N. N. Abboud and P. M. Pinsky, Finite element dispersion analysis for the three-dimensional second-order scalar wave equation, International Journal for Numerical Methods in Engineering, vol.48, issue.6, pp.1183-1218, 1992.
DOI : 10.1002/nme.1620350604

A. Abdulle and M. J. Grote, Finite Element Heterogeneous Multiscale Method for the Wave Equation, Multiscale Modeling & Simulation, vol.9, issue.2, pp.766-792, 2011.
DOI : 10.1137/100800488

URL : https://hal.archives-ouvertes.fr/hal-01111169

M. Ainsworth, -Version Finite Element Approximation at High Wave Number, SIAM Journal on Numerical Analysis, vol.42, issue.2, pp.553-575, 2004.
DOI : 10.1137/S0036142903423460

URL : https://hal.archives-ouvertes.fr/hal-00506914

M. Ainsworth, P. Monk, and W. Muniz, Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation, Journal of Scientific Computing, vol.15, issue.2
DOI : 10.1007/s10915-005-9044-x

M. Ainsworth and H. Wajid, Dispersive and Dissipative Behavior of the Spectral Element Method, SIAM Journal on Numerical Analysis, vol.47, issue.5, pp.3910-3937, 2009.
DOI : 10.1137/080724976

H. B. Hadj-ali, S. Operto, and J. Virieux, Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data, GEOPHYSICS, vol.73, issue.5, p.101, 2008.
DOI : 10.1190/1.2957948

URL : https://hal.archives-ouvertes.fr/insu-00200039

T. Alkhalifah, An acoustic wave equation for anisotropic media, GEOPHYSICS, vol.65, issue.4, pp.1239-1250, 2000.
DOI : 10.1190/1.1444815

G. Allaire, Homogenization and Two-Scale Convergence, SIAM Journal on Mathematical Analysis, vol.23, issue.6, pp.1482-1518, 1992.
DOI : 10.1137/0523084

URL : https://hal.archives-ouvertes.fr/hal-01111805

G. Allaire and R. Brizzi, A Multiscale Finite Element Method for Numerical Homogenization, Multiscale Modeling & Simulation, vol.4, issue.3, pp.790-812, 2005.
DOI : 10.1137/040611239

M. Amara, R. Djellouli, and C. Farhat, Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.47-1038, 2009.
DOI : 10.1137/060673230

URL : https://hal.archives-ouvertes.fr/hal-00865802

P. R. Amestoy, I. S. Duff, and J. Y. , Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering, vol.184, issue.2-4, pp.501-520, 2000.
DOI : 10.1016/S0045-7825(99)00242-X

URL : https://hal.archives-ouvertes.fr/hal-00856651

F. Aminzadeh, B. Jean, N. Burkhard, J. Long, T. Kunz et al., Three dimensional seg/eaeg models ? an update, The Leading Edge, pp.131-134, 1996.

R. Araya, C. Harder, D. Paredes, and F. Valentin, Multiscale Hybrid-Mixed Method, SIAM Journal on Numerical Analysis, vol.51, issue.6, pp.3505-3531, 2013.
DOI : 10.1137/120888223

URL : https://hal.archives-ouvertes.fr/hal-01347517

T. Arbogast, S. E. Minkoff, and P. T. Keenan, An operator-based approach to upscaling the pressure equation, Computational Methods in Contamination and Remediation of Water Resources, pp.405-412, 1998.

A. K. Aziz and R. B. Kellogg, Finite element analysis of a scattering problem, Mathematics of Computation, vol.37, issue.156, pp.261-272, 1981.
DOI : 10.1090/S0025-5718-1981-0628694-2

A. K. Aziz, R. B. Kellogg, and A. B. Stephens, A two point boundary value problem with a rapidly oscillating solution, Numerische Mathematik, vol.28, issue.1-2, pp.107-121, 1988.
DOI : 10.1007/BF01395880

I. Babu?ka, G. Caloz, and E. Osborn, Special Finite Element Methods for a Class of Second Order Elliptic Problems with Rough Coefficients, SIAM Journal on Numerical Analysis, vol.31, issue.4, pp.31-510, 1994.
DOI : 10.1137/0731051

