N
N

N

HAL

open science

Scalable algorithms for cloud-based Semantic Web data
management

Stamatis Zampetakis

» To cite this version:

Stamatis Zampetakis. Scalable algorithms for cloud-based Semantic Web data management.
Databases [cs.DB]. Université Paris Sud - Paris XI, 2015. English. NNT: 2015PA112199 .

01241805

HAL Id: tel-01241805
https://theses.hal.science/tel-01241805
Submitted on 11 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

tel-

https://theses.hal.science/tel-01241805
https://hal.archives-ouvertes.fr

UNIVERSITE P

S g Crria

UNIVERSITE PARIS-SUD

ECOLE DOCTORALE INFORMATIQUE DE PARIS-SUD (ED 427)
INRIA Saclay & Laboratoire de Recherche en Informatique (LRI)

DISCIPLINE INFORMATIQUE

THESE DE DOCTORAT

Soutenue le 21 Septembre 2015 par

Stamatis ZAMPETAKIS

Scalable algorithms for cloud-based
Semantic Web data management

These dirigée par :

Toana Manolescu INRIA & Université Paris-Sud
Frangois Goasdoué Université de Rennes 1 & INRIA
Rapporteurs :

Bernd Amann Université Pierre & Marie Curie
Tamer Ozsu Université de Waterloo, Canada

Examinateurs :

Serge Abiteboul INRIA & ENS Cachan

Christine Froidevaux Université Paris-Sud

Patrick Valduriez INRIA & Université de Montpellier

Abstract

“Scalable algorithms for cloud-based
Semantic Web data management”

Stamatis Zampetakis

In order to build smart systems, where machines are able to reason exactly like hu-
mans, data with semantics is a major requirement. This need led to the advent of the
Semantic Web, proposing standard ways for representing and querying data with seman-
tics. RDF is the prevalent data model used to describe web resources, and SPARQL is
the query language that allows expressing queries over RDF data. Being able to store
and query data with semantics triggered the development of many RDF data management
systems.

The rapid evolution of the Semantic Web provoked the shift from centralized data
management systems to distributed ones. The first systems to appear relied on P2P and
client-server architectures, while recently the focus moved to cloud computing.

Cloud computing environments have strongly impacted research and development in
distributed software platforms. Cloud providers offer distributed, shared-nothing infras-
tructures, that may be used for data storage and processing. The main features of cloud
computing involve scalability, fault-tolerance, and elastic allocation of computing and
storage resources following the needs of the users.

This thesis investigates the design and implementation of scalable algorithms and sys-
tems for cloud-based Semantic Web data management. In particular, we study the per-
formance and cost of exploiting commercial cloud infrastructures to build Semantic Web
data repositories, and the optimization of SPARQL queries for massively parallel frame-
works.

First, we introduce the basic concepts around Semantic Web and the main components
of cloud-based systems. In addition, we provide an extended overview of existing RDF
data management systems in the centralized and distributed settings, emphasizing on the
critical concepts of storage, indexing, query optimization, and infrastructure.

Second, we present AMADA, an architecture for RDF data management using public
cloud infrastructures. We follow the Software as a Service (SaaS) model, where the com-
plete platform is running in the cloud and appropriate APIs are provided to the end-users
for storing and retrieving RDF data. We explore various storage and querying strategies
revealing pros and cons with respect to performance and also to monetary cost, which is
a important new dimension to consider in public cloud services.

Finally, we present CliqueSquare, a distributed RDF data management system built
on top of Hadoop, incorporating a novel optimization algorithm that is able to produce
massively parallel plans for SPARQL queries. We present a family of optimization algo-
rithms, relying on n-ary (star) equality joins to build flat plans, and compare their ability
to find the flattest possibles. Inspired by existing partitioning and indexing techniques we
present a generic storage strategy suitable for storing RDF data in HDFS (Hadoop’s Dis-
tributed File System). Our experimental results validate the efficiency and effectiveness

ii
of the optimization algorithm demonstrating also the overall performance of the system.

Keywords: Semantic Web, RDF, commercial cloud services, indexing strategies, dis-
tributed systems, distributed storage, query processing, query optimization, query paral-
lelization, MapReduce, Hadoop, HDFS, CliqueSquare, AMADA, RDF data management,
n-ary joins, flat plans.

il
Résumé

“Algorithmes passant a I’échelle pour la gestion de données du Web
sémantique sur les platformes cloud”

Stamatis Zampetakis

Afin de construire des systemes intelligents, ou les machines sont capables de raison-
ner exactement comme les humains, les données avec sémantique sont une exigence ma-
jeure. Ce besoin a conduit a I’apparition du Web sémantique, qui propose des technologies
standards pour représenter et interroger les données avec sémantique. RDF est le modele
répandu destiné a décrire de facon formelle les ressources Web, et SPARQL est le langage
de requéte qui permet de rechercher, d’ajouter, de modifier ou de supprimer des données
RDF. Etre capable de stocker et de rechercher des données avec sémantique a engendré le
développement des nombreux systemes de gestion des données RDF.

L’ évolution rapide du Web sémantique a provoqué le passage de systeémes de gestion
des données centralisées a ceux distribués. Les premiers systemes €taient fondés sur les
architectures pair-a-pair et client-serveur, alors que récemment 1’attention se porte sur le
cloud computing.

Les environnements de cloud computing ont fortement impacté la recherche et déve-
loppement dans les systemes distribués. Les fournisseurs de cloud offrent des infrastruc-
tures distribuées autonomes pouvant étre utilisées pour le stockage et le traitement des
données. Les principales caractéristiques du cloud computing impliquent 1’évolutivité, la
tolérance aux pannes et I’allocation élastique des ressources informatiques et de stockage
en fonction des besoins des utilisateurs.

Cette these étudie la conception et la mise en ceuvre d’algorithmes et de systemes pas-
sant a I’échelle pour la gestion des données du Web sémantique sur des platformes cloud.
Plus particulierement, nous étudions la performance et le cofit d’exploitation des services
de cloud computing pour construire des entrepdts de données du Web sémantique, ainsi
que I’optimisation de requétes SPARQL pour les cadres massivement paralleles.

Tout d’abord, nous introduisons les concepts de base concernant le Web sémantique
et les principaux composants des systemes fondés sur le cloud. En outre, nous présentons
un apercgu des systemes de gestion des données RDF (centralisés et distribués), en mettant
I’accent sur les concepts critiques de stockage, d’indexation, d’optimisation des requétes
et d’infrastructure.

Ensuite, nous présentons AMADA, une architecture de gestion de données RDF util-
isant les infrastructures de cloud public. Nous adoptons le modele de logiciel en tant
que service (software as a service - SaaS), ou la plateforme réside dans le cloud et des
APIs appropriées sont mises a disposition des utilisateurs, afin qu’ils soient capables de
stocker et de récupérer des données RDF. Nous explorons diverses stratégies de stockage
et d’interrogation, et nous étudions leurs avantages et inconvénients au regard de la per-
formance et du colit monétaire, qui est une nouvelle dimension importante a considérer
dans les services de cloud public.

Enfin, nous présentons CliqueSquare, un systeme distribué de gestion des données

v

RDF basé sur Hadoop. CliqueSquare integre un nouvel algorithme d’optimisation qui est
capable de produire des plans massivement paralleles pour des requétes SPARQL. Nous
présentons une famille d’algorithmes d’optimisation, s’appuyant sur les équijointures n-
aires pour générer des plans plats, et nous comparons leur capacité a trouver les plans
les plus plats possibles. Inspirés par des techniques de partitionnement et d’indexation
existantes, nous présentons une stratégie de stockage générique appropriée au stockage de
données RDF dans HDFS (Hadoop Distributed File System). Nos résultats expérimentaux
valident I’effectivité et I’efficacité de 1’algorithme d’optimisation démontrant également
la performance globale du systeme.

Mot-clés: Web sémantique, RDF, plateformes commerciales de cloud computing, straté-
gies d’indexation, systemes distribués, stockage distribué, traitement des requétes, opti-
misation des requétes, parallélisation de 1’exécution de requétes, MapReduce, Hadoop,
HDFS, CliqueSquare, AMADA, gestion des données RDF, jointures n-aires, plans plats.

Acknowledgments

In this section, I express my sincere gratitude to all people who have helped in the
completion of this thesis.

First and foremost, I would like to thank my advisors Ioana Manolescu and Frangois
Goasdoué. Despite my passion for exploring new ideas and solving interesting problems,
I had never thought of starting a PhD before meeting them. It took me only a few weeks as
a master intern to realize that I wanted to be part of this team and part of the long journey
that is associated with conducting a PhD. From the beginning of my internship until the
completion of this thesis they were abundantly helpful and offered invaluable assistance,
support and guidance. Despite how hard a PhD can be, with loana and Francois, I would
even consider starting a second one! Every meeting was a pleasant experience when [
had the opportunity to learn more and more things each time. They are the role models to
whom I will look up, if some day I supervise my own students.

I am grateful to Bernd Amann and Tamer Ozsu for thoroughly reading my thesis and
for their valuable feedback. Further, I would like to thank Serge Abiteboul, Christine
Froidevaux, and Patrick Valduriez for being part of my examining committee; I am very
honored.

Furthermore, I owe a lot to my colleagues Julien Leblay, Konstantinos Karanasos,
Yannis Katsis, Zoi Kaoudi, Jorge Quiané-Ruiz, Jesis Camacho Rodriguez, Francesca Bu-
giotti, and Benjamin Djahandideh, with whom I was involved in very interesting projects.
They are all contributors to this thesis in various ways even with writing code and doing
French translations like Benjamin!

During my time within OAK, I was fortunate enough to meet great people and share
many experiences with them. I would like to thank Damian, Asterios, Jesus, André, Juan,
Sejla, Raphael, Soudip, Paul, Benoit, Andrés, Alexandra, Tushar, Guillaume, Fede, and
Gianluca. Apart from colleagues you were great friends and you helped me enjoy every
day that I was coming to the office.

Being also a member of LaHDAK, I had the opportunity to collaborate and socialize
with many people, whom I thank for being a part of my everyday life. In particular, I am
grateful to Chantal Reynaud for trusting me to be a teaching assistant at her course despite
my basic knowledge in French. Moreover, I would like to thank Nicole Bidoit, not only
for taking care of Katerina, but also for teaching me a lot of things (through transitive
relations).

Further, I wish to offer my regards and blessings to all of my best friends for helping
me get through the difficult times, and for all the emotional support, camaraderie, en-
tertainment, and caring they provided during this thesis. Boulouki, Danai, Dimitri, Fab,
Foivo, loana, Mairidio, Mathiou, Mitsara, Nelly, Xaze (Marie) thank you for everything.

Especially, I would like to thank Katerina for always being next to me since the very
beginning (and before the beginning) of this thesis. At the hard times, she was the first
to listen to my complaints, and disappointments, being also the person who could get me
back on track. I am glad that she was there with me to celebrate every little or big success
during this PhD. Apart from the emotional support our scientific discussions and her pro-
ductive comments are incorporated in various places inside my thesis, presentations, and

vi

papers.

Last, but not least, I wish to thank my brother, Ilias, and my parents, Giorgos and
Antonia. They raised me, supported me, taught me, and loved me. To them I dedicate this
thesis.

Contents

[Abstract
L__Introduction

[2.1.2 Query language|
(2.2 Dastributed storage and MapReduce|. o L L L.

[2.2.1 Dastributed file systems| L.
[2.2.2 Distributed key-value stores|.
22.3 MapReduce|
[2.2.4 MapReduce on relational data|
[2.2.5 Higher level languages for MapReduce|.
2.3 RDF datamanagement|.

[2.3.2 RDFstorage & indexing|.
[2.3.3 RDF query optimization|
2.3.4 RDFqueryprocessing|
[2.3.5 RDFpartittoning|
[2.3.6 Summary|.

3 AMADA

[3.2.1 Simple Storage Servicel o oL

B22 DynamoDB|
[3.2.3 Elastic Compute Cloud|

[3.2.4 Simple Queue Service|

vii

12
13
14
14
17
18
19
22
22
25
29
33
38
40
42

viii CONTENTS
(3.4 Indexing strategies| 48
[3.4.1 Answering queries from theindex| 49
[3.4.2 Selective indexing strategies| 51
[3.4.3 Dictionaryencoding| 58

(3.5 Experimental evaluation|. 58
(3.5.1 Experimental setup| L. 59

[3.5.2 Indexing timeandcosts| 59
[3.5.3 Queryingtimeandcosts|. 61
[3.5.4 Scalability| 63
[3.5.5 Experiments conclusion| o o L. 64

3.6 Conclusionl. 64
4 CliqueSquare| 67
4.1 Introductionl 67
4.2 Architecturel 69
4.3 Logical querymodel| 71
4.3.1 Querymodell. 71
4.3.2 Query optimization algorithm| 72

4.4 Queryplanning| 74
4.4.1 Logical CliqueSquare operators and plans| 74
4.4.2 Generating logical plans from graphs| 75
4.4.3 Clique decompositions and plan spaces|. 76
4.4.4 Height optimality and associated algorithm properties|. 80
4.4.5 Time complexity of the optimization algorithm| 85
... 89
4.5.1 RDFpartitioning 89
4.5.2 MapReduce partitioning process| L. 90
4.5.3 Handling skewness in property values| 92
4.5.4 Fault-Tolerance| 92

4.6 Plan evaluation on MapReduce]. o o, 94
#4.6.1 From logical to physicalplans| 94
4.6.2 From physical plans to MapReduce jobs| 95
463 Costmodell. 96

4.7 Experimental evaluation|. o o L 97
i4.7.1 Experimentalsetup|. 98
4.7.2 Plan spaces and CliqueSquare variant comparison| 98
i.7.3 CliqueSquare plans evaluation| 100
474 CSQsystemevaluation| 101

M8 Conclusionl. 103
nclusion and Futur r 105
5.1 Thesissummary|. 105
5.2 Ongomng work|. 106

[5.3 Perspectives| 108

CONTENTS

A Detailed queries|
[A.1 Queries used in the AMADA experiments|
[A.2 Queries used in the CliqueSquare experiments|

X

Chapter 1

Introduction

The World Wide Web (or WWW, in short) dates back in the early "90s when Tim
Berners-Lee had a vision of a more effective communication system for CERN. The Web
is defined as a system of interlinked hypertext documents that are accessed through the
Internet. Hypertext documents are documents containing text, that is annotated using a
specific markup language (HTML), so that individual machines can render the content
correctly. A particularly crucial feature of HTML is the ability to represent links between
documents; this is a major ingredient of the Web as a content and interaction platform,
allowing users to navigate from one document to another.

Looking back to the first web site to ever go onlinelﬂ in November of 1992, and com-
paring it with some of the most well known websites (for example YoutubeE[) today, the
differences are very striking. It is not only the technology that evolved but also the phi-
losophy behind them. The first web sites are characterized by static content, which corre-
sponds to considering the users purely as consumers. The web site is provided to the user
following the paradigm of a newspaper, where users can flip pages, respectively, navigate
back and forth to gather information, but the interaction is limited. This static incarnation
of the Web is associated with the term Web 1.0. On the other hand, a web site like Youtube
is fundamentally built by the users, whose role has changed from passive consumers to
active producers of information. This mentality change in the way web pages are built, is
usually referred to using the term Web 2.0.

1.1 Semantic Web

Currently, information production and consumption on the Web is moving toward
the so-called Web 3.0, also known as the Semantic Web. Consider for instance the query
“What are the most common bugs?” To answer it, Youtube proposes a list of videos about
spiders, cockroaches, mosquitoes, and other type of insects. For non-programmers, this
may be the correct answer, however for a tech-oriented user, the desired answers should
have been videos about bugs in computer programs. Humans can very easily reason using

1. http://www.w3.0rg/History/19921103-hypertext /hypertext/WWW/
TheProject.html
2. https://www.youtube.com/

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
https://www.youtube.com/

2 CHAPTER 1. INTRODUCTION

context to infer the correct answer, yet this is still not completely handled by computers,
which either miss the relevant context or are not able to take advantage of it. The Semantic
Web describes an extension of the Web where computers will be able to process efficiently
the data and reason about them exactly as human would do. Tim Berners-Lee stated the
following back in 2000 [BEOO]:

“I have a dream for the Web [in which computers] become capable of analyzing
all the data on the Web — the content, links, and transactions between people and
computers. A "Semantic Web", which makes this possible, has yet to emerge, but
when it does, the day-to-day mechanisms of trade, bureaucracy and our daily
lives will be handled by machines talking to machines.”

In order for computers to be able to analyze all the data, these have to be under a com-
mon data model. The World Wide Web Consortium (W3C) introduced the Resource De-
scription Framework (RDF) [W3C14b] for this purpose. RDF is a flexible data model that
permits to express statements about available resources. The statements (a.k.a. triples) are
of the form (s p o) where s stands for the subject, p for the property, and o for the object.
This requires that all resources are uniquely identified, i.e., all resources have a unique
resource identifier (URI). Currently, every web page has a URI, but the vision of the Se-
mantic Web is not restricted to documents (web pages) but anything inside the documents,
or, more generally, any resource of the physical world as well.

If a famous soccer player, e.g., Cristiano Ronaldo, appears inside a document, then
he has a URI, and all other entities (players, teams, stadiums, matches, etc.) refer to
him by this URI. These connections between different resources make RDF a graph data
model. A vivid example of the use of RDF in the Web is the site for the World Football
Cup of 2010 created by BBCﬂ The power of RDF comes from the ability to link entities
even if they do not belong to the same dataset. For example, BBC expresses, using RDF,
the information relevant to the World Cup. It produces statements like the number of
goals Cristiano Ronaldo achieved in the tournament, the number of yellow and red cards
he received, etc. Then, in another dataset, e.g., in DBPediaE] (the semantic counterpart
of WikipediaE]) there is further information about Ronaldo, like his age, his nationality,
information about his family, and many more things. DBPedia appeared before 2010, thus
Cristiano Ronaldo was already assigned a URI by the time that the World Cup started.
BBC uses the same URI for expressing the new statements regarding the performance of
Ronaldo in the World Cup benefiting from the existing information, and contributing also
with new knowledge which can be exploited by DBPedia or any other dataset using the
same URI for Ronaldo. These interlinked datasets containing semantic information are
known as Linked Open Datalf|

Figure [I.T| [SBP14] shows some of the most well known Linked Open Data (RDF)
datasets, crawled in April 2014. Each node in the graph corresponds to an RDF dataset,

3. http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_
2010_dynamic_sem.html

4. http://wiki.dbpedia.org/

5. https://en.wikipedia.org/wiki/Main_Page

6. http://lod-cloud.net/

http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
http://wiki.dbpedia.org/
https://en.wikipedia.org/wiki/Main_Page
http://lod-cloud.net/

1.2. SEMANTIC WEB DATA MANAGEMENT 3

Linked Datasets as of August 2014 €& ®

Figure 1.1: The Linked Open Data cloud as of April 2014.

while the node size reflects the size of the respective dataset. In addition, there is an
edge between two nodes if the two datasets have some URIs in common. As reported
in [SBP14], the size of the Semantic Web is growing, almost doubling its size every year.
This amount of RDF data would be worthless without the means to extract relevant
information from them. There is an evident need for a query language and for query
processing tools. Although various languages have been proposed for querying RDF
data [KAC™02,[IMSR02, Sea04, MSP*04] the one standardized by W3C is SPARQL [W3CI13].
SPARQL, following closely the RDF data model, is a graph-based language with many
powerful features such as aggregation and optional clauses. The most frequently used
dialect is that of Basic Graph Pattern queries (or BGP, in short).

1.2 Semantic Web data management

With respect to Semantic Web query processing, three main approaches have been
identified. In the warehousing approach, the interesting data sources are gathered into
a central repository, where they can be further processed and queried to return answers
to the users. Among the best-known warehousing approaches are RDFSuite [ACK™01]],
Sesame [BKVHO02]], Jena [McBO02]], Virtuoso [Erl08]], RDF-3X [NW10], and gStore [ZMC™11]].
The second approach relies on the existence of SPARQL endpoints, where the data pub-
lishers provide a way to access their data through SPARQL queries. In this case, to
evaluate a query over different endpoints (different data sources) the query is decom-

4 CHAPTER 1. INTRODUCTION

posed, sent to the proper sources, and then the intermediate results must be combined
before returning the answer to the user. Illustrative systems for this category include
DARQ [QLO8]], SPLENDID [GS11]], FedX [SHH™11], ANAPSID [AV1I]; the inter-
ested reader may also find in [RUK™13] a survey of query processing using federated
endpoints. An alternative [PZO™14] is to send the complete query to all available data
sources finding (local) partial matches, which are assembled together using centralized or
distributed methods. The third approach, considers again individual data sources (sim-
ilar to the endpoint approach) but the existence of SPARQL endpoints is optional thus
some sources do not provide query processing capabilities. Additionally, the data sources
may not be known in advance but are determined during query evaluation by follow-
ing links. Representative works in this area are based on graph-traversal [LI11), Har13]],
indexes [UHK™11, TUYTI], or a combination of both [LT10]. The aforementioned ap-
proaches each have their own advantages and disadvantages, and none of them is best
in all circumstances. In this thesis, we adopt the warehousing approach, since, when
data can be gathered in a warehouse (that is, when ownership, access rights, or resource
limitations don’t preclude it), the data warehouse setting is amenable to the best query
evaluation performance.

Warehousing RDF data raises its own challenges. Large volumes of data have to be
gathered and managed in a single repository. Efficient systems [SA09, FCB12, [LPF*12]
have been devised in order to handle large volumes of RDF data in a centralized setting,
with RDF-3X [NW10] being among the best-known. However, as the amount of data
continues to grow, it is no longer feasible to store the entire linked data sets on a sin-
gle machine and still be able to scale to multiple and varied user requests. Thus, such
huge data volumes have raised the need for distributed storage architectures and query
processing frameworks.

1.3 Distributed systems & challenges

Building a distributed system requires first ensuring access to sufficient storage and
computation resources. Making hardware equipment decision nowadays is mostly con-
sidered from a “buy or rent?” perspective, especially since the advent of Cloud comput-
ing [MG11] , advocating a pay-per-use model where computational resources are avail-
able in the cloud and rented in order to run applications. Although there are many dis-
agreements[] about the exact definition of Cloud computing, the pay-per-use model is
widely agreed upon. Building a system based on the Cloud improves its flexibility and re-
duces the overall cost for its users. The systems and techniques described in this thesis are
designed and built for cloud-based infrastructures. The design and implementation of a
distributed RDF data management platform raises many challenges, that can be roughly
grouped into the following four interrelated categories:

1. The first challenge is to provide an architecture that can be easily deployed in the
cloud satisfying the requirements for scalability, elasticity, and performance.

7. http://cloudcomputing.sys—-con.com/node/612375/print

http://cloudcomputing.sys-con.com/node/612375/print

1.4. CONTRIBUTIONS AND OUTLINE 5

2. The second challenge amounts to choosing a good partitioning scheme that dis-
tributes effectively the data to the available machines.

3. Third, it is important to build and maintain proper indexes to the data for improving
access performance.

4. Last but not least, efficient query optimization algorithms are needed to build query
plans that can be easily parallelized, in order to take advantage of the parallel pro-
cessing infrastructure.

1.4 Contributions and outline

In the following, we provide an overview of the organization of the thesis and we
outline our main contributions.

Chapter[2] provides the necessary background to follow the rest of the thesis. Moreover,
it provides a systematic analysis and classification of existing works in the area of RDF
data management.

Chapter 3] presents AMADA, an architecture for RDF data management using public
cloud infrastructures. The contributions of this chapter are the following:

— We present an architecture for storing RDF data within the Amazon cloud that
provides efficient query performance, both in terms of time and monetary costs.

— We consider hosting RDF data in the cloud, and its efficient storage and querying
through a (distributed, parallel) platform also running in the cloud.

— We exploit RDF indexing strategies that allow to direct queries to a (hopefully tight)
subset of the RDF dataset which provide answers to a given query, thus reducing
the total work entailed by query execution.

— We provide extensive experiments on real RDF datasets validating the feasibility of
our approach and giving insight about the monetary cost of storing RDF data in the
cloud.

Chapter[d] presents CliqueSquare, an optimization approach for building massively par-
allel flat plans for RDF queries. The contributions of this chapter and the main contribu-
tions of this thesis are the following:

— We describe a search space of logical plans obtained by relying on n-ary (star)
equality joins. The interest of such joins is that by aggressively joining many inputs
in a single operator, they allow building flat plans.

— We provide a novel generic algorithm, called CliqueSquare, for exhaustively ex-
ploring this space, and a set of three algorithmic choices leading to eight variants
of our algorithm. We present a thorough analysis of these variants, from the per-
spective of their ability to find one of (or all) the flattest possible plans for a given

query.

6 CHAPTER 1. INTRODUCTION

— We show that the variant we call CliqueSquare-MSC is the most interesting one,
because it develops a reasonable number of plans and is guaranteed to find some of
the flattest ones.

— We have fully implemented our algorithms and validate through experiments their
practical interest for evaluating queries on very large distributed RDF graphs. For
this, we rely on a set of relatively simple parallel join operators and a generic RDF
partitioning strategy, which makes no assumption on the kinds of input queries. We
show that CliqueSquare-MSC makes the optimization process efficient and effec-
tive even for complex queries leading to robust query performance.

Chapter concludes and outlines possible future directions as well as some ongoing
work.

Chapter 2

Background and state-of-the-art

This chapter presents the background needed by the presentation of the research work
performed in the thesis along with the related work in the area of RDF data management
and massively parallel systems. Section [2.1] presents the Resource Description Frame-
work (RDF) comprising the core of the Semantic Web. Section [2.2] discusses the re-
cent developments in distributed storage infrastructures and provides a brief introduction
to the MapReduce programming framework. Finally, Section provides an extended
overview of existing RDF data management systems in the centralized and distributed
settings, emphasizing on the critical concepts of storage, indexing, query optimization,
and infrastructure.

2.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [W3Cl4al is a family of W3C specifi-
cations originally intended to describe metadata [W3C04]]. Since then it has evolved and
matured, aiming to describe any kind of information available on the web.

The framework relies on an abstract data model that is naturally represented as a
directed labeled graph, where nodes correspond to resources or literals and edges are
used to describe the relations between the resources. The graph does not need to obey to
a specific schema. Further, RDF graph may comprise implicit information, specified by
means of a set of so-called entailment rules.

The standard language for querying RDF data is SPARQL [W3CO08|]. SPARQL is
part of the W3C recommendations and it has an SQL-like syntax. The basic building
block of the language is the graph pattern, that permits the retrieval of parts of the graph.
The language also has many other features, such as optional query patterns, RDF graph
constructions, property path querying by means of regular expressions etc.

We formalize the RDF data model in Section [2.1.1] while in Section [2.1.2] we present
SPARQL, and the fragment that we consider in this work.

7

8 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

2.1.1 Data model

RDF data is organized in triples of the form (s p o), stating that the subject s has
the property (a.k.a. predicate) p whose value is the object 0. Unique Resource Identifiers
(URIs) are central in RDF: one can use URISs in any position of a triple to uniquely refer to
some entity or concept. Notice that literals (constants) are also allowed in the o position.

RDF allows some form of incomplete information through blank nodes, standing for
unknown constants or URIs. One may think of blank nodes as labeled nulls from the
database literature [AHV93|.

Definition 2.1.1 (RDF triple). Let U be a set of URIs, L be a set of literals, and B be a set
of blank nodes. A well-formed RDF triple is a tuple (s p o) from (UUB)x U x (UULUB).

The syntactic conventions for representing valid URIs, literals, and blank nodes can
be found in [W3Cl4al]. In this document, literals are shown as strings enclosed by quo-
tation marks, while URIs are shown as simple strings (see also discussion on namespaces
below).

RDF admits a natural graph representation, with each (s p o) triple seen as an p-
labeled directed edge from the node identified by s to the node identified by o.

Definition 2.1.2 (RDF graph). An RDF graph is a set of RDF triples.

We use val(G) to refer to the values (URISs, literals, and blank nodes) of an RDF graph
G.

An example of an RDF graph from the domain of a university is shown in Figure 2.1]
In the bottom part of the figure, the RDF graph is shown as a set of triples. The ovals
represent URIs and the rectangles represent literals. The example RDF graph is a fictional
instance from the LUBM benchmark [[GPHOS5]].

In some cases we need to work with many RDF graphs at the same time, while keeping
their content separate. We achieve this by considering named RDF graphs where each
graph is associated with a name that can be a URI or a blank node. The notion of an RDF
triple is extended as follows to capture these needs.

Definition 2.1.3 (RDF quad). Let U be a set of URIs, L be a set of literals, and B be a set
of blank nodes. A well-formed RDF quad is a tuple (s p o g) from (UUB)x U x (UULU
B) x (U UB).

We are now able to capture multiple RDF graphs using the notion of an RDF dataset.
Definition 2.1.4 (RDF dataset). An RDF dataset is a set of RDF quads.

An RDF dataset may contain only a single graph, in which case all the quads of the
form (s p o g) have the same value for g. In such cases, we may use the term RDF graph
and RDF dataset interchangeably.

An example of an RDF dataset is shown in Figure [2.2] The dataset consists of two
named graphs, ub:Professors graph, and ub:Students graph. In the bottom part of the
figure, the dataset is shown as a set of quads.

2.1. RESOURCE DESCRIPTION FRAMEWORK (RDF) 9

ub:advisor

ub:stud1

ub:member ub:deptd
b:name

ub:member

ub:deptl

rdf:type | ‘
; i
1 rdf:type
rdf:type !

ub:adviso

ub:takesCourse

ub:name

(ub:profl ub:name "bob") u
(ub:profl ub:advisor ub:studl)
(ub:prof2 ub:advisor ub:stud2)

(ub:studl ub:member ub:dept4)

(

(
(ub:prof2 ub:name "alice") (

(

(

(

:studl ub:takesCourse ub:db)
:studl ub:name "ted")

b
ub
b
b:stud2 ub:member ub:deptl)
b
b
b

u

o

(ub:profl rdf:type ub:professor)
(ub:prof2 rdf:type ub:professor)

u
u
u

:stud?2 ub:takesCourse ub:os)
:deptl rdf:type ub:Dept)
:dept4d rdf:type ub:Dept)

Figure 2.1: Example of an RDF graph.

Definition 2.1.5 (RDF merge). The RDF merge of two RDF graphs G,, G,, is the RDF
graph G, defined as the set union of triples in G, and G, where blank nodes with the same
labels in G, and G,, are renamed to avoid such collisions.

For example, merging the two graphs in Figure [2.2]is the graph shown in Figure 2.1]

Namespaces are supported in RDF as a means to support flexible choices of URIs as
well as interoperability between different datasets. A namespace typically serves to iden-
tify a certain application domain. Concretely, a namespace is identified by a URI, which
is used as a prefix of all URIs defined within the respective application domain. Thus,
for instance, the URI http://www.w3.0rg/1999/02/22-rdf-syntax—ns| is
chosen by the W3C to represent the domain of a small set of predefined URIs which are
part of the RDF specification itself; or, for instance, http://swat.cse.lehigh.
edu/onto/univ-bench.owl|is used by the fictious university of Lehigh to identify
its domain of representation. To denote that the URI of a resource r is part of the appli-
cation domain identified by a namespace URI u, the URI of u is a prefix of the URI of
r. The suffix of r’s URI is typically called local name; it identifies uniquely r among
all the resources of the namespace u. This enables other application domains to use the
same local name in conjunction with their respective namespace URIs, without causing
confusions between the two. On the opposite, when one wishes to refer in a dataset to a
specific resource from a specific namespace, the full URI (including the namespace URI
prefix) must be used.

While the above mechanism is flexible, it leads to rather lengthy URIs, and bloats the

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://swat.cse.lehigh.edu/onto/univ-bench.owl
http://swat.cse.lehigh.edu/onto/univ-bench.owl

10 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

ub:Professors ub:Students

ub:takesCourse @

ub:name

ub:member

| ub:advisg ub:member

| ub:stud1 ub:dept4
rdf:type | b:name

! rdf:type i

i rdf:type
rdf:type ! P

ub:name

ub:stud2 ub:deptl

ub:advis

ub:takesCourse

ub:profl ub:name "bob" ub:Professors) (ub:studl ub:member ub:dept4 ub:Students)
ub:profl ub:advisor ub:studl ub:Professors) (ub:studl ub:takesCourse ub:db ub:Students)
ub:prof2 ub:advisor ub:stud2 ub:Professors) (ub:studl ub:name "ted" ub:Students)
ub:prof2 ub:name "alice" ub:Professors) (ub:stud2 ub:member ub:deptl ub:Students)
ub:profl rdf:type ub:professor ub:Professors) (ub:stud2 ub:takesCourse ub:os ub:Students)
ub:prof2 rdf:type ub:professor ub:Professors) (ub:deptl rdf:type ub:Dept ub:Students)

(

ub:dept4 rdf:type ub:Dept ub:Students)

Figure 2.2: Example of an RDF dataset comprising two named graphs.

space needed to represent a dataset. To reduce the space occupancy, within an RDF graph,
a local namespace prefix is associated to a namespace URI, and serves as a short-hand to
represent the latter. Thus, URIs are typically of the form nsp:ln where nsp stands for the
local namespace prefix while [n represents the local name. For example, in Figure
ub is used as a local namespace prefix to replace http://swat.cse.lehigh.edu/
onto/univ-bench.owll

Resource descriptions can be enhanced by specifying to which class(es) a given re-
source belongs, by means of the pre-defined rdf : t ype property which is part of the
RDF specification. For example, the triple (:deptl rdf:type :Dept) in Fig-
ure [2.1] states that: dept 1 is of type : Dept.

Further, the RDF Schema [W3C14c] specification allows relating classes and proper-
ties used in a graph, through ontological (i.e., deductive) constraints expressed as triples
using built-in properties: sub-class constraints rdfs: subClassOf, sub-property con-
straints rdf s : subPropertyOf, typing constraints of the first attribute rdfs : domain
of a property and typing constraints of the second attribute rdfs:range of a prop-
erty. RDFS constraints and the corresponding relational constraints are given in Ta-
ble For instance, if we know that (ub:studl ub:member ub:dept4) and
that one can only be member of a department (expressed by the RDF Schema constraint

(ub:member rdfs:range ub:Dept)), then due to the fourth constraint in Ta-
ble[2.1] ub: dept4 is necessarily a department (and the triple (ub:dept4 rdf:type
ub :Dept) holds in the RDF graph). As another example, assuming that every advisor is

ub
http://swat.cse.lehigh.edu/onto/univ-bench.owl
http://swat.cse.lehigh.edu/onto/univ-bench.owl

2.1. RESOURCE DESCRIPTION FRAMEWORK (RDF) 11

RDFS constraint Relational modeling

(s rdfs:subClassOf o) Vx[s(x)— o(x)]

(s rdfs:subPropertyOf o) | Vx,y[s(x,y)— o(x,y)]
(p rdfs:domain c) Vax,ylp(x,y)— c(x)]
(p rdfs:range c) Vx, y[p(x,y) = c(y)]

Table 2.1: Deductive constraints expressible in an RDF Schema

Premise (existing triples) Conclusion (inferred triples)
(s rdf:type c;)

(cp rdfs:subClassOf cj) (s rdf:type c,)

(s p1 0)

(p1 rdfs:subPropertyOf py) | (s py 0O)

(s p o)

(p rdfs:domain c) (s rdf:type c)

(s p o)

(p rdfs:range c) (o rdf:type c)

Table 2.2: Entailment rules combining schema and instance triples

a professor (described by the RDF schema constraint (ub:advisor rdfs:domain
ub:Professor)) we can infer that ub:profl and ub:prof2 are professors (thus
the triples (ub:profl rdf:type ub:Professor) and (ub:prof2 rdf:type
ub:Professor) hold in the graph) due to the third constraint of Table 2.1] The pre-
vious examples reveal an important feature of RDF which is implicit information: triples
which hold in the RDF graph, even though they may not be part of it explicitly (denoted
with blue in Figure[2.1)). The process of infering new triples based on existing ones (some
of them may be RDF Schema constraints, while the others are simple triples, a.k.a. facts)
is known as RDF entailment or inference and is guided by a set of entailment rules. Ta-
ble 2.2 presents four of the most common entailment rules that are directly associated with
the constrains of Table [2.1] and they are those that were used implicitly at the examples
above. The full set of entailment rules is defined in the RDF Semantics [W3C14b].

Observe that unlike the traditional setting of relational databases, RDF Schema con-
straints are expressed with RDF triples themselves, and are part of the RDF graph (as
opposed to relational schemas being separated from the relational database instances).
Within an RDF dataset, the term fact is commonly used to denote a triple whose property
is not one of the predefined RDF Schema properties.

Definition 2.1.6 (Saturation). The saturation of an RDF graph G, denoted G*, is obtained
by adding to G all the implicit triples that derive from consecutive applications of the
entailment rules on G, until a fixpoint is reached.

It has been shown that under RDF Schema constraints, the saturation of an RDF graph
is finite, and unique (up to blank node renaming).

Considering again the example of Figure 2.1] the graph without the solid edges is the
unsaturated graph, while the complete graph (comprising both solid and dashed edges) is

12 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

the saturated graph.

The problem of efficiently computing the saturation of an RDF dataset has been con-
sidered both in centralized settings [BK03,[UMJ™ 13, MNP™ 14,/[GMR13, BGM13]] and in
distributed ones [UKOvVHO09, UvHSBI11l. In this thesis, we assume that all RDF datasets
are saturated, using such a technique.

2.1.2 Query language

The advent of the Semantic Web along with the arrival of the RDF data model entailed
the need for a suitable declarative query language. The first steps have been done with
RQL [KACT02], a declarative query language closely inspired from the data model, pro-
viding ways of querying simultaneously the data and the schema. Other languages emerg-
ing at about the same time include SquishQL [MSR02], RDQL [Sea04], RSQL [MSP*04].
Inspired by the aforementioned efforts, the SPARQL [W3CO8|| has been proposed and has
become a W3C standard in 2008. SPARQL has evolved subsequently; the current version
(SPARQL 1.1 [W3C13]) resembles a complex relational query language such as SQL.

SPARQL has a variety of features. The simplest ones are: conjunctive graph pattern
matching, selections, projections, and joins, while the more advanced allow arithmetic
and alphanumeric comparisons, aggregations, nested sub-queries, and graph construc-
tion. In this work, we consider the most common fragment of SPARQL, named basic
graph pattern (BGP) queries; from a database perspective, these correspond to conjunc-
tive select-project-join (SPJ) queries.

A central role in composing BGPs is played by triple patterns.

Definition 2.1.7 (Triple Pattern). Let U be a set of URIs, L be a set of literals and V be a
set of variables, a triple pattern is a tuple (s p o) from (UUV) X (UUV)x (UULUV).

Triple patterns are used to specify queries against a single RDF graph. To query
datasets, possibly consisting of many datasets, we extend to the notion of a triple pattern
to a quad pattern.

Definition 2.1.8 (Quad Pattern). Let U be a set of URIs, L be a set of literals, and V be
a set of variable, a quad pattern is a tuple (s p o g) from (UUV) x (UUV)x (UULU
V) x (UUV).

Based on triples (or quad) patterns, one can express SPARQL BGP queries as below.
Definition 2.1.9 (BGP Query). A BGP query is an expression of the form
SELECT ?x;...?%,, WHERE { ti...t, }

where t...t, triple (quad) patterns and ?x,...?x,, distinguished variables appearing in
ti...t,

In the rest of the thesis we will use the terms RDF query, SPARQL query, and BGP
query, interchangeably referring to the SPARQL fragment described by Definition [2.1.9]
Furthermore, we use var(q) to refer to the variables of a query q. An example BGP
query, asking for advisors of students that are member of department four, is shown in

Figure[2.3]

2.2. DISTRIBUTED STORAGE AND MAPREDUCE 13

SELECT ?advisor ?student

WHERE {
?7advisor ub:advisor ?student
?student ub:member ub:dept4

Figure 2.3: Example RDF query QA.

Definition 2.1.10 (Valid assignment). Let q be a BGP query, and G be an RDF graph,
u : var(q) — val(G) is a valid assignment iff Vt; € q, t; € G where we denote by t! the
result of replacing every occurrence of a variable e € var(q) in the triple pattern t; by
the value u(e) € val(G).

Definition 2.1.11 (Result tuple). Let q be a BGP query, G be an RDF graph, u be a valid
assignment, and X be the head variables of q, the result tuple of q based on u, denoted as
res(q,), is the tuple:

res(q,,u) = {[.,L(Xl),. . -).u'(xm) | X155 Xy €)Z'}

Definition 2.1.12 (Query evaluation). Let q be a BGP query, and G be an RDF graph, the
evaluation of g against G is:

q(G) ={res(q,u) | u: var(q) — val(G) is a valid assignment}

where res(q, u) is the result tuple of q based on L.

