X. Lu, G. Xia, J. P. Lemmon, Z. Yang, and F. P. Brito, Advanced Materials for Sodium-Beta Alumina Batteries: Status, Challenges and Perspectives Vanadium Redox Flow Batteries: A Technology Review, Journal of Power Sources Cunha, Á.; Martins, J.; Rodrigues, N International Journal of Energy Research, vol.195, issue.39, pp.2431-2442, 2010.

G. Kear, A. A. Shah, and F. C. Walsh, Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects, International Journal of Energy Research, vol.36, issue.11, pp.1105-1120, 2012.
DOI : 10.1002/er.1863

T. Shibata, T. Kumamoto, Y. Nagaoka, K. Kawase, and K. Yano, Redox Flow Batteries for the Stable Supply of Renewable Energy, p.2013

J. Lu, L. Li, J. Park, Y. Sun, F. Wu et al., Batteries, Aprotic and Aqueous Li?O2 Batteries, pp.5611-5640, 2014.
DOI : 10.1021/cr400573b

A. Kraytsberg and Y. Ein-eli, Review on Li???air batteries???Opportunities, limitations and perspective, Journal of Power Sources, vol.196, issue.3, pp.886-893, 2011.
DOI : 10.1016/j.jpowsour.2010.09.031

A. C. Luntz and B. D. Mccloskey, Nonaqueous Li???Air Batteries: A Status Report, Chemical Reviews, vol.114, issue.23, pp.11721-11750, 2014.
DOI : 10.1021/cr500054y

S. K. Das, S. Lau, and L. A. Archer, Sodium???oxygen batteries: a new class of metal???air batteries, Journal of Materials Chemistry A, vol.49, issue.4
DOI : 10.1039/C4TA02176B

X. Ren and Y. Wu, A Low-Overpotential Potassium???Oxygen Battery Based on Potassium Superoxide, Journal of the American Chemical Society, vol.135, issue.8
DOI : 10.1021/ja312059q

D. B. Linden and T. B. Reddy, Handbook of Batteries, 2011.

J. Ahmed and A. Kojic, A Critical Review of Li/Air Batteries, Journal of the Electrochemical Society, vol.159, pp.1-30, 2011.

J. Zhang, W. Xu, X. Li, and W. Liu, Air Dehydration Membranes for Nonaqueous Lithium???Air Batteries, Journal of The Electrochemical Society, vol.157, issue.8, pp.940-946, 2010.
DOI : 10.1149/1.3430093

C. A. Vincent, Lithium batteries, IEE Review, vol.45, issue.2, pp.159-167, 1959.
DOI : 10.1049/ir:19990205

A. Technologies, . Applications, and . Wiley, Organic Additives for the Electrolytes of Rechargeable Lithium Batteries, 32. Matsuda, pp.579-583, 1989.

Y. V. Mikhaylik and J. R. Akridge, Polysulfide Shuttle Study in the Li/S Battery System, Journal of The Electrochemical Society, vol.151, issue.11, pp.1969-1976, 2004.
DOI : 10.1149/1.1806394

J. Uddin, V. S. Bryantsev, V. Giordani, W. Walker, G. V. Chase et al., Batteries, Lithium Nitrate as Regenerable Sei Stabilizing Agent for Rechargeable Li/O2 Batteries, pp.3760-3765, 2013.
DOI : 10.1021/jz402025n

K. M. Abraham and Z. Jiang, A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery, Journal of The Electrochemical Society, vol.143, issue.1, pp.1-5, 1996.
DOI : 10.1149/1.1836378

S. R. Younesi, S. Urbonaite, F. Björefors, and K. Edström, Influence of the cathode porosity on the discharge performance of the lithium???oxygen battery, Journal of Power Sources, vol.196, issue.22, pp.9835-9838, 2011.
DOI : 10.1016/j.jpowsour.2011.07.062

C. Tran, X. Yang, and D. Qu, Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity, Journal of Power Sources, vol.195, issue.7, pp.2057-2063, 2010.
DOI : 10.1016/j.jpowsour.2009.10.012

S. S. Zhang and J. Read, Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery, Journal of Power Sources, vol.196, issue.5, pp.2867-2870, 2011.
DOI : 10.1016/j.jpowsour.2010.11.021

W. Xu, J. Xiao, J. Zhang, D. Wang, and J. Zhang, Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment, Journal of The Electrochemical Society, vol.156, issue.10, pp.773-779, 2009.
DOI : 10.1149/1.3168564