G. E. Backus, Long-wave elastic anisotropy produced by horizontal layering, Journal of Geophysical Research, vol.27, issue.11, pp.4427-4440, 1962.
DOI : 10.1029/JZ067i011p04427

H. Barucq, T. Chaumont-frelet, J. Diaz, and V. Péron, Upscaling for the Laplace problem using a discontinuous Galerkin method, Journal of Computational and Applied Mathematics, vol.240, pp.192-203, 2013.
DOI : 10.1016/j.cam.2012.05.025

URL : https://hal.archives-ouvertes.fr/hal-00757098

H. Barucq, T. C. Frelet, and C. Gout, Stability analysis of heterogeous helmholtz problems and finite element solution based on propagation media approximation, 2015.

E. Bécache, S. Fauqueux, and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, Journal of Computational Physics, vol.188, issue.2, pp.399-433, 2006.
DOI : 10.1016/S0021-9991(03)00184-0

J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. i. low-frequency range, The journal of the acoustical, pp.168-178, 1956.
URL : https://hal.archives-ouvertes.fr/hal-01368668

L. Boillot, ContributionsàContributionsà la modélisation mathématique etàetà l'algorithmique par-alì ele pour l'optimisation d'un propagateur d'ondesélastiquesondesélastiques en milieu anisotrope, 2014.

H. Brezis, Functional analysis, sobolev spaces and partial differential equations, 1983.
DOI : 10.1007/978-0-387-70914-7

Y. Capdeville, L. Guillot, and J. Marigo, 1-d non-periodic homogenization for the seismisc wave equation, Geophys, J. Int, vol.181, pp.897-910, 2010.

J. M. Carcione, Seismic modeling in viscoelastic media, GEOPHYSICS, vol.58, issue.1, pp.110-120, 1993.
DOI : 10.1190/1.1443340

J. M. Carcione, D. Kosloff, and A. Behle, Long???wave anisotropy in stratified media: A numerical test, GEOPHYSICS, vol.56, issue.2, pp.245-254, 1991.
DOI : 10.1190/1.1443037

J. P. Castagna, M. L. Batzle, and R. L. Eastwood, Relationships between compressional???wave and shear???wave velocities in clastic silicate rocks, GEOPHYSICS, vol.50, issue.4, pp.571-581, 1985.
DOI : 10.1190/1.1441933

D. Cioranescu, A. Damlamian, and G. Griso, The Periodic Unfolding Method in Homogenization, SIAM Journal on Mathematical Analysis, vol.40, issue.4, pp.1585-1620, 2008.
DOI : 10.1137/080713148

URL : https://hal.archives-ouvertes.fr/hal-00693080

R. Clayton and B. Engquist, Absorbing boundary conditions for acoustic and elastic wave equations, Bulletin of the Seismological Society of America, vol.67, issue.6, pp.1529-1540, 1977.

R. W. Clayton and R. H. Stolt, A Born???WKBJ inversion method for acoustic reflection data, GEOPHYSICS, vol.46, issue.11, pp.1559-1567, 1981.
DOI : 10.1190/1.1441162

J. F. Clearboot, TOWARD A UNIFIED THEORY OF REFLECTOR MAPPING, GEOPHYSICS, vol.36, issue.3, pp.467-481, 1971.
DOI : 10.1190/1.1440185

P. Cummings and X. Feng, SHARP REGULARITY COEFFICIENT ESTIMATES FOR COMPLEX-VALUED ACOUSTIC AND ELASTIC HELMHOLTZ EQUATIONS, Mathematical Models and Methods in Applied Sciences, vol.16, issue.01, pp.139-160, 2006.
DOI : 10.1142/S021820250600108X

P. F. Daley and F. Hron, Reflection and transmission coefficients for tranversly isotropic media, Bulletin of the Seismological Society of America, vol.67, issue.3, pp.661-675, 1977.

A. Deraemaeker, I. Babu?ka, and P. Bouillard, Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, International Journal for Numerical Methods in Engineering, vol.142, issue.4, pp.471-499, 1999.
DOI : 10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6

J. Diaz, Approches analytiques et numériques deprobì emes de transmision en propagation d'ondes en régime transitoire. application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées, p.8708, 2005.

