C. D. Aliprantis and K. C. Border, Infinite dimensional analysis A hitchhiker's guide, p.66, 2006.

A. Araujo and E. Giné, The central limit theorem for real and Banach valued random variables, Series in Probability and Mathematical Statistics, p.66, 1980.

W. K. Donald and . Andrews, Nonstrong mixing autoregressive processes, J. Appl. Probab, vol.21, issue.4, pp.930-934, 1984.

S. Kenneth, R. Alexander, and . Pyke, A uniform central limit theorem for setindexed partial-sum processes with finite variance, Ann. Probab, vol.14, issue.2 3, pp.582-597, 1986.

M. Raluca and . Balan, A strong invariance principle for associated random fields, Ann. Probab, vol.33, issue.2 3, pp.823-840, 2005.

A. K. Basu, A note on Strassen's version of the law of the iterated logarithm, Proc. Amer, pp.596-601, 1973.

R. F. Bass, Law of the iterated logarithm for set-indexed partial sum processes with finite variance, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.1, issue.4, pp.591-608, 1985.
DOI : 10.1007/BF00531869

A. K. Basu and C. C. Dorea, On functional central limit theorem for stationary martingale random fields, Acta Mathematica Academiae Scientiarum Hungaricae, vol.29, issue.3-4, pp.307-316, 1979.
DOI : 10.1007/BF01902565

H. Biermé and O. Durieu, Invariance principles for self-similar set-indexed random fields, Transactions of the American Mathematical Society, vol.366, issue.11, pp.5963-5989, 2014.
DOI : 10.1090/S0002-9947-2014-06135-7

P. Billingsleybil68 and ]. P. Billingsley, The Lindeberg-Lévy theorem for martingales Convergence of probability measures, Proc. Amer. Math. Soc, vol.12, issue.108, pp.788-792, 1961.

P. Billingsley, Probability and measure Wiley Series in Probability and Mathematical Statistics, p.73, 1995.

G. D. Birkhoff, Proof of the Ergodic Theorem, Proceedings of the National Academy of Sciences, vol.17, issue.12, pp.656-660, 1931.
DOI : 10.1073/pnas.17.2.656

E. Leonard, M. Baum, and . Katz, Convergence rates in the law of large numbers, Bull. Amer. Math. Soc, vol.69, issue.11, pp.771-772

E. Leonard, M. Baum, and . Katz, Convergence rates in the law of large numbers. Transactions of the, pp.108-123, 1965.

D. Barrera, C. Peligrad, and M. Peligrad, On the functional CLT for stationary Markov chains started at a point, Stochastic Processes and their Applications, vol.126, issue.7, p.119, 2015.
DOI : 10.1016/j.spa.2015.12.001

Y. Benoist and J. Quint, Central limit theorem for linear groups. to appear in Annals of Probability, p.118, 2015.

R. C. Bradley, On the Central Limit Question Under Absolute Regularity, The Annals of Probability, vol.13, issue.4, pp.1314-1325, 1985.
DOI : 10.1214/aop/1176992815

C. Richard and . Bradley, On the spectral density and asymptotic normality of weakly dependent random fields, J. Theoret. Probab, vol.5, issue.2 2, pp.355-373, 1992.

C. Richard and . Bradley, Every " lower psi-mixing " Markov chain is " interlaced rho-mixing " . Stochastic Process, Appl, vol.72, issue.2, pp.221-239, 1997.

C. Richard and . Bradley, On the growth of variances in a central limit theorem for strongly mixing sequences, Bernoulli, vol.5, issue.1, pp.67-80, 1999.

R. C. Bradley, Introduction to strong mixing conditions, pp.49-67, 2007.

C. Richard and . Bradley, On the behavior of the covariance matrices in a multivariate central limit theorem under some mixing conditions, Illinois J. Math, vol.56, issue.3, pp.677-704, 2012.

D. Berend and T. Tassa, Improved bounds on Bell numbers and on moments of sums of random variables, Probab. Math. Statist, vol.30, issue.2, pp.185-205, 2010.