The evaluation of query QA (shown in Figure against the graph of Figure is
the tuple (ub:profl ub:studl).

Query evaluation only accounts for triples explicitly present in the graph. If the graph
is not saturated, evaluating the query may miss some results which would have been
obtained if the graph had been saturated. The following definition allows capturing results
due both to the explicit and to the implicit triples in an RDF graph:

Definition 2.1.13 (Query answering). The answer of a BGP query q over an RDF graph
G is the evaluation of q over G*.

It is worth noting that while the relational SPJ queries are most often used with set
semantics, SPARQL, just like SQL, has bag (multiset) semantics. As a result BGP queries
considered in this work have bag semantics.

2.2 Distributed storage and MapReduce

The vast amount of data available today, along with the needs for scalability, fault-
tolerance and inexpensive performance, triggered the development of many distributed
systems relying on distributed file systems and/or distributed key-value stores, and the

14 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

MapReduce framework. Section[2.2.1]briefly introduces the ideas behind a distributed file
system, while Section[2.2.2]describes key-value stores along with some concrete systems.
Section[2.2.3]outlines the MapReduce framework, and Section[2.2.5|discusses higher level
languages and implementations for MapReduce.

2.2.1 Distributed file systems

Distributed file systems have their roots way back in the *80s [SGK™85]. However,
with the emergence of the cloud computing, new distributed file systems are still being
developed.

In an attempt to cover growing data processing needs, Google introduced the Google
File System [[GGLO3] (GFS), a distributed file system which aims at providing perfor-
mance, scalability, reliability and availability. However, it makes some radical design
choices to support more effectively the following scenarios. First, node failures are not
considered an exception but the rule. Second, the file size is big (in terms of GB) and
the number of files moderate. Small files are supported but the performance tuning shifts
towards the big ones. Third, updates are typically handled by appending to the file rather
than overwriting. Finally, the API is flexible so as to facilitate the development process of
applications.

In the same spirit, and closely following the GFS design principles, other distributed
file systems were developed, like Apache’s Hadoop Distributed File System [hadl1]
(HDFS), and Amazon’s S3 [s306]. HDFS became popular due to the opensource im-
plementation that Apache provided.

2.2.2 Distributed key-value stores

A key-value store (key-value database) is a system for storing, retrieving, and man-
aging associative arrays. An associative array is a data structure that can hold a set of
{key:value} pairs such that each possible key appears just once. Other common
names for associative arrays, include map, dictionary, and symbol table. Key-value stores
have a history as long as relational databases. In contrast with relational databases, key-
value stores have a very limited API and the vast-majority of them does not support join
operations between different arrays. The most basic operations supported by all key-value
stores are Get (k, v) and Put (k, v).

Recently, key-value stores gained a lot of popularity due to their simplistic design,
horizontal scaling, and finer control over availability. Google’s Bigtable [CDG™06] in-
spired many of the key-value stores that are used nowadays. Bigtable takes the idea of
associative arrays one step further, defining each array as a sparse, distributed, persis-
tent multidimensional sorted map. The Bigtable’s map indexes a value using a triple
comprised from the row key, column key, and a timestamp. Each map implies a nested
structure of the form {rowkey:{columnkey:{time:value}}}. By considering
the map (array) as part of the nested structure the complete BigTable’s architecture can
be described as {tablename: {rowkey: {columnkey:{time:value}}}}. Us-
ing the ER diagram formalism, Key-Value stores similar to BigTable adopt the schema

2.2. DISTRIBUTED STORAGE AND MAPREDUCE 15

shown in Figure 2.4]
1 N 1

Figure 2.4: ER Diagram for common key-value stores.

Popular key-value stores that have been used by RDF systems include: Apache’s Cas-
sandra [cas08]], Apache’s Accumulo [laccO8|], Apache’s HBase [hba08|], Amazon’s Sim-
pleDB [sim07]], and Amazon’s DynamoDB [dyn12]. Although they share the basic ele-
ments of their interfaces, these systems differ with respect to their internal architecture,
access control policies, authentication, consistency, etc. Below we briefly present Accu-
mulo, Cassandra, and HBase, while we provide a slightly more elaborated overview for
SimpleDB, and DynamoDB since they are used in AMADA (Chapter [3).

HBase is an open-source, distributed, versioned, non-relational database modeled after
Google’s Bigtable and implemented on top of HDFS. A data row in HBase is composed
of a sortable row key and an arbitrary number of columns, which are further grouped into
column families. A data cell can hold multiple versions of data which are distinguished
by timestamps. Data stored in the same column family are stored together on the file
system, while data in different column families might be distributed. HBase provides
a B+ tree-like index on the row key by default. HBase supports ACID-level semantics
on a per-row basis (row-level consistency). In addition, the notion of coprocessors is
introduced, which allow the execution of user code in the context of the HBase processes.
The result is roughly comparable to the relational database world’s triggers and stored
procedures.

Accumulo provides almost identical features to HBase, since it also follows Bigtable
design pattern and is implemented on top of HDFS. In contrast with HBase and Bigtable,
it provides the server Iterator model that helps increasing performance by performing
large computing tasks directly on the servers and not on the client machine. By doing
this, it avoids sending large amounts of data across the network. Furthermore, it extends
the Bigtable data model, adding a new element to the key called “Column Visibility”.
This element stores a logical combination of security labels that must be satisfied at query
time in order for the key and value to be returned as part of a user request. This allows
data with different security requirements to be stored in the same table. As a consequence
users can see only those keys and values for which they are authorized.

Cassandra is also inspired by Bigtable and implemented on top of HDFS, thus sharing
a lot of similarities with Accumulo and HBase. Nevertheless, it has some distinctive fea-
tures. It extends the Bigtable data model by introducing supercolumns. A storage model

16 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

with supercolumns looks like: { rowkey: { superkey: {columnkey:value}}}. Su-
percolumns can be either stored based on the hash value of the supercolumn key or in
sorted order. In addition, supercolumns can be further nested. Cassandra natively sup-
ports secondary indices, which can improve data access performance in columns whose
values have a high level of repetition. Furthermore, It has configurable consistency. Both
read and write consistency can be tuned, not only by level, but in extent. Finally, Cassan-
dra provides an SQL-like language, CQL, for interacting with the store.

SimpleDB is a non relational data store provided by Amazon which focuses on high
availability (ensured through replication), flexibility and scalability. SimpleDB supports a
set of APIs to query and store items in the database. A SimpleDB data store is organized
in domains. Each domain is a collection of items identified by their name. Each item
contains one or more attributes; an attribute has a name and a set of associated values.
There is a one to one mapping from SimpleDB’s data model to the one proposed by
Bigtable shown in Figure [2.4] Domains correspond to tables, items to rows, attributes to
columns, and values to cells. The main operations of SimpleDB API are the following
(the respective delete/update operations are also available):

— ListDomains () retrieves all the domains associated to one AWS account.

— CreateDomain (D) and DeleteDomain (D) respectively creates a new do-
main D and deletes an existing one.

— PutAttributes (D, k, (a,v)+) inserts or replaces attributes (a,v)+ into an
item with name k of a domain D. If the item specified does not exist, SimpleDB
will create a new item.

— BatchPutAttributes performs up to 25 PutAttributes operations in a
single API call, which allows for obtaining a better throughput performance.

— GetAttributes (D, k) returns the set of attributes associated with item k in
domain D.

It is not possible to execute an API operation across different domains as it is not
possible to combine results from many tables in Bigtable. Therefore, if required, the
aggregation of results from API operations executed over different domains has to be
done in the application layer. AWS ensures that operations over different domains run
in parallel. Hence, it is beneficial to split the data in several domains in order to obtain
maximum performance. As most non-relational databases, SimpleDB does not follow
a strict transactional model based on locks or timestamps. It only provides the simple
model of conditional puts. It is possible to update fields on the basis of the values of other
fields. It allows for the implementation of elementary transactional models such as some
entry level versions of optimistic concurrency control.

AWS imposes some size and cardinality limitations on SimpleDB. These limitations
include:

— Domains number: the default settings of an AWS account allow for at most 250
domains. While it is possible to negotiate more, this has some overhead (one must
discuss with a sale representative etc. - it is not as easy as reserving more resources
through an online form).

— Domain size: the maximum size of a domain cannot exceed 10 GB and the 109

2.2. DISTRIBUTED STORAGE AND MAPREDUCE 17

attributes.

— Item name length: the name of an item should not occupy more than 1024 bytes.

— Number of (attribute, value) pairs in an item: this cannot exceed 256. As a conse-
quence, 1f an item has only one attribute, that attribute cannot have more than 256
associated values.

— Length of an attribute name or value: this cannot exceed 1024 bytes.

DynamoDB is the sucessor of SimpleDB that resulted from combining the best parts
of the original Dynamo [DHJ"07] design (incremental scalability, predictable high per-
formance) with the best parts of SimpleDB (ease of administration of a cloud service,
consistency, and a table-based data model that is richer than a pure key-value store).

The main operations of the DynamoDB API are the following (the respective delete/up-
date operations are also available):

— ListTables () retrieves all the tables associated to one AWS account in a spe-

cific AWS Region.

— createTable (T, Key(pk, rk?)) creates a new table T having a primary
key pk and a range key rk.

— PutItem(T, Key(hk, [rk]), (a,v)+) creates anew item in the table T
containing a set of attributes (a, v) + and having a key composed by a hash key
hk and range key rk, or replaces it if it already existed. Specifying the range key
is optional.

— BatchWriteItem (item+) puts and/or deletes up to 25 Items in a single re-
quest, thus obtaining better performance.

— GetItem (T, Key(hk, [rk]), (a)x) returns the item having the key
Key (hk, [rk]) in table T. Again, specifying the range key is optional. It is
possible to retrieve only a subset of the attributes associated to an item by specify-
ing their names (a) = in the request.

DynamoDB was designed to provide seamless scalability and fast, predictable perfor-
mance. It runs on solid state disks (SSDs) for low-latency response times, and there is
no limit on the request capacity or storage size for a given table. This is because Ama-
zon DynamoDB automatically partitions the input data and workload over a sufficient
number of servers, to meet the provided requirements. In contrast with its predecessor
(SimpleDB), DynamoDB does not automatically build indexes on item attributes leading
to more efficient insert, delete, and update operations, improving also the scalability of
the system. Indexes can still be created if requested.

2.2.3 MapReduce

The MapReduce programming model have its roots way back in the 60s when the
first functional programming languages like LISP [McC60] made their appearance. At
the core of these languages, there are the functions map and reduce and most operations
are expressed using these primitives. Inspired by the simplicity of functional languages,
Google revisits the MapReduce model proposing a framework [DG04] for processing
and generating large data sets. Nowadays, MapReduce is tightly connected with Google’s

18 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

proposal.

MapReduce emerged as an attempt to easily parallelize tasks in a large cluster of
commodity computers without deep knowledge of parallel and distributed systems. The
user writes a MapReduce program using the map and reduce primitive operations, and
the framework is responsible for parallelizing the program, alleviating the user from tasks
like resource allocation, synchronization, fault-tolerance, etc.

A MapReduce program is defined by jobs, each of which consists of three main
phases:

— A map phase, where the input is divided into sub-inputs and each one is handled by

a different map task (this procedure can also be customized if needed). The map
task takes as an input key/value pairs, process them (by applying the operations
defined by the user), and outputs again key/value pairs.

— A shuffle phase, where the key/value pairs emitted by the mappers are grouped and
sorted by key, and then they are assigned to reducers.

— A reduce phase, where each reduce task receives key/value pairs (sharing the same
key) and applies further user-defined operations writing the results into the file sys-
tem.

In order to store the results from MapReduce operations usually a distributed file system
(e.g., GFS, HDFS, S3) is used. The results can also be stored in the local file system but
this is not very common.

Many recent massively parallel data management systems leverage MapReduce in or-
der to build scalable query processors for both relational [LOOW 14] and RDF [KM13]
data. The most popular open-source implementation of MapReduce is provided by the
Apache’s Hadoop [hadl1] framework. It has been used by many RDF data manage-
ment platforms [RS10, HMM™ 11, RKATI, KRATT,SPLIT, HARTI, PKTK12, PKT"13,
LL13, PTK"14, WZY"15] and it is the framework on top of which we implemented
CliqueSquare (see Chapter [4).

Following the success of the original MapReduce proposal, other systems and models
have been proposed, which try to extend the MapReduce paradigm by eliminating some
shortcomings of the original model and extending its expressive power. Among the most
well known frameworks are Stratosphere [ABE™ 14] and Apache Spark [ZCF"10]. Both
support the primitive map and reduce functions while extending the API with more op-
erations. They are built to support HDFS and they are equiped with their own execution
engines. The techniques and algorithms developed in this thesis can be easily adapted to
use such richer platforms. On the contrary exploiting the additional primitives provided
by these systems goes beyond the scope of this work and has been already explored in the
context of XML and XQuery [CCMN15, ICCM13].

2.2.4 MapReduce on relational data

The most important optimization algorithms that have been proposed for MapReduce
and relational data are surveyed in [LOOWI14]. It is worth noticing that bushy plans
are gaining popularity against left-deep in MapReduce frameworks, since applications
can afford bigger optimization times. Additionally in [LOOW 14/, there is a synopsis

2.2. DISTRIBUTED STORAGE AND MAPREDUCE 19

of the available join implementations that have been proposed for performing relational-
style joins using the MapReduce framework. From them we can distinguish the repli-
cated [AU10] join and its specialization replicated star-join that allow performing n-ary
joins in one MapReduce job. The replicated join allows to join multiple relations in differ-
ent columns while replicated star-join, as its name implies, joins multiple relations on the
same column. A cost-based optimizer considering the general repartition join has been
proposed in [WLMO11], but the size of the search-space leads to the exploitation of n-ary
joins only at the first level of the plan while the subsequent levels use binary joins.

From a more theoretical perspective, [BKS13] |AJR"14] study the problem of build-
ing n-ary join plans in MapReduce-like frameworks, with a focus on reducing the com-
munication cost and the number of rounds (jobs); the authors provide concrete algo-
rithms with formal cost guarantees expressed in terms of rounds and communication
cost. In [AJR™14] they build upon the well-known query evaluation algorithm of Yan-
nakakis [Yan81]]. Yannakaki’s algorithm receives as input a width-1 Generalized Hyper-
tree Decomposition (GHD) of an acyclic query with n atoms and executes a sequence of
©(n) semi-joins and joins within a time-bound polynomial in the combined size of the
input and the output; input is the total size of all relations involved in the query and output
is the size of the result. In [AJR™ 14| they propose different variations of Yannakaki’s
algorithm for evaluating conjunctive queries in the context of MapReduce starting from
a given GHD. Additionaly, they provide algorithms for transforming the input GHD by
reducing its depth and increasing its width considering the trade-offs between the number
of MapReduce rounds (related with the depth of the GHD) and the communication cost
(related with the width of the GHD). Furthermore, they describe an algorithm for building
a minimum depth GHD of width-1 from an acyclic query. This has similarities with our
optimization algorithm described in Chapter | however we build minimum depth query
plans whereas a GHD does not correspond to a plan. Depending on the algorithm that
receives as input the GHD, one or many plans may be produced based on it. The problem
of generating a min-depth plan from a min-depth GHD is beyond the scope of [AJR™ 14]],
and of the present thesis.

Optimization algorithms for MapReduce and RDF data are discussed in Section[2.3]

2.2.5 Higher level languages for MapReduce

The arrival of the MapReduce framework improved greatly the development of mas-
sively parallel applications. Nevertheless, its API does not permit complex operations
making the development of big programs a challenging task for intermediate program-
mers. To overcome the limitations of expressing everything using the primitive map and
reduce functions, higher level languages were developed, providing a declarative way of
writing programs that are then translated automatically to MapReduce jobs. Below, we
briefly present two of the most popular languages that are used for writing MapReduce
programs, namely Pig Latin and HiveQL.

Pig Latin [ORST08] is a language for the analysis of very large datasets developed
by Yahoo! Research. It is based on the well-known Apache Hadoop Framework, an

20 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

open source implementation of Google’s MapReduce. The implementation of Pig Latin
for Hadoop, Pig, is an Apache top-level project that automatically translates a Pig Latin
program into a series of MapReduce jobs. The data model of Pig Latin provides four
different types:

— atom which contains a simple atomic value like a string or number;

— tuple which is a sequence of atoms of any type;

— bag which is a collection of tuples with possible duplicates;

— map which is a collection of data items where each item can be looked up by an

associated key.

A Pig Latin program consists of a sequence of instructions where each instruction

performs a single data transformation. Piglatin supports the following operators:

LOAD deserializes the input data and maps it to the data model of Pig Latin;
FOREACH can be used to apply some processing on every tuple of a bag;
FILTER allows removing unwanted tuples of a bag;

JOIN performs an equi- or outer- join between bags. It can also be applied to more than
two bags at once (multi join);

UNION operator that can be used to combine two or more bags;

SPLIT partitions a bag into two or more bags that do not have to be distinct or complete.

Pig embodies a two-phase rule-based optimizer [GDNI13]. In the first phase, tradi-
tional RDBMS techniques are used, where selections and projections are pushed down
while cartesian products are dragged up to avoid creating large number of intermediate
results early in the query plan. The optimizer does not take into account statistics (they
are not available in general) and the choice of the join method is entirely left up to the
user. In the second phase, it performs optimizations mostly associated to the MapReduce
framework. It tries to identify and solve skew problems on the keys emitted from map-
pers to reducers, while another optimization focuses on reducing the number of jobs by
grouping jobs performing aggregations on common inputs.

HiveQL is a part of the Hive [TSJT09, TSI"10] data warehousing solution built on top
of Hadoop. It is an SQL-like declarative language that is compiled into MapReduce jobs,
which are executed using Apache’s Hadoop. Originally, it was developed by Facebook,
while currently is being used by other companies such as Amazon and Netflix. HiveQL
supports many of the most famous features of SQL such as subqueries, multiple types of
equi-joins (inner, outer, and semi-joins), cartesian products, groupings and aggregations,
as well as data definition statements for creating tables with specific serialization formats,
partitioning, and bucketing columns. Hive’s data model uses the classical relational tables,
where the columns can be primitive (integers, floats, strings) or complex types (associative
arrays, lists, and structs). It keeps metadata (schema and statistics) inside an RDBMS and
not in HDFS, for fast access.

Hive is coupled with a simple transformation-based logical optimizer that applies se-
lection and projection push-down, partition pruning, and simple join re-ordering based
on the size of the relations. Furthermore, it provides a hint mechanism, where specific

2.2. DISTRIBUTED STORAGE AND MAPREDUCE 21

optimizations are explicitly given inside the query by the user. Most notably, it is possible
to provide hints about performing map-joins. Recently, many hint-based optimizations
can be applied automatically by the optimizer. Finally, the logical plan is translated into
physical operators that are executed using Hive’s engine and MapReduce.

22 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

2.3 RDF data management

The prevalence of the semantic web and the increasing number of RDF datasets at-
tracted the interest of the data management community leading to a wide variety of ap-
proaches for the efficient management of RDF data. As was the case in the relational
database setting, there are many challenges to be addressed in order to build an effi-
cient RDF system. The main challenges include, but are not limited to: (i) choosing
a good storage model and creating effective indexes; (ii) integrating smart partitioning
techniques in the storage model, if the dataset is very large and a distributed architecture
must be used; (iii) selecting the proper storage infrastructure; (iv) identifying an efficient
query processing model, (v) developing smart optimization algorithms and (vi) handling
the semantics of RDF datasets.

A system providing appropriate answers to the above challenges has yet to emerge.
Current projects in this area have one primary research focus and possibly address some
other secondary ones. Several surveys of RDF data management have appeared. The
older ones [BG03, MKA™02] mostly account the manners in which an RDBMS can be
used for storing RDF data, providing also performance comparisons and insights of RDF
systems [Lee04] at that time. The approach consisting of storing and manipulating RDF
data using RDBMS has continued, as witnessed by subsequent surveys [SAQ9]] and per-
formance evaluations [SGD™09]. As the volumes of semantic web data being considered
kept increasing, novel indexing techniques were used, and different approaches, no longer
relying on RDBMSs, have been studied [FCB12]]. In particular, there has been exten-
sive work on building distributed RDF data management systems using P2P infrastruc-
tures [FBHB11]], while the past few years researchers turned into RDF data management
in the cloud [LPF*12, [KMT13].

2.3.1 Characterisation criteria

As shown in the multiple surveys mentioned above, RDF data management platforms
can be examined from multiple perspectives, and many different classification criteria can
be used. In the rest of this section, we present the criteria that were used to characterise
the state-of-the-art in this thesis. In an attempt to provide a useful overview in which
each individual approach can be placed, we purposely avoid discussing implementation
details, and emphasize the general ideas instead.

Storage organization In the first place, we are interested in the way the data is organ-
ised inside the system. The latter means identifying the general abstract schema used for
storing the data, whether the data is stored in tables or in graphs, in memory or in a par-
ticular disk-based platform etc. Ideally, we would like to describe such a schema relying
only on the elements of a triple which are stored in each individual data structure. Integral
part of the schema are, of course, the various indexes and the data partitioning techniques
used by the platform.

In order to characterize the storage of each system concisely, we introduce the storage
description grammar as follows.

2.3. RDF DATA MANAGEMENT 23

Definition 2.3.1 (Storage Description Grammar). The storage description grammar is a
tuple (NS, TS, PR, S,) where
— NS={S,, EXP, P, ATR} is the set of non-terminal symbols;
—_
_ TS:{H{IV’ H}"’ H(Vl, H)IV’ IIHPH, VIGPVI, IVLPVI’ HSH’ IIPII’ VIOII’ VIUH, HTIV, IICH, IVGH, " S IV’
— — — — — —
"PpU,rOom"uUn,"T","C","G","*", STR} is the set of terminal symbols;
PR is the following set of production rules:
So — EXP ("{"EXP"}")?
EXP — ATR+IP"(" ATR+")"ISTRIS,
P — "HP" I ”GP" | "LP”
ATR — HS" | "P” | NO” | "U" | "T" |’|Cl’ I "G"
— — — — — — —
— HS Hl"PNlHOHlHU"INTH|IIC"|"GH|”*"
— STR is a terminal symbol representing any string of finite length comprised from
the characters "A-Z" and digits "0-9" or "€" for the empty string;
— S, is the starting symbol.

Definition 2.3.2 (Storage Description). A storage description is an expression accepted
from the storage description grammar.

The ATR non-terminal serves to denote a set of RDF data set elements stored in a
specific storage structure. We use S to denote the subject values, P for the property values,
O for the object values, U for resources (any URI value appearing in S, P or O), T for terms
(any URIs or constants appearing in S, P or O), C for the classes of the RDF dataset, and G
for the names of the graphs. A combination of several ATR symbols denotes the fact that
the data structure holds the respective set of RDF data elements; for instance, either OS
or SO denote a structure that stores (subject, object) tuples (in this case, pairs). Further,
symbols annotated with an arrow denote an ordering of the respective data in the storage

structure. Thus, ?O and O? both denote (subject, object) pairs sorted by subject. If
we have a combination of ATR symbols where there are multiple annotations with arrows
then the order of symbols in the combination denotes the order according to which data

——
is sorted in the respective storage structure. For example, O S denotes (subject, object)

pairs sorted first by the object then by the subject, whereas 'S O denotes a set of such
pairs sorted first by the subject and then by the object. Equivalently, we may also write

CTS> and S_(>) to describe the same storage structure. The asterisk (*) symbol is used as a
shorthand for the complete graph (instead of writing SPO for subject, property, object,
or SPOG for subject, property, object, graph), when the order of the attributes is not
important.

The STR symbol represents string constants and it is used for denoting names of
the storage structures (e.g., table, collection etc.) holding data. For example, T{SPO}
represents a data structure named T and holding all triples of the dataset.

For a storage description to be complete, the partitioning of the data has to be speci-
fied. The existing works rely on three types of partitioning techniques:

— Hash Partitioning (HP), where the triples are classified in partitions using the value

of a hash function on some of their attributes;

24 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

— List Partitioning (LLP), where each partition is associated with a set of values, and
all triples associated with these values are part of this partition (most of the times
the property values are used to define the partitions);

— Graph Partitioning (GP), where the RDF graph is considered as a whole and graph
partitioning techniques and tools (e.g., METIS [KK98]) are used to determined the
triples belonging to each partition.

In order to model the partitioning, we use the P symbol followed by a sequence of RDF
elements (ATR+). For example, HP(SO) denotes hash partitioning using the subject and
object of a triple, while LP(P) denotes a list partitioning using the values of properties.

Furthermore, an expression of the form A{B} defines a map structure obtained from

AB by grouping using the values of A. The brackets denote a nesting of information. For
instance, the expression S{P{O}} means that triples are first grouped by subject; then,
within each group, we split the triples again by the values of their properties, and for each
such property we store the set of object values. The resulting data organization can be
seen as a multiple-level map, or a two-level index.

The simplest meaningful storage description expression is SPO, which denotes a data

structure storing all the (full) triples.

Storage infrastructure A second important aspect of an RDF store is the storage infras-
tructure being used. To store a given data collection such as those described by our gram-
mar above, existing systems rely on RDBMS tables, flat files, main-memory structures,
collections in a key-value store, other native RDF DBMS etc. These choices are com-
pounded by the many different concrete systems implementing each of these paradigms,
e.g., one can use either S3 or HDFS as a distributed file system, similarly either use
Oracle or Postgres or DB2 etc. Since the concrete choice of a system does not change
significantly the storage characterization we make here, below we organize the discus-
sion around a set of classes of systems which may be used to hold an RDF data storage
structure: DBMS, file system, memory, and key-value store.

Query optimization Third, we are interested in the kind of query optimization tech-
nique supported by the system. From the perspective of query optimization, one of the
main concern is the shape of the query plan, which amounts to the space of possible query
evaluation choices for a given query.

Linear plans with binary joins (LB)

Linear plans with n-ary joins, where each logical join operator may have 2 or more
inputs (LN)

Bushy plans with binary joins (BB)

Bushy plans with n-ary joins only at the first level (BN1)

1. The BNI1 option is less standard than the other ones, yet it does occur in the recent RDF data man-
agement literature. It turns out that in a wide-scale distributed systems, the first-level joins, applied directly
on the data extracted found in the distributed the store, enjoy some physical execution strategies capable
of joining N inputs with a single operator. Thus, some systems consider (logical or physical) n-ary join
operators only at this first level, and resort to more traditional binary joins for the subsequent operations in
the logical plan. Our classification includes this option.

2.3. RDF DATA MANAGEMENT 25

— Bushy plans with n-ary joins (BN).
Finally, the query processing paradigm can also vary significantly. We attempt to
roughly group the existing approaches by considering the following processing models:
— Centralized execution using custom operators (CECOQO), where the query processing
is done entirely on a single machine;
— Centralized execution using DBMS engine (CEDB) where the query processing is
delegated completely on a single site database;
— Distributed execution using the MapReduce programming model (DEMR);
— Distributed execution using a parallel DBMS (DEDB), and
— Distributed execution using other (custom) operators (DECQO).
In the sequel, we classify state-of-the-art systems according to their primary research
focus, and then provide a detailed description of each, based on the criteria and using the
grammar introduced in this section.

2.3.2 RDF storage & indexing

The earliest approaches for storing RDF using an RDBMS are described in [Lil00,
Mel00]. The contributors advocate the use of the triple (SPO) and quad (GSPO) table
for storing RDF data while simple dictionaries are proposed for reducing the space oc-
cupancy. Furthermore, they outline a schema where resources and literals are stored in
separate tables and the triple table contains only the pointers to these tables. These ideas
have been the core of RDF many data management systems. In the following, we will see
how these ideas evolved over the years to create efficient systems able to handle billions
of triples.

Redland [Bec01] is one of the earliest RDF data management systems. It was designed
as a modular framework with a flexible API promoting the development of new appli-
cations relying on the RDF data model. Redland allows supports queries of exactly one
triple pattern, thus no joins, and accordingly it does not have a query optimization algo-
rithm. Redland uses three indexes to store the data, relying on hash table structures that
reside either in main memory or in a persistent storage provided by the BerkeleyDB li-
brary [Ora94]. The first hash table uses as keys (subject, property) pairs, with the object
value serving as value; the second hash table contains property-object keys and the sub-
jects as values; finally, the third hash table has subject-object keys and the properties as
values.

| Storage description | Infrastructure | Plan shape | Processing |
| SP{O} + PO{S} + SO{P} | DBMS | memory | - | CECO |

RDFSuite [ACK"00, ACK™01] is among the first works that advocated the use of
database technology to support RDF data management. A formal data model for RDF
data bases is proposed and the design of a persistent RDF store over PostgreSQL is pre-
sented. The proposed approach stores separately the RDF Schema information from the
RDF instance information.

26 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Four main tables are used for storing the RDF Schema information, namely Class,
Property, SubClass, and SubProperty. The Class table holds all the different class re-
sources that appear in the dataset while the Property table holds all the different properties
with their domain and range. This work assumes a set of restrictions on the RDF graph:
the domain and range of every property is exactly one RDF class, in other words there is
exactly one RDFS constraint stating the domain, and one stating the range, of every prop-
erty occurring in the RDF graph. As stated when presenting the RDF data model, these
constraints do not hold in general. For this restricted setting, two tables named SubClass
and SubProperty hold the rdfs:subClassOf and rdfs:subPropertyOf relationships.

At the instance level, there are two types of tables. For each class occurring in the
dataset, a table named after that class holds all the resources that belong to this class (one-
attribute table). For each property of the dataset, a table named after that property holds
the source and the target connected if that property (two-attribute table). Appropriate
indexes are built for every table and almost every attribute independently. The data is
stored persistently in PostgreSQL; the query language supported is RQL [KACT02]. The
query evaluation engine relies on custom operators and on PostgreSQL. The optimizer of
the system aims to push as much of the query evaluation as possible inside the DBMS so
that it can take advantage of the DBMS optimizer.

| Storage description | Infrastructure | Plan shape | Processing |
CLS{C} + PTY{P{CC}} DBMS - CECO + CEDB
SCLS{C{C}} + SPTY{P{P}}
LP(C){U}
LP(P){S{O}} + LP(P){O{S}}

Sesame [BKvH02] is an RDF storage and querying platform advocating an extensi-
ble architecture. Sesame highlights the importance of having an intermediate Repository
Abstraction Layer (RAL, in short) between the physical storage and the other modules
(query module, data import/export module, etc.) of the system, in order for the query
processor to remain independent of the particular storage. All RDF-specific methods are
implemented inside this layer and form the API with which the other modules commu-
nicate. The code for translating the RDF methods to actual calls of the physical store is
located inside this layer.

As in [ACK™01]], Sesame’s storage schema uses class and property tables. For each
class from the RDF dataset, a single-attribute table stores the typed resources that corre-
spond to it. Similarly, each property defines a two-attribute table that holds the source
and the target node of the property (i.e., the table is named after the property value of a
triple, and holds all subjects and objects corresponding to triples with the same property).
The data are stored persistently in the underlying store, which may in principle be any-
thing (due to RAL) from a RDBMS to flat files. In [BKvHO2], the storage engine used
was PostgreSQL. Queries are expressed in RQL [KAC™02] and are handled by the query
module. The system has a query optimizer, however no details are provided about its
functioning.

2.3. RDF DATA MANAGEMENT 27

| Storage description | Infrastructure | Plan shape | Processing |
| LP(C){U} + LP(P){SO} | DBMS | memory | - | CECO + CEDRB |

Jena2 [WSKRO03] is the second generation of Jena [McB02], a semantic web toolkit
specifically intended to support large datasets. The storage schema in Jena2 trades off
space for time. It uses a triple table where resource URIs and simple literal values are
stored directly in the table. Separate tables for URIs (resp., literals) are used only for
resources (resp., literals) with long values (corresponding to very complex URIs or to
long literals, e.g., paragraphs of text). Different RDF graphs are stored in different triple
tables. In addition, Jena provides a general facility, called property table, to hold together
triples commonly accessed together. Single-valued properties are part of a big table where
subject values are stored in the first attribute and the rest of the attributes store property-
object pairs (the attribute name is the property, while the attribute value holds the object
value) associated with a given subject. Multi-valued properties are stored in separate ta-
bles having two attributes, storing the subject-object pairs related by a particular property.
Finally, Jena2 proposes the use of a property class table. This holds all instances of a
specified class, and also stores all the properties that have this class as domain as per the
RDF Schema. The table has one attribute for the subject resources of the class, and zero
or more attributes for the associated property values (the attribute name is the property,
while the attribute value holds the object value). Jena2 provides a database driver inter-
face and a generic implementation for the most common SQL databases like PostgreSQL,
MySQL and Oracle. To access property class tables and for RDQL [Sea0O4] queries, the
drivers dynamically generate SQL select statements.

| Storage description | Infrastructure | Plan shape | Processing |

LP(G){SPO} + S{PO} DBMS | memory - CEDB
L(P){SO} + L(CO){S{PO}}

3store [HGO3] stores triples from an RDF graph in a single table; the table has an at-
tribute holding the id of the graph to which each triple belongs. 3store uses RDQL [Sea04]
for expressing RDF queries. To evaluate them, the system relies on the underlying DBMS
system (MySQL) by translating queries into SQL.

| Storage description | Infrastructure | Plan shape | Processing |
| GSPO | DBMS | - | CEDB |

Hexastore [WKBO08] emerged as an attempt to address the limitations (creation of
a large number of tables, poor performance for queries with unbound properties) of
property-based partitioning approaches (see systems with LP(P) in their storage descrip-
tion). RDF triples are indexed in six possible ways, one for each permutation of the three
RDF elements. Conceptually each index can be thought as a nested three-level structure
one should access based on the first index attribute, then on the second, in order to get
the value of the third; all the levels are sorted. Hexastore provides efficient single triple
pattern lookups, and also allows fast merge-joins for any pair of triple patterns. The main

28 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

disadvantage of Hexastore is the big storage requirement. To limit the amount of storage
needed for the URIs, Hexastore uses dictionary encoding (whereas each resource is re-
placed with an integer ID), often applied to compress large URIs and literals. Update and
insertion operations affect all six indices, hence can be slow. The prototype implemen-
tation relied in main-memory to store the indexes. The focus of this work was mostly to
make the data storage efficient; the system is not complete, in particular no optimization
algorithm is discussed.

| Storage description | Infrastructure | Plan shape | Processing

S{P{O}} + S{O{P}} + P{S{O}} memory - CECO
P{O{S}} + O{S{P}} + O{P{S}}

Virtuoso Cluster Edition [Erl08] is a commercial system for RDF data management
originally created for supporting relational data. Virtuoso stores RDF data into a single
relational table with additional indexes; it also stores the graph from which the triple
originates. Virtuoso delegates to the user the decision of creating the proper indexes.
By default it builds an index using the concatenation of the graph id, subject, predicate,
and object of a triple. This storage scheme is suggested for dealing with queries where
the graph id is known. The recommended index when the graph id is not known is a
concatenation of the subject, property, object and graph id. Virtuoso extensively uses
bitmap indexes for improving performance and storage efficiency at the same time with
other compression techniques. Its RDF query evaluation closely resembles the one of
SQL, bar certain differences for what concerns the selectivity estimations. The cluster
edition employs a hash partitioning scheme to partition the index to the available nodes.
Intra- and inter-operator parallelism are inherited from its relational edition.

| Storage description | Infrastructure | Plan shape | Processing |
| HP(GSPO){GSPO} | filesystem | LBIBB | CEDB |

Clustered TDB [[OSGO08] is the clustered version of Jena TDBE Clustered TDB builds
three B+ tree indexes using the concatenation of subject, property, and object values.
The system follows a shared-nothing approach: it applies a hash partitioning on the three
indexes to split the data into the available nodes. Specifically, the SPO index is hash-
partitioned by the subject, the POS by the property, and the OSP by the object. A rela-
tively simple skew mechanism handles the values that appear too often in the dataset by
combining the partition attribute with another attribute. The authors focus on building a
clustered distributed RDF store rather than a complete data management system thus the
current prototype does not include a query optimizer.

| Storage description | Infrastructure | Plan shape | Processing |

HP(S){SPO} + HP(P){POS} + HP(O){OSP} | file system - DECO

2. https://jena.apache.org/documentation/tdb/

https://jena.apache.org/documentation/tdb/

2.3. RDF DATA MANAGEMENT 29

Stratustore [SZ10] is the first work that exploits commercial cloud based services for
RDF data management. In particular Stratustore uses Jena for parsing RDF, while it pro-
cesses queries relying on Amazon’s SimpleDB as the storage back-end. Stratustore builds
two indexes using the key-value store, the first using the subject and property as a key and
the object as a value, and the second using the subject and object and the property as a
value. As is the case of many NoSQL databases, SimpleDB does not support complex
query processing, thus SPARQL queries must be evaluated outside the SimpleDB sys-
tem. Once the SPARQL query is parsed from Jena, the graph patterns are retrieved and
grouped by Stratustore, based on the selected indexes. Then the grouped triple patterns
are transformed into simple SELECT queries and are sent to SimpleDB. If the results need
further processing (filters, joins, etc.) this is done in a single machine using Jena-provided
operators.

| Storage description | Infrastructure | Plan shape | Processing |
| S{P{O}} + S{O{P}} | key-value store | - | DEDB + CECO |

CummulusRDF [LH11] is an RDF storage infrastructure relying on Apache’s Cassan-
dra key-value store. CummulusRDF uses three indexes: SPO, POS and OSP, based on
which it is able to answer all single triple pattern queries. Two different implementation
approaches were used, namely Hierarchical and Flat.

The hierarchical layout uses the row key, a super column key, and a column key to
store the triples, while the Flat layout uses only the row key and column key. The Flat
layout requires an extra index in order to support efficiently queries with triple patterns
whose subject and object are unbound. CummulusRDF is not a complete system, since it
only supports single triple pattern queries.

| Storage description | Infrastructure | Plan shape | Processing |
Hierarchical strategy
S{P{O}} + P{O{S}} + O{S{P}} | key-value store | - | DEDB
Flat strategy
S{PO} + PO{S} + O{SP} + P{PO} | key-value store | - | DEDB

2.3.3 RDF query optimization

Query optimization in relational databases is a well studied research area having its
roots [SAC"79] back in the *70s. Early RDF data management systems relied entirely on
relational optimizers, by storing and querying directly through a RDBMS). However, the
graph structure of RDF and other specific features of the data model lead to optimization
techniques being developed explicitly for the RDF model. Below, we present the main
proposals in this area. To give context to each algorithm, we briefly introduce the general
architecture of the system for which it was proposed, before explaining the optimization
technique.

30 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Atlas [KMMT™06] is a P2P system built on top of the Bamboo [RGRKO04] Distributed
Hash Table (DHT) implementation. Atlas incorporates various interesting strategies for
query processing and optimization common in many P2P systems relying on DHTs.
These strategies, namely QC, SBV, and QC*, were developed inside Atlas (to improve
various aspects of the system) and are discussed below.

When using the QC strategy [LIKO6], Atlas stores RDF triples three times, hashing
them on the subject, property, and object value, exactly like RDFPeers (to be discussed
shortly in Section [2.3.4)). To evaluate the query it follows the same procedure with RDF-
Peers where the triple patterns are ordered and executed sequentially each on one node,
while the intermediate results are transfered from one to the next to evaluate the join.
Conceptually, this algorithm amounts to left-deep plans with binary joins and cartesian
products.

Following the SBV strategy [LIK06], Atlas stores RDF triples seven times using all
the non-empty attribute subsets of a triple. To evaluate queries, the triple patterns are
ordered and executed sequentially (as for QC) with the difference that after the evaluation
of the first triple pattern, SBV pushes the bindings thus obtained into the next triple pat-
tern. Different tuples of bindings lead to multiple instantiations of remaining sub-query
to evaluate, that can be evaluated concurrently on multiple nodes exploiting the available
indexes. The generated query plans are left-deep binary join trees; the binding-passing
operator resembles binary index nested loop joins.

