K. Abe and H. Yano, Formation of hydrogels from cellulose nanofibers, Carbohydrate Polymers, vol.85, issue.4, pp.733-737, 2011.
DOI : 10.1016/j.carbpol.2011.03.028

A. Alemdar and M. Sain, Isolation and characterization of nanofibers from agricultural residues ??? Wheat straw and soy hulls, Bioresource Technology, vol.99, issue.6, pp.1664-1671, 2008.
DOI : 10.1016/j.biortech.2007.04.029

N. Andersen, Enzymatic Hydrolysis of Cellulose: Experimental and Modeling Studies. Doctoral dissertation, 2007.

C. Aulin, J. Netrval, L. Wågberg, and T. Lindström, Aerogels from nanofibrillated cellulose with tunable oleophobicity, Soft Matter, vol.25, issue.14, pp.3298-3305, 2010.
DOI : 10.1039/c001939a

C. Aulin, G. Salazar-alvarez, and T. Lindström, High strength, flexible and transparent nanofibrillated cellulose???nanoclay biohybrid films with tunable oxygen and water vapor permeability, Nanoscale, vol.50, issue.20, 2012.
DOI : 10.1039/c2nr31726e

M. Bäckström, S. Bolivar, and J. Paltakari, Effect of ionic form on fibrillation and the development of the fibre network strength during the refining of the kraft pulps, 2012.

A. Bhatnagar and M. Sain, Processing of Cellulose Nanofiber-reinforced Composites, Journal of Reinforced Plastics and Composites, vol.24, issue.12, pp.1259-1268, 2005.
DOI : 10.1177/0731684405049864

W. Bolaski, A. Gallatin, and J. Gallatin, Enzymatic conversion of cellulosic fibers, 1962.

M. Bulota, K. Kreitsmann, M. Hughes, and J. Paltakari, Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid), Journal of Applied Polymer Science, vol.46, issue.S1, pp.449-458, 2012.
DOI : 10.1002/app.36787

F. Carrasco, P. Mutjé, and M. Pèlach, Refining of bleached cellulosic pulps: characterization by application of the colloidal titration technique, Wood Science and Technology, vol.30, issue.4, pp.227-236, 1996.
DOI : 10.1007/BF00229345

G. Chinga-carrasco, Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view, Nanoscale Research Letters, vol.6, issue.1, pp.1-7, 2011.
DOI : 10.1021/bm801065u

N. Davis and S. Flitsch, Selective oxidation of monosaccharide derivatives to uronic acids, Tetrahedron Letters, vol.34, issue.7, pp.1181-1184, 1993.
DOI : 10.1016/S0040-4039(00)77522-8

A. De-nooy, A. Besemer, and H. Van-bekkum, Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides, Recueil des Travaux Chimiques des Pays-Bas, vol.54, issue.3, pp.165-166, 1994.
DOI : 10.1002/recl.19941130307

J. Doshi and D. Reneker, Electrospinning process and applications of electrospun fibers, Conference Record of the 1993 IEEE Industry Applications Society Annual Meeting, pp.1698-1703, 1993.

A. Dufresne, J. Cavaillé, and M. Vignon, Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils, 6<1185::AID-APP19>3.0.CO;2-V, pp.1185-1194, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00309886

Ø. Eriksen, K. Syverud, and Ø. Gregersen, The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper, Nordic Pulp and Paper Research Journal, vol.23, issue.03, pp.299-304, 2008.
DOI : 10.3183/NPPRJ-2008-23-03-p299-304

D. Fengel and G. Wegener, Wood: chemistry, ultrastructure, reactions, 1983.
DOI : 10.1515/9783110839654

A. Fernandes, L. Thomas, and C. Altaner, Nanostructure of cellulose microfibrils in spruce wood, Proceedings of the National Academy of Sciences, vol.108, issue.47, pp.1195-1203, 2011.
DOI : 10.1073/pnas.1108942108

V. Frey-wyssling and K. Mühlethaler, Die elementarfibrillen der cellulose, Die Makromolekulare Chemie, vol.62, issue.1, pp.25-30, 1963.
DOI : 10.1002/macp.1963.020620103

H. Fukuzumi, T. Saito, and T. Iwata, Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.10, issue.1, pp.162-165, 2009.
DOI : 10.1021/bm801065u

F. Gama and M. Mota, Enzymatic Hydrolysis of Cellulose (I): Relationship between Kinetics and Physico-Chemical Parameters, Biocatalysis and Biotransformation, vol.34, issue.3, pp.221-236, 1997.
DOI : 10.3109/10242429709103511

P. Gatenholm and D. Klemm, Bacterial Nanocellulose as a Renewable Material for Biomedical Applications, MRS Bulletin, vol.76, issue.03, pp.208-213, 2010.
DOI : 10.1016/j.biomaterials.2005.07.035

B. Ghorani, S. Russell, and P. Goswami, Controlled Morphology and Mechanical Characterisation of Electrospun Cellulose Acetate Fibre Webs, International Journal of Polymer Science, vol.19, issue.3, pp.256161-256171, 2013.
DOI : 10.1002/aic.690480105

H. Hamada, K. Tahara, and A. Uchida, The effects of nano-fibrillated cellulose as a coating agent for screen printing, 12th TAPPI Advanced Coating Fundamentals Symposium, 2012.

