B. Aguer and S. De-bievre, On (in)elastic non-dissipative Lorentz gases and the (in)stability of classical pulsed and kicked rotors, Journal of Physics A: Mathematical and Theoretical, vol.43, issue.47, p.43474001, 2010.
DOI : 10.1088/1751-8113/43/47/474001

URL : https://hal.archives-ouvertes.fr/hal-00781555

B. Aguer, S. De-bièvre, P. Lafitte, and P. E. Parris, Classical Motion in Force Fields with Short Range Correlations, Journal of Statistical Physics, vol.4, issue.5, pp.4-5780, 2010.
DOI : 10.1007/s10955-009-9898-7

URL : https://hal.archives-ouvertes.fr/hal-00768632

K. S. Alexander, Excursions and Local Limit Theorems for Bessel-like Random Walks, Electronic Journal of Probability, vol.16, issue.0, pp.1-44, 2011.
DOI : 10.1214/EJP.v16-848

A. Beck, N. Meyer, and . Vernet, The trajectory of an electron in a plasma, American Journal of Physics, vol.76, issue.10, pp.934-936, 2008.
DOI : 10.1119/1.2942411

D. Bénisti and D. F. , Origin of diffusion in Hamiltonian dynamics, 38th Annual Meeting of the Division of Plasma Physics of the, pp.1576-1581, 1996.
DOI : 10.1063/1.872288

C. Boldrighini, L. A. Bunimovich, and Y. G. , On the Boltzmann equation for the Lorentz gas, Journal of Statistical Physics, vol.78, issue.3, pp.477-501, 1983.
DOI : 10.1007/BF01008951

F. Bonetto, D. Daems, and J. L. , Lebowitz : Properties of stationary nonequilibrium states in the thermostatted periodic Lorentz gas. I. The one particle system, Journal of Statistical Physics, vol.101, issue.1/2, pp.35-60, 1999.
DOI : 10.1023/A:1026414222092

L. Bruneau and S. De-bièvre, A Hamiltonian model for linear friction in a homogeneous medium, Communications in Mathematical Physics, vol.229, issue.3, pp.511-542, 2002.
DOI : 10.1007/s00220-002-0689-0

URL : https://hal.archives-ouvertes.fr/hal-00181007

L. A. Bunimovich and Y. G. , Markov Partitions for dispersed billiards, Communications in Mathematical Physics, vol.22, issue.2, pp.247-28081, 1980.
DOI : 10.1007/BF01942372

L. A. Bunimovich, Y. G. Sina, and ?. , Statistical properties of lorentz gas with periodic configuration of scatterers, Communications in Mathematical Physics, vol.1, issue.2, pp.479-49781, 1980.
DOI : 10.1007/BF02046760

L. A. Bunimovich, Y. G. Sina, ?. Et, and N. I. , Chernov : Statistical properties of two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk, vol.46, issue.192, pp.43-92, 1991.

E. Caglioti and F. Golse, On the Boltzmann-Grad Limit for??the??Two Dimensional Periodic Lorentz Gas, Journal of Statistical Physics, vol.1, issue.3, pp.264-317, 2010.
DOI : 10.1007/s10955-010-0046-1

URL : https://hal.archives-ouvertes.fr/hal-00454029

N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Y. G. , Derivation of Ohm???s law in a deterministic mechanical model, Physical Review Letters, vol.70, issue.15, pp.2209-2212, 1993.
DOI : 10.1103/PhysRevLett.70.2209

N. I. Chernov, G. L. Eyink, J. L. Lebowitz, Y. G. Sina, and ?. , Steady-state electrical conduction in the periodic Lorentz gas, Communications in Mathematical Physics, vol.6, issue.3, pp.569-601, 1993.
DOI : 10.1007/BF02102109

K. L. Chung, Markov chains with stationary transition probabilities, 1967.
DOI : 10.1007/978-3-642-49686-8

E. Csáki and A. Földes, Transient Nearest Neighbor Random Walk and Bessel Process, Journal of Theoretical Probability, vol.60, issue.4, pp.992-1009, 2009.
DOI : 10.1007/s10959-008-0165-7

S. De-bièvre, P. Lafitte, and P. E. Parris, Normal transport at positive temperatures in classical Hamiltonian open systems, Adventures in mathematical physics, pp.57-71, 2007.
DOI : 10.1090/conm/447/08682

S. De-bièvre and P. E. , Equilibration, Generalized Equipartition, and Diffusion in Dynamical Lorentz Gases, Journal of Statistical Physics, vol.73, issue.2, pp.356-385, 2011.
DOI : 10.1007/s10955-010-0109-3

C. P. Dettmann and G. P. , Crisis in the periodic Lorentz gas, Physical Review E, vol.54, issue.5, pp.4782-4790, 1996.
DOI : 10.1103/PhysRevE.54.4782

D. Dolgopyat and L. Koralov, Motion in a random force field, Nonlinearity, vol.22, issue.1, pp.187-211, 2009.
DOI : 10.1088/0951-7715/22/1/010

Y. Elskens and E. Pardoux, Diffusion limit for many particles in a periodic stochastic acceleration field, The Annals of Applied Probability, vol.20, issue.6, pp.2022-2039, 2010.
DOI : 10.1214/09-AAP671

URL : https://hal.archives-ouvertes.fr/hal-00336848

S. N. Ethier and T. G. Kurtz, Markov processes Wiley Series in Probability and Mathematical Statistics : Probability and Mathematical Statistics, 1986.