J. Douglas, J. E. Santos, D. Sheen, and L. S. Bennethum, FREQUENCY DOMAIN TREATMENT OF ONE-DIMENSIONAL SCALAR WAVES, Mathematical Models and Methods in Applied Sciences, vol.03, issue.02, pp.171-194, 1993.
DOI : 10.1142/S0218202593000102

B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves, Proc. Natl. Acad. Sci. USA, pp.1765-1766, 1977.

V. Farra, Ray tracing in complex media, Journal of Applied Geophysics, vol.30, issue.1-2, pp.55-73, 1993.
DOI : 10.1016/0926-9851(93)90018-T

X. Feng and H. Wu, $hp$-Discontinuous Galerkin methods for the Helmholtz equation with large wave number, Mathematics of Computation, vol.80, issue.276, pp.1997-2024, 2011.
DOI : 10.1090/S0025-5718-2011-02475-0

X. Feng and Y. Xing, Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number, Mathematics of Computation, vol.82, issue.283, pp.1269-1296, 2013.
DOI : 10.1090/S0025-5718-2012-02652-4

S. Forest, M. Amestoy, G. Damamme, S. Kruch, V. Maurel et al., Mécanique des milieux continus, Ecole des mines de paris, available online: http://mms2.ensmp.fr, 2009.

E. Forgues, E. Scala, and R. G. Pratt, High resolution velocity model estimation from refraction and reflection data, SEG Technical Program Expanded Abstracts 1998, pp.1211-1214, 1998.
DOI : 10.1190/1.1820111

T. and C. Frelet, On high order methods for the helmholtz equation in highly heterogeneous media, 2015.

Y. Gholami, R. Brossier, S. Operto, A. Ribodetti, and J. Virieux, Which parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? Part 1: Sensitivity and trade-off analysis, GEOPHYSICS, vol.78, issue.2, pp.81-105, 2013.
DOI : 10.1190/geo2012-0204.1

URL : https://hal.archives-ouvertes.fr/hal-00830264

D. Givoli, High-order local non-reflecting boundary conditions: a review, Wave Motion, vol.39, issue.4, pp.319-326, 2004.
DOI : 10.1016/j.wavemoti.2003.12.004

E. L. Hamilton, Elastic properties of marine sediments, Journal of Geophysical Research, vol.21, issue.SM2, 1971.
DOI : 10.1029/JB076i002p00579

U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, Communications in Mathematical Sciences, vol.5, issue.3, pp.665-678, 2007.
DOI : 10.4310/CMS.2007.v5.n3.a8

R. Hill, On constitutive inequalities for simple materials???I, Journal of the Mechanics and Physics of Solids, vol.16, issue.4, pp.229-242, 1968.
DOI : 10.1016/0022-5096(68)90031-8

T. Y. Hou and X. Wu, A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, Journal of Computational Physics, vol.134, issue.1, pp.169-189, 1997.
DOI : 10.1006/jcph.1997.5682

F. Ihlenburg, Finite element analysis of acoustic scattering, 1998.
DOI : 10.1007/b98828

F. Ihlenburg and I. Babu?ka, Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM, Computers & Mathematics with Applications, vol.30, issue.9, pp.9-37, 1995.
DOI : 10.1016/0898-1221(95)00144-N

L. Imbert-gérard and B. Després, A generalized plane-wave numerical method for smooth nonconstant coefficients, IMA Journal of Numerical Analysis, vol.34, issue.3, pp.1072-1103, 2014.
DOI : 10.1093/imanum/drt030

S. I. Karato, Importance of anelasticity in the interpretation of seismic tomography, Geophysical Research Letters, vol.74, issue.15, pp.1623-1626, 1993.
DOI : 10.1029/93GL01767

O. Korostyshevskaya and S. E. Minkoff, A Matrix Analysis of Operator-Based Upscaling for the Wave Equation, SIAM Journal on Numerical Analysis, vol.44, issue.2, pp.586-612, 2006.
DOI : 10.1137/050625369