M. Hassan, E. Hassan, and K. Oksman, Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites, Journal of Materials Science, vol.62, issue.2, pp.1732-1740, 2011.
DOI : 10.1007/s10853-010-4992-4

T. Heinze and A. Koschella, Carboxymethyl Ethers of Cellulose and Starch - A Review, Macromolecular Symposia, vol.223, issue.1, pp.13-40, 2005.
DOI : 10.1002/masy.200550502

M. Henriksson and L. Berglund, Structure and properties of cellulose nanocomposite films containing melamine formaldehyde, Journal of Applied Polymer Science, vol.35, issue.4, pp.2817-2824, 2007.
DOI : 10.1002/app.26946

M. Henriksson, G. Henriksson, L. Berglund, and T. Lindström, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, European Polymer Journal, vol.43, issue.8, pp.3434-3441, 2007.
DOI : 10.1016/j.eurpolymj.2007.05.038

F. Herrick, R. Casebier, J. Hamilton, and K. Sandberg, Microfibrillated Cellulose: Morphology, and Accessibility, Proceedings of the Ninth Cellulose Conference. Applied Polymer Symposia 37. N.Y.: Wiley, pp.797-813, 1983.

T. Ho, K. Abe, T. Zimmermann, and H. Yano, Nanofibrillation of pulp fibers by twin-screw extrusion, Cellulose, vol.79, issue.1, pp.421-433, 2015.
DOI : 10.1007/s10570-014-0518-6

T. Ho, T. Zimmermann, R. Hauert, and W. Caseri, Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes, Cellulose, vol.79, issue.4, pp.1391-1406, 2011.
DOI : 10.1007/s10570-011-9591-2

A. Isogai and Y. Kato, Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation, Cellulose, vol.5, issue.3, pp.153-164, 1998.
DOI : 10.1023/A:1009208603673

A. Isogai, Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials, Journal of Wood Science, vol.14, issue.6, pp.449-459, 2013.
DOI : 10.1007/s10086-013-1365-z

J. Park, B. Han, and I. Lee, Preparation of electrospun porous ethyl cellulose fiber by THF/DMAc binary solvent system, J Ind Eng Chem, vol.13, pp.1002-1008, 2007.

S. Park, J. Baker, and M. Himmel, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnology for Biofuels, vol.3, issue.1, 2010.
DOI : 10.1186/1754-6834-3-10

B. Puangsin, S. Fujisawa, R. Kuramae, T. Saito, and A. Isogai, TEMPO-Mediated Oxidation of Hemp Bast Holocellulose to Prepare Cellulose Nanofibrils Dispersed in Water, Journal of Polymers and the Environment, vol.17, issue.2, pp.555-563, 2013.
DOI : 10.1007/s10924-012-0548-9

B. Rånby, Aqueous Colloidal Solutions of Cellulose Micelles., Acta Chemica Scandinavica, vol.3, 1949.
DOI : 10.3891/acta.chem.scand.03-0649

L. Rosgaard, S. Pedersen, J. Langston, D. Akerhielm, J. Cherry et al., Evaluation of Minimal Trichoderma reesei Cellulase Mixtures on Differently Pretreated Barley Straw Substrates, Biotechnology Progress, vol.23, issue.6, pp.1270-1276, 2007.
DOI : 10.1021/bp070329p

T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi et al., Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions, Biomacromolecules, vol.10, issue.7, pp.1992-1996, 2009.
DOI : 10.1021/bm900414t

URL : https://hal.archives-ouvertes.fr/hal-00439999

T. Saito, Y. Nishiyama, J. Putaux, M. Vignon, and A. Isogai, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, issue.6, pp.1687-1691, 2006.
DOI : 10.1021/bm060154s

URL : https://hal.archives-ouvertes.fr/hal-00305809

T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose, Biomacromolecules, vol.8, issue.8, pp.2485-2491, 2007.
DOI : 10.1021/bm0703970

URL : https://hal.archives-ouvertes.fr/hal-00305562

T. Saito, T. Uematsu, S. Kimura, T. Enomae, and A. Isogai, Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials, Soft Matter, vol.1, issue.19, 2011.
DOI : 10.1016/j.compscitech.2011.07.003

V. Varshney and S. Naithani, Chemical Functionalization of Cellulose Derived from Nonconventional Sources, Cellulose Fibers: Bio-and Nano-Polymer Composites, pp.43-60, 2011.
DOI : 10.1007/978-3-642-17370-7_2

