J. Xiao and L. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals, Nanoscale, vol.9, issue.4, p.1383, 2011.
DOI : 10.1039/c0nr00814a

D. T. Thompson, Using gold nanoparticles for catalysis, Nano Today, vol.2, issue.4, p.40, 2007.
DOI : 10.1016/S1748-0132(07)70116-0

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao et al., Anisotropic Metal Nanoparticles:?? Synthesis, Assembly, and Optical Applications, The Journal of Physical Chemistry B, vol.109, issue.29, p.13857, 2005.
DOI : 10.1021/jp0516846

I. O. Sosa, C. Noguez, and R. G. Barrera, Optical Properties of Metal Nanoparticles with Arbitrary Shapes, The Journal of Physical Chemistry B, vol.107, issue.26, p.6269, 2003.
DOI : 10.1021/jp0274076

S. E. Lohse and C. J. Murphy, The Quest for Shape Control: A History of Gold Nanorod Synthesis, Chemistry of Materials, vol.25, issue.8, p.1250, 2013.
DOI : 10.1021/cm303708p

R. Gans, ??ber die Form ultramikroskopischer Goldteilchen, Annalen der Physik, vol.10, issue.5, p.881, 1912.
DOI : 10.1002/andp.19123420503

A. V. Alekseeva, V. A. Bogatyrev, B. N. Khlebtsov, A. G. Mel-'nikov, L. A. Dykman et al., Gold nanorods: Synthesis and optical properties, Colloid Journal, vol.68, issue.6, p.661, 2006.
DOI : 10.1134/S1061933X06060019

M. Grzelczak, J. Perez-juste, P. Mulvaney, and L. M. Liz-marzan, Shape control in gold nanoparticle synthesis, Chemical Society Reviews, vol.19, issue.9, p.1783, 2008.
DOI : 10.1039/b711486a

F. Kim, K. Sohn, J. Wu, and J. Huang, Chemical Synthesis of Gold Nanowires in Acidic Solutions, Journal of the American Chemical Society, vol.130, issue.44, p.14442, 2008.
DOI : 10.1021/ja806759v

T. Huang, F. Meng, and L. Qi, Controlled Synthesis of Dendritic Gold Nanostructures Assisted by Supramolecular Complexes of Surfactant with Cyclodextrin, Langmuir, vol.26, issue.10, p.7582, 2009.
DOI : 10.1021/la904393n

H. Yuan, K. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant et al., Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging, Nanotechnology, vol.23, issue.7, p.75102, 2012.
DOI : 10.1088/0957-4484/23/7/075102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400343

E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo et al., Radiation-induced and chemical formation of gold clusters, New Journal of Chemistry, vol.22, issue.11, p.1257, 1998.
DOI : 10.1039/a804445g

W. Abidi, P. R. Selvakannan, Y. Guillet, I. Lampre, P. Beaunier et al., One-Pot Radiolytic Synthesis of Gold Nanorods and Their Optical Properties, The Journal of Physical Chemistry C, vol.114, issue.35, p.14794, 2010.
DOI : 10.1021/jp104819c

URL : https://hal.archives-ouvertes.fr/hal-00833023

C. Louis and O. Pluchery, Gold Nanoparticles for Physics, Chemistry and Biology

J. Rodríguez-fernández, J. Pérez-juste, P. Mulvaney, and L. M. Liz-marzán, Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)???CTAB Complexes, The Journal of Physical Chemistry B, vol.109, issue.30, p.14257, 2005.
DOI : 10.1021/jp052516g

M. Liu and P. Guyot-sionnest, Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids, The Journal of Physical Chemistry B, vol.109, issue.47, p.22192, 2005.
DOI : 10.1021/jp054808n

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing et al., Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives, ACS Nano, vol.6, issue.3, p.2804, 2012.
DOI : 10.1021/nn300315j

L. Scarabelli, M. Grzelczak, and L. M. Liz-marzán, Tuning Gold Nanorod Synthesis through Prereduction with Salicylic Acid, Chemistry of Materials, vol.25, issue.21, p.4232, 2013.
DOI : 10.1021/cm402177b

URL : https://zenodo.org/record/8755

N. R. Jana, L. Gearheart, and C. J. Murphy, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, The Journal of Physical Chemistry B, vol.105, issue.19, p.4065, 2001.
DOI : 10.1021/jp0107964

H. Koerner, R. I. Maccuspie, K. Park, and R. A. Vaia, In Situ UV/Vis, SAXS, and TEM Study of Single-Phase Gold Nanoparticle Growth, Chemistry of Materials, vol.24, issue.6, p.981, 2012.
DOI : 10.1021/cm202633v

