if other domain
decomposition strategy is used.

In the context of this work, in order to ensure a better scalability when big datasets
are deployed on a large number of compute resources, we make use of the ”cubes”
domain decomposition to implement the wave equation solver, that is used in both
seismic modeling and seismic migration, on the different architectures.

We propose in figure 8.3 an example of a ”cubes” domain decomposition of one of
the compute grids of the problem under study: Ω16×16×16 which is presented in figure
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Figure 8.3: 4x4x4 ”cubes” domain decomposition of Ω16×16×16 using a total of 64
MPI processes. Each subdomain is assigned to one MPI process.

7.1, into 64 subdomains arranged in a cartesian coordinate system of 4 × 4× 4 in such
that each subdomain is assigned to an MPI process allocated on an independent compute
resource. Each process is responsible for updating, locally, the wavefields within its own
sub-grid of the overall simulation volume. The global layout of the 64 subdomains and
the different communication pipes are illustrated in figure 8.3a. The mapping between
the MPI processes ranks and the cartesian coordinates is emphasized in figure 8.3b and
is governed by the following formula: rank(x, y, z) = (y + (x ∗ ddy)) ∗ ddz + z, where
rank(x, y, z) is the MPI rank, x is the coordinate of the MPI process with respect to
the X axis, y is the one along the Y axis and z is that along the Z axis. ddx, ddy and
ddz are defined in the notation summary 8.2 where all the symbols used in this section
are described. The domain decomposition partitions the simulation volume into smaller
subdomains where the total number of subdomains (4 ∗ 4 ∗ 4) matches the number of
MPI processes (64) used in the simulation.

By means of domain decomposition, we aim to conduct a series of scalability tests.
We distinguish, as is customary in the high performance computing community, between
strong and weak scalings. Strong scaling is running a fixed-sized problem on a varying
number of processors, these include commodity CPUs, hardware accelerators (HWAs)
such as GPUs and APUs etc. or co-processors such as FPGAs, and then study how

ddx the number of subdomains along the X axis
ddy the number of subdomains along the Y axis
ddz the number of subdomains along the Z axis

Table 8.2: Summary of the notations used, in section 8.1.1, to define the compute
grid.
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#nodes ddx ddy ddz
compute grid

seismic modeling seismic migration

1 1 1 1

Ω8×8×8 Ω9×9×9

2 1 2 1
4 2 2 1
8 2 2 2
16 2 4 2
32 4 4 2
64 4 4 4

Table 8.3: Numerical parameters of the domain decomposition with respect to the
strong scaling scenario.

#nodes ddx ddy ddz compute grid

1 1 1 1 Ω16×16×16

2 1 2 1 Ω16×16×8

4 2 2 1 Ω16×8×8

8 2 2 2 Ω8×8×8

16 2 4 2 Ω8×8×4

32 4 4 2 Ω8×4×4

64 4 4 4 Ω4×4×4

Table 8.4: Numerical parameters of the domain decomposition with respect to the
weak scaling scenario, for both seismic modeling and seismic migration.

the execution time varies with respect to the number of processors. Whereas, in a weak
scaling configuration, the amount of work per processor is fixed since compute resources
increase proportionally with the problem size. In the ideal case the execution time should
remain constant with respect to the number of processors. From a geophysics exploration
perspective, strong scaling is used to accelerate modeling or migration applications with a
fixed amount of seismic data, e.g. seismic traces and velocity models, used as application
inputs. Weak scaling is either used to cover larger input data or used to refine compute
grids for a better accuracy and for a higher resolution subsurface imaging. We point out
that in the scope of this work we use weak scaling rather for compute grid refinement.

Table 8.3 summarizes the domain decomposition details we use to conduct the strong
scaling tests of seismic modeling and migration. It also presents the compute grid used
for each configuration. We recall that the numerical parameters of the compute grids
were given in section 5.3.2.2. We consider running one shot experiment on 1 to 64 nodes
(this is valid for the CPU cluster only, we only use up to 16 APU nodes since that is
the maximum capacity of the APU cluster; as for the GPU cluster we also use up to
64 nodes). Note that we do not allocate a bigger number of nodes per shot because,
at a higher level a coarser grained and natural parallelism is applied since multiple
shots are processed in the same time by independent groups of nodes. Note that the
spatial discretization steps used in seismic migration is greater than that used in seismic
modeling. That is because in the migration application more instances of the compute
grid are needed, and using a discretization step equal to 8 would make it impossible to
fit into the memory of one compute node. Table 8.4 presents the configuration of the
weak scaling related domain decomposition, as well as the different compute grids to be
used in this case.
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px py pz compute grid

seismic modeling 33 33 33 Ω8×8×8

seismic migration 29 29 29 Ω9×9×9

Table 8.5: The width of the PML layers present in the compute grids with respect
to the strong scaling configuration. The width depends on the spatial discretization

steps, dx, dy and dz.

#nodes px py pz compute grid

1 16 16 16 Ω16×16×16

2 16 16 33 Ω16×16×8

4 33 16 33 Ω16×8×8

8 33 33 33 Ω8×8×8

16 33 33 67 Ω8×8×4

32 67 33 67 Ω8×4×4

64 67 67 67 Ω4×4×4

Table 8.6: The width of the PML layers present in the compute grids with respect
to the weak scaling configuration. Applicable to both seismic modeling and seismic

migration.

8.1.2 Boundary conditions

In each compute grid, the wave equation solution space is augmented by absorbing layers
on the sides and on the bottom. We recall that those are the PML layers that incur extra
computations in order to make sure that the wave information are not reflected on the
domain edges and do not generate spurious noises that may affect the convergence of the
wave equation solver. After partitioning the compute grid of the problem under study,
not all the subdomains are subject to PML extra computation. The reader can see on
the domain decomposition example in figure 8.3a that only the subdomains with blue
partitions are involved in the PML boundary condition (boundary subdomains). Those
that are fully grayed are referred to as interior subdomains and do not participate in
solving the PML.

We present in table 8.5 the width of the PML layers applied to the compute grids
in a strong scaling configuration. px, py and pz refer to the width of the absorbing
layer on each direction of each grid dimension (X, Y and Z respectively). Note that
in the case of the Z dimension, only the bottom of a given compute grid is damped.
Besides, we point out that the width of the PML layers in the compute grid used for the
seismic modeling is different from that of the PML layers in the compute grid used for
the seismic migration, because the discretization steps are different in either case. Table
8.6 shows the width of the damping layers on a weak scaling scenario. The number of
PML grid points varies with respect to the number of compute nodes because it depends
on the spatial discretization steps, each of which varies as the number of compute nodes
increases in a weak scaling scenario (see table 8.4). On the top, the compute grids
are subject to a different boundary condition since we apply a free surface boundary
condition which means that no extra computation is needed on this area.
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8.2 Seismic modeling

y In this section, we focus on the seismic modeling application. We present in-depth
details about the large scale implementations on the PANGEA CPU cluster and on
HWAs (GPUs and APUs) based clusters. We show performance numbers on the different
architectures and focus on the impact of overlapping the MPI communications with
useful computations on the performance.

8.2.1 Deployment on CPU clusters: performance issues and proposed
solutions

Having in mind that most of the large scale optimizations and techniques that apply to
CPU clusters may also apply to hardware accelerators based clusters, we put substantial
efforts to address the hotspots and implementation issues related to the large scale CPU
implementation of the seismic modeling application. First, we give implementation
details about the seismic modeling application. Second, we focus on some MPI pitfalls
such as synchronization problems and show how to avoid them. Then, we illustrate how
the PML computations incur load imbalance in the application. Finally, we propose an
explicit approach to overlap communication with computation and present scalability
results, where we distinguish between strong and weak scaling scenarios, with a special
emphasis on the impact of the communication-computation overlap on the application
performance.

8.2.1.1 Implementation details

In chapter 7, we gave a thorough description and optimization details of the computation
driven by the seismic modeling application. Now, we focus on optimizing the MPI com-
munications and underline their impact on the application performance. In this section,
we briefly go through the large scale implementation of the seismic modeling application,
and we describe the communication pattern, driven by domain decomposition, of the
application.

The nature of the wave equation solver, described in section 6.2.2, the pattern of
memory accesses of the 3D stencil, presented in section 6.2.2, and the domain decompo-
sition strategy applied to the 3D data volume, discussed in section 8.1.1, determine the
communication pattern of our seismic applications. Splitting the computational domain
give rise to some interface regions, as depicted in figure 8.4, where wave propagation
information must be shared among neighbors which interactions between subdomains.
The interactions between subdomains consist of data exchanges, i.e. communications,
that are performed through the Message Passing Interface (MPI) [12].

nx the grid dimension along the X axis
ny the grid dimension along the Y axis
nz the grid dimension along the Z axis
dd domain decomposition configuration

Table 8.7: Summary of the notations used, in section 8.2, to define the compute grid.
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Figure 8.4: A 2D illustration of the interface regions (the small rectangles) after
domain decomposition. As an example, the solid blue rectangles are wavefield values

to be shared with the subdomain Ω1,0.

Algorithm 8.1 High level description of the multi-node seismic modeling workflow.

1: for t ∈ [0..T ] do � [0..T ] is the simulation time-steps interval
2: if mod(t, 2) == 0 then � t is the time-step index
3: add seismic source(u0, t) � u0 is the wavefield array at time-step t
4: exchange halos(u0) � performs MPI communications with neighbors
5: update wavefield(u1, u0, t) � u1 is the wavefield array at time-step t− 1
6: save seismic trace(u1, t) � described in section 7.1.1 (but not used here)
7: else
8: add seismic source(u1, t)
9: exchange halos(u1)

10: update wavefield(u0, u1, t) � see algorithm 7.1
11: save seismic trace(u0, t) � not used here
12: end if
13: end for
14:

Before going any further, we introduce in algorithm 8.1 the workflow that character-
izes the large scale implementation of the seismic modeling application. It is accompa-
nied by a notation summary in table 8.7 that helps reading the algorithm. The algorithm
is an extension to the one node implementation that we described in algorithm 7.1. The
workflow is an MPI program performed by one MPI process assigned to one subdomain.
It consists of a loop over the simulation time-steps, during each of which the subdomain
is updated with respect to the neighboring wave information and to the seismic source
function. Note that this workflow corresponds only to one shot experiment.
First, the seismic source function introduces a new perturbation into the compute grid
every time-step and let it propagate through the whole domain. This is implemented
in add seismic source() and it concerns only the subdomain that contains the source
which depends on the seismic shot configuration.
Then, the boundary sites of each subdomain require to be communicated to one or more
adjacent subdomains before any computation. This takes place in send ghost layers()
in the procedure exchange halos(). In addition, all boundary values needed for the
simulation sweep (time-step) must be retrieved from the relevant neighboring domains.
This is what receive ghost layers() is for. In order to store this data, each subdomain
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must be equipped with some extra grid points, the so-called halos or ghost layers (see
figure 8.5). In the rest of the document we often refer to the ghost layers as ghost
faces or ghost regions. Each subdomain exchanges ghost faces with its corresponding
neighbors and saves them in the ghost area. In figure 8.5a, we give an example of a
subdomain, that can be one of the fully grayed subdomains from figure 8.3, where the
orange arrows illustrate its MPI interactions with the surrounding subdomains, the dark
green squares represent the wavefields that are local to the subdomain and do not have
any data dependency with the halos coming from neighbors (referred to as inlet cells)
and the light green squares (referred to as outlet cells) define the wavefields that depend
on the wave information collected from the neighbors and stored in the halos (the white
squares). At the subdomains faces, the eight-order central finite difference scheme re-
quires a four-cell padding (ghost layers) in each direction of each dimension to correctly
propagate the waves. This determines the amount of data to be exchanged between the
different subdomains (g(N,L) = 6dL2N−2/3, with d = 8, as modeled in section 8.1.1).
Then, each MPI process performs a finite difference stencil computation to update the
wavefields that are local to its corresponding subdomain. This is defined in the proce-
dure fd stencil compute().
Finally, the subroutine save seismic trace() is meant to periodically save the source
wavefield in order to put together the seismic traces resulting from the computations
(see section 7.1.1). However, and similarly to the chapter 7, we do not consider the data
snapshotting for the seismic modeling as we focus our study mainly about computa-
tions and MPI communications (the data snapshotting will be considered in the seismic
migration application).

The decomposition proposed in figure 8.3 is a representative example of all the
“cubes” domain decomposition schemes used in this study. This scheme incurs MPI
communications along the three physical dimensions X, Y and Z. The MPI commu-
nications consist of exchanging three to six four-cell width ghost faces with immediate
neighboring subdomains. For example subdomains 0, 3, 12, 15, 48, 51, 60 and 63 (the
original domain corners) do exchange three faces with their neighbors. Those on the
edges but not corners such as subdomains 1, 2, 13 and 14 issues send and receive four
faces from neighbors. The subdomains situated on the external faces but not in the do-
main edges have to communicate with five neighbors. Finally, the interior subdomains
such as 37, 38, 41 and 42 exchange ghost layers with six neighbors as depicted in figure
8.5a. Each subdomain, or more specifically each MPI process, has to issue at most a
total of twelve MPI point-to-point communication calls in order to satisfy the data de-
pendencies required by the computation of one physical entity in the solver e.g. velocity
field or pressure field.

8.2.1.2 Communications and related issues

In this section we identify the issues related to MPI communications in the seismic model-
ing workflow. We emphasize on MPI synchronization problems and present workarounds
to mitigate their impact on the overall performance of the application.

Before going any further, we need to briefly recall the synchronous/asynchronous se-
mantics of MPI communications. As a matter of fact, on the network layer the standard
MPI Send function uses two major protocols to send messages based on the message size:
eager used for relatively short messages and rendezvous used for very long messages. In
the case of short messages, usually defined as such by MPI implementations when they
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Figure 8.5: Exchanging ghost faces with immediate neighboring subdomains: the
white cells represent the extra padding added to the compute grid and the light green
(resp. the dark green) cells define the grid points whose computation depends on the
surrounding subdomains (resp. the cells that can be updated locally). The axises
orientation is an arbitrary choice used for the sole purpose to distinguish the MPI

neighbors.

do not exceed 16 to 64KB (see the MPI eager limit for more specific information related
to a given MPI implementation), the implementation can copy the message directly into
an internal buffer and thus send the message out onto the network. This corresponds to
the MPI asynchronous communications.
In the case of larger messages, i.e. greater than the eager limit, the internal MPI buffers
are not large enough to accommodate the message and the MPI implementation cannot
directly copy the message into the buffers. Instead, it switches to the rendezvous proto-
col, which requires the sending process to synchronize with the receiving process before
the message is sent out. We talk about synchronous communications. In the context
of our seismic modeling application, we summarize the sizes of the messages exchanged
between the subdomains, in the exchange halos() procedure, in tables 8.9 and 8.8. The
sizes depend on the compute grid dimensions and on the domain decomposition configu-
ration. The notations used in the tables are defined in table 8.7. Note that for the weak
scaling scenario, given that the initial compute grid Ω16×16×16 has the largest dimension
over the y-axis and the smallest over the z-axis, we double the dimensions of the com-
pute grid along the z-axis first, then along the x-axis and finally along the y-axis, as the
nodes count increases. Besides, when applying the domain decomposition we split the
compute grid first with respect to the y-axis, then to the x-axis and finally to the z-axis.
We can conclude that all the send operations implemented in our seismic applications
are synchronous MPI communications where the sender waits for an acknowledgment
from the receive side before sending out the data.

The large scale implementation of the seismic modeling application, as described
in algorithm 8.1, on the PANGEA cluster suffers from numerous MPI related technical
issues and is subject to a couple of performance bottlenecks.

First of all, the MPI communications that are implemented in the exchange halos()
procedure are further detailed in algorithm 8.2. As an initial approach, we rely on
blocking point-to-point MPI communications. Note that since the boundary sites to
be exchanged are not necessary contiguous in memory, as one can see in figure 8.5b,
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intermediate buffers are used to adequately arrange the data regions in memory prior
to the MPI transfers. In the subroutine pack halos in linear buffers(), the data is
packed into intermediate buffers (bsn) prior the send operation. In the subroutine
unpack buffers into halo regions(), the data is copied from the intermediate buffers
(brn) into the halo regions.

Algorithm 8.2 Detailed description of the MPI communications of the seismic modeling
application (procedure exchange halos()).

1: procedure exchange halos(u) ⊲ u is a wavefield array
2: for n ∈ {north, south, east, west, front, back} do ⊲ see figure 8.5a
3: pack halos in linear buffers(u, bsn, n) ⊲ n is the MPI neighbors index
4: MPI Send(bsn, n) ⊲ bsn is an intermediate buffer
5: MPI Recv(brn, n) ⊲ brn is an intermediate buffer
6: unpack buffers into halo regions(brn, u, n)
7: end for
8: end procedure

Given that each subdomain has to issue, at most, six send requests to its immediate
neighbors, this may cause deadlocks as all the processes may block on the sending
request and no MPI process is available to launch the receiving phase. We recall that
the messages are transmitted according to the rendezvous protocol (see tables 8.8 and
8.9) thus all the MPI ranks can be blocked on the send operation (line 4 in algorithm
8.2).

Second of all, MPI synchronous communications imply an implicit ”pairwise” syn-
chronization, that is sender and receiver must synchronize in a way that ensures full
end-to-end delivery of the data. At the end of the day, this incurs a serialization of the

#nodes nx ny nz dd size over X size over Y size over Z

1

1122 3443 534

1x1x1 – – –
2 1x2x1 – 9.14 –
4 2x2x1 14.02 4.57 –
8 2x2x2 7.01 2.28 14.73
16 2x4x2 3.50 2.28 7.36
32 4x4x2 3.50 1.14 3.67
64 4x4x4 1.74 0.57 3.67

Table 8.8: Sizes of MPI messages (in MB) with respect to the strong scaling test
configuration.

#nodes nx ny nz dd size over X size over Y size over Z

1 561 1721 267 1x1x1 – – –

2 561 1721 534 1x2x1 – 4.57 –

4 1122 1721 534 2x2x1 7.01 4.57 –

8 1122 3443 534 2x2x2 7.01 2.28 14.73

16 1122 3443 1068 2x4x2 7.01 4.57 7.36

32 2245 3443 1068 4x4x2 7.01 4.57 7.36

64 2245 6885 1068 4x4x4 7.01 2.28 14.73

Table 8.9: Sizes of MPI messages (in MB) with respect to the weak scaling test
configuration.
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Figure 8.6: Timeline view of the linear shift problem where the send operations are
synchronous. Extracted from [102].

overall MPI operations of the seismic modeling application, since their order is fixed
beforehand as such that first the communications occur along the Z axis, then along
the Y axis, and then along the X axis. In figure 8.6, we illustrate how this problem
can arise along one dimension when the MPI send operation are synchronous, i.e. using
the rendezvous protocol. We refer to this synchronization problem as the linear shift
problem. The five ranks, in the figure, will transmit messages in serial, one after the
other, because no process can finish its send operation until the next process down the
chain has finished its receive. The further up the chain a process is located, the longer
it blocks on the send operation.

Following, we discuss three solutions that may be used to avoid deadlocks and
overcome the linear shift problem described above. The MPI standard [12] offers a
wide variety of how to handle point-to-point communications.