B. Wang, M. Sain, and K. Oksman, Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale, Applied Composite Materials, vol.49, issue.15, pp.89-103, 2007.
DOI : 10.1007/s10443-006-9032-9

Q. Wang, J. Zhu, R. Gleisner, T. Kuster, U. Baxa et al., Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation, Cellulose, vol.6, issue.9, pp.1631-1643, 2012.
DOI : 10.1007/s10570-012-9745-x

L. Wågberg, G. Decher, and M. Norgren, The Build-Up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes, Langmuir, vol.24, issue.3, pp.784-795, 2008.
DOI : 10.1021/la702481v

J. Wertz, O. Bédué, and J. Mercier, Cellulose Science and Technology, p.21, 2010.

A. Wiedenhoeft and R. Miller, Structure and function of wood Handbook of wood chemistry and wood composites, In Rowell RM, pp.9-33, 2005.

S. Zhou and L. Ingram, Synergistic Hydrolysis of Carboxymethyl Cellulose and Acid-Swollen Cellulose by Two Endoglucanases (CelZ and CelY) from Erwinia chrysanthemi, Journal of Bacteriology, vol.182, issue.20, pp.5676-5682, 2000.
DOI : 10.1128/JB.182.20.5676-5682.2000

J. Zhu, R. Sabo, and X. Luo, Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers, Green Chemistry, vol.9, issue.5, pp.1339-1344, 2011.
DOI : 10.1039/c1gc15103g

T. Zimmermann, E. Pöhler, and T. Geiger, Cellulose Fibrils for Polymer Reinforcement, Advanced Engineering Materials, vol.6, issue.9, pp.754-761, 2004.
DOI : 10.1002/adem.200400097

G. Agoda-tandjawa, S. Durand, S. Berot, C. Blassel, C. Gaillard et al., Rheological characterization of microfibrillated cellulose suspensions after freezing, Carbohydrate Polymers, vol.80, issue.3, 2010.
DOI : 10.1016/j.carbpol.2009.11.045

C. Baravian, A. Lalante, and A. Parker, Vane rheometry with a large, finite gap, Appl Rheol, vol.12, pp.81-8712, 2002.

H. Barnes, A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure, Journal of Non-Newtonian Fluid Mechanics, vol.56, issue.3, pp.221-251, 1995.
DOI : 10.1016/0377-0257(94)01282-M

G. Beaucage, Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering, Journal of Applied Crystallography, vol.28, issue.6, pp.717-728, 1995.
DOI : 10.1107/S0021889895005292

G. Beaucage, Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension, Journal of Applied Crystallography, vol.29, issue.2, pp.134-146, 1996.
DOI : 10.1107/S0021889895011605

G. Beaucage, Combined Small-Angle Scattering for Characterization of Hierarchically Structured Polymer Systems over Nano-to-Micron Meter, 2012.
DOI : 10.1016/B978-0-444-53349-4.00032-7

J. Beaumont, N. Louvet, T. Divoux, M. Fardin, H. Bodiguel et al., Turbulent flows in highly elastic wormlike micelles, Soft Matter, vol.17, issue.3, pp.735-745, 2013.
DOI : 10.1039/C2SM26760H

K. Benhamou, A. Dufresne, A. Magnin, G. Mortha, and H. Kaddami, Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time, Carbohydrate Polymers, vol.99, pp.74-83, 2014.
DOI : 10.1016/j.carbpol.2013.08.032

I. Besbes, A. Magnin, and S. Boufi, Rheological behavior of nanofibrillated cellulose/acrylic polymer nanocomposites: Effect of melt extrusion, Polymer Composites, vol.36, issue.12, pp.2070-2075, 2011.
DOI : 10.1002/pc.21232

C. Bonini, L. Heux, J. Cavaillé, P. Lindner, C. Dewhurst et al., Rodlike Cellulose Whiskers Coated with Surfactant: A Small-Angle Neutron Scattering Characterization, Langmuir, vol.18, issue.8, pp.3311-3314, 2002.
DOI : 10.1021/la015511t

URL : https://hal.archives-ouvertes.fr/hal-00307337

O. Glatter and O. Kratky, Small-angle X-ray Scattering, 1982.

F. Grüneberger, T. Künniger, T. Zimmermann, and M. Arnold, Rheology of nanofibrillated cellulose/acrylate systems for coating applications, Cellulose, vol.79, issue.4, pp.1313-1326, 2014.
DOI : 10.1007/s10570-014-0248-9

F. Herrick, R. Casebier, J. Hamilton, and K. Sandberg, Microfibrillated Cellulose: Morphology, and Accessibility, Proceedings of the Ninth Cellulose Conference, pp.797-813, 1983.