S. M. Kozlov, AVERAGING OF RANDOM OPERATORS, Mathematics of the USSR-Sbornik, vol.37, issue.2, pp.167-180, 1980.
DOI : 10.1070/SM1980v037n02ABEH001948

R. D. Krieg and S. W. Key, Transient shell response by numerical time integration, International Journal for Numerical Methods in Engineering, vol.40, issue.3, pp.273-286, 1973.
DOI : 10.1002/nme.1620070305

P. Laug and H. Borouchaki, The bl2d mesh generator: Beginner's guide, user's and programmer's manual, p.69977, 2006.

J. E. Lin and W. A. Strauss, Decay and scattering of solutions of a nonlinear Schr??dinger equation, Journal of Functional Analysis, vol.30, issue.2, pp.245-263, 1978.
DOI : 10.1016/0022-1236(78)90073-3

A. Loseille and F. Alauzet, Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error, SIAM Journal on Numerical Analysis, vol.49, issue.1, pp.38-60, 2011.
DOI : 10.1137/090754078

. Ch, F. Makridakis, I. Ihlenburg, and . Babu?ka, Analysis and finite element methods for a fluid-solid interaction problem in one dimesion, 1995.

G. S. Martin, R. Wiley, and J. Manfurt, Marmousi2: An elastic upgrade for marmousi , The Leading Edge, pp.156-166, 2006.

V. Mattesi, H. Barucq, and J. Diaz, Prise en compte de vitesses de propation polynomiales dans un code de simulation galerkine discontinue, pp.1176854-1176855, 2015.

J. M. Melenk, On generalized finite element methods, 1995.

J. M. Melenk, A. Parsania, and S. Sauter, General DG-Methods for Highly Indefinite Helmholtz Problems, Journal of Scientific Computing, vol.28, issue.4, pp.536-581, 2013.
DOI : 10.1007/s10915-013-9726-8

J. M. Melenk and S. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Mathematics of Computation, vol.79, issue.272, pp.1871-1914, 2010.
DOI : 10.1090/S0025-5718-10-02362-8

C. S. Morawetz, Time Decay for the Nonlinear Klein-Gordon Equation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.306, issue.1486, pp.291-296, 1968.
DOI : 10.1098/rspa.1968.0151

R. Mullen and T. Belytschko, Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation, International Journal for Numerical Methods in Engineering, vol.15, issue.1, pp.11-29, 1982.
DOI : 10.1002/nme.1620180103

S. Operto, J. Virieux, P. Amestoy, J. Y. L-'excellent, L. Giraud et al., 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study, GEOPHYSICS, vol.72, issue.5, pp.195-511, 2007.
DOI : 10.1190/1.2759835

URL : https://hal.archives-ouvertes.fr/insu-00355256

S. Operto, J. Virieux, A. Ribodetti, and J. E. Anderson, Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media, GEOPHYSICS, vol.74, issue.5, pp.75-95, 2009.
DOI : 10.1190/1.3157243

URL : https://hal.archives-ouvertes.fr/hal-00413561

B. Perthame and L. Vega, Morrey???Campanato Estimates for Helmholtz Equations, Journal of Functional Analysis, vol.164, issue.2, pp.340-355, 1999.
DOI : 10.1006/jfan.1999.3391

R. E. Plessix, Three-dimensional frequency-domain full-waveform inversion with an iterative solver, GEOPHYSICS, vol.74, issue.6, pp.149-157, 2009.
DOI : 10.1190/1.3211198

R. E. Plessix and W. A. Mulder, A comparison between one-way and two-way waveequation migration, Geophysics, vol.69, pp.1491-1504, 2004.

R. , G. Pratt, C. Shin, and G. J. Hicks, Gauss-newton and full newton methods in frequency-space seismic waveform inversion, Geophysics. J. Int, pp.341-362, 1998.

