Chemical and structural stability of proton conducting perovskite ceramic for fuel cells and electrolyzers - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2015

Chemical and structural stability of proton conducting perovskite ceramic for fuel cells and electrolyzers

Stabilité chimique et structurale de pérovskites céramiques de conductrice protoniques pour piles à combustible et électrolyseurs

Résumé

The chemical and structural stability of well-densified ceramics potentially used as H2/air fuelcell/electrolyzer (and perhaps in CO2/Hydrocabons Converter) electrolyte or electrodes vs. CO2-free/saturated pressurized water has been studied. The pressurization maximizes the efficiency of theenergy conversion systems. Four types of pervoskite-related oxide ceramics were concerned:BaCe0.4Zr0.5Y0.1Zn0.04O3-d (BCZYZ), SrZr0.9Er0.1O3-d (SZE), Ln2NiO4+d (LNO, Ln = La, Pr, Nd), andLa0.6Sr0.4Co0.2Fe0.8O3-d (LSCF6428). Dense ceramic samples were exposed at 550°C to water vaporpressure in an autoclave for days to weeks. The protonation treatments were performed in twodifferent conditions: operating condition (£20 bar of CO2-free water pressure, 550°C) and acceleratedaging conditions (³40 bar of CO2-free/CO2-saturated water pressure, 550°C). The pristine and‘protonated’ samples were characterized using various analysis techniques: Optical Microscopy,Thermogravimetry, Thermal Expansion, (micro/macro) ATR FTIR, Raman micro-spectroscopy, X-rayand Neutron Scattering. The study reveals that under the operating condition (£20 bar), the stability ofLNO/LSCF6428 electrode materials and of SZE electrolyte appears good, while the BCZYZelectrolyte exhibit significant corrosion. The superior stability of LSFC6428 exposed in extreme CO2-water vapor atmosphere was demonstrated about 5 to 30 times better than LNO and SZE homologues.The surface secondary phases form at the grain boundary. The protonation modifies more or less thestructure symmetry, the unit-cell volume/parameter and the phase transition sequence in relation withthe modification of the oxygen vacancy distribution. The proton doping level for different samples isalso discussed.
La stabilité structurale et chimique de céramiques bien densifiées candidates pour leur utilisation comme électrolyte ou matériau d'électrode de piles à combustible, électrolyseur H2/air ou même de convertisseur CO2/Hydrocarbures a été étudiée vis-à-vis de l'eau sous pression (autoclave, eau pauvre ou saturée en CO2). La pressurisation maximise l'efficacité des dispositifs. Quatre familles de pérovskites ont été considérées: BaCe0.4Zr0.5Y0.1Zn0.04O3- (BCZYZ), SrZr0.9Er0.1O3- (SZE), Ln2NiO4+ (LNO, Ln = La, Pr, Nd), and La0.6Sr0.4Co0.2Fe0.8O3- (LSCF6428). Les céramiques denses sont traitées à 550°C en autoclave plusieurs jours à plusieurs semaines, soit dans des conditions de fonctionnement ( 20 bar, eau sans CO2, 550°C), soit en vieillissement accéléré ( 40 bar eau sans ou saturée de CO2, 550°C). Les céramiques ont été analysées avant et après 'protonation' par Microscopie Optique, Thermogravimétrie, Expansion Thermique, (micro/macro) ATR FTIR, Raman micro-Spectroscopie, diffraction des rayons X et des neutrons. En condition de fonctionnement ( 20 bar), la stabilité des matériaux d'électrodes LNO/LSCF6428 et de l'électrolyte SZE est bonne, alors que la céramique BCZYZ se corrode. La céramique LSFC6428 soumis à des conditions sévères (eau saturée en CO2, 40 bar) est 5 à 30 fois moins corrodée que les composés LNO and SZE. La corrosion s'initie en surface, aux joints de grains. La protonation modifie plus ou moins la symétrie, le volume et les paramètres de la maille unitaire ainsi que les transitions de phase en relation avec la modification de la distribution/organisation des lacunes d'oxygène. Le niveau de dopage en proton des différents matériaux est aussi discuté.
Fichier principal
Vignette du fichier
2015PA066270.pdf (19.47 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01242857 , version 1 (14-12-2015)

Identifiants

  • HAL Id : tel-01242857 , version 1

Citer

Settakorn Upasen. Chemical and structural stability of proton conducting perovskite ceramic for fuel cells and electrolyzers. Chemical Physics [physics.chem-ph]. Université Pierre et Marie Curie - Paris VI, 2015. English. ⟨NNT : 2015PA066270⟩. ⟨tel-01242857⟩
752 Consultations
211 Téléchargements

Partager

Gmail Facebook X LinkedIn More