F. Hubert, F. Testard, A. Thill, Q. Kong, O. Tache et al., Growth and Overgrowth of Concentrated Gold Nanorods: Time Resolved SAXS and XANES, Crystal Growth & Design, vol.12, issue.3, p.1548, 2012.
DOI : 10.1021/cg2016116

J. Xiao and L. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals, Nanoscale, vol.9, issue.4, p.1383, 2011.
DOI : 10.1039/c0nr00814a

K. Park, Synthesis, Characterization, and Self ?Assembly of Size Tunable Gold Nanorods, Georgia Institute of Technology, 2006.

S. Gómez-graña, F. Hubert, F. Testard, A. Guerrero-martínez, I. Grillo et al., Surfactant (Bi)Layers on Gold Nanorods, Langmuir, vol.28, issue.2, p.1453, 2011.
DOI : 10.1021/la203451p

T. Imae and S. Ikeda, Characteristics of rodlike micelles of cetyltrimethylammonium chloride in aqueous NaCl solutions: Their flexibility and the scaling laws in dilute and semidilute regimes, Colloid & Polymer Science, vol.36, issue.12, p.1090, 1987.
DOI : 10.1007/BF01417467

T. Sugimoto, Preparation of monodispersed colloidal particles, Advances in Colloid and Interface Science, vol.28, p.65, 1987.
DOI : 10.1016/0001-8686(87)80009-X

E. Ringe, R. P. Van-duyne, and L. D. Marks, Kinetic and Thermodynamic Modified Wulff Constructions for Twinned Nanoparticles, The Journal of Physical Chemistry C, vol.117, issue.31, p.15859, 2013.
DOI : 10.1021/jp401566m

R. Cortes-huerto, J. Goniakowski, and C. Noguera, An efficient many-body potential for the interaction of transition and noble metal nano-objects with an environment, The Journal of Chemical Physics, vol.138, issue.24, p.244706, 2013.
DOI : 10.1063/1.4811670

URL : https://hal.archives-ouvertes.fr/hal-01243106

X. Kou, S. Zhang, C. Tsung, M. H. Yeung, Q. Shi et al., Growth of Gold Nanorods and Bipyramids Using CTEAB Surfactant, The Journal of Physical Chemistry B, vol.110, issue.33, p.16377, 2006.
DOI : 10.1021/jp0639086

G. Zhou, Y. Yang, S. Han, W. Chen, Y. Fu et al., Growth of Nanobipyramid by Using Large Sized Au Decahedra as Seeds, ACS Applied Materials & Interfaces, vol.5, issue.24, p.13340, 2013.
DOI : 10.1021/am404282j

J. Burgin, I. Florea, J. Majimel, A. Dobri, O. Ersen et al., 3D morphology of Au and Au@Ag nanobipyramids, Nanoscale, vol.21, issue.1, p.1299, 2012.
DOI : 10.1039/c2nr11454b

URL : https://hal.archives-ouvertes.fr/hal-00667188

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot et al., Turkevich Method for Gold Nanoparticle Synthesis Revisited, The Journal of Physical Chemistry B, vol.110, issue.32, p.15700, 2006.
DOI : 10.1021/jp061667w

C. Louis and O. Pluchery, Gold Nanoparticles for Physics, Chemistry and Biology

T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann et al., In Situ Determination of Colloidal Gold Concentrations with UV???Vis Spectroscopy: Limitations and Perspectives, Analytical Chemistry, vol.86, issue.22, p.11115, 2014.
DOI : 10.1021/ac502053s

C. Lofton and W. Sigmund, Mechanisms Controlling Crystal Habits of Gold and Silver Colloids, Advanced Functional Materials, vol.121, issue.7, p.1197, 2005.
DOI : 10.1002/adfm.200400091

C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, and S. Mann, Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis, Journal of Materials Chemistry, vol.12, issue.6, p.1765, 2002.
DOI : 10.1039/b200953f

M. Liu and P. Guyot-sionnest, Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids, The Journal of Physical Chemistry B, vol.109, issue.47, p.22192, 2005.
DOI : 10.1021/jp054808n

M. Grzelczak, J. Perez-juste, P. Mulvaney, and L. M. Liz-marzan, Shape control in gold nanoparticle synthesis, Chemical Society Reviews, vol.19, issue.9, p.1783, 2008.
DOI : 10.1039/b711486a