In the first solution, we chose to implement the ghost regions exchanges using block-
ing communications routines that are guaranteed not to deadlock such as MPI Sendrecv
which is equivalent to a combination of MPI Send and MPI Recv without temporal
dependency. In some literature [102] it is mentioned that internally this call is often
implemented as a combination of non-blocking calls and a wait call (the reader can also
think about the MPI Sendrecv replace 1 that uses less buffers than those needed by
MPI Sendrecv, this routine was not used in the scope of this work). The algorithm 8.3
details the workflow of the new implementation of the exchange halos() routine.

A second solution is to implement the procedure exchange halos() using non-blocking
MPI communications. In this case, the six messages are received as soon as possible from
different neighbors, and thus deadlocks are avoided. The MPI standard [12] provides
nonblocking point-to-point communications routines such as MPI Isend and MPI Irecv
that return immediately but, according to the MPI semantics, it is not safe to use the
buffers involved in the ongoing requests before calling a wait routine such as MPI Wait
or MPI Waitall. This ensures the data consistency on the one hand and that all pending

1http://www.mpich.org/static/docs/v3.1/www3/MPI_Sendrecv_replace.html

http://www.mpich.org/static/docs/v3.1/www3/MPI_Sendrecv_replace.html
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Algorithm 8.3 exchange halos() using deadlock free MPI blocking communications.

1: procedure exchange halos(u) ⊲ u is a wavefield array
2: for n ∈ {north, south, east, west, front, back} do ⊲ see figure 8.5a
3: pack halos in linear buffers(u, bsn, n) ⊲ n is the MPI neighbor index
4: MPI Sendrecv(bsn, brn, n) ⊲ bsn and brn are intermediate buffers
5: unpack buffers into halo regions(brn, u, n)
6: end for
7: end procedure

MPI transfers are terminated on the other hand. The algorithm 8.4 depicts the workflow
used in this case.

Algorithm 8.4 exchange halos() MPI non-blocking communications.

1: procedure exchange halos(u) ⊲ u is a wavefield array
2: for n ∈ {north, south, east, west, front, back} do ⊲ see figure 8.5a
3: MPI Irecv(brn, n) ⊲ n is the MPI neighbor index
4: end for
5: for n ∈ {north, south, east, west, front, back} do
6: pack halos in linear buffers(u, bsn, n)
7: MPI Isend(bsn, n) ⊲ bsn and brn are intermediate buffers
8: end for
9: MPI Waitall(pending requests)

10: for n ∈ {north, south, east, west, front, back} do
11: unpack buffers into halo regions(brn, u, n)
12: end for
13: end procedure

Note that using non-blocking communication may suppress the linear shift problem
as well, since all the MPI processes are ready to receive messages on the same time. As
it will be discussed in section 8.2.1.4.1, using non-blocking communications may suffer
from an MPI implementation related issue (the progress thread issue) and thus it is not
used in the seismic modeling application. As a matter of fact, given that functions such
as MPI Sendrecv are built on top of non-blocking MPI communication routines, we do
not consider using the first solution either.

As a third solution, in order to avoid deadlocks and the linear shift problem, we may
introduce an alternated blocking communication scheme. Using non-blocking communi-
cating or deadlock free blocking MPI routines (MPI Sendrecv) are not the only way to
avoid these issues when exchanging halos between neighboring subdomains. Another al-
ternative is to use regular blocking communication routines and make sure to interchange
the MPI Send and MPI Recv calls on, i.e. all processes that have an even coordinate
sum start with a send operation whereas all processes that have an odd coordinate sum
with a receive operation, while making sure that there is a matching receive for every
send executed (see algorithm 8.5). We consider the axises orientation presented in figure
8.5a, where the neighboring subdomains from the ”North” and ”South” are lying on the
z-axis, the neighbors from the ”East” and ”West” on the x-axis and those from the
”Front” and ”Back” are on the y-axis.
Processes that have an even cartesian coordinate sum start one communication phase
by exchanging halos with neighbors on the ”North”, ”East” and ”Front”. Then they
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issue a second communication phase where they exchange halos with the neighbors sit-
uated in the ”South”, ”West” and ”Back”. In the contrary, the processes with an odd
coordinate sum start the first phase by exchanging the halos with the MPI neighbors on
the ”South”, ”West” and ”Back”. During the second phase they exchange halos with
the processes situated on the ”North”, ”West” and ”Front”.
This scheme may alleviate the network congestion and avoid the progress thread problem
related to the non-blocking MPI communications, thus we decided to use this communi-
cation pattern in the following experimentations described in the rest of the document.

Algorithm 8.5 exchange halos() using MPI alternated blocking communications.

1: procedure exchange halos(u) ⊲ u is a wavefield array
2: for n ∈ {north, south, east, west, front, back} do ⊲ see figure 8.5a
3: pack halos in linear buffers(u, bsn, n) ⊲ n is the MPI neighbors index
4: end for ⊲ bsn is an intermediate buffer
5: if mod(coord, 2) == 0 then
6: call MPI send(bsnorth, north)
7: call MPI recv(brnorth, north)
8: call MPI send(bseast, east)
9: call MPI recv(breast, east)

10: call MPI send(bsfront, front)
11: call MPI recv(brfront, front)
12: else
13: call MPI recv(brsouth, south)
14: call MPI send(bssouth, south)
15: call MPI recv(brwest, west)
16: call MPI send(bswest, west)
17: call MPI recv(brback, back)
18: call MPI send(bsback, back)
19: end if
20: if mod(coord, 2) == 0 then
21: call MPI send(bssouth, south)
22: call MPI recv(brsouth, south)
23: call MPI send(bswest, west)
24: call MPI recv(brwest, west)
25: call MPI send(bsback, back)
26: call MPI recv(brback, back)
27: else
28: call MPI recv(brnorth, north)
29: call MPI send(bsnorth, north)
30: call MPI recv(breast, east)
31: call MPI send(bseast, east)
32: call MPI recv(brfront, front)
33: call MPI send(bsfront, front)
34: end if
35: for n ∈ {north, south, east, west, front, back} do
36: unpack buffers into halo regions(brn, u, n) ⊲ brn is an intermediate buffer
37: end for
38: end procedure
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8.2.1.3 Load balancing

Another potential reason to increase the overhead of implicit MPI synchronizations, is
load imbalance. Indeed, when solving the wave equation in a large scale, each MPI
process follows the workflow described in the algorithm 8.1 for its subdomain. The
computational load differs from one process to another since those that are involved
in solving PML regions take longer computation times to update the wavefields. As a
matter of fact, updating PML regions incurs more floating point operations, more mem-
ory accesses and higher pressure on caches. This creates a load imbalance between the
boundary and interior areas. To study the impact of this load imbalance, we measured
the execution time of a seismic migration, where we used the velocity grid V and the
numerical parameters detailed in figure 5.2, ran by 64 MPI processes laid out into a
4x4x4 cube domain decomposition as sketched in the figure 8.7a. We detail the times
spent by each processor on each step of the workflow in figure 8.7b. The dark orange
bars refers to the communication time spent in the exchange halos() routine. The gray
bars is the time spent in update wavefield() in the wave equation solver. We notice that
the interior areas such as the MPI ranks 20-22, 24-26, 36-38 and 40-42 have the smallest
wavefield update time. Whereas the boundary areas can be classified in three categories:

• subdomains with three PML faces: those are the domain lower corners that
are subdomains 3, 15, 51 and 63. The PML faces (the blue layer in figure 8.7a)
are laid along the x, y and z-axis. Sweeping over the y and z-axis when updating
these points can induce a high rate of cache misses caused by the irregularity of
memory accesses. For this reason those regions have the highest update time.

• subdomains with two PML faces: those are subdomains such as 0-2, 12-14,
48-50 and 60-62. We noticed that subdomains that have one face over the two
that is laid along the z-axis (7, 11, 55 and 59) are slower and have nearly the same
update time than the domain lower corners. We conclude that having PML along
the x-axis is almost costless.

• subdomains with one PML face: we can group those subdomains into three
different bins. Some of these subdomains such as 16-18, 28-30, 32-34 and 44-46
have one PML face to update. Updating these PML faces is slightly slower than
updating the interior areas but we can assume they have almost the same update
time as the interior areas. This is because, for each subdomain, the PML face is
laid along the fastest memory axis, i.e. the x-axis, and thus the memory accesses
are contiguous and regular. Subdomains such as 4-6, 8-10, 52-54 and 56-58 have
the PML face laid along the y-axis and needs longer time to update the PML cells.
Finally the subdomains such as 23, 27, 39 and 43 are the slowest when updating
the wavefields since the PML face is mostly laid along the slowest axis which is
the z-axis.

In order to further emphasize that the imbalance is caused by the PML extra com-
putations (mainly along the y-axis and z-axis) we remove the PML computation and
show the new execution times of the 64 MPI processes in figure 8.8. The update time is
regularly the same among almost all the processes. We still can notice some difference
specially on the communication times. Indeed, the communication operations are not
equal among the processes: for example the MPI rank number 22 issues 6 exchange
requests to fulfill its data dependency needed for its computation (this also applies to
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(b) Execution time of each MPI process

Figure 8.7: Demystification of the load imbalance due to the PML boundary condi-
tion, example on a 4x4x4 domain decomposition.

all the interior areas) whereas others such as the edges (1 and 2) issues only 3 requests.
So far this may explain the difference in communication times in figure 8.8 although the
MPI pairwise synchronization make the overall times look the same. Note that the exe-
cution time of the wave equation solver (gray bars) is shorter in figure 8.8 than in that
of an interior subdomain (without PML layers) in figure 8.7b. This is because in 8.7b
we test whether a wavefield is in a PML region or not, whereas, in 8.8 this conditional
test is removed.

To mitigate the load balancing problem, many solutions can be used. Static parti-
tioning is one of them: when partitioning the compute grid, subdomains in the boundary
areas can be smaller than those in the interior areas and are defined with respect to a per-
formance model based on the computational complexity of each area. A similar approach
is dynamic partitioning, where PML partitions and interior partitions are dynamically
adjusted throughout the simulation time-steps with respect to the ratio between the
timed execution of a PML grid point and that of an interior grid point. MPI barriers
can be used periodically through-out the simulation time-steps in order to force the MPI
processes to synchronize and thus reduce the accumulation of overheads. This solution
will be tested in section 8.2.1.4. In addition, other solutions focused on redesigning the
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Figure 8.8: Execution time of each MPI process (no PML).

MPI barriers and MPI memory fences, usually used by one-sided communications, by
reducing their overhead and minimizing their waiting queues. They are then used to
periodically synchronize MPI processes and thus alleviate the load imbalance effect.

Another research [76] investigates the behavior of asynchronous PDE solvers where
no synchronization is enforced, i.e. the proposed algorithm keeps computing even if
necessary information is not yet available. Message arrivals are then modeled as random
variables, which brings stochasticity into the analysis. This reduces the MPI communi-
cations and thus the MPI synchronization at the expense of a lower accuracy. Further-
more, in [103], the authors categorize the reasons of load imbalance of parallel hybrid
applications and enumerate a list of software tools that help users identify them.

8.2.1.4 Communication-computation overlap

We try throughout this section to study the impact of “hiding” the MPI communication
costs, as implemented in our large scale wave equation solvers. These communica-
tions were found in previous works [22] to be a serious bottleneck to GPU large scale
implementations of seismic modeling applications. First, we demonstrate the limits
of non-blocking MPI communications. Then, we propose an explicit communication-
computation overlap technique. We apply it to the seismic modeling application on the
CPU cluster. Finally, we show performance results with considering strong and weak
scaling scenarios.

8.2.1.4.1 Problems of non-blocking MPI communications According to the
MPI standard [12], point-to-point MPI communications can be blocking or non-blocking.
Blocking communications induce a serialization of communication operations and of the
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Figure 8.9: Possible timeline view of an implementation of a non-blocking synchronous
MPI send operation: the sender (P0) and the receiver (P1) might synchronize once P0
have issued an MPI Wait call. The actual message transmission takes place during the

MPI Wait call.

computation workflow since the blocking MPI calls do not return until the communica-
tion is finished. From buffers perspective, this implies that buffers passed to functions
such as MPI Send() can be modified, once the functions return, without altering any
messages in flight, and one can be sure that the message has been completely received
after an MPI Recv(). In the contrary, non-blocking routines, namely MPI Isend and
MPI Irecv don’t hang and return immediately and are supposed to process concurrently
with useful computation. Based on the MPI buffer semantics, non-blocking functions
return as soon as possible and the programmer has to make sure that all pending MPI
operations are fully finished before safely accessing the used memory buffers. This can
be done with the help of one of the following MPI routines: MPI Wait, MPI Waitall,
MPI Waitanyor MPI Test.

One can assume that the non-blocking semantics used by the MPI implementations,
by operating in background to progress messages transmission, allows computation and
communication to be overlapped straitforwardly. The reality is quite different in most
MPI implementations. To try to understand the behavior of an MPI non-blocking
communication, it is mandatory to investigate how exactly the message transfers are
implemented. We try to give more insights about a generic use case that may include
a non-blocking MPI send operation in figure 8.9. The workflow presents a sequence
of events where the sender process initiates a non-blocking and synchronous operation.
Then it synchronizes with the receiver process before starting the data transfer. At the
end, the sender makes sure that the ongoing MPI operations are terminated by means
of a wait routine. It is then safe to use the memory buffers that were involved in the
non-blocking workflow. It is to be noted that some MPI implementations may delegate
the actual data transfer to an auxiliary thread, usually referred to as the progress thread,
that is internal to the MPI runtime.

Unfortunately, most of the current MPI implementations seem not to use progress
threads [104], and can not insure that non-blocking transfers are held in background
immediately when the MPI call is launched by the application, but rather perform MPI
progress when MPI Wait(), MPI Test(), or even any other MPI function is called,
exactly as showed in the figure 8.9. In other words, MPI non-blocking communications
can not really run in background and be interleaved with useful computations unless
functions such as MPI Wait() and MPI Test() are called right after the MPI Isend
and MPI Irecv to force message transfers to progress inside the MPI library.

We chose to use non-blocking MPI routines in order to test whether the Intel im-
plementation features a progress thread to operate in background. It can be seen in
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algorithm 8.1 that, throughout the simulation time-steps, communication and compu-
tation are interleaved and thus ”serialized”. In other words, there is no concurrency
between stencil updates and the exchange of ghost layers. This reduces the chance for
increasing the parallel efficiency of the seismic modeling application by overlapping MPI
communication and computation. The initial algorithm had to be modified in such a
way that stencil updates of the interior areas (they are local to the subdomains and have
no external data dependency) are performed while copying the boundary areas to in-
termediate buffers and transmitting them to the halo layers of neighboring subdomains.
Then, boundary sites can be updated. The new algorithm is presented in 8.6.
The exchange halos() procedure is split into two routines: start exchange halos(),

Algorithm 8.6 The seismic modeling workflow using non-blocking semantics.

1: for t ∈ [0..T ] do ⊲ [0..T ] is the simulation time-step interval
2: if mod(t, 2) == 0 then ⊲ t is the time-step index
3: add seismic source(u0, t)
4: start exchange halos(u0) ⊲ see algorithm 8.7
5: update interior wavefield(u1, u0, t)
6: finish exchange halos(u0) ⊲ see algorithm 8.7
7: update boundary wavefield(u1, u0, t)
8: save seismic trace(u1, t) ⊲ not used
9: else

10: add seismic source(u1, t)
11: start exchange halos(u1)
12: update interior wavefield(u0, u1, t)
13: finish exchange halos(u1)
14: update boundary wavefield(u0, u1, t)
15: save seismic trace(u0, t) ⊲ not used
16: end if
17: end for

where each subdomain issues non-blocking and synchronous MPI calls to swap the ghost
layers (detailed in figure 8.5a) at its edges with its nearest neighboring subdomains. De-
pending on its coordinates, each subdomain can have 3, 4 or 6 neighbors. In the routine
finish exchange halos(), we insure that all transiting MPI messages are well received
and that it is safe to access the ghost regions. As a matter of fact, this routine contains
the MPI wait calls. update interior wavefield() is used to locally update the wave-
fields whose computation does not depend on the ghost layers. This computation is a
good candidate for overlapping. update boundary wavefield() is called to update the
sites on the faces whose computations require the ghost layers already received from the
nearest neighbors. We have implemented this algorithm, using the Intel MPI implemen-
tation2 (version 4.1.3), and we show the execution times of the different components of
the workflow in figure 8.10a. For the sake of comparison we also tried blocking MPI
routines in the same workflow and show the execution times in figure 8.10b. Note that
the workflow used to generate figure 8.10b is described in algorithm 8.8. By comparing
figures 8.10a and 8.10b, we can notice that most of the communication time (the dark
orange bar) is spent in finish exchange halos() which uses the MPI Waitall routine.
At the end of the day, we may conclude that the use of non-blocking communications,
as they are implemented in the Intel MPI library, does not allow the overlap of the local
wavefields update with the halos exchange. One possible explanation would be that the

2https://software.intel.com/en-us/intel-mpi-library

https://software.intel.com/en-us/intel-mpi-library
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Algorithm 8.7 Detailed description of the subroutines used in algorithm 8.6.

1: procedure start exchange halos(u) ⊲ u is a wavefield array
2: for n ∈ [neighbors] do ⊲ n is the MPI neighbors index
3: MPI Irecv(brn, n) ⊲ brn is an intermediate buffer
4: end for
5: for n ∈ [neighbors] do
6: pack halos in linear buffers(u, bsn, n) ⊲ bsn is an intermediate buffer
7: MPI Isend(bsn, n)
8: end for
9: end procedure

10:

11: procedure finish exchange halos(u)
12: MPI Waitall(pending requests)
13: for n ∈ [neighbors] do
14: unpack buffers into halo regions(brn, u, n)
15: end for
16: end procedure
17:

18: procedure update interior wavefield(u, v, t)
19: for z ∈ [4..nz − 5] do ⊲ z is the array coordinate in Z
20: for y ∈ [4..ny − 5] do ⊲ y is the array coordinate in Y
21: for x ∈ [4..nx− 5] do ⊲ x is the array coordinate in X
22: laplacian = fd stencil compute(v, x, y, z, t) ⊲ see algorithm 6.1
23: if (x, y, z) ∈ PML region then ⊲ propagate the wave in PML regions
24: compute pml(u, x, y, z, laplacian, t)
25: else ⊲ propagate the wave in core regions
26: compute core(u, x, y, z, laplacian, t)
27: end if
28: end for
29: end for
30: end for
31: end procedure
32:

33: procedure update boundary wavefield(u, v, t)
34: for {z, y, x}! ∈ [4..nz − 5]× [4..ny − 5]× [4..nx− 5] do
35: laplacian = fd stencil compute(v, x, y, z, t)
36: if (x, y, z) ∈ PML region then
37: compute pml(u, x, y, z, laplacian, t)
38: else
39: compute core(u, x, y, z, laplacian, t)
40: end if
41: end for
42: end procedure
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Intel MPI implementation does not provide a progress thread. Using blocking MPI com-
munication would have the same behavior where computation phases are inter-leaved
with communication periods. Moreover, even if a progress thread is provided by an MPI
implementation, it has the disadvantage to use extra resources without any controlled
interactions with the application.

