. J. Ch and . Bordé, La réforme du système d'unités, La lettre de l'AcadémieAcad´Académie des sciences, 2008.

J. Guéna, Fig. 12., IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.59, issue.3, pp.391-410, 2012.
DOI : 10.1109/TUFFC.2012.2208/mm12

P. Thomas and . Heavner, First accuracy evaluation of NIST-F2, p.174, 2014.

S. Weyers, Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2, Metrologia, vol.49, issue.1, p.82, 2012.
DOI : 10.1088/0026-1394/49/1/012

N. B. Phillips, J. A. Sherman, M. Schioppo, J. Lehman, A. Feldman et al., Atomic clock with 1x10-18 room-temperature blackbody Stark uncertainty, Phys. Rev. Lett, vol.113, p.260801, 2014.

I. Ushijima, Cryogenic optical lattice clocks, Nat Photon advance online publication, p.pp. ?, 2015.
DOI : 10.1038/nphoton.2015.5

J. Lodewyck, Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.59, issue.3, pp.411-415, 2012.
DOI : 10.1109/TUFFC.2012.2209

H. Katori, Engineering Stark Potentials for Precision Measurements: Optical Lattice Clock and Electrodynamic Surface Trap, AIP Conference Proceedings, pp.112-122, 2005.
DOI : 10.1063/1.1928846

E. J. Angstmann, V. A. Dzuba, and V. V. Flambaum, Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant, Physical Review A, vol.70, issue.1, 2004.
DOI : 10.1103/PhysRevA.70.014102

F. Riehle, Frequency Standards: Basics and Applications, 2005.
DOI : 10.1002/3527605991

J. V. Essen and L. Parry, An Atomic Standard of Frequency and Time Interval: A C??sium Resonator, Nature, vol.43, issue.4476, pp.280-282, 1955.
DOI : 10.1038/176280a0

J. Guéna, Contributing to TAI with a secondary representation of the SI second, Metrologia, vol.51, issue.1, p.108, 2014.
DOI : 10.1088/0026-1394/51/1/108

W. M. Itano, Quantum projection noise: Population fluctuations in two-level systems, Physical Review A, vol.47, issue.5, pp.47-3554, 1993.
DOI : 10.1103/PhysRevA.47.3554

G. Santarelli, Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard, Physical Review Letters, vol.82, issue.23, p.4619, 1999.
DOI : 10.1103/PhysRevLett.82.4619

P. D. Lett, Optical molasses, Journal of the Optical Society of America B, vol.6, issue.11, pp.2084-2107, 1989.
DOI : 10.1364/JOSAB.6.002084

R. H. Dicke, The Effect of Collisions upon the Doppler Width of Spectral Lines, Physical Review, vol.89, issue.2, pp.472-473, 1953.
DOI : 10.1103/PhysRev.89.472

W. M. Itano and D. J. Wineland, Laser cooling of ions stored in harmonic and Penning traps, Physical Review A, vol.25, issue.1, p.35, 1982.
DOI : 10.1103/PhysRevA.25.35

C. W. Chou, Frequency Comparison of Two High-Accuracy Al + Optical Clocks, Phys. Rev. Lett, vol.1047, p.70802, 2010.

R. G. Devoe, J. Hoffnagle, and R. G. Brewer, Role of laser damping in trapped ion crystals, Physical Review A, vol.39, issue.9, pp.4362-4365, 1989.
DOI : 10.1103/PhysRevA.39.4362

A. A. Madej, 88 Sr + 445-THz Single-Ion Reference at the 10 ?17 Level via Control and Cancellation of Systematic Uncertainties and Its Measurement against the SI Second, Phys. Rev

G. P. Barwood, Agreement between two 88 Sr + optical clocks to 4 parts in 10 17, Phys. Rev. A, vol.89, 2014.

N. Huntemann, Improved Limit on a Temporal Variation of m p /m e from Comparisons of Yb + and Cs Atomic Clocks, Phys. Rev. Lett, vol.113, 2014.

R. M. Godun, and Constraints on the Time Variation of Fundamental Constants, Physical Review Letters, vol.113, issue.21, p.210801, 2014.
DOI : 10.1103/PhysRevLett.113.210801

M. G. Raizen, Ionic crystals in a linear Paul trap, Physical Review A, vol.45, issue.9, pp.6493-6501, 1992.
DOI : 10.1103/PhysRevA.45.6493

S. Seidelin, Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing, Physical Review Letters, vol.96, issue.25
DOI : 10.1103/PhysRevLett.96.253003

K. Pyka, A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock, Applied Physics B, vol.107, issue.1-2, pp.231-241, 2014.
DOI : 10.1007/s00340-013-5580-5

J. Keller, Precise determination of micromotion for trappedion optical clocks, p.1505, 2015.

Y. Ovchinnikov, . Rudolf-grimm-matthias-weidemüllerweidem¨weidemüller-cal, . Dipole, . For, and . Atoms, OPTI, In: Advances in Atomic, Molecular and Optical Physics, vol.42, pp.95-170, 2000.

H. Katori, Ultrastable Optical Clock with Neutral Atoms in an Engineered Light Shift Trap, Physical Review Letters, vol.91, issue.17, 2003.
DOI : 10.1103/PhysRevLett.91.173005

J. Harold, P. Metcalf, and . Van-der-straten, Laser Cooling and Trapping, 1999.

M. Yasuda, Improved Absolute Frequency Measurement of the $^{171}$Yb Optical Lattice Clock towards a Candidate for the Redefinition of the Second, Applied Physics Express, vol.5, issue.10, 2012.
DOI : 10.1143/APEX.5.102401

B. J. Bloom, An optical lattice clock with accuracy and stability at the 10???18 level, Nature, vol.4, issue.7486, p.71, 2014.
DOI : 10.1007/s00340-012-4952-6

R. and L. Targat, Experimental realization of an optical second with strontium lattice clocks, Nat Commun, vol.4, p.2109, 2013.

