A. A. Agrachev and A. V. Sarychev, Navier?Stokes Equations: Controllability by Means of Low Modes Forcing, Journal of Mathematical Fluid Mechanics, vol.7, issue.1, pp.108-152, 2005.
DOI : 10.1007/s00021-004-0110-1

A. A. Agrachev and A. V. Sarychev, Controllability of 2D Euler and Navier-Stokes Equations by Degenerate Forcing, Communications in Mathematical Physics, vol.37, issue.3, pp.673-697, 2006.
DOI : 10.1007/s00220-006-0002-8

A. A. Agrachev and A. V. Sarychev, Solid controllability in fluid dynamics In Instability in Models Connected with Fluid Flows. I, volume 6 of Int, Math. Ser, pp.1-35, 2008.

V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Annual Review of Fluid Mechanics, vol.24, issue.1, pp.145-166, 1992.
DOI : 10.1146/annurev.fl.24.010192.001045

M. Baiesi and C. Maes, Enstrophy dissipation in two-dimensional turbulence, Physical Review E, vol.72, issue.5, p.56314, 2005.
DOI : 10.1103/PhysRevE.72.056314

J. M. Ball, J. E. Marsden, and M. Slemrod, Controllability for Distributed Bilinear Systems, SIAM Journal on Control and Optimization, vol.20, issue.4, pp.575-597, 1982.
DOI : 10.1137/0320042

K. Beauchard, Local controllability of a 1-D Schr??dinger equation, Journal de Math??matiques Pures et Appliqu??es, vol.84, issue.7, pp.851-956, 2005.
DOI : 10.1016/j.matpur.2005.02.005

K. Beauchard and J. Coron, Controllability of a quantum particle in a moving potential well, Journal of Functional Analysis, vol.232, issue.2, pp.328-389, 2006.
DOI : 10.1016/j.jfa.2005.03.021

URL : https://hal.archives-ouvertes.fr/hal-00825517

K. Beauchard, J. Coron, M. Mirrahimi, and P. Rouchon, Implicit Lyapunov control of finite dimensional Schr??dinger equations, Systems & Control Letters, vol.56, issue.5, pp.388-395, 2007.
DOI : 10.1016/j.sysconle.2006.10.024

K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schr??dinger equations with bilinear control, Journal de Math??matiques Pures et Appliqu??es, vol.94, issue.5, pp.520-554, 2010.
DOI : 10.1016/j.matpur.2010.04.001

K. Beauchard and M. Mirrahimi, Practical Stabilization of a Quantum Particle in a One-Dimensional Infinite Square Potential Well, SIAM Journal on Control and Optimization, vol.48, issue.2, pp.1179-1205, 2009.
DOI : 10.1137/070704204

URL : https://hal.archives-ouvertes.fr/hal-00793356

U. Boscain, M. Caponigro, T. Chambrion, and M. Sigalotti, A Weak Spectral Condition for the Controllability of the Bilinear Schr??dinger Equation with Application to the Control of a Rotating Planar Molecule, Communications in Mathematical Physics, vol.75, issue.4, pp.423-455, 2012.
DOI : 10.1007/s00220-012-1441-z

U. Boscain, M. Caponigro, and M. Sigalotti, Multi-input Schr??dinger equation: Controllability, tracking, and application to the quantum angular momentum, Journal of Differential Equations, vol.256, issue.11, pp.3524-3551, 2014.
DOI : 10.1016/j.jde.2014.02.004

U. Boscain, T. Chambrion, and M. Sigalotti, On some open questions in bilinear quantum control, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00818216

N. Boussaid, M. Caponigro, and T. Chambrion, Approximate controllability of the Schrödinger equation with a polarizability term. Decision and Controls, CDC 2012, pp.3024-3029, 2012.

