S. Alliage-de-type, 12 4.1. Diagrammes d'équilibre de phases, ., p.13

.. Réactivité-interfaciale-entre-un-substrat-nickel-et-un-alliage-base-Étain, 33 5.2.1. Système Ni-Sn (solide), p.34

.. Etude-du-système-métallurgique-transposé-au-micro-bump, 38 6.1. La dimension du système, ., p.40

.. Véhicules-test-support-de-l-'étude, 48 2.1. Véhicule test, .48 2.2. Limitation du véhicule test, p.52

.. Problématique-liée-au-développement-du-procédé, 64 3.6.1. Sur l'utilisation de flux, ., p.64

.. Problématique-liée-À-la-présence-d-'underfill, 65 4.2.1. La thermo-compression, p.67

.. Protocole-de-préparation-d-'échantillon, Test de cisaillement (shear test), p.71

/. Cu and . Ni, Cu La figure 4-25 présente quelques clichés MEB de coupes transversales du système Cu, Cu (intégration de la configuration (2) de la figure 4-22). Les clichés en figure 4-25b et 4-25d

/. Le-système-cu and . Ni, Cu est susceptible de générer un intermétallique qui est associé à la formation de porosités. Par conséquent un système d'intégration du type Cu/NiCu pourrait potentiellement présenter à la fois l'avantage de la croissance limitée de la couche réactionnelle tout en permettant de s'exempter des problèmes liés à la réactivité avec l'or, Quoi qu'il en soit la grande variabilité des performances électriques pour les interconnexions de plus faibles dimensions suggère une grande sensibilité face aux paramètres géométriques

:. J. Davis, Interconnect limits on gigascale integration, Proceeding of Electronic Packaging Conference, pp.305-324, 1999.

:. K. Banerjee, 3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration, Proceedings of the IEEE, vol.89, issue.5, pp.602-632, 2001.
DOI : 10.1109/5.929647

. Itrs, International Technology Roadmap for Semiconductors: Assembly and Packaging Disponible en ligne: http://www.itrs.net/Links, 2009.

:. Martin, Packaging des circuits intégrés, 2005.

R. Hsu, Disponible en ligne : www.techniques-ingenieur.fr Lectures on MEMS and Microsystems design and manufacture, 2008.

:. D. Saint-patrice, New Reflow Soldering and Tip in Buried Box (TB2) Techniques For Ultrafine Pitch Megapixels imaging array", proceeding of Electronic Components and Technology Conference, pp.46-53, 2008.

:. E. Davis, Solid Logic Technology: Versatile, High-Performance Microelectronics, IBM Journal of Research and Development, vol.8, issue.2, pp.102-114, 1964.
DOI : 10.1147/rd.82.0102

W. Davis, Demystifying 3D ICs: The Pros and Cons of Going Vertical, IEEE Design and Test of Computers, vol.22, issue.6, pp.498-510, 2005.
DOI : 10.1109/MDT.2005.136

:. C. Scanlan and N. Karim, System-in-Package technology, application and trends, Proceeding of Surface Mount Technology Association conference, pp.764-773, 2001.

L. F. Miller, Controlled Collapse Reflow Chip Joining, IBM Journal of Research and Development, vol.13, issue.3, pp.239-250, 1969.
DOI : 10.1147/rd.133.0239

:. T. Wang, Studies on a novel flip-chip interconnect structure. Pillar bump, 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220), pp.945-949, 2001.
DOI : 10.1109/ECTC.2001.927911

:. C. Lee, Cu pillar Bumps as a lead-Free Drop-in Replacement for Solder-Bumped, Flip-Chip Interconnects, Electronic Components and Technology Conference, pp.59-66, 2008.

:. D. Chau, Impact of different flip-chip bump materials on bump temperature rise and package reliability, Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005., 2005.
DOI : 10.1109/ISAPM.2005.1432054

:. L. Xu, Electromigration failure with thermal gradient effect in SnAgCu solder joints with various UBM, 2009 59th Electronic Components and Technology Conference, pp.909-913, 2009.
DOI : 10.1109/ECTC.2009.5074121

:. S. Lee, Electromigration Effect on Cu-pillar(Sn) Bumps, 2005 7th Electronic Packaging Technology Conference, pp.135-140, 2005.
DOI : 10.1109/EPTC.2005.1614381

:. Xu, Electromigration failure with thermal gradient effect in SnAgCu solder joints with various UBM, 2009 59th Electronic Components and Technology Conference, pp.909-913, 2009.
DOI : 10.1109/ECTC.2009.5074121

:. I. Artaki and A. M. Jackson, Evaluation of Lead- Free Solder Joints in Electronic Assemblies, Journal of Electronic Materials, vol.1, issue.(2), pp.757-764, 1994.
DOI : 10.1007/BF02651370

:. C. Liu and K. N. Tu, Morphology of wetting reactions of SnPb alloys on Cu as a function of alloy composition, Journal of Materials Research, vol.45, issue.01, pp.37-44, 1998.
DOI : 10.1007/BF02655484

:. K. Zeng and K. N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology, Materials Science and Engineering: R: Reports, vol.38, issue.2, pp.55-105, 2002.
DOI : 10.1016/S0927-796X(02)00007-4

O. Manuscrit-de-thèse-de and . Fouassier, Brasure composite sans plomb, de la composition à la caractérisation, 2001.

J. C. Foley, Analysis of ring and plug shear strengths for comparison of lead-free solders, Journal of Electronic Materials, vol.32, issue.10, pp.1258-1263, 2000.
DOI : 10.1007/s11664-000-0021-8

:. Y. Kariya, Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloys, Journal of Electronic Materials, vol.112, issue.7, pp.1229-1235, 1998.
DOI : 10.1007/s11664-998-0074-7

. Jackobson, Lead free soldering, a progress report, the GEC journal of Technology, vol.14, issue.2, pp.98-109, 1997.