J. Adams and M. Karulkar, Bipolar plate cell design for a lithium air battery, Journal of Power Sources, vol.199, pp.247-255, 2012.
DOI : 10.1016/j.jpowsour.2011.10.041

M. Mirzaeian and P. J. Hall, Characterizing Capacity Loss of Lithium Oxygen Batteries by

A. Débart, A. J. Paterson, J. Bao, and P. G. Bruce, ??-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries, Angewandte Chemie International Edition, vol.39, issue.24, pp.4521-4524, 2008.
DOI : 10.1002/anie.200705648

Y. Lu, H. A. Gasteiger, E. Crumlin, R. Mcguire, and Y. Shao-horn, Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries, Journal of The Electrochemical Society, vol.157, issue.9, pp.1016-1025, 2010.
DOI : 10.1149/1.3462981

D. Aurbach, M. Daroux, P. Faguy, and E. Yeager, The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.297, issue.1, pp.225-244, 1991.
DOI : 10.1016/0022-0728(91)85370-5

M. J. Gibian, D. T. Sawyer, T. Ungermann, R. Tangpoonpholvivat, and M. M. Morrison, Reactivity of superoxide ion with carbonyl compounds in aprotic solvents, Journal of the American Chemical Society, vol.101, issue.3, pp.640-644, 1979.
DOI : 10.1021/ja00497a026

T. Laino and A. Curioni, A New Piece in the Puzzle of Lithium/Air Batteries: Computational Study on the Chemical Stability of Propylene Carbonate in the Presence of Lithium Peroxide, Chemistry - A European Journal, vol.125, issue.12
DOI : 10.1002/chem.201103057

P. G. Bruce, Reactions in the Rechargeable Lithium?O2 Battery with Alkyl Carbonate Electrolytes

V. S. Bryantsev and F. Faglioni, Predicting Autoxidation Stability of Ether-and Amide-Based, Journal of the American Chemical Society, vol.133, issue.50, pp.8040-8047, 2011.

D. Addison and G. V. Chase, Predicting Solvent Stability in Aprotic Electrolyte Li?Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2??). The Journal of Physical Chemistry A, pp.12399-12409, 2011.

A. Khetan, A. Luntz, and V. Viswanathan, Trade-Offs in Capacity and Rechargeability

N. Li, ?. O2-batteries, R. Black, S. H. Oh, J. Lee et al., Solution-Driven Growth Versus Nucleophilic Stability, Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2o2/Lioh Crystallization, pp.1254-1259, 2012.

J. Christensen and A. C. Luntz, Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling, Journal of the Electrochemical Society, vol.158, pp.343-351, 2011.

B. D. Mccloskey, A. C. Luntz, V. Giordani, W. D. Walker, and G. V. Chase, Electrical Conductivity in Li2O2 and Its Role in Determining Capacity Limitations in Non-Aqueous Li-O2 Batteries. The Journal of Chemical Physics The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries, Bryantsev, V. S.; Uddin, J Journal of the Electrochemical Society, vol.135, issue.160, pp.160-171, 2011.

N. Mozhzhukhina, L. P. Méndez-de-leo, and E. J. Calvo, Infrared Spectroscopy Studies on Stability of Dimethyl Sulfoxide for Application in a Li???Air Battery, The Journal of Physical Chemistry C, vol.117, issue.36, pp.18375-18380, 2013.
DOI : 10.1021/jp407221c

J. Zhang, Reaction Mechanisms for the Limited Reversibility of Li?O2 Chemistry in Organic

Z. Liu, Y. R. Shao-horn, M. Hong, and H. R. Byon, In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions, Situ Afm Imaging of Li?O2 Electrochemical Reaction on Highly Oriented Pyrolytic Graphite with Ether-Based Electrolyte, pp.10870-10876, 2013.
DOI : 10.1038/srep00715

Y. Shao-horn, In Situ Transmission Electron Microscopy Observations of Electrochemical Oxidation of Li2o2, Nano Letters, vol.13, pp.2209-2214, 2013.