J. Bricmont, A. Kupiainen, and R. Lefevere, Ergodicity of the 2D Navier--Stokes Equations??with Random Forcing, Communications in Mathematical Physics, vol.224, issue.1, pp.65-81, 2001.
DOI : 10.1007/s002200100510

J. Bricmont, A. Kupiainen, and R. Lefevere, Exponential mixing for the 2D stochastic Navier? Stokes dynamics, Communications in Mathematical Physics, vol.230, issue.1, pp.87-132, 2002.
DOI : 10.1007/s00220-002-0708-1

S. Cerrai and M. Röckner, Large deviations for invariant measures of stochastic reaction???diffusion systems with multiplicative noise and non-Lipschitz reaction term, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.41, issue.1, pp.1100-1139, 2004.
DOI : 10.1016/j.anihpb.2004.03.001

S. Cerrai and M. Röckner, Large deviations for invariant measures of stochastic reaction???diffusion systems with multiplicative noise and non-Lipschitz reaction term, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.41, issue.1, pp.69-105, 2005.
DOI : 10.1016/j.anihpb.2004.03.001

T. Chambrion, P. Mason, M. Sigalotti, and U. Boscain, Controllability of the discrete-spectrum Schr??dinger equation driven by an external field, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.1, pp.329-349, 2009.
DOI : 10.1016/j.anihpc.2008.05.001

M. Chang, Large deviation for Navier-Stokes equations with small stochastic perturbation, Applied Mathematics and Computation, vol.76, issue.1, pp.65-93, 1996.
DOI : 10.1016/0096-3003(95)00150-6

I. Chueshov and A. Millet, Stochastic 2D Hydrodynamical Type Systems: Well Posedness and Large Deviations, Applied Mathematics and Optimization, vol.34, issue.5, pp.379-420, 2010.
DOI : 10.1007/s00245-009-9091-z

URL : https://hal.archives-ouvertes.fr/hal-00295023

J. Coron, Control and nonlinearity, Mathematical Surveys and Monographs. AMS, vol.136, 2007.
DOI : 10.1090/surv/136

J. Coron, A. Grigoriu, C. Lefter, and G. Turinici, Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling, New Journal of Physics, vol.11, issue.10, p.11, 2009.
DOI : 10.1088/1367-2630/11/10/105034

URL : https://hal.archives-ouvertes.fr/hal-00410285

J. Coron and P. Lissy, Local null controllability of the three-dimensional Navier???Stokes system with a distributed control having two vanishing components, Inventiones mathematicae, vol.16, issue.4, pp.833-880, 2014.
DOI : 10.1007/s00222-014-0512-5

URL : https://hal.archives-ouvertes.fr/hal-00750249

G. Da-prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, 1996.
DOI : 10.1017/CBO9780511662829

A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schr??dinger equation, Journal of Evolution Equations, vol.5, issue.3, pp.317-356, 2005.
DOI : 10.1007/s00028-005-0195-x

A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 2000.

M. D. Donsker and S. R. Varadhan, Asymptotic evaluation of certain markov process expectations for large time, II, Communications on Pure and Applied Mathematics, vol.28, issue.2, pp.1-47, 1975.
DOI : 10.1002/cpa.3160280206

W. E. , J. C. Mattingly, and Y. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier?Stokes equation, Comm. Math. Phys, vol.224, issue.1, pp.83-106, 2001.

J. Eckmann and M. Hairer, Non-Equilibrium Statistical Mechanics??of Strongly Anharmonic Chains of Oscillators, Communications in Mathematical Physics, vol.212, issue.1, pp.105-164, 2000.
DOI : 10.1007/s002200000216

J. Eckmann and M. Hairer, Uniqueness of the Invariant Measure??for a Stochastic PDE Driven by Degenerate Noise, Communications in Mathematical Physics, vol.219, issue.3, pp.523-565, 2001.
DOI : 10.1007/s002200100424