. Stam, Reliability testing of SnAgCu solder surface mount assembly, International symposium on Microelectronics, pp.259-263, 1999.

:. I. Ohnuma, Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloys, Journal of Electronic Materials, vol.19, issue.10, pp.1137-1144, 2000.
DOI : 10.1007/s11664-000-0004-9

:. C. Schmetterer, Cu-Ni-Sn: A Key System for Lead-Free Soldering, Journal of Electronic Materials, vol.34, issue.444, 2009.
DOI : 10.1007/s11664-008-0522-4

:. F. Ochoa, Effects of cooling rate on the microstructure and tensile behavior of a Sn-3.5wt.%Ag solder, Journal of Electronic Materials, vol.76, issue.12, pp.1-7, 2003.
DOI : 10.1007/s11664-003-0109-z

:. C. Wu, Microstructure and mechanical properties of new lead-free Sn-Cu-RE solder alloys, Journal of Electronic Materials, vol.29, issue.9, pp.928-932, 2002.
DOI : 10.1007/s11664-002-0185-5

:. S. Kang, Formation of AgSn Plates in So-Ag-Cu Alloys and Optimization of their Alloy Composition, Proceeding of Electronic Components and Technology Conference, pp.64-70, 2003.

:. D. Lewis, Determination of the eutectic structure in the Ag-Cu-Sn system, Journal of Electronic Materials, vol.14, issue.2, pp.161-167, 2002.
DOI : 10.1007/s11664-002-0163-y

:. A. Lalonde, Quantitative metallography of ??-Sn dendrites in Sn-3.8Ag-0.7Cu ball grid array solder balls via electron backscatter diffraction and polarized light microscopy, Journal of Electronic Materials, vol.17, issue.12, pp.1545-1549, 2004.
DOI : 10.1007/s11664-004-0096-8

:. L. Lehman, Growth of Sn and intermetallic compounds in Sn-Ag-Cu solder, Journal of Electronic Materials, vol.35, issue.12, pp.1429-1439, 2004.
DOI : 10.1007/s11664-004-0083-0

:. D. Henderson, The microstructure of Sn in near-eutectic Sn???Ag???Cu alloy solder joints and its role in thermomechanical fatigue, Journal of Materials Research, vol.53, issue.06, pp.1608-1612, 2004.
DOI : 10.1557/JMR.2002.0337

:. B. Arfaei and E. Cotts, Correlations Between the Microstructure and Fatigue Life of Near-Eutectic Sn-Ag-Cu Pb-Free Solders, Journal of Electronic Materials, vol.36, issue.12, pp.2617-2627, 2009.
DOI : 10.1007/s11664-009-0932-y

:. B. Arfaei, Dependence of Sn Grain Morphology of Sn-Ag-Cu Solder on Solidification Temperature, Journal of Electronic Materials, vol.4, issue.377, pp.362-374, 2011.
DOI : 10.1007/s11664-011-1756-0

:. Y. Huang, Size and Substrate Effects upon Undercooling of Pb-Free Solders, Journal of Electronic Materials, vol.29, issue.1, pp.109-114, 2010.
DOI : 10.1007/s11664-009-0966-1

:. F. Hodaj, Undercooling of Sn???Ag???Cu alloys: solder balls and solder joints solidification, International Journal of Materials Research, vol.104, issue.9, pp.874-878, 2013.
DOI : 10.3139/146.110932

URL : https://hal.archives-ouvertes.fr/hal-00929789

:. S. Kang, Critical Factors Affecting the Undercooling of Pb-free, Flip-Chip Solder Bumps and In-situ Observation of Solidification Process, 2007 Proceedings 57th Electronic Components and Technology Conference, pp.1597-1602, 2007.
DOI : 10.1109/ECTC.2007.374008

:. S. Kang, Study of the undercooling of Pb-free, flip-chip solder bumps and in situ observation of solidification process, Journal of Materials Research, vol.87, issue.03, pp.557-560, 2007.
DOI : 10.1147/rd.494.0621

:. Y. Gao, Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates, Thermochimica Acta, vol.482, issue.1-2, pp.1-7, 2009.
DOI : 10.1016/j.tca.2008.10.002

:. K. Kim, Effects of cooling speed on microstructure and tensile properties of Sn?

:. G. Wei and L. Wang, Effects of cooling rate on microstructure and microhardness of lead-free Sn-3.0Ag-0.5Cu solder", proceedings of Electronic Packaging Technology & High Density Packaging, pp.453-456, 2012.

:. P. Pereira, Combined effects of Ag content and cooling rate on microstructure and mechanical behavior of Sn???Ag???Cu solders, Materials & Design, vol.45, pp.377-383, 2013.
DOI : 10.1016/j.matdes.2012.09.016

:. M. Mueller, Effect of Composition and Cooling Rate on the Microstructure of SnAgCu-Solder Joints", proceeding of Electronic Components and Technology Conference pp, pp.1579-1588, 2007.

:. I. Anderson, Sn-Ag-Cu solders and solder joints: Alloy development, microstructure, and properties, Lead-Free Electronic Solders, pp.55-76, 2002.
DOI : 10.1007/BF02701845

:. Y. Kariya, Effect of silver content on the shear fatigue properties of Sn-Ag-Cu flip-chip interconnects, Journal of Electronic Materials, vol.333, issue.619, pp.321-328, 2004.
DOI : 10.1007/s11664-004-0138-2

:. D. Shnawah, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products, Microelectronics Reliability, vol.52, issue.1, pp.90-99, 2012.
DOI : 10.1016/j.microrel.2011.07.093

:. J. Trelewicz, The Hall???Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation, Acta Materialia, vol.55, issue.17, pp.5948-5958, 2007.
DOI : 10.1016/j.actamat.2007.07.020

:. J. Keller, Mechanical properties of Pb-free SnAg solder joints, Acta Materialia, vol.59, issue.7, pp.2731-2741, 2011.
DOI : 10.1016/j.actamat.2011.01.012

:. C. Heycock and F. H. Neville, On the constitution of the copper-tin series of alloys". In: Philosophical Transactions of the Royal Society of London Series A-containing papers of a mathematical or physical character, pp.1-70, 1904.