J. Ilavsky and P. Jemian, : tool suite for modeling and analysis of small-angle scattering, Journal of Applied Crystallography, vol.42, issue.2, pp.347-353, 2009.
DOI : 10.1107/S0021889809002222

M. Iotti, Ø. Gregersen, S. Moe, and M. Lenes, Rheological Studies of Microfibrillar Cellulose Water Dispersions, Journal of Polymers and the Environment, vol.36, issue.4, pp.137-145, 2011.
DOI : 10.1007/s10924-010-0248-2

D. Ishii, T. Saito, and A. Isogai, Viscoelastic Evaluation of Average Length of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.12, issue.3, pp.548-550, 2011.
DOI : 10.1021/bm1013876

A. Karppinen, T. Saarinen, J. Salmela, A. Laukkanen, M. Nuopponen et al., Flocculation of microfibrillated cellulose in shear flow, Cellulose, vol.14, issue.148, pp.1807-1819, 2012.
DOI : 10.1007/s10570-012-9766-5

D. Klemm, F. Kramer, and S. Moritz, Nanocelluloses: A New Family of Nature-Based Materials, Angewandte Chemie International Edition, vol.21, issue.543, pp.5438-5466, 2011.
DOI : 10.1002/anie.201001273

E. Lasseuguette, D. Roux, and Y. Nishiyama, Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp, Cellulose, vol.6, issue.9, pp.425-433, 2008.
DOI : 10.1007/s10570-007-9184-2

URL : https://hal.archives-ouvertes.fr/hal-00303849

K. Leppänen, K. Pirkkalainen, P. Penttilä, J. Sievänen, N. Kotelnikova et al., Smallangle x-ray scattering study on the structure of microcrystalline and nanofibrillated cellulose, J Phys: Conf Ser, vol.247247, issue.1, pp.12030-12040, 2010.

M. Lowys, J. Desbrières, and M. Rinaudo, Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives, Food Hydrocolloids, vol.15, issue.1, pp.25-32, 2001.
DOI : 10.1016/S0268-005X(00)00046-1

URL : https://hal.archives-ouvertes.fr/hal-00307705

A. Malkin, A. Malkin, and A. Isayev, Rheology: Concepts, Methods & Applications, 2006.

F. Martoïa, C. Perge, P. Dumont, L. Orgéas, M. Fardin et al., Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear, Soft Matter, vol.47, issue.24, pp.4742-4755, 2015.
DOI : 10.1039/C5SM00530B

M. Mohtaschemi, K. Dimic-misic, A. Puisto, M. Korhonen, T. Maloney et al., Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer, Cellulose, vol.18, issue.5, pp.1305-1312, 2014.
DOI : 10.1007/s10570-014-0235-1

A. Naderi, T. Lindström, and J. Sundström, Carboxymethylated nanofibrillated cellulose: rheological studies, Cellulose, vol.31, issue.8, pp.1561-1571, 2014.
DOI : 10.1007/s10570-014-0192-8

P. Olmsted, Perspectives on shear banding in complex fluids, Rheologica Acta, vol.53, issue.3, pp.283-300, 2008.
DOI : 10.1007/s00397-008-0260-9

M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola et al., Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Biomacromolecules, vol.8, issue.6, pp.1934-1941, 2007.
DOI : 10.1021/bm061215p

N. Pahimanolis, U. Hippi, L. Johansson, T. Saarinen, N. Houbenov et al., Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media, Cellulose, vol.31, issue.2, pp.1201-1212, 2011.
DOI : 10.1007/s10570-011-9573-4

P. Penttilä, A. Várnai, M. Fernández, I. Kontro, V. Liljeström et al., Small-angle scattering study of structural changes in the microfibril network of nanocellulose during enzymatic hydrolysis, Cellulose, vol.99, issue.3, pp.1031-1040, 2013.
DOI : 10.1007/s10570-013-9899-1

A. Philippe, C. Baravian, J. M. Meneau, F. Michot, and L. , Taylor-Couette Instability in Anisotropic Clay Suspensions Measured Using Small-Angle X-ray Scattering, Physical Review Letters, vol.108, issue.25, 2012.
DOI : 10.1103/PhysRevLett.108.254501

F. Pignon, A. Magnin, and J. Piau, Thixotropic colloidal suspensions and flow curves with minimum: Identification of flow regimes and rheometric consequences, Journal of Rheology, vol.40, issue.4, pp.573-587, 1996.
DOI : 10.1122/1.550759

A. Puisto, X. Illa, M. Mohtaschemi, and M. Alava, Modeling the rheology of nanocellulose suspensions, Nordic Pulp and Paper Research Journal, vol.27, issue.02, pp.277-281, 2012.
DOI : 10.3183/NPPRJ-2012-27-02-p277-281

E. Saarikoski, T. Saarinen, J. Salmela, and J. Seppälä, Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour, Cellulose, vol.17, issue.148, pp.647-659, 2012.
DOI : 10.1007/s10570-012-9661-0

T. Saarinen, M. Lille, and J. Seppälä, Technical Aspects on Rheological Characterization of Microfibrillar Cellulose Water Suspensions, Annu Trans Nord Rheol Soc, vol.17, pp.121-130, 2009.