D. L. Burkholder, Distribution Function Inequalities for Martingales, The Annals of Probability, vol.1, issue.1, pp.19-42, 1973.
DOI : 10.1214/aop/1176997023

R. Cairoli, Un théorème de convergence pour martingales à indices multiples, C. R. Acad. Sci. Paris Sér. A-B, vol.269, pp.587-589, 1969.

I. P. Cornfeld, S. V. Fomin, and Y. G. , Sina? ?. Ergodic theory, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, p.11, 1982.

]. Z. Cie60 and . Ciesielski, On the isomorphisms of the spaces H ? and m, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys, vol.8, pp.217-222, 1960.

R. Cogburn, Asymptotic properties of stationary sequences, Univ. California Publ. Statist, vol.3, issue.29, pp.99-146, 1960.

J. P. Conze, Entropie d'un groupe ab???lien de transformations, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.5, issue.1, pp.11-3073, 1972.
DOI : 10.1007/BF00533332

J. Dedecker and P. Doukhan, A new covariance inequality and applications. Stochastic Process, Appl, vol.106, issue.1, pp.63-80, 2003.

H. Dehling, M. Denker, and W. Philipp, Central Limit Theorems for Mixing Sequences of Random Variables Under Minimal Conditions, The Annals of Probability, vol.14, issue.4, pp.1359-1370, 1986.
DOI : 10.1214/aop/1176992376

J. Dedecker, A central limit theorem for stationary random fields. Probab. Theory Related Fields, pp.397-426, 1998.

J. Dedecker, Exponential inequalities and functional central limit theorems for random fields, ESAIM: Probability and Statistics, vol.5, issue.41, pp.77-104, 2001.
DOI : 10.1051/ps:2001103

H. Dehling, Limit theorems for sums of weakly dependent Banach space valued random variables, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.22, issue.3, pp.393-432, 1983.
DOI : 10.1007/BF00542537

M. Denker, Uniform Integrability and the Central Limit Theorem for Strongly Mixing Processes, Dependence in probability and statistics, pp.269-289, 1985.
DOI : 10.1007/978-1-4615-8162-8_11

Y. Derriennic, Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the "central limit theorem'', Discrete and Continuous Dynamical Systems, vol.15, issue.1, pp.143-158, 2006.
DOI : 10.3934/dcds.2006.15.143

P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process, Appl, vol.84, issue.2, pp.313-342, 1999.

J. Dedecker and F. Merlevède, The conditional central limit theorem in Hilbert spaces, Stochastic Processes and their Applications, vol.108, issue.2, pp.229-262, 2003.
DOI : 10.1016/j.spa.2003.07.004

J. Dedecker and F. Merlevède, Inequalities for partial sums of Hilbert-valued dependent sequences and applications, Math. Methods Statist, vol.15, issue.2, pp.176-206, 0191.
URL : https://hal.archives-ouvertes.fr/hal-00128759

J. Dedecker and F. Merlevède, Convergence rates in the law of large numbers for Banach-valued dependent variables, Teoriya Veroyatnostei i ee Primeneniya, vol.52, issue.3, pp.562-587, 2007.
DOI : 10.4213/tvp78

URL : https://hal.archives-ouvertes.fr/hal-00332333

J. Dedecker and F. Merlevède, On the almost sure invariance principle for stationary sequences of Hilbert-valued random variables, Dependence in probability, analysis and number theory, pp.157-175, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00685964

P. Doukhan, P. Massart, and E. Rio, The functional central limit theorem for strongly mixing processes, Ann. Inst. H. Poincaré Probab. Statist, vol.30, issue.1, pp.63-82, 1994.

P. Doukhan, P. Massart, and E. Rio, Invariance principles for absolutely regular empirical processes, Ann. Inst. H. Poincaré Probab. Statist, vol.31, issue.2, pp.393-427, 1995.