Following the QC* [KKK10] strategy, Atlas re-uses the QC storage and additionally
provides a mapping dictionary from URIs and literals to unique integers. This strategy
is explored in conjunction with three optimization algorithms: (i) the naive algorithm;
(i1) the semi-naive algorithm; (iii) the dynamic algorithm. All of them rely on heuristics
and build left-deep plans with binary joins. Query evaluation proceeds in the same way
as QC. The naive algorithm orders the triple patterns by selectivity, but in contrast with
QC, it does not allow cartesian products. The semi-naive algorithm builds a join graph
where each edge represents a join between two triple patterns, then repeatedly picks the
edge with the lowest cost (avoiding cartesian products, and focusing on identifying the
cheapest join), and adds the nodes to the plan. The dynamic algorithm is an extension of
the semi-naive, where after each join, the selectivity is re-estimated taking into account
the actual results from the performed joins leading to more accurate estimations.

| Storage description | Infrastructure | Plan shape Processing
QC,QC* strategies
H(S){SPO} + H(P){SPO} DBMS LB CEDB + DECO
H(O){SPO}
SBV strategy
H(S){SPO} + H(P){SPO} DBMS LB CEDB + DECO
H(O){SPO} + H(SP){SPO}
H(SO){SPO} + H(PO){SPO}
H(SPO){SPO}

2.3. RDF DATA MANAGEMENT 31

RDF-3X [NW10] is one of the best-known RDF data management systems. It em-
ploys exhaustive indexing (similar with Hexastore) over a table of triples materializing all
possible permutations of subject-property-object values. This translates to a replication
factor of six of the original dataset, that the authors overcome by applying smart compres-
sion techniques. Additionally, to avoid the problem of expensive self-joins they rely on
compressed clustered B+ tree indexes (where the triples are sorted lexicographically) and
efficient merge-join operations. The system relies on a Dynamic Programming algorithm
that builds bushy plans with binary joins using state-of-the-art methods [NM11] for the
cost estimation of joins.

| Storage description | Infrastructure | Plan shape | Processing |

SPO + SOP + PSO | file system BB CECO
POS + OSP + OPS

HadoopRDF [HKKT10, HMM™11] relies on Hadoop for storing and querying the
data, relying on property-based partitioning. The storage procedure is divided into two
steps. First, the triples are grouped into files based on the value of the property; then,
the file containing the triples with property value equal with rdf:type is further split based
on the object value (that is, the exact type). A query is evaluated using a sequence of
MapReduce jobs. HadoopRDF tries to minimize the number of jobs by aggressively
performing as many joins as possible in each job. The optimization algorithm produces a
single bushy plan, whose leaves are scan operators based on triple patterns. For a triple
pattern whose property value is known, only a single file is read from HDFS. On the
contrary, when the property is unbound, all the files residing in HDFS have to be read. In
the sequel of the plan, n-ary joins may be involved.

| Storage description | Infrastructure | Plan shape | Processing |
| LP(P){SO} | filesystem | BN | DEMR |

Rapid+ [RKA11, KRA11] proposes an intermediate nested algebra to increase the de-
gree of parallelism when evaluating joins, and thus reduce the number of MapReduce
jobs. This is achieved by treating star joins (groups of triple patterns having as subject
the same variable) as groups of triples and defining new operators on these triple groups.
Specialized physical operators were developed to back-up the proposed algebra and they
were integrated inside Pig, allowing the translation of logical plans (expressed using the
proposed algebra) to MapReduce programs. Queries with k star-shaped subqueries are
translated into a MapReduce program with k MapReduce jobs: 1 job for evaluating all
star-join subqueries, and k—1 jobs for joining the subquery results thus obtained. Concep-
tually, Rapid+ builds bushy plans with n-ary joins at the first level since the intermediary
results of the star-join subqueries are evaluated pair-wise and sequentially.

In [KRAT12], the authors extend RAPID+ with a scan sharing technique applied in the
reduce phase, to optimize queries where some property value appears more than once.
Surprisingly, they do not pre-process the data. They assume that the triples are stored
in flat files inside the HDFS using the typical subject, property, object representation.

32 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

However, when loading the data to process it through their physical operators, they use
a special data structure, name RDFMap. RDFMap is an extension of Java’s standard
HashMap, providing (among other optimizations) an index-based access by the property
value.

| Storage description | Infrastructure | Plan shape | Processing |
| SPO | filesystem | BNl | DEMR |

HSP [TSF12] focuses on the problem of query optimization in the complete absence
of statistics. The system is built on top of MonetDB [IGN™12] and applies the exhaustive
indexing scheme used in RDF-3X. The optimization algorithm exploits the syntactic and
structural variations of SPARQL triple patterns to produce a logical query plan without a
cost model. The algorithm tries to detect the merge joins that can be performed by solving
a maximum weight independent set problem. Finally, the logical plan is translated to a
physical plan, executed by MonetDB. HSP produces bushy query plans with binary joins.

| Storage description | Infrastructure | Plan shape | Processing |

SPO + SOP + PSO DBMS BB CEDB
POS + OSP + OPS

RDF-3X+CP [GN14] is an extension of the RDF-3X system with a new optimization
procedure. In an attempt to overcome the cost of exploring the complete search space (that
may be huge for RDF queries involving many self-joins) using a Dynamic Programming
algorithm, new heuristic techniques are introduced. The original DP algorithm of RDF-
3Xisreplaced by a new one that first decomposes the query into chain and star subqueries,
and then it performs the DP algorithm separately on these subqueries. The system also
uses a novel cost-estimation function that relies on the novel notion of characteristic pairs
for providing more accurate cardinality estimations for the results of the subqueries.

| Storage description | Infrastructure | Plan shape | Processing |

SPO + SOP + PSO | file system BB CECO
POS + OSP + OPS

gStore [ZMC*11, ZOC*14] utilizes disk-based adjacency lists in order to store the
RDF graph. The adjacency list can be also seen as an index where for every subject we
can retrieve the corresponding property-object values. gStore performs efficiently exact
and wild-card SPARQL queries, as well as aggregate queries by exploiting materialized
views. It compresses the data by encoding RDF entities and RDF classes using bit strings,
creating a data signature graph. Further, it uses two auxiliary indexes: VS*-tree, and T-
index. VS*-tree is used to prune out parts of the graph not relevant to the query, while
T-index is used to speed up aggregate queries. The query is encoded using the same
compression scheme as the data, and then it is asked against the VS*-tree to find candidate
matches. Each match of the encoded query corresponding to a subgraph match of the
original query is added to the results.

2.3. RDF DATA MANAGEMENT 33

| Storage description | Infrastructure | Plan shape | Processing |
| S{PO} + VS*-tree + T-index | file system | - | CECO |

2.3.4 RDF query processing

This section presents RDF data management systems having invested significant effort
in RDF query processing based on various infrastructures.

RDFPeers [CEFYMO04, (CF04] is the first P2P system utilizing a Distributed Hash Ta-
ble (DHT) to build an RDF repository. The system extends the MAAN [CFCSO03] P2P
implementation by incorporating RDF-specific storage and retrieval techniques. RDF
triples are split over the available nodes hashing them by subject, property, and object,
applying a more fine-grained partitioning strategy for properties that appear very often
in the dataset. Inheriting the primitive operations that were designed for MAAN, it al-
lows expressing single triple pattern queries, conjunctive queries with range filters, and
disjunctive queries with range filters.

To evaluate single triple pattern queries, if there is some constant in the query then it is
used to root the query to the proper node and return the results to the node that posed the
query; if there are no constants in the query, the query is send to all nodes for evaluation.
Disjunctive queries can be answered in a similar fashion, with an extra union operator
performed in the end. To evaluate a larger conjunctive query, triple patterns are evaluated
sequentially, each on the node having triples that match it; the intermediate results are
forwarded from one node to another where where they are joined etc. Conceptually, this
evaluation strategy resembles a left-deep plan with binary joins and possibly cartesian
products. Although conjunctive and disjunctive queries can in principle be mixed, the
authors do not provide a generic query planning algorithm for handling all of them.

| Storage description | Infrastructure | Plan shape | Processing |
| H(S){SPO} + H(P){SPO} + H(O){SPO} | DBMS | LB | CEDB + DECO |

Oracle [CDESO05] proposes an approach for storing and querying RDF data within its
RDBMS storage and processing engine.

RDF triples are stored in two tables: IdTriples (IT) and UriMap. UriMap holds all
resources and literals with their mappings to integer IDs, while IdTriples holds the triples
(subjects, properties, objects using their integer mapping) plus the id of their originating
RDF graph. In addition, all possible two-way joins between triple patterns are material-
ized, leading to six additional tables (which can be seen as materialized views denoted
with V1 to V6). Finally, a property-based index (P]) is defined for efficiently accessing
the IdTriples table. To further improve performance, other data structures are material-
ized, namely subject-property matrices (SPM), which are a slight variation of the property
tables used in Jena.

34 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

At the core of Oracle’s query processing capability is an SQL table function called
RDF_MATCH [CDESOS]ﬂ The main argument of the RDF_MATCH function is the
BGP query, expressed using the SPARQL syntax. The interest of this approach is that
RDF data can be queried jointly with relational data under a common language. To evalu-
ate the query, they extend Oracle’s interface by specifying rules for translating the content
of RDF_MATCH function (the BGP query expressed in SPARQL) into an SQL query that
is merged with the remaining SQL query (outside the RDF_MATCH function). Then, the
SQL query resulting from the translation is sent to Oracle’s query execution module.

| Storage description | Infrastructure | Plan shape | Processing |
IT{GSPO} + PI{P{GOS}} DBMS - CEDB
V1{SS{POPO}} + V2{PP{SOSO}}
V3{OO{SPSP}} + V4{SP{POSO}}
V5{SO{POSP}} + V6{PO{SOSP}}
SPM{LP(P){SO}}

4store [HLS09] is cluster-based RDF data management platform that operates on top of
commodity machines adopting a shared nothing architecture. The cluster is divided into
one or many storage nodes that hold the actual data and exactly one processing (master)
node which is responsible for retrieving the data matching the triple patterns of the query
from the storage nodes (using the so-called bind function) and evaluating locally the query
using the fetched data. 4store partitions the data among the storage nodes according to
the value of the subject. Then, at each node, two indexes (radix-tries) are built for every
distinct property, the first using the subject, and the second using the object. The indexes
store quads. In addition, at each node, there is a hash-based index whose key is the RDF
graph ID, while the value is the set of triples of the graph. The optimization algorithm is
based on heuristics; selections and projections are pushed down (inside the bind function)
etc.Join ordering is applied in a greedy fashion (using selectivity estimates) by executing
the most selective join first, and then the remaining ones. The resulting plan is bushy;
only binary joins are considered.

| Storage description | Infrastructure | Plan shape | Processing |
HP(S){LP(P){S{OG}}} | file system BB DECO
HP(S){LP(P){O{SG}}}
HP(S){G{SPO}}

SHARD [RS10] is among the first systems that used Hadoop and HDFS to store and
query RDF data. In SHARD, triples having the same subject are grouped in one line in
a data file. Thus, for each subject, one can retrieve all the corresponding property-object
pairs, which amounts to a simple form of file-resident subject index, although it is never
exploited by the system. Query evaluation is done sequentially by processing one triple
pattern at a time; one MapReduce job is used each to join the triples matching each triple

3. RDF_MATCH has been renamed to SEM_MATCH (https://docs.oracle.com/
database/121/RDFRM/sdo_rdf_concepts.htm#RDFRM592)

https://docs.oracle.com/database/121/RDFRM/sdo_rdf_concepts.htm#RDFRM592
https://docs.oracle.com/database/121/RDFRM/sdo_rdf_concepts.htm#RDFRM592

2.3. RDF DATA MANAGEMENT 35

pattern, with the previously created intermediate results. Conceptually, SHARD’s query
evaluation strategy leads to left deep query plans with binary joins, which correspond to
a sequence of MapReduce jobs, and to potentially long query evaluation time.

| Storage description | Infrastructure | Plan shape | Processing |
| S{PO} | filesystem | LB | DEMR |

DB2RDF [BDK*13] insists on the RDF data management using RDBMS providing
a new storage schema over relational tables and a syntactic optimizer for the efficient
translation of SPARQL queries to SQL. It creates one table with as many columns as the
underlying system tolerates storing in the first column triple subjects and in the rest of
the columns properties and objects pairs associated with a given subject. Thus, one row
of the table is of the form [s;|p;|o;|p,l0s]...|p,l0,] Where p; and o; are properties and
objects having s; as the subject. All the values of a same property (say, all the values of the
p; property) in the dataset are always stored in the same column (say, the second). This
resembles the property tables of Jena (Section with the difference that in the same
column of the table we may have multiple properties assigned (e.g., in the same table we
may have a tuple of the form [s,|p;|ox|p,|os] ... |p,lo’ 1) as long as the properties do not
have the same resource (s, is not associated with the property p;). To assign properties
into columns, the authors propose two methods: (i) the first based on a graph coloring
problem; (ii) and the second using some form of hashing. Similar to Jena if there are
multi-valued properties then additional tables have to be built. The layout above almost
completely eliminates subject-subject joins. A dual table is used for objects to eliminate
also object-object joins.

Since a naive translation of SPARQL to SQL may lead to bad performance, the authors
propose an algorithm for optimizing the translation of SPARQL to SQL. They consider
SPARQL queries with joins, unions, and optional. The algorithm parses the query into a
custom representation called dataflow graph where each operator (node) is assigned with
a cost. The graph defines a space of flow trees, each of which uses some of the edges
of the dataflow graph, and computes the query result. Since the problem of finding the
minimum-cost flow tree is NP-hard they propose a heuristic algorithm. In the end the
chosen flow tree is translated to SQL (this is one-to-one, i.e., there are no more choices
at this point) and is executed by the RDBMS.

| Storage description | Infrastructure | Plan shape | Processing |
| S{PO} + O{PS} +L(P){SO} | DBMS | - | CEDB |

H,RDF+ [PKTK12, PKT 13, PTK"14] is a recent RDF data management system us-
ing HBase and Hadoop’s MapReduce processing framework. To store the data, it adopts
the exhaustive indexing scheme of RDF-3X, building indexes on all permutations of sub-
ject, property, and object of a triple. To deal with the demanding size of the indexes, it
employs compression techniques tailored around the Hadoop framework. The indexes
are stored in HBase using only the key part of the index; HBase indexes are automatically
sorted in key order.

36 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

For what concerns query processing, H,RDF provides efficient MapReduce-based
merge-join operators which take advantage of the existing indexes. The system is bundled
with a greedy cost-based optimization algorithm that tries to perform as many joins as
possible in each job. The joins are performed sequentially one after the other leading
to left deep plans with n-ary joins (more than one triple pattern may join at the same
job). H_2RDF+ has a dynamic optimization algorithm, which decides if the next join
will be performed in a centralized or distributed fashion (using MapReduce) based on the
estimated cost. If the join has to process large inputs, H,RDF leverages the benefits of
parallel execution through MapReduce, otherwise it performs the join in a single machine
avoiding the overhead of starting a Hadoop job.

| Storage description | Infrastructure | Plan shape | Processing

SPO + SOP + PSO | key-value store LN CECO + DEMR
POS + OSP + OPS

PigSPARQL [SPL11] is the first system to provide a full comprehensive translation
from SPARQL 1.0 into the PigLatin (see Section[2.2.5]) parallel data processing language.
It allows any query expressed in SPARQL 1.0 to be executed using MapReduce jobs.
To store the data, the system uses the property partitioning approach where triples are
grouped in HDFS files based on the value of the property. The query optimization algo-
rithm relies on heuristics. The join order is established based on the syntactic form of
the triple patterns (triples patterns with more constants are considered more selective);
selection and projections are pushed down. If the order features a sequence of joins on
the same variable, an n-ary join is performed. Although not many details about the op-
timization algorithm are available, the optimization procedure described above reveals a
left deep plan with n-ary joins.

| Storage description | Infrastructure | Plan shape | Processing |
| LP(P){SO} | file system | LN | DEMR |

Rya [PCR12] is an RDF data management platform built on top of the Accumulo key-
value store. Rya is among the first systems that exploit entirely the row key of the key-
value store to create clustered indexes (similar with those used in RDF-3X). Rya takes
advantage of the key sorting provided by an Accumulo collection to store completely
the subject, property, and object (concatenating the values) of the triple inside the key.
Three indexes are built, using different permutations of subject, property, and object, so
that all single-triple pattern queries can be answered efficiently. The query processing is
done centralized in one machine using custom operators. Rya gathers and stores some
simple statistics regarding the cardinality of the constants that appear in the dataset, to be
able to order the triple patterns based on their estimated selectivity. From the available
information, it appears left-deep plans with binary joins are used to evaluate the query.
The optimizer uses index nested loop joins when there is an index on the join attribute.
Rya also makes use of inter-operator parallelism to execute in parallel (threads) some
joins.

2.3. RDF DATA MANAGEMENT 37

| Storage description | Infrastructure | Plan shape | Processing |

SPO + POS + OSP | key-value store LB CECO

Trinity. RDF [ZYW™13] is the first system adopting a graph-oriented approach for RDF
data management using cloud infrastructures. It stores the data as adjacency lists using
Microsoft’s Trinity [SWLI13]]. Trinity can be seen as distributed key-value store, sup-
ported by a memory storage module and a message passing framework. The basic storage
scheme uses the node ID as a key and the matching edges (incoming and outgoing) as
values. Conceptually, the scheme allows for each subject to find all property-object pairs
(node to outgoing edges) and for each object to find all property-subject pairs (node to in-
coming edges). In that sense, it is similar with other approaches that use key-value stores
and two indexes (S{PO}, O{PS}). Depending on the shape of the RDF graph, it may use
another storage scheme that co-locates the adjacency lists of a graph node to the same
machine.

To efficiently locate subject and objects, Trinity. RDF builds two additional indexes
from properties to subjects and from properties to objects (in [ZY W™ 13] this is the global
index). Query processing in Trinity. RDF follows a graph exploration approach with cus-
tom operators. An optimizer derives the execution plan by ordering the triple patterns
using a cost model that considers statistics, join estimations and communication cost.
The plan is executed in parallel at each node (the nodes exchange messages to retrieve
relevant triples) and then the results from all nodes are gathered to a master node, where
a final join removes false positives. The optimization approach strongly resembles rela-
tional query optimization, considering left-deep binary joins that can choose between two
access patterns for the leaf operators. The graph exploration approach comes very close
to a relational plan that uses index nested loop joins and the suitable indexes for each join.

| Storage description | Infrastructure | Plan shape | Processing |
| S{PO} + O{PS} + P{S} + P{O} | key-value store | LB | DECO |

TriAD [GSMT14] is a cluster-based RDF data management system that combines and
extends various techniques that lead to efficient RDF query processing. Similar with H-
RDF-3X, it employs a graph partition strategy using the METIS graph partitioner [KK98]
to divide the original RDF dataset into partitions. Based on the METIS result, they also
build a summary graph used to restrict query processing to only its interesting part before
evaluating the query. Every triple is replicated to two partitions using the subject and the
object. Then, for every subject partition, it builds the indexes SPO, SOP and PSO, and
for every object partition it builds the indexes OSP, OPS and POS. The indexes are sorted
in lexicographic order and are stored in main memory. TriAD holds statistics for every
possible combination of S, P and O from the data graph and the summary graph.

The query optimization algorithm is divided into two phases: (i) the first phase uses
an exploratory algorithm the processes the query against the summary graph to identify
the relevant partitions; (ii) the second phase uses a dynamic programming join ordering
algorithm like the one of RDF-3X (bushy plans with binary joins) with an extended cost
function to account for the distribution of the data, the gathered statistics, and the relevant

38 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

partition information from the first phase. Finally, to perform joins, it leverages multi-
threaded and distributed execution, based on an asynchronous MPI protocol.

| Storage description | Infrastructure | Plan shape | Processing

GP(*){SPO} + GP(*){SOP} + GP(*){PSO} | memory BB DECO
GP(*){POS} + GP(*){OSP} + GP(*){OPS}

2.3.5 RDF partitioning

Even in centralized architectures, partitioning the RDF graph in multiple tables or files
can greatly improve performance for certain types of queries by avoiding overly large
results (e.g., ajoin output too large for the available memory). The impact of partitioning
is naturally even more visible in distributed systems, where the graph is distributed to
multiple machines which can be exploited for parallelism; in exchange, one has to account
also for data transfers across the network. In this section, we present approaches for
distributed RDF graphs in a way that maximizes parallelism while attempting to reduce
the network communications entailed by the evaluation of a query.

H-RDF-3X [HAR11] aims to scale up RDF data processing by partitioning the RDF
dataset based on its graph structure, and storing the resulting partitions in a set of central-
ized RDF stores. Graph partitioning is again delegated to METIS [KK98]|]. Each partition
is defined by a set of vertices, and triples are assigned to a partition set if their subject is
among the nodes which METIS allocated to this set. This allows the execution of some
type of queries locally at each processing node (each of which evaluates it on its locally
stored data).

To enlarge the set of queries that can be thus parallelized processed in parallel, one can
store next to the nodes in a partition set, all the nodes reachable by a path having one end
node in the partition set, and whose path length is bounded by a certain constant k. Each
partition set is then stored in an RDF-3X engine residing on the respective processing
node.

The optimization algorithm decomposes the query into subqueries, each of which
can be executed locally at each node without network communication. Finally, it joins
the intermediary results from the subqueries using MapReduce jobs. The query plans
produced for joining the results of the subqueries are left deep with binary joins.

| Storage description | Infrastructure | Plan shape | Processing

GP(*){SPO} + GP(*){SOP} DBMS LB CEDB+DEMR
GP(*){PSO} + GP(*){POS}
GP(*){OSP} + GP(*){OPS)

SHAPE [LL13] partitions an RDF graph using a hash-based approach that considers
also the semantics of the RDF graph. It tries to combine the effectiveness of the graph
partitioning with the efficiency of the hashing to create partitions that allow many queries

2.3. RDF DATA MANAGEMENT 39

to run locally at each node. It starts by creating the baseline partitions by hashing the
triples using their subject (resp. object). Then the baseline partitions are extended by:
(1) hashing the objects (resp. subjects) of the triples that belong to this partition; (i) hash-
ing the subjects (resp. objects) of all the triples of the RDF graph; (iii) comparing the
hash values, and associating to the baseline partition the new triples that hash to the same
value. This procedure is known as I-forward (respectively, I-reverse) partitioning. The
partitions can be extended further, following the k-hop notion introduced in H-RDF-3X,
leading to the k-forward, k-reverse, and k-bidirectional partitioning approaches. The
bidirectional partitioning expands the baseline partition using the hash of the subject and
the hash of the object at the same time. The partitions are stored in centralized RDF
stores.

Query evaluation and in particular query optimization are very similar to those of
H-RDF-3X. The optimizer decomposes a queries into subqueries that can be evaluated
locally, and combines their results through left deep plans with binary joins, executed
using MapReduce.

| Storage description | Infrastructure | Plan shape | Processing

HP(*){SPO} + HP(*){SOP} DBMS LB CEBD+DEMR
HP(*){PSO} + HP(*){POS}
HP(*){OSP} + HP(*){OPS}

PP-RDF-3X [WZY"15] is the state-of-the-art on the partitioning of large RDF graphs.
The authors suggest dividing the RDF graph into disjoint partitions using end-to-end paths
as the smallest partition element (a single end-to-end path must reside completely inside
a partition). Thus, every partition can be seen as a set of end-to-end paths. An end-to-
end path can be roughly characterized as a maximum-length path from a source node to
a sink nodeﬂ Setting up the store, then, requires finding all end-to-end paths and divid-
ing them into disjoint sets. Since two or more end-to-end paths might contain common
subpaths (common triples), the authors develop a cost model for finding the best trade-
off when partitioning the graph, between replicating nodes (which improves performance
but occupies more space) and disjointness. The problem is NP-Hard, thus they propose
an approximate algorithm for solving it. Similar to SHAPE and H-RDF-3X, they store
the derived partitions in local RDF-3X stores. Queries are then decomposed into queries
which can be locally evaluated. The query plans combining subquery results are left-deep
with binary joins; they make use of MapReduce jobs to produce the final result.

| Storage description | Infrastructure | Plan shape | Processing |

GP(*){SPO} + GP(*){SOP} DBMS LB CEBD+DEMR
GP(*){PSO} + GP(*){POS)
GP(*){OSP} + GP(*){OPS}

4. The exact definition is a bit more involved, allowing for directed cycles to occur in specific places
with respect to the end-to-end path, in particular at the end; a sample end-to-end path is uy, uy, U3, Uy, Us, Us,
for some u; URIs in the RDF graph, 1 <i <5.

40 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

2.3.6 Summary

We summarize here the main RDF data management ideas and concepts which we
have analyzed and classified above.

Indexing Building and maintaining specialized indexes for providing fast access to
RDF data started with the first RDF data management systems [BecOT,/ACK™ 01, BKvH02,
McB02]. Among the most significant indexing proposals, the six-index approach where
all the permutations of subject, property, and object, are concatenated sorted and stored in
disk, memory, key-value store, or DBMS [NW10, TSF"12, IGN14, PTK"14]. Of course
there are approaches that considered fewer indexes but still on the idea of keeping the at-
tributes sorted [PKTKI12, [PCR12]. The first system that followed this storage strategy is
RDF-3X [NW10] although the idea of exhaustive indexing on the different permutations
of SPO is bit older and known under the name Hexastore [WKBOS|]. Hexastore is based
also on the idea of exhaustively indexing of the permutations and sorting them, but in
addition it nests (groups) attributes within the index. This nested structure fits perfectly in
key-value stores [SZ10, LHI11]], and thus some of the some of the six indexes have been
implemented in such systems.

Partitioning Beyond indexing, partitioning is another way of allowing selective ac-
cess to RDF data. In its simplest form it can be spotted early on in centralized sys-
tems [ACK"01, BKvHO2] where the subjects and objects were grouped into different
structures (tables) based on the distinct property values that appear in the RDF dataset.
This property partitioning approach became known as vertical partitioning [AMMHO7];
it corresponds to the LP(P) prefix presented in the previous sections. As RDF datasets
grow, partitioning becomes indispensable for large scale distributed systems. Vertical par-
titioning still remains among the most popular partitioning methods appearing in recent
distributed systems [HLS09, HMM ™11, [SPL1T]. Another popular partitioning technique
distributes the triples (tables, indexes, files, etc.) into disjoint partitions by applying a
hash function on one (or several) of the attributes [|[CF04, [LIKO06, |OSGOS8, [Erl08., [HL.S09,
KKK10]. Recently, more elaborated approaches were used, based on the structure of the
RDF graph [HARTI, LL13,[GSMT14, WZY " 15], aiming to maximize parallel processing
and reduce the data transfers they require.

Adapting to the workload All the approaches discussed so far proposed a fixed solu-
tion that does not consider knowledge of the query workload. More recently, research
has focused on exploiting information about the workload to structure the storage and
indexes. In [CL10] a set of navigational paths appearing in the given workload is se-
lected to be materialized, while in [DCDK11]] focuses on recommending RDF indices. A
methodology for organizing the storage of an RDF graph as a set of workload-inspired
materialized views is presented in [GKLMI10, GKLMI11]]. More recently, a distributed
system [GHS12, [HS13] exploited the query workload to decide how to partition the data
in order to extract the best performance. While the above works recommend a storage
model off-line (before actually running queries), a more recent vision [AOD14] proposes

2.3. RDF DATA MANAGEMENT 41

an RDF storage model that can learn from the queries as they run, and adapt the stor-
age online (in-between query evaluations); these ideas are developed in the Chameleondb
prototype [AODH13,/AOD15, AODH15].

Infrastructure The size of the semantic web data volumes processed by early applica-
tions was sufficiently small to fit in memory [BecOl, McB02, BKvHO2]. Subsequently,
data storage was delegated to an RDBMS, which allowed manipulating bigger volumes
of data also taking advantage of mature optimization techniques of RDBMS [ACK™*01,
HGO3, ICDESOS]. The limitations encountered by these RDBMS-based approaches have
lead to the design of novel architectures specifically built from the grounds up, for RDF
data [NW10, ZMC*11, ZOC* 14,/ AODH15]. In parallel, instead of relying only on cen-
tralized machines to store RDF data, systems were built around the concepts of P2P net-
works [NWQ702, [CF04, MPKO06, [LIK06, [KKK10], machine clusters [Erl08, (OSGOS|,
HLS09], distributed file systems [RST0, HMM™ 11, RKATT, [KRATT, [SPL1T], and key-
value stores [SZ10, LHTT, PCR12, ZYW™13, PTK"14]. With the price of main mem-
ory dropping as the technology advances, some recent distributed systems [ZYW™13,
GSMT14]] opted for this direction. Last but not least, there are distributed systems relying
on a federation of single-site triple stores [HARTI, LL13, WZY"15].

Query optimization Early systems relied on RDBMS’ optimizers [ACK*01, BKvHO02,
WSKRO3, HGO3, ICDESOS)]. These are typically based on dynamic programming (DP)
using binary joins and various heuristics. DP algorithms without heuristics have been pro-
posed also in native RDF systems like [NW10, GSMT14]. For large queries, DP has to
be combined with (or replaced by) heuristics [TSF" 12, IGN14] in order to scale. Surpris-
ingly, a lot of distributed systems [OSGO08, HLS09, KKK10, RS10, SPL11]] use naive op-
timization algorithms combined with simple database techniques like selection-projection
push-down producing plans; this cannot guarantee optimality. A line of works [LIKO06,
PCR12,[ZYW*13ZOC™" 14] also use (index) nested loop joins for evaluation, thus the op-
timization algorithm, apart from join ordering, has to identify the proper access patterns
when indexes are available. Systems focusing on partitioning [HARTT, LL13, WZY"15]]
neglect the optimization part providing some very basic algorithms. All of the aforemen-
tioned approaches build left deep or bushy plans with binary joins. With the proliferation
of MapReduce and distributed systems, providing more opportunities for parallel eval-
uations, bushy plans with n-ary joins can boost performance. In [RKA11, KRAT1] the
authors build bushy plans with n-ary joins at the first level while in [HMM™11]] a greedy
optimization algorithm and heuristics are used in order to build a single bushy plans
with n-ary joins all over. Some early systems do not address optimization at all [BecOl,
WKBO08, LH11,SZ10].

Query processing Centralized systems like [BecO1, WKBO08, NW10, GN14, ZMC™11,
ZOC™14] rely entirely on custom operators to process the queries while others [WSKRO03,
HGO3, ICDESO5! [ErlO8]] simply translate the RDF query into a relational one and delegate
optimization and execution to the relational server. Between the two categories there are

42 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

approaches [ACK™01, BKvHO02, TSF"12] based on custom operators while also push-
ing part of the query is inside the RDBMS. Other systems [SZ10, LH11, PCR12] use
distribution stores while the processing is performed in a centralized machine. Among
distributed systems, we can distinguish those [OSGOS|, HLS09, ZYW™13, [GSMT14]
using their own operators and implementing the whole communication protocol from
scratch, those [NWQ™02, [CF04, MPKO06, [LIK06, KKKI0] that use and extend P2P im-
plementations, and those exploiting the strengths of MapReduce to support the process-
ing. The MapReduce based systems can be further divided into those [RS10, HMM™11,
RKAT1, IKRATI, ISPL11]] relying exclusively on the framework while others [HARI11,
LL13, PTK 14, WZY"15] may perform some operations in a centralized environment.

2.4 Conclusion

In this chapter we presented RDF, the standard data model for representing Semantic
Web resources, and its query language SPARQL. We recalled briefly the main features
of distributed storage platforms, including distributed file systems and popular key-value
stores. We described the general functionality of the MapReduce framework and outlined
some higher level languages for exploiting its benefits using a declarative syntax. Finally,
an extended overview of the existing RDF data management systems was presented and
analyzed from the scope of storage, indexing, query optimization, and infrastructure.

Chapter 3

AMADA: RDF data management in the
Cloud

In this chapter, we present AMADA, an architecture for RDF data management based
on public cloud infrastructures. AMADA follows the Software as a Service (SaaS) model:
the complete platform is running in the cloud and appropriate APIs are provided to the end
users for storing and retrieving RDF data. Public cloud infrastructures are typically rented
for a monetary cost. This chapter explores various RDF storage and querying strategies,
revealing their strengths and weaknesses from a perspective seeking to strike a balance
between performance and monetary costs.

The architecture of AMADA has been initially studied before my involvement in the
project: in particular, an XML data management platform based on the same Amazon
cloud services has been considered in [CCM12, [CCM13], while RDF was the focus
of [BGKM12, IABC"12]. I joined the AMADA project subsequently. My work has re-
visited and extended the ideas in [BGKM12], to examine more RDF storage strategies
and processing techniques. In addition, we changed the underlying key-value store (mov-
ing from SimpleDB to DynamoDB), and added to the system a novel query optimizer,
which was lacking in [BGKM12, ABC"12]. Specifically, for some storage and index-
ing strategies, I proposed a cost-based optimizer, while dictionary compression has been
investigated for all strategies. Finally, we performed a larger set of experiments (350 %
more RDF triples) using real datasets that revealed interesting results, contradicting the
conclusions drawn in [BGKM12] based on smaller datasets.

This chapter documents these extension. The material presented here follows closely
the respective book chapter [BCG™14]. The AMADA system has been open-sourced in
March 20131

3.1 Introduction

The rapid growth of RDF data spawned the movement from centralized RDF data
management systems to distributed ones. In addition, we have seen that relying on cloud

1. http://cloak.saclay.inria.fr/research/amada/

43

http://cloak.saclay.inria.fr/research/amada/

44 CHAPTER 3. AMADA

computing for building such systems is a very promising direction due to the scalability,
fault-tolerance and elasticity features it offers. Nevertheless, building such a system re-
quires addressing a set of challenges, outlined in Chapter [I| In this Chapter, our focus
is on the design of a cloud-based architecture and how indexing techniques can improve
performance.

Many recent works have focused on the performance versus monetary cost analysis
of cloud platforms, and on the extension of the services that they provide. For instance,
[BEGT08]] focuses on extending public cloud services with basic database primitives,
while MapReduce extensions are proposed in [AEH™ 11] for efficient parallel processing
of queries in cloud infrastructures. In the Semantic Web community there has been also
a movement to cloud-based RDF data management [KM15]]. However, there are hardly
any systems entirely designed around public cloud infrastructures, making it difficult to
assess the suitability of commercial clouds for RDF data management.

RDF data management systems built using commercial clouds are Stratustore [SZ10]
and Dydra [Datl1]. Stratustore explores only a single strategy for storing and querying
RDF data in Amazon’s SimpleDB while the cost factor of the cloud is not examined at
all. Dydra is also developed on top of Amazon Web Services, but there are no available
details regarding the system.

The focus of this chapter is on an architecture for storing RDF data within the Amazon
cloud that provides efficient query performance, both in terms of time and monetary costs.
We consider hosting RDF data in the cloud, and querying through a (distributed, parallel)
platform also running in the cloud. Such an architecture belongs to the general Software as
a Service (SaaS) setting where the whole stack from the hardware to the data management
layer are hosted and rented from the cloud. At the core of our proposed architecture reside
RDF indexing strategies that allow to direct queries to a (hopefully tight) subset of the
RDF dataset which provide answers to a given query, thus reducing the total work entailed
by query execution. This is crucial as, in a cloud environment, the total consumption of
storage and computing resources translates into monetary costs.

This chapter is organized as follows. First, we briefly introduce the different parts
of the Amazon Web Services (AWS) on which we build our platform, in Section [3.2
Then, we discuss the architecture of our system and the interactions between various AWS
components in Section In Section [3.4] we present our specific indexing and query
answering strategies providing also some implementation details regarding the dictionary
encoding technique that was used. Experiments validating the interest of our techniques
are presented in Section [3.5] Finally, Section [3.6|summarizes this chapter.

3.2 Amazon Web Services

In AMADA, we store RDF graphs (RDF files) in Amazon Simple Storage Service (S3)
and use Amazon DynamoDB for storing the indexes. SPARQL queries are evaluated
against the RDF files retrieved from S3, within the Amazon Elastic Compute Cloud (EC2)
machines and the communication among these components is done through the Simple
Queue Service (SQOS).

In the following we describe the services used by our architecture. We also introduce

3.2. AMAZON WEB SERVICES 45

the parameters used by AWS for calculating the pricing of each of its services; the actual
figures are shown in Table [3.1] (the notations in the table are explained in the following
subsections). More details about AWS pricing can be found in [aws].

$ _ $ _
ST 65 = $0.125 DX}, ;5 = $1.13
STput® = $0.000011 | IDXput® = $0.00000032
STget® = $0.0000011 | IDXget® = $0.000000032
VM;, =$0.38 Qs® =$0.000001

VM, , = $0.76 egressy, = $0.12
Table 3.1: AWS Ireland costs as of February 2013.

3.2.1 Simple Storage Service

Amazon Simple Storage Service (S3) is a storage web service for raw data and hence,
ideal for storing large objects or files. S3 stores the data in named buckets. Each object
stored in a bucket has an associated unique name (key) within that bucket, some metadata,
an access control policy for AWS users and a version ID. The number of objects that can
be stored within a bucket is unlimited.

To retrieve an object from S3, the bucket containing it should be accessed, and within
bucket the object can be retrieved by its name. S3 allows to access the metadata associated
to an object without retrieving the complete entity. Storing objects in one or multiple S3
buckets has no impact on the storage performance.

Pricing. Each read file operation costs STget®, while each write operation costs STput®.
Further, STf;LGB is the cost charged for storing 1 GB of data in S3 for one month. AWS does
not charge anything for data transferred to or within their cloud infrastructure. However,
data transferred out of the cloud incurs a cost: egressgB is the price charged for transferring

1 GB.

3.2.2 DynamoDB

Amazon DynamoDB is a key-value store that provides fast access to small objects,
ensuring high availability and scalability for the data stored; we have presented it in Sec-
tion[2.2.2] Here we report briefly some of the main feature that it provides. A DynamoDB
database is organized in tables. Each table is a collection of items identified by a primary
composite key. Each item contains one or more attributes; in turn, an attribute has a name
and a set of associated valuesﬂ DynamoDB provides a very simple API to execute read
and write operations. For the sake of readability in the rest of the chapter we will refer to
those operations simply as Get Item (T, K) and PutItem (T, (K, V)) where T is
the table name, K is the key, and V is the value.

Pricing. Each item read and write API request has a fixed price, IDXget® and IDXput®
respectively. One can adjust the number of API requests that a table can process per

2. An item can have any number of attributes, although there is a limit of 64 KB on the item size.

46 CHAPTER 3. AMADA

second. Further, DynamoDB charges IDXi,GB for storing 1 GB of data in the index store
during one month.

3.2.3 Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) provides virtual machines, called instances,
which users can rent to run their applications on. A developer can store in AWS the
image or static data containing the software that an instance should run once it is started.
Then, it can launch instances e.g. large, extra-large, etc that have different hardware
characteristics, such as CPU speed, RAM size etc.

Pricing. The EC2 utilization cost depends on the kind of virtual machines used. In our
system, we use large () and extra-large (x[) instances. Thus, VM;‘il is the price charged

for using a large instance for one hour, while VMixl is the price charged for using an
extra-large instance for one hour.

3.2.4 Simple Queue Service

Amazon Simple Queue Service (SQS) provides reliable and scalable queues that en-
able asynchronous message-based communication between the distributed components
of an application. This service prevents application message loss, even when some AWS
components may be unavailable for some duration.

Pricing. QS is the price charged for any request to the queue service API, including
send message, receive message, delete message, renew lease etc.

3.3 Architecture

In a setting where large amounts of RDF data reside in an elastic cloud-based store,
and focus on the task of efficiently routing queries to only those graphs that are likely
to have matches for the query. Selective query routing reduces the total work associated
to processing a query, and in a cloud environment, total work also translates in financial
costs. To achieve this, whenever data is uploaded in the cloud store, we index it and
store the index in an efficient (cloud-resident) store for small key-value pairs. Thus, we
take advantage of: large-scale stores for the data itself; elastic computing capabilities to
evaluate queries, and the fine-grained search capabilities of a fast key-value store, for
efficient query routing.

AMADA stores RDF graphs in S3, and each graph is treated as an uninterpreted
BLOBE] object. As explained in Section one needs to associate a key to every re-
source stored in S3 in order to be able to retrieve it. Thus, we assign to each graph: (i) an
URI consisting of the bucket name denoting the place where it is saved; (ii) the name of
the graph. The combination of both (i) and (ii) uniquely describes he graph. Then the

3. A Binary Large OBject (BLOB) is a collection of binary data stored as a single entity in a database
management system

3.3. ARCHITECTURE

/“Amazon Web Services (AWS) I\
RDF
datasets
AN
3 4 RDFS
'"('"2"@““('“2 """ extractor
Index
. X extractor
H Indexing Module
(); i
(6)} ®)
@ - i Yy
Front-End |]
(17) %#
- A
(8) 14 {a3) (10)
@)

(18) © Query | Query rewriter
SPARQL Evaluator and Lookup
Queries W@W' . Y ¥y

(12) Execution
Query Processor Module
Results

- /

ii DynamoDB III Elastic Compute Cloud
instances (EC2)
@ Simple Storage Service Simple Queue Service
(S3) (sQs)

Figure 3.1: AMADA architecture based on AWS components.