J. Eckmann, C. Pillet, and L. Rey-bellet, Entropy production in nonlinear, thermally driven Hamiltonian systems, Journal of Statistical Physics, vol.95, issue.1/2, pp.305-331, 1999.
DOI : 10.1023/A:1004537730090

URL : https://hal.archives-ouvertes.fr/hal-00005455

J. Eckmann, C. Pillet, and L. Rey-bellet, Non-Equilibrium Statistical Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different Temperatures, Communications in Mathematical Physics, vol.201, issue.3, pp.657-697, 1999.
DOI : 10.1007/s002200050572

URL : https://hal.archives-ouvertes.fr/hal-00005454

D. J. Evans and D. J. Searles, Equilibrium microstates which generate second law violating steady states, Physical Review E, vol.50, issue.2, pp.1645-1648, 1994.
DOI : 10.1103/PhysRevE.50.1645

F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Communications in Mathematical Physics, vol.42, issue.1, pp.119-141, 1995.
DOI : 10.1007/BF02104513

M. I. Freidlin, Random Perturbations of Reaction-Diffusion Equations: The Quasi-Deterministic Approximation, Transactions of the American Mathematical Society, vol.305, issue.2, pp.665-697, 1988.
DOI : 10.2307/2000884

M. I. Freidlin and A. D. , Random Perturbations of Dynamical Systems, 1984.

G. Gallavotti and E. G. Cohen, Dynamical ensembles in stationary states, Journal of Statistical Physics, vol.78, issue.3, pp.5-6931, 1995.
DOI : 10.1007/BF02179860

P. Gaspard, Time-Reversed Dynamical Entropy and Irreversibility in Markovian Random Processes, Journal of Statistical Physics, vol.66, issue.5, pp.599-615, 2004.
DOI : 10.1007/s10955-004-3455-1

O. Glass and T. Horsin, Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patches, Journal de Math??matiques Pures et Appliqu??es, vol.93, issue.1, pp.61-90, 2010.
DOI : 10.1016/j.matpur.2009.08.006

URL : https://hal.archives-ouvertes.fr/hal-00660790

O. Glass and T. Horsin, Prescribing the Motion of a Set of Particles in a Three-Dimensional Perfect Fluid, SIAM Journal on Control and Optimization, vol.50, issue.5, pp.2726-2742, 2012.
DOI : 10.1137/110845744

M. Gourcy, A large deviation principle for 2D stochastic Navier?Stokes equation. Stochastic Process, Appl, vol.117, issue.7, pp.904-927, 2007.

M. Gourcy, Large deviation principle of occupation measure for stochastic Burgers equation, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.43, issue.4, pp.441-459, 2007.
DOI : 10.1016/j.anihpb.2006.07.003

A. Grigoriu, Stability analysis of discontinuous quantum control systems with dipole and polarizability coupling, Automatica, vol.48, issue.9, pp.2229-2234, 2012.
DOI : 10.1016/j.automatica.2012.06.028

A. Grigoriu, C. Lefter, and G. Turinici, Lyapunov control of Schrödinger equation: beyond the dipole approximations, Proc of the 28th IASTED International Conference on Modelling, Identification and Control, pp.119-123, 2009.

M. Hairer, Exponential mixing properties of stochastic PDE's through asymptotic coupling, Probability Theory and Related Fields, vol.124, issue.3, pp.345-380, 2002.
DOI : 10.1007/s004400200216

M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier???Stokes equations with degenerate stochastic forcing, Annals of Mathematics, vol.164, issue.3, pp.993-1032, 2006.
DOI : 10.4007/annals.2006.164.993

N. Jacobson, Basic algebra. I. W. H. Freeman and Company, 1985.

V. Jak?i´cjak?i´c, C. Pillet, and L. Rey-bellet, Entropic fluctuations in statistical mechanics: I. Classical dynamical systems, Nonlinearity, vol.24, issue.3, pp.699-763, 2011.
DOI : 10.1088/0951-7715/24/3/003

V. Jak?i´cjak?i´c, Y. Ogata, Y. Pautrat, and C. Pillet, Entropic Fluctuations in Quantum Statistical Mechanics -An Introduction, Quantum Theory from Small to Large Scales, 2012.