J. Dedecker, F. Merlevède, and D. Volný, On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria, Journal of Theoretical Probability, vol.32, issue.3, pp.971-1004, 2007.
DOI : 10.1007/s10959-007-0090-1

URL : https://hal.archives-ouvertes.fr/hal-00204493

M. D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc, vol.83, issue.6, pp.195112-71, 1951.

J. L. Doob, Stochastic processes Coupling for ? -dependent sequences and applications, J. Theoret. Probab, vol.59, issue.174 2, pp.861-885, 1953.

J. Dedecker and C. Prieur, New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields, pp.203-236, 2005.

J. Dedecker and E. Rio, On the functional central limit theorem for stationary processes, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.36, issue.1, pp.1-34, 2000.
DOI : 10.1016/S0246-0203(00)00111-4

R. M. Dudley, Sample Functions of the Gaussian Process, The Annals of Probability, vol.1, issue.1, pp.66-103, 1973.
DOI : 10.1214/aop/1176997026

O. Durieu, Independence of four projective criteria for the weak invariance principle, ALEA Lat. Am. J. Probab. Math. Stat, vol.5, pp.21-26, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00291499

O. Durieu and D. Volný, Comparison between criteria leading to the weak invariance principle, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.44, issue.2, pp.324-340, 1985.
DOI : 10.1214/07-AIHP123

URL : https://hal.archives-ouvertes.fr/hal-00291468

P. Erdös and M. Kac, On certain limit theorems of the theory of probability, Bulletin of the American Mathematical Society, vol.52, issue.4, pp.292-302, 1946.
DOI : 10.1090/S0002-9904-1946-08560-2

M. El and M. , Kahane-Khintchine inequalities and functional central limit theorem for stationary random fields. Stochastic Process, Appl, vol.102, issue.2, pp.285-299, 2002.

M. El, M. , and D. Giraudo, Orthomartingale-coboundary decomposition for stationary random fields, Stochastics and Dynamics, vol.0, issue.7, p.127
URL : https://hal.archives-ouvertes.fr/hal-01073516

M. Machkouri and L. Ouchti, Invariance principles for standard-normalized and self-normalized random fields. ALEA Lat, Am. J. Probab. Math. Stat, vol.2, pp.177-194, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00004179

R. V. Erickson, Lipschitz Smoothness and Convergence with Applications to the Central Limit Theorem for Summation Processes, The Annals of Probability, vol.9, issue.5, pp.831-851, 1981.
DOI : 10.1214/aop/1176994311

M. El, M. , and D. Volný, Contre-exemple dans le théorème central limite fonctionnel pour les champs aléatoires réels, Ann. Inst. H. Poincaré Probab. Statist, vol.39, issue.2, pp.325-337, 2003.

M. El-machkouri, D. Volný, and W. Wu, A central limit theorem for stationary random fields, Stochastic Processes and their Applications, vol.123, issue.1, pp.1-14
DOI : 10.1016/j.spa.2012.08.014

URL : https://hal.archives-ouvertes.fr/hal-00619049

I. Fazekas, Burkholder's inequality for multiindex martingales, Ann. Math. Inform, vol.32, pp.45-51, 2005.

D. Giraudo, An improvement of the mixing rates in a counter-example to the weak invariance principle, Comptes Rendus Mathematique, vol.353, issue.10, 2004.
DOI : 10.1016/j.crma.2015.07.013

URL : https://hal.archives-ouvertes.fr/hal-01114898

D. Giraudo, Holderian Weak Invariance Principle for Stationary Mixing Sequences, Journal of Theoretical Probability, vol.23, issue.2, pp.1-16, 2015.
DOI : 10.1007/s10959-015-0633-9

URL : https://hal.archives-ouvertes.fr/hal-01075583

D. Giraudo, Holderian weak invariance principle under a Hannan type condition, Stochastic Processes and their Applications, p.108
DOI : 10.1016/j.spa.2015.09.001

URL : https://hal.archives-ouvertes.fr/hal-01128232

D. Giraudo, Hölderian weak invariance principle under maxwell and woodroofe condition, 2015.

]. M. Bibliographie-[-gor69 and . Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR, vol.188, issue.127, pp.739-741, 1969.

M. I. Gordin, Martingale-co-boundary representation for a class of stationary random fields, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), vol.364, issue.236 7, pp.88-108, 2009.