48 CHAPTER 3. AMADA

triples comprising the RDF graphs are used to create indexes returning the URIs of rele-
vant (with respect to a user query) graphs. Finally, we store our indexes in DynamoDB,
as it provides fast retrieval for fine-granularity objects.

An overview of our system architecture is depicted in Figure [3.1] A user interaction
with our system can be described as follows.

The user submits to the front-end component an RDF graph (1) and the front-end
module stores the file in S3 (2). The front-end then creates a message containing the
reference to the graph and inserts it to the loader request queue (3). Any EC2 instance
running our indexing module receives such a message (4) and retrieves the graph from S3
(5). The indexing module, after transforming the graph into a set of RDF triples, creates
the index entries and inserts them in DynamoDB (6).

When a user submits a SPARQL query to the front-end (7), the front-end inserts the
corresponding message into the query request queue (8). Any EC2 instance running our
query processor receives such a message and parses the query (9). Then, the query pro-
cessor performs a lookup in the index stored in DynamoDB (10). Depending on the
indexing strategy, the lookup will return data that can be used to answer the query directly
(without scanning any data stored in S3), or data that can be used to find out which graphs
contain information to answer the query. Any processing required on the data retrieved
from DynamoDB is performed by the execution module (11). If a final results extraction
step is required, the local query evaluator receives the final list of URIs pointing to the
RDF graphs in S3 (12), retrieves them and evaluates the SPARQL query against these
graphs (13). The results of the query are written to S3 (14) and a message is created and
inserted into the query response queue (15). Finally, the front-end receives this message
(16), retrieves the results from S3 (17) and the query results are returned to the user and
deleted from S3 (18).

Although we use Amazon Web Services, our architecture could be easily adapted
to run on top of other cloud platforms that provide similar services. Examples of such
platforms include Windows Azure and Google Cloudﬂ

3.4 Indexing strategies

In the following, we introduce the different strategies we have devised to answer RDF
queries efficiently within AMADA, both in terms of time and monetary costs.

To illustrate these strategies, we use the example RDF dataset shown in Figure [2.2]
comprised from two RDF graphs, one holding information about the professors of the
Lehigh university, and one holding information about the students of the same university.
Each graph is identified by a name g and a set of triples of the form (s p 0). We will use
¢ to denote all the RDF graphs that need to be indexed by our system, and for any graph
g € 9, we use |g| to represent the total number of triples of this graph.

Furthermore, to illustrate query evaluation for each strategy, we use the example query
QA shown in Figure We use q to refer to an RDF query, and |q| to denote the number

4. http://www.windowsazure.com
5. https://cloud.google.com/

http://www.windowsazure.com
https://cloud.google.com/

3.4. INDEXING STRATEGIES 49

of triple patterns existing in q.

As we have seen previously DynamoDB allows storing data using four levels of infor-
mation {tablename: {itemkey: {attributename: {attributevalue}}}}.
In order to describe the storage strategies we will use the storage description grammar
from Definition 2.3.11

For comparing the different strategies, we focus on the index size and the number of
index look-ups entailed for each query. Thus, for each strategy, we will present analytical
models for calculating data storage size and query processing costs in the worst case sce-
nario, which is different for each strategy. In this chapter, we do not consider a complete
cost model of AMADA that would include e.g. local processing, data transfer, etc. How-
ever, a full formalization of the monetary costs associated to the AMADA architecture
can be found in [[CCM13] (for XML data; the adaptation to RDF is quite direct).

In the sequel, Section [3.4.1] describes a data organization strategy that loads all the
RDF data in DynamoDB, making it possible to answer queries only by looking up in the
index. Section [3.4.2] presents indexing strategies that allow to find the RDF graphs that
should be retrieved from S3 to answer a given query. Section [3.4.3| provides implementa-
tion details regarding the dictionary encoding techniques that were used in this work.

3.4.1 Answering queries from the index

The first strategy we describe relies exclusively on the index to answer queries. This
is achieved by inserting the RDF data completely into the index, and answering queries
based on the index without requiring accessing the dataset. We denote this strategy by
QAS and we describe it in more details below. The same technique has been studied also
in other works using key-value stores [SZ10, [LH11] but not for DynamoDB, and without
considering the associated monetary cost.

Indexing. A DynamoDB table is allocated for the subject, the property, and the object
of an RDF triple. We use the subject, predicate, object values of each triple in the graph
as the item keys in the respective DynamoDB table, and as attribute (name, value) pairs,
the pairs: (predicate, object), (object, subject) and (subject, predicate) of the triple. Thus,
each entry in the table completely encodes an RDF triple, and all database triples are
encoded in three tables. In terms of our storage description language (Definition [2.3.1

Section [2.3.1)) QAS storage is shown below.

| Storage description |
| S{S{P{O}}}+P{P{O{S}}}+O{O{S{P}}} |

The organization of this strategy is illustrated in Table [3.2((a) while Table [3.2(b) illus-
trates it on the triples of our example.

Querying. When querying data indexed according to QAS, one needs to perform index
look-ups in order to extract from the index sets of triples that match the triple patterns
of the query, and then process these triples through relational operators (selections, pro-
jections and joins) which AMADA provides in its execution module of the query pro-
cessor (Figure [3.1). In our implementation, we have used the relational operators of

50 CHAPTER 3. AMADA

(a) QAS indexing strategy (b) Example of QAS index

S table S table
item key | (attr. name, attr. value) item key (attr. name, attr. value)
subject (predicate, object) ub:profl (ub:name, "bob")

P table (ub:advisor, ub:stud1)
item key | (attr. name, attr. value) (rdf:type, ub:professor)
predicate (subject, object) ub:prof2 (ub:advisor, ub:stud2)

O table (ub:name, "alice")
item key | (attr. name, attr. value)
object (predicate, subject) P table

item key (attr. name, attr. value)
ub:name (ub:profl, "bob")
(ub:prof2, "alice")
(ub:studl1, "ted")
ub:advisor | (ub:profl, ub:studl)
(ub:prof2, ub:stud2)

O table

item key (attr. name, attr. value)
"bob" (ub:name, ub:profl)
"alice" (ub:name, ub:prof2)

ub:stud1 (ub:advisor, ub:prof1)
ub:stud2 (ub:advisor, ub:prof2)

Table 3.2: Sample entries using the QAS strategy.

ViP2P [KKMZ11]] but any relational query processor supporting these operators could be
used.

For each triple pattern appearing in a given RDF query, a Get Item DynamoDB
call is executed. If the triple pattern has only one bound value, then depending on which
element is bound on the triple pattern, the respective index is passed as a parameter to
the call. Concretely, if the bound value is the subject, the first parameter of Get ITtem
is the S index, if the bound value is the property, the first parameter of Get Item is the
P index, otherwise (the bound value is the object) the first parameter of Get Itemis the
O index. In the case where two or three values of the triple pattern are bound, we choose
the index to be accessed (S, P, or O) based on selectivity estimations. We have in our
disposal statistics for the occurrences of a constant (URI or literal) in the dataset, thus we
choose the appropriate index using the most selective value. For instance, if the subject
and object of the triple pattern are bound to decide which index to use (S or P) we consult
the available statistics; when the subject value is more selective we pick S, otherwise we
pick P index.

For each triple pattern t;, the resulting attribute name-value pairs retrieved from Dy-
namoDB form a two-column relation R;. If the triple pattern has only one bound value,
the values of these columns hold bindings for the variables of t;. Otherwise, if t; has two
bound values, a selection operation is used to filter out the values that do not match the
triple pattern. These relations are then joined to compute the answer to the query.

For instance, consider the query of Figure 2.3] First, we define the following Dy-

3.4. INDEXING STRATEGIES 51

namoDB requests:

rl: GetItem (P, ub:advisor)
r2: GetItem(O, ub:dept4)

Request r1 returns attribute name-value pairs (s;, 0;) which form a relation R, while
r2 returns attribute name-value pairs (s,, p,) which form relation R,. Then, a selection
is applied to ensure that the values of the second column of R, are equal to the predicate
ub:member (i.e., Ty ypmember(R2)). The remaining values of the first column of R,
are the bindings to the variable of the second triple pattern. Finally, a join is performed
between the second column of R; and the first column of R, and the results of the join
form the answer to the query QA, i.e., Ry >y—1 T1(0 9. member (R2))-

When the query involves more than two triple patterns the order the joins has to be
considered. A contribution of this thesis was to extend the AMADA prototype previously
developed in the team [BGKM12, ABC™ 12], where the order of join evaluation was fixed
and did not consider data characteristics, with a heuristic cost-based optimizer, which
exploits a set of simple RDF statistics we gather on the RDF dataset upon loading them
into AWS. The principles of the optimizer are inspired from [SSB*08, KKKI0] (which
we presented in Section[2.3.3)). In a nutshell, it builds binary joins in a greedy fashion by
repeatedly identifying the cheapest joins among those not already applied. Join costs are
estimated using textbook formulas [RGO3J]. This optimization approach is an adaptation
of the minimum selectivity heuristic [SMKO97].

Analytical cost model. We now analyze the cost of the QAS indexing strategy as well as
the number of required lookups while processing an RDF query.

We assume that the number of distinct subject, predicate and object values appearing
in a dataset is equal to the size of the dataset itself, and thus equals to the number of triples
(worst case scenario). In this indexing strategy we create three entries to DynamoDB for
each triple in our dataset g € ¢. Therefore, the size of the index of this strategy is
Ygey 3% 18l

To process queries, we perform one lookup for each triple pattern appearing in the
query g. Thus, the number of lookups to DynamoDB is |q|.

3.4.2 Selective indexing strategies

In this section, we present three strategies for building RDF indexes within DynamoDB
(1) the term-based strategy, (ii) the attribute-based strategy and, (iii) the attribute-subset
strategy. It is important to notice that these strategies do not store the complete triples
in the indexes; instead, they store “pointers” to the RDF graph(s) containing triples that
match a specific condition. The system uses these indexes in order to identify among
all the RDF graphs, those which may contribute to answer a given query. Then it loads
these graphs from the S3 storage into an EC2 instance, merges them into a single graph
(Definition [2.1.5)), and processes the query there.

The techniques presented here are inspired from the domain of information retrieval.
Specifically, the proposed indexes resemble closely the inverted files [Knu73] usually
exploited in keyword search.

52 CHAPTER 3. AMADA

To the best of our knowledge, the strategies proposed here have not been exploited for
RDF data management, prior to the AMADA system, despite being relatively simple.

1. The term-based strategy had not been previously explored in AMADA either, prior
to my involvement in the work.

2. The attribute-based and attribute-subset strategies were exploited in [BGKM12],
however here a new design is proposed, exploiting the full capabilities of a key-
value store.

With respect to the second item above, the novel design we introduced in [BCG™14]
and present below, makes indexing more efficient, in particular coupled with the move
from SimpleDB to DynamoDB which was simultaneously performed. Recall from Sec-
tion [2.2.2] that SimpleDB has hard limits on the size and number of items that can be
stored. As a consequence (and due to the old design), in the SimpleDB-based implemen-
tation of AMADA, a special overflow mechanism, akin to building additional tables, was
used in [BGKM12] to hold values that couldn’t be added to the original data structure,
for instance, due to the presence of an exceedingly popular (frequent) key. In turn, the
presence of these additional tables lead to extra lookups required in order to retrieve the
information needed to answer the query. Furthermore, the old design necessitates the ex-
istence of secondary indexes in order to retrieve efficiently the relevant RDF graphs for a
given subject, property, or object value.

In contrast, using the new design, it is possible to retrieve all necessary information
from the key-value store using just one level of Get It em operations, which also reduces
the overall number of accesses to the key-value store. In addition, RDF graphs can be
retrieved efficiently without the need for secondary indexes making the new design space-
efficient. Last but not least, the move from SimpleDB to DynamoDB greatly improved
look-up times. The differences between the old and the new design are detailed below in
the respective section of each strategy.

Term-based strategy

This first indexing strategy, denoted RTS, relies on the RDF terms found within the
datasets stored in S3. This strategy does not take into account whether a certain term is
found as a subject, predicate or object inside a dataset.

Indexing. For each RDF term (URI or literal) appearing in an RDF graph, one Dy-
namoDB item is created with the value of this term as key, the URI of the dataset that
contains this RDF term as attribute name, and an empty string (denoted €) as attribute
value. The name of the graph is also used to retrieve the graph stored in S3. In terms of
our storage description language (Definition [2.3.1] Section [2.3.1)) RTS storage is shown
below.

| Storage description |
| T{T{G{e}}} |

Table [3.3[(a) depicts the general layout for this strategy, where v; are the values of the
RDF terms. Table[3.3(b) illustrates the index obtained for the running example.

3.4. INDEXING STRATEGIES 53

(a) RTS indexing. (b) Sample RTS index entries.
T table T table
item key | (attr. name, attr. value) item key (attr. name, attr. value)

2] (g1,€), (g9, €), --. ub:profl (ub:Professors, €)
Vy (g9, €), ... ub:prof2 (ub:Professors, €)
Vg (g1, €), (g9, €), ... ub:Professor (ub:Professors, €)
ub:name (ub:Professors, €)

(ub:Students, €)

ub:takesCourse (ub:Students, €)
ub:advisor (ub:Professors, €)
rdf:type (ub:Professors, €)

(ub:Students, €)
ub:stud1 (ub:Professors, €)

(ub:Students, €)
ub:stud2 (ub:Professors, €)

(ub:Students, €)

ub:member (ub:Students, €)

ub:dept4 (ub:Students, €)

ub:dept1 (ub:Students, €)

ub:Dept (ub:Students, €)

ub:db (ub:Students, €)

ub:os (ub:Students, €)
"bob" (ub:Professors, €)
"alice" (ub:Professors, €)

"ted" (ub:Students, €)

Table 3.3: Sample index entries for the RTS strategy.

Querying. For each RDF term of an RDF query a Get Item look-up in the RTS index
retrieves the URIs of the graphs containing a triple with the given term. For each triple
pattern, the results of all the Get Item look-ups must be intersected, to ensure that all
the constants of a triple pattern will be found in the same dataset. The union of all URI
sets thus obtained from the triple patterns of a query provides the URIs of the graphs to
retrieve from S3 and from the merge of which the query must be answered.

Using our running example, assume that we want to evaluate the query of Figure[2.3]
The corresponding DynamoDB queries required in order to retrieve the corresponding
graphs are the following:

rl: GetItem (T, ub:advisor)
r2: GetItem(T, ub:member)
r3: GetItem(T, ub:dept4d)

The datasets retrieved from the DynamoDB request r1 is merged with those obtained
by intersecting the results of r2 and r3. The query is be then evaluated on the resulting
(merged) graph to get the results.

Analytical cost model. We assume that each RDF term appears only once in a graph
(worst case scenario) and thus, the number of RDF terms equals three times the number of
triples. For each RDF term in a graph we create 1 entry in DynamoDB. Then, the number

of items in the index for this strategy is Zg ey 3% gl

54 CHAPTER 3. AMADA

For query processing, the number of constants a query can have is at most 3 X |q|
(this upper bound is reached for boolean queries, where all variables are bound). Using
this strategy, one lookup per constant in the query is performed to the index and thus, the
number of lookups to DynamoDB is 3 x |q|.

Attribute-based strategy

The next indexing strategy, denoted ATT, uses each attribute present in an RDF graph
and indexes it in a different table depending on whether it is subject, predicate or object.

Indexing. Let element denote any among the subject, predicate and object value of an
RDF triple. For each triple of a graph and for each element of the triple, one DynamoDB
item is created. The key of the item is named after the element value. As DynamoDB
attribute name, we use the URI of the graph containing a triple with this value; as Dy-
namoDB attribute value, we use €. This index distinguishes between the appearances of
an URI in the subject, predicate or object of a triple: one DynamoDB table is created for
subject-based indexing, one for predicate- and one for object-based indexing. In terms of
our storage description language (Definition Section ATT storage is shown
below.

| Storage description |
| S{S{G{e}}}), P{P{G{e}}}, O{O{G{e}}} |

In this strategy, false positives can be avoided (e.g., graphs that contain a certain URI
but not in the position that this URI appears in the query will not be retrieved).

A general outline of this strategy is shown in Table[3.4] The old design of ATT [BGKM12]
is shown in Table [3.4(a) while the new design is depicted in Table [3.4(b).

In the old design, graph URIs were used as primary keys for the three tables, instead
of the values of subject, properties and objects. This design allows retrieving efficiently
all the subject (resp. property and object) values s; appearing in an RDF graph g; by
probing the S-table (resp. P-table, O-table). However, using this indexing strategy, one
needs to retrieve all the RDF graphs g; where a subject value s; appears; to efficiently
support such look-ups, secondary indexes are needed. In [BGKMI2] these secondary
indexes are built automatically (through the use of SimpleDB). In most key-value stores,
though, such secondary indexes are not built by default (users have to explicitly request
them). In contrast, in the new design, there is no need for building secondary indexes
since by default all key-value stores build an index on the primary key.

Another advantage of the new design occurs stems from the fact that an RDF graph
usually has a large number of triples. Due to this, the indexes with the old design tend
to have few items (few RDF graphs) with a lot of attributes (subjects, properties, and
objects). Key-value stores rarely have limitations on the number of items, whereas quite
often they impose limitations on the number of attributes per item. As a consequence,
in [BGKM12] the limitations of SimpleDB (in particular the maximum number of at-
tributes) were reached very fast (even for the small synthetic datasets used in the exper-
imental evaluation of [BGKM12]) and required special overflow handling, which com-
plicates the development and maintenance of the system but also harms performance.

3.4. INDEXING STRATEGIES

Concretely, such overflow handling lead to look-ups in several tables needed for a single

conceptual get operation.

The data from our running example using the new design proposed here leads to the

index configuration outlined in Table [3.4(c).

(a) ATT indexing (old de- (b) ATT indexing (new de-
sign). sign). (c) Sample ATT index entries.
S table S table S table
item key | (attr. name, attr. value) item key | (attr. name, attr. value) item key (attr. name, attr. value)
& (S.51). (S, 55) ... 5 (81, €), (82, €), - ub:prof1 (ub:Professors, €)
i) (S,51), (S, 83) ... S2 (82, €), -+ A B
P table P table ub:prof2 (ub:Professors, €)
item key | (attr. name, attr. value) item key | (attr. name, attr. value) ub:stud1 (ub:Students, €)
g ®.pp). B.py) - 2 &1 €). (82,6, ... ub:stud2 (ub:Students, €)
2 (P, py), (B, p3) ... Da (g2, €)s -+ ub:deptl (ub:Students, €)
O table O table ub:dept4 (ub:Students, €)
item key | (attr. name, attr. value) item key | (attr. name, attr. value) table
& E% 01;, Eg, 02; 03 (gl,(e), (g)z, €), .. item key (attr. name, attr. value)
£2 =2 01 55 0a) e % E20Ch e ub:advisor (ub:Professors, €)
ub:name (ub:Professors, €)
(ub:Students, €)
rdf:type (ub:Professors, €)
(ub:Students, €)
ub:member (ub:Students, €)

ub:takesCourse

(ub:Students, €)

O table

item key (attr. name, attr. value)
ub:Professor (ub:Professors, €)
ub:studl (ub:Professors, €)
ub:stud2 (ub:Professors, €)
"bob" (ub:Professors, €)
"alice" (ub:Professors, €)
"ted" (ub:Students, €)
ub:deptl (ub:Students, €)
ub:dept4 (ub:Students, €)
ub:db (ub:Students, €)
ub:os (ub:Students, €)
ub:Dept (ub:Students, €)

Table 3.4: Sample index entries for the ATT strategy.

Querying. For each RDF term (URI or literal) of an RDF query, a DynamoDB Get Item
look-up is submitted to the S, P, or O table of the ATT index, depending on the position
of the constant in the query. Each such look-up retrieves the URIs of the graphs which
contain a triple with the given term in the respective position. For each triple pattern,
the results of all the Get Item look-ups based on constants of that triple need to be
intersected. This ensures that all the constants of a triple pattern appear in the same
dataset. The union of all URI sets thus obtained from the triple patterns of a SPARQL
query provides the URIs of the graphs to retrieve from S3, and from the merging of which
the query must be answered.

Using our running example, assume that we want to evaluate the query of Figure[2.3]
The corresponding DynamoDB queries required in order to retrieve the corresponding
datasets are the following:

56 CHAPTER 3. AMADA

rl: GetItem (P, ub:advisor)
r2: GetItem(P, ub:member)
r3: GetItem(O, ub:dept4)

The graph URIs retrieved from DynamoDB request r1 will be merged with the
datasets resulting from the intersection of those retrieved from the requests r2 and r3.
The query will be then evaluated on the resulting (merged) graphs to get the correct an-
SWers.

Analytical cost model. We assume that the number of distinct subjects, predicates and
objects values appearing in a graph is equal to the size of the graph itself, and thus equal
to the number of triples (worst case scenario). For each triple in a graph we create three
entries in DynamoDB. Thus, the size of the index for this strategy will be Zg ey 3 %18l

Given an RDF query g, one lookup per constant in a request is performed to the
appropriate table. Thus, the number of lookups is 3 X |g]|.

Attribute-subset strategy

The following strategy, denoted ATS, is also based on the RDF terms occurring in the
datasets, but records more information on how terms are combined within these triples.

Indexing. This strategy encodes each triple (s p o) by a set of seven patterns s, p, o, sp,
po, so and spo, corresponding to all its non-empty attribute subsets. These seven patterns
correspond to seven DynamoDB tables. For each triple, seven new items are created and
inserted into the corresponding table. As attribute name, we use the URI of the graph
containing this pattern; as attribute value we use €. In terms of our storage description

language (Definition [2.3.1] Section [2.3.1]) ATS storage is shown below.

| Storage description |
S{S{G{e}}}+P{P{G{e}}}+O{O{G{e}}}
SP{SP{G{e}}}+PO{PO{G{e}}}+SO{SO{G{e}}}
SPO{SPO{G{e}}}

A general outline of this strategy is shown in Table[3.5] The old design of ATS [BGKM12]]

is shown in Table [3.5[a) while the new design is depicted in Table [3.5(b). In the old de-
sign a single table is used to hold information about seven indexes. This is achieved by
concatenating a string value (S, P, O, and combinations of them) with the actual value
that is indexed. Apart from the counterintuitive organization of the data, the design has
various other disadvantages: (i) look-up operations requesting information from logically
different indexes are executed against the same table, which limits parallelization oppor-
tunities (i) the performance of the look-up operations degrades as the index grows in size
(storing seven logically different indexes into a single table leads to a big, possibly slow,
index); (iii) redundant information is stored for distinguishing among the indexed values;
(iv) storage space limitations present in some key-value stores (e.g., SimpleDB) may be
reached easier. The new design overcomes all of the aforementioned disadvantages. The
data from our running example leads to the index configuration outlined in Table [3.5(c).

3.4. INDEXING STRATEGIES 57

(b) ATS indexing (new de-

(a) ATS indexing (old design). sign). (c) Sample ATS index entries.

ATS table S table § table
item key (attr. name, attr. value) item key | (attr. name, attr. value) item key (attr. name, value)
e o o R O B (WiPrfessors,
0Ollo, (21,). (85, €). ... P table ub:prof2 (ub:Professors, €)
SP|ls,llp, (81, €), (g2, €), ... ftem key | (attr. name, attr. value) ub:studl (ub:Students, €)
PO|p;llo; (81, €), (82, €), .- D1 (g1 €), (g2, €, ...
SOlls, [lo, (81, €), (82,), ... P, (82, €), ... P table
SPOllslpalloy | (g1: €), (83, €), - - O table item key (attr. name, value)
item key | (attr. name, attr. value) ub:advisor (ub:Professors, €)
Zi Egl 3 (gz R ub:member (ub:Students, €)
SP table ub:name (ub:Professors, €)
item key (eE. name, attr. value) (ub:Students, €)
s1llpa (81, €), (g2, €), ...
s1llp> (&1, €), (82 €), -+ O table
5llps (82:€), ... item key (attr. name, value)
- PO table ub:stud1 (ub:Professors, €)
item key | (attr. name, attr. value)
pilloy @0, 0, @ O, . ub:stud2 (ub:Professors, €)
pullo, (g1, €), (g3, €, ... ub:dept4 (ub:Students, €)
palloy (82, €), -+
SO table SP table
item key | (attr. name, attr. value) item key — (attr. name, value)
sylloy (g1, €), (82, €)s - ub:prof1||ub:advisor (ub:Professors, €)
s1lloy (815 €), (g2, €),
syllos (€. ©). ... ub:prof2||ub:advisor (ub:Professors, €)
SPO table ub:stud2||ub:member (ub:Students, €)
item key (a? name, attr. value)
sillpilloy | (81, €) (83, €), .. PO table
s1llpallos | (81- €). (82. €. - item key (attr. name, value)
S2llpallos | (82,€). ... ub:advisor||ub:stud1 (ub:Professors, €)
ub:advisor||ub:stud2 (ub:Professors, €)
ub:member]||ub:dept4 (ub:Students, €)
SO table
item key (attr. name, value)
ub:profl||ub:stud1 (ub:Professors, €)
ub:prof2||ub:stud2 (ub:Professors, €)
ub:stud2||ub:dept4 (ub:Students, €)
SPO table
item key (attr. name, value)
ub:profl|lub:advisor|lub:stud]l | (ub:Professors, €)

Table 3.5: Sample index entries for the ATS strategy.

Querying. For each triple pattern of an RDF query the corresponding Get Item call is
sent to the appropriate table depending on the position of the bound values of the triple
pattern. The item key is a concatenation of the bound values of the triple pattern. The
URIs obtained through all the Get Item calls identify the graphs on which the query
must be evaluated.

For example, for the RDF query of Figure 2.3 we need to perform the following Dy-

namoDB API calls:

rl:
r2:

GetItem(
GetItem(

ub:advisor)

P,
PO, ub:member|lub:dept4)

58 CHAPTER 3. AMADA

We then evaluate the RDF query over the retrieved graphs.

Analytical cost model. For each triple in an RDF graph g € ¢, we create at most seven
entries in DynamoDB. Thus, the size of the index for this strategy is Y, ey 7 % |g|.

To answer a query g, we perform one lookup for each triple pattern appearing in the
query (thus, |g| lookups).

3.4.3 Dictionary encoding

The majority of RDF terms used are URIs, which consist of long strings of text. Since
working with long strings is expensive in general, dictionary encoding has been used
in many centralized RDF stores, e.g., [NW10]. The technique consists of assigning an
integer code to each URI (or string) from the RDF dataset; then, data is stored, and queries
are evaluated, based on these numerical values. The query results are then decoded again
to the original RDF terms before returning them.

We also adopt dictionary encoding for the QAS strategy; URIs and literals are assigned
integer codes with the help of the MDS5 hash function. (Technically speaking, this function
returns a 16-byte array, but for clarity of presentation, we will simply consider these codes
as integers.) To decode results, a dictionary table which holds the reverse mappings, from
the integer codes the original RDF terms, is required; we store it in Dynamo DB, with the
integer codes as keys and the original URIs (or strings) as values. We use Get Item calls
on this dictionary table to decode the encoded query results.

We also dictionary-encode the key items for the RTS, ATT and ATS indexes. This
allows storing as index keys, 16-byte compact codes instead of arbitrarily long URIs or
literals. For these strategies, only the encoding part is required, since the query results
are computed by RDF-3X out of documents extracted from S3 and loaded on the fly.
Additionally, RDF-3X employs dictionary encoding by itself.

Finally, note that dictionary encoding enables to encode RDF terms to binary values
in parallel on different machines without any node coordination. This is because we
rely on deterministic hash functions which always generate the same hash value for the
same given input. On the other hand, hashing can lead to collisions, i.e., two different
inputs can be mapped to the same hash value. In the RTS, ATT and ATS strategies, such a
collision would only affect the number of datasets that need to be retrieved from S3 (false
positives) and not the answers of the query. But even in the QAS strategy we can minimize
the probability of a collision by choosing an appropriate hash function. For instance, for a
128-bit hash function, such as MD35, and assuming 2.6 x 10'° different inputs to the hash
function, the probability of a collision is very low: 10718 [BKO4].

3.5 Experimental evaluation

The proposed architecture and algorithms have been fully implemented in our sys-
tem AMADA [ABC"12]]. In this section we present an experimental evaluation of our
strategies and techniques, complementing the experiments presented in [BGKMI12] and
leading to new conclusions.

3.5. EXPERIMENTAL EVALUATION 59

3.5.1 Experimental setup

Our experiments were run in the AWS Ireland region in February 2013. For the
local query evaluation needed by strategies RTS, ATT, and ATS we have used RDF-
3XVO.3.7|ﬂ [NW10], a widely known RDF research prototype, to process incoming queries
on the graphs identified by our index look-ups. Thus, RDF-3X was available on the EC2
machine(s) used to process queries. For the QAS strategy, when the queries are processed
directly on the data retrieved from DynamoDB, we relied on the physical relational alge-
braic select, project and join operators of our ViP2P project [KRKMZI11]].

We have used two types of EC2 instances to run the indexing module and query pro-
CesSOr:

— Large (1), with 7.5 GB of RAM memory and 2 virtual cores with 2 EC2 Compute

Units each.
— Extra large (x1), with 15 GB of RAM memory and 4 virtual cores with 2 EC2
Compute Units each.

An EC2 Compute Unit is equivalent to the CPU capacity of a 1.0-1.2 GHz 2007 Xeon
processor.

To create the dataset we have used subsets of YAGOlz]and DBpediaﬂdumps consisting
of approximately 35 million triples (5 GB in NTRIPLE syntax). It is worth noticing that
the performance of the selective indexing strategies (i.e., RTS, ATT, ATS) can be greatly
affected by the characteristics of the input graphs. AMADA stores and indexes the input
graphs as they appear in the input. Pre-processing the input graphs (e.g., partitioning them
into smaller graphs with specific properties) can improve the effectiveness of the indexes
allowing the retrieval of RDF graphs to be done more accurately. As an extreme case
consider the input dataset being a single very big graph; all incoming queries, even if they
need a very small portion of the graph, will need to process the entire graph since all the
entries in the index will point to the same file. In this work, a very simple pre-processing
strategy has been exploited which divides the input dataset into equal-sized graphs. The
original dataset is divided into 195 RDF graphs (files) each containing 174K triples on
average. More elaborate pre-processing techniques can be used to further improve query
performance.

For the query workload, we hand-picked nine queries with various shapes (simple,
star, mixed), sizes (1 to 6 triple patterns), and selectivities (high, medium, and low). In
addition, we varied the number of constants in the queries, and the number of RDF graphs
that they need to access (for the strategies RTS, ATT, ATS). The complete query workload
with further details regarding the queries can be found in Appendix[A.1]

3.5.2 Indexing time and costs

In this section we study the performance of our four RDF indexing strategies. The
RDF graphs (files) are initially stored in S3, from which they are gathered in batches
by four | instances running the indexing module. We batched the datasets in order to

6. http://code.google.com/p/rdf3x/
7. lhttp://www.mpi-inf.mpg.de/yago—-naga/yago/
8. http://dbpedia.org/

http://code.google.com/p/rdf3x/
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://dbpedia.org/

60 CHAPTER 3. AMADA

minimize the number of calls needed to create the indexes into DynamoDB. Moreover,
we used | instances (and not bigger instances) because we found out that DynamoDB
is the bottleneck while indexing. We should also note that we used a fotal throughput
capacity in our DynamoDB tables of 10,000 write units. This means that if a strategy
required more than one table (like ATS which needs seven tables), we divided the 10,000
units among all tables (for ATS we used 1428 units per table).

We measure the indexing time and monetary costs of building the indexes in Dy-
namoDB. For the strategies RTS, ATT and ATS we show results only with the dictionary
on, as there is always a benefit from it. For the QAS strategy we show results both with
(QAS_on) and without (QAS_off) the dictionary as the difference between the two leads
to some interesting observations.

7 140
—_ BT BSj ®DynamoDB
76 ime BSize 120 | lEéz
g g 2
< 5 S o 100
[} (] 8 80
E NS
o3 < 8 60
£ o o
%2 2 5 40
° - =2
£1 20 1

0 - r 0 -

RTS ATT ATS QAS_on QAS_off RTS ATT ATS QAS_on QAS_off
Indexing strategy Indexing strategy

Figure 3.2: Indexing time and size (left) and cost (right).

In Figure [3.2] we demonstrate for each strategy the time required to create the indexes,
their size and their indexing cost. Note that to add the items into DynamoDB we used
the BatchWriteItem operation which can insert up to 25 items at a time in a table.
We observe from the blue bars of the left graph of Figure [3.2] that the ATS index is the
most time-consuming, since for each triple it inserts seven items into DynamoDB. The
same holds for the size of the index, as the ATS occupies about 11 GB. In contrast, the
RTS index which inserts only one item for each RDF term is more time-efficient. An
interesting observation is that the QAS_off indexing requires significantly less time than
when the dictionary is used. This is because inserting items in the dictionary table for
each batch becomes a bottleneck. Also, the size of the QAS index with the dictionary
is only slightly smaller than when the dictionary is not used, i.e., 9 GB in QAS_on vs.
10.6 GB in QAS_off. This is because of the dataset used in the experiments, where URIs
do not occur many times across the triples and thus, the storage space gain is not very
impressive.

In the graph at right in Figure[3.2] we show the monetary cost of DynamoDB and the
EC2 usage when creating the index. Again, the ATS index is the most expensive one, both
for DynamoDB and EC2. Moreover, we observe that the QAS_on is more expensive than
QAS_off due to the increased number of items that we insert in the index when using the
dictionary. The costs of S3 and SQS are constant for all strategies (0.0022$ and 0.0004S$,
respectively) and negligible compared to the costs of DynamoDB and EC2 usage. We thus

3.5. EXPERIMENTAL EVALUATION 61

BRTS BATT DATS BQAS_ON BQAS_OFF 03
— : BRTS
S 100 EATT
@ 0.25 DATS
o] & BQAS_ON
£ 10 5 02 BQAS_OFF/
Q 1 Q
@ > 0.15
2 o 3
§ : “g’ 0.1 1
> 001 1 = 005 |
Q
=]
& 0.001 - 8 01 J
Q1 Q2 Q3 Q4 Q5 Q@6 Q7 Q8 Q9 EC2 DynamoDB

Query AWS

Figure 3.3: Querying response time (left) and cost (right).

omit them from the graph.

Although the information is not present in Figure [3.2] there is also a cost associated
with DynamoDB (see Section [3.2.2)) even when the system is idle, just for the storage
space consumption. Due to this, the size of the index affects the money spent for keeping
the index on a monthly basis. For example, the QAS_on index would cost about 10$ per
month, while the QAS_off would cost an extra 2$ per month. On the other hand, the RTS,
ATT strategies are more economical and would only cost about 3$ per month.

3.5.3 Querying time and costs

In this set of experiments, we measure the query response times and monetary costs
for the strategies and the setup discussed previously. We ran one query after the other
sequentially using one XL machine.

Figure [3.3] presents the response times of each query in each strategy and the total
monetary cost for the whole query workload in each strategy regarding EC2 and Dy-
namoDB usage. We observe that for the selective indexing strategies, i.e., RTS, ATS,
and ATT, the queries accessing a small number of graphs (Q1, Q2, Q3, Q9, Q9) are very
efficient and are executed in less than 50 seconds. As the number of graphs increases
(Q4-Q7) so does the response time for these strategies. This is expected since the re-
trieved graphs have to be loaded in RDF-3X in order to answer the query; as this number
increases, RDF-3X loading time also goes up. Out of these three strategies we cannot
pick a winner since all strategies retrieve almost the same graphs from DynamoDB. The
only cases where the retrieved graphs were different occurred for Q1 and QS5, where RTS
and ATT lead to retrieving an additional RDF graph. Since the size of each RDF graph
is relatively small there is no big difference in query response time from the one false
positive that appeared. In practice when a triple pattern has two constants false positives
may not appear often (a lot of them will be removed from the intersection that we perform
between the graphs retrieved for the two constants).

Figure [3.4] shows the distribution of query response time for ATT strategy among: (i)
the time to retrieve the relevant files from S3; (ii) the time to write these files to the local
disk; (iii) the time to load these files into RDF-3X; (iv) the time to evaluate the query to

62 CHAPTER 3. AMADA

200000 ——
B RDF3X_QUERY_EXECUTION
180000 O RDF3X_LOAD
160000 B TRANSFER_S3 —
B WRITE_2_DISK
140000
— 120000]
(%]
3
o 100000
£ —
P 80000
60000

40000
N D |
= = = B N
Q8 Q9

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Figure 3.4: Querying response time distribution for ATT strategy.

RDF-3X. Notice that the trends discussed below generalize also to strategies RTS, and
ATS thus there is no need for additional figures. As expected writting the files to the local
disk and loading them in RDF-3X is the dominant factor affecting query performance,
consuming in average 97% of the total time. It is thus evident that in order to bring down
the query execution cost we have to invest in reducing the loading cost associated with
RDEF-3X (which constitutes in average 82% of the total time). There are various directions
for achieving the latter result. A straight-forward change could be replacing RDF-3X with
another processing engine with a more efficient loading process; this is not guaranteed to
improve performance since a more efficient loading process might be associated with
building less indexes and thus having an impact in query evaluation. Furthermore, one
could eliminate entirely the processing engine and exploit in-house logical and physical
operators. However, this requires building and optimizing query plans directly so it alters
the original purpose of this strategy. Again, there is no guarantee that this approach will
improve the overall performance. These are interesting directions that we would like to
explore in our future work.

The strategies relying solely in DynamoDB to answer the queries (QAS_on and
QAS_off) are better for highly selective queries (Q1, Q4, Q8, Q9) than those relying
on RDF-3X. Especially the one using the dictionary encoding is good even for not very
selective queries like Q6 and Q7. On the other hand, answering queries with low selectiv-
ity (Q6, Q7) without a dictionary through DynamoDB seems a bad idea due to the large
number of items requested from DynamoDB and the large number of intermediate results
that are loaded in memory. An interesting exception is Q3, for which the dictionary did
not improve the performance. Note that the dictionary encoding invokes a big overhead

3.5. EXPERIMENTAL EVALUATION 63

for decoding the final results (transforming them from compact identifiers to their actual
URI values), and especially if the number of returned results is large. If there are no joins
in a query, as it is in the case of Q3, there is no profit from the dictionary encoding, and
thus, decoding the large number of returned results is a big overhead.

In terms of monetary cost shown at right of Figure[3.3|we observe that the most expen-
sive strategy regarding both EC2 and DynamoDB is QAS_off. For EC2, this can be easily
explained by considering the query response times for this strategy and having in mind
that queries Q6 and Q7 required more than 300 seconds to be evaluated, overwhelming
the CPU for a large period of time. Regarding DynamoDB, the strategy is also expensive
since the size of the items that need to be retrieved is significantly larger than for other
strategies, which return only dataset names or compact encodings in the case of QAS_on.
As anticipated, strategies RTS, ATS and ATT have almost the same EC2 costs, explained
by their similar query response times.

3.5.4 Scalability

In this section we measure the total time for a workload of 27 queries (a mix of the
queries presented in Appendix [A.T)) as the number of EC2 machines increases (scale-out)
for strategies RTS and QAS_on. ATT and ATS present similar behavior with RTS and
thus they are omitted from this experiment. Furthermore QAS_off performs most of the
times worse than QAS_on so we chose to drop it from the graphs. The experiments were
executed using XL machines varying their number from 1 to 8 and keeping the threads
number (4) equal to the number of cores of each machine (allowing a concurrent execution
of 4 queries per machine).

In Figure [3.5| we demonstrate how increasing the EC2 machines can affect the total
response time for executing the whole query workload. The query response time follows
a logarithmic equation where in the beginning and until reaching 4 EC2 instances the time
is constantly dropping. Then by increasing the machines we cannot run faster due to the
fact that all queries are distributed among machines and run in parallel. For example for
our workload of 27 queries, using 8 machines will result into running 3 queries on each
machine and due to the number of threads all queries will run in parallel and the total time
will be equal with the less efficient query. Both strategies scale well with QAS_on being
slightly worse due the large number of concurrent requests in DynamoDB.

Scaling-out the machines for DynamoDB is not feasible in the Amazon cloud. In
general, similar services from AWS are usually offered as black boxes and the user does
not have control over them other than specifying some performance characteristics, such
as the throughput in DynamoDB. Finally, we have also experimented with scaling the size
of the data in [BGKMI12] and observed that the time for building the index scales linearly
with the number of triples in the datasets, as it is also evident from our analytical cost
model, so we omit it from this experimental evaluation.

64 CHAPTER 3. AMADA

BRTS ®QAS_ON

1 2 4 8
#EC2 instances

Figure 3.5: Total time for workload of #27 queries.