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 1991.

B. Khesin and R. Wendt, The geometry of infinite-dimensional groups, volume 51 of Series of Modern Surveys in Mathematics, 2009.

Y. Kifer, Large deviations in dynamical systems and stochastic processes, Transactions of the American Mathematical Society, vol.321, issue.2, pp.505-524, 1990.
DOI : 10.1090/S0002-9947-1990-1025756-7

A. B. Krygin, Extension of diffeomorphisms that preserve volume, Funkcional. Anal. i Prilo?en, vol.5, issue.2, pp.72-76, 1971.

S. Kuksin, A stochastic nonlinear Schrödinger equation. I. A priori estimates, Tr. Mat. Inst. Steklova, vol.225, pp.232-256, 1999.

S. Kuksin, A. Piatnitski, and A. Shirikyan, A coupling approach to randomly forced nonlinear PDEs, Communications in Mathematical Physics, vol.230, issue.1, pp.81-85, 2002.
DOI : 10.1007/s00220-002-0707-2

S. Kuksin and A. Shirikyan, Stochastic Dissipative PDE's and Gibbs Measures, Communications in Mathematical Physics, vol.213, issue.2, pp.291-330, 2000.
DOI : 10.1007/s002200000237

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Kuksin and A. Shirikyan, A Coupling Approach??to Randomly Forced Nonlinear PDE's. I, Communications in Mathematical Physics, vol.221, issue.2, pp.351-366, 2001.
DOI : 10.1007/s002200100479

S. Kuksin and A. Shirikyan, Ergodicity for the randomly forced 2D Navier?Stokes equations, Mathematical Physics, Analysis and Geometry, vol.4, issue.2, pp.147-195, 2001.
DOI : 10.1023/A:1011989910997

S. Kuksin and A. Shirikyan, Coupling approach to white-forced nonlinear PDEs, Journal de Math??matiques Pures et Appliqu??es, vol.81, issue.6, pp.567-602, 2002.
DOI : 10.1016/S0021-7824(02)01259-X

S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence
DOI : 10.1017/CBO9781139137119

J. Kurchan, Fluctuation theorem for stochastic dynamics, Journal of Physics A: Mathematical and General, vol.31, issue.16, pp.313719-3729, 1998.
DOI : 10.1088/0305-4470/31/16/003

J. L. Lebowitz and H. Spohn, A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics, Journal of Statistical Physics, vol.95, issue.1/2, pp.333-365, 1999.
DOI : 10.1023/A:1004589714161

V. Lecomte, C. Appert-rolland, and F. Van-wijland, Thermodynamic Formalism for Systems with Markov Dynamics, Journal of Statistical Physics, vol.102, issue.1, pp.51-106, 2007.
DOI : 10.1007/s10955-006-9254-0

URL : https://hal.archives-ouvertes.fr/hal-00107948

C. Maes, The fluctuation theorem as a Gibbs property, Journal of Statistical Physics, vol.95, issue.1/2, pp.367-392, 1999.
DOI : 10.1023/A:1004541830999

C. Maes, On the Origin and the Use of Fluctuation Relations for the Entropy, Poincaré Seminar, pp.145-191, 2003.
DOI : 10.1007/978-3-0348-7932-3_8

C. Maes and K. Neto?ný, Time-reversal and entropy, Journal of Statistical Physics, vol.110, issue.1/2, pp.269-310, 2003.
DOI : 10.1023/A:1021026930129

C. Maes, F. Redig, and M. Verschuere, From global to local fluctuation theorems, Mosc. Math. J, vol.1, issue.3, pp.421-438, 2001.