T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose, Biomacromolecules, vol.8, issue.8, pp.2485-2491, 2007.
DOI : 10.1021/bm0703970

URL : https://hal.archives-ouvertes.fr/hal-00305562

R. Shogren, S. Peterson, K. Evans, and J. Kenar, Preparation and characterization of cellulose gels from corn cobs, Carbohydrate Polymers, vol.86, issue.3, pp.1351-1357, 2011.
DOI : 10.1016/j.carbpol.2011.06.035

Y. Su, C. Burger, B. Hsiao, and B. Chu, Characterization of TEMPO-oxidized cellulose nanofibers in aqueous suspension by small-angle X-ray scattering, Journal of Applied Crystallography, vol.20, issue.2, pp.788-798, 2014.
DOI : 10.1107/S1600576714005020/fs5073sup1.zip

P. Terech, L. Chazeau, and J. Cavaille, A Small-Angle Scattering Study of Cellulose Whiskers in Aqueous Suspensions, Macromolecules, vol.32, issue.6, pp.1872-1875, 1999.
DOI : 10.1021/ma9810621

URL : https://hal.archives-ouvertes.fr/hal-00309811

A. Turbak, F. Snyder, and K. Sandberg, Microfibrillated Cellulose, a New Cellulose Product: Properties, Uses, and Commercial Potential, Sarko A (ed) Proceedings of the Ninth Cellulose Conference, pp.815-827, 1983.

R. Alemdar, A. Sain, and M. , Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties, Composites Science and Technology, vol.68, issue.2, pp.557-565, 2008.
DOI : 10.1016/j.compscitech.2007.05.044

S. Azizi, F. Alloin, M. Paillet, and A. Dufresne, Tangling Effect in Fibrillated Cellulose Reinforced Nanocomposites, Macromolecules, vol.37, pp.4313-4316, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00417936

G. Beamon and D. Briggs, High resolution XPS of organic polymers. The Scienta ESCA300 Database, 1992.

B. Elmabrouk, A. Wim, T. Dufresne, A. Boufi, and S. , -hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization, Journal of Applied Polymer Science, vol.6, issue.5, pp.2946-2955, 2009.
DOI : 10.1002/app.30886

URL : https://hal.archives-ouvertes.fr/hal-01162963

B. Mabrouk, A. Ferraria, A. M. Rego, A. M. Do, and S. Boufi, Highly transparent nancomposite films based on polybutylmethacrylate and functionalized cellulose nanocrystals, Cellulose, vol.11, issue.10, pp.1711-1723, 2013.
DOI : 10.1007/s10570-013-9916-4

B. Mabrouk, A. , R. Vilar, M. Magnin, A. Belgacem et al., Synthesis and characterization of cellulose whiskers/polymer nanocomposite dispersion by mini-emulsion polymerization, Journal of Colloid and Interface Science, vol.363, issue.1, pp.129-136, 2011.
DOI : 10.1016/j.jcis.2011.07.050

B. Mabrouk, A. Salon, M. Magnin, A. Belgacem, M. Boufi et al., Cellulose-based nanocomposites prepared via mini-emulsion polymerization: Understanding the chemistry of the nanocellulose/matrix interface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.448, 2014.
DOI : 10.1016/j.colsurfa.2014.01.077

A. Bhatnagar and M. Sain, Processing of Cellulose Nanofiber-reinforced Composites, Journal of Reinforced Plastics and Composites, vol.24, issue.12, pp.1259-1268, 2005.
DOI : 10.1177/0731684405049864

C. Boissard, P. Bourban, and C. Plummer, Cellular Biocomposites from Polylactide and Microfibrillated Cellulose, Journal of Cellular Plastics, vol.48, pp.445-458, 2012.
DOI : 10.1177/0021955X12448190

D. Bruce, R. Hobson, J. Farrent, and D. Hepworth, High-performance composites from low-cost plant primary cell walls, Composites Part A: Applied Science and Manufacturing, vol.36, issue.11, pp.1486-1493, 2005.
DOI : 10.1016/j.compositesa.2005.03.008

S. Bunker, C. Staller, N. Willenbacher, and R. Wool, Miniemulsion polymerization of acrylated methyl oleate for pressure sensitive adhesives, International Journal of Adhesion and Adhesives, vol.23, issue.1, pp.29-38, 2003.
DOI : 10.1016/S0143-7496(02)00079-9

A. Chaker, P. Mutje, F. Vilaseca, and S. Boufi, Reinforcing potential of nanofibrillated cellulose from nonwoody plants, Polymer Composites, vol.89, issue.12, 1999.
DOI : 10.1002/pc.22607

A. Chakraborty, M. Sain, and M. Kortschot, Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing, Holzforschung, vol.59, issue.1, pp.102-107, 2005.
DOI : 10.1515/HF.2005.016

A. Chakraborty, M. Sain, M. Kortschot, and S. Cutler, Dispersion of Wood Microfibers in a Matrix of Thermoplastic Starch and Starch?Polylactic Acid Blend, Journal of Biobased Materials and Bioenergy, vol.1, pp.71-77, 2007.

