Phénotype métabolique des tumeurs associées à des anomalies du cycle de Krebs

Abstract : The Krebs cycle has a central role in cellular metabolism and is at the junction of many essential pathways. Since 2000, a link has been shown between the development of particular cancers and mutations affecting genes coding for several Krebs cycle enzymes, i.e., succinate dehydrogenase, fumarase or iso-enzymes 1 and 2 of the isocitrate dehydrogenase (IDH). The IDH mutations are found in 15 to 20 % of acute myeloid leukemias and up to 80% of specific gliomas. These mutations affect the enzyme active site and are responsible for an neomorphic activity that is the production and accumulation of a putative oncometabolite : the D stereoisomer of the 2-hydroxyglutarate (D-2-HG) which is linked to energetic and epigenetic deregulations in the cell. To better understand the mechanisms between these abnormalities and human pathology, my PhD work involved the development of different analytical tools : - First of all, a robust method of separation and quantification of the stereoisomers D and L by chiral derivatization of the 2-HG, in tandem mass spectrometry, - GC tandem MS was also used to develop targeted metabolomic methods with high specificity for the analysis of more than 120 compounds of clinical interest, - An analytical non-targeted method using high mass resolution (exact mass; n=360 compounds) adapted to the study of fibroblast cells, - and finally, methods for the study of metabolic flux in culture cell based on derivatives of stable labeled tracers. The development of these methods led to the following results. I highlight the importance of the D-2-HG as a biomarker of the presence of IDH1/2 mutations in a large cohort of leukemic patients, for the diagnostic and the follow-up of patients under treatment. Our pilot study was the starting point for routine usage of this test in the clinical setting at the Institut Gustave Roussy (IGR; Villejuif). The study of metabolic profiles related to the mutations affecting IDH enzymes and succinate dehydrogenase allowed us to identify compensatory mechanisms of the dysfunction of the Krebs cycle, notably, the overactivation of pyruvate carboxylase. Moreover, we have shown that because these mechanisms are only partially efficient; they have potential to provide therapeutic targets. An IDH2(R140Q) mutation is shared between patients with AML and patients with D-2-hydroxyglutaric aciduria, a very rare hereditary disease of the metabolism. A specific inhibitor of the IDH2 enzyme mutant for R140Q is currently used in a clinical trial at the IGR institute. We studied the effects of this compound in fibroblasts of our aciduria patient. We confirmed the expected effect in the IDH enzyme and also observed moderate off-target effects concerning the lipid and the Krebs cycle metabolism, both in control and patient fibroblasts. Because this inhibitor is known to have effects in the cellular differentiation, our results could explain the underlying mechanisms. This work provides new tools for the exploration of traditional inherited metabolic diseases, as well as particular cancers, and illustrates the power of the metabolic approach to identify therapeutic targets and for the personalized monitoring of patients ("theranostics").
Document type :
Theses
Complete list of metadatas

Cited literature [115 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01235065
Contributor : Abes Star <>
Submitted on : Monday, January 11, 2016 - 2:32:52 PM
Last modification on : Saturday, June 15, 2019 - 3:25:29 AM

File

va_janin_maxime.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01235065, version 2

Collections

Citation

Maxime Janin. Phénotype métabolique des tumeurs associées à des anomalies du cycle de Krebs. Biologie cellulaire. Université Sorbonne Paris Cité, 2015. Français. ⟨NNT : 2015USPCB035⟩. ⟨tel-01235065v2⟩

Share

Metrics

Record views

1010

Files downloads

1159