D. J. Evans and G. , Morriss : Statistical mechanics of nonequilibrium liquids, 2008.

G. Gallavotti, Divergences and the Approach to Equilibrium in the Lorentz and the Wind-Tree Models, Physical Review, vol.185, issue.1, p.308, 1969.
DOI : 10.1103/PhysRev.185.308

G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, 1972.

L. Golubovi?, S. Feng, and F. Zeng, Classical and quantum superdiffusion in a time-dependent random potential, Physical Review Letters, vol.67, issue.16, pp.2115-2118, 1991.
DOI : 10.1103/PhysRevLett.67.2115

J. Heinrichs, Diffusion and superdiffusion of a quantum particle in timedependent random potentials, Zeitschrift für Physik B Condensed Matter, pp.115-121, 1992.

A. M. Jayannavar and N. Kumar, Nondiffusive Quantum Transport in a Dynamically Disordered Medium, Physical Review Letters, vol.48, issue.8, pp.553-556, 1982.
DOI : 10.1103/PhysRevLett.48.553

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, volume 113 de Graduate Texts in Mathematics, 1991.

P. Lafitte, P. E. Parris, and S. De-bièvre, Normal Transport Properties in a Metastable Stationary State for a Classical Particle Coupled to a Non-Ohmic Bath, Journal of Statistical Physics, vol.9, issue.3, pp.863-879, 2008.
DOI : 10.1007/s10955-008-9590-3

URL : https://hal.archives-ouvertes.fr/hal-00768623

J. Lamperti, A new class of probability limit theorems, Bulletin of the American Mathematical Society, vol.67, issue.3, pp.749-772, 1962.
DOI : 10.1090/S0002-9904-1961-10575-2

N. Lebedev, P. Maass, and S. Feng, Diffusion and superdiffusion of a particle in a random potential with finite correlation time. Physical review letters, p.741895, 1995.

A. Loskutov, A. B. Ryabov, and L. G. , Properties of some chaotic billiards with time-dependent boundaries, Journal of Physics A: Mathematical and General, vol.33, issue.44, p.7973, 2000.
DOI : 10.1088/0305-4470/33/44/309

A. Y. Loskutov, A. B. Ryabov, and L. G. , Mechanism of Fermi acceleration in dispersing billiards with time-dependent boundaries, Journal of Experimental and Theoretical Physics, vol.89, issue.5, pp.966-974, 1999.
DOI : 10.1134/1.558939

J. Marklof and A. Strömbergsson, The Boltzmann-Grad limit of the periodic Lorentz gas, Annals of Mathematics, vol.174, issue.1, pp.225-298, 2011.
DOI : 10.4007/annals.2011.174.1.7

S. Meyn and R. L. , Tweedie : Markov chains and stochastic stability, 2009.

P. E. Protter, Stochastic integration and differential equations

D. Revuz, Yor : Continuous martingales and Brownian motion, de Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1999.

M. B. Silevitch and K. I. Golden, Dielectric formulation of test particle energy loss in a plasma, Journal of Statistical Physics, vol.2, issue.1, pp.65-87, 1973.
DOI : 10.1007/BF01406132

A. A. Silvius, P. E. Parris, and S. De-bièvre, Adiabatic-nonadiabatic transition in the diffusive Hamiltonian dynamics of a classical Holstein polaron, Physical Review B, vol.73, issue.1, p.14304, 2006.
DOI : 10.1103/PhysRevB.73.014304

E. Soret and S. De-bièvre, Particule ?? haute ??nergie dans un potentiel al??atoire d??pendant du temps, Comptes Rendus Mathematique, vol.352, issue.7-8, pp.645-649, 2014.
DOI : 10.1016/j.crma.2014.06.002

E. Soret and S. De-bièvre, Stochastic acceleration in a random timedependent potential. Stochastic Process, Appl, vol.125, issue.7, pp.2752-2785, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01061294

H. Spohn, The Lorentz process converges to a random flight process, Communications in Mathematical Physics, vol.25, issue.3, pp.277-290, 1978.
DOI : 10.1007/BF01612893

D. W. Stroock and S. R. , Varadhan : Multidimensional diffusion processes, de Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1979.

P. A. Sturrock, Stochastic Acceleration, Physical Review, vol.141, issue.1, p.186, 1966.
DOI : 10.1103/PhysRev.141.186

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations, Journal of Mathematics of Kyoto University, vol.11, issue.1, pp.155-167, 1971.
DOI : 10.1215/kjm/1250523691