F. Dalmas, J. Cavaillé, C. Gauthier, L. Chazeau, and R. Dendievel, Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions, Composites Science and Technology, vol.67, issue.5, pp.829-839, 2007.
DOI : 10.1016/j.compscitech.2006.01.030

URL : https://hal.archives-ouvertes.fr/hal-00434177

A. Dufresne, Cellulose-Based Composites and Nanocomposites, Monomers, Polymers and Composites from Renewable Resources, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00511643

A. Dufresne, D. Dupeyre, and M. Vignon, Cellulose microfibrils from potato tuber cells: Processing and characterization of starch-cellulose microfibril composites, Journal of Applied Polymer Science, vol.70, issue.14, pp.2080-2092, 2000.
DOI : 10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO;2-U

URL : https://hal.archives-ouvertes.fr/hal-00309656

A. Dufresne and M. Vignon, Improvement of Starch Film Performances Using Cellulose Microfibrils, Macromolecules, vol.31, issue.8, pp.2693-2696, 1998.
DOI : 10.1021/ma971532b

P. Fardim, J. Gustafsson, V. Schoultz, S. Peltonen, J. Holmbom et al., Extractives on fiber surfaces investigated by XPS, ToF-SIMS and AFM, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.255, issue.1-3, pp.91-103, 2005.
DOI : 10.1016/j.colsurfa.2004.12.027

V. Favier, G. Canova, J. Cavaillé, H. Chanzy, A. Dufresne et al., Nanocomposite materials from latex and cellulose whiskers, Polymers for Advanced Technologies, vol.6, issue.5, pp.351-355, 1995.
DOI : 10.1002/pat.1995.220060514

URL : https://hal.archives-ouvertes.fr/hal-00310739

S. Fernandes, C. Freire, and A. Silvestre, Transparent chitosan films reinforced with a high content of nanofibrillated cellulose, Carbohydrate Polymers, vol.81, issue.2, pp.394-401, 2010.
DOI : 10.1016/j.carbpol.2010.02.037

A. Fernández, M. Sánchez, M. Ankerfors, and J. Lagaron, Effects of ionizing radiation in ethylene-vinyl alcohol copolymers and in composites containing microfibrillated cellulose, Journal of Applied Polymer Science, vol.68, issue.1, pp.126-134, 2008.
DOI : 10.1002/app.27709

M. Gällstedt and M. Hedenqvist, Packaging-related mechanical and barrier properties of pulp???fiber???chitosan sheets, Carbohydrate Polymers, vol.63, issue.1, pp.46-53, 2006.
DOI : 10.1016/j.carbpol.2005.07.024

J. George, M. Sreekala, and S. Thomas, A review on interface modification and characterization of natural fiber reinforced plastic composites, Polymer Engineering & Science, vol.59, issue.9, pp.1471-1485, 2001.
DOI : 10.1002/pen.10846

D. Haloi, S. Ata, and N. Singha, Acrylic AB and ABA Block Copolymers Based on Poly(2-ethylhexyl acrylate) (PEHA) and Poly(methyl methacrylate) (PMMA) via ATRP, ACS Applied Materials & Interfaces, vol.4, issue.8, 2012.
DOI : 10.1021/am300915j

W. Helbert, J. Cavaillé, and A. Dufresne, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior, Polymer Composites, vol.24, issue.4, pp.604-611, 1996.
DOI : 10.1002/pc.10650

URL : https://hal.archives-ouvertes.fr/hal-00310817

M. Henriksson and L. Berglund, Structure and properties of cellulose nanocomposite films containing melamine formaldehyde, Journal of Applied Polymer Science, vol.35, issue.4, pp.2814-2817, 2007.
DOI : 10.1002/app.26946

M. Hietala, A. Mathew, and K. Oksman, Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion, European Polymer Journal, vol.49, issue.4, pp.950-956, 2013.
DOI : 10.1016/j.eurpolymj.2012.10.016

J. Hosokawa, M. Nishiyama, K. Yoshihara, and T. Kubo, Biodegradable film derived from chitosan and homogenized cellulose, Industrial & Engineering Chemistry Research, vol.29, issue.5, pp.800-805, 1990.
DOI : 10.1021/ie00101a015

M. Hubbe, O. Rojas, L. Lucia, and M. Sain, Cellulosic Nanocomposites: A Review, BioResources, vol.3, pp.929-980, 2008.

S. Iwamoto, A. Nakagaito, H. Yano, and M. Nogi, Optically transparent composites reinforced with plant fiber-based nanofibers, Applied Physics A, vol.47, issue.6, pp.1109-1112, 2005.
DOI : 10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1