8.2.1.4.2 Proposed solutions To address this problem, explicit solutions for over-
lapping computation and communication are proposed. In [104], a survey of the capa-
bility of current MPI implementations to perform ”truly” non-blocking point-to-point
communications is presented. An OpenMP based solution, where a separate applica-
tion thread is dedicated for communication, is discussed and applied to a parallel sparse
CRS matrix-vector multiplication case study. Similarly, in [187] the authors use an
explicit overlap technique in a sparse matrix-vector multiplication algorithm. In [223]
APSM (Asynchronous Progress Support for MPI) 3 is presented as an extension library,
based on the POSIX threading model, that overloads some MPI functions to ensure the
progress of non-blocking MPI routines (by means of a progress thread) in background
with minimal impact on the performance of code execution in application programs.
MT-MPI [198] is another modified multi-threaded MPI library implementation that
transparently coordinates with the threading runtime system to share idle threads with
the application. The authors demonstrate the benefit of such internal parallelism for
various aspects of MPI processing including communication-computation overlap and
I/O operations.
At a lower level, the authors of [206] propose a new MPI rendezvous protocol using the
RDMA Read. This new implementation is specially designed for InfiniBand [152] fea-
tured networks and relies on top of the Verbs Level API [153]. It handles MPI message
arrivals using software interrupts after which message transfers are launched using the
RDMA Read protocol allowing each sender and its receiver counterpart to inherently
overlap communication with computation. Another interesting OpenMP approach is
proposed in [125], for MPI +OpenMP hybrid applications where some constraints were
introduced and have to be verified beforehand in order to know when it is beneficial
for a distributed algorithm to overlap communication and computation. Assume that
we allocate P OpenMP threads for a given iterative workload and normalize its execu-
tion time to 1. Assume that the communication takes time C. If no overlap is applied

3http://git.rrze.uni-erlangen.de/gitweb/?p=apsm.git;a=summary
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Figure 8.10: The new seismic modeling workflow: the test was ran on 16 compute
nodes with one MPI process per node. Each time is the mean value of 1000 iterations

of the wave equation solver measured on the master MPI process.
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the work associated with computation is P ∗ (1 − C). If the overlap is considered,
one OpenMP thread is explicitly dedicated to communications and the computation is
spread across P − 1 threads, and the execution time (given that communications are
totally overlapped) is:

T =
P ∗ (1− C)

P − 1

There is speedup only if T < 1, that is only if C > 1/P . In another hand C has to
be less than P/(2P − 1) otherwise the communication time would be dominant. The
maximum speedup is then evaluated as S = 2P−1

P . The authors apply these constraints
on a stencil computation use case and show a performance gain of up to 31%.
Other works focus more on efficient MPI/OpenMP hybrid programming models. In
[146], the authors give some hints and thumb rules to ensure a successful interaction be-
tween the OpenMP programming model and the MPI standard in hybrid applications.
They use a set of the NAS benchmarks 4 to emphasize their thesis. The authors also
enumerate a list of software tools that can be used to inspect the detailed behavior of
OpenMP/MPI hybrid programs. Finally, a useful performance test suite is proposed
in [208] to probe the ability of an MPI implementation to overlap communication with
computation. It also benchmarks the overhead of multi-threading within an MPI imple-
mentation as well as the amount of concurrency in different threads making MPI calls.
Note that the last three references concern applications where OpenMP threads are
initially used for computation, which is beyond the scope of this work.

We present, in the rest of the section, a description of our approach to overlap
MPI communications with computation in the seismic modeling application, as long as
a summary of implementation details about thereof. The overlap technique that we
propose consists of an explicit OpenMP based solution similar to [104]. Within each
MPI process, two OpenMP threads are created using an OpenMP parallel construct.
One thread is fully dedicated to exchange halos with up to six immediate neighboring
processes. The other thread is responsible for solving the wave equation locally to
the subdomain. The two threads are then synchronized implicitly by completing the
OpenMP parallel region.

Algorithm 8.8 The seismic modeling workflow using blocking semantics.

1: for t ∈ [0..T ] do ⊲ [0..T ] is the simulation time-step interval
2: if mod(t, 2) == 0 then ⊲ t is the time-step index
3: add seismic source(u0, t)
4: exchange halos(u0)
5: update interior wavefield(u1, u0, t) ⊲ see algorithm 8.6
6: update boundary wavefield(u1, u0, t) ⊲ see algorithm 8.6
7: save seismic trace(u1, t) ⊲ not used
8: else
9: add seismic source(u1, t)

10: exchange halos(u1)
11: update interior wavefield(u0, u1, t)
12: update boundary wavefield(u0, u1, t)
13: save seismic trace(u0, t) ⊲ not used
14: end if
15: end for

4http://www.nas.nasa.gov/publications/npb.html

http://www.nas.nasa.gov/publications/npb.html
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In order to make hybrid (MPI-thread) programming possible the MPI standard
provides four levels of thread safety. These are in the form of what commitments the
application makes to the MPI implementation.

• MPI THREAD SINGLE: the application is single threaded. All the MPI rou-
tines are issued by the application master thread.

• MPI THREAD FUNNELED: the application can have multiple threads but
only one thread can issue MPI calls. That thread should be the master thread.

• MPI THREAD SERIALIZED: the application can have multiple threads that
may make MPI calls but only one at a time.

• MPI THREAD MULTIPLE: the application can have multiple threads that
may make MPI calls at any time.

All MPI implementations support by default MPI THREAD SINGLE. The
other levels are activated at runtime by linking against thread-safe MPI libraries and
calling theMPI Init thread function call. Since there was no need that multiple threads
have to issue MPI calls concurrently, we chose to use theMPI THREAD FUNNELED
support in order to allow MPI calls inside OpenMP parallel regions by the master thread
(thread number 0).

Algorithm 8.9 The seismic modeling workflow using the explicit communication-
computation overlap solution.

1: for t ∈ [0..T ] do ⊲ [0..T ] is the simulation time-step interval
2: if mod(t, 2) == 0 then ⊲ t is the time-step index
3: add seismic source(u0, t)
4: !$OMP PARALLEL NUM THREADS(2)
5: if tid == 0 then ⊲ tid is the OpenMP thread index
6: exchange halos(u0) ⊲ described in algorithm 8.5
7: else
8: update interior wavefield(u1, u0, t) ⊲ see algorithm 8.6
9: end if

10: !$OMP END PARALLEL
11: update boundary wavefield(u1, u0, t) ⊲ see algorithm 8.6
12: save seismic trace(u1, t) ⊲ not used
13: else
14: add seismic source(u1, t)
15: !$OMP PARALLEL NUM THREADS(2)
16: if tid == 0 then
17: exchange halos(u1)
18: else
19: update interior wavefield(u0, u1, t)
20: end if
21: !$OMP END PARALLEL
22: update boundary wavefield(u0, u1, t)
23: save seismic trace(u0, t) ⊲ not used
24: end if
25: end for
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The algorithm 8.9 depicts the final implementation of the application. The subrou-
tine exchange halos() is that of the alternated blocking communication scheme defined
in algorithm 8.5. The message transfers are explicitly progressing by the master thread
while computation is taking place concurrently by another thread in the subroutine
update interior wavefield(). In this situation, this means that if the application is-
sues a blocking MPI call the entire process does not block but only the calling thread.
As a consequence, it is safe to use blocking MPI functions, namely MPI Send and
MPI Recv in order to overlap communication with computation by means of separate
OpenMP threads. In other words, no matter which MPI communication routines we
use, we can perform MPI communications concurrently with useful computation. We
recall that ultimately, we decided to implement the seismic modeling application using
the alternated blocking communication scheme, described in section 8.2.1.2, managed
by a dedicated OpenMP thread. At the end of the day, we try to overlap the commu-
nication with the update of the interior areas. The boundary sites are then updated
outside the OpenMP parallel construct in update boundary wavefield(). Figure 8.11
shows a timeline view of the overlapping algorithm.

8.2.1.4.3 Performance results We apply the communication-computation over-
lap solution to the seismic modeling application and we deploy it on the PANGEA CPU
cluster. We consider using the 3D SEG/EAGE salt model (V) as the initial dataset
for the application. We run a series of scaling tests on 1 to 64 compute nodes, each
has sixteen cores and features a 2-way SMT [132]. We distinguish between weak and
strong scaling scenarios. We also consider three different MPI processes configurations.
The first one is a one MPI process per node configuration, where one thread is created
to handle communications, and one thread to solve the wave equation. Although this
configuration is useless when it comes to sustained performance on the CPU cluster, it
may give us some insights about the behavior of the MPI communications on hardware
accelerators (GPU and APU) where the MPI communication scheme is very similar and
where one thread is dedicated to communication and another is used to manage the
accelerator.
The second configuration is sixteen MPI processes per node, where we fully utilize the
physical cores for computation and where we aim to rely on SMT to manage MPI com-
munications concurrently to computation. This is supposed to be the most natural and
efficient configuration when it comes to the application performance. This configuration
incurs the usage of a total of 32 threads per compute node when the overlap is activated.
Note that the domain decomposition configurations differ from what we have presented
in tables 8.3 and 8.4, as more MPI processes are involved. We rather give the domain
decomposition parameters, corresponding to this case, in tables 8.10 and 8.11.
The third is an eight MPI processes per node configuration. The sole motivation be-
hind using this configuration, is that we are investigating whether SMT would impact
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Figure 8.11: Timeline view of the explicit computation-communication overlap algo-
rithm used in the seismic modeling application.
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#nodes
#MPI/node

compute grid
8 MPI/node 16 MPI/node

ddx ddy ddz ddx ddy ddz seismic modeling seismic migration
1 2 2 2 2 4 2

Ω8×8×8 Ω9×9×9

2 2 4 2 4 4 2
4 4 4 2 4 4 4
8 4 4 4 4 8 4
16 4 8 4 8 8 4
32 8 8 4 8 8 8
64 8 8 8 8 16 8

Table 8.10: Numerical parameters of the domain decomposition, with respect to
the strong scaling scenario, and with considering 8 or 16 MPI processes per compute

node.

#nodes
#MPI/node

compute grid8 MPI/node 16 MPI/node
ddx ddy ddz ddx ddy ddz

1 2 2 2 2 4 2 Ω16×16×16

2 2 4 2 4 4 2 Ω16×16×8

4 4 4 2 4 4 4 Ω16×8×8

8 4 4 4 4 8 4 Ω8×8×8

16 4 8 4 8 8 4 Ω8×8×4

32 8 8 4 8 8 8 Ω8×4×4

64 8 8 8 8 16 8 Ω4×4×4

Table 8.11: Numerical parameters of the domain decomposition, with respect to
the weak scaling scenario, and with considering 8 or 16 MPI processes per compute

node. Applicable to both seismic modeling and seismic migration.

the performance of the application rather than allow overlap possibilities when we fully
utilize each node (see previous configuration). Alternatively, we wonder if using half
of the physical cores for computation and dedicating the other half to communication
would be more beneficial. The tables 8.10 and 8.11 also list the domain decomposition
parameters and the compute grids configuration for this test bed.
In order to help read the following figures that summarize the performance results, we
depict in the table 8.12 the signification of the notations we used in the figures. We
sketch small inverted triangles (see perfect scaling) on top the histograms in order
to show what an ideal scaling (strong or weak) would look like, which would help the
reader to vision the scaling efficiency of our implementations. Note that, in each figure
the first reference to the perfect scaling corresponds to the best execution time achieved
with respect to the first test case (often the test case “1 node”), in that figure.

in the time spent to update the interior region of the subdomain
out the time spent to update the boundary regions of the subdomain
comm the time spent in MPI communications
max[in,comm] the maximum between comm and in
perfect scaling an artificial reference that mimics a perfect strong/weak scaling
noverlap results with no communication-computation overlap is applied
woverlap results with overlapping communications with computations

Table 8.12: Description of the notations used in the figures illustrating the perfor-
mance results of the seismic modeling.
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Figure 8.12: Performance impact of the communication-computation overlap on the
seismic modeling application on the CPU cluster. The strong scaling is considered
with placing 1 MPI process on each compute node. The V dataset is used as input

data. Each execution time is the average of 1000 of simulation iterations.

8.2.1.4.3.1 Strong scaling tests To begin with, we place only one MPI process
per compute node, in other words only one subdomain is allocated on a compute node.
After an early experiment we noticed a couple of interesting behaviors that we describe
as follows. First of all, after running the test on the 3D SEG/EAGE salt model (the
timings are depicted in figure 8.12), we noticed that the communications are partially
or totally overlapped in most of all the test instances. However, we observed that this
configuration suffers from an unfavorable communication to computation ratio since the
communication periods (exchange halos()) are found to be very short compared to the
computation time. As a matter of fact, a compute node on the PANGEA cluster is a
double socket each of which has eight physical cores and features a 2-way SMT. Allo-
cating one MPI process on each compute node implies a long execution time in order to
update the wavefields (update interior wavefield() and update boundary wavefield()) of
each corresponding subdomain. Given that the aim of this experiment is to demonstrate
the impact of the explicit communication-computation overlap approach on the perfor-
mance of the seismic application with this process placement configuration, we studied
here another dataset with greater communication to computation ratios. We decided to
run the seismic modeling application on a smaller data set Small 3D SEG/EAGE salt
model (W) whose velocity grid information is given in table 8.13. We recall that 3D
SEG/EAGE salt model (the V dataset) is presented in figure 5.2, which also summarizes
its different SEP parameters.

Using the velocity grid W altered the communication computation ratio as the
workload per MPI process is lighter. We can read in table 8.14 a comparison between
the percentage of MPI communications, over the overall execution time of some iterations
of the solver, when the 3D SEG/EAGE salt model is used with that when the Small
3D SEG/EAGE salt model is used. We can see that the more MPI processes are used
the bigger is the communication to computation ratio. It increases up to 30% when the
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SEP parameter value

n1 169

n2 169

n3 50

d1 12.5 m

d2 40.0 m

d3 20.0 m

Table 8.13: Numerical configuration of W: the velocity grid of the Small 3D
SEG/EAGE salt model . The velocity grid is a cubic section extracted from V dataset.

small velocity model is used. This will enable us to show the efficiency of our overlapping
technique.

Second of all, when we first implemented the overlap technique, we made sure to time
all the actions of the two threads, that are active in each MPI domain, separately. We
noticed very quickly that the communication time increases throughout the simulation
iterations. It is yet another MPI synchronization problem. We mean by communication
time a time aggregation that includes the time spent to arrange the data onto linear
buffers to make it ready for MPI send operations, the actual message transfer time over
the network, the time to unpack the data into the corresponding halo layers and also the
time spent in the implicit pairwise MPI synchronization. We also noticed that after few
iterations the communication time, measured by the OpenMP master thread, is nearly
as important as the interior wavefields update time, measured by the auxiliary OpenMP
thread, and sometimes slightly higher. After investigation we found out that this is due
to the load balancing problem that affects the seismic modeling application as discussed
in section 8.2.1.3. Indeed, this incurs an incremental communication overhead since the
MPI processes are less and less synchronized throughout the simulation iterations.

dataset #nodes overall communication % communication

V

1 52.19 – –
2 26.70 0.008 0.03%
4 12.77 0.410 3.21%
8 6.56 0.509 7.75%
16 3.14 0.160 5.09%
32 1.68 0.083 4.94%
64 0.88 0.090 10.18%

W

1 0.3792 – –
2 0.19 0.0016 0.85%
4 0.10 0.0059 5.74%
8 0.055 0.0089 16.17%
16 0.0193 0.0041 21.23%
32 0.0114 0.0021 18.36%
64 0.00625 0.0020 31.95%

Table 8.14: Percentages of the MPI communications of the seismic modeling
application, with respect to the overall execution times, when using the datasets: V
and W. The strong scaling scenario is considered, and each time is a mean value of

1000 iterations of the simulation measured on the master MPI process.
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To address this problem, the solutions relative to the load imbalance problem pre-
sented in section 8.2.1.3 can be applied. We have considered here the use of MPI barriers.
They can be considered to alleviate the communication delay effect. We tried to apply
a periodic (every 18 to 25 iterations) MPI barrier in order to synchronize all the com-
putation threads without affecting the communication threads. Note that we need the
MPI THREAD MULTIPLE support to do that, because within each MPI process,
both the communication thread and the computation thread make calls the MPI library.
Although the barrier helped preventing the communication overhead from increasing,
the global synchronization introduced by them added another overhead to the table.
Ultimately, it was not beneficial to the application and did not solve the problem.

Besides, an important effort was put on investigating how threads, i.e. only one
thread which is in fact one process in the case where no overlap is performed or two
OpenMP threads when the overlap is applied to the application, are placed on the CPU
cores in order to avoid NUMA effects [169] and SMT overheads [184]. Following the Intel
MPI implementation recommendation, we tended to pin each communication thread
along with its corresponding computation thread in the same CPU socket. This can be
done using environment variables provided by the Intel MPI implementation, namely
I MPI PIN DOMAIN=socket [131] which ensures that the two OpenMP threads will
remain in the same CPU socket. Furthermore, we found out that even in the noverlap
case, process pinning was also important. Indeed, the MPI process is being per default
placed on the first CPU core (CPU0 or core number 0) of each compute node and
the early results showed that the execution time of the local wavefields update was
longer in the noverlap case compared to that in the woverlap case. This seemed strange
since it consisted of the very same operation and thus we should have obtained the
same execution time in both cases. After a thorough examination, it turned out that
pinning the single MPI process on a CPU core other than CPU0 gave the execution
time expected. A possible explanation of this behavior is that other daemons (MPI
daemon, etc.) used by Intel MPI are sporadically using the CPU0. The application
process is then concurrently using the CPU core with those latter. As a consequence we
set the environment variable I MPI PIN DOMAIN=[000000FE] (using masks) to pin
the thread in one socket but outside CPU0. This manipulation solved the problem.

Figure 8.13 shows the execution time of the seismic application in two different sce-
narios: noverlap where the serial approach (see algorithm 8.8) is applied. And woverlap
where the communication-computation OpenMP based overlap technique is applied (see
algorithm 8.9). For woverlap, the light grey stacks represent the maximum time between
the update interior wavefield() time and the communication (exchange halos()) time.
The dark grey legend is the execution time spent to update the local inlet wavefields, the
light blue is the time to update the boundary wavefields. The orange legend corresponds
to the MPI communication time, i.e. the time spent to exchange halos with neighboring
subdomains. The orange percentages on the top of the histogram bars represent the
ratio of the MPI communication time to the average iteration time. The black percent-
ages on the top of the histogram bars represent the performance gain (or loss) obtained
when communication is overlapped with communication. We recall that these results
are obtained after using the Small 3D SEG/EAGE salt model with one MPI process
per compute node. For each test the slowest MPI process, i.e. the process that has the
biggest average iteration time, is taken as reference. Here, the execution times corre-
spond to the strong scaling scenario. It has to be noted that the same legend is used in
the rest of the performance charts present in this chapter. As it can be seen in figure
8.13, the communication time ratio becomes more and more important as we increase the
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Figure 8.13: Performance impact of the communication-computation overlap on the
seismic modeling application on the CPU cluster. The strong scaling is considered
with placing 1 MPI process on each compute node. The W dataset is used as input

data. Each execution time is the average of 1000 simulation iterations.

number of compute nodes (16 to 64 compute nodes, see figure 8.2). Further, the overlap
technique is beneficial to the seismic modeling application performance, specially when
a high number of processes is used (16 to 64), as we notice that we can gain up to 15%
of the average execution time after each iteration. This gain is achieved when running
on 64 compute nodes where we observed that the communication time represents 20%
of the overall execution time.
We thus demonstrated that a performance gain is possible on the CPU cluster when
communications are overlapped with the computation. We can expect that on GPU and
APU clusters, the overlap technique will have positive impact on the performance as
well.