D. Martirosyan, Exponential mixing for the white-forced damped nonlinear wave equation, Evolution Equations and Control Theory, vol.3, issue.4, pp.645-670, 2014.
DOI : 10.3934/eect.2014.3.645

URL : https://hal.archives-ouvertes.fr/hal-00980358

D. Martirosyan, Large Deviations for Stationary Measures of Stochastic Nonlinear Wave Equations with Smooth White Noise, Communications on Pure and Applied Mathematics, vol.116, issue.11, 2015.
DOI : 10.1016/j.spa.2006.04.001

N. Masmoudi and L. Young, Ergodic Theory of Infinite Dimensional Systems??with Applications to Dissipative Parabolic PDEs, Communications in Mathematical Physics, vol.227, issue.3, pp.461-481, 2002.
DOI : 10.1007/s002200200639

P. Mason and M. Sigalotti, Generic Controllability Properties for the Bilinear Schr??dinger Equation, Communications in Partial Differential Equations, vol.74, issue.4, pp.685-706, 2010.
DOI : 10.2307/2374041

J. C. Mattingly, Exponential convergence for the stochastically forced Navier?Stokes equations and other partially dissipative dynamics, Communications in Mathematical Physics, vol.230, issue.3, pp.421-462, 2002.
DOI : 10.1007/s00220-002-0688-1

M. Mirrahimi, Lyapunov control of a quantum particle in a decaying potential, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.5, pp.1743-1765, 2009.
DOI : 10.1016/j.anihpc.2008.09.006

URL : https://hal.archives-ouvertes.fr/hal-00793568

M. Morancey, Explicit approximate controllability of the Schr??dinger equation with a polarizability term, Mathematics of Control, Signals, and Systems, vol.27, issue.3, pp.407-432, 2013.
DOI : 10.1007/s00498-012-0102-2

M. Morancey, Simultaneous local exact controllability of 1D bilinear Schr??dinger equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.31, issue.3, pp.501-529, 2014.
DOI : 10.1016/j.anihpc.2013.05.001

H. Nersisyan, Controllability of 3D incompressible Euler equations by a finite-dimensional external force, ESAIM: Control, Optimisation and Calculus of Variations, vol.16, issue.3, pp.677-694, 2010.
DOI : 10.1051/cocv/2009017

H. Nersisyan, Controllability of the 3D Compressible Euler System, Communications in Partial Differential Equations, vol.237, issue.9, pp.1544-1564, 2011.
DOI : 10.1007/s10883-006-0004-z

URL : https://hal.archives-ouvertes.fr/hal-00430175

C. Odasso, Exponential mixing for stochastic PDEs: the non-additive case. Probab. Theory Related Fields, pp.41-82, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00004975

Y. Privat and M. Sigalotti, The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent, ESAIM: Control, Optimisation and Calculus of Variations, vol.16, issue.3, pp.794-805, 2010.
DOI : 10.1051/cocv/2009014

URL : https://hal.archives-ouvertes.fr/hal-00322301

L. Rey-bellet and L. E. Thomas, Fluctuations of the Entropy Production in Anharmonic Chains, Annales Henri Poincar??, vol.3, issue.3, pp.483-502, 2002.
DOI : 10.1007/s00023-002-8625-6

S. S. Rodrigues, Navier-Stokes Equation on the Rectangle: Controllability by Means of Low Mode Forcing, Journal of Dynamical and Control Systems, vol.., issue.4, pp.517-562, 2006.
DOI : 10.1007/s10883-006-0004-z

S. S. Rodrigues, Controllability of nonlinear PDE's on compact Riemannian manifolds, Proceedings WMCTF'07, pp.462-493, 2007.