A. Iwatake, M. Nogi, and H. Yano, Cellulose nanofiber-reinforced polylactic acid, Composites Science and Technology, vol.68, issue.9, pp.2103-2106, 2008.
DOI : 10.1016/j.compscitech.2008.03.006

L. Johansson, T. Tammelin, J. Campbell, H. Setälä, and M. Österberg, Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose, Soft Matter, vol.9, issue.145, 2011.
DOI : 10.1039/c1sm06073b

S. Kalia, S. Boufi, A. Celli, and S. Kango, Nanofibrillated cellulose: surface modification and potential applications, Colloid and Polymer Science, vol.20, issue.1, pp.5-31, 2014.
DOI : 10.1007/s00396-013-3112-9

S. Kalia, B. Kaith, and I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review, Polymer Engineering & Science, vol.25, issue.1053, 1193, pp.1253-1272, 2009.
DOI : 10.1002/pen.21328

M. Karra-châabouni, I. Bouaziz, S. Boufi, . Botelho, A. Rego et al., Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: Activity and stability studies, Colloids and Surfaces B: Biointerfaces, vol.66, issue.2, pp.168-177, 2008.
DOI : 10.1016/j.colsurfb.2008.06.010

A. Kavousian, F. Ziaee, M. Nekoomanesh, M. Leamen, and A. Penlidis, Determination of monomer reactivity ratios in styrene/2-ethylhexylacrylate copolymer, Journal of Applied Polymer Science, vol.34, issue.5, pp.3368-3370, 2004.
DOI : 10.1002/app.20338

K. Larsson, L. Berglund, M. Ankerfors, and T. Lindström, Polylactide latex/nanofibrillated cellulose bionanocomposites of high nanofibrillated cellulose content and nanopaper network structure prepared by a papermaking route, Journal of Applied Polymer Science, vol.66, issue.3, pp.2460-2466, 2012.
DOI : 10.1002/app.36413

J. Leitner, B. Hinterstoisser, and M. Wastyn, Sugar beet cellulose nanofibril-reinforced composites, Cellulose, vol.6, issue.5, pp.419-425, 2007.
DOI : 10.1007/s10570-007-9131-2

K. Lee, T. Tammelin, and K. Schulfter, High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose, ACS Applied Materials & Interfaces, vol.4, issue.8, pp.4078-4086, 2012.
DOI : 10.1021/am300852a

H. Lönnberg, L. Fogelström, and L. Berglund, Surface grafting of microfibrillated cellulose with poly(??-caprolactone) ??? Synthesis and characterization, European Polymer Journal, vol.44, issue.9, pp.2991-2997, 2008.
DOI : 10.1016/j.eurpolymj.2008.06.023

A. López-rubio, J. Lagaron, and M. Ankerfors, Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose, Carbohydrate Polymers, vol.68, issue.4, pp.718-727, 2007.
DOI : 10.1016/j.carbpol.2006.08.008

J. Lu, T. Wang, and L. Drzal, Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials, Composites Part A: Applied Science and Manufacturing, vol.39, issue.5, pp.738-746, 2008.
DOI : 10.1016/j.compositesa.2008.02.003

M. Malainine, M. Mahrouz, and A. Dufresne, Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell, Composites Science and Technology, vol.65, issue.10, pp.1520-1526, 2005.
DOI : 10.1016/j.compscitech.2005.01.003

URL : https://hal.archives-ouvertes.fr/hal-00196904

R. Masoodi, R. El-hajjar, K. Pillai, and R. Sabo, Mechanical characterization of cellulose nanofiber and bio-based epoxy composite, Materials & Design (1980-2015), vol.36, pp.570-576, 2012.
DOI : 10.1016/j.matdes.2011.11.042

A. Mathew, A. Chakraborty, K. Oksman, and M. Sain, The Structure and Mechanical Properties of Cellulose Nanocomposites Prepared by Twin Screw Extrusion, Cellulose nanocomposites: processing, characterization, and properties, 2006.
DOI : 10.1021/bk-2006-0938.ch009

C. Miao and W. Hamad, Cellulose reinforced polymer composites and nanocomposites: a critical review, Cellulose, vol.30, issue.2, pp.2221-2262, 2013.
DOI : 10.1007/s10570-013-0007-3

K. Missoum, J. Bras, and M. Belgacem, Water Redispersible Dried Nanofibrillated Cellulose by Adding Sodium Chloride, Biomacromolecules, vol.13, issue.12, pp.4118-4125, 2012.
DOI : 10.1021/bm301378n

V. Mittal, . Fj, Y. Luo, W. Smulders, J. Russum et al., Miniemulsion Polymerization: An Overview Miniemulsion Polymerization Technology Miniemulsion Polymerization Polymer Particles, Adv Polym Sci, vol.175, pp.129-255, 1007.