Then, in figure 8.14 we increase the number of MPI processes per compute node
and show the execution time with and consider two strategies. First, the eight processes
per node strategy, where we make sure to equally spread the processes across the two
sockets of each compute node. This can be done using the I MPI PIN DOMAIN en-
vironment variable in the Intel MPI runtime. When the communication is overlapped
with computation, 8 other threads are allocated and placed in such a manner that each
communication thread runs in the same socket its corresponding computation thread is
in. Second, the sixteen processes per node strategy where we fully utilize each compute
node (each compute node has 16 cores). We recall that in this case we rely on the SMT
to use 32 threads per compute node.

We show the detailed execution times, with and without communication-computation
overlap, for the strong scaling scenario on 1 to 64 compute nodes. We compare the two
strategies, each histogram representing a test instance, i.e. the deployment of the seis-
mic application while combining the overlap technique with the MPI process distribution
strategy which implies 4 cases per test instance. In the figure 8.14 each case is referenced
as a number, that indicates the number of MPI processes per compute node, juxtaposed
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Figure 8.14: Performance impact of the communication-computation overlap on the
seismic modeling application on the CPU cluster. The strong scaling is considered
with placing 8 or 16 MPI processes on each compute node, making a total number of
8 to 1024 processes. The V dataset is used as input data. Each execution time is the

average of 1000 simulation iterations.

with a statement that tells whether the overlap technique is applied (woverlap) or not
(noverlap).

As expected, we can see that when we do not overlap communication with compu-
tation the 16 per node strategy gives the best performance compared to the that with
8 per node. It is also the same for the woverlap case. In some test cases overlapping
the communication with computation did not help, specially when 16 MPI processes are
used per compute node. For instance we can mind the negative percentages of the cases
2 nodes and 4 nodes. This is because the ratio of communication to computation is very
small on the one hand, and because the communication thread (SMT) influences the
computation thread on the other. In the contrary, when the amount of communication
becomes more important as we increase the number of the used compute nodes (8, 16,
32 and 64) the woverlap version is outperforming the noverlap. We observe up to 44%
or 48% of performance gain when applying the explicit overlap technique. The case 32
nodes seems pathological since the performance gain exceeds 50%: we believe that the
communication time in the noverlap case is exceptionally high. We can conclude that
despite the SMT overhead, using sixteen MPI process per compute node is profitable
when the number of nodes is relatively high (more then 32 or 64).

8.2.1.4.3.2 Weak scaling tests Following, we explore the impact of the overlap
technique on the performance while taking into consideration the weak scaling scenario
instead, i.e the problem size is subsequently doubled along with the compute resources.
The table 5.7 summarizes the numerical configuration for this test scenario. Similarly to
the strong scaling scenario, we start our testings with the one MPI process per compute
node configuration. We run the tests on 1 to 64 compute nodes of the PANGEA CPU



Chapter 8. Large scale seismic applications on CPU/APU/GPU clusters 165

 0

 0.5

 1

 1.5

 2

 2.5

noverlap

noverlap

w
overlap

noverlap

w
overlap

noverlap

w
overlap

noverlap

w
overlap

noverlap

w
overlap

noverlap

w
overlap

t
i
m
e
 
(
s
)

#nodes
1 2 4 8 16 32 64

comm
out

in

0
.
4
9
%

0
.
8
6
%

0
.
9
6
%

0
.
9
6
%

0
.
9
0
%

1
.
0
1
%

max[in,comm]

-
0
.
6
0
%

-
0
.
0
4
% 1
.
1
7
%

1
.
2
6
%

1
.
5
1
%

0
.
8
4
%

perfect scaling

Figure 8.15: Performance impact of the communication-computation overlap on the
seismic modeling application on the CPU cluster. The weak scaling is considered
with placing 1 MPI process on each compute node. The W dataset is used as input

data. Each execution time is the average of 1000 of simulation iterations.

cluster. For this test configuration we use the Small 3D SEG/EAGE salt model as initial
dataset.

We show the execution times of the weak scaling test on figure 8.15. We compare the
woverlap version, where the communication is overlapped with the computation, against
the noverlap version. We follow the same process and thread pinning recommendations
as those used for the strong scaling scenario, i.e. the communication thread and the
computation thread are always running on the same socket, and we avoid using the
CPU0 for the noverlap version.

Unlike the previous results, the amount of communication is insignificant compared
to the overall execution time (see the orange percentages) and this is applicable even
when we increase the number of nodes. This is due to the weak scaling characteris-
tics where the compute workload per node is constant no matter how many nodes are
involved in the test. Albeit very small, the communication was partially or totally over-
lapped with computation for most the test instances (8, 16, 32 and 64). For example
we observed a performance gain of 0.84% for the 64 nodes case (where the computation
time represents 1.01% of the overall time). It is interesting to say that in this test case
we did not notice any MPI synchronization problem as stated above (the dark grey bars
are equal to the light grey ones). We can see that the test case with 8 nodes has bigger
execution times compared to the others. This behavior remained unexplained since all
the execution times of all the test instances are supposed to be similar in a weak scaling
context.

Now we consider the two other process placement strategies: eight MPI processes
per compute node and sixteen MPI processes per compute node. We run the seismic
modeling application on 1 to 64 nodes of the PANGEA cluster in a weak scaling fashion.
We also compare the woverlap version against the noverlap version to measure the impact
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Figure 8.16: Performance impact of the communication-computation overlap on the
seismic modeling application on the CPU cluster. The weak scaling is considered
with placing 8 or 16 MPI processes on each compute node, making a total number of
8 to 1024 processes. The V dataset is used as input data. Each execution time is the

average of 1000 of simulation iterations.

of the communication-computation overlap on the application performance. The figure
8.16 summarizes all the timing details. We can conclude that the sixteen per node
strategy outperforms the eight per node strategy whether the overlap is activated or
not. Besides, the explicit overlap technique enhanced the performance of all the test
instances of the eight per node strategy as we can observe a performance gain up to
36%.

However, it was beneficial for the sixteen per node strategy only when a high number
of nodes is used (16, 32 and 64 nodes) where we noticed up to 24% of performance gain.
When a small number of nodes is used (1 to 8 nodes) the SMT effect is hampering the
performance improvement since the overhead caused by the communication thread is
more important than the amount of communication itself. That explains the negative
gain percentages in figure 8.16.

To conclude on this section, we showed that using an auxiliary thread to handle
MPI communications allowed overlapping those communications with the wave equa-
tion solver computation. We demonstrated that the communication-computation over-
lap technique helps enhance the seismic modeling performance in most of the cases.
We emphasized that thread pinning played a primary role to help use the compute
resources efficiently and orchestrate the communication threads along with the compu-
tation threads. We believe that the ”one per node” configuration is a quick overview
of what we can expect when we deploy the application on hardware accelerators where
one thread can be dedicated to communication and another to manage the accelerator.
This is studied in the following section.
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8.2.2 Deployment on hardware accelerators

After having optimized a large scale MPI implementation of the seismic application
on the CPU cluster, and having addressed the most important hotspots of its multi-
node workflow, we try in this section to adapt the seismic modeling application to the
hardware accelerator based clusters, namely to the GPU cluster (see table 5.2) and
to the APU (see table 5.3) cluster. To this purpose, we propose an MPI+OpenCL
implementation. First, we describe the large scale workflow of the seismic modeling on
the GPU and APU clusters. We give an overview about the implementation details,
while underlying the changes that we had to introduce in the algorithm and that were
driven by the different architectures characteristics and hardware features. Second, we
present the OpenCL performance results of the seismic modeling on the discrete GPU
cluster, and on the APU cluster with (zz data placement strategy (DPS)) and without
using the zero-copy memory objects (cggc DPS).

8.2.2.1 Implementation details

In this section we describe the large scale workflow of the seismic modeling on the GPU
cluster and on the APU cluster. Given that the core of the algorithm, which consists in
the wave propagation in an isotropic medium, was thoroughly described in chapter 7, we
particularly focus on the communication and on how data is migrated from GPU cores
to the CPU and then to the other nodes of the cluster. We assume that the reader had
gone through the multi-CPU implementation of the seismic modeling, where we detailed
the most relevant aspects and problems related to the large scale implementation of the
application (see section 8.2.1), and which remain applicable to the HWAs based multi-
node implementations.

When it comes to implementing the seismic modeling on HWAs, a special care has
to be put on how the data is managed in terms of traffic between the main CPU and
the accelerator (a discrete GPU or an integrated GPU of an APU in our case). In-
deed, we have mentioned in section 8.2.1.2, that the ghost faces are copied (or packed)
into contiguous intermediate buffers prior to performing the MPI communications with
the neighbors of each subdomain (see pack halos in linear buffers() in algorithm 8.5).
After receiving the data from the neighbors, it is copied back (or unpacked) to the wave-
field arrays (see unpack buffers into halo regions() in algorithm 8.5). In the rest of
the section, we will refer to these operations respectively as packing and unpacking data.
However, given that the computation is held on the GPU cores, the regions to be copied
to the neighbors have first to be retrieved from the GPU memory to the main memory
in order to send the correct updated wavefield values to the immediate neighbors. In
addition, at the end of the computation related to the wave propagation, the updated
wavefield array is periodically stored (snapshotting) in order to further reconstruct a
sequence of seismic traces at the end of the simulation. Here again, the wavefield ar-
ray should be first copied from the GPU memory before performing such an operation.
Similarly to the multi-CPU implementation and also to the one-node implementation
(see algorithm 7.1) of the seismic modeling, we do not consider data snapshotting in
the seismic modeling workflow for accelerators, since it is a collective operation which
may interfere with the MPI communications. It will be rather discussed in the seismic
migration implementations, where the data snapshotting is a local operation to each
subdomain.
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Algorithm 8.10 Description of the algorithm of the seismic modeling implementation
on the GPU and APU clusters.
1: for t ∈ [0..T ] do ⊲ [0..T ] is the simulation time-step interval
2: if mod(t, 2) == 0 then ⊲ t is the time-step index
3: add seismic source(u0, t)
4: exchange halos(u0)
5: update wavefield(u1, u0, t)
6: dtoh wavefield(u1) ⊲ retrieves the data from the GPU (not used)
7: save seismic trace(u1, t) ⊲ not used
8: else
9: add seismic source(u1, t)

10: exchange halos(u1)
11: update wavefield(u0, u1, t)
12: dtoh wavefield(u0)
13: save seismic trace(u0, t)
14: end if
15: end for
16:

17: procedure exchange halos(u) ⊲ u is a wavefield array
18: for n ∈ {north, south, east, west, front, back} do
19: pack halos in linear buffers(u, bsn, n) ⊲ by means of OpenCL kernels
20: dtoh halos(ucpu, bsn) ⊲ retrieves halos from the GPU memory
21: end for ⊲ bsn is an intermediate buffer
22: .... ⊲ the alternated blocking communication scheme, see algorithm 8.5
23: for n ∈ {north, south, east, west, front, back} do
24: htod halos(brn, ucpu) ⊲ copies halos to the GPU memory
25: unpack buffers into halo regions(brn, u, n) ⊲ using OpenCL kernels
26: end for
27: end procedure
28:

29: procedure update wavefield(u, v, t) ⊲ runs on the GPU using OpenCL
30: each thread (x, y) ∈ nx× ny
31: for z ∈ [0..nz] do ⊲ z is the wavefield coordinate in Z
32: laplacian = fd stencil compute(v, x, y, z, t)
33: if (x, y, z) ∈ PML region then
34: compute pml(u, x, y, z, laplacian, t)
35: else
36: compute core(u, x, y, z, laplacian, t)
37: end if
38: end for
39: end procedure
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The changes related to memory manipulation that we had to introduce in the workflow,
as to adapt it to HWAs, are highlighted (marked in bold) in the algorithm 8.10, where
we give a general overview of the seismic modeling workflow on GPU and APU clusters.
First, as it has been discussed in the one-node implementation of the seismic modeling
in chapter 7, the seismic source term is injected into the computation using OpenCL
tasks in the subroutine add seismic source(). Note that only the subdomain in which
the source is placed is concerned by this computation.
Then, as it was seen in the algorithm related to the multi-CPU implementation, each
subdomain exchanges the halos, using the alternated blocking communication scheme
(see algorithm 8.5), with its immediate neighbors in the subroutine exchange halos().
But, we had to introduce several changes to this subroutine since the wavefield arrays
do not necessarily lie on the main memory anymore. For an obvious need of perfor-
mance enhancement, the data packing, in the multi-GPU implementation as well as in
the multi-APU (with the cggc DPS), is performed by the GPU by means of up to six
OpenCL kernels depending on the domain decomposition configuration. The OpenCL
kernels are responsible for copying the ghost layers, that may be broken up into many
small regions in the GPU memory, from the most up-to-date wavefield array into contigu-
ous GPU buffers. This is done in the new pack halos in linear buffers() subroutine
in algorithm 8.10, which helps prepare the buffers to be copied to the main memory,
either via the PCI Express bus or by explicit copies (APU with the cggc DPS). It is to
be noted that the efficiency of packing and unpacking the data with the help of GPU
kernels was already shown in [22]. The dtoh notation, used in the algorithm stands for
“device to host” and we use it to indicate that a data transfer from the GPU memory to
the main memory is taking place. In the contrary, htod stands for “host to device” and
informs that we have to copy data from the main memory to the GPU memory. Thus,
in the subroutine dtoh halos() we copy the packed ghost faces from the GPU memory to
the host memory (into the intermediate buffers bsn) prior to the MPI communications.
As a matter of fact, this manipulation depends on the used hardware. In the GPU
cluster, the subroutine dtoh halos() is synonymous to a memory transfer, via the PCI
Express bus, from the discrete GPU of each compute node to the main memory of the
same node. For the APU cluster, it rather consists in a simple memory copy from the c
memory to the g memory, when the cggc DPS is applied, and in a memory map opera-
tion (from an OpenCL standpoint, we talk about the clEnqueueMapBuffer function)
in order to allow the CPU of an APU to access the wavefield arrays that the integrated
GPU was updating, when the zz DPS is used. Once packed and brought to the main
memory, the ghost faces are exchanged with the neighbors by means of MPI communi-
cations. After receiving the data, the opposite workflow is performed. The ghost layers
are stored in the main memory (intermediate buffers brn), and then copied to the GPU
memory in the subroutine htod halos(). Here again, this operation depends whether we
are targeting the GPU cluster or the APU cluster. In the first case, a memory transfer
from the CPU memory to the GPU memory via the PCI Express bus is performed. If
the APU cluster with the cggc DPS is targeted, then an explicit copy from c to g is
issued. In the case where the zero-copy memory objects (the zz DPS) are used in the
APU cluster, the subroutine merely consists in unmapping the array wavefield from the
CPU memory (with the help of the OpenCL function clEnqueueUnmapMemObject),
in order to allow the GPU cores to operate on the received data. The subroutine
unpack buffers into halo regions() is then performed, by the GPU with the help of
up to six OpenCL kernels (one for each of the subdomain faces), in order to unpack the
contiguous halos back to the right locations into the wavefield arrays.
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After that, the computation related to the wave propagation takes place in the subrou-
tine update wavefield(), where a 2D thread grid is deployed on the GPU and the stencil
computations are performed on the core region and, if applicable, on the PML regions
of each subdomain. Note that we rely on the “multiple kernels” approach to perform
computations on the GPU, which had been found in chapter 7 more efficient than using
a single OpenCL kernel.
Finally, the updated wavefield array is usually stored on disk (data snapshotting) in the
subroutine save seismic trace() in order to put together a sequence of seismic traces
that illustrates the reflecting events of the simulation. Similarly to the multi-CPU im-
plementation, in the HWAs based implementation this operation should be preceded by
a memory transfer from the GPU memory to the main memory, or by a memory map
operation, which is held in the subroutine htod wavefield(). However, we have men-
tioned that the data snapshotting is not considered in our seismic modeling workflow,
therefore these two subroutines are not used and are rather presented to give to the
reader a complete picture about the large scale seismic modeling workflow on HWAs
based clusters.

Note that having the GPU perform the packing and the unpacking of the ghost
regions, has the advantage to transfer only small buffers back an forth between the
CPU and the GPU, otherwise the whole wavefield arrays had to be transferred which
would had strongly harmed the performance of the seismic modeling on the HWAs based
clusters, especially on the GPU cluster. Note also, that there are other alternatives to
what we have presented, such as using the rectangular copies, provided by the OpenCL
standard. This solution was tested and was found less efficient than the OpenCL kernels
based approach.

Now that we have presented the general workflow of the application, we introduce in
algorithm 8.11 the explicit mechanism that we use to overlap the MPI communications
with the computations. Relying on this approach had shown performance benefits on
the multi-CPU implementation of the seismic modeling (see section 8.2.1.4.3): we aim
to investigate whether it is also advantageous to the muti-GPU and to the multi-APU
implementations. This technique is based on the OpenMP threading model and was
discussed in section 8.2.1.4. The algorithm shows that the main computation is split into
two steps. First, the interior (or core) region of the wavefield array is updated (subroutine
update interior wavefield()), and then the boundary region is computed (subroutine
update boundary wavefield()). Thanks to this separation in the computation, the MPI
communications are issued by a dedicated OpenMP thread concurrently with another
thread driving the core computation that runs on the GPU. In reality this makes a
total number of three threads as when creating an OpenCL command queue to run an
OpenCL kernel on the GPU, another thread is spawned (as far as the AMD OpenCL
implementation is concerned). But, the third thread did not really affect the CPU
resources usage.

8.2.2.2 Performance results

In this section we present the performance results of the large scale OpenCL implemen-
tations of the seismic modeling on the GPU cluster (see table 5.2) and on the APU
cluster (see table 5.3). We consider overlapping the communications with computation
and emphasize its impact on the application performance. We distinguish the strong
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Algorithm 8.11 Description of the seismic modeling algorithm on the GPU and APU
clusters, with overlapping communications with computations.