S. S. Rodrigues, Methods of Geometric Control Theory in Problems of Mathematical Physics, 2008.

L. Rondoni and C. Mejía-monasterio, Fluctuations in nonequilibrium statistical mechanics: models, mathematical theory, physical mechanisms, Nonlinearity, vol.20, issue.10, pp.1-37, 2007.
DOI : 10.1088/0951-7715/20/10/R01

URL : http://arxiv.org/abs/0709.1976

D. Ruelle, Entropy Production in Nonequilibrium Statistical Mechanics, Communications in Mathematical Physics, vol.189, issue.2, pp.365-371, 1997.
DOI : 10.1007/s002200050207

D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanic, Journal of Statistical Physics, vol.95, issue.1/2, pp.393-468, 1999.
DOI : 10.1023/A:1004593915069

A. Sarychev, Controllability of the cubic Schroedinger equation via a low-dimensional source term, Mathematical Control and Related Fields, vol.2, issue.3, pp.247-270, 2012.
DOI : 10.3934/mcrf.2012.2.247

A. Shirikyan, Exponential Mixing for 2D Navier-Stokes Equations Perturbed by an Unbounded Noise, Journal of Mathematical Fluid Mechanics, vol.6, issue.2, pp.169-193, 2004.
DOI : 10.1007/s00021-003-0088-0

A. Shirikyan, Approximate Controllability of Three-Dimensional Navier???Stokes Equations, Communications in Mathematical Physics, vol.8, issue.2, pp.123-151, 2006.
DOI : 10.1007/s00220-006-0007-3

URL : https://hal.archives-ouvertes.fr/hal-00096176

A. Shirikyan, Ergodicity for a class of Markov processes and applications to randomly forced PDE's II. Discrete Contin, Dynam. Systems, vol.6, issue.4, pp.911-926, 2006.

A. Shirikyan, Exact controllability in projections for three-dimensional Navier???Stokes equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.24, issue.4, pp.521-537, 2007.
DOI : 10.1016/j.anihpc.2006.04.002

A. Shirikyan, Euler equations are not exactly controllable by a finite-dimensional external force, Physica D: Nonlinear Phenomena, vol.237, issue.10-12, pp.10-121317, 2008.
DOI : 10.1016/j.physd.2008.03.021

A. Shirikyan, Control theory for the Burgers equation: Agrachev?Sarychev approach. PhD course delivered at the University of Ia¸si, 2010.

A. Shirikyan, Approximate controllability of the viscous Burgers equation on the real line In Geometric control theory and sub-Riemannian geometry, pp.351-370, 2014.

R. Sowers, Large Deviations for a Reaction-Diffusion Equation with Non-Gaussian Perturbations, The Annals of Probability, vol.20, issue.1, pp.504-537, 1992.
DOI : 10.1214/aop/1176989939

R. Sowers, Large deviations for the invariant measure of a reaction?diffusion equation with non-Gaussian perturbations. Probab. Theory Related Fields, pp.393-421, 1992.

S. S. Sritharan and P. Sundar, Large deviations for the two-dimensional Navier?Stokes equations with multiplicative noise. Stochastic Process, Appl, vol.116, pp.1636-1659, 2006.

G. Turinici, On the controllability of bilinear quantum systems, Lecture Notes in Chem, vol.74, pp.75-92, 2000.
DOI : 10.1007/978-3-642-57237-1_4

URL : https://hal.archives-ouvertes.fr/hal-00536518

G. Turinici, Beyond Bilinear Controllability: Applications to Quantum Control, Control of coupled partial differential equations, pp.293-309, 2007.
DOI : 10.1007/978-3-7643-7721-2_13

URL : https://hal.archives-ouvertes.fr/hal-00311267

G. Turinici and H. Rabitz, Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules, Physical Review A, vol.70, issue.6, p.63412, 2004.
DOI : 10.1103/PhysRevA.70.063412

URL : https://hal.archives-ouvertes.fr/hal-00798257

W. Wang, Bounded Sobolev norms for linear Schr??dinger equations under resonant perturbations, Journal of Functional Analysis, vol.254, issue.11, pp.2926-2946, 2008.
DOI : 10.1016/j.jfa.2007.11.012

W. Wang, Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations, Comm. Partial Differential Equations, vol.33, pp.10-122164, 2008.

