A Statistical Approach to Topological Data Analysis

Bertrand Michel 1, 2
2 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : Until very recently, topological data analysis and topological inference methods mostly relied on deterministic approaches. The major part of this habilitation thesis presents a statistical approach to such topological methods. We first develop model selection tools for selecting simplicial complexes in a given filtration. Next, we study the estimation of persistent homology on metric spaces. We also study a robust version of topological data analysis. Related to this last topic, we also investigate the problem of Wasserstein deconvolution. The second part of the habilitation thesis gathers our contributions in other fields of statistics, including a model selection method for Gaussian mixtures, an implementation of the slope heuristic for calibrating penalties, and a study of Breiman’s permutation importance measure in the context of random forests.
Type de document :
Statistics [math.ST]. UPMC Université Paris VI, 2015
Liste complète des métadonnées

Littérature citée [116 références]  Voir  Masquer  Télécharger

Contributeur : Bertrand Michel <>
Soumis le : vendredi 27 novembre 2015 - 17:15:35
Dernière modification le : mercredi 10 octobre 2018 - 10:09:58
Document(s) archivé(s) le : vendredi 28 avril 2017 - 22:54:57


  • HAL Id : tel-01235080, version 1


Bertrand Michel. A Statistical Approach to Topological Data Analysis. Statistics [math.ST]. UPMC Université Paris VI, 2015. 〈tel-01235080〉



Consultations de la notice


Téléchargements de fichiers