3.5.5 Experiments conclusion

Summing up, our baseline strategy RTS is the best, providing a good trade-off between
indexing time, index size, query efficiency and overall monetary cost both for building
the indexes and answering queries as well. Targeting query efficiency, QAS_on is the best
strategy being 50% more expensive than RTS. In addition the size of the index for QAS_on
is five times bigger in comparison with RTS, making the strategy highly expensive for
long-term use. Among the discussed strategies, ATS can be considered as one of the
worst, since it is the most expensive in terms of money and index size, whereas from the
efficiency perspective the indexing time is high, and the query response time does not
differ significantly from the other strategies (RTS and ATT) relying on RDF-3X to answer
the queries.

In our previous work ATS strategy performed significantly better than the
other strategies. This behavior lead us to the preliminary conclusion that paying more for
more indexes can significantly improve performance. However, revisiting the experiments
after optimizing the design of ATT and ATS (Section[3.4.2)) and on significantly larger data
volumes, it turns out that the performance advantage of such more extensive indexing
does not always hold. In addition, with the new strategies (RTS, QAS) we have shown
that there are cheaper alternatives for achieving equal (RTS) or better performance (QAS).
Finally, the experiments were performed on real datasets (in contrast with the synthetic
benchmark used in [BGKM12])), providing robust results and validating the usefulness of
our proposal in real-life scenarios.

3.6 Conclusion

This chapter described an architecture for storing and querying RDF data using off-
the-shelf cloud services, in particular the AMADA platform we have developed and
demonstrated recently [ABC"12, BGKM12l]. The starting point of the present work

3.6. CONCLUSION 65

is [BGKM12]], however in this chapter we have presented a different set of strategies and
accordingly new experiments, at a much larger scale than we had previously described
in [BGKM12].

Within AMADA, we devised indexing techniques for identifying a tight subset of the
RDF dataset which may contain results for a specific query, and we have examined a
technique for answering a SPARQL query from the index itself. We presented analytical
cost models for each strategy and evaluated their indexing and querying performance and
monetary costs.

A direction we have not considered in this work is the parallelization of the task of
evaluating a single query on a large RDF dataset. This is interesting, especially for non-
selective queries, since the parallel processing capabilities of a cloud may lead to shorter
response times. Chapter []is an important step towards this direction where a novel op-
timization algorithm is proposed for building massively parallel plans. The algorithm is
combined with a MapReduce-based system that allows to process efficiently even bigger
RDF graphs.

66

CHAPTER 3. AMADA

Chapter 4

CliqueSquare: Flat Plans for Massively
Parallel RDF Queries

In this chapter, we present CliqueSquare, a distributed RDF data management system

built on top of Hadoop. CliqueSquare incorporates a novel optimization algorithm that is
able to produce massively parallel plans for RDF queries. The algorithm seeks to build
flat plans, where the number of joins encountered on a root-to-leaf path in the plan is min-
imized. We present a family of optimization algorithms, relying on n-ary (star) equality
joins to build flat plans, and compare their ability to find the flattest possibles. Inspired by
existing partitioning and indexing techniques, we present a generic storage strategy suit-
able for storing RDF data in HDFS (Hadoop’s Distributed File System) that binds well
with the flat plans provided by the optimization algorithm. We provide algorithms for
translating logical plans to physical plans and subsequently to MapReduce jobs based on
the available physical operators. Finally, we present experimental results that validate the
efficiency and effectiveness of the optimization algorithm demonstrating also the overall
performance of the system.
An early version of this work was presented in a national conference [GKM™13]], while
this chapter closely follows the international conference publication [GKM™15]] and the
respective technical report [GKM™14]]. The CliqueSquare system was demonstrated in a
national [DGK™ 14| and an international conference [DGK™ 15]], and finally open-sourced
in January 20157

4.1 Introduction

In Chapter [3] we presented AMADA, an architecture for storing and querying RDF
data using off-the-shelf cloud services; we explored how different indexing strategies can
affect query performance. However, as we have seen in Chapter [} building a distributed
RDF data management system requires addressing two additional challenges: how to
partition the RDF graph data across the nodes, and how to split the query evaluation
across these nodes.

1. https://sourceforge.net/projects/cliquesquare/

67

https://sourceforge.net/projects/cliquesquare/

68 CHAPTER 4. CLIQUESQUARE

Clearly, data distribution has an important impact on query performance. Accord-
ingly, many previous works on distributed RDF query evaluation, such as [HAR11,|[LL13,
WZY*15, [GHS12, [HS13]], have placed an important emphasis on the data partitioning
process (workload-driven in the case of [GHS12, [HS13]]), with the goal of making the
evaluation of certain shapes of queries parallelizable without communications (or PWOC,
in short). In a nutshell, a PWOC query for a given data partitioning can be evaluated by
taking the union of the query results obtained on each node.

In this work, we exploit a less elaborate partitioning technique that combines hash par-
titioning based on the three attributes of a triple and property partitioning (a.k.a. vertical
partitioning). The combined partitioning technique is exploited for the first time in this
work, and is implemented on top of a distributed file system. However, it is easy to see
that no single partitioning can guarantee that all queries are PWOC; in fact, most queries
do require processing across multiple nodes and thus, data re-distribution across nodes,
a.k.a. shuffling.

The more complex the query is, the bigger will be the impact of evaluating the dis-
tributed part of the query plan. Logical query optimization — deciding how to decompose
and evaluate an RDF query in a massively parallel context — has thus also a crucial im-
pact on performance. As it is well-known in distributed data management [OV11], to
efficiently evaluate queries one should maximize parallelism (both inter-operator and
intra-operator) to take advantage of the distributed processing capacity and thus, reduce
the response time.

In a parallel RDF query evaluation setting, intra-operator parallelism relies on join
operators that process chunks of data in parallel. To increase inter-operator parallelism
one should aim at building massively-parallel (flat) plans, having as few (join) operators
as possible on any root-to-leaf path in the plan; this is because the processing performed
by such joins directly adds up into the response time. Prior works (see Section [2.3)) have
binary joins organized in bushy or left-deep plans, bushy plans with n-ary joins (with
n > 2) only in the first level of the plans and binary in the next levels, or n-ary joins
at all levels but organized in left-deep plans. Such methods lead to high (non-flat) plans
and hence high response times. HadoopRDF is the only one proposing some heuristics
to produce flat plans [HMMT™11], but it has two major disadvantages: (i) it produces a
single plan that can be inefficient; (i7) it does not guarantee that the plan will be as flat as
possible.

In this chapter, we focus mostly on the logical query optimization of RDF queries,
seeking to build flat query plans composed of n-ary (star) equality joins. Flat plans are
most likely to lead to shorter response time in distributed/parallel settings. We describe
a search space of logical plans obtained by relying on n-ary (star) equality joins. The
interest of such joins is that by aggressively joining many inputs in a single operator,
they allow building flat plans. In addition, we provide a novel generic algorithm, called
CliqueSquare, for exhaustively exploring this space, and a set of three algorithmic choices
leading to eight variants of our algorithm. We present a thorough analysis of these vari-
ants, from the perspective of their ability to find one of (or all) the flattest possible plans
for a given query. We show that the variant we call CliqueSquare-MSC is the most in-
teresting one, because it develops a reasonable number of plans and is guaranteed to

4.2. ARCHITECTURE 69

find some of the flattest ones. To validate the usefulness of our optimization algorithm
and to fulfill the requirement for a cloud-based data management system, we relied on
Hadoop [hadl1] framework. We develop a storage strategy suitable for storing RDF data
in Hadoop’s Distributed File System that binds well with the flat plans provided by the
optimization algorithm. Furthermore, we provide algorithms for translating logical plans
to physical plans, and subsequently to MapReduce jobs based on the available physical
operators and the chosen storage strategy.

We chose to build our system relying on MapReduce and Hadoop since by design it
covers many of the properties and features that are requested [[Aba09]] from cloud-based
systems. In addition, elastic MapReduce services are readily provided by important cloud
providers such as AmazonE] and Googlelﬂ

It is worth noting that our optimization algorithms and the respective findings are not
specific to RDF, but apply to any conjunctive query processing setting based on n-ary
(star) equality joins. However, they are of particular interest for RDF, since (as noted
e.g., in [NWI0Q, (GKLMTI, TSF"12]) RDF queries tend to involve more joins than a
relational query computing the same result. This is because relations can have many
attributes, whereas in RDF each query atom has only three, leading to syntactically more
complex queries.

The Chapter is organized as follows. First, we discuss the architecture of the system
and the interaction among the various components of CliqueSquare and Hadoop in Sec-
tion Section 4.3 introduces the logical model used in CliqueSquare for queries and
query plans, and describes our generic logical optimization algorithm. In Section[4.4] we
present our algorithm variants, their search spaces, and we analyze them from the view-
point of their ability to produce flat query plans. Section §.5|demonstrates how we store
RDF data in HDFS, while Section @] shows how to translate and execute our logical
plans to MapReduce jobs, based on CliqueSquare storage. Section 4.7| experimentally
demonstrates the effectiveness and efficiency of our logical optimization approach. Fi-
nally, Section 4.§|concludes our findings.

4.2 Architecture

We introduce CliqueSquare, a massively parallel cloud-based system that relies on
efficient algorithms and Hadoop framework for storing and retrieving RDF data. RDF
graphs are uploaded in the HDFS where they are partitioned and stored in flat HDFS
files using MapReduce jobs. Then, RDF data can be retrieved efficiently from HDFS by
composing RDF queries, that are parsed, optimized, and translated to MapReduce jobs
relying heavily on a logical optimization module that generates massively parallel flat
plans.

An overview of our system architecture is depicted in Figure 4.1} A user interaction
with our system can be described as follows. The system is divided into the front-end
component that runs in a centralized manner and the Hadoop component that operates on

2. http://aws.amazon.com/elasticmapreduce/
3. http://www.qubole.com/google-compute-engine/

http://aws.amazon.com/elasticmapreduce/
http://www.qubole.com/google-compute-engine/

70 CHAPTER 4. CLIQUESQUARE

[’ Q
| I i ?\ RDF Dataset RDF Queries 61

(1) (3) Physical) Logical (7)
jmm————————— | .. <« s 7
v 1 v Optimizer Optimizer
Uploader Partitioner Translator | (10) ®) Query Parser
\\ Front-End
(2)
\7(4) v

Hash Property
Partitioner Partitioner

Skew

Hadoop /
i Hadoop Distributed File System (] CcliqueSquare Operator

Hadoop MapReduce Job [] CcliqueSquare Module

Figure 4.1: CliqueSquare architecture based on Hadoop Ecosystem.

a cluster of machines.

Users interact with the front-end component to store the RDF dataset to the HDFS
(1). The RDF files comprising the dataset are uploaded to the HDFS using the Uploader
module (2) and then a message informs the Partitioner (3) that the data are successfully
uploaded to the HDFS and they are ready to be partitioned. The partitioner builds a
MapReduce job customized with CliqueSquare operators (4) that reads the proper files
from the HDFS (§), processes them exploiting the available machines in the cluster, and
stores the partitioned data again in HDFS (6) (the original files can be deleted). The steps
(1) to (6) are detailed in Section 4.5]

To retrieve RDF data from CliqueSquare users are able to submit their queries using
the front-end component (7). First, the RDF query is parsed generating a graph repre-
sentation (a.k.a. Variable graph) (8) that is given as input to the Logical Optimizer. The
Logical Optimizer uses CliqueSquare optimization algorithm and provides a set of logical
plans (9). Steps (7) to (9) are described in Section @ and Section@ The logical plans
are translated to physical plans exploiting the partitioning of the data and the available
physical operators; out of which one is chosen based on a cost model (10). The physical
plan is processed from the Job Translator, which builds a sequence of MapReduce jobs
whose execution is delegated to Hadoop (11). Every MapReduce job incorporates parts
of the physical plan, reading the proper files from the HDFS (12) and writing the inter-
mediate (final) results from the jobs back to the HDFS (13). Section provides details
for steps (10) to (13).

4.3. LOGICAL QUERY MODEL 71

SELECT 7?a ?b
WHERE {
7a pl ?b
?a p2 ?c d
?d p3 ?a //d
?d p4d ?e
21 p5 2d
?f p6 2d
?f p7 2g f g
?g p8 ?h ////
29 p9 ?i \éi\ ;]
?i pl0 27 ty — t1o - tp
?9 pll "C1"

e

/
—d+—
NP

,-,
w
S

ty
‘ a
ty

¢

Figure 4.2: Query Q, and its variable graph G;.

4.3 Logical query model

This section describes the CliqueSquare approach for processing queries based on a
notion of query variable graphs. We introduce these graphs in Section @.3.1] and present
the CliqueSquare optimization algorithm in Section[4.3.2]

4.3.1 Query model

We model an RDF query as a set of n-ary relations connected by joins. Specifically,
we rely on a variable (multi)graph representation, inspired from the classical relational
Query Graph Model (QGM) [HELP89], and use it to represent incoming queries, as well
as intermediary query representations that we build as we progress toward obtaining log-
ical query plans. Formally:

Definition 4.3.1 (Variable graph). A variable graph G of an RDF query q is a labeled
multigraph (N,E, V), where V is the set of variables from q, N is the set of nodes, and
E C N XV X N is a set of labeled undirected edges such that: (i) each node n € N
corresponds to a set of triple patterns in q; (ii) there is an edge (n,,v,n,) € E between
two distinct nodes ny,n, € N iff their corresponding sets of triple patterns join on the
variable v € V.

Figure shows a query and its variable graph, where every node represents a single
triple pattern. More generally, one can also use variable graphs to represent (partially)
evaluated queries, in which some or all the joins of the query have been enforced. A node
in such a variable graph corresponds to a set of triple patterns that have been joined on
their common variables, as the next section illustrates.

72 CHAPTER 4. CLIQUESQUARE

4.3.2 Query optimization algorithm

The CliqueSquare process of building logical query plans starts from the query vari-
able graph (where every node corresponds to a single triple pattern), treated as an initial
state, and repeatedly applies transformations that decrease the size of the graph, until it is
reduced to only one node; a one-node graph corresponds to having applied all the query
joins. On a given graph (state), several transformations may apply. Thus, there are many
possible sequences of states going from the query (original variable graph) to a complete
query plan (one-node graph). Out of each such sequence of graphs, CliqueSquare creates
a logical plan. In the sequel of Section {.3] we detail the graph transformation process,
and delegate plan building to Section [4.4]

Variable cliques. At the core of query optimization in CliqueSquare lies the concept of
variable clique, which we define as a set of variable graph nodes connected with edges
having a certain label. Intuitively, a clique corresponds to an n-ary (star) equi-join. For-
mally:

Definition 4.3.2 (Maximal/partial variable clique). Given a variable graph G,, = (N, E, V),
a maximal (resp. partial) clique of a variable v € V, denoted cl,, is the set (resp. a non-
empty subset) of all nodes from N which are incident to an edge e € E with label v.

For example, in the variable graph G; of query Q; (see Figure 4.2)), the maximal

variable clique of d, cf, is {ts, ta, ts, tg}. Any non-empty subset is a partial clique of d,
e.g., {ts,ts, ts}.
Clique Decomposition. The first step toward building a query plan is to decompose
(split) a variable graph into several cliques. From a query optimization perspective, clique
decomposition corresponds to identifying partial results to be joined, i.e., for each clique
in the decomposition output, exactly one join will be built. Formally:

Definition 4.3.3 (Clique decomposition). Given a variable graph G, = (N,E,V), a
clique decomposition 2 of Gy is a set of variable cliques (maximal or partial) of Gy,
which covers all nodes of N, i.e., each node n € N appears in at least one clique, such
that the size of the decomposition | 9| is strictly smaller than the number of nodes |N|.

Consider again our query Q; example in Figure 4.2 One clique decomposition is
dy = {{t1, 6, t3}, {3, L4 ts, e} {te, t7}, {67, g, Eo}, {to, t1o}.{t10, £11}}; this decompo-
sition follows the distribution of colors on the graph edges in Figure #.2] A different
decomposition is for instance d, = {{t;, t,}, {t3, t4, ts}, {te, t7}, {ts, to}, {t10, t11}}; in-
deed, there are many more decompositions. We discuss the space of alternatives in the
next section.

Observe that we do not allow a decomposition to have more cliques than there are
nodes in the graph. This is because a decomposition corresponds to a step forward in
processing the query (through its variable graph), and this advancement is materialized
by the graph getting strictly smaller.

Based on a clique decomposition, the next important step is clique reduction. From a
query optimization perspective, clique reduction corresponds to applying the joins iden-
tified by the decomposition. Formally:

4.3. LOGICAL QUERY MODEL 73

AZ A4 A6

[t37 t47 t57 t6 [t7: t8> t9]\[t10’ tll]
Al A3 A5

[t1, o, t5] [te,t7] [tg, t10]

Figure 4.3: Clique reduction G, of Q,’s variable graph (shown in Figure §.2)).

Algorithm 1: CliqueSquare algorithm

1 CliqueSquare (G, states)
Input : Variable graph G; queue of variable graphs states

Output: Set of logical plans QP

2 « cliqueDecompositions(G);
foreach d € 2 do
G’ < cliqueReduction(G, d);
L QP < QP U CliqueSquare (G, states);

2 states = states U {G};

3 if |G| =1 then

4 ‘ QP « createQueryPlan (states);
5 else

6 QP < 0;

7

8

9

[
<>

return QP;

ot
—

Definition 4.3.4 (Clique Reduction). Given a variable graph G, = (N,E,V) and one
of its clique decompositions 9, the reduction of G, based on 9 is the variable graph
G, = (N',E’, V) such that: (i) every clique c € 9 corresponds to a node n’ € N’, whose
set of triple patterns is the union of the nodes involved in ¢ C N; (ii) there is an edge
(n},v,n,) € E' between two distinct nodes n’,n, € N’ iff their corresponding sets of
triple patterns join on the variable v € V.

For example, given the query Q, in Figure4.2|and the above clique decomposition d;,
CliqueSquare reduces its variable graph G, into the variable graph G, shown in Figure[d.3]
Observe that in G,, the nodes labeled A; to Ag each correspond to several triples from the
original query: A, corresponds to three triples, A, to four triples, etc.

CliqueSquare algorithm. Based on the previously introduced notions, the CliqueSquare
query optimization algorithm is outlined in Algorithm[I} CliqueSquare takes as an input a
variable graph G corresponding to the query with some of the predicates applied (while the
others are still to be enforced), and a list of variable graphs states tracing the sequence of
transformations which have lead to G, starting from the original query variable graph. The
algorithm outputs a set of logical query plans QP, each of which encodes an alternative
way to evaluate the query.

74 CHAPTER 4. CLIQUESQUARE

The initial call to CliqueSquare is made with the variable graph G of the initial query,
where each node consists of a single triple pattern, and the empty queue states. At each
(recursive) call, cliqueDecompositions (line [/) returns a set of clique decompositions of
G. Each decomposition is used by cliqueReduction (line[9)) to reduce G into the variable
graph G’, where the n-ary joins identified by the decomposition have been applied. G’
is in turn recursively processed, until it consists of a single node. When this is the case
(line [3)), CliqueSquare builds the corresponding logical query plan out of states (line [),
as we explain in the next section. The plan is added to a global collection QP, which is
returned when all the recursive calls have completed.

4.4 Query planning

We describe CliqueSquare’s logical operators, plans, and plan spaces (Section {4.4.1)
and how logical plans are generated by Algorithm [I] (Section4.4.2). We then consider a
set of alternative concrete clique decomposition methods to use within the CliqueSquare
algorithm, and describe the resulting search spaces (Section [4.4.3). We introduce plan
height to quantify its flatness, and provide a complete characterization of the CliqueSquare
algorithm variants w.r.t. their ability to build the flattest possible plans (Section 4.4.4]).
Finally, we present a complexity analysis of our optimization algorithm (Section #.4.5)).

4.4.1 Logical CliqueSquare operators and plans

Let Val be an infinite set of data values, A be a finite set of attribute names, and
R(a,,a,,...,a,), a; €A, 1 < i < n, denote a relation over n attributes, such that each
tuple t € R is of the form (a;:vy,ay:vs,...,a,:v,) for some v; € Val, 1 <i < n. In our
context, we take Val to be a subset of U U L, and A = var(tp) to be the set of variables
occurring in a triple pattern tp, A C V. Every mapping u(tp) fromA = var(tp) into UUL
leads to a tuple in a relation which we denote R,,. To simplify presentation and without
loss of generality, we assume var(tp) has only those tp variables which participate in a
join.

J (adf gij)
TN S~
Jy(adf gys(adf giy,(df gij)J(f gij)
O = S S S S SN
J(ad) Jy(adf) Je(dfg) J,(fgi) Ji(gij) J;(ij)

P/ N N NN

Mtl(a) Mtz(a) Mfg(da) Mt4(d) Mts(d) Mte(fd) Mt7(fg) Mtg(gh) Mtg(gi) th(ij) Mrn(j)
Figure 4.4: Sample logical plan built by CliqueSquare for Q1 (Figure [d.2).

We consider the following logical operators, where the output attributes are identified
as (ap,...,a,):
— Match, M,,(a,,...,a,), is parameterized by triple pattern tp and outputs a relation
comprising the triples matching tp in the store.

4.4. QUERY PLANNING 75

— Join, J,(op4,...,0p,)(a;,...,a,), takes as input a set of m logical operators such
that A is the intersection of their attribute sets, and outputs their join on A.

— Select, o.(op)(ay,...,a,), takes as input the operator op and outputs those tuples
from op which satisfy the condition c (a conjunction of equalities).

— Project, ,(op)(ay,...,a,), takes as input op and outputs its tuples restricted to
the attribute set A.

A logical query plan p is a rooted directed acyclic graph (DAG) whose nodes are
logical operators. Node lo; is a parent of lo; in p iff the output of lo; is an input of lo;.
Furthermore, a subplan of p is a sub-DAG of p.

The plan space of a query q, denoted as Z(q), is the set of all the logical plans
computing the answer to q.

4.4.2 Generating logical plans from graphs

We now outline the createQueryPlan function used by Algorithm|[I]to generate plans.
When invoked, the queue states contains a list of variable graphs, the last of which (tail)
has only one node and thus corresponds to a completely evaluated query.

First, createQueryPlan considers the first graph in states (head), which is the initial
query variable graph; let us call it G4. For each node in Gq (query triple pattern tp),
a match (M) operator is created, whose input is the triple pattern tp and whose output
is a relation whose attributes correspond to the variables of tp. We say this operator
is associated to tp. For instance, consider node t; in the graph G, of Figure {2} its
associated operator is M, (a, b).

Next, createQueryPlan builds join operators out of the following graphs in the queue.
Let G, be the current graph in states (not the first). Each node in G, corresponds to a
clique of node(s) from the previous graph in states, let’s call it Gpyey-

For each G, node n corresponding to a clique made of a single node m from Gy,
createQueryPlan associates to n the operator already associated to m.

For each G, node n corresponding to a clique of several nodes from G, create-
QueryPlan creates a J, join operator and associates it to n. The attributes A of J, are the
variables defining the respective clique. The parent operators of J, are the operators asso-
ciated to each G, node m from the clique corresponding to n; since states is traversed
from the oldest to the newest graph, when processing G, we are certain that an operator
has already been associated to each node from G, and the previous graphs. For exam-
ple, consider node A, in G, (Figure 4.3)), corresponding to a clique on the variable a in
the previous graph G, (Figure [4.2)); the join associated to it is J,(abcd).

Further, if there are query predicate which can be checked on the join output and could
not be checked on any of its inputs, a selection applying them is added on top of the join.

Finally, a projection operator 7t is created to return just the distinguished variables
part of the query result, then projections are pushed down etc. A logical plan for the query
Q in Figure 4.2] starting with the clique decomposition/reduction shown in Figure §.3]
appears in Figure 4.4

76 CHAPTER 4. CLIQUESQUARE

4.4.3 Clique decompositions and plan spaces

The plans produced by Algorithm [I] are determined by variable graphs sequences;
in turn, these depend on the clique decompositions returned by cliqueDecompositions.
Many clique decomposition methods exist.

First, they may use partial cliques or only maximal ones (Definition ; maximal
cliques correspond to systematically building joins with as many inputs (relations) as
possible, while partial cliques leave more options, i.e., a join may combine only some of
the relations sharing the join variables.

Second, the cliques may form an exact cover of the variable graph (ensuring each node
belongs to exactly one clique), or a simple cover (where a node may be part of several
cliques). Exact covers lead to tree-shaped query plans, while simple covers may lead to
DAG plans. Tree plans may be seen as reducing total work, given that no intermediary
result is used twice; on the other hand, DAG plans may enable for instance using a very
selective intermediary result as an input to two joins in the same plan, to reduce their
result size.

Third, since every clique in a decomposition corresponds to a join, decompositions
having as few cliques as possible are desirable. We say a clique decomposition for a given
graph is minimum among all the other possible decompositions if it contains the lowest
possible number of cliques. Finding such decompositions amounts to finding minimum
set covers [Kar72]].

Decomposition and algorithm acronyms. We use the following short names for de-
composition alternatives. XC decompositions are exact covers, while SC decompositions
are simple covers. A + superscript is added when only maximal cliques are considered;
the absence of this superscript indicates covers made of partial cliques. Finally, M is used
as a prefix when only minimum set covers are considered.

We refer to the CliqueSquare algorithm variant using a decomposition alternative .o/
(one among the eight above) as CliqueSquare-.</.

CliqueSquare-MSC example. We illustrate below the working of the CliqueSquare-
MSC variant (which, as we will show, is the most interesting from a practical perspective),
on the query Q, of Figure CliqueSquare-MSC builds out of the query variable graph
G, of Figure[.2] successively, the graphs Gs, then G, and G5 shown in Figure 4.6 At the
end of the process, states comprises [Gy, Gz, G4, Gs]. CliqueSquare plans are created as
described in Section [4.4.2} the final plan is shown in Figure 4.5

Jy(adf gij)
7N
Jo(adf) Ji(fgij)
1 1
Jo(@) Jy(adf) J,(fgi) J;(ij)

= N NS

M (a) M, (a) M,(da) M, (d) M (d M (fd) M, (fg) M,(e) M, (g) MG M)

Figure 4.5: Logical plan built by CliqueSquare-MSC for Q1 (Figure §.2).

4.4. QUERY PLANNING 77

A a A, f A, A,
[t1, 5] [t3,t4,ts, t6] [t7, ts, to] [t10, t11]

(a) 1stcall: graph Gg

B, f B, o
[A1,A,] [A3,A4] [B1,B,]

(b) 2nd call: graph G4 (c) 3rd call: graph Gg

Figure 4.6: Variable graphs after each call of CliqueSquare-MSC.

The set of logical plans developed by CliqueSquare-.of for a query q is termed plan
space of . for q and we denote it 2 _,(q); clearly, this must be a subset of 2 (q). We
analyze the variants’ plan spaces below.

Relationships between plan spaces. We have completely characterized the set inclu-
sion relationships holding between the plan spaces of the eight CliqueSquare variants.
Figure summarizes them: an arrow from option .o/ to option .’ indicates that the
plan space of option .« includes the one of option .&’. For instance, CliqueSquare-SC
(partial cliques, all set covers) has the biggest search space g which includes all the
others.

Theorem 4.4.1 (Plan spaces relationships). All the inclusion relationships shown in Fig-

ure . hold.
5o
/ l \
Zsc+ PXC PMSC
! >< >< !
Zxct PMsct PMXC
PMXCH

Figure 4.7: Inclusions between the plan spaces of CliqueSquare variants.

Proof. Recall that a decomposition is determined by three choices: (a) maximal or partial
cliques; (b) exact or simple set cover; (c) minimum-size versus all covers. Therefore, we
use a triple (04, 0,,05) where 0; € {<,>,=}, 1 < i < 3, to encode three relationships
between two options, option i and option j:

— The symbol o, represents the relationship between the types of cliques used: since
maximal cliques are a special case of partial cliques, o, is < iff Option i uses max-
imal cliques while Option j uses partial cliques, > if the opposite holds, and =
otherwise.

78 CHAPTER 4. CLIQUESQUARE

— The symbol o, represents the relationship between the types of cover used. Simi-
larly, since exact covers are particular cases of set covers, 0, is < iff Option i relies
on exact covers and Option j on general set covers; 0, 1S > in the opposite case,
and = otherwise.

— Finally, o5 encodes the relationship between the size of the covers which are re-
tained from the cover algorithms: minimum set covers being more restrictive, o5 is
< iff Option i uses only the minimum covers while Option j uses them all, > in the
opposite case, and = otherwise.

For example, comparing MXC" with XC™ leads to the triple (=,=,<): they both
use maximal cliques and exact cover; MXC™ considers only minimum covers while XC*
considers them all. We say a symbol s € {<, >} dominates a triple (04, 0,, 05) if the triple
contains s and does not contain the opposite-direction symbol. For instance, < dominates
(=,<,=)as well as (<, <, =), but does not dominate (<, >, =); > does not dominate the
latter, either. The following simple property holds:

Proposition 4.4.1 (Option domination). Let i,j be two options, i,j € {MXC*, XC,
MSC*, SCt, MXC, XC, MSC, SC} and (04, 0,,03) be the comparison triple of the options
i and j. If < (respectively, >) dominates (04,05, 03), then the plan space of CliqueSquare
using option 1 is included (respectively, includes) in the plan space of CliqueSquare using
option j.

XC* MSC* SC* MXC XC MSC SC

MXC™ | (=,=,9) | (=,<,2) | (=,<,9) | (<,=2) | (<,= 9| (<,<,2) | (<, <,<)
XC* (=<>)|(=,<,2) | (<=>)(<,=,2)|(<<>) (<, <,2)
MSC* (== <) | (<>3)[(<>(<,=9)| <,=,<)
sc*t (<,>>)](<,>=)[(<,=>)|(<,=,=
MXC (==9|E<3)|E=<<)
XC (=,<,>) (=,<,=)
MSC (=,=,<)
SC

Table 4.1: Detailed relationships between decomposition options.

The reason for the above is that each comparison symbol encodes the relationship
between the alternatives available to each algorithm. If neither < nor > dominates the
comparison triple, it can be easily shown that the search spaces are incomparable (not
included in one another). Table {.1] shows the comparison triples for all pairs of decom-
position options. The cell (row, col) corresponds to the comparison of option row and
option col. The comparisons dominated by < or > (which entail a relationship between
the respective search spaces) are highlighted.

]

4.4. QUERY PLANNING 79

Optimization algorithm correctness. A legitimate question concerns the correctness
of the CliqueSquare-SC, which has the largest search space: for a given query q, does
CliqueSquare-SC generate only plans from 2 (q), and all the plans from 2(q)?

We first make the following remark. For a given query q and plan p € 2 (q), it is easy
to obtain a set of equivalent plans p’, p”, ... € #(q) by pushing projections and selections
up and down. CliqueSquare optimization should not spend time enumerating p and such
variants obtained out of p, since for best performance, o and 7 should be pushed down
as much as possible, just like in the traditional setting. We say two plans p,p’ € #(q)
are similar, denoted p ~ p’, if p’ can be obtained from p by moving ¢ and 7 up and
down. We denote by #~(q) the space of equivalence classes obtained from & (q) and
the equivalence relation ~. By a slight abuse of notations, we view &2 ~(q) to be a set of
representative plans, one (arbitrarily chosen) from each equivalence class.

Based on this discussion, and to keep notations simple, in the sequel we use %(q)
to refer to 2?~(q), and we say an algorithm CliqueSquare-.«/ is correct iff it is both
sound, i.e., it produces only representatives of some equivalence classes from 2 ~(q),
and complete, i.e., it produces a representative from every equivalence class of 2~(q).

Theorem 4.4.2 (CliqueSquare-SC correctness). For any query q, CliqueSquare-SC out-
puts the set of all the logical plans computing the answers to q: Psc(q) = 2(q).

Proof. We first show that Z.(q) € Z(q) holds, before proving 2(q) € Ps.(q).

Soundness. Z.:(q) € #(q) directly follows from our plan generation method starting
from a sequence of variable graphs produced within CliqueSquare-SC (Section4.4.2), by
recursive SC-clique decompositions/reductions (Section 4.3.2).

Completeness. For proving 2(q) € ZPs(q), consider any plan p € £ (q) and let us show
that CliqueSquare-SC builds a plan p’ € Ps.(q) similar to p (p ~ p’), i.e., disregarding
the projection and selection operators. That is, we use p to refer to its subplan consisting
of all its leaves (match operators) up to the last join operator, assuming all the o and 7
operators have been pushed completely up.

The proof relies on three notions: (i) the height of a plan, (i) the subplans at a given
level of a plan, and (iii) the equality of two plans up to a level.

For a given plan p, the height of p, denoted h(p), is the largest number of successive
join operators encountered in a root-to-leaf path of p; a level [of p is an integer between
0 and h(p).

A subplan of p is a sub-DAG of p. For any subplan p’ of p whose root is the node n,
p’ is at level 1, for 0 < 1 < h(p) iff the longest n-to-leaf path is of size at most [, and the
longest path from a direct parent of n (if any) to a leaf is of size at least [4+ 1. In particular,
the match operator leaves of a plan p are all the subplans of p at level O, while p is its
only subplan at level h(p).

Finally, two plans are equal up to a level iff they have the same subplans at that level.

With the above notions in place, showing completeness amounts to proving the prop-
erty:

() for any plan p € 2(q), CliqueSquare-SC produces a plan equal to p up to level h(p).

80 CHAPTER 4. CLIQUESQUARE

We prove this by induction on the level [of a sub-plan of p, as follows.

(Base) For [= 0, i.e., we consider p’s leaves only, which are necessarily match
operators, one for every triple pattern in q. Since CliqueSquare-SC is initially called with
the variable graph G of q having a single triple per graph node, and with the empty queue
states, any plan generated by CliqueSquare-SC using createQueryPlan has the
same leaves as p. Therefore, any plan produced by CliqueSquare-SC is equal to p up to
[=0.

(Induction) Suppose that the above property () holds up to level n, and let us show it
also holds up to level n + 1.

Atlevel n+ 1, consider the new join operators that are not at level n. These operators
correspond to the roots of subplans, i.e., of sub-DAGs of p, whose children are roots of
sub-DAGs of p at level n. For any such new join operator J,(0op4,...,0p,)(a;,...,a,),
consider a plan p’ produced by CliqueSquare-SC that is equal to p up to level n (p’ exists
thanks to the induction hypothesis).

By construction, p’ has been produced from the states variables of CliqueSquare-
SC in which the n'"* variable graph Gg has one node per root of subplan of p at level
n. Any new join operator J,(op4,...,0p,)(ay,...,a,) introduced in p at level n + 1
has as children op,,...,0p,, operators at level n. Since every operator opy,...,0p,,
outputs the set of attributes A, the nodes corresponding to these operators form some
cliques (as many as there are variables in A) in GZ;- As, by definition, any such clique
can be found by a SC clique decomposition, there exists a plan p” € Z.(q) generated by
CliqueSquare-SC from the states variable whose first n variable graphs are equal to those
from which p’ has been generated, and whose n + 1" graph has a node corresponding to
Jy(opq,...,0p)(ay,...,a,). Therefore, there exists a plan produced by CliqueSquare-
SC that is equal to p up ton + 1.

[

4.4.4 Height optimality and associated algorithm properties

To decrease response time in our parallel setting, we are interested in flat plans,
i.e., having few join operators on top of each other. First, this is because flat plans
enjoy the known parallelism advantages of bushy trees. Second, while the exact transla-
tion of logical joins into physical MapReduce-based ones (and thus, in MapReduce jobs)
depends on the available physical operators, and also (for the first-level joins) on the RDF
partitioning, it is easy to observe that overall, the more joins need to be applied on top
of each other, the more successive MapReduce jobs are likely to be needed by the query
evaluation. We define:

Definition 4.4.1 (Height optimal plan). Given a query q, a plan p € 2(q) is height-
optimal (HO in short) iff for any plan p’ € 2 (q), h(p) < h(p").

We classify CliqueSquare algorithm variants according to their ability to build height opti-
mal plans. Observe that the height of a CliqueSquare plan is exactly the number of graphs
(states) successively considered by its function createQueryPlans, which, in turn, is the
number of clique decompositions generated by the sequence of recursive CliqueSquare

4.4. QUERY PLANNING 81

invocations which has lead to this plan. Notice that height optimal plans are not neces-
sarily globally optimal. An example of this can be seen in Figure .4 depicting a height
optimal plan generated by CliqueSquare-SC". The plan is height optimal but it is not
globally optimal since it incurs a lot of redunandant processing (most notably joins J;,

Jo)-

Definition 4.4.2 (HO-completeness). CliqueSquare-.</ is height optimal complete
(HO-complete in short) iff for any query q, the plan space @ ,(q) contains all the HO
plans of q.

Definition 4.4.3 (HO-partial and HO-lossy). CliqgueSquare-.<f is height optimal partial
(HO-partial in short) iff for any query q, 2 ,(q) contains at least one HO plan of q. An
algorithm CliqueSquare-.<f which is not HO-partial is called HO-lossYy.

An HO-lossy optimization algorithm may find no HO plan for a query q;, some HO
plans for another query q, and all HO plans for query q5. In practice, an optimizer should
provide uniform guarantees for any input query. Thus, only HO-complete and HO-partial
algorithms are of interest.

Table [4.2] classifies the eight CliqueSquare variants we mentioned, from the perspec-
tive of these properties.

Theorem 4.4.3 (CliqueSquare HO properties). The properties stated in Table d.2| hold.

HO-complete | SC
HO-partial SC*, MSC*, MSC
HO-lossy MXC*, XC*, MXC, XC

Table 4.2: HO properties of CliqueSquare algorithm variants.

Proof.

CliqueSquare-SC is HO-complete. This is a direct corollary of Theorem 4.4.2] Since
for any query q, CliqueSquare-SC computes Z(q), it therefore computes all the optimal
plans for q.

CliqueSquare-SC* is HO-partial. First let us show that CliqueSquare-SC* is not HO-
complete.

We show that SC* is not SO-complete based on the example of the query in Figure
SC™ can produce only one plan for this query, joining {t,, t,}, and {t,, t;} in the first level
and then joining the resulting two intermediate relations in the next level. In contrast, SC
is allowed to consider partial cliques, thus it may also build another HO plan as follows:
choose as first cover {{t;, t,}, {t5}}, and in the subsequent level join the result of t; >< t,
with t;. SC* cannot build this plan.

82 CHAPTER 4. CLIQUESQUARE

t
X y 3

Figure 4.8: Query for which CliqueSquare-SC™fails to find all HO plans.

Now, let us show that for any height optimal plan p for a query g, CliqueSquare-SC*
computes a plan p’ for g with the same height (h(p) = h(p")), therefore CliqueSquare-
SC* is HO-partial. This follows from the HO-completeness of CliqueSquare-SC. Let p
be any height optimal plan for a query g, built by CliqueSquare-SC. Consider the plan p’
resulting from applying successfully to p the following changes:

1. pushing completely up the selection and projection operators;

2. starting from level 1 of p up to h(p), replace each join operator resulting from a non-
maximal clique for a given variable by the join operator obtained from the maximal
version of this clique. Then add a projection operator on top of this maximal-clique
join, to restrict its output to exactly the attributes that the original join used to return,
and move this projection operator completely up.

Observe that p’ also computes the answer to g (because no matter how much larger the
newly introduced joins are, all the extra predicates that they bring were also going to
be enforced in p) and that p and p’ have the same height. Since p’ is obtained from
decompositions made of maximal-cliques only, p’ is in the output of CliqueSquare-SC™.

CliqueSquare-MSC is HO-partial. First let us show that CliqueSquare-MSC is not
HO-complete.

Consider the query depicted in Figure The only plan MSC produces for this
query is shown in Figure 4.10] However, the plan shown in Figure i.11]is also HO. This
counterexample demonstrates that MSC is HO-partial.

Now, let us show that for any height optimal plan p for a query q, CliqueSquare-MSC
computes a plan p’ for g with the same height (h(p) = h(p’)), therefore CliqueSquare-
MSC is HO-partial.

We first introduce the following notions for a Join operator op at level [in a plan p:

— let par(op) be the parents of op, for 1 <1 < h(p), that is: the set of operators from

level [— 1 that beget op, i.e., that are reachable from op within p.
— let gp(op) be the grandparents of op, for 2 < | < h(p), that is: the set of operators
from level [— 2 that beget op, i.e., that are reachable from op within p.