:. K. Tu, Interdiffusion and reaction in bimetallic Cu-Sn thin films, Acta Metallurgica, vol.21, issue.4, pp.347-354, 1973.
DOI : 10.1016/0001-6160(73)90190-9

:. K. Tu, Cu/Sn interfacial reactions: thin-film case versus bulk case, Materials Chemistry and Physics, vol.46, issue.2-3, pp.217-223, 1996.
DOI : 10.1016/S0254-0584(97)80016-8

:. K. Tu and R. D. Thompson, Kinetics of interfacial reaction in bimetallic Cu???Sn thin films, Acta Metallurgica, vol.30, issue.5, pp.947-952, 1982.
DOI : 10.1016/0001-6160(82)90201-2

:. R. Chopra and M. Ohring, Low temperature compound formation in thin film couples, Thin Solid Films, vol.94, issue.4, pp.279-288, 1982.
DOI : 10.1016/0040-6090(82)90490-4

:. R. Halimi, Cin??tique de formation de compos??s interm??talliques dans les couches minces de Cu/Sn, Thin Solid Films, vol.148, issue.1, pp.109-128, 1987.
DOI : 10.1016/0040-6090(87)90125-8

:. C. Liao and C. T. Wei, An isochronal kinetic study of intermetallic compound growth in Sn/Cu thin film couples, Thin Solid Films, vol.515, issue.4, pp.2781-2785, 2006.
DOI : 10.1016/j.tsf.2006.05.025

:. W. Tang, Solid state interfacial reactions in electrodeposited Cu/Sn couples, Transactions of Nonferrous Metals Society of China, vol.20, issue.1, pp.90-96, 2010.
DOI : 10.1016/S1003-6326(09)60102-3

. Laurila, Interfacial reactions between lead-free solders and common base materials, Materials Science and Engineering: R: Reports, vol.49, issue.1-2, pp.1-60, 2005.
DOI : 10.1016/j.mser.2005.03.001

:. A. Paul, Intermetallic growth and Kirkendall effect manifestations in Cu/Sn and Au/Sn diffusion couples, Zeitschrift f??r Metallkunde, vol.95, issue.10, pp.913-920, 2004.
DOI : 10.3139/146.018032

:. M. Onishi and H. Fujibuchi, Reaction-Diffusion in the Cu–Sn System, Transactions of the Japan Institute of Metals, vol.16, issue.9, pp.539-548, 1975.
DOI : 10.2320/matertrans1960.16.539

:. P. Vianco, Solid state intermetallic compound growth between copper and high temperature, tin-rich solders???part I: Experimental analysis, Journal of Electronic Materials, vol.23, issue.8, pp.721-727, 1994.
DOI : 10.1007/BF02651365

:. H. Bhedwar, Kirkendall effect studies in copper-tin diffusion couples " Scripta Metallurgica, pp.919-922, 1972.

:. K. Weinberg and T. Boehme, Condensation and Growth of Kirkendall Voids in Intermetallic Compounds, IEEE Transactions on Components and Packaging Technologies, vol.32, issue.3, pp.684-692, 2009.
DOI : 10.1109/TCAPT.2008.2010057

:. K. Zeng, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability, Journal of Applied Physics, vol.97, issue.2, 2005.
DOI : 10.1063/1.1839637

:. G. Ghosh and M. Asta, Phase Stability, Phase Transformations, and Elastic Properties of Cu6Sn5: Ab initio Calculations and Experimental Results, Journal of Materials Research, vol.67, issue.11, pp.3102-3117, 2005.
DOI : 10.1002/pssb.2221070125

:. K. Nogita, Kinetics of the ?????????? transformation in Cu6Sn5, Scripta Materialia, vol.65, issue.10, pp.922-925, 2011.
DOI : 10.1016/j.scriptamat.2011.07.058

:. R. Gagliano, Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate, Journal of Electronic Materials, vol.13, issue.6, pp.1195-1202, 2002.
DOI : 10.1007/s11664-002-0010-1

:. M. Park, Experimental and computational study of the morphological evolution of intermetallic compound (Cu6Sn5) layers at the Cu/Sn interface under isothermal soldering conditions, Acta Materialia, vol.60, issue.13-14, pp.5125-5134, 2012.
DOI : 10.1016/j.actamat.2012.06.008

:. R. Gagliano and M. E. Fine, Thickening Kinetics of Interfacial Cu 6 Sn 5 and Cu 3 Sn Layers during Reaction of Liquid Tin with Solid Copper, Journal of Electronic Materials, vol.32, 2003.

:. J. Görlich and G. Schmitz, On the mechanism of the binary Cu/Sn solder reaction, Applied Physics Letters, vol.86, issue.5, p.53106, 2005.
DOI : 10.1063/1.1852724

:. M. Yang, Interfacial reactions of eutectic Sn3.5Ag and pure tin solders with Cu substrates during liquid-state soldering, Intermetallics, vol.25, pp.86-94, 2012.
DOI : 10.1016/j.intermet.2012.02.023

:. S. Bader, Rapid formation of intermetallic compounds by interdiffusion in the Cu- Sn and Ni-Sn systems, Acta Metallurgica et Materialia, vol.43, pp.329-337, 1995.