J. Rodríguez-fernández, J. Pérez-juste, P. Mulvaney, and L. M. Liz-marzán, Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)???CTAB Complexes, The Journal of Physical Chemistry B, vol.109, issue.30, p.14257, 2005.
DOI : 10.1021/jp052516g

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao et al., Anisotropic Metal Nanoparticles:?? Synthesis, Assembly, and Optical Applications, The Journal of Physical Chemistry B, vol.109, issue.29, p.13857, 2005.
DOI : 10.1021/jp0516846

N. Xu, B. Bai, Q. Tan, and G. Jin, Accurate geometric characterization of gold nanorod ensemble by an inverse extinction/scattering spectroscopic method, Optics Express, vol.21, issue.18, p.21639, 2013.
DOI : 10.1364/OE.21.021639

A. Brioude, X. C. Jiang, and M. P. Pileni, Optical Properties of Gold Nanorods:?? DDA Simulations Supported by Experiments, The Journal of Physical Chemistry B, vol.109, issue.27, p.13138, 2005.
DOI : 10.1021/jp0507288

S. Link and M. A. Sayed, Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant, The Journal of Physical Chemistry B, vol.109, issue.20, p.10531, 2005.
DOI : 10.1021/jp058091f

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing, Plasmonics, vol.15, issue.10, p.161, 2010.
DOI : 10.1007/s11468-010-9130-2

P. K. Jain, K. S. Lee, I. H. El-sayed, and M. A. Sayed, Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:?? Applications in Biological Imaging and Biomedicine, The Journal of Physical Chemistry B, vol.110, issue.14, p.7238, 2006.
DOI : 10.1021/jp057170o

S. and G. Graña, Colloidal Synthesis, Structural Characterization and Assembly of Plasmonic Metal Nanorods, 2013.

F. Hubert, F. Testard, A. Thill, Q. Kong, O. Tache et al., Growth and Overgrowth of Concentrated Gold Nanorods: Time Resolved SAXS and XANES, Crystal Growth & Design, vol.12, issue.3, p.1548, 2012.
DOI : 10.1021/cg2016116

X. Kou, S. Zhang, C. Tsung, M. H. Yeung, Q. Shi et al., Growth of Gold Nanorods and Bipyramids Using CTEAB Surfactant, The Journal of Physical Chemistry B, vol.110, issue.33, p.16377, 2006.
DOI : 10.1021/jp0639086

J. Burgin, I. Florea, J. Majimel, A. Dobri, O. Ersen et al., 3D morphology of Au and Au@Ag nanobipyramids, Nanoscale, vol.21, issue.1, p.1299, 2012.
DOI : 10.1039/c2nr11454b

URL : https://hal.archives-ouvertes.fr/hal-00667188

M. Liu and P. Guyot-sionnest, Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids, The Journal of Physical Chemistry B, vol.109, issue.47, p.22192, 2005.
DOI : 10.1021/jp054808n

J. Yang, S. Lohse, S. Boulos, and C. Murphy, The Early Life of Gold Nanorods: Temporal Separation of Anisotropic and Isotropic Growth Modes, Journal of Cluster Science, vol.23, issue.3, p.799, 2012.
DOI : 10.1007/s10876-012-0474-y

M. Grzelczak, J. Perez-juste, P. Mulvaney, and L. M. Liz-marzan, Shape control in gold nanoparticle synthesis, Chemical Society Reviews, vol.19, issue.9, p.1783, 2008.
DOI : 10.1039/b711486a

F. Hubert, F. Testard, A. Thill, Q. Kong, O. Tache et al., Growth and Overgrowth of Concentrated Gold Nanorods: Time Resolved SAXS and XANES, Crystal Growth & Design, vol.12, issue.3, p.1548, 2012.
DOI : 10.1021/cg2016116

M. Liu and P. Guyot-sionnest, Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids, The Journal of Physical Chemistry B, vol.109, issue.47, p.22192, 2005.
DOI : 10.1021/jp054808n

S. E. Lohse and C. J. Murphy, The Quest for Shape Control: A History of Gold Nanorod Synthesis, Chemistry of Materials, vol.25, issue.8, p.1250, 2013.
DOI : 10.1021/cm303708p

N. Garg, C. Scholl, A. Mohanty, and R. Jin, The Role of Bromide Ions in Seeding Growth of Au Nanorods, Langmuir, vol.26, issue.12, p.10271, 2010.
DOI : 10.1021/la100446q

J. Rodríguez-fernández, J. Pérez-juste, P. Mulvaney, and L. M. Liz-marzán, Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)???CTAB Complexes, The Journal of Physical Chemistry B, vol.109, issue.30, p.14257, 2005.
DOI : 10.1021/jp052516g

F. Hubert, PhD Thesis: Nucléation et Croissance de Nanocylindres D'or : Mécanismes de Développement de L'anisotropie et Suivi in Situ Résolu En Temps, 2009.