1: for t ∈ [0..T ] do ⊲ [0..T ] is the simulation time-step interval
2: if mod(t, 2) == 0 then ⊲ t is the time-step index
3: add seismic source(u0, t)
4: !$OMP PARALLEL NUM THREADS(2)
5: if tid == 0 then ⊲ tid is the OpenMP thread index
6: exchange halos(u0) ⊲ described in algorithm 8.10
7: else
8: update interior wavefield(u1, u0, t)
9: end if

10: !$OMP END PARALLEL
11: update boundary wavefield(u1, u0, t)
12: dtoh wavefield(u1) ⊲ not used
13: save seismic trace(u1, t) ⊲ not used
14: else
15: add seismic source(u1, t)
16: !$OMP PARALLEL NUM THREADS(2)
17: if tid == 0 then ⊲ tid is the OpenMP thread index
18: exchange halos(u1)
19: else
20: update interior wavefield(u0, u1, t)
21: end if
22: !$OMP END PARALLEL
23: update boundary wavefield(u0, u1, t)
24: dtoh wavefield(u0)
25: save seismic trace(u0, t)
26: end if
27: end for
28:

29: procedure update interior wavefield(u, v, t) ⊲ runs on the GPU
30: each thread x, y ∈ [4..nx− 5]× [4..ny − 5]
31: for z ∈ [4..nz − 5] do ⊲ z is the wavefield coordinate in Z
32: laplacian = fd stencil compute(v, x, y, z, t)
33: if (x, y, z) ∈ PML region then
34: compute pml(u, x, y, z, laplacian, t)
35: else
36: compute core(u, x, y, z, laplacian, t)
37: end if
38: end for
39: end procedure
40: procedure update boundary wavefield((u, v, t) ⊲ runs on the GPU
41: each thread x, y ∈ [0..3] ∪ [nx− 4..nx− 1]× [0..3] ∪ [ny − 4..nx− 1]
42: for z ∈ [0..3] ∪ [nz − 4..nz − 1] do
43: laplacian = fd stencil compute(v, x, y, z, t)
44: if (x, y, z) ∈ PML region then
45: compute pml(u, x, y, z, laplacian, t)
46: else
47: compute core(u, x, y, z, laplacian, t)
48: end if
49: end for
50: end procedure
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pack the time spent in packing the halos
unpack the time spent in unpacking the halos
d-h-comm the time spent in the subroutines dtoh halos() and htod halos()

Table 8.15: Description of the additional notations used in the figures illustrating the
performance results of the seismic modeling on HWAs based clusters.

scaling scenario from the weak scaling scenario. For each case we present the perfor-
mance numbers obtained on he GPU cluster, on the APU cluster when considering the
cggc DPS, and on the APU cluster with the zero-copy memory objects (the zz DPS).

We deploy the multi-node implementation on DIP and RDHPC clusters, running
the simulation throughout 1000 time-steps, and show the execution time of the slowest
MPI process in each test case. We recall that the maximum number of nodes of the APU
cluster is 16, therefore our scaling tests involve a number of nodes that only ranges from
1 to 16. Note that in the case of discrete GPUs the memory objects are pinned in order
to improve the bandwidth of the PCI Express bus (Gen 3) while transferring the data
between the CPU and the GPU or vice versa. We recall that the data snapshotting is not
considered, thus the presented times do not include any I/O operation. In order to help
read the following figures that summarize the performance results, in addition to the
table 8.12, we summarize in the table 8.15 the signification of the additional notations
we used in the figures. We recall that perfect scaling is an indication, based on the
best execution time of the first test case in each figure, that is only used to evaluate the
scaling, on the HWAs based clusters, of our multi-node implementation of the seismic
modeling (see table 8.12).

8.2.2.2.1 Strong scaling tests We ran the seismic modeling implementation on
the compute grid Ω8×8×8 while using the 3D SEG/EAGE salt model (V) as an input
data. We consider the case where we apply the algorithm 8.10 which does not involve
overlapping MPI communications with computation (noverlap), and the case where
we make use of the explicit communication-computation overlap technique explained
in algorithm 8.11 (woverlap). Due to the memory limitations related to the memory
capacity of the discrete GPUs (12 GB at most) and to the OpenCL specification (version
1.2), which states that the maximum amount of memory that can be allocated at once
is 1/4 the total size of the global memory, the strong scaling case is reduced to two
test cases (8 and 16 nodes) for the GPU cluster and the APU cluster (with the cggc

strategy). However, the zz DPS allows to consider the strong scaling on the APU cluster
from 1 to 16 nodes.

The figure 8.17 shows the performance numbers of the strong scaling test applied
to the seismic modeling application on the GPU cluster. We emphasize the impact of
the computation-communication overlap on the performance.
The reader can see that using an auxiliary thread on each compute node, concurrently
with the thread that drives the discrete GPU, allows up to nearly 14% of performance
enhancement. We recall that when the communication-computation overlap technique is
used, two separate OpenCL kernels are deployed; one to update the interior grid points
(the routine update interior wavefield()), the other to compute the values of the grid
points on the domain boundaries (the routine update boundary wavefield()). However,
only one OpenCL kernel is used if we do not rely on the communication-computation
overlap. Therefore, we only distinguish between the in and the out times (see table
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Figure 8.17: Performance impact of the communication-computation overlap on the
seismic modeling application on theGPU cluster. The strong scaling is considered.
The V dataset is used as input data. Each execution time is the average of 1000 of

simulation iterations.

8.12) only in the woverlap case. We recall that the communication time (comm) does
not include the times of packing the boundary grid points onto the temporary buffers
during the MPI communication as well as the times of unpacking the received data
into the wavefield arrays (as it was the case for the multi-CPU implementation). The
packing and the unpacking times are presented separately and we notice that they are
not overlapped with computation in the woverlap case. As a matter of fact, overlapping
these two operations means also overlapping the data transfers through the PCI Express
bus. However, due to data dependency this is not possible since the memory location,
which is the destination of the PCI transfer, is being manipulated at the same time by
the OpenCL kernel in charge of updating the wavefield arrays. This is presented as an
undefined behavior in the OpenCL standard (version 1.2).
In addition, the test case “16 nodes” shows that mainly the PCI Express bus overhead
hinders performing a near to perfect strong scaling. Note that the difference between in

and max[in,comm] in the test case “16 nodes”, is due to that the communications time
(which also includes the MPI synchronization overhead) surpasses the computations
time when using the overlap technique, as this particular process has to synchronize
with the other MPI processes subject to longer computations (to update larger PML
regions for instance).

The figure 8.18 shows the performance numbers of the seismic modeling for the
strong scaling scenario on the APU cluster with the cggc DPS. Similarly to the GPU
cluster, the test is limited to 8 and 16 nodes. Besides, in this case the device to host
and host to device memory transfers overhead is reduced (see d-h-comm) as the data
is now transferred through the Garlic bus rather than through the PCI Express bus in
the case of discrete GPUs. We notice that overlapping the MPI communication with
computation helped to enhance the overall performance up to 19% here again, offering
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Figure 8.18: Performance impact of the communication-computation overlap on the
seismic modeling application on the APU cluster with the cggc DPS. The strong
scaling is considered. The V dataset is used as input data. Each execution time is the

average of 1000 of simulation iterations.

a near to perfect strong scaling thanks to the reduced overhead of data copies from the
integrated GPU to the CPU and vice versa.

Following we present, in figure 8.19, the performance results of the seismic modeling
on the APU cluster when using the zero-copy memory objects (the zz DPS). In this case,
one can notice that the overhead d-h-comm is almost non existent thanks to the zero-copy
memory objects. Besides, the MPI communications are almost fully overlapped with
computations in the cases 2, 4, 8 and 16 nodes, resulting in a performance improvement
of up to 14%, and to a near to perfect strong scaling. However, relying on the zz

DPS delivers only half the performance achieved on the APU cluster when using the
cggc DPS. It is to be noted that we found the amount of MPI communications in the
test cases “2 nodes” and “4 nodes” abnormally low. Besides, we point out that using
the zero-copy memory objects has reduced the performance approximately to half, as
compared to using the cggc DPS.

In general for both the GPU and APU clusters, the percentages of the MPI com-
munications time with respect to the overall time of the seismic modeling, are higher in
comparison to the multi-CPU implementation, which is due to the fact that the com-
putations are much more accelerated with HWAs rather than with CPUs. Therefore, it
is mandatory to optimize the MPI communications on the HWAs based clusters, and to
overlap them with the computations on GPUs, whenever it is possible, especially that
the CPUs in GPU based systems are often idle and can be charged with such a task.

8.2.2.2.2 Weak scaling tests Now, we consider running the seismic modeling
implementation on the compute grids detailed in table 5.7, with respect to the weak
scaling scenario. Given that the smallest compute grid in this test bed, i.e. Ω16×16×16,
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Figure 8.19: Performance impact of the communication-computation overlap on the
seismic modeling application on the APU cluster using the zero-copy memory
objects. The strong scaling is considered. The V dataset is used as input data. Each

execution time is the average of 1000 of simulation iterations.

fits in one GPU based compute node as well as in one APU based compute node, the
weak scaling scenario involves a number of compute nodes that ranges from 1 to 16.

The figure 8.20 depicts the performance numbers obtained on the GPU cluster. The
reader can notice that overlapping the MPI communications with OpenCL computations
on the GPU is also beneficial in the weak scaling scenario, as we observe up to 12% of
performance gain. It is also to be noted that the communications time gets bigger as
we increase the number of nodes. Proportionally to the communications time, the PCI
transfers (d-h-comm), the data packing (pack) and unpacking times (unpack) increase as
the number of nodes is doubled. Moreover, the MPI communications are less efficiently
overlapped in the test case “16 nodes”, since this particular MPI process (we recall
that the times depicted in the figures correspond to the slowest MPI rank in each test
configuration) synchronizes with other processes that take longer time in computations
(due to the PML layers) and spend less time in MPI communications, which creates
an additional overhead. Besides, we can see that the overhead incurred by the memory
transfers via the PCI Express bus has a negative impact on the performance, as it
partially harms the parallel efficiency of the seismic modeling on the GPU cluster (see
perfect scaling). Finally, one can see that the computation time in the test cases “8
nodes” and “16 nodes” are lower than that in the other cases. This is only due to the
fact that we are measuring the times of the slowest MPI process in each configuration,
and that depending on the number of PML faces that each subdomain contains, the in
time may vary from an MPI process to another.

In the figure 8.21, we illustrate the OpenCL performance results of the seismic
modeling on the APU cluster, using the cggc DPS and considering the weak scaling
scenario. At first glance, one can see that the overhead due to the memory traffic
between the CPU and the GPU is reduced (in proportion with respect to the overall
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Figure 8.20: Performance impact of the communication-computation overlap on the
seismic modeling application on the GPU cluster. The weak scaling is considered.
The V dataset is used as input data. Each execution time is the average of 1000 of

simulation iterations.
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Figure 8.21: Performance impact of the communication-computation overlap on the
seismic modeling application on the APU cluster, with the cggc DPS. The weak
scaling is considered. The V dataset is used as input data. Each execution time is the
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Figure 8.22: Performance impact of the communication-computation overlap on the
seismic modeling application on the APU cluster using the zero-copy memory
objects. The weak scaling is considered. The V dataset is used as input data. Each

execution time is the average of 1000 of simulation iterations.

time). Besides, the communication-computation overlap technique offered a significant
performance gain (up to 12%) as the MPI communications were almost fully overlapped,
even more efficiently in comparison with the weak scaling on the GPU cluster. This had
led to a good scaling (near to perfect). Finally, we present in figure 8.22 the performance
results for the seismic modeling on the APU cluster with using the zero-copy memory
objects. Similarly to the strong scaling scenario, we notice that the overhead due to
the data copies between the GPU and the CPU is removed thanks to the zero-copy
memory objects. Besides, overlapping the communications improved the performance,
and that the gain reached up to 11%. However, we can see that the pack and unpack

times are increasing as we double the number of nodes. This is explained by the fact
that the more nodes we use the bigger is the compute grid and the more ghost layers are
exchanged between neighbors. Besides, in the case of the APU cluster with the zz DPS,
the data packing and the data unpacking are performed by the CPU, as opposed to the
implementation on the GPU cluster where they are performed, with the help of OpenCL
kernels, on the GPU. By proceeding as such, the packing and unpacking subroutines are
found less efficient on the CPU (especially on the CPU of the APU which has a low
compute power). Note that instead of packing and unpacking data, we could have used
the MPI derived data-types, which would have prevented the intermediate copies prior
to issuing the MPI communications. This approach is a possible future work.

To sum up, we have shown that the communication-computation overlap had im-
proved the OpenCL performance of the seismic modeling on the GPU cluster and on
the APU cluster regardless of the used DPS. Besides, on the GPU cluster the overhead
caused by the memory traffic on the PCI Express bus was found to be a limiting factor
that prevents the application from scaling ideally, as the number of the compute nodes
increases. On the APU cluster, although the overall performance is lower than that
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reported by the GPU cluster, the impact of data copies between the c memory and the
g is less significant. Moreover, the overhead was totally suppressed when the zero-copy
memory objects were used. Finally, the ratio of the performance numbers of the APU
cluster when using the cggc DPS, to those when using the zz (for both strong and weak
scalings) is between 0.5 and 0.6, which corresponds to the ratio of the sustained memory
bandwidth of host-visible device memory to that of the integrated GPU global memory.

8.3 Seismic migration

In this section, we rely on the seismic modeling workflow and optimizations to put
together a large scale implementation of the seismic migration (RTM). We describe the
workflow of the application on the CPU cluster and on the HWAs based clusters. We
show performance numbers on the different architectures and conduct a comparison
study between the CPU cluster, the APU cluster and the GPU cluster. The study
includes a comparison based on the execution times (performance), a comparison based
on the theoretical maximum power consumption (power efficiency), and a comparison
based on the throughput in terms of RTM shots (production efficiency).

8.3.1 Deployment on CPU clusters

In this section we evaluate an MPI+Fortran based implementation of the seismic migra-
tion on the PANGEA cluster. First, we give implementation details about the seismic
migration workflow on the CPU cluster. Second, we focus on some performance pitfalls
related to the RTM and we present scalability results where we distinguish between
strong and weak scaling scenarios, with a special emphasis on the impact of using asyn-
chronous I/O on the application performance.

8.3.1.1 Implementation details

In section 8.2.1.1 we had gone through the description of the large scale workflow of the
seismic modeling on the CPU cluster. In this section, we extend this workflow to give
a high level picture of the large scale RTM algorithm on the CPU cluster, as well as
details about its implementation using MPI+Fortran.

We recall that the RTM algorithm comprises three successive stages (see algorithm
7.2). The forward sweep, or “FWD”, whose workflow is equivalent to the seismic mod-
eling. The backward sweep, where the seismic wave is propagated backward in time
(this workflow is also similar to the seismic modeling). The third stage is computing the
imaging condition in order to produce the final image. In practice the second and third
stages are merged into one single step referred to as the backward sweep or “BWD”. We
describe in algorithm 8.12 the large scale workflow of the seismic migration on the CPU
cluster. Given that the communication-computation overlap mechanism had offered a
significant performance improvement for the seismic modeling application on the CPU
cluster (see section 8.2.1.4), we introduced it to the seismic migration workflow from the
very beginning. Therefore, in the algorithm 8.12 we already distinguishes the OpenMP
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Algorithm 8.12 High level description of the multi-node RTM workflow.

1: for t ∈ [0..T ] do ⊲ the forward sweep (or FWD)
2: if mod(t, 2) == 0 then ⊲ t is the time-step index
3: add seismic source(u0, t)
4: !$OMP PARALLEL NUM THREADS(2)
5: if tid == 0 then ⊲ tid is the OpenMP thread index
6: exchange halos(u0) ⊲ described in algorithm 8.5
7: else
8: update interior wavefield(u1, u0, t) ⊲ see algorithm 8.6
9: end if

10: !$OMP END PARALLEL
11: update boundary wavefield(u1, u0, t) ⊲ see algorithm 8.6
12: save seismic snapshot(u1, t) ⊲ this involves I/O operations
13: else
14: add seismic source(u1, t)
15: !$OMP PARALLEL NUM THREADS(2)
16: if tid == 0 then
17: exchange halos(u1)
18: else
19: update interior wavefield(u0, u1, t)
20: end if
21: !$OMP END PARALLEL
22: update boundary wavefield(u0, u1, t)
23: save seismic snapshot(u0, t)
24: end if
25: end for
26:

27: for t ∈ [T..0] do ⊲ the backward sweep (or BWD)
28: read seismic snapshot(tmp, t) ⊲ tmp is used to read snapshots
29: if mod(t, 2) == 0 then
30: add seismic receivers(u0, t)
31: !$OMP PARALLEL NUM THREADS(2)
32: if tid == 0 then
33: exchange halos(u0)
34: else
35: update interior wavefield(u1, u0, t)
36: end if
37: !$OMP END PARALLEL
38: update boundary wavefield(u1, u0, t)
39: imaging condition(u1, tmp, t) ⊲ see algorithm 7.2
40: else
41: add seismic receivers(u1, t)
42: !$OMP PARALLEL NUM THREADS(2)
43: if tid == 0 then
44: exchange halos(u1)
45: else
46: update interior wavefield(u0, u1, t)
47: end if
48: !$OMP END PARALLEL
49: update boundary wavefield(u0, u1, t)
50: imaging condition(u0, tmp, t)
51: end if
52: end for



Chapter 8. Large scale seismic applications on CPU/APU/GPU clusters 180

thread dedicated to MPI communications from that in charge of performing the com-
putation.
The forward modeling is roughly similar to the seismic modeling workflow described in
algorithm 8.9. However, we recall that we use the selective checkpointing method to re-
build the source wavefield during the backward sweep, which requires data snapshotting
during the forward sweep. We recall that the data snapshotting frequency k that we
chose is equal to 10. In the algorithm, writing the snapshots to the hard disks (which re-
quires extensive I/O operations) is performed in the subroutine save seismic snapshot().
During the BWD, the simulation is inverted backward in time. This stage of the algo-
rithm starts with reading the wavefield snapshots (which incurs I/O operations) that
were saved during the FWD, in the subroutine read seismic snapshot(). The work-
flow related to the MPI communications and to exchanging halos between the neighbors
is the same as that in the seismic modeling and was thoroughly described in section
8.2.1.2. The workflow related to the imaging condition computation is described in al-
gorithm 7.2. It is to be noted, that when reading or writing the wavefield snapshots we
compared using the synchronous I/O operations and the asynchronous I/O operations.
Asynchronous I/O is a form of input/output processing that delegates the I/O requests
to an internal pool of threads, and returns to the application immediately. It also re-
quires a synchronization mechanism in order to ensure data consistency. In Fortran,
asynchronous I/O was introduced in the 2003 standard and is implemented, at the time
of writing, only in the Intel compiler. Since we perform a wavefield snapshot every 10
time-steps after each of which we overwrite the wavefield array being written to stor-
age, we inserted waiting routines before the subroutines update interior wavefield() in
order to make sure that the data is consistent before overwriting it.

8.3.1.2 Performance results

In this section we present the performance results of the large scale MPI+Fortran imple-
mentation of the seismic migration on the PANGEA cluster (see table 5.1). We consider
using the asynchronous I/O routines, provided by the Fortran 2003 standard (imple-
mented in the Intel Fortran compiler), and emphasize its impact on the application
performance. We distinguish the strong scaling scenario from the weak scaling scenario.

8.3.1.2.1 Strong scaling tests We ran the seismic migration implementation on
the compute grid Ω9×9×9 while using the 3D SEG/EAGE salt model (V) as an input
data. We consider using one MPI process per compute node in order to predict the
behavior of the seismic migration implementation on the HWAs based clusters. Besides,
we consider another scenario where we place sixteen processes per node since it was
shown the most efficient configuration on the CPU cluster (see section 8.2.1.4). Each
test was ran over 1000 iterations and we show the performance numbers of the slowest
MPI process in each configuration. We follow the same process and thread pinning
recommendations as those used for the seismic modeling, i.e. the communication thread
and the computation thread are always running on the same socket, and we avoid using
the core number 0. The table 8.16, in addition to the table 8.12, helps understand the
signification of the symbols present in the following performance results figures.

The figure 8.23 represents the performance results of the seismic migration on the
CPU cluster with respect to the strong scaling scenario, and while placing one MPI pro-
cess per compute node. The figure emphasizes the impact of using asynchronous I/O on
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Figure 8.23: Performance impact of the asynchronous I/O on the seismic migration
application on the CPU cluster. The strong scaling is considered and only 1 MPI
process is used on each compute node. The V dataset is used as input data. Each

execution time is the average of 1000 of simulation iterations.

the application performance. The dark green percentages on top of the histogram bars
represent the ratio of the time spent issuing synchronous I/O operations with respect
to the average iteration time. The black percentages represent the performance gain (or
loss) offered when using asynchronous I/O operations. We recall that the MPI commu-
nications are overlapped with computations on the seismic migration implementation,
thus we do not illustrate the communications time in the figures (comm) but we rather
show the max[in,comm] time. We notice that the asynchronous I/O have improved the
performance in almost all the test cases except for the BWD sweep in the cases “1 node”
and “2 nodes”. Besides, on can notice that the I/O time in the FWD is usually higher
than that in the BWD. This difference can be explained by the fact that the “write” I/O
operations (in the subroutine save seismic snapshot()) takes a longer time than that
of the “read” I/O operations (in the subroutine read seismic snapshot()). In addition,
the figure reports a close to perfect strong scaling as the number of nodes increases.

io the time spent in I/O for data snapshotting
img the time spent in computing the imaging condition
fwd perfect scaling an artificial reference that mimics a perfect scaling for FWD
bwd perfect scaling an artificial reference that mimics a perfect scaling for BWD
fwd-sync results of FWD using the synchronous I/O operations
fwd-async results of FWD using the asynchronous I/O operations
bwd-sync results of BWD using the synchronous I/O operations
bwd-async results of BWD using the asynchronous I/O operations

Table 8.16: Description of the notations used in the figures illustrating the perfor-
mance results of the seismic migration.
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Figure 8.24: Performance impact of the asynchronous I/O on the seismic migration
application on the CPU cluster. The strong scaling is considered and 16 MPI
processes are used on each compute node. The V dataset is used as input data. Each

execution time is the average of 1000 of simulation iterations.

The figure 8.24 represents the performance results of the seismic migration on the
CPU cluster with respect to the strong scaling scenario, and while placing sixteen MPI
processes per compute node. It also shows the impact of using asynchronous I/O on
the application performance in this case. We point out that the I/O percentages, with
respect to the overall execution times, are decreasing as the nodes count increases, be-
cause in each test case with a high number of nodes (16, 32 and 64) the communications
time surpasses the computations time (see figure 8.14) which reduces the fraction of the
overall time that the I/O operations represent. Besides, we notice that the asynchronous
I/O is beneficial only for a small number of nodes (up to 8), and has a sporadic effect on
the performance if a higher number of nodes is used. On the one hand, SMT is exploited
to overlap the MPI communications (whose time increases as the number of nodes in-
creases). On the other hand, the asynchronous I/O engine has its own thread pool that
shares resources with the communication threads and with the computations threads.
This results in an overuse of each compute core which leads to a lower strong scal-
ing than with one MPI process per node (see fwd perfect scaling and bwd perfect

scaling).

8.3.1.2.2 Weak scaling tests Following, we explore the impact of the asyn-
chronous I/O on the performance of the seismic migration, while taking into consid-
eration the weak scaling scenario instead. We recall that the table 5.7 summarizes the
numerical configuration of the compute grids of this test scenario. Similarly to the
strong scaling scenario, we start our testings with the one MPI process per compute
node configuration. We run the tests on 1 to 64 compute nodes of the PANGEA CPU
cluster. For this test configuration we use the Small 3D SEG/EAGE salt model as initial
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Figure 8.25: Performance impact of the asynchronous I/O on the seismic migration
application on the CPU cluster. The weak scaling is considered and only 1 MPI
process is used on each compute node. The V dataset is used as input data. Each

execution time is the average of 1000 of simulation iterations.

dataset. Then we consider the weak scaling test with sixteen MPI processes on each
compute node.

The figure 8.25 summarizes the execution times of the weak scaling test from 1 to
64 nodes using only one MPI process per compute node. First, one can see that the
asynchronous I/O operations have perfectly helped reducing the overhead related to I/O
in the seismic migration application. Second, we observe a linear scaling for a number
of nodes ranging from 1 to 4. After that, the more nodes we use the lower becomes
the scaling. This is caused by the raise of the neighbors count per subdomains which
increases the communication occurrences as the nodes count increases.

Finally, we show the execution times of the weak scaling test, while considering the
sixteen MPI processes per compute node case, in figure 8.26. Surprisingly, the figure
reports that the I/O overhead during the BWD sweep is higher than the overhead during
the FWD (this was also noted in the strong scaling test with sixteen MPI processes per
compute node). This is a strange problem that would require further investigations.
However, we can see that relying on the asynchronous I/O operations had helped to
partially hide this overhead, especially in the BWD sweep. Besides, the figure shows
that the scaling is generally lower than the one with one MPI process per node due to
the overuse (by multiple threads) of the compute nodes.

8.3.2 Deployment on hardware accelerators

In this section we propose an MPI+OpenCL large scale implementation of the RTM
on DIP and RDHPC clusters. First, we give an overview about the changes we had
to introduce to the application workflow in order to adapt it to HWAs. Second, we
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Figure 8.26: Performance impact of the asynchronous I/O on the seismic migra-
tion application on the CPU cluster. The weak scaling is considered and 16 MPI
processes are used on each compute node. The V dataset is used as input data. Each

execution time is the average of 1000 of simulation iterations.

present an OpenCL performance evaluation, based on strong and weak scaling tests, on
the GPU cluster and on the APU cluster while considering the two DPSs: cggc and zz.

8.3.2.1 Implementation details

In this section we describe the large scale workflow of the seismic migration on the
GPU cluster, and on the APU cluster. The workflow is relying on the algorithm 8.11
which characterizes the seismic modeling on HWAs based clusters, and in which the
communications are overlapped with computations. Similarly to the implementation of
the seismic migration on CPU clusters, we particularly focus on studying the impact of
the asynchronous I/O operations on the application performance.

The algorithm 8.13 shows a high level description of the large scale seismic migra-
tion workflow on the HWAs based clusters. The FWD step of the application is equiv-
alent to the workflow of the seismic modeling application described in section 8.2.2,
except that in the case of the seismic migration we consider the data snapshotting ev-
ery 10 time-steps of computation. The data snapshotting is held in the subroutine
save seismic snapshot() and preceded by a data transfer between the GPU memory
and the main memory, in the case of the GPU cluster or the APU cluster with the cggc
DPS, or by a memory mapping operation in the case of the APU cluster with the zz DPS
(see the subroutine dtoh wavefield()). In the BWD, every 10 time-steps (the same fre-
quency as the data snapshotting frequency) of the algorithm, the corresponding source
wavefield snapshot is read from the local storage of each compute node (the subroutine
read seismic snapshot()), in order to be correlated with the updated receiver wavefield,
and to progressively build the final image in the subroutine imaging condition(). The
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Algorithm 8.13 Description of the seismic migration algorithm on the GPU and APU
clusters, with overlapping communications with computations and considering the asyn-
chronous I/O.

1: for t ∈ [0..T ] do ⊲ the FWD stage
2: if mod(t, 2) == 0 then ⊲ t is the time-step index
3: add seismic source(u0, t)
4: !$OMP PARALLEL NUM THREADS(2)
5: if tid == 0 then ⊲ tid is the OpenMP thread index
6: exchange halos(u0) ⊲ described in algorithm 8.10
7: else
8: update interior wavefield(u1, u0, t) ⊲ see algorithm 8.11
9: end if

10: !$OMP END PARALLEL
11: update boundary wavefield(u1, u0, t) ⊲ see algorithm 8.11
12: dtoh wavefield(u1)
13: save seismic snapshot(u1, t) ⊲ may use asynchronous I/O
14: else
15: add seismic source(u1, t)
16: !$OMP PARALLEL NUM THREADS(2)
17: if tid == 0 then
18: exchange halos(u1)
19: else
20: update interior wavefield(u0, u1, t)
21: end if
22: !$OMP END PARALLEL
23: update boundary wavefield(u0, u1, t)
24: dtoh wavefield(u0)
25: save seismic snapshot(u0, t)
26: end if
27: end for
28:

29: for t ∈ [T..0] do ⊲ the BWD stage
30: read seismic snapshot(tmp, t) ⊲ may use asynchronous I/O
31: if mod(t, 2) == 0 then
32: add seismic receivers(u0, t)
33: !$OMP PARALLEL NUM THREADS(2)
34: if tid == 0 then
35: exchange halos(u0) ⊲ see algorithm 8.10
36: else
37: update interior wavefield(u1, u0, t)
38: end if
39: !$OMP END PARALLEL
40: update boundary wavefield(u1, u0, t)
41: dtoh wavefield(u1) ⊲ retrieve the wavefield array from the GPU memory
42: imaging condition(u1, tmp, t) ⊲ see algorithm 7.2
43: else
44: add seismic receivers(u1, t)
45: !$OMP PARALLEL NUM THREADS(2)
46: if tid == 0 then
47: exchange halos(u1)
48: else
49: update interior wavefield(u0, u1, t)
50: end if
51: !$OMP END PARALLEL
52: update boundary wavefield(u0, u1, t)
53: dtoh wavefield(u0)
54: imaging condition(u0, tmp, t)
55: end if
56: end for
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dtoh-io the time spent in the subroutine dtoh wavefield()

Table 8.17: Description of the additional notations used in the figures illustrating the
performance results of the seismic migration on HWAs based clusters.

computations subroutines, used to update the receiver wavefield values, as well as the
communications subroutine are the same as those used in the seismic modeling workflow
and were already covered in the algorithms 8.10 and 8.11. We point out that the sub-
routine imaging condition() is performed by the CPU (with the help of OpenMP) in
our implementation of the seismic migration for both GPU and APU clusters, in order
to save space on the HWAs memories and to be able to conduct the same scaling tests,
namely strong scaling tests, as in the seismic modeling. Therefore, prior performing the
imaging condition for the RTM, the most up-to-date wavefield array is retrieved (every
10 time-steps in our case) from the GPU memory (see the subroutine dtoh wavefield()).
Note that writing the snapshots to the hard disks also requires memory transfers through
the PCI Express bus in the case of the discrete GPU cluster or a copy from the GPU
memory to CPU memory in the case of the APU cluster. Those data transfers are
copies are not overlapped with the computations. Besides, as it had been shown in
section 8.2.2, the MPI communication-computation overlap had allowed a performance
enhancement of the seismic modeling application on the HWAs based clusters. Therefore
we only consider the case where we overlap MPI communications with computations in
our seismic migration large scale implementations on the GPU and APU clusters.

8.3.2.2 Performance results

We present in this section the performance numbers of the seismic migration on the
surveyed HWAs based clusters. We consider both the strong and weak scaling scenarios.
For the APU cluster, we consider using two data placement strategies: cggc where the
wavefield arrays are duplicated in the GPU memory and zz where the arrays are zero-
copy memory objects.

For each test we present the performance of the FWD stage and the performance
of the BWD stage separately. We recall that we use the selective checkpointing method
to rebuild the source wavefield during the BWD. The data snapshotting frequency K
is equal to 10. In order to help read the performance results depicted in the following
figures, we summarize in table 8.17 the signification of the figure legends that are specific
to the seismic migration implementation on the HWAs based clusters. We recall that
the rest of the legends were described in tables 8.12 and 8.15.

8.3.2.2.1 Strong scaling tests We ran the seismic migration implementation on
the compute grid Ω9×9×9 using the 3D SEG/EAGE salt model (V) as an input data, over
1000 time-steps. We distinguish the case where we use the Fortran 2003 asynchronous
I/O (async) from the case where we use the regular synchronous I/O (sync). We recall
that we show the execution times of the slowest MPI process in each configuration. We
also recall that, given the limited space of each discrete GPU off-chip memory, and of
the g memory of each APU, the strong scaling scenario comprises two test cases: “8
nodes” and “16 nodes”.
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In figure 8.27, we show the performance numbers of the seismic migration on the
discrete GPU cluster with respect to the strong scaling scenario. First, we noticed
that the I/O percentages are more important than those reported in the case of the
seismic migration on the CPU cluster. As a matter of fact, the computation times are
accelerated by the GPU, as compared to the computations times of the CPU (in the
case of the implementation on the CPU cluster), which results in the time dedicated
to I/O representing a higher fraction of the overall time. It is thus mandatory to rely
on asynchronous I/O operations in the implementations of the seismic migration on the
HWAs based clusters in order to obtain a good scaling. According to the performance
results, overlapping the I/O operations with the computations is more beneficial to
the HWAs based clusters than to the CPU cluster (with placing 16 MPI processes per
compute node). This is because the CPUs in the HWAs based clusters are often idle
and are exploited as resources for asynchronous I/O. Second, we note that the use of the
asynchronous I/O showed a performance enhancement of up to 40%, which improved the
scaling efficiency of the seismic migration on the GPU cluster. Finally, the overhead due
to memory transfers over the PCI Express bus (d-h-comm+dtoh-io) represents about
16% of the overall time of the async case, which may harm the scaling if the node counts
increases (this was confirmed by conducting additional strong scaling tests on 32 and
64 GPU based nodes, which reported that the PCI overhead had reached 24% of the
overall time).

The figure 8.28 shows the performance numbers of the seismic migration on the APU
cluster with respect to the strong scaling scenario and with the cggc DPS. We note that
the I/O times are more important in the forward sweep than in the backward sweep.
This informs that the write operations are more expensive than the read operations.
Besides, the asynchronous I/O is also beneficial to the APU (especially for the test case
16 nodes), as it offers a performance gain up to 19%. Finally, we notice that the overhead
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Figure 8.27: Performance impact of the asynchronous I/O on the seismic migration
application on the GPU cluster. The strong scaling is considered. The V dataset is
used as input data. Each execution time is the average of 1000 of simulation iterations.
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Figure 8.28: Performance impact of the asynchronous I/O on the seismic migration
application on the APU cluster with the cggc DPS. The strong scaling is considered.
The V dataset is used as input data. Each execution time is the average of 1000 of

simulation iterations.

due to memory traffic between the c memory and the g memory is reduced as compared
to that observed in the case of discrete GPUs, thanks to the Garlic bus. However, it is
still a limiting factor to achieving a linear scaling.

Similarly to the seismic modeling, we consider using the zero-copy memory objects
in the implementation of the seismic migration on the APU cluster. In the figure 8.29
we present the performance of the strong scaling scenario. One can notice that the
asynchronous I/O had offered a performance gain in this case as well. The figure reports
up to 11% of performance enhancement which helped achieving a very good scaling
(except for the test case “2 nodes”). As a matter of fact, the overhead due to memory
traffic between the CPU and GPU is completely suppressed. It is to be noted that the
I/O time fractions are smaller in this case, as compared to the results with the cggc

DPS, since the computations times with the zz DPS are almost twice as high as with
the cggc DPS.

8.3.2.2.2 Weak scaling tests In this paragraph, we consider running the seismic
migration implementation on the compute grids detailed in table 5.7, with respect to
the weak scaling scenario. Given that the smallest compute grid in this test bed, i.e.
Ω16×16×16, fits in one GPU based compute node as well as in one APU based compute
node, the weak scaling scenario involves a number of compute nodes that ranges from 1
to 16.

The figure 8.30 represents the performance numbers of the weak scaling test of the
seismic migration on the discrete GPU cluster. Given that the size of the compute grids
is doubling as the nodes count increases (the biggest compute grid is Ω8×8×4), the per-
centage of the I/O time per subdomain is almost constant for all the test cases. Thanks
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Figure 8.29: Performance impact of the asynchronous I/O on the seismic migration
application on the APU cluster using the zero-copy memory objects. The strong
scaling is considered. The V dataset is used as input data. Each execution time is the

average of 1000 of simulation iterations.
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Figure 8.30: Performance impact of the asynchronous I/O on the seismic migration
application on the GPU cluster. The weak scaling is considered. The V dataset is
used as input data. Each execution time is the average of 1000 of simulation iterations.
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Figure 8.31: Performance impact of the asynchronous I/O on the seismic migration
application on the APU cluster with the cggc DPS. The weak scaling is considered.
The V dataset is used as input data. Each execution time is the average of 1000 of

simulation iterations.

to the asynchronous I/O operations, the I/O overhead is overlapped since the figure
reports that the async version offers a performance gain up to 47%. However, we notice
that the scaling is not optimal especially for the test cases “8 nodes” and “16 nodes”,
where the times associated to communications and MPI synchronization (reported by
the communication thread) were dominating the computation times (especially for the
FWD stage). In other words, due to the excessive MPI communications overhead as the
number of neighbors increases with respect to the nodes count (which implies more MPI
communications), the weak scaling is less efficient as the node counts increases. Besides,
the overhead associated to the PCI Express memory traffic represent a relatively high
fraction (we recall that the discrete GPU based compute nodes are featured with a PCI
Express bus gen 3) of the overall time (up to 18%), as the d-h-comm is proportional to
the communications time. This overhead did not help to achieve an ideal scaling even in
the test cases where the communication times do not dominate the computation times,
i.e. “2 nodes” and “4 nodes”, but thanks to the asynchronous I/O the achieved scaling
is still good. As a perspective, we aim in the future to overlap the memory transfer
between CPU and GPU, with the computations on the GPU, in order to reach a near
to linear scaling.

The figure 8.31 shows the performance of the weak scaling test of the seismic migra-
tion on the APU cluster. We rely in this benchmark on the cggc DPS. Similarly to the
strong scaling scenario, the I/O overhead in the FWD is more important than that in
the BWD (write operations are more expensive than read operations on the APU clus-
ter). However, the asynchronous I/O helped to completely suppress the overhead in the
test case “1 node”, and to reduce it in the other test cases. This offered a performance
enhancement of up to 17.6%. Moreover, we point out that the overhead associated to
the memory traffic between the CPU and the GPU is alleviated compared to the weak
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Figure 8.32: Performance impact of the asynchronous I/O on the seismic migration
application on the APU cluster using the zero-copy memory objects. The weak
scaling is considered. The V dataset is used as input data. Each execution time is the

average of 1000 of simulation iterations.

scaling results on the GPU cluster. But, the scaling is not quite optimal (even though
it is more efficient, in the case of high nodes count, as compared to the scaling of the
discrete GPUs) because of this extra overhead.

In the figure 8.32, we illustrate the performance results of the weak scaling test
on the APU cluster with the zz DPS. First, the asynchronous I/O is beneficial to
the performance of the seismic migration on the APU cluster when using the zero-
copy memory objects. Indeed, the figure reports that it allows a performance gain up
to 12%. Second, the overhead related to the memory traffic between the CPU and
GPU is removed, thanks to the zero-copy memory objects. Third, the times associated
to data packing and data unpacking are relatively higher since those operations are
performed by the CPU. One can see that the pack and unpack times are increasing
as the nodes count increases. As a matter of fact, this overhead starts limiting the
scaling efficiency (see the test cases “8 nodes and “16 nodes”), and unfortunately hides
the enhancement offered by using zero-copy memory objects. We recall that, in the one
hand the OpenCL standard did not allow us to overlap this overhead with computations,
and in the other hand, we did not invest enough efforts in optimizing the subroutines
pack halos in linear buffers() and unpack buffers into halo regions() on the CPU
which is planned in our future work (i.e. efficiently parallelize the subroutines or use the
MPI derived data-types). Finally, we recall that here again using the zero-copy memory
objects cuts the performance to half as compared to using the cggc DPS.
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Figure 8.33: An execution time based comparison of the performance of the large
scale seismic migration implementation on the CPU cluster, on the GPU cluster and
on the APU cluster (with the cggc and zz DPSs). The comparison involves the tests

run on the compute grid Ω9×9×9.

8.3.3 Performance comparison

After having evaluated the large scale implementations of seismic applications on the
different hardware, we try in this section to present a comparison study between the
CPU cluster, the APU cluster and the GPU cluster. The comparison is based on the
performance results of the RTM obtained on the three clusters, with respect to the
strong scaling and weak scaling scenarios, and detailed in the previous sections. To
begin with, the study is based on straightforward comparisons based on the execution
times for a fixed number of compute nodes. Then, we rely on a performance projection
in order to compare the throughput in terms of RTM shots of the three architectures,
and to compare the performance results while fixing the power consumption envelope
(based on Watts of TDP for the CPU cluster, and on the maximum power consumption
for the HWAs based clusters).

8.3.3.1 Comparison based on measured results

In the figure 8.33 we group the performance results of the large scale implementation
of the RTM application on the CPU cluster, on the GPU cluster and on the APU
cluster. The results correspond to the performance numbers obtained when running the
seismic migration on the compute grid Ω9×9×9 (see table 5.5). For the APU cluster we
included the results obtained with the cggc DPS, as well as those with the zz DPS.
Given that the strong scaling test on the HWAs based clusters was conducted only on
eight and sixteen nodes, we restrict our comparison to those two test cases. The text
under each histogram bar, in the figure, refers to the FWD or the BWD stage of the
RTM algorithm, on a fixed number of nodes (8 or 16) of a given architecture (CPU,
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Figure 8.34: An execution time based comparison of the performance of the large
scale seismic migration implementation on the CPU cluster, on the GPU cluster and
on the APU cluster (with the cggc and zz DPSs). The comparison involves the tests

run on the compute grids ranging from Ω16×16×16 to Ω8×8×4 (see table 5.7).

GPU or APU), with mentioning which DPS was applied (for the APU cluster only).
For example the histogram bar 8-apu-cggc-bwd indicates the overall execution time of
the RTM backward sweep on 8 nodes of the APU cluster, while using the cggc DPS.
We recall that the strong scaling test was performed on the compute grid Ω9×9×9, with
using the V dataset as input data, and with a data snapshotting frequency equal to 10.
The numbers reported in the figure (lower is better) indicate that the APU cluster, with
the cggc DPS, outperforms the CPU cluster by a factor of 1.6×. We recall that each
compute node on the CPU cluster comprises two sockets, which means for a socket to
socket comparison the speedup ratio becomes 3.2×. Besides, we note that when using
the zz DPS the application takes more than twice the time as when using the cggc

DPS on the APU cluster (more precisely 2.3×). We believe that this is mainly due to
the two fold difference between the sustained bandwidth of the GPU memory and that
of the device-visible host memory, which would impact the memory bound applications
which is the case of the RTM. Moreover, it comes with no surprise that the GPU cluster
outperforms the APU cluster (with the cggc DPS) by a factor of 3.5×, and almost by a
factor of 8.3× when the zero-copy memory objects are used. We recall that theoretically
the discrete GPUs are an order of magnitude more compute powerful, and have 10×
higher memory bandwidth than APUs.

We aggregate the best performance results, on each architecture, when running
the seismic migration on the compute grids Ω16×16×16, Ω16×16×8, Ω16×8×8, Ω8×8×8 and
Ω8×8×4 (see table 5.7) in figure 8.34. The reader can notice that the figure reports
roughly the same information as the previous comparison illustrated in figure 8.33, and
that for all the test cases from “1 node” to “16 nodes”. However, in the case of the GPU
cluster, given that the execution time slightly increases with respect to the nodes count,
the GPU to APU ratio decreases and reaches 3× in the test case “16 nodes”. But, this
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Figure 8.35: Comparison of the execution times of the large scale seismic mi-
gration implementation, and the minimum required hardware configuration to
process 8 shots, on the CPU cluster, on the GPU cluster and on the APU cluster (with

the cggc and zz DPSs).

does not influence the comparison and the global findings we pointed out in the previous
comparison. In addition, for the following comparisons, we will need to use a fixed size
problem (Ω9×9×9) on a varying number of nodes. Therefore, for the rest of the chapter
it is more relevant to rely on the comparison depicted in figure 8.33.

8.3.3.2 Comparison based on performance projection

We recall that the seismic migration is subject, in a higher level, to a natural parallelism
which consists of processing multiple shot experiments at a time. Based on the memory
requirements of the application, we found out that the minimum configuration in the
GPU cluster, in order to process one shot, is 8 compute nodes. It is the same configura-
tion required for the APU cluster with the cggc DPS. However, on the CPU cluster or
the APU cluster with the zz DPS, processing one shot requires only one compute node.
In the latter case, this means that 8 shots can be processed in parallel on 8 nodes by
simply placing one shot per compute node would require, in the first case, 8 sequential
passes on 8 nodes of the GPU cluster or on 8 nodes on the APU cluster (with cggc). The
figure 8.35 assimilates these particular configurations, and evaluates what we called the
“production throughput” of each architecture. This production throughput is estimated
as follows.

• The execution time on the GPU cluster represents 8× (we illustrate this in the
figure by the green horizontal lines) the execution time of the test case “8 nodes”
in the strong scaling scenario (see figure 8.27).
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• The execution time of the APU cluster (with the cggc DPS) is the execution time
obtained in the test case “8 nodes” of the strong scaling scenario (see figure 8.28)
multiplied by 8 (we illustrate this in the figure by the blue horizontal lines).

• The execution time of the CPU cluster (resp. the APU cluster with the zz DPS)
corresponds to the test case “1 node” in the figure 8.24 (resp. in the figure 8.29),
but depicted eight times in the figure to illustrate that 8 nodes are running in
parallel.

Therefore, this comparison has the advantage of taking into consideration the loss of
parallel efficiency as the nodes count increases, especially in the case of the GPU cluster.
To begin with, the figure shows that the ratio of the execution time of the APU cluster
(with the zz DPS), to the execution time on the GPU cluster is slightly lower (7.6×
compared to 8.3× in the previous configuration), thanks to the fact that when using
the zero-copy memory object one shot fits on one APU node removing the need of
performing any MPI communication. This could be even more significant if we had to
use a higher number of GPU based compute nodes (for example with GPUs with lower
memory capacities we would have needed more GPU nodes, or with 64 GB APU or CPU
nodes we could have processed larger seismic shots (requiring more GPU nodes)), since
the scaling efficiency on the GPU cluster tends to decrease as the nodes count increases.
Furthermore, the ratio of the execution time of the APU cluster (with the zz DPS),
to the execution time on the APU cluster (with the cggc DPS) is also reduced (2×
compared to 2.3× in the previous configuration) because to the same reason. Finally,
the figure reports roughly the same performance ratio between the performance of the
GPU cluster and the APU cluster (with the cggc DPS) as in the figure 8.33, thanks to
the relatively good scaling on the GPU cluster and on the APU cluster with the cggc

DPS.

We have mentioned in section 3.3, that the APU is a low power chip and that it
draws at most 95 W (maximum power). We also mentioned that a system with a high-
end discrete GPU and a high-end CPU features, approximately, a power envelope of 400
W (maximum power). Besides, each CPU socket on a compute node of the CPU cluster
consumes 150 W TDP.
We would like to take into consideration those details, related to the power consumption,
in our comparative study. However, unlike the single node study in chapters 6 and 7, we
do not have the appropriate meters that are used to measure the real power consumption
of racks and clusters. Therefore, we rely on the theoretical maximum power consumption
of each hardware configuration, in order to estimate the power efficiency of the seismic
migration on the CPU and HWAs based clusters.
To this purpose, we consider gathering the execution times of each cluster on a fixed
power envelope that corresponds to the estimated maximum power of the 16-nodes APU
cluster, i.e. approximately 1600 W. This would correspond to roughly four nodes on the
GPU cluster, and roughly to eight compute nodes on the CPU cluster (we underestimate
the maximum power of a socket to 100 W). Given that the scaling test was restricted
to only eight and sixteen nodes on the GPU cluster, we extrapolate the performance
numbers of the test case “4 nodes” on the GPU cluster based on the numbers of the
test cases “8 nodes” and 16 nodes” (time on 4 nodes = time on 8 nodes ∗ ((time on 8
nodes)/(time on 16 nodes))).
We illustrate this comparison in the figure 8.36: the reader can notice that, under these
considerations, the APU cluster (with the cggc DPS) offers the same performance as
the GPU cluster. Besides, one can notice the 3× fold (mentioned earlier in the previous
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Figure 8.36: Comparison of the execution times of the large scale seismic mi-
gration implementation on the CPU cluster, on the GPU cluster and on the APU
cluster (with the cggc and zz DPSs), based on an estimation of maximum power

consumption.

comparison, regarding the socket to socket comparison) between the performance of the
APU cluster (with the cggc) and the CPU cluster. Moreover, even with the zz DPS, the
APU cluster outperforms the CPU cluster from a power efficiency standpoint (we recall
that the power consumption of the CPU cluster is underestimated in this comparison).

8.4 Conclusion

After going through the performance results of the seismic modeling and of the seismic
migration (RTM) on the CPU cluster (flat MPI+Fortran implementation) and on the
HWAs based cluster (MPI+Fortran+OpenCL implementation), we can conclude that
optimizing and accelerating the wave equation solver on the node level is not enough to
achieve a good scaling on the large scale. The different implementations of the seismic
applications, were subject to a high communications rate, and to an extensive I/O usage
(in the case of the RTM). Adapting these implementations to the HWAs, had introduced
additional complexities to the application workflows, such as managing the GPUs, the
traffic between the CPU and GPU, etc. Therefore, a special care had to be put in
order to reduce the OpenCL kernels overheads, to improve the CPU code managing the
GPUs and more importantly to optimize the MPI communications since accelerating
the computations on HWAs makes the communications become a bottleneck.
The performance numbers have shown that overlapping the MPI communications with
the computation (on CPU, on APU or on GPU) improved the performance of the seismic
modeling, and thus that of the RTM, in most the test cases. More importantly, the
overlap technique was more efficient on the GPU and the APU clusters, as the CPUs
on those clusters were often idle and fully dedicated to the MPI communications and
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to drive the computations on the accelerators. Besides, the results have reported that
relying on the Fortran 2003 asynchronous I/O engine (only with Intel compilers), had
strongly alleviated one of the performance bottlenecks of the RTM which is the extensive
I/O usage (depending on the data snapshotting frequency), especially on the HWAs
based clusters thanks to lightweight load on the CPUs that were fully dedicated to MPI
communications and to the asynchronous I/O engine (in background). Moreover, the
performance numbers of the seismic applications on the GPU cluster have informed that
the memory traffic between the CPU and the GPU may hinder achieving an optimal
scaling when the number of nodes increases. We recall that optimizations techniques
such as temporal blocking and overlapping the PCI memory transfers with computations,
could have been used in order to mitigate this overhead, but those are not covered by
the scope of this work.
Thanks to the APU, the overhead associated to transferring data between the CPU and
the GPU is reduced. When using zero-copy memory objects, the overhead is totally
suppressed resulting in achieving an optimal scaling in general, at the expense of lower
computation performance as compared to the performance of the GPU cluster.
Finally, we have shown that as far as both the performance and the power efficiency are
concerned, the APU delivers the same performance results as the discrete GPU.
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Chapter 9

Conclusions and perspectives
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This chapter provides a succinct review of the thesis objectives as well as a summary
of our contributions, before closing with a mention to some perspective points and the
future work related to this research.

9.1 Conclusions

In their, more complex and more challenging than ever, search for new hydrocarbons
deposits, Oil and Gas big players are constantly seeking for compute powerful infrastruc-
tures and highly optimized software tools to deploy sophisticated and compute-intensive
seismic workloads in the most efficient way possible. The seismic imaging algorithms are,
and will continue, to be driven by the technology advances offered by HPC. Solutions
based on hardware accelerators such as GPUs are widely embraced by the industry, to
enhance the accuracy and the performance of imaging workflows such as the RTM. Such
workloads are known to have extensive computational demands, to have a high memory
requirement and to be I/O-intensive. GPU solutions have shown some weaknesses, in
terms of memory limitation, possible restraining overhead due to the PCI Express bus
and high power consumption in some cases.

The main objective of this thesis was to assess the relevance of the APU, a new
hardware accelerator with a brand new design that fuses a CPU and a GPU in the
same socket, in a seismic exploration context. Besides, this work tended to classify
the APU in the HPC ecosystem, by means of a thorough study of a selection of seismic
applications (modeling and RTM) on the node level, and on the large scale level (clusters
of up to 64 nodes). Ultimately, this study had shown that the Kaveri APU (A10-
7850K) offers a 3.2× (socket to socket comparison) speedup of the large scale RTM
implementation as compared to the high-end Intel Xeon E5-2670 CPU. Besides, albeit
an order of magnitude behind recent high-end GPUs, at the time of writing (AMD
Tahiti GPU, and NVIDIA Tesla K40s GPU), in terms of compute power and memory
bandwidth, the APU falls behind the discrete GPU only by a factor of 3.5× (as compared



to the NVIDIA Tesla K40s GPU). Moreover, when both the performance and power
consumption are concerned in the large scale, the APU had shown a great interest as it
delivers the same performance as the GPU in this case.

In details, throughout this work we have demystified the new memory model of the
APU and introduced practical recommendations in terms of data placement strategies.
We have shown, with the help of memory and applicative benchmarks that applications
performance could be cut to half when using Onion bus instead of Garlic bus. In partic-
ular, we underlined the impact of the data snapshotting frequency, a performance factor
that is relevant to the RTM algorithms with selective checkpointing, on the OpenCL
performance of the stencil computations (a building block of the seismic applications).
We had seen that the APU offers more than an order of magnitude higher performance
than the CPU, and that for a high frequency of data snapshotting, which would help
deliver more accurate final output images of the RTM algorithm, the APU outperforms
the GPU. Besides, we had shown that the APU is more power efficient than both the
CPU and the GPU when benchmarking a 3D finite difference application and a ma-
trix multiply kernel. Moreover, we proposed a hybrid (CPU+GPU) strategy to deploy
OpenCL workloads on the APU, and the interest of the hybrid utilization has been
justified, as we showed a 30% of performance enhancement for a high order 3D finite
difference application, with a high rate of memory and computation divergence.

At the node level, the seismic modeling and the RTM applications were highly
optimized in OpenCL. The computation kernels of the seismic modeling delivered per-
formance results on the Kaveri APU 4.5× lower, than the performance on the Tahiti
GPU, but outperformed the Phenom CPU by a factor of 13×. However, when the power
consumption is taken into consideration, we had found the APU 1.8× more power ef-
ficient than the GPU when running the RTM on the node level. We also evaluated a
directive based approach of the seismic applications on the node level, using OpenACC
and HMPPcg. We came to the conclusion that OpenACC (with the help of the HMP-
Pcg workbench) delivered half the performance obtained using OpenCL, but with having
added 26× less lines of code than in the OpenCL implementations.

At the large scale, MPI+OpenCL implementations of the seismic modeling and the
RTM applications were given. A comparative study between an Intel Xeon E5-2670
CPU cluster (64 nodes), an NVIDIA Tesla K40s GPU cluster (16 nodes), and an AMD
A10-7850K APU cluster (16 nodes) was conducted. We had shown that overlapping
MPI communications with computations has resulted in improving the scaling of the
seismic modeling on the three clusters. The improvement was more significant on the
GPU and APU clusters, where in the one hand the computations time was reduced
letting the communications time becoming a higher fraction of the overall time, and
where the CPUs were idle most of the time, and thus were fully dedicated to MPI
communications while the computations were carried out on the GPUs, on the other
hand. Consequently, the scaling of the RTM on the hardware accelerators based clusters
is even better than the scaling of the CPU cluster (with placing 16 MPI process per
compute node). Besides, in addition to the communication-computation overlap, we
demonstrated that asynchronous I/O (with the Intel Fortran compiler only) had helped
enhancing the performance and the scaling of the large scale RTM (with a frequency
of data snapshotting equal to 10) on the different hardware, the hardware accelerators
based clusters in particular since the percentages of the I/O time with respect to the
overall time were higher than those reported in the CPU cluster (as the computations
are accelerated), and since the CPUs of these clusters had a lightweight load and were



fully used for communications and by the asynchronous I/O engine. Moreover, the
performance numbers of the seismic applications on the GPU cluster showed that the
memory traffic between the CPU and the GPU, via the PCI Express bus, can hinder
achieving an optimal scaling as the nodes count increases. Thanks to the APU, we had
shown that the overhead associated to transferring data between the CPU and the GPU
is reduced without even using the zero-copy buffers. Moreover, when using zero-copy
memory objects the overhead is totally suppressed resulting in an optimal scaling in
general, even though the overall performance results of the RTM on the APU cluster
was lower than on the GPU cluster. However, when considering the maximum power
consumption, on the large scale, the power efficiency of the APU cluster equaled that of
the GPU cluster, which we consider a valuable asset, not to mention the gap between
the two hardware in terms of cost (at the time of writing, an A10-7850K APU costs
roughly $150 whereas the price at launch of the NVIDIA Tesla K40s GPU is $7700).
To the best of our knowledge, this research is the first thorough comparison of APUs
against other HPC based systems with GPUs and CPUs at the node level as well as at
the large scale, which allowed to validate its feasibility on Oil and Gas applications.

9.2 Perspectives

In the near future, one of the perspectives of this research is to survey the upcoming
roadmap of the APU technology. Indeed, the “Carrizo” APU is already shipping and
the “Zen APU” (also referred to as the “Big APU”) is around the corner (scheduled for
2016), with promising technical features. The Carrizo APU incorporates the Onion 3
bus which perfectly unifies, on the hardware level, the memory space between the CPU
and GPU, reducing the bandwidth gap between cache-coherent and cache non-coherent
memory accesses (today the gap is about 50% and it is rumoured that it will be reduced
to 10%), which would reduce the performance gap between using and not using the
zero-copy buffers. The Big APU will have a higher count, in terms of compute units,
and will also feature HBM memory1, which would be used as a fourth level of cache
and would enhance the performance of memory bound workloads such as the RTM. It is
then worthwhile to evaluate the performance of our implementations on the new APUs
(evaluating theses APUs would require the use of the OpenCL 2.0 standard, which would
also allow to exploit larger amount of memory per compute node).
Besides, a continuation to this work would involve improving the APU large scale im-
plementations of the seismic application by overlapping the data packing and unpacking
(this also would be only possible with the OpenCL 2.0 standard) with the computations,
and by reducing the temporary data copies, during the latter operations, by means of
the MPI derived data types for example. Enhancements to the GPU implementations
can also be added, namely temporal blocking and overlapping the PCI memory transfers
with computations.
Furthermore, as perspective we can evaluate the large scale implementations on a larger
number of compute nodes, and with different performance parameters (namely with
higher and lower data snapshotting frequencies), which would impact the parallel ef-
ficiency of the GPU cluster, due to the PCI transfers, and would possibly change the
conclusions of our comparative study.