:. K. Puttlitz and K. A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, 2004.
DOI : 10.1201/9780203021484

:. S. Huh, K. Kim, and K. Suganuma, Effect of Ag Addition on the Microstructural and Mechanical Properties of Sn-Cu Eutectic Solder, MATERIALS TRANSACTIONS, vol.42, issue.5, pp.739-744, 2001.
DOI : 10.2320/matertrans.42.739

:. M. Cho, Effect of Ag Addition on the Ripening Growth of <formula formulatype="inline"><tex Notation="TeX">${\rm Cu}_{6}{\rm Sn}_{5}$</tex></formula> Grains at the Interface of Sn-xAg-0.5Cu/Cu During a Reflow, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.1, issue.12, pp.1939-1946, 2011.
DOI : 10.1109/TCPMT.2011.2160181

:. G. Li and B. L. Chen, Formation and growth kinetics of interfacial intermetallics in Pb-free solder joint, IEEE Transactions on Components and Packaging Technologies, vol.26, issue.3, pp.651-658, 2003.
DOI : 10.1109/TCAPT.2003.817860

:. K. Rönkä, The local nominal composition-useful concept for microjoining and interconnection, Scripta Materialia, vol.37, pp.1-575, 1997.

:. E. Ohriner, Intermetallic Formation in Soldered Copper-Based Alloys at 150° to 250°C, Welding Research, pp.191-202, 1987.

:. T. Takemoto and T. Yamamoto, Effect of additional elements on the growth rate of intermetallic compounds at copper/solder interface, J. JCBRA, vol.40, p.309, 2001.

:. J. Haimovich, Intermetallic Compound Growth in Tin and Tin-Lead Platings over Nickel and Its Effects on Solderability, Welding Research Supplement, pp.102-111, 1989.

:. D. Gur and M. Bamberger, Reactive isothermal solidification in the Ni???Sn system, Acta Materialia, vol.46, issue.14, pp.4917-4923, 1998.
DOI : 10.1016/S1359-6454(98)00192-X

:. J. Görlich, Reaction kinetics of Ni/Sn soldering reaction, Acta Materialia, vol.58, issue.9, pp.3187-3197, 2010.
DOI : 10.1016/j.actamat.2010.01.027

:. C. Ho, Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni, Journal of Electronic Materials, vol.46, issue.6, pp.584-590, 2002.
DOI : 10.1007/s11664-002-0129-0

:. Z. Bo, Size Effect on the Intermetallic Compound Coalescence in Sn-Ag-Cu Solder and Sn-Ag-Cu/Cu Solder Joints, Proceeding of International Conference on Electronic Packaging Technology & High Density Packaging, pp.248-253, 2011.

:. Hsiao, Inhibiting the consumption of Cu during multiple reflows of Pb-free solder on Cu, Scripta Materialia, vol.65, issue.10, pp.907-910, 2011.
DOI : 10.1016/j.scriptamat.2011.08.008

:. Y. Huang, The effect of a concentration gradient on interfacial reactions in microbumps of Ni/SnAg/Cu during liquid-state soldering, Scripta Materialia, vol.66, issue.10, pp.741-744, 2012.
DOI : 10.1016/j.scriptamat.2012.01.046

:. Y. Park, Effects of Fine Size Lead-Free Solder Ball on the Interfacial Reactions and Joint Reliability, IEEE, pp.1437-1441, 2010.

:. Y. Cahn, Growth kinetic studies of Cu?Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints, Materials Science and Engineering B55, pp.5-13, 1998.

:. W. Choi and H. M. Lee, Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate, Journal of Electronic Materials, vol.47, issue.10, pp.1207-1213, 2000.
DOI : 10.1007/s11664-000-0014-7

:. M. Abtew and G. Selvaduray, Lead-free Solders in Microelectronics, Materials Science and Engineering: R: Reports, vol.27, issue.5-6, pp.95-141, 2000.
DOI : 10.1016/S0927-796X(00)00010-3

:. M. Park and R. Arroyave, Multiphase Field Simulations of Intermetallic Compound Growth During Lead-Free Soldering, Journal of Electronic Materials, vol.51, issue.12, pp.2525-2533, 2009.
DOI : 10.1007/s11664-009-0849-5

:. G. Xu, Study of Joule heating effects in lead-free solder joints under Electromigration, 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging, pp.464-467, 2011.
DOI : 10.1109/ICEPT.2011.6066877

:. L. Xu, Impact of Thermal Cycling on Sn-Ag-Cu Solder Joints and Board-Level Drop Reliability, Journal of Electronic Materials, vol.33, issue.6, pp.880-886, 2008.
DOI : 10.1007/s11664-008-0400-0

:. D. Williamson, Rate dependent strengths of some solder joints, Journal of Physics D: Applied Physics, vol.40, issue.15, pp.4691-4700, 2007.
DOI : 10.1088/0022-3727/40/15/051

:. Y. Tian, Effects of bump size on deformation and fracture behavior of Sn3.0Ag0.5Cu/Cu solder joints during shear testing, Materials Science and Engineering: A, vol.529, pp.468-478, 2011.
DOI : 10.1016/j.msea.2011.09.063

:. T. Lee, K. C. Liu, and T. R. Bieler, Microstructure and Orientation Evolution of the Sn Phase as a Function of Position in Ball Grid Arrays in Sn-Ag-Cu Solder Joints, Journal of Electronic Materials, vol.421, issue.12, pp.2685-2693, 2009.
DOI : 10.1007/s11664-009-0873-5

:. M. Lu, Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders, Applied Physics Letters, vol.92, issue.21, p.211909, 2008.
DOI : 10.1063/1.2936996

:. K. Jung and H. Conrad, Microstructure coarsening during static annealing of 60Sn40Pb solder joints: III intermetallic compound growth kientics, Journal of Electronic Materials, vol.20, issue.10, pp.1308-1312, 2001.
DOI : 10.1007/s11664-001-0116-x

:. F. Song, Brittle Failure Mechanism of SnAgCu and SnPb Solder Balls during High Speed Ball Shear and Cold Ball Pull Tests, 2007 Proceedings 57th Electronic Components and Technology Conference, pp.364-372, 2007.
DOI : 10.1109/ECTC.2007.373824

:. A. Valota and A. Losavio, High Speed Pull Test Characterization of BGA solder joints, 7th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2006.
DOI : 10.1109/ESIME.2006.1644005

:. K. Newman, BGA brittle fracture - alternative solder joint integrity test methods, Proceedings Electronic Components and Technology, 2005. ECTC '05., pp.1194-1200, 2005.
DOI : 10.1109/ECTC.2005.1441422

:. J. Chia, The mechanics of the solder ball shear test and the effect of shear rate, Materials Science and Engineering: A, vol.417, issue.1-2, pp.259-274, 2006.
DOI : 10.1016/j.msea.2005.10.064

:. E. Wong, Drop Impact: Fundamentals and Impact Characterisation of Solder Joints, Proceedings Electronic Components and Technology, 2005. ECTC '05., pp.1202-1209, 2005.
DOI : 10.1109/ECTC.2005.1441423

:. X. Huang, S. W. Lee, C. C. Yan, and S. Hui, Characterization and Analysis on the Solder Ball Shear Testing Conditions, Proc. 51st Electronic Components & Technology Conference, pp.1065-1071, 2001.

:. S. Sane, On Measurement of Effective Silicon Backend Strength Using Bump Pull/Shear Techniques, Advances in Electronic Packaging, Parts A, B, and C, 2005.
DOI : 10.1115/IPACK2005-73306

G. Raiser, Solder Joint Reliability Improvement Using the Cold Ball Pull Metrology, Advances in Electronic Packaging, Parts A, B, and C, 2005.
DOI : 10.1115/IPACK2005-73045

:. F. Song and S. W. Lee, Investigation of IMC Thickness Effect on the Lead-free Solder Ball Attachment Strength: Comparison between Ball Shear Test and Cold Bump Pull Test Results, 56th Electronic Components and Technology Conference 2006, pp.1196-1203, 2006.
DOI : 10.1109/ECTC.2006.1645804

:. K. Sweatman, Strength of Lead free BGA Spheres in High Speed Loading, Proceeding of Pan Pacific Symposium Conference, 2008.

P. Chapouille and L. Fiabilité, Que sais-je ? Commission électrotechnique internationale, Vocabulaire électrotechnique international, 1972.

T. Y. Tee, H. S. Ng, C. T. Lim, E. Pek, and Z. Zhong, Impact life prediction modeling of TFBGA packages under board level drop test, Microelectronics Reliability, vol.44, issue.7, pp.1131-1142, 2004.
DOI : 10.1016/j.microrel.2004.03.005

J. Standard, Board Level Drop Test Method of Components for Handheld Electronic Products, Joint Electron Device Engineering Council, 2003.

:. W. Choi, Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate, Journal of Electronic Materials, vol.47, issue.10, pp.1207-1213, 2000.
DOI : 10.1007/s11664-000-0014-7

:. J. Chia, The mechanics of the solder ball shear test and the effect of shear rate, Materials Science and Engineering: A, vol.417, issue.1-2, pp.259-274, 2006.
DOI : 10.1016/j.msea.2005.10.064

:. R. Labie, Outperformance of Cu Pillar Flip Chip Bumps in Electromigration Testing", proceeding of Electronic Components and Technology Conference, pp.312-316, 2011.

:. C. Liu, Study of electromigration-induced Cu consumption in the flip-chip Sn???Cu solder bumps, Journal of Applied Physics, vol.100, issue.8, p.83702, 2006.
DOI : 10.1063/1.2357860

:. J. Yoo, Analysis of Electromigration for Cu Pillar Bump in Flip Chip Package", proceeding of Electronics Packaging Technology Conference, pp.129-133, 2010.

:. Y. Chan and D. Yang, Failure mechanisms of solder interconnects under current stressing in advanced electronic packages, Progress in Materials Science, vol.55, issue.5, pp.428-475, 2010.
DOI : 10.1016/j.pmatsci.2010.01.001

:. R. Katkar, Reliability of Cu pillar on substrate interconnects in high performance flip chip packages, 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), pp.965-970, 2011.
DOI : 10.1109/ECTC.2011.5898626

:. J. Black, Mass Transport of Aluminum by Momentum Exchange with Conducting Electrons, Reliability Physics Symposium, pp.148-159, 1967.

L. F. Miller, Controlled Collapse Reflow Chip Joining, IBM Journal of Research and Development, vol.13, issue.3, pp.239-250, 1969.
DOI : 10.1147/rd.133.0239

:. N. Lee, Reflow soldering processes

:. I. Artaki, Corrosion Protection of Copper Using Organic Solderability Preservatives, Circuit World, vol.19, issue.3, pp.40-45, 1974.
DOI : 10.1108/eb046211

:. P. Vianco, An overview of surface finishes and their role in printed circuit board solderability and solder joint performance, Circuit World, vol.25, issue.1, pp.6-24, 1998.
DOI : 10.1108/03056129910244518

:. A. Stranjord, Interconnecting to aluminum- and copper-based semiconductors (electroless-nickel/gold for solder bumping and wire bonding), Microelectronics Reliability, vol.42, issue.2, pp.265-283, 2002.
DOI : 10.1016/S0026-2714(01)00236-0

:. M. Bienzle, Thermodynamics and local atomic arrangements of gold-nickel alloys, Journal of Alloys and Compounds, vol.220, issue.1-2, pp.182-188, 1995.
DOI : 10.1016/0925-8388(94)06003-7

:. J. Wan, Recent advances in modeling the underfill process in flip-chip packaging, Microelectronics Journal, vol.38, issue.1, pp.67-75, 2007.
DOI : 10.1016/j.mejo.2006.09.017

:. S. Katsurayama and H. Suzuki, High performance wafer level underfill material with high filler loading, 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), pp.370-374, 2011.
DOI : 10.1109/ECTC.2011.5898540

:. Y. Liu, Process optimization of lead-free wafer-level underfill material used in chip scale packaging [139]: Technique de l'ingénieur: http://www.techniques-ingenieur.fr/base- documentaire/mesures-analyses-th1/techniquesd-analyse-ti630/microscopie-electronique-a- balayage-p865, International symposium of Advanced Packaging Materials Phase Nanotomography Resolves the 3D Human Bone Ultrastructure, pp.293-297, 2005.

:. P. Withers, X-ray nanotomography, Materials Today, vol.10, issue.12, pp.26-34, 2007.
DOI : 10.1016/S1369-7021(07)70305-X

URL : http://doi.org/10.1016/s1369-7021(07)70305-x

:. J. Wang, Automated markerless full field hard x-ray microscopic tomography at sub-50???nm 3-dimension spatial resolution, Applied Physics Letters, vol.100, issue.14, p.143107, 2012.
DOI : 10.1063/1.3701579

:. P. Bleuet, A hard x-ray nanoprobe for scanning and projection nanotomography, Review of Scientific Instruments, vol.80, issue.5, p.56101, 2009.
DOI : 10.1063/1.3117489

:. P. Kirkpatrick and V. Baez, Formation of Optical Images by X-Rays, Journal of the Optical Society of America, vol.38, issue.9, pp.766-773, 1948.
DOI : 10.1364/JOSA.38.000766

:. A. Gomez, X-ray standing wave analysis of overlayer-induced substrate relaxation: The clean and Bi-covered (110) GaP surface, Physical Review B, vol.75, issue.16, p.165318, 2007.
DOI : 10.1103/PhysRevB.75.165318

:. Del-río and R. J. Dejus, XOP 2.1 ??? A New Version of the X-ray Optics Software Toolkit, AIP Conference Proceedings, pp.784-794, 2003.
DOI : 10.1063/1.1757913

:. Lu and K. C. Hsieh, Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness, Journal of Electronic Materials, vol.24, issue.11, pp.1448-1454, 2007.
DOI : 10.1007/s11664-007-0270-x

:. P. Bleuet, Specifications for Hard Condensed Matter Specimens for Three-Dimensional High-Resolution Tomographies, Microscopy and Microanalysis, vol.16, issue.25, pp.1-13, 2013.
DOI : 10.1016/j.ultramic.2006.04.007

:. P. Cloetens, Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays, Applied Physics Letters, vol.75, issue.19, p.2912, 1999.
DOI : 10.1063/1.125225

:. M. Lu and K. C. Hsieh, Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness, Journal of Electronic Materials, vol.24, issue.11, pp.1448-1453, 2007.
DOI : 10.1007/s11664-007-0270-x

:. B. Marino, Capillarity Effects on Viscous Gravity Spreadings of Wetting Liquids, Journal of Colloid and Interface Science, vol.177, issue.1, pp.14-30, 1996.
DOI : 10.1006/jcis.1996.0003

:. P. Debenedetti, Metastable Liquids Concepts and Principles, p.194, 1996.

:. H. Kim and K. N. Tu, Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening, Physical Review B, vol.53, issue.23, p.16027, 1996.
DOI : 10.1103/PhysRevB.53.16027

:. A. Paul, The Kirkendall Effect in Solid State Diffusion, 2004.

:. W. Yang and R. W. Messler, Microstructure evolution of eutectic Sn-Ag solder joints, Journal of Electronic Materials, vol.16, issue.8, pp.765-772, 1994.
DOI : 10.1007/BF02651371

:. J. Liang, Metallurgy and Kinetics of Liquid&ndash;Solid Interfacial Reaction during Lead-Free Soldering, MATERIALS TRANSACTIONS, vol.47, issue.2, pp.317-325, 2006.
DOI : 10.2320/matertrans.47.317

:. N. Eustathopoulos, Wettability at High Temperature, 1999.

:. T. Matsumoto and K. Nogi, Wetting in Soldering and Microelectronics, Annual Review of Materials Research, vol.38, issue.1, pp.251-273, 2008.
DOI : 10.1146/annurev.matsci.38.060407.132448

:. H. Ezawa, Dilute Cu Alloying for Sn-Cu Bumping by Annealing Electroplated Cu/Sn Stacks on Ti/Ni/Pd UBM, 2006 1st Electronic Systemintegration Technology Conference, pp.550-555, 2006.
DOI : 10.1109/ESTC.2006.280057

:. J. Wang, Interfacial reaction between Sn???Ag alloys and Ni substrate, Journal of Alloys and Compounds, vol.455, issue.1-2, pp.159-163, 2008.
DOI : 10.1016/j.jallcom.2007.01.024

:. X. Huang, Intermetallic Formation of Copper Pillar With Sn&#x2013;Ag&#x2013;Cu for Flip-Chip-On-Module Packaging, IEEE Transactions on Components and Packaging Technologies, vol.31, issue.4, pp.767-775, 2008.
DOI : 10.1109/TCAPT.2008.2001194

:. P. Borgesen, Assessing the risk of ???Kirkendall voiding??? in Cu3Sn, Cu3Sn, Microelectronics Reliability, pp.837-846, 2011.
DOI : 10.1016/j.microrel.2010.11.014

:. Z. Mei, Kirkendall voids at Cu/solder interface and their effects on solder joint reliability, Proceedings Electronic Components and Technology, 2005. ECTC '05., pp.415-420, 2005.
DOI : 10.1109/ECTC.2005.1441298

:. B. Kim, IMC Compound and Kirkendall Void Growth in Cu Pillar Bump during Annealing and Current Stressing", proceedings of electronic components and technology conference, pp.336-340, 2008.