Let p be an HO plan produced by CliqueSquare-SC. (Recall that CliqueSquare-SC
is HO-complete, thus it computes all the HO plans.) We next show that if up to level [,
for 1 <1 < h(p), the nodes of p result from an MSC decomposition based on the nodes
one level below, then we can build from p a plan p’ of the same height, computing the
same output as p (thus computing q), and whose nodes are obtained from MSC clique
decompositions up to level | + 1. Applying this process repeatedly on p, then on p’ etc.
eventually leads to an MSC plan computing q.

Observe that at the level [= 1, p has only Match operators for the input relations.
Thus, at [= 1, any p produced by CliqueSquare-SC coincides with any HO plan, because
the leaf operators are the same in all plans. Similarly, at [= h(p), the plan p consists of a

4.4. QUERY PLANNING 83

ty

ty t3

ty

Figure 4.9: Query QX illustrating that minimum covers may lead to missing plans.
J,(xyzw)
/ \
J(xy) J.(y2)

/N /N

Mtl(x) Mtz(xJ’) Mtg(yz) Mt4(z)

Figure 4.10: Logical plan for the query QX using minimum-cover decompositions.
J,(xyzw)
7 T .
Jelxy) Jy(xyz) I (y2)

/N /N

Mtl(x) MtZ(XY) Mt3(yz) Mt4(z)

Figure 4.11: HO plan for the query QX obtained from non-minimum decompositions.

plan p

Figure 4.12: Modified operators (black nodes) related to op, between p and p’.

single Join operator, thus the level h(p) is indeed obtained by an MSC clique decomposi-
tion.

Now, let us consider a level [, 1 <[< h(p), the first level of p from 2 up to h(p) — 1
not resulting from an MSC clique decomposition based on the operators at the previous
level [— 1.

We build from p a plan p’ computing g, with the same height, and resulting from MSC
clique decompositions up to its level [4 1, as follows.

Let d be one of the MSC clique decompositions corresponding to level [—1 of p. Let
p’ be a copy of the plan p up to [—1, and having at level [the Join operators corresponding
to d. Observe that the connections between the operators from level [— 1 and [in p’ are
determined by d, as they are built by CliqueSquare’s function createQueryPlan.

Now, let us show how to connect the level [of p’ to (a copy of) the level I + 1 of p, so
as to make p’ identical to p level-by-level between [+ 1 and h(p).

For every operator op in p’ at level [+ 1, which is identical to that of p, we connect
op to a minimal subset of operators from level [in p’, such that gp(op) in p is a subset
of gp(op) in p’. Observe that the operators in par(op) in p’ are guaranteed to contain all

84 CHAPTER 4. CLIQUESQUARE

the variables in op, because (i) any node has at most the variable present in all its parents
(thus, grandparents etc.)E] and (ii) op and gp(op) were connected in p. Because all the
input variables of op are provided by par(op) in p’, the join predicates encoded by op
can be applied in p’ exactly as in p (all operators at level [+ 1, are unchanged between
p and p’). If the nodes in par(op) in p’ bring some variables not in p, we project them
away prior to connecting the par(op) operators to op in p’.

The plan p’ satisfies the following: (i) it is syntactically correct, i.e., all operators have
legal inputs and outputs, (i) it computes q because, by construction, it is a CliqueSquare-
SC HO-plan for g, and (iii) it is based on MSC decompositions up to level [(thus, one
step higher than p). This concludes our proof.

CliqueSquare-MSC* is HO-partial. First let us show that CliqueSquare-MSC™ is not
HO-complete.

CliqueSquare-MSC™ is not HO-complete because (i) CliqueSquare-MSC is not HO-
complete and (ii) CliqueSquare-MSC™ outputs a subset of the plans produced by CliqueSquare-
MSC (Proposition 4.4.1).

Now, let us show that for any height optimal plan for a query g, CliqueSquare-MSC*
computes a plan for g with same height, therefore it is HO-partial. This follows from the
fact that CliqueSquare-MSC is HO-partial. Let p be any height optimal plan for a query
q that is computed by CliqueSquare-MSC. Consider the plan p’ resulting from applying
successfully to p the following changes:

1. pushing completely up the selection and projection operators,

2. Starting from level 1 of p up to h(p), replace each join operator resulting from
a non-maximal clique for a given variable by the join operator resulting from the
maximal version of this clique. Then add a projection operator on top of it to output
the same relation as the previous join operator, and move this projection operator
completely up.

Observe that p’ computes the answer to the query, too, because no matter how much
larger the newly introduced joins are, all predicates they bring are enforced at some point
in p, too. Further, p and p’ have the same height. Since p’ is obtained from minimum
decompositions (picked by CliqueSquare-MSC) now made of maximal-cliques only, p’ is
in the output of CliqueSquare-MSC™.

MXC*, XC*, MXC and XC are HO-lossy. Consider the query shown in Figure
An exact cover algorithm cannot find an HO plan for this query. This is because the
redundant processing introduced by considering simple (as opposed to exact) set covers
may reduce the number of levels. For instance, using MSC*, one can evaluate the query
in Figure in two levels: in the first level, the cliques {t, t,}, {t,, t3}, {t,, 4} are
processed; in the second level, all the results are joined together using the common vari-
ables xyz. On the other hand, any plan built only from exact covers requires an extra
level: t, is joined with the nodes of only one of its cliques, and thus, there is no common

4. We say “at most” because in p, some variables present in the parent may have been projected away
at an upper level. However, for simplicity, we ignore projections throughout the proof; it is easy to see that
one can first pull up all projections from p, then build p’ out of p as we explain, and finally push back all
necessary projections on p’, with no impact on the number of levels.

4.4. QUERY PLANNING 85

variable among the rest of the triple patterns. This requires an extra level in order to finish
processing the query.

ty

ty t3
wi Y
ty

Figure 4.13: Query on which XC CliqueSquare variants are HO-lossy.

]

When MXC* and XC™ fail. It turns out that the CliqueSquare algorithm based on the
MXC" and XC* may fail to find any plan for some queries, such as the one shown in
Figure For this query, the maximal clique decomposition returns the cliques {t,, t,},
{t,, t5}, out of which no exact cover of the query nodes can be found. In turn, this trans-
lates into CliqueSquare-MXC™ and CliqueSquare-XC™ failing to find a query plan! Thus,
we do not consider MXC* and XC* further.

4.4.5 Time complexity of the optimization algorithm

Through some simplification, we study the complexity of the CliqueSquare algorithm
by focusing only on the total number of clique reductions performed. While there are
many other operations involved, the decompositions applied by the algorithm are the main
factor determining how many computations are overall performed.

Let n be the number of nodes in the variable graph, and let T(n) denote the number
of clique reductions. The size of the problem (number of nodes) reduces at every level
(every recursive call); the reduction rate largely depends on the chosen decomposition
method. Thus, we analyze the complexity of each of our eight option separately.

Recall that our decomposition methods can be classified in two major categories: (i)
those based on minimum set covers only, and (ii) those using minimum or non-minimum
COVETS.

Decompositions based on minimum covers. The decompositions using minimum set
covers, namely MXC™*, MSC*, MXC, and MSC, reduce the size of the graph by a factor
of at least 2 at each call, as we explain below:

— Since we only consider connected query graphs, a graph of n nodes has at least
n — 1 edges.

— This graph admits at least one clique; if it has exactly one, the graph size is divided
by n in one level of decomposition.

— At the other extreme, assuming each edge is labeled with a different variable; in this
case, selecting [(n — 1)/2] edges is guaranteed to lead to a minimum cover. Thus,
in the next (recursive) call, the graph will have at most [(n — 1)/2] nodes, and the
reduction divides the size of the problem by a factor of 2.

We denote by D(n) the number of possible decompositions. Given that at each step the

algorithm performs as many reduction as there are possible decompositions, the following
recurrence relation can be derived:

86 CHAPTER 4. CLIQUESQUARE

T(n) <DM)T([(n—1)/21) (4.1)
where T(1)=1.

Decompositions based on any covers. For the decompositions that are not using mini-
mum covers, namely XC*, SC*, XC, SC, the size of the graph in the worst case is smaller
by 1 (this follows from the Definition 4.3.3)). In this case, the recurrence relation is:

T(n)<D(nN)T(n—1) 4.2)

where T(1) = 1.
The number of decompositions D(n) depends on the graph and the chosen method.
The first parameter affecting the number of decompositions D(n) is the set of cliques.
Given a query q and its variable graph Gy, the join variables JV of q determine the
number of maximal/partial cliques of the graph (we only consider non-trivial queries with
at least one join variable, |[JV| > 1).

Counting maximal cliques. The number of maximal cliques in the graph is equal to the
number of join variables. When |JV| = 1, there is exactly one maximal clique.

Lemma 4.4.1. A variable graph Gy has at most 2n + 1 maximal cliques.

The proof is trivial since any conjunctive query q cannot have more than 2n+1 distinct

variables. Thus, the variable graph at any level does not have nodes that contain new
variables so the number of maximal cliques is bound by the number of distinct variables
existing in the query.
Counting partial cliques. Let ¢/, be the maximal clique corresponding to a variable
u € JV; from the definition of partial cliques it follows that the number of all non-empty
partial cliques of cf,, is equal to 2/ — 1. For two variables v,, v,€ JV, the maximal
cliques cf,, and cf, may have some common nodes; in this case, some partial cliques for
v, are also partial cliques for v,.

To count the clique overlapping the following factor is introduced:

_ |ct,. Nck,,
OF_Zvl,VZGJV:cfvlﬂcfvﬁéﬂz ! 2

Thus, the total number of partial cliques is given by:

Z (2t — 1) — OF (4.3)

uejv

Lemma 4.4.2. A variable graph Gy has at most 2" — 1 partial cliques.

The proof is trivial since even in the case where we can take all combinations of nodes
as partial cliques this number cannot exceed the power set.

The second parameter that affects the number of decompositions D(n) is the decom-
position method. Below we establish the complexity of CliqueSquare algorithm for each
decomposition method, considering the worst case scenario for D(n).

4.4. QUERY PLANNING 87

Complexity of CliqueSquare-SC. Out of 2" — 1 partial cliques, we search for set covers
of size at most n — 1. The maximum number of decompositions (the maximum number
of covers) satisfies:

2t —1
D(n)SZ()) (4.4)
k=1

The equation above corresponds to the total number of sets that will be examined in
CliqueDecomposition function. Only some of them are valid covers, thus the above is a
very rough bound. This is easy to see for example considering the case where k = 1. The
candidate covers according to the equation will be 2" — 1, but only one of them is really
a cover.

Complexity of CliqueSquare-MSC. A variable graph of n nodes is sure to contain a
cover of size [n/2]. MSC decomposition searches for minimum covers in the graph,
thus if there exists a cover with size [n/2] there is no need to consider bigger covers.
Furthermore, a cover smaller than [n/2] may exist, but since we consider the worst case
(where the number of decompositions is maximized), we rely on [n/2] as the size of the
minimum set cover. Based on this, the number of decompositions satisfies:

pmy< (> ! 45
= (1) -

The worst case is constructed by taking the worst case for the number of cliques and
the worst case for the size of the minimum set cover. These two worst cases, though,
might never appear together in practice. For example, the 2" — 1 partial cliques appear
when we have a single clique query, but in that case the minimum set cover is exactly one.
On the other hand, a minimum set cover of size n/2 is typical for chain queries, for which
the number of partial cliques is 2n — 1.

Complexity of CliqueSquare-XC. When there are 2" — 1 partial cliques, there is exactly
1 maximal clique; in this case the exact cover problem is equivalent with the problem of
finding the partitions of a set. The number of ways to partition a set of n objects into k
non-empty subsets is described by Stirling partition numbers of the second kind and is
denoted as {Z} The total number of decompositions satisfies:

n—1 n
D(n) < ; { k} 4.6)

Complexity of CliqueSquare-MXC. Given a variable graph G, with n nodes, in the
worst case the size of the minimum set cover is equal with [n/2] (the graph is con-
nected). In addition we have seen that for exact cover decompositions the maximum
number cannot exceed the number given by Equation[4.6] Using again the equivalence of
the exact cover problem with set partitioning, we are interested in non-empty partitions
of size k = [n/2]. The total number of decompositions satisfies:

D(n) = { 4.7)

)
[n/2]

88 CHAPTER 4. CLIQUESQUARE

Again, the above upper bound is based on two mutually exclusive worst cases: 1-
clique queries for which we the number of exact covers is given by the Stirling numbers,
and chain queries which maximize the size of the set cover (n/2).

Complexity of CliqueSquare-SC™. A variable graph of n nodes has at most 2n + 1
maximal cliques (Lemma/.4.1)). Similarly to SC decompositions, we search for set covers
of size at most n — 1. The total number of decompositions satisfies:

n—1
NOEDY (2"; 1) 4.8)
k=1

Complexity of CliqueSquare-MSC*. As before the maximum number of maximal
cliques is 2n + 1 (Lemma[4.4.1)). Since the graph is connected, in the worst case, the size
of the minimum set cover is [n/2]. Thus, the total number of decompositions satisfies:

D(n) < 2n+1 49
@ (o) 2

Complexity of CliqueSquare-XC™*. Recall again Lemma Due to the clique over-
lap, for every clique that is chosen, at least one other clique becomes ineligible. In practice
the cliques may overlap even more but we are interested only in the worst case (the ones
that generates the most decompositions). Assuming that there are 2n+1 maximal cliques,
we can only pick a maximum of n+ 1 E] cliques, since any extra selection will make some
clique ineligible. From the above, we conclude that the total number of decompositions
satisfies:

n—1
OESY (n: 1) (4.10)
k=1

Complexity of CliqueSquare-MXC™. Similar with XC* there are at most n + 1 eli-
gible cliques. Given that we are looking for a minimum cover, the size of the cover is
constant (similar with the other options supporting minimum covers). Again the bino-
mial coefficient is used to estimate the worst case and the total number of decompositions
satisfies:

D(n) < ntl 4.11
n/2] @10

Table[d.3|summarizes the number of decompositions for each option when considering
the worst case scenarios. Note that the worst cases are not reached by all algorithms
on the same queries, therefore Figure does not provide an easy way to compare the
efficiency of the optimization variants. We have obtained interesting comparison results
experimentally by testing all variants against a large set of synthetic queries (see Section

B.7.2).

5. Notice that [(2n+1)/2]=[n+1/2] =n+ 1since n € N*

4.5. STORAGE 89

MXC* | MSC* | MXC | MSC XC* SC* XC SC

n+1 2n+1 n 2"—1 n—1 rn+1 2n+1 n—1 (n n—1 (2"—1
(o) | G | Lt | G | 20600 () | G | 2o 13 | 255 C)
Table 4.3: Upper bounds on the complexity of CliqueSquare variants on a query of n
nodes.

4.5 Storage

This section describes how CliqueSquare partitions (Section {4.5.1)) and places RDF
data in HDFS using MapReduce jobs (Section 4.5.2)). In addition, it presents how to
handle skew (Section 4.5.3)) in the values of properties and briefly discusses some fault-

tolerance issues (Section 4.5.4).

4.5.1 RDF partitioning

We start from the observation that the performance of MapReduce jobs suffers from
shuffling large amounts of intermediate data between the map and reduce phases. There-
fore, our goal is to partition and place RDF data so that the largest number of joins are
evaluated at the map phase itself. This kind of joins are known as co-located or partitioned
joins [RGO03, IOV 11]. In the context of RDF, queries tend to involve many clique joins
(e.g., subject-subject, subject-object, property-object, subject-subject-subject, subject-
subject-property,etc.). Co-locating such joins as much as possible is therefore an impor-
tant step towards efficient query processing.

By default HDFS replicates each dataset three times for fault-tolerance reasons.
CliqueSquare exploits this data replication to partition and store RDF data in three differ-
ent ways. In detail, it proceeds as follows.

1. We partition each triple and place it according to its subject, property and object
values, as in [CEFYMO4]]. Triples that share the same value in any position (s p o)
are located within the same compute node.

2. Then, unlike [CEYMO4], we partition triples within each compute node based on
their placement (s p o) attribute. We call these partitions subject, property, and
object partition. Notice that given a type of join, e.g., subject-subject join, this
local partitioning allows for accessing fewer triples.

3. We further split each partition within a compute node by the value of the property in
their triples. This property-based grouping has been first advocated in [HMM™11]]
and also resembles the vertical RDF partitioning proposed in [AMMHO?7] for cen-
tralized RDF stores. Finally, we store each resulting partition into an HDEFS file. By
using the value of the property as the filename, we benefit from a finer-granularity
data access during query evaluation.

CliqueSquare reserves a special treatment to triples where the property is rdf:type. In
many RDF datasets, such statements are very frequent which, in our context, translates
into an unwieldy large property partition corresponding to the value rdf:type. To avoid
the performance problems this may entail, CliqueSquare splits the property partition of

90 CHAPTER 4. CLIQUESQUARE

rdf:type into several smaller partitions, according to their object value. This enables work-
ing with finer-granularity partitions.

In contrast e.g., to Co-Hadoop [ETO™11]], which considers a single attribute for co-
locating triple, our partitioner co-locates them on the three attributes (one for each data
replica). This allows us to perform all first-level joins in a plan (s-s, s-p, s-0, $-s-S, $-5-0,
etc.) locally in each compute node during query evaluation.

Below we describe CliqueSquare storage in terms of our storage description language
(Definition [2.3.1] Section [2.3.1)).

| Storage description |
| HP(S){LP(P){SO}}+HPP){LP(P){SO}}+HP(O){LP(P){SO}} |

4.5.2 MapReduce partitioning process

CliqueSquare partitions RDF data in parallel for performance reasons. For this, it
leverages the MapReduce framework and partitions input RDF data using a single MapRe-
duce job. We describe the map, shuffle, and reduce phases of this job in the following.

Map phase. For each input triple (s; p; 0;), the map function outputs three key-value
pairs. CliqueSquare uses the triple itself as value of each output key-value pair and cre-
ates composite keys based on the subject, property, and object values. The first part of
the composite key is used for routing the triples to the reducers, while the second part
is used for grouping them in the property-based files. In specific, CliqueSquare com-
putes the three keys as follows: one key is composed of the subject and property values
(i.e., s1/p;); one key is composed of the object and property values (i.e., 0;|p;); and one
key is composed of the property value itself (i.e., p;), but, if p; is rdf:type, CliqueSquare
then concatenates the object value to this key (i.e., rdf:type|o,).

Shuffle phase. CliqueSquare uses a customized partitioning function to shuffle the key-
value pairs to reduce tasks based on the first part of the composite key. The reduce task
(node) to which a key-value pair is routed is determined by hashing this part of the key.
As a result, CliqueSquare sends any two triples having the same value x (as a subject,
property, or object, irrespectively of where x appears in each of these two triples) to the
same reduce task. Then, all triples belonging to the same reduce task are grouped by the
second part of the composite key (the property value).

Reduce phase. The MapReduce framework then invokes the reduce function for each
computed group of triples. The reduce function, in turn, stores each of these groups into a
HDEFS file (with a replication factor of one), whose file name is derived from the property
value and a string token indicating if it is a subject, property, or object partition.

Algorithm [2] shows the pseudocode of the MapReduce job for partitioning data as
explained above. Notice that since the property is included in the output key of the map
function, we omit it from the value, in order to reduce the data transferred in the network
and the data we store in HDFS.

Let us now illustrate our RDF partitioning approach (Algorithm[2)) on the sample RDF
graph of Figure [2.1] and a three-nodes cluster. Figure [d.14] shows the result after the rout-

4.5. STORAGE 91

Algorithm 2: RDFPartitioner job
1 Map(key, t)
Input : File offset key; String value of a triple t
fileName « 0;
outputValue<« 0;
if t.property = "rdf:type" then
fileName <« t.property + "#" + t.object;
outputValue < t.subject;
else
fileName <« t.property;
outputValue <« t.subject + t.object;

o 0 N NN R W N

nlll

=
<

emit ((t.subject +
emit ((t.property +
emit ((v.object + "I"

+ fileName + "-S"), outputValue);
"I" + fileName + "-P"), outputValue) ;
+ fileName + "-O"), outputValue) ;

-
R =

Reduce(key, triples)
Input : Triple’s attribute valuelfileName; Collection of triples

file < reducerID + fileName;
B writeHDFS (triples,file);

o
w

ot
=

[y
wn

ing of the shuffle phase. We underline the first part of the composite key used in the cus-
tomized partitioning function. For example, the input triple (: studl :takesCourse
:db) is sent: to node n; because of its subject value; to n, because of its object value;
and to ng because of its property value. Next, each node groups the received triples based
on the property part of the composite keys. Figure shows the final result of the
partitioning process assuming that the number of reduce tasks is equal to the number of
nodes.

The advantage of our storage scheme is twofold. First, many joins can be performed
locally during query evaluation. This is an important feature of our storage scheme as
it reduces data shuffling during query processing and hence leads to improved query re-
sponse times. Second, our approach strikes a good compromise between the generation
of either too few or too many files. Indeed, one could have grouped all triples within a
node (e.g., all triples on n; in Figure @.15) into a single file. However, such files would
have grown quite big and hence increase query response times. In contrast, the files stored
by CliqueSquare have meaningful names, which can be efficiently exploited to load only
the data relevant to any incoming query. Another alternative would be to omit the group-
ing by property values and create a separate file for each subject/property/object partition
within a node. For instance, in our example, node n, has nine subject/property/object
values (see underlined values in Figure 4.14) while only six files are located in this node
(Figure [4.15). However, handling many small files would lead to a significant overhead
within MapReduce jobs.

92 CHAPTER 4. CLIQUESQUARE

node n; node n, node n;
(ub:studl ub:takesCourse ub:db) (ub:studl ub:takesCourse ub:db) (ub:profl ub:advisorOf ub:studl)
(ub:studl ub:member ub:dept4) (ub:studl ub:member ub:dept4) (ub:profl ub:name "bob")
(ub:studl ub:name "ted") (ub:deptl rdf:type Dept) (ub:prof2 ub:advisor ub:stud2)
(ub:profl ub:advisor ub:studl) (ub:stud2 ub:member ub:deptl) (ub:prof2 ub:name "alice")
(ub:stud2 ub:takesCourse ub:o0s) (ub:profl ub:name "bob") (ub:studl ub:name "ted")
(ub:prof2 ub:advisor ub:stud2) (ub:profl ub:advisor ub:studl) (ub:studl ub:name "ted")
(ub:stud2 ub:member ub:deptl) (ub:prof2 ub:advisor ub:stud2) (ub:profl ub:name "bob")
(ub:deptl rdf:type ub:Dept) (ub:stud2 ub:takesCourse ub:o0s) (ub:prof2 ub:name "alice")
(ub:studl ub:member ub:dept4) (ub:prof2 ub:name "alice") (ub:studl ub:takesCourse ub:db)
(ub:stud2 ub:member ub:deptl) (ub:deptl type ub:Dept) (ub:stud2 ub:takesCourse ub:os)
(ub:profl rdf:type ub:Professor) (ub:profl rdf:type ub:Professor) (ub:profl rdf:type ub:Professor)
(ub:prof2 rdf:type ub:Professor) (ub:prof2 rdf:type ub:Professor) (ub:prof2 rdf:type ub:Professor)
(ub:dept4 rdf:type ub:Dept) (ub:dept4 rdf:type ub:Dept)

(ub:deptd4 rdf:type ub:Dept)

Figure 4.14: Data partitioning process: triples arriving at each node after the routing of
the shuffle phase.

4.5.3 Handling skewness in property values

In practice, the frequency distribution of property values in RDF datasets is highly
skewed, i.e., some property values are much more frequent than others [KOvH10, DKSUT1].
Hence, some property-based files created by CliqueSquare may be much larger than oth-
ers, degrading the global partitioning time due to unbalanced parallel efforts: processing
them may last a long time after the processing of property files for non-frequent proper-
ties.

To tackle this, Map tasks in CliqueSquare keep track of the number of triples for
each property file. When the number of triples reaches a predefined threshold, the Map
task decides to split the file and starts sending triples into a new property file. For
example, when the size of the property file (takesCourse-P) reaches the thresh-
old, the Map task starts sending (takesCourse) triples into the new property file

(takesCourse-P_02), which may if necessary overflow into another partition
(takesCourse-P_03) etc. The new property files end up to different Reduce tasks
to ensure load balancing.

4.5.4 Fault-Tolerance

Fault-tolerance is one of the biggest strengths of HDFS as users do not have to take
care of this issue for their applications. Fault-tolerance in HDFS is ensured through the
replication of data blocks. If a data block is lost, e.g., because of a node failure, HDFS
simply recovers the data from another replica of this data block. CliqueSquare also repli-
cates RDF data three times. However, each replica is partitioned differently (based on the
subject, property, and object). As a result, the copies of data blocks do not contain the
same data. Consequently, some triples from the RDF data might be lost in case of a node
failure. This is because such triples might belong to data blocks that were stored on the
failing node.

Thus, fault-tolerance is a big challenge in this scenario. The trivial solution to the
problem would be to set the replication factor of HDFS to a value greater than one. The
problem with this approach would be that the data which are already triplicated in HDFS

4.5. STORAGE 93

node n;
1_takesCourse-S 1_member-S 1_advisor-O
(ub:studl ub:db) (ub:studl ub:deptid) (ub:profl ub:studl)
(ub:stud2 ub:os) (ub:stud2 ub:deptl) (ub:prof2 ub:stud?2)

1_name-S 1_type#Dep-O 1_member-P
(ub:studl "ted") (ub:deptl) (ub:studl ub:dept4d)
(ub:dept4) (ub:stud2 ub:deptl)
1_type#Professor-O
(ub:profl)
(ub:prof2)
node n,
2_takesCourse-O 2_member-O 2_name-O
(ub:studl ub:db) (ub:studl ub:dept4d) (ub:profl "bob")
(ub:stud2 ub:os) (ub:stud2 ub:deptl) (ub:prof2 "alice")
2_advisor-P 2_type#Dept-S 2_type#Dept-P
(ub:profl ub:studl) (ub:deptl) (ub:deptl)
(ub:prof2 ub:stud2) (ub:dept4d) (ub:dept4d)
2_type#Professor-P
(ub:profl)
(ub:prof2)
node n,
3_advisor-S 3_name-S 3_name-P
(ub:profl ub:studl) (ub:profl "bob") (ub:profl "bob")
(ub:prof2 ub:stud?2) (ub:prof2 "alice") (ub:prof2 "alice")
(ub:studl "ted")
3_name-O 3_takesCourse-P 3_type#Professor-S
(ub:studl "ted") (ub:studl ub:db) (ub:profl)
(ub:stud2 ub:os) (ub:prof2)

Figure 4.15: Data partitioning process: triples in files at each node after the reduce phase.

would be multiplied even more depending on the specified value.

Another simple solution to this problem is to partition a computing cluster into three
groups of computing nodes. Each group is responsible of storing a different replica.
This would avoid losing triples in case of node failures. However, this does not avoid
CliqueSquare to read a large number of data blocks to recover the failed data blocks
(stored on the failing node). The database community recognizes this issue as a challeng-
ing and interesting problem. Hence, some research projects (e.g., Las Vegas Projectﬂ)
already started to deal with this problem. This is an interesting research direction that we
would like to investigate in the future.

6. http://database.cs.brown.edu/projects/las-vegas/

http://database.cs.brown.edu/projects/las-vegas/

94 CHAPTER 4. CLIQUESQUARE

4.6 Plan evaluation on MapReduce

We now discuss the MapReduce-based evaluation of our logical plans. We first present
the translation of logical plans into physical ones (Section exploiting the Clique-
Square storage (described in Section {.5]), then show how a physical plan is mapped to
MapReduce jobs (Section {.6.2)) and finally introduce our cost model (Section4.6.3).

4.6.1 From logical to physical plans

We define a physical plan as a rooted DAG such that (i) each node is a physical
operator and (ii) there is a directed edge from op; to op, iff op; is a parent of op,. To
translate a logical plan, we rely on the following physical MapReduce operators:

— Map Scan, MS[regex], parameterized by a regular expression[] regex, outputs

one tuple for each line of every file in HDFS that matches the regular expression
regex.

— Filter, Z_,,(op), where op is a physical operator, outputs the tuples produced by
op that satisfy logical condition con.

— Map Join, MJ,(op,,...,0p,), is a directed join [BPE™10] that joins its n inputs on
their common attribute set A.

— Map Shuffler, MF,(op), is the repartition phase of a repartition join [BPET10] on
the attribute set A; it shuffles each tuple from op on A’s attributes.

— Reduce Join, RJ,(0p4,...,0p,), is the join phase of a repartition join [BPET10].
It joins n inputs on their common attribute set A by (i) gathering the tuples from
opi,.-.,0p, according to the values of their A attributes, (ii) building on each com-
pute node the join results.

— Project, 7,(op), is a simple projection (vertical filter) on the attribute set A.
We translate a logical plan p; into a physical plan, operator by operator, from the
bottom (leaf) nodes up, as follows.

match: Let M., be a match operator (a leaf in p;), having k > 1 outgoing (parent-to-child)
edges.

1. For each such outgoing edge e; of M,,, 1 < j < k, we create a Map Scan operator
MS[regex] where regex is computed based on the triple pattern tp and the target
operator of edge e;. The regex is specified in Table @ The table contains all
the possible forms of a single triple pattern and the variables that may be requested
from the child operator of MS[regex] (target of edge e;). If the query is composed
only from a single triple pattern then any of the regular expressions appearing in the

7. A regular expression is a sequence of characters that define a search pattern, mainly for use in pattern
matching with strings, or string matching.

4.6. PLAN EVALUATION ON MAPREDUCE 95

Triple Pattern ?s ?p ?0
(?s ?p ?0) x—S | *—P | *x—0
(?s?p o) x—S | x—P
(?s p?0) *p — S *p — O
(?spo) *p— S
(s ?p ?0) x—P | *x—0
(s?po) x—P
(s p?0) xp — O
(spo)

Table 4.4: Regular expressions identifying which files (from the HDFS) are scanned given
a triple pattern and a variable requested by the child operator.

columns ?s, ?p, ?0 of Table 4.4] can be used without compromising performance.
For the existential query that is composed from the triple pattern (s p o) we heuris-
tically choose the file H[s]_p — S where H[s] is the hash of the attribute s.

2. If the triple pattern tp has a constant in the subject and/or object, a filter operator
Z.on 18 added on top of MS[regex], where con is a predicate constraining the
subject and/or object as specified in tp. Observe the filter on the property, if any,
has been applied through the computation of the regex expression.

join: Let J, be a logical join then two cases may occur.

1. J,is afirst level join (i.e., none of its ancestors is a join operator) and is transformed
into a Map Join, MJ,.

2. J, is not a first level join and is transformed into a Reduce Join, RJ,; a Reduce
join cannot be performed directly on the output of another Reduce Join, thus a Map
Shuffler operator is added, if needed.

select: o operator is mapped directly to the Z. physical operator.
project: T, operator is mapped directly to the respective physical operator.

For illustration, Figure [4.16|depicts the physical plan of Q1 built from its logical plan
shown in Figure Only the right half of the plan is detailed since the left side is
symmetric.

4.6.2 From physical plans to MapReduce jobs

As a final step, we map a physical plan to MapReduce programs as follows:

— projections and filters are always part of the same MapReduce task as their parent
operator;

— Map joins along with all their ancestors are executed in the same Map task, (iii) any
other operator is executed in a MapReduce task of its own. The MapReduce tasks
are grouped in MapReduce jobs in a bottom-up traversal of the task tree.

96 CHAPTER 4. CLIQUESQUARE

REDUCE
(g\]
=
= I I
MAP
******************************* T~ REDUCE
””””””””””””””””””””””””””” MAP
MJ, MJ,)
- 7 ‘ ~ \
E MS[*p7 —0] | MS[*p9 —S]
MS[*p8 —S] Fo—cr
T
MS[*p10—0] MS[*pll—S]
G J

Figure 4.16: Part of Q1 physical plan and its mapping to MapReduce jobs.

Figure [4.16] shows how the physical plan of QI is transformed into a MapReduce
program (i.e., a set of MapReduce jobs); rounded boxes show the grouping of physical
operators into MapReduce tasks.

4.6.3 Cost model

We now define the cost c(p) of a MapReduce query plan p, which allows us choosing
a query plan among others, as an estimation of the total work tw(p), required by the
MapReduce framework, to execute p: c(p) = tw(p). The total work accounts for (i) scan
costs, (i1) join processing costs, (iii) I/O incurred by the MapReduce framework writing
intermediary results to disk, and (iv) data transfer costs.

Observe that for full generality, our cost model takes into account many aspects (and
not simply the plan height). Thus, while some of our algorithms are guaranteed to find
plans as flat as possible, priority can be given to other plan metrics if they are considered
important. In our experiments, the selected plans (based on this general cost model) were
HO for all the queries but one (namely Q14).

To estimate tw(p), we introduce the own costs of each operator op as follows: ¢;,(op)
is the I/O cost of operator op, c,,,(op) is its CPU incurred cost, while c,,,(op) is its data
transfer cost.

The cost of a Map scan operator, MS, is mainly the I/O operations for reading the
corresponding file from HDFS. The cost of a filter operator, ., is mainly the CPU cost
for checking whether condition c is satisfied. 7, operator involves only CPU processing
for removing the appropriate attributes in A. Regarding the cost of a Map shuffler operator,
MF,, the 1/O cost for reading intermediate results from the HDFES is measured, as well as
the I/O cost for forwarding the results to the reducer (writing the results to disk). The

cpu

4.7. EXPERIMENTAL EVALUATION 97

cost of a Map join operator, MJ,, occurs from CPU operations for joining locally the
input relations on attributes A and from I/O writes to disk (the joining results are written
to disk before shuffling). Finally, a Reduce join operator, RJ,, entails network load for
transferring the intermediate results to the reducers for attributes A, CPU cost for the
computation of the join results and I/O cost for writing the results to disk. To sum up, the
cost of each operator consists of the following individual costs:

- c(MS) = c;,(MS)

- C(gcon) = Ccpu(gcon)

- c(my) = Ccpu(TCA)

— ¢(MF,) = c;,(MF,)

- C(MJA) = Ccpu(MJA) + Cio(MJA)

- C(RJA) = cnet(RJA) + Ccpu(RJA) + Cio(RJA)

The individual costs can be estimated as follows:

- Cio(MS[regex]) = Zferegex |f| X Cread

- Cio(MFA(Op)) = |Op| X Creqd + |Op| X Cyrite

- Cio(MJA[Oplz RS Opn]) = |Op1 Py .. Py Opn| X Cyrite

— ¢io(RIa[0py,---,0p,]) = 0Py Dy .. By 0P, | X e

- Ccpu(gcon(op)) = |0p| X Ceheck
Ccpu(ﬂ:A(op)) = |0p| X Ceheck
- Ccpu(MJA(OpD T Opn]) = Cjoin(opl Py ... DYy Opn)

Ccpu(RJA(Opl’ AR Opn)) = Cjoin(opl DAy ... Py Opn)

= Cpet(RI4(0P1; -, 0p,)) = (lops| + ... +10p,]) X Copug pie
where |R| denotes the cardinality of relation R. c,,.4 and c,, ;. is the time to read and
write one tuple from and to disk, respectively. ¢y, s s, represents the time to transfer one
tuple from one node to another through the network and c;,;,(0p; 4, ... >, op,,) the cost
of the join. Finally c 4, 1 the time spend on performing a simple comparison on a part
of the tuple.

While the performance of a MapReduce program can be modeled at much finer gran-
ularity (JOSW 10, [HDB11]], the simple model above has been sufficient to guide our opti-
mizer well, as our experiments demonstrate next.

4.7 Experimental evaluation

We have implemented the CliqueSquare optimization algorithms together with our
partitioning scheme, and the physical MapReduce-based operators in a prototype we on-
ward refer to as CSQ. We present our experimental setting in Section Then, in
Section we perform an in-depth evaluation of the different optimization algorithms
presented in Section 4.4.3 to identify the most interesting ones. In Section we
are interested in the performance (execution time) of the best plans recommended by
our CliqueSquare optimization algorithms, and compare it with the runtime of plans as
created by previous systems: linear or bushy, but based on binary joins. Finally, in Sec-
tion we compare CSQ query evaluation times with those of two state-of-the-art
MapReduce-based RDF systems and show the query robustness of CSQ.

98 CHAPTER 4. CLIQUESQUARE

4.7.1 Experimental setup

Cluster. Our cluster consists of 7 nodes, where each node has: one 2.93GHz Quad
Core Xeon processor with 8 threads; 4x4GB of memory; two 600GB SATA hard disks
configured in RAID 1; one Gigabit network card. Each node runs CentOS 6.4. We use
Oracle JDK v1.6.0_43 and Hadoop v1.2.1 for all experiments with the HDFS block size
set to 256MB.

Dataset and queries. We rely on the LUBM [GPHOS5]] benchmark, since it has been ex-
tensively used in similar works such as [HMM™ 11, HARTT, ZYW™ 13, PKT"13]. We use
the LUBM10k dataset containing approximately 1 billion triples (216 GB). The LUBM
benchmark features 14 queries, most of which return an empty answer if RDF reason-
ing (inference) is not used. Since reasoning was not considered in prior MapReduce-
based RDF databases [HARII, PKT" 13, [LL13], to evaluate these systems either the
queries were modified, or empty answers were accepted; the latter contradicts the orig-
inal benchmark query goal. We modified the queries as in [PKT'13] replacing generic
types (e.g., <Student>, of which no explicit instance exists in the database) with more
specific ones (e.g., <GraduateStudent> of which there are some instances). Further, the
benchmark queries are relatively simple; the most complex one consists of only 6 triple
patterns. To complement them, we devised other 11 LUBM-based queries with various
selectivities and complexities, and present them next to a subset of the original ones to
ensure variety across the query set. The complete workload can be found in Appendix [Al

4.7.2 Plan spaces and CliqueSquare variant comparison

We compare the 8 variants of our CliqueSquare algorithms w.r.t. : (i) the total number
of generated plans, (ii) the number of height-optimal (HO) plans, (iii) their running time,
and (iv) the number of duplicate plans they produce.

Setup. We use the generator of [GKLM11] to build 120 synthetic queries whose shape
is either chain, star, or random, with two variants thin or dense for the latter: dense ones
have many variables in common across triples, while thin ones have significantly less,
thus they are close to chains. The queries have between 1 and 10 (5.5 on average) triple
patterns. Each algorithm was stopped after a time-out of 100 seconds.

Comparison. Figure shows the search space size for each algorithm variant and
query type. The total number of generated plans is measured for each query and algo-
rithm; we report the average per query category. As illustrated in Section MXC*and
XC fail to find plans for some queries (thus the values smaller than 1). SC and XC return
an extremely large number of plans, whose exploration is impractical. For these reasons,
MXC™*, XC*, XC, and SC are not viable alternatives. In contrast, MSC™', SC*, MXC,
and MSC produce a reasonable number of plans to choose from.

Figure [4.18] shows the average optimality ratio defined as the number of HO-plans
divided by the number of all produced plans. We consider this ratio to be O for queries
for which no plan is found. While the ratio for MSC*, MXC, and MSC is 100% for this
workload (i.e., they return only HO plans), this is not guaranteed in general. SC* has

4.7. EXPERIMENTAL EVALUATION 99

OcChain O Dense OThin O Star

1000000
100000
10000
1000

100

; . S0 10

L N A S
MXC+ XC+ MSC+ SC+ MXC XC MSC SC
0.1

Figure 4.17: Average number of plans per algorithm and query shape.

O Chain ODense OThin Ostar

100% " 77 =T 7
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

MXC+ XC+ MSC+ SC+ MXC Xc MsC SC

Figure 4.18: Average optimality ratio per algorithm and query shape.

a smaller optimality ratio but still acceptable. On the contrary, although XC finds some
optimal plans, its ratio is relatively small.

Options MSC*, MXC, and MSC lead to the shortest optimization time as shown in
Figure MSC is the slowest among these three algorithms, but it is still very fast
especially compared to a MapReduce program execution, providing an answer in less
than 1s.

Given that our optimization algorithm is not based on dynamic programming, it may
end up producing the same plan more than once. In Figure 4.20] we present the average
uniqueness ratio, defined as the number of unique plans divided by the total number of
produced plans. Dense queries are the most challenging for all algorithms, since they al-
low more sequences of decompositions which, after a few steps, can converge to the same
(and thus, build the same plan more than once). However, in practice, as demonstrated in
the figure, our dominant decomposition methods, MSC*, MXC, and MSC produce very
few duplicate plans.