M. Grzelczak, J. Perez-juste, P. Mulvaney, and L. M. Liz-marzan, Shape control in gold nanoparticle synthesis, Chemical Society Reviews, vol.19, issue.9, p.1783, 2008.
DOI : 10.1039/b711486a

Y. Song, J. Hormes, and C. S. Kumar, Microfluidic Synthesis of Nanomaterials, Small, vol.20, issue.10, p.698, 2008.
DOI : 10.1002/smll.200701029

S. E. Lohse, J. R. Eller, S. T. Sivapalan, M. R. Plews, and C. J. Murphy, A Simple Millifluidic Benchtop Reactor System for the High-Throughput Synthesis and Functionalization of Gold Nanoparticles with Different Sizes and Shapes, ACS Nano, vol.7, issue.5, p.4135, 2013.
DOI : 10.1021/nn4005022

S. Link and M. A. Sayed, Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant, The Journal of Physical Chemistry B, vol.109, issue.20, p.10531, 2005.
DOI : 10.1021/jp058091f

P. K. Jain, K. S. Lee, I. H. El-sayed, and M. A. Sayed, Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:?? Applications in Biological Imaging and Biomedicine, The Journal of Physical Chemistry B, vol.110, issue.14, p.7238, 2006.
DOI : 10.1021/jp057170o

M. Grzelczak, J. Perez-juste, P. Mulvaney, and L. M. Liz-marzan, Shape control in gold nanoparticle synthesis, Chemical Society Reviews, vol.19, issue.9, p.1783, 2008.
DOI : 10.1039/b711486a

X. Liu, X. Luo, S. Lu, J. Zhang, and W. Cao, A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion, Journal of Colloid and Interface Science, vol.307, issue.1, p.94, 2007.
DOI : 10.1016/j.jcis.2006.11.051

F. Hubert, F. Testard, and O. Spalla, Cetyltrimethylammonium Bromide Silver Bromide Complex as the Capping Agent of Gold Nanorods, Langmuir, vol.24, issue.17, p.9219, 2008.
DOI : 10.1021/la801711q

M. Liu, P. Guyot-sionnest, T. Lee, and S. K. Gray, Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations, Physical Review B, vol.76, issue.23, p.235428, 2007.
DOI : 10.1103/PhysRevB.76.235428

G. Zhou, Y. Yang, S. Han, W. Chen, Y. Fu et al., Growth of Nanobipyramid by Using Large Sized Au Decahedra as Seeds, ACS Applied Materials & Interfaces, vol.5, issue.24, p.13340, 2013.
DOI : 10.1021/am404282j

I. Lisiecki and A. Filankembo, Structural investigations of copper nanorods by high-resolution TEM, Physical Review B, vol.61, issue.7, p.4968, 2000.
DOI : 10.1103/PhysRevB.61.4968

X. Kou, S. Zhang, C. Tsung, M. H. Yeung, Q. Shi et al., Growth of Gold Nanorods and Bipyramids Using CTEAB Surfactant, The Journal of Physical Chemistry B, vol.110, issue.33, p.16377, 2006.
DOI : 10.1021/jp0639086

J. Burgin, I. Florea, J. Majimel, A. Dobri, O. Ersen et al., 3D morphology of Au and Au@Ag nanobipyramids, Nanoscale, vol.21, issue.1, p.1299, 2012.
DOI : 10.1039/c2nr11454b

URL : https://hal.archives-ouvertes.fr/hal-00667188

N. R. Jana, L. Gearheart, and C. J. Murphy, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, The Journal of Physical Chemistry B, vol.105, issue.19, p.4065, 2001.
DOI : 10.1021/jp0107964

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing et al., Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives, ACS Nano, vol.6, issue.3, p.2804, 2012.
DOI : 10.1021/nn300315j

S. Iijima and T. Ichihashi, Structural instability of ultrafine particles of metals, Physical Review Letters, vol.56, issue.6, p.616, 1986.
DOI : 10.1103/PhysRevLett.56.616

C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, and S. Mann, Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis, Journal of Materials Chemistry, vol.12, issue.6, p.1765, 2002.
DOI : 10.1039/b200953f