M. Gordin and M. Peligrad, On the functional central limit theorem via martingale approximation, Bernoulli, vol.17, issue.1, pp.424-440, 2011.
DOI : 10.3150/10-BEJ276

A. Gut, Marcinkiewicz Laws and Convergence Rates in the Law of Large Numbers for Random Variables with Multidimensional Indices, The Annals of Probability, vol.6, issue.3, pp.469-482, 1978.
DOI : 10.1214/aop/1176995531

D. Giraudo and D. Volný, A counter example to central limit theorem in Hilbert spaces under a strong mixing condition, Electronic Communications in Probability, vol.19, issue.0, 2014.
DOI : 10.1214/ECP.v19-3249

URL : https://hal.archives-ouvertes.fr/hal-00926949

D. Giraudo and D. Volný, A strictly stationary <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>??</mml:mi></mml:math>-mixing process satisfying the central limit theorem but not the weak invariance principle, Stochastic Processes and their Applications, vol.124, issue.11, pp.3769-3781, 2014.
DOI : 10.1016/j.spa.2014.06.008

D. Giraudo and D. Volný, A strictly stationary ?-mixing process satisfying the central limit theorem but not the weak invariance principle, Stochastic Processes and their Applications, pp.3769-3781, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00911758

R. Paul and . Halmos, Lectures on ergodic theory, p.12, 1956.

D. Hamadouche, Invariance principles in Hölder spaces, Portugal. Math, vol.57, issue.2, pp.127-151, 1920.

E. J. Hannan, Central limit theorems for time series regression, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.8, issue.2, pp.157-170, 1973.
DOI : 10.1007/BF00533484

E. J. Hannan, The central limit theorem for time series regression, Stochastic Processes and their Applications, vol.9, issue.3, pp.281-289, 1979.
DOI : 10.1016/0304-4149(79)90050-4

N. Herrndorf, Stationary Strongly Mixing Sequences Not Satisfying the Central Limit Theorem, The Annals of Probability, vol.11, issue.3, pp.809-813, 1983.
DOI : 10.1214/aop/1176993529

N. Herrndorf, The invariance principle for ??-mixing sequences, Zeitschrift f??r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.57, issue.1, pp.97-108, 1983.
DOI : 10.1007/BF00534180

C. C. Heyde, On the central limit theorem for stationary processes, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.5, issue.4, pp.315-320, 1974.
DOI : 10.1007/BF00532619

C. C. Heyde, On the central limit theorem and iterated logarithm law for stationary processes, Bulletin of the Australian Mathematical Society, vol.10, issue.01, pp.1-8, 1975.
DOI : 10.1214/aop/1176996714

P. Hall, C. C. Heydehir35-]-h, and . Hirschfeld, Martingale limit theory and its application A connection between correlation and contingency [Ibr59] I. A. Ibragimov. Some limit theorems for stochastic processes stationary in the strict sense, Probability and Mathematical Statistics. 2, 13 Mathematical Proceedings of the Cambridge Philosophical Society, pp.153520-524, 1959.

]. I. Bibliographie-[-ibr62, . A. Ibragimovibr63-]-i, J. F. Ibragimov, and . Kingman, Some limit theorems for stationary processes A central limit theorem for a class of dependent random variables [Ibr75] I. A. Ibragimov. A remark on the central limit theorem for dependent random variables, IL65] I. A. Ibragimov and Ju. V. Linnik. Nezavisimye stalionarno svyazannye velichiny. IzdatIL71] I. A. Ibragimov and Yu. V. Linnik. Independent and stationary sequences of random variables, pp.361-392, 1962.

J. Jiang, Some laws of the iterated logarithm for two parameter martingales, Journal of Theoretical Probability, vol.12, issue.1, pp.49-74, 0192.
DOI : 10.1023/A:1021740425864

S. Kakutani, Induced measure preserving transformations, Proceedings of the Imperial Academy, vol.19, issue.10, pp.635-641, 1943.
DOI : 10.3792/pia/1195573248

D. Khoshnevisan, Multiparameter processes An introduction to random fields, pp.37-143, 2002.

O. Klesov, Limit theorems for multi-indexed sums of random variables, volume 71 of Probability Theory and Stochastic Modelling, p.38

J. Klicnarová, Central limit theorem for Hölder processes on R m -unit cube, Comment . Math. Univ. Carolin, vol.48, issue.1, pp.83-91, 2007.