W. Rudin, Real and complex analysis, 1987.

E. Sanchez-palencia, Non-homogeneous media and vibration theory, 1980.

S. A. Sauter and C. Schwab, Boundary element methods, 2011.

A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Mathematics of Computation, vol.28, issue.128, pp.959-962, 1974.
DOI : 10.1090/S0025-5718-1974-0373326-0

H. Si, Tetgen ? a quality tetrahedral mesh generator and three-dimensional delaunay triangulator, Web Intelligence and Agent Systems, An International Journal -WIAS, vol.75, 2007.

L. Sirgue and R. G. Pratt, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, GEOPHYSICS, vol.69, issue.1, pp.231-248, 2003.
DOI : 10.1190/1.1649391

R. Sun and G. A. Mcmechan, Scalar reverse???time depth migration of prestack elastic seismic data, GEOPHYSICS, vol.66, issue.5, pp.1519-1527, 2001.
DOI : 10.1190/1.1487098

W. W. Symes, Reverse time migration with optimal checkpointing, GEOPHYSICS, vol.72, issue.5, pp.213-221, 2007.
DOI : 10.1190/1.2742686

C. Taillandier, M. Noble, H. Churais, and H. Calandra, First-arrival traveltime tomography based on the adjoint-state method, GEOPHYSICS, vol.74, issue.6, pp.57-66, 2009.
DOI : 10.1190/1.3250266

A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, GEOPHYSICS, vol.49, issue.8, pp.1259-1266, 1984.
DOI : 10.1190/1.1441754

R. Tezaur, I. Kalashnikova, and C. Farhat, The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber, Computer Methods in Applied Mechanics and Engineering, vol.268, pp.126-140, 2013.
DOI : 10.1016/j.cma.2013.08.017

L. L. Thompson and P. M. Pinsky, Complex wavenumber Fourier analysis of the p-version finite element method, Computational Mechanics, vol.2, issue.4, pp.255-275, 1994.
DOI : 10.1007/BF00350228

L. Thosmen, Weak elastic anisotropy, Geophysics, vol.51, issue.10, pp.1954-1966, 1986.

A. Tonnoir, Conditions transparentes pour la diffraction d'ondes en milieú elastique anisotrope, 2015.

S. L. Valcke, M. Caseu, G. E. Lloyd, J. Kendall, and G. J. Fisher, Lattice preferred orientation and seismic anisotropy in sedimenary rocks, Geophys. J. Int, pp.166-652, 2006.

T. Vdovina and S. E. Minkoff, An a priori error analysis of operator upcaling for the acoustic wave equation, International journal of numerical analysis and modeling, vol.5, issue.4, pp.543-569, 2008.

T. Vdovina, S. E. Minkoff, and O. Korostyshevskaya, Operator Upscaling for the Acoustic Wave Equation, Multiscale Modeling & Simulation, vol.4, issue.4, pp.1305-1338, 2005.
DOI : 10.1137/050622146

J. Virieux, P-sv wave propagation in heterogeneous media: Velocity-stress finitedifference method, Geophysics, vol.51, issue.4, 1986.

J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics, GEOPHYSICS, vol.74, issue.6, pp.127-152, 2009.
DOI : 10.1190/1.3238367

URL : https://hal.archives-ouvertes.fr/hal-00457989

E. L. Wilson, The static condensation algorithm, International Journal for Numerical Methods in Engineering, vol.3, issue.1, pp.198-203, 1974.
DOI : 10.1002/nme.1620080115

H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version, IMA Journal of Numerical Analysis, vol.34, issue.3, pp.1266-1288, 2013.
DOI : 10.1093/imanum/drt033

Y. Zhang, H. Zhang, and G. Zhang, A stable TTI reverse time migration and its implementation, GEOPHYSICS, vol.76, issue.3, pp.3-11, 2011.
DOI : 10.1190/1.3554411

H. Zhou, G. Zhang, and R. Bloor, An anisotropic acoustic wave equation for modeling and migration in 2d tti media, An anisotropic acoustic wave equation for modeling and migration, 2D TTI media: 76th Annual International Meeting, SEG, Expanded Astracts, 2006.

L. Zhu and H. Wu, Preasymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: $hp$ Version, SIAM Journal on Numerical Analysis, vol.51, issue.3, pp.1828-1852, 2013.
DOI : 10.1137/120874643