B. D. Mccloskey, D. S. Bethune, R. M. Shelby, G. Girishkumar, and A. C. Luntz, Solvents??? Critical Role in Nonaqueous Lithium???Oxygen Battery Electrochemistry, The Journal of Physical Chemistry Letters, vol.2, issue.10, pp.1161-1166, 2011.
DOI : 10.1021/jz200352v

J. K. Nørskov and A. C. Luntz, Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li?O2 Batteries, The Journal of Physical Chemistry Letters, vol.2012, issue.3, pp.997-1001

B. D. Mccloskey, R. Scheffler, A. Speidel, D. S. Bethune, R. M. Shelby et al., Batteries, Journal of the American Chemical Society, vol.133, issue.45, pp.18038-18041, 2011.
DOI : 10.1021/ja207229n

. Chapter, Toward Electrochemical Energy Storage Devices For the Future of the Electrical Grid -36

S. R. Gowda, A. Brunet, G. M. Wallraff, and B. D. Mccloskey, Batteries, The Journal of Physical Chemistry Letters, vol.4, issue.2, pp.276-279, 2013.
DOI : 10.1021/jz301902h

A. Capotosto and A. W. Petrocelli, Use of Lithium Peroxide for Atmosphere Regeneration

R. R. Air-force-mitchell, B. M. Gallant, C. V. Thompson, and Y. Shao-horn, All-Carbon-Nanofiber Electrodes for High-Energy Rechargeable Li-O2 Batteries, Energy & Environmental Science, vol.72, issue.4, pp.2952-2958, 1968.

K. U. Schwenke, M. Metzger, T. Restle, M. Piana, and H. A. Gasteiger, The Influence of Water and Protons on Li2O2 Crystal Growth in Aprotic Li-O2 Cells, Journal of the Electrochemical Society, vol.162, issue.4, pp.573-584
DOI : 10.1149/2.0201504jes

S. Meini, M. Piana, N. Tsiouvaras, A. Garsuch, and H. A. Gasteiger, The Effect of Water on the Discharge Capacity of a Non-Catalyzed Carbon Cathode for Li-O2 Batteries, Electrochemical and Solid-State Letters, vol.15, issue.4, pp.45-48, 2012.
DOI : 10.1149/2.005204esl

G. Chase, B. J. Bergner, A. Schürmann, K. Peppler, A. Garsuch et al., Soluble Oxygen Evolving Catalysts for Rechargeable Metal-Air Batteries Tempo: A Mobile Catalyst for Rechargeable Li-O2 Batteries A Solution-Phase Bifunctional Catalyst for Lithium?Oxygen Batteries, Journal of the American Chemical Society Journal of the American Chemical Society, vol.2014, issue.136, pp.15054-15064, 2011.

O. Gerbig, P. Hartmann, C. L. Bender, J. Sann, A. K. Durr et al., Defect Chemistry in Alkali Peroxides and Superoxides. PhD. Max-Planck-Institut Stuttgart, 2014. 82, Comprehensive Study on the Cell Chemistry of the Sodium Superoxide (Nao2) Battery. Physical Chemistry Chemical Physics 2013, pp.11661-11672

L. Johnson, C. Li, Z. Liu, Y. Chen, S. A. Freunberger et al., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li???O2 batteries, Nature Chemistry, vol.4, issue.12, pp.1091-1099, 2014.
DOI : 10.1021/jz401926f

D. T. Sawyer, G. Chiericato, C. T. Angelis, E. J. Nanni, and T. Tsuchiya, Effects of media and electrode materials on the electrochemical reduction of dioxygen, Effects of Media and Electrode Materials on the Electrochemical Reduction of Dioxygen, pp.1720-1724, 1982.
DOI : 10.1021/ac00248a014

E. L. Johnson, K. H. Pool, and R. E. Hamm, Polarographic Reduction of Oxygen in Dimethylsulfoxide., Analytical Chemistry, vol.38, issue.2, pp.183-185, 1966.
DOI : 10.1021/ac60234a008

Y. N. Zhuravlev, N. G. Kravchenko, and O. S. Obolonskaya, The electronic structure of alkali metal oxides, Russian Journal of Physical Chemistry B, vol.4, issue.1, pp.20-28, 2010.
DOI : 10.1134/S1990793110010045

Z. Guo and X. Lin, Kinetic studies of dioxygen and superoxide ion in acetonitrile at gold electrodes using ultrafast cyclic voltammetry, Journal of Electroanalytical Chemistry, vol.576, issue.1, pp.95-103, 2005.
DOI : 10.1016/j.jelechem.2004.10.011

A. René and D. H. Evans, -Quinone Anion Radicals: Why Is the Current Intensity so Small?, The Journal of Physical Chemistry C, vol.116, issue.27, pp.14454-14460, 2012.
DOI : 10.1021/jp3038335

URL : https://hal.archives-ouvertes.fr/hal-01357815

B. D. Mccloskey and A. C. