Y. Rockah and P. Schultheiss, Array shape calibration using sources in unknown locations--Part I: Far-field sources, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.35, issue.3, pp.286-299, 1987.
DOI : 10.1109/TASSP.1987.1165144

I. Reuven and H. Messer, A Barankin-type lower bound on the estimation error of a hybrid parameter vector, IEEE Transactions on Information Theory, vol.43, issue.3, pp.1084-1093, 1997.
DOI : 10.1109/18.568725

P. Tichavsk´y and K. Wong, Quasi-Fluid-Mechanics-Based Quasi-Bayesian Cram??r???Rao Bounds for Deformed Towed-Array Direction Finding, IEEE Transactions on Signal Processing, vol.52, issue.1, pp.36-47, 2004.
DOI : 10.1109/TSP.2003.820072

S. Buzzi, M. Lops, and S. Sardellitti, Further results on Crame/spl acute/r-rao bounds for parameter estimation in long-code DS/CDMA systems, IEEE Transactions on Signal Processing, vol.53, issue.3, pp.1216-1221, 2005.
DOI : 10.1109/TSP.2004.842174

S. Bay, B. Geller, A. Renaux, J. Barbot, and J. Brossier, On the Hybrid Cram??r Rao Bound and Its Application to Dynamical Phase Estimation, IEEE Signal Processing Letters, vol.15, pp.453-456, 2008.
DOI : 10.1109/LSP.2008.921461

K. Todros and J. Tabrikian, Hybrid lower bound via compression of the sampled CLR function, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp.602-605, 2009.
DOI : 10.1109/SSP.2009.5278503

J. Yang, B. Geller, and S. Bay, Bayesian and Hybrid Cramér–Rao Bounds for the Carrier Recovery Under Dynamic Phase Uncertain Channels, IEEE Transactions on Signal Processing, vol.59, issue.2, pp.667-680, 2011.
DOI : 10.1109/TSP.2010.2081981

J. Vila-valls, L. Ros, and J. M. Brossier, Joint oversampled carrier and time-delay synchronization in digital communications with large excess bandwidth, Signal Processing, vol.92, issue.1, pp.76-88, 2012.
DOI : 10.1016/j.sigpro.2011.06.008

URL : https://hal.archives-ouvertes.fr/hal-00617911

H. L. Van-trees and K. L. Bell, Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, 2007.
DOI : 10.1109/9780470544198

C. Ren, J. Galy, E. Chaumette, P. Larzabal, and A. Renaux, Hybrid lower bound on the MSE based on the Barankin and Weiss-Weinstein bounds, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.5534-5538, 2013.
DOI : 10.1109/ICASSP.2013.6638722

URL : https://hal.archives-ouvertes.fr/hal-00800214

C. Ren, J. Galy, E. Chaumette, P. Larzabal, and A. Renaux, A Ziv- Zaka¨?Zaka¨? type bound for hybrid parameter estimation, Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.4663-4667, 2014.

Y. Noam and H. Messer, Notes on the Tightness of the Hybrid CramÉr–Rao Lower Bound, IEEE Transactions on Signal Processing, vol.57, issue.6, pp.2074-2084, 2009.
DOI : 10.1109/TSP.2009.2015113

D. Simon, Optimal State Estimation: Kalman, H-infinity, and Nonlinear Approaches, 2006.
DOI : 10.1002/0470045345

P. Tichavsky, C. Muravchik, and A. Nehorai, Posterior Cramer-Rao bounds for discrete-time nonlinear filtering, IEEE Transactions on Signal Processing, vol.46, issue.5, pp.1386-1396, 1998.
DOI : 10.1109/78.668800

M. Simandl, J. Kralovec, and P. Tichavsky, Filtering, predictive, and smoothing Cram??r???Rao bounds for discrete-time nonlinear dynamic systems, Automatica, vol.37, issue.11, pp.1703-1716, 2001.
DOI : 10.1016/S0005-1098(01)00136-4

B. Z. Bobrovsky, E. Mayer-wolf, and M. Zakai, Some Classes of Global Cramer-Rao Bounds, The Annals of Statistics, vol.15, issue.4, pp.1421-1438, 1987.
DOI : 10.1214/aos/1176350602

R. Mcaulay and L. P. Seidman, A useful form of the Barankin lower bound and its application to PPM threshold analysis, IEEE Transactions on Information Theory, vol.15, issue.2, pp.273-279, 1969.
DOI : 10.1109/TIT.1969.1054297

E. W. Barankin, Locally Best Unbiased Estimates, The Annals of Mathematical Statistics, vol.20, issue.4, pp.477-501, 1949.
DOI : 10.1214/aoms/1177729943

K. Todros and J. Tabrikian, General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators, IEEE Transactions on Information Theory, vol.56, issue.10, pp.5064-5082, 2010.
DOI : 10.1109/TIT.2010.2059850

E. Chaumette, J. Galy, A. Quinlan, and P. , A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators, IEEE Transactions on Signal Processing, vol.56, issue.11, pp.5319-5333, 2008.
DOI : 10.1109/TSP.2008.927805

URL : https://hal.archives-ouvertes.fr/lirmm-00344323

E. Weinstein and A. J. Weiss, A general class of lower bounds in parameter estimation, IEEE Transactions on Information Theory, vol.34, issue.2, pp.338-342, 1988.
DOI : 10.1109/18.2647

Z. Liu and A. Nehorai, Statistical Angular Resolution Limit for Point Sources, IEEE Transactions on Signal Processing, vol.55, issue.11, pp.5521-5527, 2007.
DOI : 10.1109/TSP.2007.898789

A. Amar and A. Weiss, Fundamental Limitations on the Resolution of Deterministic Signals, IEEE Transactions on Signal Processing, vol.56, issue.11, pp.5309-5318, 2008.
DOI : 10.1109/TSP.2008.929654

H. Cox, Resolving power and sensitivity to mismatch of optimum array processors, The Journal of the Acoustical Society of America, vol.54, issue.3, pp.771-785, 1973.
DOI : 10.1121/1.1913659

S. T. Smith, Statistical resolution limits and the complexified Crame/spl acute/r-Rao bound, IEEE Transactions on Signal Processing, vol.53, issue.5, pp.1597-1609, 2005.
DOI : 10.1109/TSP.2005.845426

M. Shahram and P. Milanfar, On the resolvability of sinusoids with nearby frequencies in the presence of noise, IEEE Transactions on Signal Processing, vol.53, issue.7, pp.2579-2585, 2005.
DOI : 10.1109/TSP.2005.845492

K. Sharman and T. Durrani, Resolving power of signal subspace methods for fnite data lengths, 1995.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, 1993.

L. L. Scharf, Detection, Estimation and Time Series Analysis, 1991.

E. L. Lehmann, Theory of point estimation, 1983.

S. Oh and R. Kashyap, A robust approach for high resolution frequency estimation, IEEE Transactions on Signal Processing, vol.39, issue.3, pp.627-643, 1991.
DOI : 10.1109/78.80883

M. P. Clark, On the resolvability of normally distributed vector parameter estimates, IEEE Transactions on Signal Processing, vol.43, issue.12, pp.2975-2981, 1995.
DOI : 10.1109/78.476441

C. Ren, J. Galy, E. Chaumette, P. Larzabal, and A. Renaux, High resolution techniques for radar : myth or reality?, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00926285

J. Rissanen, Information and Complexity in Statistical Modeling, 2006 IEEE Information Theory Workshop, 2007.
DOI : 10.1109/ITW.2006.1633845

B. K. Shah and C. G. Khatri, Distribution of a Definite Quadratic Form for Non-Central Normal Variates, The Annals of Mathematical Statistics, vol.32, issue.3, pp.883-887, 1961.
DOI : 10.1214/aoms/1177704981

J. Pachares, Note on the Distribution of a Definite Quadratic Form, The Annals of Mathematical Statistics, vol.26, issue.1, pp.128-131, 1955.
DOI : 10.1214/aoms/1177728601

A. Genz, Numerical Computation of Multivariate Normal Probabilities, Journal of Computational and Graphical Statistics, vol.1, issue.2, pp.141-142, 1992.
DOI : 10.1007/978-1-4613-9655-0

R. Muirhead, Aspects of multivariate statistical theory, 2005.
DOI : 10.1002/9780470316559

A. Renaux, P. Forster, E. Chaumette, and P. Larzabal, On the High-SNR Conditional Maximum-Likelihood Estimator Full Statistical Characterization, IEEE Transactions on Signal Processing, vol.54, issue.12, pp.4840-4843, 2006.
DOI : 10.1109/TSP.2006.882072

URL : https://hal.archives-ouvertes.fr/halshs-00158264

D. C. Rife and R. R. Boorstyn, Single tone parameter estimation from discrete-time observations, IEEE Transactions on Information Theory, vol.20, issue.5, pp.591-598, 1974.
DOI : 10.1109/TIT.1974.1055282

. Athley, Threshold region performance of maximum likelihood direction of arrival estimators, IEEE Transactions on Signal Processing, vol.53, issue.4, pp.1359-1373, 2005.
DOI : 10.1109/TSP.2005.843717

C. D. Richmond, Capon algorithm mean-squared error threshold SNR prediction and probability of resolution, IEEE Transactions on Signal Processing, vol.53, issue.8, pp.2748-2764, 2005.
DOI : 10.1109/TSP.2005.850361

A. Renaux, P. Forster, E. Boyer, and P. Larzabal, Unconditional Maximum Likelihood Performance at Finite Number of Samples and High Signal-to-Noise Ratio, IEEE Transactions on Signal Processing, vol.55, issue.5, pp.2358-2364, 2007.
DOI : 10.1109/TSP.2007.893205

URL : https://hal.archives-ouvertes.fr/halshs-00158260

H. Lilliefors, On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown, Journal of the American Statistical Association, vol.35, issue.318, pp.399-402, 1967.
DOI : 10.1214/aoms/1177728726

S. F. Yau and Y. Bresler, Worst case Cramer-Rao bounds for parametric estimation of superimposed signals with applications, IEEE Transactions on Signal Processing, vol.40, issue.12, pp.2973-2986, 1992.
DOI : 10.1109/78.175741

T. Menni, E. Chaumette, P. Larzabal, and J. P. Barbot, CRB for Active Radar, 2011.

T. Menni, J. Galy, E. Chaumette, and P. Larzabal, On the versatility of constrained Cramér-Rao bound for estimation performance analysis and design of a system of measurement, IEEE Trans. Aerospace Electron . Syst, 2013.

T. Menni, E. Chaumette, P. Larzabal, and J. P. Barbot, New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters, IEEE Transactions on Signal Processing, vol.60, issue.3, pp.1032-1049, 2012.
DOI : 10.1109/TSP.2011.2177827

M. N. Korso, R. Boyer, A. Renaux, and S. Marcos, Statistical resolution limit for the multidimensional harmonic retrieval model: hypothesis test and Cram??r-Rao Bound approaches, EURASIP Journal on Advances in Signal Processing, vol.2011, issue.1, 2011.
DOI : 10.1109/78.236507

M. Kaveh and A. Barabell, The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.34, issue.2, pp.331-341, 1986.
DOI : 10.1109/TASSP.1986.1164815

S. Marcos, Les Méthodes á Haute Résolution: Traitement d'Antenne et Analyse spectrale, 1998.

H. Abeida and J. Delmas, Statistical Performance of MUSIC-Like Algorithms in Resolving Noncircular Sources, IEEE Transactions on Signal Processing, vol.56, issue.9, pp.4317-4329, 2008.
DOI : 10.1109/TSP.2008.924143

URL : https://hal.archives-ouvertes.fr/hal-01372028

A. Ferreol, P. Larzabal, and M. Viberg, Statistical Analysis of the MUSIC Algorithm in the Presence of Modeling Errors, Taking Into Account the Resolution Probability, IEEE Transactions on Signal Processing, vol.58, issue.8, pp.4156-4166, 2010.
DOI : 10.1109/TSP.2010.2049263

E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, 2005.

S. M. Kay, Fundamentals of Statistical Signal Processing : Detection Theory, 1998.

M. Shahram and P. Milanfar, Imaging Below the Diffraction Limit: A Statistical Analysis, IEEE Transactions on Image Processing, vol.13, issue.5, pp.677-689, 2004.
DOI : 10.1109/TIP.2004.826096

E. Chaumette, J. Galy, A. Quinlan, and P. Larzabal, A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators, IEEE Transactions on Signal Processing, vol.56, issue.11, pp.5319-5333, 2008.
DOI : 10.1109/TSP.2008.927805

URL : https://hal.archives-ouvertes.fr/lirmm-00344323

K. Todros and J. Tabrikian, General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators, IEEE Transactions on Information Theory, vol.56, issue.10, pp.5064-5082, 2010.
DOI : 10.1109/TIT.2010.2059850

H. B. Lee, The Cramer-Rao bound on frequency estimates of signals closely spaced in frequency, IEEE Transactions on Signal Processing, vol.40, issue.6, pp.1507-1517, 1992.
DOI : 10.1109/78.139253

H. B. Lee, The Cramer-Rao bound on frequency estimates of signals closely spaced in frequency (unconditional case), IEEE Transactions on Signal Processing, vol.42, issue.6, pp.1569-1572, 1994.
DOI : 10.1109/78.286979

M. N. Korso, R. Boyer, A. Renaux, and S. Marcos, On the Asymptotic Resolvability Of Two Point Source in Known Sub-space Interference Using a GLRT-Based Framework, pp.2471-2483, 2012.