Y. Shimazaki, Y. Miyazaki, Y. Takezawa, M. Nogi, K. Abe et al., Excellent Thermal Conductivity of Transparent Cellulose Nanofiber/Epoxy Resin Nanocomposites, Biomacromolecules, vol.8, issue.9, pp.2976-2978, 2007.
DOI : 10.1021/bm7004998

G. Siqueira, H. Abdillahi, J. Bras, and A. Dufresne, High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado), Cellulose, vol.22, issue.2, pp.289-298, 2009.
DOI : 10.1007/s10570-009-9384-z

G. Siqueira, J. Bras, and A. Dufresne, Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites, Biomacromolecules, vol.10, issue.2, pp.425-432, 2009.
DOI : 10.1021/bm801193d

G. Siqueira, J. Bras, and A. Dufresne, Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications, Polymers, vol.2, issue.4, pp.728-765, 2010.
DOI : 10.3390/polym2040728

I. Siró and D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, vol.14, issue.13, pp.459-494, 2010.
DOI : 10.1007/s10570-010-9405-y

Y. Srithep, L. Turng, R. Sabo, and C. Clemons, Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming, Cellulose, vol.51, issue.4, pp.1209-1223, 2012.
DOI : 10.1007/s10570-012-9726-0

Y. Srithep, T. Ellingham, J. Peng, R. Sabo, C. Clemons et al., Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites, Polymer Degradation and Stability, vol.98, issue.8, pp.1439-1449, 2013.
DOI : 10.1016/j.polymdegradstab.2013.05.006

L. Suryanegara, A. Nakagaito, and H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Composites Science and Technology, vol.69, issue.7-8, pp.1187-1192, 2009.
DOI : 10.1016/j.compscitech.2009.02.022

C. Zhang, T. Zhai, R. Sabo, C. Clemons, Y. Dan et al., Reinforcing Natural Rubber with Cellulose Nanofibrils Extracted from Bleached Eucalyptus Kraft Pulp, Journal of Biobased Materials and Bioenergy, vol.8, issue.3, pp.317-324, 2014.
DOI : 10.1166/jbmb.2014.1441

T. Zimmermann, E. Pöhler, and T. Geiger, Cellulose Fibrils for Polymer Reinforcement, Advanced Engineering Materials, vol.6, issue.9, pp.754-761, 2004.
DOI : 10.1002/adem.200400097

H. Awada, D. Montplaisir, and C. Daneault, GROWTH OF POLYELECTROLYTE ON LIGNOCELLULOSIC FIBRES: STUDY BY ZETA POTENTIAL, FTIR, AND XPS, BioResources, vol.7, issue.2, pp.2090-2104, 2012.
DOI : 10.15376/biores.7.2.2090-2104

G. Biliuta, L. Fras, M. Drobota, Z. Persin, T. Kreze et al., Comparison study of TEMPO and phthalimide-N-oxyl (PINO) radicals on oxidation efficiency toward cellulose, Carbohydrate Polymers, vol.91, issue.2, pp.502-507, 2013.
DOI : 10.1016/j.carbpol.2012.08.047

J. Biliuta, L. Fras, V. Harabagiu, and S. Coseri, Mild oxidation of cellulose fibers using dioxygen as ultimate oxydizing agent, Digest Journal of Nanomaterials and Biostructures, 2011.

S. Coseri, G. Biliuta, B. Simionescu, K. Stana-kleinschek, V. Ribitsch et al., Oxidized cellulose???Survey of the most recent achievements, Carbohydrate Polymers, vol.93, issue.1, pp.207-215, 2013.
DOI : 10.1016/j.carbpol.2012.03.086

S. Coseri, G. Nistor, L. Fras, S. Strnad, V. Harabagiu et al., -Hydroxyphthalimide, Biomacromolecules, vol.10, issue.8, pp.2294-2299, 2009.
DOI : 10.1021/bm9004854

URL : https://hal.archives-ouvertes.fr/hal-01024126

A. Leppänen, C. Xu, P. Eklund, J. Lucenius, M. Österberg et al., -acetyl galactoglucomannans-2,2,6,6-tetramethylpiperidin-1-oxyl-oxidation and carbodiimide-mediated amidation, Journal of Applied Polymer Science, vol.60, issue.5, pp.3122-3129, 2013.
DOI : 10.1002/app.39528

H. Sadeghifar, I. Filpponen, S. Clarke, D. Brougham, and D. Argyropoulos, Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface, Journal of Materials Science, vol.24, issue.22, pp.7344-7355, 2011.
DOI : 10.1007/s10853-011-5696-0

T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose, Biomacromolecules, vol.8, issue.8, pp.2485-2491, 2007.
DOI : 10.1021/bm0703970

URL : https://hal.archives-ouvertes.fr/hal-00305562