Summary. Based on our analysis, the optimization algorithms based on MSC*, MXC,

100 CHAPTER 4. CLIQUESQUARE

O Chain ODense OThin O Star
100000 —
10000 N
£ 1000]
I
£ 100
£
go 10
s 0 NEEE _ _
T 20 LY N N -
0.1 T mxc+ + MSC+ SCH MXC XC MSC SC MXC MSC

0.01
Figure 4.19: Average optimization time (ms) per algorithm and query shape.

O Chain O Dense OThin O star

100% —— = — = —
90% 77 B
80% =
70%
60% 5
50%
40%
30%
20%
10%

0%

MXC+ XC+ MSC+ SC+ MXC Xc MsC SC

Figure 4.20: Average uniqueness ratio per algorithm and query shape.

and MSC return sufficiently many HO plans to chose from (with the help of a cost model),
and produce these plans quite fast (in less than one second, negligible in an MapReduce
environment). However, Theorem [4.4.3] stated that MXC is HO-lossy; therefore, we do
not recommend relying on it in general. In addition, recalling (from Theorem [4.4.1)
that the search space of MSC is a superset of those of MSC™, and given that the space
of CliqueSquare-MSC is still of reasonable size, we consider it the best CliqueSquare
algorithm variant, and we rely on it exclusively for the rest of our evaluation.

4.7.3 CliqueSquare plans evaluation

We now measure the practical interest of the flat plans with n-ary joins built by our
optimization algorithm.

Plans. We compare the plan chosen by our cost model among those built by CliqueSquare-
MSC, against the best binary bushy plan and the best binary linear plan for each query.
To find the best binary linear (or bushy) plan, we build them all, and then select the cheap-

4.7. EXPERIMENTAL EVALUATION 101

OMSC-Best Plan B Best Binary Bushy Plan M Best Binary Linear Plan

om_ﬂaﬂﬂﬂ ﬁﬂdﬂﬂﬂ

N\MN\(\):N_\MMN\\ Q3\3\N““ QA\““""\ sts\n%\ Q6\5\ﬂ'3‘ m\s\nﬂ o.s\5\7‘7'3\ 03\6\‘3‘“ Qw\e\ﬁ‘“Qﬂ\g\ﬂ@\Q11\9\1A7\Qﬁ@\ﬂ";ﬂ\w\’&@\

=
A @ ® Q9
© © © o
& ©6 © o

Time (seconds)

~N
o
=]

0_1\'1.\

Figure 4.21: Plan execution time (in seconds) comparison for LUBM10k: MSC-plans,
bushy-plans, and linear-plans.

est using the cost function described in Section[4.6.3] We translate all logical plans into
MapReduce jobs as described in Section d.6|and execute them on our CSQ prototype.

Comparison. Figure[.21]reports the execution times (in seconds) for 14 queries (ordered
from left to right with increasing number of triple patterns). In the x-axis, we report, next
to the query name, the number of triples patterns followed (after the | character) by the
number of jobs that are executed for each plan (where M denotes a map only job). For
example, Q3(3|M11) describes query Q3, which is composed of 3 triple patterns, and for
which MSC needs a map only job while the bushy and linear plans need 1 job each. The
optimization time is not included in the execution times reported. This strongly favors
the bushy and linear approaches, because the number of plans to produce and compare is
bigger than that for MSC.

For all queries, the MSC plan is faster than the best bushy plan and the best linear
plan, by up to a factor of 2 (for query Q9) compared to the binary bushy ones, and up
to 16 (for query Q8) compared to the linear ones. The three plans for Q1 (resp. Q2) are
identical since the queries have 2 triple patterns. For Q8, the plan produced with MSC is
the same as the best binary bushy plan, thus the execution times are almost identical. As
expected the best bushy plans run faster than the best linear ones, confirming the interest
of parallel (bushy) plans in a distributed MapReduce environment.

Summary. CliqueSquare-MSC plans outperform the bushy and linear ones, demonstrat-
ing the advantages of the n-ary star equality joins it uses.

4.7.4 CSQ system evaluation

We now analyze the query performance of CSQ with the MSC algorithm and run
it against comparable massively distributed RDF systems, based on MapReduce. While
some memory-based massively distributed systems have been proposed recently [ZYW 13,
GSMT14]], we chose to focus on systems comparable with CSQ in order to isolate as much
as possible the impact of the query optimization techniques that are the main focus of this
work.

Systems. We pick SHAPE [LL13]] and H,RDF+ [PKT™13], since they are the most
efficient RDF platforms based on MapReduce; the previous HadoopRDF [HMM™11] is
largely outperformed by H,RDF+ [PKT*13] and [HARIT] is outperformed by [LL13].

102 CHAPTER 4. CLIQUESQUARE

ocsq B SHAPE-2f B H2RDF+

100000 timeout

Suhatdinn Andddd

\113\

=
o
o

Time (seconds)

=
o

\9\1}“ (329

Q10 3

““00\&3\3\‘4““\ QA\A\w‘“ Qg\6\1032110\6\1“7’:111\%\’-’1\ A3

3) A\
Q@ 3 132 e\

1)
@™ e 2

asl® a1® s

Figure 4.22: Query evaluation time (in seconds) comparison for LUBM10k: CSQ,
SHAPE and H,RDF+.

H,RDF+ is open source, while we used our own implementation of SHAPE. SHAPE
explores various partitioning methods, each with advantages and disadvantages. We used
their 2-hop forward partitioning (2f) since it has been shown to perform the best for
the LUBM benchmark. More details about the aforementioned systems can be found in
Section 2.3

Comparison. While CSQ stores RDF partitions in simple HDFS files, H,RDF+ uses
HBase, while SHAPE uses RDF-3X [NW10]. Thus, SHAPE and H,RDF+ benefit from
index access locally on each compute node, while our CSQ prototype can only scan HDFS
partition files. We consider two classes of queries: selective queries (which on this 1
billion triple database, return less than 0.5 x 10° results) and non-selective ones (returning
more than 7.5 x 10° results).

Figure 4.22| shows the running times: selective queries at the left, non-selective ones
at the right. As before, next to the query name we report the number of triple patterns
followed by the number of jobs that the query needs in order to be executed in each sys-
tem (M denotes one map only job). H,RDF+ sometimes uses map-only jobs to perform
first-level joins, but it performs each join in a separate MapReduce job, unlike CSQ (Sec-
tion [4.6)).

Among the 14 queries of the workload, four (Q2, Q4, Q9, Q10) are PWOC for SHAPE
(not for CSQ) and one (Q3) is PWOC for CSQ (not for SHAPE). These five queries
are selective, and, as expected, perform better in the system which allows them to be
PWOC. For the rest of the queries, where the optimizer plays a more important role, CSQ
outperforms SHAPE for all but one query (Q11 has an advantage with 2f partitioning
since a larger portion of the query can be pushed inside RDF-3X). The difference is greater
for non-selective queries since a bad plan can lead to many MapReduce jobs and large
intermediary results that affect performance. Remember that the optimization algorithm
of SHAPE is based on heuristics without a cost function and produces only one plan. The
latter explains why even for selective queries (like Q13 and Q14 which are more complex
than the rest) CSQ performs better than SHAPE.

We observe that CSQ significantly outperforms H,RDF+ for all the non-selective
queries and for most of the selective ones, by 1 to more than 2 orders of magnitude.
For instance, Q7 takes 4.8 hours on H,RDF+ and only 1.3 minutes on CSQ. For queries
QI and Q8 we had to stop the execution of H,RDF+ after 5 hours, while CSQ required
only 3.6 and 11 minutes, respectively. For selective queries the superiority of CSQ is less
but it still outperforms H,RDF+ by an improvement factor of up to 5 (for query Q9). This

4.8. CONCLUSION 103

is because H,RDF+ builds left-deep query plans and does not fully exploit parallelism;
H,RDF+ requires more jobs than CSQ for most of the queries. For example, for query
Q12 H,RDF+ initiates four jobs one after the other. Even if the first two jobs are map-
only, H,RDF+ still needs to read and write the intermediate results produced and pay the
initialization overhead of these MapReduce jobs. In contrast, CSQ evaluates Q12 in a
single job.

Summary. While SHAPE and H,RDF+ focus mainly on data access paths techniques
and thus perform well on selective queries, CSQ performs closely (or better in some
cases), while it outperforms them significantly for non-selective queries. CSQ evaluates
our complete workload in 44 minutes, while SHAPE and H,RDF+ required 77 min and
23 hours, respectively. We expect that such systems can benefit from the logical query
plans built by CliqueSquare to obtain fewer jobs and thus, lower query response times.

4.8 Conclusion

This chapter presented CliqueSquare, a distributed RDF data management system
built on top of Hadoop. Our work focused on the logical optimization of large conjunctive
(BGP) RDF queries, featuring many joins. We are interested in building flat logical plans
to diminish query response time, and investigate the usage of n-ary (star) equality joins
for this purpose.

We have presented a generic optimization algorithm and eight variants thereof, which
build tree- or DAG-shaped plans using n-ary star joins and we have formally characterized
their ability to find the flattest possible plans. We have explored a generic storage strategy
suitable for storing RDF data in HDFS (Hadoop’s Distributed File System) and provided
algorithms for translating logical plans to physical plans and subsequently to MapReduce
jobs.

The experimental results demonstrated the efficiency and effectiveness of our best
variant CliqueSquare-MSC as well as the overall performance of the system against com-
parable systems.

The logical optimization approach proposed in this chapter is general enough and can
be used in any massively parallel conjunctive query evaluation setting, contributing to
shorten query response time.

Acknowledgments. The physical operators of the system as well as the physical plan
parser were developed in collaboration with Benjamin Djahandideh, engineer in our group
since October 2013. In addition, significant refactoring of the code has been performed
by him before the open-source release.

104 CHAPTER 4. CLIQUESQUARE

Chapter 5

Conclusion and Future Work

The Semantic Web emerged as an attempt to improve the interaction of systems with
data, so that they are able to reason efficiently about the information they encounter.
The main building blocks of the Semantic Web is the RDF data model and the SPARQL
query language. In order to make machines capable of reasoning about information, the
latter has to be under a common data model, RDF in our case. Consequently, to process
information expressed using the RDF data model the standard way is through the use of
SPARQL.

The size of the Semantic Web grows rapidly, thus necessitates the design and imple-
mentation of massively parallel distributed systems for RDF data management. Towards
this direction, cloud-computing provides the ideal infrastructures for building scalable,
fault-tolerant, and elastic systems able to cover the unpredictable user requirements.

In this thesis, we have studied various architectures for storing and retrieving RDF
data using cloud-based services and technologies. We have explored the performance and
cost of warehousing RDF data into commercial cloud infrastructures, examining differ-
ent storage and processing strategies. Furthermore, we focused on the optimization and
parallelization of RDF queries, in order to exploit the opportunities offered by massively
parallel frameworks.

5.1 Thesis summary

This thesis provides solutions for warehousing RDF data using cloud-based environ-
ments focusing on two different problems that we summarize below.

Warehousing Semantic Web data using commercial cloud services. We presented
AMADA, an architecture for RDF data management using public cloud infrastructures.
— We proposed an architecture for storing RDF data within the Amazon cloud that
shows a good behavior, both in terms of query processing time and monetary costs.
— We considered hosting RDF data in the cloud, and its efficient storage and querying
through a (distributed, parallel) platform also running in the cloud.
— We exploited RDF indexing strategies that allow to direct queries to a (hopefully

105

106 CHAPTER 5. CONCLUSION AND FUTURE WORK

tight) subset of the RDF dataset which provide answers to a given query, thus re-
ducing the total work entailed by query execution.

— We provided extensive experiments on real RDF datasets validating the feasibility
of our approach and giving insight about the monetary cost of storing and querying
RDF data in commercial clouds.

Building massively-parallel (flat) plans for RDF queries. We presented CliqueSquare,
an optimization approach for building massively parallel flat plans for RDF queries.

— We described a search space of logical plans obtained by relying on n-ary (star)
equality joins. The interest of such joins is that by aggressively joining many inputs
in a single operator, they allow building flat plans.

— We provided a novel generic algorithm, called CliqueSquare, for exhaustively ex-
ploring this space. We presented a thorough analysis of eight concrete variants of
this algorithm, from the perspective of their ability to find one of (or all) the flattest
possible plans for a given query.

— We showed that the variant we call CliqueSquare-MSC is the most interesting one,
because it develops a reasonable number of plans and is guaranteed to find some of
the flattest ones.

— We have fully implemented our algorithms and validate through experiments their
practical interest for evaluating queries on very large distributed RDF graphs. For
this, we relied on a set of relatively simple parallel join operators and a generic RDF
partitioning strategy, which makes no assumption on the kinds of input queries. We
show that CliqueSquare-MSC makes the optimization process efficient and effec-
tive even for complex queries.

5.2 Ongoing work

In Section we have examined a wide variety of RDF data management systems.
At the core of such platforms lies a specific strategy for partitioning, indexing and stor-
ing the data (inside one or many nodes). The optimization module of these systems is
tightly connected with the underlying storage. Making the slightest changes to the stor-
age (e.g., introducing a new index) requires also modifying the optimizer to consider
these changes. If the changes are not propagated to the optimizer then in the best case we
may experience performance degradation while in the worst case the correctness of the
results may be compromised. In addition, lately there have been discussions [AOD14] for
systems [AODH15] where the internal storage changes on the fly. Such systems require
the optimizer to be able to adapt automatically to build valid and efficient plans.

Furthermore, the optimization procedure in distributed systems heavily relies on the
partitioning of the data. Finding which partitions should be accessed and detecting pos-
sible co-partition joins [LOOW 14| are usually choices hard-coded inside the optimizer.
If the partitioning changes, these choices have to be revisited. We envision a generic
optimization algorithm which can build efficient query plans for RDF queries over any
storage as long as the storage model is formally described.

5.2. ONGOING WORK 107

In order to be able to build efficient query plans over any possible storage, accu-
rate information about how the data are stored (partitions, indexes, etc.) is needed. In
Section we have introduced the storage description grammar (Definition as an
attempt to describe the storage of various RDF data management platforms (distributed or
not) under a common model. Although this grammar is useful for providing a meaningful
overview of a system, the absence of formal semantics and the high level of abstraction
prevent us from using it directly. As an alternative, we are working on defining a formal
model relying on well-established concepts from relational databases. More precisely,
we are looking into defining the storage model using parameterized conjunctive query
views [PGGUY3J], able to capture the various access patterns as well as the partitioning of
the data. We outline this proposal below.

An example of a storage description, modeling the CliqueSquare storage (Section[4.5)),
can be seen in Figure The relation T (s, p,0) models the RDF graph (the triple table)
and the relation H;,(x, y) models a hash function that given an input x outputs its hash
value y, which is an integer number in the range of one to ten. At the root of the stor-
age description we have a virtual view VO representing the dataset before it is stored.
Then, we have the views V1, V2 and V3, which model the partitioning of the data on
ten machines using the subject, the property, and the object of a triple. On each machine,
triples are then grouped by property and stored inside the file system. This is captured by
the views V4, V6, and V8. Remember that CliqueSquare handles triples with the rdf:type
property differently (V5, V7, V9) storing them 1n files according to the value of the object
(V10, V11, V12). We can observe that only the views V4, V6, V8, V10, V11 and V12,
correspond to actual files in the file system and thus we consider them to be materialized
by adding an * exponent; all the other views are virtual. Finally, we use the symbol &
to denote the input parameters for the views, i.e., the values that we have to provide in
order to access the data of the view. For example, if one wants to find the triples that
match the triple pattern (ub:studl ub:takesCourse ?0), she needs to look into
the file named after ub:takesCourse located in the node where ub: studl hashes.
Equivalently, we have to access the view V4 with parameter &, equals with the hash value
of ub: studl and parameter &, equals to ub: takesCourse.

The modeling described above relies on views with binding patterns and integrity
constraints, thus the problem boils down to a rewriting problem where we are looking for
equivalent rewritings of the input RDF query using the view-based storage description.
To solve the problem our first thoughts lean towards a variation of the well-known Chase
and Backchase algorithm [DPT99].

We are currently working on finalizing the storage description language and proving
the correctness of the rewriting algorithm. Next, we plan to implement our proposal on a
prototype system and perform experiments using (i) real [MLAN11] and synthetic RDF
benchmarks [GPHO5|, [SHLP09, AHOD14] and (ii) storage descriptions corresponding to
real and fictional RDF data management systems.

108 CHAPTER 5. CONCLUSION AND FUTURE WORK

VO(s,p,0) < T(s,p,0)

V1(s,p,0,&1) < VO(s, p,0), Hyo(s,&1)

Vz(sap: 0, ‘51) — VO(Szp) O): HlO(pJ gl)

VB(S:ps 0, 51) — VO(S’ p: O)sHlo(O; 51)

V4 (s,0,81,8,) < V1(s,85,0,&1), &, # "rdf:type"
V5(s,0,&,) < V1(s, "rdf:type", 0, &)
V6'(s,0,81,8,) «— V2(s,8€,,0,&1), &, # "rdf:type”
V7(s,0,&,) < V2(s, "rdf:type", 0, &)
V8%(s,0,&1,8,) « V3(s,&5,0,&,),&, # "rdf:type"
V9(s,0,&,) < V3(s, "rdf:type",0,&;)
V10%(s, &4, &3) < V5(s,&3,&4)

V11°(s,&1,83) < V7(s,&3,&4)

V12%(s,&1,83) < VI(s,&5, &)

Figure 5.1: View-based storage description for CliqueSquare.

5.3 Perspectives

Semantic Web data management in the cloud is still an area with a lot of potential for
future research. Below we outline various perspectives to this thesis work.

Optimization for full SPARQL queries. Although (BGP) conjunctive queries are the
most common fragment of SPARQL used in practice, extensions thereof are also impor-
tant. For instance in the context of RDF analytics [CGMRI14], queries with grouping,
aggregation and optional clauses are central. Optimization beyond the fragment of con-
junctive queries is thus necessary, and particularly challenging in distributed and cloud-
computing architectures. In general, the optimization of RDF queries in cloud-based
architectures is not sufficiently developed, with many systems relying on heuristics, or
worse not even having an optimization algorithm. In order to support efficiently RDF
analytics (and other application domains) in the cloud, we have to extend our algorithm
to consider a bigger fragment of SPARQL.

Flat plans for centralized systems. In Chapter[d] we have shown the performance ben-
efit of flat plans in a massively parallel setting. However, we have not examined the
effects of flat plans in centralized systems. We believe that existing centralized systems
could exploit flat plans to achieve better performance by utilizing multiple available pro-
cessors and possibly benefiting from short optimization times. In Section we have
shown that flat plans can be produced efficiently by various CliqueSquare variants. In
addition further pruning and/or memorization techniques could be used to bring the op-
timization time even lower. Flat plans combined with multi-core processors is an area
worth exploring. Still, the algorithms would need some modifications since n-ary joins
are not directly supported in centralized systems and additional proofs may be needed
to retain the flatness guarantees after the modifications. Finally, extensive experiments
should be performed to validate the claims.

5.3. PERSPECTIVES 109

Reformulation-based query answering for massively parallel RDF systems. We have
seen in Section [2.1] that, in order to provide complete answers to user queries, we have
to account for the implicit triples deriving from the semantics of RDF. In this thesis, we
have assumed that the RDF dataset is saturated. Database saturation though may not be
the best choice [GMR13], especially when there are large amounts of data that can in-
troduce many implicit triples, which need to be stored in the system. Another option to
obtain complete answers is through query reformulation. This technique though puts sig-
nificant burden to the query optimizer that needs to generate plans involving hundreds of
triple patterns. Reformulation-based optimizations have been studied in centralized RDF
systems [BGM135]]. In these works, a crucial part of the optimizer is the cost-model. Dis-
tributed systems have various additional factors that affect the cost (e.g., data partition-
ing, different types of joins, jobs overhead in case of MapReduce frameworks, etc.), thus
adapting and extending these techniques is essential for enabling efficient reformulation-
based query answering in massively parallel frameworks.

Statistics and estimations for distributed RDF systems. Since the advent of rela-
tional databases, statistics and accurate result estimations have been of great importance.
Stepping on existing knowledge many RDF optimizers utilized relational-style statistics
and estimations to improve query performance. Nevertheless, it has been shown [NM11,
GN14] that gathering and using statistics by considering the peculiarities of RDF can
greatly improve the performance. Cloud-based RDF data management systems though
either do not use statistics at all or rely on simple statistics and estimations adopted from
relational databases. It is evident that by extending works like [NM11, IGN14] to take
into account other factors like the distribution and the significantly bigger size of the
data we could achieve further performance improvements. The domain of RDF statistics
counts very few works, thus there are still many possibilities for deriving new models.
Graph databases, semi-structured data, and distributed architectures, could be influential
towards this direction.

Pricing model for RDF systems on commercial cloud infrastructures. Storing (and
querying) data in public (commercial) clouds is an attractive option for companies and
organizations, especially if their resource requirements change over time. Public clouds
services usually come at a price. In order to provide a full solution for a cloud-based
RDF store, a smart pricing model has to be established. In Chapter |3, we have outlined
the monetary costs of the index, which are a first ingredient of a comprehensive pricing
scheme. Working in this direction, the ultimate goal would be to formalize a cost model
of different indexing and query answering strategies that expresses the trade-off between
their efficiency/performance and associated monetary costs. In addition, a full-fledged
cloud-based RDF data management system should provide a variety of options (for stor-
age and querying) to a prospect customer being able to accommodate her performance
needs and budget restrictions. In this thesis, we have witnessed the cost and performance
of some storage and processing strategies but a lot more could be considered (see Sec-

tion[2.3)).

110 CHAPTER 5. CONCLUSION AND FUTURE WORK

Result caching and view-based rewriting in Hadoop-based RDF systems. Among
the proliferation of cloud-based systems, Apache’s Hadoop is among the top choices for
building RDF data management platforms. One particularity of Hadoop’s MapReduce
framework is that all intermediate results of a query (the results of Hadoop jobs) are writ-
ten to disk and usually are discarded after the final result is returned to the user. Caching
these results and considering them as views could definitely improve the performance
of the system. Caching RDF query results [MUA10] and view-based rewritings of RDF
queries [GKLM11] have both been examined in the context of centralized RDF systems.
Building on existing knowledge we could extend our optimizer to be able to reuse inter-
mediate query results for improving performance, exploiting views provided for free.

Bibliography

[Aba(9]

[ABCT12]

[ABE*14]

[accO8]
[ACK*00]

[ACK"01]

[AEH"11]

Daniel J. Abadi. Data management in the cloud: Limitations and opportuni-
ties. IEEE Data Eng. Bull., 32(1):3-12, 20009.

Andrés Aranda-Anddjar, Francesca Bugiotti, Jesis Camacho-Rodriguez,
Dario Colazzo, Francois Goasdoué, Zoi Kaoudi, and loana Manolescu.
AMADA: web data repositories in the Amazon cloud. In Xue-wen Chen, Guy
Lebanon, Haixun Wang, and Mohammed J. Zaki, editors, 21st ACM Interna-
tional Conference on Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012, pages 2749-2751. ACM,
2012.

Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph
Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf
Leser, Volker Markl, Felix Naumann, Mathias Peters, Astrid Rheinlédnder,
Matthias J. Sax, Sebastian Schelter, Mareike Hoger, Kostas Tzoumas, and
Daniel Warneke. The stratosphere platform for big data analytics. VLDB J.,
23(6):939-964, 2014.

Apache Accumulo. http://accumulo.apache.org/, 2008.

Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plex-
ousakis, Karsten Tolle, Bernd Amann, Irini Fundulaki, Michel Scholl, and
Anne-Marie Vercoustre. Managing RDF metadata for community webs. In
Stephen W. Liddle, Heinrich C. Mayr, and Bernhard Thalheim, editors, Con-
ceptual Modeling for E-Business and the Web, ER 2000 Workshops on Con-
ceptual Modeling Approaches for E-Business and The World Wide Web and
Conceptual Modeling, Salt Lake City, Utah, USA, October 9-12, 2000, Pro-
ceedings, volume 1921 of Lecture Notes in Computer Science, pages 140—
151. Springer, 2000.

Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plex-
ousakis, and Karsten Tolle. The ICS-FORTH RDFSuite: Managing volumi-
nous RDF description bases. In SemWeb, 2001.

Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske, Odej
Kao, Volker Markl, Erik Nijkamp, and Daniel Warneke. MapReduce and
PACT - Comparing Data Parallel Programming Models. In BTW, 2011.

[AHOD14] Giines Alug, Olaf Hartig, M. Tamer Ozsu, and Khuzaima Daudjee. Diversi-

fied stress testing of RDF data management systems. In Peter Mika, Tania Tu-

111

http://accumulo.apache.org/

112

[AHVO9S5]

[AJR*14]

BIBLIOGRAPHY

dorache, Abraham Bernstein, Chris Welty, Craig A. Knoblock, Denny Vran-
decic, Paul T. Groth, Natasha F. Noy, Krzysztof Janowicz, and Carole A.
Goble, editors, The Semantic Web - ISWC 2014 - 13th International Semantic
Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings,
Fart I, volume 8796 of Lecture Notes in Computer Science, pages 197-212.
Springer, 2014.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

Foto N. Afrati, Manas Joglekar, Christopher Ré, Semih Salihoglu, and Jef-
frey D. Ullman. GYM: A multiround join algorithm in mapreduce. CoRR,
abs/1410.4156, 2014.

[AMMHO7] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hol-

[AOD14]

[AOD15]

lenbach. Scalable semantic web data management using vertical partition-
ing. In Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh
Srivastava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong
Chan, Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J.
Neuhold, editors, Proceedings of the 33rd International Conference on Very
Large Data Bases, University of Vienna, Austria, September 23-27, 2007,
pages 411-422. ACM, 2007.

Giines Alug, M. Tamer Ozsu, and Khuzaima Daudjee. Workload matters:
Why RDF databases need a new design. PVLDB, 7(10):837-840, 2014.

Giines Alug, M. Tamer Ozsu, and Khuzaima Daudjee. Clustering RDF
databases using tunable-LSH. CoRR, abs/1504.02523, 2015.

[AODH13] Giines Alug, M. Tamer Ozsu, Khuzaima Daudjee, and Olaf Hartig.

chameleon-db: a workload-aware robust RDF data management system. Uni-
versity of Waterloo, Tech. Rep. CS-2013-10, 2013.

[AODH15] Giines Alug, M. Tamer Ozsu, Khuzaima Daudjee, and Olaf Hartig. Exe-

[AU10]

[AV11]

[aws]

cuting queries over schemaless RDF databases. In Johannes Gehrke, Wolf-
gang Lehner, Kyuseok Shim, Sang Kyun Cha, and Guy M. Lohman, editors,
31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul,
South Korea, April 13-17, 2015, pages 807-818. IEEE, 2015.

Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a MapReduce en-
vironment. In Ioana Manolescu, Stefano Spaccapietra, Jens Teubner, Masaru
Kitsuregawa, Alain Léger, Felix Naumann, Anastasia Ailamaki, and Fatma
Ozcan, editors, EDBT 2010, 13th International Conference on Extending
Database Technology, Lausanne, Switzerland, March 22-26, 2010, Proceed-
ings, volume 426 of ACM International Conference Proceeding Series, pages
99-110. ACM, 2010.

Maribel Acosta and Maria-Esther Vidal. Evaluating adaptive query process-
ing techniques for federations of SPARQL endpoints. In /0th International
Semantic Web Conference (ISWC) Demo Session, 2011.

Amazon Web Services. http://aws.amazon.com/.

http://aws.amazon.com/

BIBLIOGRAPHY 113

[BCG'14]

[BDK*13]

[BecO1]

[BFOO]

[BFG*08]

[BGO3]

Francesca Bugiotti, Jesis Camacho-Rodriguez, Francois Goasdoué, Zoi
Kaoudi, Ioana Manolescu, and Stamatis Zampetakis. SPARQL query pro-
cessing in the cloud. In Andreas Harth, Katja Hose, and Ralf Schenkel, ed-
itors, Linked Data Management., pages 165-192. Chapman and Hall/CRC,
2014.

Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srini-
vas, Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee.
Building an efficient RDF store over a relational database. In Kenneth A.
Ross, Divesh Srivastava, and Dimitris Papadias, editors, Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD
2013, New York, NY, USA, June 22-27, 2013, pages 121-132. ACM, 2013.

Dave J. Beckett. The design and implementation of the Redland RDF ap-
plication framework. In Vincent Y. Shen, Nobuo Saito, Michael R. Lyu, and
Mary Ellen Zurko, editors, Proceedings of the Tenth International World Wide
Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001, pages 449—
456. ACM, 2001.

Tim Berners-Lee and Mark Fischetti. Weaving the web - the original design
and ultimate destiny of the World Wide Web by its inventor. HarperBusiness,
2000.

Matthias Brantner, Daniela Florescu, David A. Graf, Donald Kossmann, and
Tim Kraska. Building a Database on S3. In SIGMOD, 2008.

Dave Beckett and Jan Grant. SWAD-europe deliverable 10.2: Mapping se-
mantic web data with RDBMSes, 2003.

[BGKM12] Francesca Bugiotti, Francois Goasdoué, Zoi Kaoudi, and Ioana Manolescu.

[BGM15]

[BKO3]

[BKO4]

RDF data management in the amazon cloud. In Divesh Srivastava and Ismail
Ari, editors, Proceedings of the 2012 Joint EDBT/ICDT Workshops, Berlin,
Germany, March 30, 2012, pages 61-72. ACM, 2012.

Damian Bursztyn, Francois Goasdoué, and loana Manolescu. Optimizing
reformulation-based query answering in RDF. In Gustavo Alonso, Floris
Geerts, Lucian Popa, Pablo Barcel6, Jens Teubner, Martin Ugarte, Jan Van
den Bussche, and Jan Paredaens, editors, Proceedings of the 18th Interna-
tional Conference on Extending Database Technology, EDBT 2015, Brussels,
Belgium, March 23-27, 2015., pages 265-276. OpenProceedings.org, 2015.

Jeen Broekstra and Arjohn Kampman. Inferencing and truth maintenance in
RDF schema. In Raphael Volz, Stefan Decker, and Isabel F. Cruz, editors,
PSSS1 - Practical and Scalable Semantic Systems, Proceedings of the First
International Workshop on Practical and Scalable Semantic Systems, Sani-
bel Island, Florida, USA, October 20, 2003, volume 89 of CEUR Workshop
Proceedings. CEUR-WS.org, 2003.

Mihir Bellare and Tadayoshi Kohno. Hash function balance and its impact on
birthday attacks. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology - EUROCRYPT 2004, International Conference on the Theory

114

[BKS13]

[BKvHO2]

[BPE*10]

[cas08]
[CCM12]

[CCM13]

[CCM15]

BIBLIOGRAPHY

and Applications of Cryptographic Techniques, Interlaken, Switzerland, May
2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer Science,
pages 401-418. Springer, 2004.

Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for
parallel query processing. In Richard Hull and Wenfei Fan, editors, Proceed-
ings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2013, New York, NY, USA - June 22 - 27, 2013,
pages 273-284. ACM, 2013.

Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A
generic architecture for storing and querying RDF and RDF schema. In
Ian Horrocks and James A. Hendler, editors, The Semantic Web - ISWC
2002, First International Semantic Web Conference, Sardinia, Italy, June 9-
12, 2002, Proceedings, volume 2342 of Lecture Notes in Computer Science,
pages 54—68. Springer, 2002.

Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita,
and Yuanyuan Tian. A comparison of join algorithms for log processing in
MapReduce. In SIGMOD, 2010.

Apache Cassandra. http://cassandra.apache.org/, 2008.

Jesus Camacho-Rodriguez, Dario Colazzo, and Ioana Manolescu. Building
large XML stores in the Amazon cloud. In Anastasios Kementsietsidis and
Marcos Antonio Vaz Salles, editors, Workshops Proceedings of the IEEE 28th
International Conference on Data Engineering, ICDE 2012, Arlington, VA,
USA, April 1-5, 2012, pages 151-158. IEEE Computer Society, 2012.

Jests Camacho-Rodriguez, Dario Colazzo, and Ioana Manolescu. Web data
indexing in the cloud: efficiency and cost reductions. In Giovanna Guerrini
and Norman W. Paton, editors, Joint 2013 EDBT/ICDT Conferences, EDBT
"13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 41-52. ACM, 2013.

Jests Camacho-Rodriguez, Dario Colazzo, and loana Manolescu. Paxquery:
Efficient parallel processing of complex xquery. IEEE Trans. Knowl. Data
Eng., 27(7):1977-1991, 2015.

[CCMN135] Jesus Camacho-Rodriguez, Dario Colazzo, loana Manolescu, and Juan A. M.

[CDESO5]

Naranjo. Paxquery: Parallel analytical XML processing. In Timos Sellis, Su-
san B. Davidson, and Zachary G. Ives, editors, Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Vic-
toria, Australia, May 31 - June 4, 2015, pages 1117-1122. ACM, 2015.

Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srini-
vasan. An efficient SQL-based RDF querying scheme. In Klemens Bohm,
Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Ake Larson, and
Beng Chin Ooi, editors, Proceedings of the 31st International Conference on
Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005,
pages 1216-1227. ACM, 2005.

http://cassandra.apache.org/

BIBLIOGRAPHY 115

[CDG"06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

[CFO04]

[CFCS03]

Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert Gru-
ber. Bigtable: A distributed storage system for structured data. In Brian N.
Bershad and Jeffrey C. Mogul, editors, 7th Symposium on Operating Systems
Design and Implementation (OSDI’06), November 6-8, Seattle, WA, USA,
pages 205-218. USENIX Association, 2006.

Min Cai and Martin R. Frank. RDFPeers: a scalable distributed RDF repos-
itory based on a structured peer-to-peer network. In Stuart I. Feldman, Mike
Uretsky, Marc Najork, and Craig E. Wills, editors, Proceedings of the 13th in-
ternational conference on World Wide Web, WWW 2004, New York, NY, USA,
May 17-20, 2004, pages 650-657. ACM, 2004.

Min Cai, Martin R. Frank, Jinbo Chen, and Pedro A. Szekely. MAAN: A
multi-attribute addressable network for grid information services. In Heinz
Stockinger, editor, 4th International Workshop on Grid Computing (GRID
2003), 17 November 2003, Phoenix, AZ, USA, Proceedings, pages 184—191.
IEEE Computer Society, 2003.

[CFYMO04] Min Cai, Martin R. Frank, Baoshi Yan, and Robert M. MacGregor. A sub-

scribable peer-to-peer RDF repository for distributed metadata management.
J. Web Sem., 2(2):109-130, 2004.

[CGMR14] Dario Colazzo, Francois Goasdoué, loana Manolescu, and Alexandra Roatis.

[CL10]

[Datl1]

RDF analytics: lenses over semantic graphs. In Chin-Wan Chung, Andrei Z.
Broder, Kyuseok Shim, and Torsten Suel, editors, 23rd International World
Wide Web Conference, WWW 14, Seoul, Republic of Korea, April 7-11, 2014,
pages 467—478. ACM, 2014.

Roger Castillo and Ulf Leser. Selecting materialized views for RDF data.
In Florian Daniel and Federico Michele Facca, editors, Current Trends in
Web Engineering - 10th International Conference on Web Engineering, ICWE
2010 Workshops, Vienna, Austria, July 2010, Revised Selected Papers, vol-
ume 6385 of Lecture Notes in Computer Science, pages 126—137. Springer,
2010.

Datagraph. Dydra. http://dydra.com/, 2011.

[DCDKI11] Vicky Dritsou, Panos Constantopoulos, Antonios Deligiannakis, and Yannis

[DG04]

Kotidis. Optimizing query shortcuts in RDF databases. In Grigoris Anto-
niou, Marko Grobelnik, Elena Paslaru Bontas Simperl, Bijan Parsia, Dimitris
Plexousakis, Pieter De Leenheer, and Jeff Z. Pan, editors, The Semanic Web:
Research and Applications - 8th Extended Semantic Web Conference, ESWC
2011, Heraklion, Crete, Greece, May 29 - June 2, 2011, Proceedings, Part I,
volume 6644 of Lecture Notes in Computer Science, pages 77-92. Springer,
2011.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data process-
ing on large clusters. In Eric A. Brewer and Peter Chen, editors, 6th Sym-
posium on Operating System Design and Implementation (OSDI 2004), San

http://dydra.com/

116 BIBLIOGRAPHY

Francisco, California, USA, December 6-8, 2004, pages 137-150. USENIX
Association, 2004.

[DGK*14] Benjamin Djahandideh, Frangois Goasdoué, Zoi Kaoudi, IToana Manolescu,
Jorge Quiané-Ruiz, and Stamatis Zampetakis. How to Deal with Cliques at
Work. In BDA’2014: 30e journées Bases de Données Avancées, Grenoble-
Autrans, France, October 2014.

[DGK*15] Benjamin Djahandideh, Frangois Goasdoué, Zoi Kaoudi, Ioana Manolescu,
Jorge-Arnulfo Quiané-Ruiz, and Stamatis Zampetakis. CliqueSquare in ac-
tion: Flat plans for massively parallel RDF queries. In Johannes Gehrke,
Wolfgang Lehner, Kyuseok Shim, Sang Kyun Cha, and Guy M. Lohman, ed-
itors, 31st IEEE International Conference on Data Engineering, ICDE 2015,
Seoul, South Korea, April 13-17, 2015, pages 1432-1435. IEEE, 2015.

[DHJT07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. In Thomas C. Bressoud and M. Frans Kaashoek, editors, Proceedings
of the 21st ACM Symposium on Operating Systems Principles 2007, SOSP
2007, Stevenson, Washington, USA, October 14-17, 2007, pages 205-220.
ACM, 2007.

[DKSU11] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian
Udrea. Apples and oranges: a comparison of RDF benchmarks and real RDF
datasets. In Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis, and
Yannis Velegrakis, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011, Athens, Greece, June
12-16, 2011, pages 145-156. ACM, 2011.

[DPT99] Alin Deutsch, Lucian Popa, and Val Tannen. Physical data independence,
constraints, and optimization with universal plans. In VLDB’99, Proceedings
of 25th International Conference on Very Large Data Bases, September 7-10,
1999, Edinburgh, Scotland, UK, pages 459470, 1999.

[dyn12] = Amazon DynamoDB. http://aws.amazon.com/dynamodb/,

2012.

[Erl08] Orri Erling. Towards web scale RDF. Available at
http://www.researchgate.net/publication/228809902_Towards_web_scale_RDF,
2008.

[ETO"11] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Ozcan, Rainer Gemulla,
Aljoscha Krettek, and John McPherson. CoHadoop: Flexible data placement
and its exploitation in Hadoop. PVLDB, 4(9):575-585, 2011.

[FBHB11] Imen Filali, Francesco Bongiovanni, Fabrice Huet, and Francoise Baude. A

survey of structured P2P systems for RDF data storage and retrieval. T. Large-
Scale Data- and Knowledge-Centered Systems, 6790:20-55, 2011.

[FCB12] David C. Faye, Olivier Cure, and Guillaume Blin. A survey of RDF storage
approaches. ARIMA Journal, 15:11-35, 2012.

http://aws.amazon.com/dynamodb/

BIBLIOGRAPHY 117

[GDN13] Alan Gates, Jianyong Dai, and Thejas Nair. Apache Pig’s optimizer. IEEE
Data Eng. Bull., 36(1):34-45, 2013.

[GGLO3] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file
system. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003,
pages 29-43, 2003.

[GHS12] Luis Galarraga, Katja Hose, and Ralf Schenkel. Partout: A distributed engine
for efficient RDF processing. CoRR, abs/1212.5636, 2012.

[GKLMI10] Frangois Goasdoué, Konstantinos Karanasos, Julien Leblay, and loana
Manolescu. RDFViewS: a storage tuning wizard for RDF applications. In
Jimmy Huang, Nick Koudas, Gareth J. F. Jones, Xindong Wu, Kevyn Collins-
Thompson, and Aijun An, editors, Proceedings of the 19th ACM Conference
on Information and Knowledge Management, CIKM 2010, Toronto, Ontario,
Canada, October 26-30, 2010, pages 1947-1948. ACM, 2010.

[GKLMI11] Frangois Goasdoué, Konstantinos Karanasos, Julien Leblay, and Ioana
Manolescu. View selection in semantic web databases. PVLDB, 5(2):97-
108, 2011.

[GKM™13] Frangois Goasdoué, Zoi Kaoudi, Ioana Manolescu, Jorge Quiané-Ruiz, and
Stamatis Zampetakis. CliqueSquare: efficient Hadoop-based RDF query
processing. In BDA’13 - Journées de Bases de Données Avancées, Nantes,
France, October 2013.

[GKM™14] Frangois Goasdoué, Zoi Kaoudi, Ioana Manolescu, Jorge Quiané-Ruiz, and
Stamatis Zampetakis. CliqueSquare: Flat Plans for Massively Parallel RDF
Queries. Research Report RR-8612, INRIA Saclay, October 2014.

