A. N. Andrianov and V. G. , Zhuravlev : Modular forms and Hecke operators, volume 145 de AMS Translations of mathematical monographs, 1995.

K. Belabas, Pari/gp, 2012.
URL : https://hal.archives-ouvertes.fr/medihal-01346708

J. Belding, R. Bröker, A. Enge, and K. Lauter, Computing Hilbert Class Polynomials, Algorithmic Number Theory 8th International Symposium (ANTS VIII), volume 5011 de LNCS, pp.282-295, 2008.
DOI : 10.1007/978-3-540-79456-1_19

URL : https://hal.archives-ouvertes.fr/inria-00246115

C. Birkenhake and H. Lange, Complex abelian varieties, de Grundlehren der mathematischen Wissenschaften, 2003.
DOI : 10.1007/978-3-662-06307-1

C. Birkenhake and H. Wilhelm, Humbert surfaces and the Kummer plane, Transactions of the American Mathematical Society, vol.355, issue.05, pp.1819-1841, 2003.
DOI : 10.1090/S0002-9947-03-03238-0

G. Bisson and A. V. Sutherland, Computing the endomorphism ring of an ordinary elliptic curve over a finite field, Journal of Number Theory, vol.131, issue.5, pp.815-831, 2011.
DOI : 10.1016/j.jnt.2009.11.003

URL : https://hal.archives-ouvertes.fr/inria-00383155

J. Bost and J. Mestre, Moyenne arithmético-géométrique et périodes de courbes de genre 1 et 2, Gaz. Math, vol.38, pp.36-64, 1988.

R. Bröker and D. Gruenewald, Explicit CM theory for level 2-structures on abelian surfaces, Algebra & Number Theory, vol.5, issue.4, pp.495-528, 2011.
DOI : 10.2140/ant.2011.5.495

R. Bröker and K. Lauter, Modular Polynomials for Genus 2, LMS Journal of Computation and Mathematics, vol.7, pp.326-339, 2009.
DOI : 10.2307/2007968

R. Bröker, A. V. Lauter, and . Sutherland, Modular polynomials via isogeny volcanoes, Mathematics of Computation, vol.81, issue.278, pp.1201-1231, 2012.
DOI : 10.1090/S0025-5718-2011-02508-1

D. Charles and . Lauter, Abstract, LMS Journal of Computation and Mathematics, vol.1514, pp.195-204, 2005.
DOI : 10.1017/S0004972700040831

P. Cohen, On the coefficients of the transformation polynomials for the elliptic modular function, Mathematical Proceedings of the Cambridge Philosophical Society, vol.231, issue.275, pp.389-402, 1984.
DOI : 10.1017/S0305004100061697

R. Cosset, Applications des fonctions thêta à la cryptographie sur courbes hyperelliptiques, Thèse de doctorat, 2011.

R. Cosset and D. Robert, Computing $(\ell ,\ell )$-isogenies in polynomial time on Jacobians of genus $2$ curves, Mathematics of Computation, vol.84, issue.294, pp.1953-1975, 2015.
DOI : 10.1090/S0025-5718-2014-02899-8

J. Couveignes and T. Ezome, Computing functions on Jacobians and their quotients, LMS Journal of Computation and Mathematics, vol.2, issue.01, pp.555-577, 2015.
DOI : 10.1007/978-3-662-03338-8

URL : https://hal.archives-ouvertes.fr/hal-01088933

D. Cox, Primes of the form x 2 + ny 2, 1989.

P. Davis and P. Rabinowitz, Methods of Numerical Integration, 1984.

A. Dudeanu, D. Jetchev, and D. Robert, Computing cyclic isogenies in genus 2

R. Dupont, Moyenne arithmético-géométrique, suites de Borchardt et applications, 2006.

R. Dupont, Fast evaluation of modular functions using Newton iterations and the AGM, Mathematics of Computation, vol.80, issue.275, pp.1823-1847, 2011.
DOI : 10.1090/S0025-5718-2011-01880-6

URL : https://hal.archives-ouvertes.fr/hal-00644845

K. Eisenträger and K. Lauter, A CRT algorithm for constructing genus 2 curves over finite fields, Arithmetics, geometry, and coding theory (AGCT 2005), volume 21 de Sémin. Congr, pp.161-176, 2010.

K. Eisenträger and K. Lauter, A CRT algorithm for constructing genus 2 curves over finite fields, Arithmetic, Geometry and Coding Theory (AGCT-10), volume 21 de Séminaires et Congrès, pp.161-176, 2009.

N. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory : Proceedings of the conference in honor of A.O.L. Atkin, pp.21-76, 1998.