G. T. Herman and A. Kuba, Discrete Tomography: Foundations, Algorithms, and Applications Series: Applied and Numerical Harmonic Analysis, 1999.
DOI : 10.1007/978-1-4612-1568-4

C. Lofton and W. Sigmund, Mechanisms Controlling Crystal Habits of Gold and Silver Colloids, Advanced Functional Materials, vol.121, issue.7, p.1197, 2005.
DOI : 10.1002/adfm.200400091

R. Cortes-huerto, J. Goniakowski, and C. Noguera, An efficient many-body potential for the interaction of transition and noble metal nano-objects with an environment, The Journal of Chemical Physics, vol.138, issue.24, p.244706, 2013.
DOI : 10.1063/1.4811670

URL : https://hal.archives-ouvertes.fr/hal-01243106

A. Howie and L. D. Marks, Elastic strains and the energy balance for multiply twinned particles, Philosophical Magazine A, vol.47, issue.1, p.95, 1984.
DOI : 10.1080/01418618408233432

X. J. Xu, Z. Saghi, B. J. Inkson, and G. Möbus, Three-dimensional characterization of multiply twinned nanoparticles by high-angle tilt series of lattice images and tomography, Journal of Nanoparticle Research, vol.19, issue.3, p.1045, 2010.
DOI : 10.1007/s11051-010-9865-x

C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, and S. Mann, Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis, Journal of Materials Chemistry, vol.12, issue.6, p.1765, 2002.
DOI : 10.1039/b200953f

G. Grochola, S. P. Russo, and I. K. Snook, On morphologies of gold nanoparticles grown from molecular dynamics simulation, The Journal of Chemical Physics, vol.126, issue.16, p.164707, 2007.
DOI : 10.1063/1.2713103

S. Gómez-graña, F. Hubert, F. Testard, A. Guerrero-martínez, I. Grillo et al., Surfactant (Bi)Layers on Gold Nanorods, Langmuir, vol.28, issue.2, p.1453, 2011.
DOI : 10.1021/la203451p

M. Materials, 155 5.2.1 Preperation of Growth Solution, Loading Growth Solution into Liquid Cell, p.156

C. Mueller, M. Harb, J. R. Dwyer, and R. J. Miller, Nanofluidic Cells with Controlled Pathlength and Liquid Flow for Rapid, High-Resolution In Situ Imaging with Electrons, The Journal of Physical Chemistry Letters, vol.4, issue.14, p.2339, 2013.
DOI : 10.1021/jz401067k

A. De-clercq, W. Dachraoui, O. Margeat, K. Pelzer, C. R. Henry et al., Growth of Pt???Pd Nanoparticles Studied In Situ by HRTEM in a Liquid Cell, The Journal of Physical Chemistry Letters, vol.5, issue.12, p.2126, 2014.
DOI : 10.1021/jz500690a

URL : https://hal.archives-ouvertes.fr/hal-01067977

Y. Liu, K. Tai, and S. J. Dillon, Growth Kinetics and Morphological Evolution of ZnO Precipitated from Solution, Chemistry of Materials, vol.25, issue.15, p.2927, 2013.
DOI : 10.1021/cm303522z

N. T. Thanh, N. Maclean, and S. Mahiddine, Mechanisms of Nucleation and Growth of Nanoparticles in Solution, Chemical Reviews, vol.114, issue.15, p.7610, 2014.
DOI : 10.1021/cr400544s

H. Zheng, R. K. Smith, C. Jun, U. Kisielowski, and A. P. Dahmen, Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories, Science, vol.324, issue.5932, p.1309, 2009.
DOI : 10.1126/science.1172104

W. Abidi, P. R. Selvakannan, Y. Guillet, I. Lampre, P. Beaunier et al., One-Pot Radiolytic Synthesis of Gold Nanorods and Their Optical Properties, The Journal of Physical Chemistry C, vol.114, issue.35, p.14794, 2010.
DOI : 10.1021/jp104819c

URL : https://hal.archives-ouvertes.fr/hal-00833023

E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo et al., Radiation-induced and chemical formation of gold clusters, New Journal of Chemistry, vol.22, issue.11, p.1257, 1998.
DOI : 10.1039/a804445g

N. M. Schneider, M. M. Norton, B. J. Mendel, J. M. Grogan, F. M. Ross et al., Electron???Water Interactions and Implications for Liquid Cell Electron Microscopy, The Journal of Physical Chemistry C, vol.118, issue.38, p.22373, 2014.
DOI : 10.1021/jp507400n

M. D. Graef, Introduction to Conventional Transmission Electron Microscopy, 2003.