[GKM™15] Francois Goasdoué, Zoi Kaoudi, Ioana Manolescu, Jorge-Arnulfo Quiané-
Ruiz, and Stamatis Zampetakis. CliqueSquare: Flat plans for massively par-
allel RDF queries. In Johannes Gehrke, Wolfgang Lehner, Kyuseok Shim,
Sang Kyun Cha, and Guy M. Lohman, editors, 3/st IEEE International Con-
ference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17,
2015, pages 771-782. IEEE, 2015.

[GMR13] Francois Goasdoué, loana Manolescu, and Alexandra Roatis. Efficient query
answering against dynamic RDF databases. In Giovanna Guerrini and Nor-
man W. Paton, editors, Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Pro-
ceedings, Genoa, Italy, March 18-22, 2013, pages 299-310. ACM, 2013.

[GN14] Andrey Gubichev and Thomas Neumann. Exploiting the query structure for
efficient join ordering in SPARQL queries. In Sihem Amer-Yahia, Vassilis
Christophides, Anastasios Kementsietsidis, Minos N. Garofalakis, Stratos
Idreos, and Vincent Leroy, editors, Proceedings of the 17th International
Conference on Extending Database Technology, EDBT 2014, Athens, Greece,
March 24-28, 2014., pages 439-450. OpenProceedings.org, 2014.

[GPHO5] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. J. Web Sem., 3(2-3):158-182, 2005.

118

[GS11]

[GSMT14]

[had11]
[HAR11]

[Harl3]

[hba08]
[HDB11]

[HFLP89]

[HGO3]

[HKKT10]

[HLS09]

BIBLIOGRAPHY

Olaf Gorlitz and Steffen Staab. SPLENDID: SPARQL endpoint federation
exploiting VOID descriptions. In Olaf Hartig, Andreas Harth, and Juan Se-
queda, editors, Proceedings of the Second International Workshop on Con-
suming Linked Data (COLD2011), Bonn, Germany, October 23, 2011, vol-
ume 782 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald.
TriAD: a distributed shared-nothing RDF engine based on asynchronous mes-
sage passing. In Curtis E. Dyreson, Feifei Li, and M. Tamer Ozsu, editors,
International Conference on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27, 2014, pages 289-300. ACM, 2014.

Apache Hadoop. http://hadoop.apache.org/,2011.

Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL querying of
large RDF graphs. PVLDB, 4(11):1123-1134, 2011.

Olaf Hartig. SQUIN: a traversal based query execution system for the web
of linked data. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papa-
dias, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013,
pages 1081-1084. ACM, 2013.

Apache HBase. http://hbase.apache.org/, 2008.

Herodotos Herodotou, Fei Dong, and Shivnath Babu. MapReduce pro-
gramming and cost-based optimization? crossing this chasm with Starfish.
PVLDB, 4(12):1446-1449, 2011.

Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman, and Hamid Pi-
rahesh. Extensible query processing in Starburst. In James Clifford, Bruce G.
Lindsay, and David Maier, editors, Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data, Portland, Oregon, May 31
- June 2, 1989., pages 377-388. ACM Press, 1989.

Stephen Harris and Nicholas Gibbins. 3store: Efficient bulk RDF storage. In
Raphael Volz, Stefan Decker, and Isabel F. Cruz, editors, PSSS! - Practical
and Scalable Semantic Systems, Proceedings of the First International Work-
shop on Practical and Scalable Semantic Systems, Sanibel Island, Florida,
USA, October 20, 2003, volume 89 of CEUR Workshop Proceedings. CEUR-
WS.org, 2003.

Mohammad Farhan Husain, Latifur Khan, Murat Kantarcioglu, and Bha-
vani M. Thuraisingham. Data intensive query processing for large RDF
graphs using cloud computing tools. In IEEE International Conference on
Cloud Computing, CLOUD 2010, Miami, FL, USA, 5-10 July, 2010, pages
1-10. IEEE, 2010.

Steve Harris, Nick Lamb, and Nigel Shadbolt. 4store: The design and im-
plementation of a clustered RDF store. In In 5th International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS2009), pages 94—1009,
20009.

http://hadoop.apache.org/
http://hbase.apache.org/

BIBLIOGRAPHY 119

[HMM™*11] Mohammad Farhan Husain, James P. McGlothlin, Mohammad M. Masud,
Latifur R. Khan, and Bhavani M. Thuraisingham. Heuristics-based query

processing for large RDF graphs using cloud computing. IEEE Trans. Knowl.
Data Eng., 23(9):1312-1327, 2011.

[HS13] Katja Hose and Ralf Schenkel. WARP: workload-aware replication and parti-
tioning for RDF. In Chee Yong Chan, Jiaheng Lu, Kjetil Ngrvag, and Egemen
Tanin, editors, Workshops Proceedings of the 29th IEEE International Con-
ference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12,
2013, pages 1-6. IEEE Computer Society, 2013.

[IGN*12] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mul-
lender, and Martin L. Kersten. MonetDB: Two decades of research in column-
oriented database architectures. IEEE Data Eng. Bull., 35(1):40-45, 2012.

[JOSW10] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The performance of
MapReduce: An in-depth study. PVLDB, 3(1):472-483, 2010.

[KAC*02] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plex-
ousakis, and Michel Scholl. RQL: a declarative query language for RDF. In
David Lassner, Dave De Roure, and Arun lyengar, editors, Proceedings of the
Eleventh International World Wide Web Conference, WWW 2002, May 7-11,
2002, Honolulu, Hawaii, pages 592—-603. ACM, 2002.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Proceed-
ings of a symposium on the Complexity of Computer Computations, held
March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York., pages 85-103, 1972.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing,
20(1):359-392, 1998.

[KKK10] Zoi Kaoudi, Kostis Kyzirakos, and Manolis Koubarakis. SPARQL query opti-
mization on top of DHTs. In Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler,
Peter Mika, Lei Zhang, Jeff Z. Pan, Ian Horrocks, and Birte Glimm, editors,
The Semantic Web - ISWC 2010 - 9th International Semantic Web Confer-
ence, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected
Papers, Part I, volume 6496 of Lecture Notes in Computer Science, pages
418-435. Springer, 2010.

[KKMZ11] Konstantinos Karanasos, Asterios Katsifodimos, Ioana Manolescu, and
Spyros Zoupanos. The ViP2P platform: XML views in P2P. CoRR,
abs/1112.2610, 2011.

[KM15] Zoi Kaoudi and Ioana Manolescu. RDF in the clouds: a survey. VLDB J.,
24(1):67-91, 2015.

[KMM™*06] Zoi Kaoudi, Iris Miliaraki, Matoula Magiridou, Antonios Papadakis-
Pesaresi, and Manolis Koubarakis. Storing and querying RDF data in Atlas.
In ESWC (Demonstration), 2006.

120

[Knu73]

[KOVHI10]

[KRA11]

[KRA12]

[Lee04]

[LH11]

[LIKO06]

[Li100]

[LL13]

BIBLIOGRAPHY

Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental
Algorithms, 2nd Edition. Addison-Wesley, 1973.

Spyros Kotoulas, Eyal Oren, and Frank van Harmelen. Mind the data skew:
distributed inferencing by speeddating in elastic regions. In Michael Rappa,
Paul Jones, Juliana Freire, and Soumen Chakrabarti, editors, Proceedings of
the 19th International Conference on World Wide Web, WWW 2010, Raleigh,
North Carolina, USA, April 26-30, 2010, pages 531-540. ACM, 2010.

HyeongSik Kim, Padmashree Ravindra, and Kemafor Anyanwu. From
SPARQL to MapReduce: The journey using a nested triplegroup algebra.
PVLDB, 4(12):1426-1429, 2011.

HyeongSik Kim, Padmashree Ravindra, and Kemafor Anyanwu. Scan-
sharing for optimizing RDF graph pattern matching on mapreduce. In Rong
Chang, editor, 2012 IEEFE Fifth International Conference on Cloud Comput-
ing, Honolulu, HI, USA, June 24-29, 2012, pages 139-146. IEEE, 2012.

Ryan Lee. Scalability report on triple store applications. Available at
http://simile.mit.edu/reports/stores/, 2004.

Giinter Ladwig and Andreas Harth. CumulusRDF: linked data management
on nested key-value stores. In The 7th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2011), page 30, 2011.

Erietta Liarou, Stratos Idreos, and Manolis Koubarakis. Evaluating conjunc-
tive triple pattern queries over large structured overlay networks. In Isabel F.
Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter
Mika, Michael Uschold, and Lora Aroyo, editors, The Semantic Web - ISWC
2006, 5th International Semantic Web Conference, ISWC 2006, Athens, GA,
USA, November 5-9, 2006, Proceedings, volume 4273 of Lecture Notes in
Computer Science, pages 399—413. Springer, 2006.

Jonas Liljegren. Description of an RDF database implementation. http://
infolab.stanford.edu/~melnik/rdf/db-jonas.html,
2000.

Kisung Lee and Ling Liu. Scaling queries over big RDF graphs with semantic
hash partitioning. PVLDB, 6(14):1894-1905, 2013.

[LOOW14] Feng Li, Beng Chin Ooi, M. Tamer Ozsu, and Sai Wu. Distributed data

[LPF*12]

[LT10]

management using MapReduce. ACM Comput. Surv., 46(3):31, 2014.

Yongming Luo, Frangois Picalausa, George HL Fletcher, Jan Hidders, and
Stijn Vansummeren. Storing and indexing massive RDF datasets. In Semantic
Search over the Web, pages 31-60. Springer, 2012.

Giinter Ladwig and Thanh Tran. Linked data query processing strategies.
In Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang,
Jeff Z. Pan, Ian Horrocks, and Birte Glimm, editors, The Semantic Web -
ISWC 2010 - 9th International Semantic Web Conference, ISWC 2010, Shang-
hai, China, November 7-11, 2010, Revised Selected Papers, Part I, volume
6496 of Lecture Notes in Computer Science, pages 453-469. Springer, 2010.

http://infolab.stanford.edu/~melnik/rdf/db-jonas.html
http://infolab.stanford.edu/~melnik/rdf/db-jonas.html

BIBLIOGRAPHY 121

[LT11]

[McB02]

[McC60]

[Mel00]

[MG11]

Giinter Ladwig and Thanh Tran. SIHJoin: Querying remote and local linked
data. In Grigoris Antoniou, Marko Grobelnik, Elena Paslaru Bontas Sim-
perl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Z. Pan,
editors, The Semantic Web: Research and Applications - 8th Extended Seman-
tic Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29-June 2,
2011, Proceedings, Part I, volume 6643 of Lecture Notes in Computer Sci-
ence, pages 139-153. Springer, 2011.

Brian McBride. Jena: A semantic web toolkit. IEEE Internet Computing,
6(6):55-59, 2002.

John McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part I. Commun. ACM, 3(4):184—-195, 1960.

Sergey Melnik. Storing RDF in a relational database. http://
infolab.stanford.edu/~melnik/rdf/db.html, 2000.

Peter Mell and Tim Grance. The NIST definition of cloud computing. Avail-
able at http://simile.mit.edu/reports/stores/, 2011.

[MKA*02] Aimilia Magkanaraki, Grigoris Karvounarakis, Ta Tuan Anh, Vassilis

Christophides, and Dimitris Plexousakis. Ontology storage and querying.
ICS-FORTH Technical Report, 308, 2002.

[MLAN11] Mohamed Morsey, Jens Lehmann, Soren Auer, and Axel-Cyrille Ngonga

[MNP™ 14]

[MPKO06]

[MSP*04]

Ngomo. DBpedia SPARQL benchmark - performance assessment with real
queries on real data. In Lora Aroyo, Chris Welty, Harith Alani, Jamie
Taylor, Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva
Blomgvist, editors, The Semantic Web - ISWC 2011 - 10th International Se-
mantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings,
Part I, volume 7031 of Lecture Notes in Computer Science, pages 454—469.
Springer, 2011.

Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. Par-
allel materialisation of datalog programs in centralised, main-memory RDF
systems. In Carla E. Brodley and Peter Stone, editors, Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada., pages 129-137. AAAI Press, 2014.

Akiyoshi Matono, Said Mirza Pahlevi, and Isao Kojima. RDFCube: A P2P-
based three-dimensional index for structural joins on distributed triple stores.
In Gianluca Moro, Sonia Bergamaschi, Sam Joseph, Jean-Henry Morin, and
Aris M. Ouksel, editors, Databases, Information Systems, and Peer-to-Peer
Computing, International Workshops, DBISP2P 2005/2006, Trondheim, Nor-
way, August 28-29, 2005, Seoul, Korea, September 11, 2006, Revised Selected
Papers, volume 4125 of Lecture Notes in Computer Science, pages 323-330.
Springer, 2006.

Li Ma, Zhong Su, Yue Pan, Li Zhang, and Tao Liu. RStar: an RDF storage
and query system for enterprise resource management. In David A. Gross-
man, Luis Gravano, ChengXiang Zhai, Otthein Herzog, and David A. Evans,

http://infolab.stanford.edu/~melnik/rdf/db.html
http://infolab.stanford.edu/~melnik/rdf/db.html

122

[MSRO2]

[MUA10]

[NM11]

[NW10]

BIBLIOGRAPHY

editors, Proceedings of the 2004 ACM CIKM International Conference on
Information and Knowledge Management, Washington, DC, USA, November
8-13, 2004, pages 484—491. ACM, 2004.

Libby Miller, Andy Seaborne, and Alberto Reggiori. Three implementations
of SquishQL, a simple RDF query language. In Ian Horrocks and James A.
Hendler, editors, The Semantic Web - ISWC 2002, First International Seman-
tic Web Conference, Sardinia, Italy, June 9-12, 2002, Proceedings, volume
2342 of Lecture Notes in Computer Science, pages 423—435. Springer, 2002.

Michael Martin, Jorg Unbehauen, and Soren Auer. Improving the perfor-
mance of semantic web applications with SPARQL query caching. In Lora
Aroyo, Grigoris Antoniou, Eero Hyvonen, Annette ten Teije, Heiner Stuck-
enschmidt, Liliana Cabral, and Tania Tudorache, editors, The Semantic Web:
Research and Applications, 7th Extended Semantic Web Conference, ESWC
2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part I,
volume 6089 of Lecture Notes in Computer Science, pages 304-318. Springer,
2010.

Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate car-
dinality estimation for RDF queries with multiple joins. In Serge Abiteboul,
Klemens Bohm, Christoph Koch, and Kian-Lee Tan, editors, Proceedings of
the 27th International Conference on Data Engineering, ICDE 2011, April
11-16, 2011, Hannover, Germany, pages 984-994. IEEE Computer Society,
2011.

Thomas Neumann and Gerhard Weikum. The RDF-3X Engine for Scalable
Management of RDF Data. VLDBJ, 19(1), 2010.

[NWQ'02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sin-

[Ora94]

[ORST08]

[OSGO8]

[OV11]

tek, Ambjorn Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch.
EDUTELLA: a P2P networking infrastructure based on RDF. In David Lass-
ner, Dave De Roure, and Arun lyengar, editors, Proceedings of the Eleventh
International World Wide Web Conference, WWW 2002, May 7-11, 2002,
Honolulu, Hawaii, pages 604-615. ACM, 2002.

Oracle. Berkeley db. http://www.oracle.com/technetwork/
database/database-technologies/berkeleydb/
overview/index.html| 1994.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig latin: a not-so-foreign language for data processing. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages
1099-1110, 2008.

Alisdair Owens, Andy Seaborne, and Nick Gibbins. Clustered TDB: a clus-
tered triple store for Jena, 2008.

M. Tamer Ozsu and Patrick Valduriez. Distributed and Parallel Database
Systems (3rd. ed.). Springer, 2011.

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

BIBLIOGRAPHY 123

[PCR12]

[PGGU9S]

[PKT*13]

[PKTK12]

[PTK*14]

[PZO"14]

[QLOg]

[RGO3]

[RGRKO04]

Roshan Punnoose, Adina Crainiceanu, and David Rapp. Rya: a scalable RDF
triple store for the clouds. In Jérdme Darmont and Torben Bach Pedersen, edi-
tors, st International Workshop on Cloud Intelligence (colocated with VLDB
2012), Cloud-1 12, Istanbul, Turkey, August 31, 2012, page 4. ACM, 2012.

Yannis Papakonstantinou, Ashish Gupta, Hector Garcia-Molina, and Jef-
frey D. Ullman. A query translation scheme for rapid implementation of
wrappers. In Deductive and Object-Oriented Databases, Fourth International
Conference, DOOD’95, Singapore, December 4-7, 1995, Proceedings, pages
161-186, 1995.

Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, Panagio-
tis Karras, and Nectarios Koziris. H2RDF+: high-performance distributed
joins over large-scale RDF graphs. In Xiaohua Hu, Tsau Young Lin, Vijay
Raghavan, Benjamin W. Wah, Ricardo A. Baeza-Yates, Geoffrey Fox, Cyrus
Shahabi, Matthew Smith, Qiang Yang, Rayid Ghani, Wei Fan, Ronny Lem-
pel, and Raghunath Nambiar, editors, Proceedings of the 2013 IEEE Inter-
national Conference on Big Data, 6-9 October 2013, Santa Clara, CA, USA,
pages 255-263. IEEE, 2013.

Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, and Nectar-
ios Koziris. H2RDF: adaptive query processing on RDF data in the cloud. In
Alain Mille, Fabien L. Gandon, Jacques Misselis, Michael Rabinovich, and
Steffen Staab, editors, Proceedings of the 21st World Wide Web Conference,
WWW 2012, Lyon, France, April 16-20, 2012 (Companion Volume), pages
397-400. ACM, 2012.

Nikolaos Papailiou, Dimitrios Tsoumakos, Ioannis Konstantinou, Panagiotis
Karras, and Nectarios Koziris. H2RDF+: an efficient data management sys-
tem for big RDF graphs. In Curtis E. Dyreson, Feifei Li, and M. Tamer Ozsu,
editors, International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, pages 909-912. ACM, 2014.

Peng Peng, Lei Zou, M. Tamer Ozsu, Lei Chen, and Dongyan Zhao. Process-
ing SPARQL queries over linked data-a distributed graph-based approach.
CoRR, abs/1411.6763, 2014.

Bastian Quilitz and UIf Leser. Querying distributed RDF data sources with
SPARQL. In Sean Bechhofer, Manfred Hauswirth, Jorg Hoffmann, and
Manolis Koubarakis, editors, The Semantic Web: Research and Applications,
Sth European Semantic Web Conference, ESWC 2008, Tenerife, Canary Is-
lands, Spain, June 1-5, 2008, Proceedings, volume 5021 of Lecture Notes in
Computer Science, pages 524-538. Springer, 2008.

Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems
(3rd. ed.). McGraw-Hill, 2003.

Sean C. Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Han-
dling churn in a DHT (awarded best paper!). In Proceedings of the General
Track: 2004 USENIX Annual Technical Conference, June 27 - July 2, 2004,

124

[RKA11]

[RS10]

[RUK"13]

[s306]
[SA09]

[SACT79]

[SBP14]

[Sea04]

[SGD*09]

BIBLIOGRAPHY

Boston Marriott Copley Place, Boston, MA, USA, pages 127-140. USENIX,
2004.

Padmashree Ravindra, HyeongSik Kim, and Kemafor Anyanwu. An inter-
mediate algebra for optimizing RDF graph pattern matching on mapreduce.
In Grigoris Antoniou, Marko Grobelnik, Elena Paslaru Bontas Simperl, Bi-
jan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeft Z. Pan, editors,
The Semanic Web: Research and Applications - 8th Extended Semantic Web
Conference, ESWC 2011, Heraklion, Crete, Greece, May 29 - June 2, 2011,
Proceedings, Part II, volume 6644 of Lecture Notes in Computer Science,
pages 46—61. Springer, 2011.

Kurt Rohloff and Richard E. Schantz. High-performance, massively scalable
distributed systems using the MapReduce software framework: the SHARD
triple-store. In Eli Tilevich and Patrick Eugster, editors, SPLASH Workshop
on Programming Support Innovations for Emerging Distributed Applications
PSI EtA - 2010), October 17, 2010, Reno/Tahoe, Nevada, USA, page 4. ACM,
2010.

Nur Aini Rakhmawati, Jiirgen Umbrich, Marcel Karnstedt, Ali Hasnain, and
Michael Hausenblas. Querying over federated SPARQL endpoints - A state
of the art survey. CoRR, abs/1306.1723, 2013.

Amazon S3. http://aws.amazon.com/s3/, 2006.

Sherif Sakr and Ghazi Al-Naymat. Relational processing of RDF queries: a
survey. SIGMOD Record, 38(4):23-28, 20009.

Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-
mond A. Lorie, and Thomas G. Price. Access path selection in a relational
database management system. In Philip A. Bernstein, editor, Proceedings of
the 1979 ACM SIGMOD International Conference on Management of Data,
Boston, Massachusetts, May 30 - June 1., pages 23-34. ACM, 1979.

Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. Adoption of the
linked data best practices in different topical domains. In Peter Mika, Tania
Tudorache, Abraham Bernstein, Chris Welty, Craig A. Knoblock, Denny
Vrandecic, Paul T. Groth, Natasha F. Noy, Krzysztof Janowicz, and Carole A.
Goble, editors, The Semantic Web - ISWC 2014 - 13th International Semantic
Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings,
Part I, volume 8796 of Lecture Notes in Computer Science, pages 245-260.
Springer, 2014.

Andy Seaborne. RDQL - a query language for RDF. http://www.w3.
org/Submission/2004/SUBM—-RDQL—-20040109/, 2004.

Florian Stegmaier, Udo Grobner, Mario Ddéller, Harald Kosch, and Gero
Baese. Evaluation of current RDF database solutions. In Proceedings of the
10th International Workshop on Semantic Multimedia Database Technologies
(SeMuDaTe), 4th International Conference on Semantics And Digital Media
Technologies (SAMT), 2009, pages 39-55. Citeseer, 2009.

http://aws.amazon.com/s3/
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

BIBLIOGRAPHY 125

[SGK™"85]

[SHH"11]

[SHLPO9]

[sim07]

[SMKO97]

[SPL11]

[SSB*08]

[SWL13]

[SZ10]

[TSF*12]

Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.
Design and implementation of the sun network filesystem. In Proceedings of
the Summer USENIX conference, pages 119—-130, 1985.

Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael
Schmidt. FedX: A federation layer for distributed query processing on linked
open data. In Grigoris Antoniou, Marko Grobelnik, Elena Paslaru Bontas
Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Z.
Pan, editors, The Semanic Web: Research and Applications - 8th Extended
Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29 -
June 2, 2011, Proceedings, Part I, volume 6644 of Lecture Notes in Com-
puter Science, pages 481-486. Springer, 2011.

Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.
SP2Bench: A SPARQL performance benchmark. In Yannis E. Ioannidis,
Dik Lun Lee, and Raymond T. Ng, editors, Proceedings of the 25th Interna-
tional Conference on Data Engineering, ICDE 2009, March 29 2009 - April
2 2009, Shanghai, China, pages 222-233. IEEE, 2009.

Amazon SimpleDB. http://aws.amazon.com/simpledb/,
2007.

Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and
randomized optimization for the join ordering problem. VLDB J., 6(3):191—
208, 1997.

Alexander Schitzle, Martin Przyjaciel-Zablocki, and Georg Lausen.
PigSPARQL: mapping SPARQL to pig latin. In Roberto De Virgilio, Fausto
Giunchiglia, and Letizia Tanca, editors, Proceedings of the International
Workshop on Semantic Web Information Management, SWIM 2011, Athens,
Greece, June 12, 2011, page 4. ACM, 2011.

Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and
Dave Reynolds. SPARQL basic graph pattern optimization using selectivity
estimation. In Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu,
Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang, editors, Proceedings
of the 17th International Conference on World Wide Web, WWW 2008, Bei-
jing, China, April 21-25, 2008, pages 595-604. ACM, 2008.

Bin Shao, Haixun Wang, and Yatao Li. Trinity: a distributed graph engine on
a memory cloud. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papa-
dias, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013,
pages 505-516. ACM, 2013.

Raffael Stein and Valentin Zacharias. RDF on cloud number nine. In 4th
Workshop on New Forms of Reasoning for the Semantic Web: Scalable and
Dynamic, pages 11-23. Citeseer, 2010.

Petros Tsialiamanis, Lefteris Sidirourgos, Irini Fundulaki, Vassilis
Christophides, and Peter A. Boncz. Heuristics-based query optimisation for

http://aws.amazon.com/simpledb/

126

[TSJT09]

[TSJ*10]

[TUY11]

[UHK"11]

BIBLIOGRAPHY

SPARQL. In Elke A. Rundensteiner, Volker Markl, Ioana Manolescu, Si-
hem Amer-Yahia, Felix Naumann, and Ismail Ari, editors, 15th International

Conference on Extending Database Technology, EDBT ’12, Berlin, Germany,
March 27-30, 2012, Proceedings, pages 324-335. ACM, 2012.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive - A
warehousing solution over a map-reduce framework. PVLDB, 2(2):1626—
1629, 2009.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a
petabyte scale data warehouse using Hadoop. In Feifei Li, Mirella M. Moro,
Shahram Ghandeharizadeh, Jayant R. Haritsa, Gerhard Weikum, Michael J.
Carey, Fabio Casati, Edward Y. Chang, loana Manolescu, Sharad Mehrotra,
Umeshwar Dayal, and Vassilis J. Tsotras, editors, Proceedings of the 26th In-
ternational Conference on Data Engineering, ICDE 2010, March 1-6, 2010,
Long Beach, California, USA, pages 996—-1005. IEEE, 2010.

Yuan Tian, Jiirgen Umbrich, and Yong Yu. Enhancing source selection for
live queries over linked data via query log mining. In Jeff Z. Pan, Huajun
Chen, Hong-Gee Kim, Juanzi Li, Zhe Wu, Ian Horrocks, Riichiro Mizoguchi,
and Zhaohui Wu, editors, The Semantic Web - Joint International Semantic
Technology Conference, JIST 2011, Hangzhou, China, December 4-7, 2011.
Proceedings, volume 7185 of Lecture Notes in Computer Science, pages 176—
191. Springer, 2011.

Jirgen Umbrich, Katja Hose, Marcel Karnstedt, Andreas Harth, and Axel

Polleres. Comparing data summaries for processing live queries over linked
data. World Wide Web, 14(5-6):495-544, 2011.

[UKOVHO09] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen. Scal-

[UMJ*13]

able distributed reasoning using mapreduce. In Abraham Bernstein, David R.
Karger, Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Kr-
ishnaprasad Thirunarayan, editors, The Semantic Web - ISWC 2009, Sth Inter-
national Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October
25-29, 2009. Proceedings, volume 5823 of Lecture Notes in Computer Sci-
ence, pages 634-649. Springer, 2009.

Jacopo Urbani, Alessandro Margara, Ceriel J. H. Jacobs, Frank van Harme-
len, and Henri E. Bal. Dynamite: Parallel materialization of dynamic RDF
data. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul T. Groth, Chris
Biemann, Josiane Xavier Parreira, Lora Aroyo, Natasha F. Noy, Chris Welty,
and Krzysztof Janowicz, editors, The Semantic Web - ISWC 2013 - 12th Inter-
national Semantic Web Conference, Sydney, NSW, Australia, October 21-25,
2013, Proceedings, Part I, volume 8218 of Lecture Notes in Computer Sci-
ence, pages 657-672. Springer, 2013.

[UvHSB11] Jacopo Urbani, Frank van Harmelen, Stefan Schlobach, and Henri E. Bal.

QueryPIE: Backward reasoning for OWL horst over very large knowledge

BIBLIOGRAPHY 127

bases. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham
Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva Blomgvist, editors,
The Semantic Web - ISWC 2011 - 10th International Semantic Web Confer-
ence, Bonn, Germany, October 23-27, 2011, Proceedings, Part I, volume
7031 of Lecture Notes in Computer Science, pages 730-745. Springer, 2011.

[W3C04] W3C. Resource description framework (RDF): Concepts
and abstract syntax. http://www.w3.0rg/TR/2004/
REC-rdf-concepts—20040210/, 2004.

[W3C08] W3C. SPARQL query language for RDF. http://www.w3.0rg/TR/
rdf-spargl—-query/, 2008.

[W3C13] W3C. SPARQL 1.1 query language for RDF. http://www.w3.0rg/
TR/sparglll-query/, 2013.

[W3C14a] W3C. RDF 1.1 concepts and abstract syntax. http://www.w3.0rg/
TR/rdfll-concepts/, 2014.

[W3C14b] W3C. RDF 1.1 semantics. http://www.w3.0rg/TR/rdfll-mt/,
2014.

[W3Cl4c] W3C.RDFschemal.l.http://www.w3.0rg/TR/rdf-schema/,
2014.

[WKBO8] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: sextu-
ple indexing for semantic web data management. PVLDB, 1(1):1008-1019,
2008.

[WLMOI11] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. Query optimiza-
tion for massively parallel data processing. In Jeffrey S. Chase and Amr El
Abbadi, editors, ACM Symposium on Cloud Computing in conjunction with
SOSP 2011, SOCC ’11, Cascais, Portugal, October 26-28, 2011, page 12.
ACM, 2011.

[WSKRO3] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds. Effi-
cient RDF storage and retrieval in Jena2. In Isabel F. Cruz, Vipul Kashyap,
Stefan Decker, and Rainer Eckstein, editors, Proceedings of SWDB’03, The
first International Workshop on Semantic Web and Databases, Co-located
with VLDB 2003, Humboldt-Universitdt, Berlin, Germany, September 7-8,
2003, pages 131-150, 2003.

[WZY*15] Buwen Wu, Yongluan Zhou, Pingpeng Yuan, Ling Liu, and Hai Jin. Scalable
SPARQL querying using path partitioning. In /CDE, 2015.

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large
Data Bases, 7th International Conference, September 9-11, 1981, Cannes,
France, Proceedings, pages 82-94. IEEE Computer Society, 1981.

[ZCF"10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Spark: Cluster computing with working sets. In Erich M. Nahum
and Dongyan Xu, editors, 2nd USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud’ 10, Boston, MA, USA, June 22, 2010. USENIX Asso-
ciation, 2010.

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/rdf-schema/

128 BIBLIOGRAPHY

[ZMC*11] Lei Zou, Jinghui Mo, Lei Chen, M. Tamer Ozsu, and Dongyan Zhao. gStore:
Answering SPARQL queries via subgraph matching. PVLDB, 4(8):482—493,

2011.

[ZOCT14] Lei Zou, M. Tamer Ozsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and
Dongyan Zhao. gStore: a graph-based SPARQL query engine. VLDB J.,
23(4):565-590, 2014.

[ZYW™13] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang.
A distributed graph engine for web scale RDF data. PVLDB, 6(4):265-276,
2013.

Appendix A

Detailed queries

A.1 Queries used in the AMADA experiments

This section lists the SPARQL queries used in the experimental section of Chapter [3
The namespaces that appear in the queries are given in Table [A. T} The characteristics of
the queries are summarized in Table [A.2} struct indicates the structure of each query
(simple for single triple pattern queries, star for star-shaped join queries and mix for
complex queries combining both star and path joins); #tp is the number of triple patterns;
#c is the number of constant values each query contains; #results is the number of triples
each query returns; #g is the number of distinct graphs #g which will be used from each
strategy to answer the query.

Namespace | URI

dbpedia http://dbpedia.org/ontology/

yago http://yago-knowledge.org/resource/

rdf http://www.w3.0rg/1999/02/22-rdf-syntax—ns#

Table A.1: URIs for namespaces used in the experimental queries of Chapter 3]

| Query | struct | #tp | #e | #results | #g by RTS | #g by ATT | #g by ATS |

Ql simple 1] 2 1 2 2 1
Q2 | simple 1] 2 433 3 3 3
Q3 | simple 1] 1 72829 2 2 2
Q4 star 2| 4 1 19 19 19
Q5 star 31 4 2895 26 25 25
Q6 star 31 3 50686 34 34 34
Q7 star 41 4 42785 39 39 39
Qs mix 5|1 6 2 9 9 9
Q9 mix 515 12 5 5 5

Table A.2: Query characteristics.

129

http://dbpedia.org/ontology/
http://yago-knowledge.org/resource/
http://www.w3.org/1999/02/22-rdf-syntax-ns#

130 APPENDIX A. DETAILED QUERIES

Q1: SELECT ?birthplace WHERE { dbpedia:David_Beckham dbpedia:birthPlace
?birthplace . }

Q2: SELECT 7x WHERE { ?x yago:playsFor yago:FC_Barcelona . }

Q3: SELECT ?x WHERE { ?x yago:hasWonPrize ?y . } Q4: SELECT ?x WHERE {
7x rdf:type yago:wordnet_scientist_110560637 . ?x yago:diedOnDate "1842-07-19" . }

QS: SELECT ?x ?z 7w WHERE { ?x rdf:type yago:wordnet_scientist_110560637 .
7x yago:diedOnDate ?w . 7x yago:wasBornOnDate 7z . }

Q6: SELECT ?gName ?fName ?type WHERE { 7p yago:hasGivenName ?gName .

?p yago:hasFamilyName ?fName . ?p rdf:type ?type . }

Q7: SELECT ?gName ?fName ?type WHERE { 7p yago:hasGivenName ?gName .
?p yago:hasFamilyName ?fName . ?p rdf:type ?type . 7p yago:wasBornOnDate ?date. }

Q8: SELECT ?gp Moc Tname WHERE { ?gp rdf:type dbpedia:GrandPrix . ?gp db-
pedia:location ?loc . ?gp dbpedia:firstDriver ?driver . ?driver dbpedia:birthPlace ?loc .
?driver foaf:name ?name . }

Q9: SELECT "namel ?name2 where { ?p1 yago:isMarriedTo ?p2 . ?p2 yago:hasGivenName
name?2 . 7pl yago:hasGivenName ?namel. ?p2 yago:wasBornln ?city . 7p1 yago:wasBornln
city . }

A.2 Queries used in the CliqueSquare experiments

This section lists the SPARQL queries used in the experimental section of Chapter 4]
For the sake of simplicity some constants appear abbreviated. The characteristics of the
queries are summarized in Figure |A.1} number of triple patterns (#tps), number of join
variables (#jv) and result cardinality for LUBM10k (|Q|,ox. The indicator (original)
appears next to the query name when the query belongs to the default LUBM benchmark.

Queries| Q1 [Q2] Q3 | Q4] Q5 | Q6 | Q7
#tps 2 2 3 4 5 5 5
#jv I I 1 2 3 3 3
[Qlix | 3.7B | 1900 | 2822K | 93 | 56.IM | 7.9M | 25.IM
Queries| Q8 | Q9 | Q10 | QI1 | Q12 | Q13 | Q14
#tps 5 6 6 8 9 9 10
#jv 3 3 3 4 4 4 5
[Qliox | 5043M | 2528 | 439.9K | 1647 | 12.5M | 871 | 1413

Figure A.1: Characteristics of the LUBM queries used in the experiments.

Q1: SELECT ?P ?S WHERE { ?P ub:worksFor 7D . 7S ub:memberOf ?D . }

Q2(original): SELECT ?X WHERE { ?X rdf:type ub:AssistantProfessor .
?X ub:doctoralDegreeFrom <http://www.University0.edu> }

Q3: SELECT ?P 7S WHERE { ?P ub:worksFor ?D . ?S ub:memberOf ?D . 7D
ub:subOrganizationOf <University0> }

Q4(original): SELECT ?X ?Y WHERE { ?X rdf:type ub:Lecturer . ?Y rdf:type
ub:Department . ?X ub:worksFor ?Y . 7Y ub:subOrganizationOf <University0> }

A.2. QUERIES USED IN THE CLIQUESQUARE EXPERIMENTS 131

QS: SELECT ?X 7Y ?Z WHERE { 7X rdf:type ub:UndergraduateStudent . ?Y
rdf:type ub:FullProfessor . ?Z rdf:type ub:Course . 7X ub:takesCourse ?Z . ?7Y ub:teacherOf
77}

Q6: SELECT ?X ?Y 7Z WHERE { ?X rdf:type ub:UndergraduateStudent . ?Y
rdf:type ub:FullProfessor . ?Z rdf:type ub:Course . ?X ub:advisor 7Y . 7Y ub:teacherOf
77}

Q7: SELECT ?X ?Y ?Z WHERE { ?X a ub:GraduateStudent . ?Z ub:subOrganizationOf
7Y . 7X ub:memberOf ?Z . 7Z a ub:Department . ?Y a ub:University . }

Q8: SELECT ?X ?Y ?Z WHERE { ?X a ub:GraduateStudent .

?X ub:undergraduateDegreeFrom ?Y. 7Z ub:subOrganizationOf ?Y . 7Z a ub:Department
. 7Y a ub:University . }

Q9(original): SELECT ?X ?Y ?Z WHERE { 7X a ub:GraduateStudent .

?X ub:undergraduateDegreeFrom ?Y. 7Z ub:subOrganizationOf ?Y . 7X ub:memberOf 7Z
. 72 a ub:Department . 7Y a ub:University . }

Q10(original): SELECT ?X ?Y ?Z WHERE { ?X rdf:type ub:Undergraduate Stu-
dent . ?Y rdf:type ub:FullProfessor . ?Z rdf:type ub:Course . ?X ub:advisor 7Y . 7X
ub:takesCourse ?Z . 7Y ub:teacherOf ?Z }

Q11: SELECT ?X 7Y ?E WHERE { ?X rdf:type ub:Undergraduate Student . ?X
ub:takesCourse 7Y . 7X ub:memberOf ?7Z . 7X ub:advisor 7W . 7W rdf:type ub:FullProfessor
. TW ub:emailAddress ?E . 7Z ub:subOrganizationOf ?U . 7U ub:name “University3” }

Q12: SELECT ?X ?Y 7Z WHERE { 7X rdf:type ub:FullProfessor . 7X ub:teacherOf
7Y . 7Y rdf:type ub:GraduateCourse . ?X ub:worksFor ?Z . 7W ub:advisor ?X . 7W
rdf:type ub:GraduateStudent . ?W ub:emailAddress ?E . ?Z rdf:type ub:Department . ?Z
ub:subOrganizationOf ?7U }

Q13: SELECT ?X 7Y ?Z WHERE ?X rdf:type ub:FullProfessor . 7X ub:teacherOf
?7Y . 7Y rdf:type ub:GraduateCourse . ?X ub:worksFor ?Z . 7W ub:advisor ?X . 7W
rdf:type ub:GraduateStudent . ?W ub:emailAddress ?E . ?Z rdf:type ub:Department . ?7Z
ub:subOrganizationOf <University0>

Q14: SELECT ?X 7Y ?Z WHERE { ?X rdf:type ub:FullProfessor . ?X ub:teacherOf
?7Y . ?Y rdf:type ub:GraduateCourse . ?X ub:worksFor ?Z . 7W ub:advisor ?X . 7W
rdf:type ub:GraduateStudent . ?W ub:emailAddress ?E . ?Z rdf:type ub:Department . 7Z
ub:subOrganizationOf ?U . ?U ub:name “University3” }

	Abstract
	Introduction
	Semantic Web
	Semantic Web data management
	Distributed systems & challenges
	Contributions and outline

	Background and state-of-the-art
	Resource Description Framework (RDF)
	Data model
	Query language

	Distributed storage and MapReduce
	Distributed file systems
	Distributed key-value stores
	MapReduce
	MapReduce on relational data
	Higher level languages for MapReduce

	RDF data management
	Characterisation criteria
	RDF storage & indexing
	RDF query optimization
	RDF query processing
	RDF partitioning
	Summary

	Conclusion

	AMADA
	Introduction
	Amazon Web Services
	Simple Storage Service
	DynamoDB
	Elastic Compute Cloud
	Simple Queue Service

	Architecture
	Indexing strategies
	Answering queries from the index
	Selective indexing strategies
	Dictionary encoding

	Experimental evaluation
	Experimental setup
	Indexing time and costs
	Querying time and costs
	Scalability
	Experiments conclusion

	Conclusion

	CliqueSquare
	Introduction
	Architecture
	Logical query model
	Query model
	Query optimization algorithm

	Query planning
	Logical CliqueSquare operators and plans
	Generating logical plans from graphs
	Clique decompositions and plan spaces
	Height optimality and associated algorithm properties
	Time complexity of the optimization algorithm

	Storage
	RDF partitioning
	MapReduce partitioning process
	Handling skewness in property values
	Fault-Tolerance

	Plan evaluation on MapReduce
	From logical to physical plans
	From physical plans to MapReduce jobs
	Cost model

	Experimental evaluation
	Experimental setup
	Plan spaces and CliqueSquare variant comparison
	CliqueSquare plans evaluation
	CSQ system evaluation

	Conclusion

	Conclusion and Future Work
	Thesis summary
	Ongoing work
	Perspectives

	Bibliography
	Appendices
	Detailed queries
	Queries used in the AMADA experiments
	Queries used in the CliqueSquare experiments