:. Y. Wang, Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates, Microelectronics Reliability, pp.248-252, 2009.

:. J. Li, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process, Acta Materialia, vol.59, issue.3, pp.1198-1211, 2011.
DOI : 10.1016/j.actamat.2010.10.053

:. H. Chuang, J. J. Yu, M. S. Kuo, H. M. Tong, and C. R. Kao, Elimination of voids in reactions between Ni and Sn: A novel effect of silver, Scripta Materialia, vol.66, issue.3-4, pp.171-174, 2012.
DOI : 10.1016/j.scriptamat.2011.10.032

:. A. Yu, Development of Fine Pitch Solder Microbumps for 3D Chip Stacking", proceedings of electronics packaging technology conference, pp.387-392, 2008.

:. B. Kim, Intermetallic Compound Growth and Reliability of Cu Pillar Bumps Under Current Stressing, Journal of Electronic Materials, vol.27, issue.10, pp.2281-2285, 2010.
DOI : 10.1007/s11664-010-1324-z

:. C. Lee, Characterization and Reliability Assessment of Solder Microbumps and Assembly for 3D IC Integration", proceedings of electronic components and technology conference, pp.1468-1474, 2011.

:. H. Tsukamoto, The influence of solder composition on the impact strength of lead-free solder ball grid array joints, Microelectronics Reliability, vol.51, issue.3, pp.657-667, 2011.
DOI : 10.1016/j.microrel.2010.10.012

:. J. Kim, Evaluation of displacement rate effect in shear test of Sn???3Ag???0.5Cu solder bump for flip chip application, Microelectronic Reliability, pp.535-542, 2006.
DOI : 10.1016/j.microrel.2005.06.008

:. Y. Chen, Single-joint shear strength of micro Cu pillar solder bumps with different amounts of intermetallics, Microelectronics Reliability, vol.53, issue.1, pp.47-52, 2013.
DOI : 10.1016/j.microrel.2012.06.116

:. J. Kim, Correlation between displacement rate and shear force in shear test of Sn???Pb and lead free solder joints, Materials Science and Technology, vol.104, issue.3, pp.373-380, 2005.
DOI : 10.2320/matertrans.43.1821

:. X. Deng, Young???s modulus of (Cu, Ag)???Sn intermetallics measured by nanoindentation, Materials Science and Engineering: A, vol.364, issue.1-2, pp.240-243, 2004.
DOI : 10.1016/j.msea.2003.08.032

:. H. Okamoto, The Au???Sn (Gold-tin) system, Bulletin of Alloy Phase Diagrams, vol.2, issue.2, p.490, 2007.
DOI : 10.1007/BF02872904

:. C. Chang, Cross-interaction between Au and Cu in Au/Sn/Cu ternary diffusion couples, Journal of Electronic Materials, vol.38, issue.2, pp.366-371, 2006.
DOI : 10.1007/BF02692458

:. N. Bochwar, Gold-Copper-Tin. Thermodynamic Properties Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data. Non-Ferrous Metal Systems, pp.401-409, 2007.

:. Y. Yato and M. Kajihara, Kinetics of reactive diffusion in the (Au???Ni)/Sn system at solid-state temperatures, Materials Science and Engineering: A, vol.428, issue.1-2, pp.276-283, 2006.
DOI : 10.1016/j.msea.2006.05.014

:. P. Oberndorff, Lead-free Solder Systems: Phase Relations and Microstructures, 2001.

:. P. Kim and K. N. Tu, Morphology of wetting reaction of eutectic SnPb solder on Au foils, Journal of Applied Physics, vol.80, issue.7, pp.3822-3827, 1996.
DOI : 10.1063/1.363336

:. T. Yamada, Kinetics of reactive diffusion between Au and Sn during annealing at solid-state temperatures, Materials Science and Engineering: A, vol.390, issue.1-2, pp.118-126, 2005.
DOI : 10.1016/j.msea.2004.08.053

:. R. Labie, Solid state diffusion in Cu???Sn and Ni???Sn diffusion couples with flip-chip scale dimensions, Intermetallics, vol.15, issue.3, pp.396-403, 2007.
DOI : 10.1016/j.intermet.2006.08.003

:. K. Lee and M. Li, Formation of intermetallic compounds in SnPbAg, SnAg, and SnAgCu solders on Ni/Au metallization, Metallurgical and Materials Transactions A, vol.23, issue.2, pp.2666-2668, 2001.
DOI : 10.1007/s11661-001-0058-1

:. K. Lee, Microstructure, joint strength and failure mechanisms of SnPb and Pbfree solders in BGA packages, Electronics Packaging Manufacturing, vol.25, pp.185-192, 2001.

:. J. Lee, Effects of Cu and Ni additions to eutectic Pb???Sn solders on Au embrittlement of solder interconnections, Journal of Materials Research, vol.29, issue.05, pp.1249-1251, 2001.
DOI : 10.1109/6144.846778

:. C. Ho, Inhibiting the formation of (Au1???xNix)Sn4 and reducing the consumption of Ni metallization in solder joints, Journal of Electronic Materials, vol.4, issue.11, pp.1264-1269, 2002.
DOI : 10.1007/s11664-002-0019-5

:. M. Powers, Effect of Gold Content on the Microstructural Evolution of SAC305 Solder Joints Under Isothermal Aging, Journal of Electronic Materials, vol.14, issue.2, pp.224-231, 2012.
DOI : 10.1007/s11664-011-1744-4

:. R. Zribi, Solder metallization Interdiffusion in Microelectronic Interconnects, IEEE Transactions on Components and Packaging Technologies, pp.451-457, 1999.