S. Falke, A strontium lattice clock with 3x10-17 inaccuracy and its frequency, New Journal of Physics, vol.167, p.73023, 2014.

J. J. Mcferran, Neutral Atom Frequency Reference in the Deep Ultraviolet with a Fractional Uncertainty 5.7x10-15, Phys. Rev. Lett, vol.108, 2012.

J. Friebe, Remote frequency measurement of the 1S0-3P1 transition in laser-cooled 24 Mg, New Journal of Physics, vol.1312, p.125010, 2011.

R. David and . Lide, CRC Handbook of Chemistry and Physics, 2005.

D. M. Harber, Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice-Based Optical Atomic Clocks, Phys. Rev. A Phys. Rev. Lett, vol.668, issue.96, pp.83001-083001, 1103.

M. Michael and . Petersen, Laser-cooling of Neutral Mercury and Laserspectroscopy of the 1S0-3P0 optical clock transition, 2009.

M. C. Bigeon, Probabilit?? de transition de la raie 61S0 - 63 P0 du mercure, Journal de Physique, vol.28, issue.1, p.51, 1967.
DOI : 10.1051/jphys:0196700280105100

A. Kramida, Atomic Spectra Database (ver. 5.2), 2015.

H. Hachisu, Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks, Physical Review Letters, vol.100, issue.5, p.53001, 2008.
DOI : 10.1103/PhysRevLett.100.053001

G. Sergey, A. Porsev, and . Derevianko, Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks, Phys. Rev. A, vol.74, 2006.

A. Derevianko and H. Katori, : Physics of optical lattice clocks, Reviews of Modern Physics, vol.83, issue.2, pp.331-348, 2011.
DOI : 10.1103/RevModPhys.83.331

T. Middelmann, High Accuracy Correction of Blackbody Radiation Shift in an Optical Lattice Clock, Physical Review Letters, vol.109, issue.26, 2012.
DOI : 10.1103/PhysRevLett.109.263004

L. Yi, Optical Lattice Trapping of 199 Hg and Determination of the Magic Wavelength for the Ultraviolet 1 S 0 ? 3 P 0 Clock Transition, Phys. Rev. Lett, vol.1067, 2011.

H. Katori, Strategies for reducing the light shift in atomic clocks, Physical Review A, vol.91, issue.5, 2015.
DOI : 10.1103/PhysRevA.91.052503

R. W. Boyd, Nonlinear Optics, Third Edition. 3rd, 2008.

T. W. Hänsch and B. Couillaud, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity, Optics Communications, vol.35, issue.3, pp.35-441, 1980.
DOI : 10.1016/0030-4018(80)90069-3

J. Friebe, ??-BaB2O4 deep UV monolithic walk-off compensating tandem, Optics Communications, vol.261, issue.2, p.300, 2006.
DOI : 10.1016/j.optcom.2005.12.008

S. Mejri, Ultraviolet laser spectroscopy of neutral mercury in a one-dimensional optical lattice, Physical Review A, vol.84, issue.3, 2011.
DOI : 10.1103/PhysRevA.84.032507

S. Mejri, Towards an optical lattice clock based on mercury: Loading of a dipole trap, EFTF-2010 24th European Frequency and Time Forum, 2010.
DOI : 10.1109/EFTF.2010.6533642

J. J. Mcferran, Sub-Doppler cooling of fermionic Hg isotopes in a magneto-optical trap, Optics Letters, vol.35, issue.18, pp.3078-3080, 2010.
DOI : 10.1364/OL.35.003078

C. Monroe, Very cold trapped atoms in a vapor cell, Phys. Rev. Lett, vol.65, pp.13-1571, 1990.

R. W. Drever, Laser phase and frequency stabilization using an optical resonator, Applied Physics B Photophysics and Laser Chemistry, vol.17, issue.2, pp.97-105, 1983.
DOI : 10.1007/BF00702605

S. Mejri, Horloge 'a r'eseau optique de mercure : D'etermination de la longueur d'onde magique

S. Blatt, Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock, Physical Review A, vol.80, issue.5, 2009.
DOI : 10.1103/PhysRevA.80.052703

W. Demtroeder, Laser spectroscopy, Basic concepts and Instrumentation, 2003.

T. A. Savard, K. M. Hara, and J. E. Thomas, Laser-noiseinduced heating in far-off resonance optical traps, Phys. Rev. A, vol.562, pp.1095-1098, 1997.

D. A. Howe, D. B. Sullivan, D. W. Allan, and F. L. Walls, Characterization of Clocks and Oscillators, In: NIST Technical Note, p.1337, 1990.

D. J. Griffiths, Introduction to quantum mechanics, 2005.

J. J. Mcferran, Laser locking of the 199Hg 1S0-3P0 transition with 5.7 × 10 ?15 fractional frequency Instability, In: Opt. Lett, vol.3717, pp.3477-3479, 2012.

L. M. Lifshitz and L. D. Landau, Quantum Mechanics, Third Edition: Non-Relativistic Theory, 2004.

A. Quessada, The Dick effect for an optical frequency standard, Journal of Optics B: Quantum and Semiclassical Optics, vol.5, issue.2, pp.150-154, 2003.
DOI : 10.1088/1464-4266/5/2/373

J. Ye, A. Ludlow, and M. Boyd, Optical atomic clock, 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), 2015.
DOI : 10.1109/CPEM.2016.7540619

K. Yamanaka, Frequency Ratio of 199 Hg and 87 Sr Optical Lattice Clocks beyond the SI Limit, Phys. Rev. Lett, vol.114, 2015.