A. N. Kolmogorov and J. A. Rozanov, On Strong Mixing Conditions for Stationary Gaussian Processes, Theory of Probability & Its Applications, vol.5, issue.2, pp.222-227, 1960.
DOI : 10.1137/1105018

M. A. Krasnosel-ski?-i and J. B. , Ruticki? ?. Convex functions and Orlicz spaces. Translated from the first Russian edition by Leo F, Boron. P. Noordhoff Ltd, p.130, 1961.

G. Kerkyacharian and B. Roynette, Une démonstration simple des théorèmes de Kolmogorov, Donsker et Ito-Nisio, C. R. Acad. Sci. Paris Sér. I Math, vol.312, issue.21, pp.877-882, 1991.

T. Kim and H. Seo, An invariance principle for stationary strong mixing random fields, J. Korean Statist. Soc, vol.24, issue.2 3, pp.281-292, 1995.

T. Kim and E. Seok, The invariance principle for ?-mixing random fields, J. Korean Math. Soc, vol.32, issue.2 3, pp.321-328, 1995.

J. Kuelbs, The Invariance Principle for a Lattice of Random Variables, The Annals of Mathematical Statistics, vol.39, issue.2, pp.382-389, 1968.
DOI : 10.1214/aoms/1177698401

J. Klicnarová and D. Volný, An invariance principle for non-adapted processes, Comptes Rendus Mathematique, vol.345, issue.5, pp.283-287, 2007.
DOI : 10.1016/j.crma.2007.05.009

J. Lamperti, On convergence of stochastic processes, Transactions of the American Mathematical Society, vol.104, issue.3, pp.430-435, 1962.
DOI : 10.1090/S0002-9947-1962-0143245-1

]. N. Bibliographie-[-leo76 and . Leonenko, The law of the iterated logarithm for m-dependent random fields, Mathematics collection (Russian), pp.182-183, 1976.

W. Liu and Z. Lin, Some LIL type results on the partial sums and trimmed sums with multidimensional indices, Electronic Communications in Probability, vol.12, issue.0, pp.221-233, 2007.
DOI : 10.1214/ECP.v12-1286

. [. Louhichi, . Ph, and . Soulier, The central limit theorem for stationary associated sequences, Acta Mathematica Hungarica, vol.97, issue.1/2, pp.15-36, 2002.
DOI : 10.1023/A:1020802711047

M. [. Ledoux and . Talagrand, Probability in Banach spaces Isoperimetry and processes. 59 [LV01] Emmanuel Lesigne and Dalibor Volný. Large deviations for martingales, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), pp.143-159, 1991.

W. Liu, H. Xiao, and W. Wu, Probability and moment inequalities under dependence, Statistica Sinica, vol.23, issue.160, pp.1257-1272, 2013.
DOI : 10.5705/ss.2011.287

F. Merlevède and M. Peligrad, On the Weak Invariance Principle for Stationary Sequences under Projective Criteria, Journal of Theoretical Probability, vol.32, issue.2, pp.647-689, 2006.
DOI : 10.1007/s10959-006-0029-y

F. Merlevède and M. Peligrad, Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples, The Annals of Probability, vol.41, issue.2, pp.914-960, 2013.
DOI : 10.1214/11-AOP694

F. Merlevède, M. Peligrad, and S. Utev, Sharp conditions for the CLT of linear processes in a Hilbert space, Journal of Theoretical Probability, vol.10, issue.3, pp.681-693, 1997.
DOI : 10.1023/A:1022653728014

F. Merlevède, M. Peligrad, and S. Utev, Recent advances in invariance principles for stationary sequences, Probability Surveys, vol.3, issue.0, pp.1-36, 2006.
DOI : 10.1214/154957806100000202