:. P. Ratchev, Reliability and Failure Analysis of Sn-Ag-Cu Solder Interconnections for PSGA Packages on Ni/Au Surface Finish, IEEE Transactions on Device and Materials Reliability, vol.4, issue.1, pp.5-10, 2004.
DOI : 10.1109/TDMR.2003.822341

:. H. Frederikse, Thermal and electrical properties of copper???tin and nickel???tin intermetallics, Journal of Applied Physics, vol.72, issue.7, pp.2879-2982, 1992.
DOI : 10.1063/1.351487

A. Annexe, Les alliages candidats en remplacement de l'alliage SnPb Suite à la demande de la National Electronics Manufacturing Initiative (ou NEMI) de bannir les alliages comprenant du plomb des applications électronique, plusieurs alliages ont été étudiés de par le monde en remplacement de l'alliage Sn-37mass%Pb traditionnellement utilisé dans le cadre des applications en microélectroniques. Les deux tableaux de la figure A1-1 répertorient plusieurs alliages (eutectiques mais pas seulement)

@. Le, Zn) est peu cher et facilement approvisionnable, mais est peu résistant face à la corrosion et forme rapidement un oxyde stable qui génère des problèmes de mouillabilité

@. Le-bismuth, qui a de très bonnes propriétés physiques (mouillabilité,..) étant un « by-product » du plomb, est largement disponible depuis les restrictions d'utilisation du plomb décrites précédemment

O. Manuscrit-de-thèse-de and . Fouassier, Brasure composite sans plomb, de la composition à la caractérisation, 2001.

:. B. Arfaei, Dependence of Sn Grain Morphology of Sn-Ag-Cu Solder on Solidification Temperature, Journal of Electronic Materials, vol.4, issue.377, pp.362-374, 2011.
DOI : 10.1007/s11664-011-1756-0

:. Y. Huang, Size and Substrate Effects upon Undercooling of Pb-Free Solders, Journal of Electronic Materials, vol.29, issue.1, pp.109-114, 2010.
DOI : 10.1007/s11664-009-0966-1

:. F. Hodaj, Undercooling of Sn???Ag???Cu alloys: solder balls and solder joints solidification, International Journal of Materials Research, vol.104, issue.9, pp.874-878, 2013.
DOI : 10.3139/146.110932

URL : https://hal.archives-ouvertes.fr/hal-00929789

:. S. Kang, Study of the undercooling of Pb-free, flip-chip solder bumps and in situ observation of solidification process, Journal of Materials Research, vol.87, issue.03, pp.557-560, 2007.
DOI : 10.1147/rd.494.0621

:. S. Kang, Critical Factors Affecting the Undercooling of Pb-free, Flip-Chip Solder Bumps and Insitu Observation of Solidification Process, proceeding of Electronic Components and Technology Conference, pp.1597-1602, 2007.

:. Y. Gao, Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates, Thermochimica Acta, vol.482, issue.1-2, pp.1-7, 2009.
DOI : 10.1016/j.tca.2008.10.002

:. P. Bleuet, A hard x-ray nanoprobe for scanning and projection nanotomography, Review of Scientific Instruments, vol.80, issue.5, p.56101, 2009.
DOI : 10.1063/1.3117489

:. P. Kirkpatrick and V. Baez, Formation of Optical Images by X-Rays, Journal of the Optical Society of America, vol.38, issue.9, pp.766-773, 1948.
DOI : 10.1364/JOSA.38.000766

:. A. Gomez, X-ray standing wave analysis of overlayer-induced substrate relaxation: The clean and Bi-covered (110) GaP surface, Physical Review B, vol.75, issue.16, p.165318, 2007.
DOI : 10.1103/PhysRevB.75.165318

M. Sánchez, D. Río, and R. J. Dejus, A New Version of the X-ray Optics software Toolkit, AIP Conference Proceedings, vol.705, pp.784-794, 2003.

:. Lu and K. C. Hsieh, Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness, Journal of Electronic Materials, vol.24, issue.11, pp.1448-1454, 2007.
DOI : 10.1007/s11664-007-0270-x

:. K. Moon, Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys, Journal of Electronic Materials, vol.5, issue.10, pp.1122-1236, 2000.
DOI : 10.1007/s11664-000-0003-x

:. P. Debenedetti, Metastable Liquids Concepts and Principles, p.194, 1996.

:. G. Wei and L. Wang, Effects of cooling rate on microstructure and microhardness of lead-free

:. I. Anderson, Sn-Ag-Cu solders and solder joints: Alloy development, microstructure, and properties, Lead-Free Electronic Solders, pp.55-76, 2002.
DOI : 10.1007/BF02701845

A. Annexe, Evaluation du temps nécessaire à la saturation en cuivre d'un micro-bump (Sn-Ag-Cu) en contact avec un

. Dans-cette-annexe, on évalue le temps nécessaire pour atteindre la saturation en cuivre (C sat ) d'un alliage Sn-Ag-Cu ayant initialement une concentration en cuivre (C 0 ) lorsque cet alliage est mis en contact avec un plot de cuivre (voir figure A8-1a) à T = 230°C. On suppose qu'à l'interface Cu 6 Sn 5

A. Figure, Représentation schématique de la géométrie sphérique du bump (a) et approximation sous forme parallélépipédique (b) Profils schématiques de concentrations du cuivre dans l'alliage liquide pour différentes durées (c)

:. J. Crank, The Mathematics of Diffusion, p.50, 1992.

:. K. Moon, Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys, Journal of Electronic Materials, vol.5, issue.10, pp.1122-1236, 2000.
DOI : 10.1007/s11664-000-0003-x

:. G. Geiger, Transport Phenomena in Metallurgy, 1980.