L. Wu, Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems, Stochastic Processes and their Applications, vol.91, issue.2, pp.205-238, 2001.
DOI : 10.1016/S0304-4149(00)00061-2

URL : http://doi.org/10.1016/s0304-4149(00)00061-2

. Abstract, This thesis is organised in two relatively independent chapters Chapter 1 is devoted to the study of some mathematical problems arising in the theory of hydrodynamic turbulence Our results focus on questions related to the large deviations principle (LDP), Gallavotti?Cohen type symmetry, and ergodicity (existence and uniqueness of a stationary measure and its mixing properties) for a family of randomly forced PDE's. We establish the LDP for parabolic PDE's, such as the Navier?Stokes system or the complex Ginzburg?Landau equation, perturbed by a random kick force

?. Gallavotti and . Cohen, with strong nonlinear dissipation, such as the Burgers equation. Finally, we prove a mixing property for the complex Ginzburg?Landau equation with a white-noise perturbation in any space dimension we first consider the problem of controllability of a quantum particle by the amplitude of an electric field. The position of the particle is described by a wave function which obeys the bilinear Schrödinger equation. We are mainly interested in the global controllability problems of this equation. Using some variational methods, we establish approximate controllability, feedback stabilisation, and simultaneous controllability results. The second part of this chapter is concerned with the problem of controllability of Lagrangian trajectories of the 3D Navier?Stokes system by a finite-dimensional force. We provide some examples of saturating spaces which ensure the approximate controllability of the system, Keywords: Navier?Stokes system equation, nonlinear wave equation, large deviations principle, Gallavotti?Cohen symmetry, kick force, white noise, coupling method; Schrödinger equation, Lyapunov function, approximate controllability, stabilisation, simultaneous controllability

. Résumé, Nos résultats portent principalement sur des questions liées au principe de grandes déviations (PGD), relation de Gallavotti?Cohen et ergodicité (existence et unicité d'une mesure stationnaire et ses propriétés de mélange) pour une classe d'EDP perturbées par une force aléatoire Nous établissons un PGD pour des EDP paraboliques, comme les équations de Navier?Stokes ou de Ginzburg?Landau complexe, perturbées par une force aléatoire discrète en temps. Nous étendons ce résultat au cas de l'équation d'onde non linéaire amortie soumise à une force aléatoire de type bruit blanc en temps et lisse par rapport à la variable spatiale, en prouvant un PGD local. Nous obtenons une relation de type Gallavotti?Cohen pour la fonction de taux d'une fonctionnelle de production d'entropie pour des EDP avec une dissipation non linéaire forte, comme l'équation de Burgers. Enfin, nous prouvons une propriété de mélange pour l'équation complexe de Ginzburg?Landau avec un bruit blanc dans un espace de dimension quelconque. Dans le chapitre 2, nous considérons d'abord le problème de la contrôlabilité d'une particule quantique par l'amplitude d'un champ électrique. L'état de la particule est décrit par une fonction d'onde qui obéit à l'équation de Schrödinger bilinéaire, Ce mémoire est composé de deux chapitres relativement indépendants. Le chapitre 1 est consacré à l'étude de quelques problèmes mathématiques issus de la théorie de la turbulence en hydrodynamique En utilisant des méthodes variationnelles, nous obtenons des résultats de contrôlabilité approchée, stabilisation et contrôlabilité simultanée. La deuxième partie de ce chapitre aborde le problème de la contrôlabilité lagrangienne de l'équation de Navier?Stokes 3D par une force de dimension finie. Nous donnons des exemples d'espaces qui assurent la contrôlabilité approchée du système

. Mots-clés, équation de Burgers, équation d'onde non linéaire, principe de grandes déviations, relation de Gallavotti?Cohen, bruit blanc, méthode de couplage