1High Bandwidth Memory which is a RAM interface for 3D-stacked DRAM memory that sits on top
of a processor socket.
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In addition, with the continuous advances that are integrated to the OpenACC stan-
dard (the standard 3.0 is expected for the beginning of 2016), it would be interesting
to ameliorate our directive based approach, given the interesting trade-off between the
performance results and the programming efforts that it presents.

When it comes to long-term perspectives, HPC architectures are in a constant evo-
lution in the pursuit of exascale computing. While the path seems difficult for CPU
based solutions, hardware accelerators are in their way to be an essential ingredient
in today’s and future supercomputers, and are even tending to be used as standalone
processors (except for the discrete GPUs). For example, NVIDIA is incorporating the
NVLink technology, to its Tesla GPU lineup. IBM is also adding the technology to the
POWER CPUs. According to NVIDIA, the NVLink is a high bandwidth and energy
efficient interconnect that replaces the PCI technology and enables fast interactions, 5
to 12 times faster than the PCI Express Gen 3 interconnect, between CPU and GPU
and even between GPUs in the same compute node. As a matter of fact the U.S. De-
partment of Energy has already unveiled its ambition to build two GPU and NVLink
powered supercomputers, “Sierra” and “Summit”, promising a breakthrough in terms of
performance (estimated to achieve between 100 and 300 petaflops of peak performance)
and energy efficiency, and which will likely top the list of the TOP500 ranking. The
NVLink technology will probably alleviate the PCI bottleneck that restrains many sci-
entific codes, seismic applications included, which will be considered as an important
asset for GPU based systems.
Furthermore, the OpenPOWER foundation is a an emerging collaboration between 113
members such as IBM, NVIDIA, Google, Mellanox and Altera to name few, which
mission is to conceive and build future hybrid architectures around the IBM POWER
processor technology. Systems with POWER CPUs connected to NVIDIA GPUs via
the NVLink interconnect, and others combining POWER processors with Altera FP-
GAs (leveraging OpenCL) are already announced. Those may be profitable to the RTM
workload since the overhead due to transferring data back and forth between the CPU
and the hardware accelerator (a GPU or an FPGA in this case) is expected to be con-
siderably reduced.
That being said, for the APU to become a competitive solution in the HPC ecosystem,
we believe that AMD has to see bigger than the “Big APU”. The APU has already the
advantage of being a standalone processor, has a memory design that tend to unify the
CPU and the GPU memory spaces, and is already considered as an energy efficient chip
compared to the other HPC processors. However, the APU roadmap should follow the
advances of hybrid architectures based on discrete GPUs especially in terms of memory
bandwidth. As far as the seismic workloads are concerned, in addition to most scien-
tific codes that are based on explicit numerical solvers, the computations are suitable to
massively parallel architectures. Therefore, it would be no waste if APUs will feature
a higher density of GPU compute units rather than adding CPU cores from an APU
generation to another (it is rumoured that the Big APU would incorporate 16 CPU
cores and about 40 GPU compute units, while 4 cores and almost 50 GPU compute
units would be a more suitable configuration for the explicit numerical solvers). In this
thesis, it had been shown that in spite of the small number of cores and the relatively low
frequency, CPUs played their role perfectly since one core was dedicated to MPI commu-
nications, one core to asynchronous I/O, and one core to drive the GPUs computations
(the APU we used has only 4 CPU cores). It seems to me that future APUs should
dedicate the major piece of silicon to the GPU compute units and a minor proportion to
the CPU cores (maximum of 4 cores), while lowering the cores frequencies if necessary
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to remain energy efficient. Besides, since adding more compute units implies more mem-
ory contentions, we believe that the APU technology should incorporate more memory
channels (say 4 for example) featuring faster memory such as DDR4, and should find
the right trade-off between the number of GPU cores and the memory latency. This, in
addition to the HBM memory, would be very profitable to the seismic workloads whose
performance is driven by the maximum memory bandwidth. Moreover, we had shown
that APU based solutions allows a higher density, in terms of processors, compared to
GPU based solutions for the same energy envelope. Putting together multiple APUs
on a server blade in an SMP fashion (with sharing a high level cache if possible) would
enhance the power consumption because some hardware components would be common
to all the APUs on the blade, and would also impact the seismic workloads by offering
the ability to process a large shot per server blade for example.
On the programmability and software engineering related to APUs, we hope that the
OpenACC standard will include a set of directives that takes into consideration the
nature of the zero-copy memory buffers (especially that other architectures similar to
the APU are emerging), which would considerably ease programming on such processors
and make it as simple as OpenMP. As a matter of fact, OpenMP 4.0 is meant to target,
in addition to multicore CPUs, the accelerators which raises the question about merging
the two specifications in order to target a wider range of users.
From an algorithmic standpoint, it is rather preferable to adapt more realistic RTM
algorithms to the hardware accelerators based solutions. The elastic RTM algorithm
(isotropic or anisotropic), for example, has the advantage to deliver images with an in-
creased continuity and with sharpened dipping subsalt events, which better represents
the elastic property of the earth. This kind of algorithms has a higher compute intensity
and different memory requirements, and it would be interesting to explore how appli-
cable it is to APUs. We believe that it would raise much more enthusiasm within the
HPC community and within the Oil and Gas industry.
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[133] S. Koliäı, Z. Bendifallah, M. Tribalat, C. Valensi, J.-T. Acquaviva, and W. Jalby.
Quantifying Performance Bottleneck Cost Through Differential Analysis. In Pro-
ceedings of the 27th International ACM Conference on International Conference
on Supercomputing, ICS ’13, pages 263–272. ACM, 2013.

[134] D. Komatitsch and R. Martin. An unsplit convolutional perfectly matched layer
improved at grazing incidence for the seismic wave equation. Geophysics, 72(5):
SM155–SM167, 2007.

[135] D. Kosloff and E. Baysal. Forward modeling by a Fourier method. GEOPHYSICS,
47(10):1402–1412, 1982.

[136] R. Kosloff and D. Kosloff. Absorbing Boundaries for Wave Propagation Problems.
J. Comput. Phys., 63(2):363–376, 1986.

[137] H. Kronawitter, S. Stengel, G. Hager, and C. Lengauer. Domain-Specific Op-
timization of Two Jacobi Smoother Kernels and Their Evaluation in the ECM
Performance Model. Parallel Processing Letters, 24(3), 2014.

[138] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Programming and
Tuning for GPUs. In Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–11.
IEEE Computer Society, 2010.

[139] A. Lemmer and R. Hilfer. Parallel domain decomposition method with non-
blocking communication for flow through porous media. Journal of Computational
Physics, 281:970–981, 2015.

[140] W. Liang, Y. Wang, and C. Yang. Determining finite difference weights for the
acoustic wave equation by a new dispersion-relationship-preserving method. Geo-
physical Prospecting, 63(1):11–22, 2015.

[141] L.R. Lines, R. Slawinski, and R.P. Bording. A recipe for stability of finite-difference
wave-equation computations. Geophysics, 64(3):967–969, 1999.

[142] H. Liu, Bo Li, Hong Liu, X. Tong, Q. Liu, X. Wang, and W. Liu. The issues
of prestack reverse time migration and solutions with Graphic Processing Unit
implementation. Geophysical Prospecting, 60(5):906–918, 2012.

[143] L.T. Lkelle and L. Amundsen. Introduction to Petroleum Seismology (Investiga-
tions in Geophysics). Society Of Exploration Geophysicists, 2005.

[144] S.A. Long, R. Van Borselen, and L. Fountain. Surface-Related Multiple Elimina-
tion - Applications to an offshore Australia data set. ASEG Extended Abstracts,
pages 1–4, 2001.

[145] L. Lu and K. Magerlein. Multi-level Parallel Computing of Reverse Time Migration
for Seismic Imaging on Blue Gene/Q. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, pages
291–292. ACM, 2013.

[146] E. Lusk and A. Chan. Early Experiments with the OpenMP/MPI Hybrid Pro-
gramming Model. In R. Eigenmann and R. de Supinski, editors, OpenMP in a
New Era of Parallelism, volume 5004 of Lecture Notes in Computer Science, pages
36–47. Springer Berlin Heidelberg, 2008.



Bibliography 214

[147] T. Lutz, C. Fensch, and M. Cole. PARTANS: An Autotuning Framework for
Stencil Computation on multi-GPU Systems. ACM Trans. Archit. Code Optim.,
2013.

[148] MADAGASCAR. Guide to RSF file format, 2004. URL http://www.

reproducibility.org/wiki/Guide_to_RSF_file_format.

[149] T.M. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and D.E. Keyes.
Multicore-optimized wavefront diamond blocking for optimizing stencil updates.
CoRR, abs/1410.3060, 2014.

[150] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka. Physis: An Implicitly Paral-
lel Programming Model for Stencil Computations on Large-scale GPU-accelerated
Supercomputers. In Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’11, pages 11:1–11:12.
ACM, 2011.

[151] G. A. McMechan. Migration by extrapolation of time-dependent boundary values.
Geophysical Prospecting, 31:413–420, 1983.

[152] Mellanox Technologies Inc. Introduction to InfiniBand, 2003. URL http://www.

mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf.

[153] Mellanox Technologies Inc. Mellanox IB-Verbs API (VAPI), 2012. URL http://

nuweb12.neu.edu/rc/wp-content/uploads/2013/09/MellanoxVerbsAPI.pdf.

[154] K.C. Meza-Fajardo and A.S. Papageorgiou. A Nonconvolutional, Split-Field, Per-
fectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic
Media: Stability Analysis. Bulletin of the Seismological Society of America, 98(4):
1811–1836, 2008.
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Résumé
Les compagnies pétrolières s’appuient sur le HPC pour accélérer les algorithmes d’imagerie
profondeur. Les grappes de CPU et les accélérateurs matériels sont largement adoptés
par l’industrie. Les processeurs graphiques (GPU), avec une grande puissance de cal-
cul et une large bande passante mémoire, ont suscité un vif intérêt. Cependant le
déploiement d’applications telle la Reverse Time Migration (RTM) sur ces architectures
présente quelques limitations. Notamment, une capacité mémoire réduite, des communi-
cations fréquentes entre le CPU et le GPU présentant un possible goulot d’étranglement
à cause du bus PCI, et des consommations d’énergie élevées. AMD a récemment lancé
l’Accelerated Processing Unit (APU) : un processeur qui fusionne CPU et GPU sur la
même puce via une mémoire unifiée.
Dans cette thèse, nous explorons l’efficacité de la technologie APU dans un contexte
pétrolier, et nous étudions si elle peut surmonter les limitations des solutions basées
sur CPU et sur GPU. L’APU est évalué à l’aide d’une suite OpenCL de tests mémoire,
applicatifs et d’efficacité énergétique. La faisabilité de l’utilisation hybride de l’APU
est explorée. L’efficacité d’une approche par directives de compilation est également
étudiée. En analysant une sélection d’applications sismiques (modélisation et RTM)
au niveau du noeud et à grande échelle, une étude comparative entre CPU, APU et
GPU est menée. Nous montrons la pertinence du recouvrement des entrées-sorties et
des communications MPI par le calcul pour les grappes d’APU et de GPU, que les APU
délivrent des performances variant entre celles du CPU et celles du GPU, et que l’APU
peut être aussi énergétiquement efficace que le GPU.
Mots-clés : HPC, calcul GPU, architectures hybrides, APU, géophysique, RTM.

Contributions of hybrid architectures to depth imaging:
a CPU, APU and GPU comparative study

Abstract
In an exploration context, Oil and Gas (O&G) companies rely on HPC to accelerate
depth imaging algorithms. Solutions based on CPU clusters and hardware accelerators
are widely embraced by the industry. The Graphics Processing Units (GPUs), with a
huge compute power and a high memory bandwidth, had attracted significant interest.
However, deploying heavy imaging workflows, the Reverse Time Migration (RTM) being
the most famous, on such hardware had suffered from few limitations. Namely, the lack
of memory capacity, frequent CPU-GPU communications that may be bottlenecked by
the PCI transfer rate, and high power consumptions. Recently, AMD has launched the
Accelerated Processing Unit (APU): a processor that merges a CPU and a GPU on the
same die, with promising features notably a unified CPU-GPU memory.
Throughout this thesis, we explore how efficiently may the APU technology be applicable
in an O&G context, and study if it can overcome the limitations that characterize
the CPU and GPU based solutions. The APU is evaluated with the help of memory,
applicative and power efficiency OpenCL benchmarks. The feasibility of the hybrid
utilization of the APUs is surveyed. The efficiency of a directive based approach is
also investigated. By means of a thorough review of a selection of seismic applications
(modeling and RTM) on the node level and on the large scale level, a comparative study
between the CPU, the APU and the GPU is conducted. We show the relevance of
overlapping I/O and MPI communications with computations for the APU and GPU
clusters, that APUs deliver performances that range between those of CPUs and those
of GPUs, and that the APU can be as power efficient as the GPU.
Keywords : HPC, GPU computing, hybrid architectures, APU, geophysics, RTM.


	Contents
	1 Introduction
	I State of the art
	2 Geophysics and seismic applications
	2.1 Introduction to seismic exploration
	2.1.3 Seismic interpretation

	2.2 Seismic migrations and Reverse Time Migration (RTM)
	2.2.1 Description and overview of migration methods
	2.2.2 Reverse Time Migration

	2.3 Numerical methods for the wave propagation phenomena
	2.3.1 The wave equation
	2.3.1.3 The acoustic wave equation

	2.3.2 Numerical methods for wave propagation
	2.3.2.1 Integral methods
	2.3.2.2 Asymptotic methods
	2.3.2.3 Direct methods
	2.3.2.3.1 Pseudo-Spectral Methods
	2.3.2.3.2 Finite Difference Methods
	2.3.2.3.3 Finite Element Methods


	2.3.3 Application to the acoustic wave equation
	2.3.3.1 Numerical approximation
	2.3.3.2 Stability analysis and CFL
	2.3.3.3 Boundary conditions



	3 High performance computing
	3.1 Overview of HPC hardware architectures
	3.1.1 Central Processing Unit: more and more cores
	3.1.2 Hardware accelerators: the other chips for computing
	3.1.3 Towards the fusion of CPUs and accelerators: the emergence of the Accelerated Processing Unit

	3.2 Programming models in HPC
	3.2.1 Dedicated programming languages for HPC
	3.2.1.1 Overview
	3.2.1.2 The OpenCL programming model

	3.2.2 Directive-based compilers and language extensions

	3.3 Power consumption in HPC and the power wall

	4 Overview of accelerated seismic applications
	4.1 Stencil computations
	4.2 Reverse time migration
	4.2.1 Evolution of RTM algorithms
	4.2.2 Wave-field reconstruction methods
	4.2.2.1 Re-computation of the forward wavefield
	4.2.2.2 Storing all the forward wavefield
	4.2.2.3 Selective wavefield storage (linear checkpointing)
	4.2.2.5 Boundaries storage
	4.2.2.6 Random boundary condition

	4.2.3 RTM on multi-cores and hardware accelerators
	4.2.3.1 RTM on multi-core CPUs
	4.2.3.2 RTM on GPUs
	4.2.3.3 RTM on other accelerators


	4.3 Close to seismics workflows

	5 Thesis position and contributions
	5.1 Position of the study
	5.2 Contributions
	5.3 Hardware and seismic material configurations
	5.3.1 The hardware configuration
	5.3.2 The numerical configurations of the seismic materials
	5.3.2.1 The seismic source
	5.3.2.2 The velocity model and the compute grids




	II Seismic applications on novel hybrid architectures
	6 Evaluation of the Accelerated Processing Unit (APU)
	6.1 Data placement strategies
	6.2 Applicative benchmarks
	6.2.1 Matrix multiplication
	6.2.1.1 Implementation details
	6.2.1.2 Devices performance
	6.2.1.3 Impact of data placement strategies on performance
	6.2.1.4 Performance comparison

	6.2.2 Finite difference stencil
	6.2.2.1 Implementation details
	6.2.2.2 Devices performance
	6.2.2.3 Impact of data placement strategies on performance
	6.2.2.4 Performance comparison


	6.3 Power consumption aware benchmarks
	6.3.1 Power measurement tutorial
	6.3.1.1 Metrics for power efficiency
	6.3.1.2 Proposed methodology
	6.3.1.3 Hardware configuration
	6.3.1.4 Choice of applications and benchmarks

	6.3.2 Power efficiency of the applicative benchmarks

	6.4 Hybrid utilization of the APU: finite difference stencil as an example
	6.4.1 Hybrid strategy for the APU
	6.4.2 Deployment on CPU or on integrated GPU
	6.4.3 Hybrid deployment

	6.5 Directive based programming on the APU: finite difference stencil as an example
	6.5.1 OpenACC implementation details
	6.5.2 OpenACC performance numbers and comparison with OpenCL


	7 Seismic applications on one compute node
	7.1 Seismic modeling
	7.1.1 Description of the algorithm
	7.1.2 Accelerating the seismic modeling using OpenCL
	7.1.3 Performance and power efficiency
	7.1.4 OpenACC evaluation and comparison with OpenCL

	7.2 Seismic migration
	7.2.1 Description of the algorithm
	7.2.2 Accelerating the seismic migration using OpenCL
	7.2.3 Performance and power efficiency
	7.2.4 OpenACC evaluation and comparison with OpenCL

	7.3 Conclusion

	8 Large scale seismic applications on CPU/APU/GPU clusters
	8.1 Large scale considerations
	8.1.1 Domain decomposition
	8.1.2 Boundary conditions

	8.2 Seismic modeling
	8.2.1 Deployment on CPU clusters: performance issues and proposed solutions
	8.2.1.1 Implementation details
	8.2.1.2 Communications and related issues
	8.2.1.3 Load balancing
	8.2.1.4 Communication-computation overlap
	8.2.1.4.1 Problems of non-blocking MPI communications
	8.2.1.4.2 Proposed solutions


	8.2.2 Deployment on hardware accelerators
	8.2.2.1 Implementation details
	8.2.2.2 Performance results
	8.2.2.2.1 Strong scaling tests
	8.2.2.2.2 Weak scaling tests



	8.3 Seismic migration
	8.3.1 Deployment on CPU clusters
	8.3.1.1 Implementation details
	8.3.1.2 Performance results
	8.3.1.2.1 Strong scaling tests
	8.3.1.2.2 Weak scaling tests


	8.3.2 Deployment on hardware accelerators
	8.3.2.1 Implementation details
	8.3.2.2 Performance results
	8.3.2.2.1 Strong scaling tests
	8.3.2.2.2 Weak scaling tests


	8.3.3 Performance comparison
	8.3.3.1 Comparison based on measured results
	8.3.3.2 Comparison based on performance projection


	8.4 Conclusion

	9 Conclusions and perspectives
	9.1 Conclusions
	9.2 Perspectives

	Bibliography
	List of Figures
	List of Tables
	A List of publications


