Théorèmes limites de la théorie des probabilités dans les systèmes dynamiques

Résumé : Cette thèse est consacrée aux théorèmes limites pour les suites et les champs aléatoires strictement stationnaires. Nous étudions essentiellement le théorème limite central et sa version fonctionnelle, appelée principe d'invariance. Dans un premier temps, nous montrons à l'aide d'un contre-exemple que pour les processus strictement stationnaires $\beta$-mélangeants, le théorème limite central peut avoir lieu sans que ce ne soit le cas pour la version fonctionnelle. Nous montrons également que le théorème limite central n'a pas nécessairement lieu pour les sommes partielles d'une suite strictement stationnaire $\beta$-mélangeante à valeurs dans un espace de Hilbert de dimension infinie, même en supposant l'uniforme intégrabilité de la suite des sommes partielles normalisées. Puis nous étudions le principe d'invariance dans l'espace des fonctions hölderiennes. Nous traitons le cas des suites strictement stationnaires $\tau$-dépendantes (au sens de Dedecker, Prieur, 2005) ou $\rho$-mélangeantes. Nous donnons également une condition suffisante sur la loi d'une suite strictement stationnaire d'accroissements d'une martingale et la variance conditionnelle garantissant le principe d'invariance dans l'espace des fonctions hölderiennes, et nous démontrons son optimalité à l'aide d'un contre-exemple. Ensuite, nous déduisons grâce à une approximation par martingales des conditions dans l'esprit de celles de Hannan (1979), et Maxwell et Woodroofe (2000). Nous discutons ensuite de la décomposition martingale/cobord. Dans le cas des suites, nous fournissons des conditions d'intégrabilité sur la fonction de transfert et le cobord pour que ce dernier ne perturbe pas le principe d'invariance, la loi des logarithmes itérés ou bien la loi forte des grands nombres si ceux-ci ont lieu pour la martingale issue de la décomposition. Dans le cas des champs, nous formulons une condition suffisante pour une décomposition ortho-martingale/cobord. Enfin, nous établissons des inégalités sur les queues des maxima des sommes partielles d'un champ aléatoire de type ortho-martingale ou bien d'un champ qui s'exprime comme une fonctionnelle d'un champ i.i.d. Ces inégalités permettent d'obtenir un principe d'invariance dans les espaces hölderiens pour ces champs aléatoires.
Type de document :
Thèse
Probabilités [math.PR]. Université de Rouen 2015. Français
Liste complète des métadonnées

Littérature citée [160 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-01246592
Contributeur : Davide Giraudo <>
Soumis le : vendredi 18 décembre 2015 - 17:19:26
Dernière modification le : jeudi 11 janvier 2018 - 06:12:27
Document(s) archivé(s) le : samedi 29 avril 2017 - 22:08:47

Identifiants

  • HAL Id : tel-01246592, version 1

Collections

Citation

Davide Giraudo. Théorèmes limites de la théorie des probabilités dans les systèmes dynamiques. Probabilités [math.PR]. Université de Rouen 2015. Français. 〈tel-01246592〉

Partager

Métriques

Consultations de la notice

435

Téléchargements de fichiers

336