A. Enge, Computing modular polynomials in quasi-linear time, Mathematics of Computation, vol.78, issue.267, pp.1809-1824, 2009.
DOI : 10.1090/S0025-5718-09-02199-1

URL : https://hal.archives-ouvertes.fr/inria-00143084

A. Enge, Pari-gnump. http://www.multiprecision.org/index.php? prog=pari-gnump, 2014.

A. Enge, M. Gastineau, P. Théveny, and P. Zimmermann, Gnu mpc a library for multiprecision complex arithmetic with exact rounding, 2012.

A. Enge and A. V. Sutherland, Class Invariants by the CRT Method, Algorithmic Number Theory 9th International Symposium (ANTS IX), pp.142-156, 2010.
DOI : 10.1007/978-3-642-14518-6_14

URL : https://hal.archives-ouvertes.fr/inria-00448729

A. Enge and E. Thomé, Computing Class Polynomials for Abelian Surfaces, Experimental Mathematics, vol.23, issue.2, pp.129-145, 2014.
DOI : 10.1090/S0025-5718-2013-02712-3

URL : https://hal.archives-ouvertes.fr/hal-00823745

A. Enge and E. Thomé, Cmh -computation of Igusa class polynomials, 2014.

D. Freeman and K. Lauter, Computing endomorphism rings of Jacobians of genus 2 curves over finite fields. In Algebraic geometry and its applications , volume 5 de Ser. Number Theory Appl, World Sci. Publ, pp.29-66, 2008.

E. Freitag, Siegelsche Modulfunktionen, volume 254 de Grundlehren der mathematischen Wissenschaften, Annals of Mathematics, vol.138, pp.103-124, 1959.

T. Granlund, Gmp -the GNU multiple precision arithmetic library, 2013.

D. Gruenewald, Explicit algorithms for Humbert surfaces, Thèse de doctorat, 2008.

K. Gundlach, Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlk???rpersQ ( $$\sqrt 5 $$ ), Mathematische Annalen, vol.1, issue.3, pp.226-256, 1963.
DOI : 10.1007/BF01470882

G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, GNU mpfr -a library for multiple-precision floating-point computations with exact rounding, 2012.

R. Hartshorne, Algebraic Geometry, volume 52 de Graduate Texts in Mathematics, 1977.

M. Hindry and J. H. Silverman, Diophantine geometry, volume 201 de Graduate Texts in Mathematics, 2000.

F. Hirzebruch, G. Van, and . Geer, Lectures on Hilbert modular surfaces , volume Séminaire scientifique OTAN,77 de Presses de l'université de Montréal, 1981.

F. Hirzebruch, D. Zagier, W. L. Baily, and T. Shioda, Classification of Hilbert Modular Surfaces, éditeurs : Complex Analysis and Algebraic Geometry, pp.43-78, 1977.
DOI : 10.1017/CBO9780511569197.005

G. Humbert, Sur les fonctions abéliennes singulières i, Journal de Mathématiques Pures et Appliquées, vol.5, pp.233-350, 1899.

G. Humbert, Sur les fonctions abéliennes singulières ii, Journal de Mathématiques Pures et Appliquées, vol.5, pp.279-386, 1900.

G. Humbert, Sur les fonctions abéliennes singulières iii, Journal de Mathématiques Pures et Appliquées, vol.5, pp.97-124, 1901.

J. I. Igusa, Arithmetic Variety of Moduli for Genus Two, The Annals of Mathematics, vol.72, issue.3, pp.612-649, 1960.
DOI : 10.2307/1970233

O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, Bridget S. Webb, éditeur : Surveys in Combinatorics, pp.29-56, 2005.
DOI : 10.1017/CBO9780511734885.003

H. Klingen, Introductory lectures on Siegel modular forms, volume 20 de Cambridge studies in advanced mathematics, 1990.

N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, vol.48, issue.177, pp.203-209, 1987.
DOI : 10.1090/S0025-5718-1987-0866109-5

N. Koblitz, Hyperelliptic cryptosystems, Journal of Cryptology, vol.2, issue.4, pp.139-150, 1989.
DOI : 10.1007/BF02252872

K. Lauter, M. Naehrig, and T. Yang, Hilbert theta series and invariants of genus 2 curves, Journal of Number Theory, vol.161, 2015.
DOI : 10.1016/j.jnt.2015.02.020

K. Lauter and D. Robert, Improved CRT Algorithm for Class Polynomials in Genus 2 de The Open Book Series, ANTS X -Algorithmic Number Theory 2012, pp.437-461, 2012.