T. Mikosch and A. Ra?kauskas, The limit distribution of the maximum increment of a random walk with regularly varying jump size distribution, Bernoulli, vol.16, issue.4, pp.1016-1038, 2010.
DOI : 10.3150/10-BEJ255

J. Markevi?i¯-ut?-e, C. Suquet, and A. Ra?kauskas, Functional central limit theorems for sums of nearly nonstationary processes*, Lithuanian Mathematical Journal, vol.17, issue.1, pp.282-296, 2012.
DOI : 10.1007/s10986-012-9173-5

C. Michael, M. Mackey, and . Tyran-kami?ska, Central limit theorems for noninvertible measure preserving maps, Colloq. Math, vol.110, issue.1, pp.167-191, 2008.

M. Maxwell and M. Woodroofe, Central limit theorems for additive functionals of Markov chains, Ann. Probab, vol.28, issue.16, pp.713-724, 2000.

T. Mori and K. Yoshihara, A note on the central limit theorem for stationary strongmixing sequences, Yokohama Math. J, vol.34, issue.30, pp.143-146, 1986.

S. V. Nagaev, Large Deviations of Sums of Independent Random Variables, The Annals of Probability, vol.7, issue.5, pp.745-789, 1979.
DOI : 10.1214/aop/1176994938

S. V. Nagaev, On probability and moment inequalities for supermartingales and martingales, Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, pp.35-46, 1996.

. S. Bibliographie-[-np92-]-b, A. N. Nahapetian, and . Petrosian, Martingale-difference Gibbs random fields and central limit theorem, Ann. Acad. Sci. Fenn. Ser. A I Math, vol.17, issue.1 3, pp.105-110, 1992.

M. Peligrad, Invariance Principles for Mixing Sequences of Random Variables, The Annals of Probability, vol.10, issue.4, pp.968-981, 1982.
DOI : 10.1214/aop/1176993718

M. Peligrad, An Invariance Principle for $\phi$-Mixing Sequences, The Annals of Probability, vol.13, issue.4, pp.1304-1313, 1985.
DOI : 10.1214/aop/1176992814

M. Peligrad, On the Central Limit Theorem for $\rho$-Mixing Sequences of Random Variables, The Annals of Probability, vol.15, issue.4, pp.1387-1394, 1987.
DOI : 10.1214/aop/1176991983

M. Peligrad, On the asymptotic normality of sequences of weak dependent random variables, Journal of Theoretical Probability, vol.10, issue.4, pp.703-715, 1996.
DOI : 10.1007/BF02214083

M. Peligrad, Maximum of partial sums and an invariance principle for a class of weak dependent random variables, Proc. Amer, pp.1181-1189, 1998.

M. Peligrad and A. Gut, Almost-sure results for a class of dependent random variables, Journal of Theoretical Probability, vol.12, issue.1, pp.87-104, 1999.
DOI : 10.1023/A:1021744626773

W. Philipp, Weak and $L^p$-Invariance Principles for Sums of $B$-Valued Random Variables, The Annals of Probability, vol.8, issue.1, pp.68-82, 1980.
DOI : 10.1214/aop/1176994825

I. Pinelis, Optimum Bounds for the Distributions of Martingales in Banach Spaces, The Annals of Probability, vol.22, issue.4, pp.1679-1706, 0191.
DOI : 10.1214/aop/1176988477

G. Pisier, Martingales with values in uniformly convex spaces, Israel Journal of Mathematics, vol.8, issue.3-4, pp.326-350, 0191.
DOI : 10.1007/BF02760337

J. [. Politis and . Romano, Limit theorems for weakly dependent Hilbert space valued random variables with application to the stationary bootstrap, Statist. Sinica, vol.4, issue.2, pp.461-476, 1994.

M. Peligrad and S. Utev, A new maximal inequality and invariance principle for stationary sequences, The Annals of Probability, vol.33, issue.2, pp.798-815, 2005.
DOI : 10.1214/009117904000001035

M. Peligrad, S. Utev, and W. Wu, A maximal L p -inequality for stationary sequences and its applications, Proceedings of the American Mathematical Society, vol.135, issue.02, pp.541-550, 2007.
DOI : 10.1090/S0002-9939-06-08488-7

E. Rio, Covariance inequalities for strongly mixing processes, Ann. Inst. H. Poincaré Probab. Statist, vol.29, issue.4, pp.587-597, 1993.

E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants, ) [Mathematics & Applications]

E. Rio, Moment Inequalities for Sums of Dependent Random Variables under Projective Conditions, Journal of Theoretical Probability, vol.5, issue.3, pp.146-163, 2009.
DOI : 10.1007/s10959-008-0155-9

URL : https://hal.archives-ouvertes.fr/hal-00679859

V. Rohlin, A " general " measure-preserving transformation is not mixing. Doklady Akad, Nauk SSSR (N.S.), vol.60, pp.349-351, 1948.

M. Rosenblatt, A CENTRAL LIMIT THEOREM AND A STRONG MIXING CONDITION, Proceedings of the National Academy of Sciences, vol.42, issue.1, pp.43-47, 1956.
DOI : 10.1073/pnas.42.1.43

]. H. Bibliographie-[-ros70 and . Rosenthal, On the subspaces of L p (p > 2) spanned by sequences of independent random variables, Israel J. Math, vol.8, issue.54, pp.273-303, 1970.

M. Rosenblatt, Markov processes Structure and asymptotic behavior, Die Grundlehren der mathematischen Wissenschaften, p.27, 1971.
DOI : 10.1007/978-3-642-65238-7

[. Ra?kauskas and C. Suquet, Necessary and sufficient condition for the Lamperti invariance principle. Teor. ? Imov¯ ?r, Mat. Stat, vol.84, issue.68, pp.115-124, 2003.

A. Ra?-ckauskas and C. Suquet, Central limit theorems in Ho??lder topologies for Banach space valued random fields, Teoriya Veroyatnostei i ee Primeneniya, vol.49, issue.1, pp.109-125, 2004.
DOI : 10.4213/tvp238

A. Ra?kauskas and C. Suquet, Necessary and sufficient condition for the functional central limit theorem in Hölder spaces Testing epidemic changes of infinite dimensional parameters, RS06] Alfredas Ra?kauskas and Charles Suquet, pp.221-243, 2004.

A. Ra?kauskas and C. Suquet, Estimating a Changed Segment in a Sample, Acta Applicandae Mathematicae, vol.80, issue.2, pp.189-210, 2007.
DOI : 10.1007/s10440-007-9126-x

A. Ra?kauskas and C. Suquet, Hölderian invariance principles and some applications for testing epidemic changes, Long memory in economics, pp.109-128, 2007.

A. Ra?kauskas, C. Suquet, V. Zemlysser70, and ]. R. Serfling, A Hölderian functional central limit theorem for a multi-indexed summation process Ra?kauskas and V. Zemlys. Functional central limit theorem for a double-indexed summation process Moment inequalities for the maximum cumulative sum, Stochastic Process. Appl. Liet. Mat. Rink. Ann. Math. Statist, vol.117, issue.41, pp.1137-1164, 1970.

M. Qi and . Shao, A remark on the invariance principle for ?-mixing sequences of random variables. Chinese Ann, Math. Ser. A, vol.9, issue.4, pp.409-412, 1988.

M. Qi and . Shao, On the invariance principle for ?-mixing sequences of random variables Chinese Ann A Chinese summary appears in Chinese Ann, Math. Ser. B Math. Ser. A, vol.10, issue.32, pp.427-433, 1989.

M. Qi and . Shao, Maximal inequalities for partial sums of ?-mixing sequences, Ann. Probab, vol.23, issue.2 2, pp.948-965, 1995.

A. Shashkin, A strong invariance principle for positively or negatively associated random fields, Statistics & Probability Letters, vol.78, issue.14, pp.2121-2129, 2008.
DOI : 10.1016/j.spl.2008.01.078

]. E. Ste61 and . Stein, On the maximal ergodic theorem An invariance principle for the law of the iterated logarithm, Proc. Nat. Acad. Sci. U.S.A, pp.1894-1897, 1961.