K. Lauter and T. H. Yang, Computing genus 2 curves from invariants on the Hilbert moduli space, Journal of Number Theory, vol.131, issue.5, 2011.
DOI : 10.1016/j.jnt.2010.05.012

I. Lovato, Computing modular polynomials with theta functions Academic year 2011, 2012.

D. Lubicz and D. Robert, Computing isogenies between abelian varieties, Compositio Mathematica, vol.2, issue.05, pp.1483-1515, 2012.
DOI : 10.1515/crll.1837.16.221

URL : https://hal.archives-ouvertes.fr/hal-00446062

D. Lubicz and D. Robert, Abstract, LMS Journal of Computation and Mathematics, vol.1, issue.01, pp.198-216, 2015.
DOI : 10.1112/S0010437X12000243

R. Manni, Modular Varieties with Level 2 Theta Structure, American Journal of Mathematics, vol.116, issue.6, pp.1489-1511, 1994.
DOI : 10.2307/2375056

F. Martin and E. Royer, Formes modulaires et périodes, Formes modulaires et transcendance, volume 12 de Séminaires et Congrès, pp.1-117, 2005.

J. Mestre, Construction de courbes de genre 2 ?? partir de leurs modules, Effective methods in algebraic geometry de Progress in Mathematics, pp.313-334, 1991.
DOI : 10.1007/978-1-4612-0441-1_21

E. Milio, A quasi-linear time algorithm for computing modular polynomials in dimension 2, LMS Journal of Computation and Mathematics, vol.18, issue.01, pp.603-632, 2015.
DOI : 10.2748/tmj/1178224764

URL : https://hal.archives-ouvertes.fr/hal-01080462

V. Miller, Use of Elliptic Curves in Cryptography, Advances in Cryptology ? CRYPTO '85 Proceedings, pp.417-426, 1986.
DOI : 10.1007/3-540-39799-X_31

P. Molin, Intégration numérique et calculs de fonctions L, Thèse de doctorat, 2010.

D. Mumford, On the equations defining abelian varieties. i. Inventiones mathematicae, pp.287-354, 1966.

D. Mumford, Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, 1970.

D. Mumford, Tata lectures on theta I, volume 28 de Progress in Mathematics, Birkhäuser Boston, 1983.

D. Mumford, Tata lectures on theta II, volume 43 de Progress in Mathematics, Birkhäuser Boston, 1984.

S. Nagaoka, On the ring of Hilbert modular forms over $Z$, Journal of the Mathematical Society of Japan, vol.35, issue.4, pp.589-608, 1983.
DOI : 10.2969/jmsj/03540589

R. Rivest and A. Shamir, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, vol.21, issue.2, pp.120-126, 1978.
DOI : 10.1145/359340.359342

B. Runge, Endomorphism rings of abelian surfaces and projective models of their moduli spaces, Tohoku Mathematical Journal, vol.51, issue.3, pp.283-303, 1999.
DOI : 10.2748/tmj/1178224764

R. Schertz, Complex multiplication, volume 15 de New mathematical monographs, 2010.

L. Schläfli, Beweis der Hermiteschen Verwandlungstafeln für die elliptischen Modulfunktionen, Journal für die reine und angewandte Mathematik, pp.360-369, 1870.

R. Schoof, Counting points on elliptic curves over finite fields, Journal de Th??orie des Nombres de Bordeaux, vol.7, issue.1, pp.219-264, 1995.
DOI : 10.5802/jtnb.142

A. Schönhage and V. Strassen, Fast multiplication of large numbers, Computing, vol.150, issue.3-4, pp.281-292, 1971.
DOI : 10.1007/BF02242355

J. H. Silverman, The Arithmetic of Elliptic Curves, volume 106 de Graduate Texts in Mathematics, 1986.

M. Streng, Complex multiplication of abelian surfaces, Thèse de doctorat, 2010.

A. V. Sutherland, Computing Hilbert class polynomials with the Chinese remainder theorem, Mathematics of Computation, vol.80, issue.273, pp.501-538, 2011.
DOI : 10.1090/S0025-5718-2010-02373-7

J. Tate, Endomorphisms of abelian varieties over finite fields, Inventiones Mathematicae, vol.1, issue.No. 6, pp.133-144, 1966.
DOI : 10.1007/BF01404549

J. Thomae, Beitrag zur Bestimmung von ?(0, 0, . . . , 0) durch die Klassenmoduln algebraischer Funktionen, Journal für die Reine und Angewandte Mathematik, vol.70, pp.201-222, 1870.

G. Van and . Geer, On the geometry of a Siegel modular threefold, Math. Ann, vol.260, issue.3, pp.317-350, 1982.

J. Zur-gathen and G. , Jürgen : Modern Computer Algebra, 1999.

J. Vélu, Isogénies entre courbes ellitiques, Compte Rendu Académie Sciences Paris Série A-B, vol.273, pp.238-241, 1971.

H. Weber, Elliptische Funktionen und Algebraische Zahlen, 1908.

H. Weber, Lehrbuch der Algebra, 1908.
DOI : 10.1007/978-3-663-07282-9

D. Zagier, Modular forms of one variable. Notes based on a course given in Utrecht, 1991.