. Bibliographie-[-suq99-]-ch and . Suquet, Tightness in Schauder decomposable Banach spaces, Proceedings of the St, pp.201-224, 1999.

C. Tone, Central limit theorems for Hilbert-space valued random fields satisfying a strong mixing condition, ALEA Lat. Am. J. Probab. Math. Stat, vol.8, issue.3, pp.77-94, 2011.

G. Viennet, Inequalities for absolutely regular sequences: application to density estimation. Probab. Theory Related Fields, pp.467-492, 1997.

D. Volný, Approximating martingales and the central limit theorem for strictly stationary processes, Stochastic Processes and their Applications, vol.44, issue.1, pp.41-74, 1993.
DOI : 10.1016/0304-4149(93)90037-5

D. Volný, Martingale approximation of non adapted stochastic processes with nonlinear growth of variance, Dependence in probability and statistics, pp.141-156, 2006.
DOI : 10.1007/0-387-36062-X_7

D. Volný, MARTINGALE APPROXIMATION OF NON-STATIONARY STOCHASTIC PROCESSES, Stochastics and Dynamics, vol.06, issue.02, pp.173-183, 2006.
DOI : 10.1142/S0219493706001694

D. Volný, A nonadapted version of the invariance principle of Peligrad and Utev, Comptes Rendus Mathematique, vol.345, issue.3, pp.167-169, 2007.
DOI : 10.1016/j.crma.2007.05.024

D. Volný, Martingale Approximation and Optimality of??Some??Conditions for??the??Central Limit Theorem, Journal of Theoretical Probability, vol.32, issue.3, pp.888-903, 2010.
DOI : 10.1007/s10959-010-0275-x

D. Volny, A central limit theorem for fields of martingale differences, Comptes Rendus Mathematique, vol.353, issue.12, pp.41-180, 2015.
DOI : 10.1016/j.crma.2015.09.017

V. A. Volkonski?-i and Y. A. Rozanov, Some limit theorems for random functions Dalibor Volný and Pavel Samek. On the invariance principle and the law of iterated logarithm for stationary processes, Mathematical physics and stochastic analysis, pp.186-207, 1959.

D. Volný and Y. Wang, An invariance principle for stationary random fields under Hannan's condition. Stochastic Process, Appl, vol.124, issue.157, pp.4012-4029, 2014.

J. Michael and . Wichura, Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters, Ann. Math. Statist, vol.40, issue.40, pp.681-687, 1969.

J. Michael and . Wichura, Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments, Ann. Probability, vol.1, pp.272-296, 1973.

N. Wiener, The ergodic theorem. Duke Math, J, vol.5, issue.1, pp.1-18, 1939.

]. W. Bibliographie-[-woy76 and . Woyczy?ski, Asymptotic behavior of martingales in Banach spaces, Probability in Banach spaces (Proc. First Internat. Conf., Oberwolfach, pp.273-284, 1975.

W. Wu, Nonlinear system theory: Another look at dependence, Proc. Natl. Acad. Sci. USA, pp.14150-14154, 2005.
DOI : 10.1073/pnas.0506715102

W. Wu, Strong invariance principles for dependent random variables, The Annals of Probability, vol.35, issue.6, pp.2294-2320, 2007.
DOI : 10.1214/009117907000000060

Y. Wang and M. Woodroofe, A new condition for the invariance principle for stationary random fields, Statistica Sinica, vol.23, issue.136, pp.1673-1696, 2013.
DOI : 10.5705/ss.2012.114s

K. Yosida and S. Kakutani, Birkhoff's ergodic theorem and the maximal ergodic theorem, Proc. Imp. Acad, pp.165-168, 1939.
DOI : 10.3792/pia/1195579375

O. Zhao and M. Woodroofe, Law of the iterated logarithm for stationary processes, The Annals of Probability, vol.36, issue.1, pp.127-142, 2008.
DOI : 10.1214/009117907000000079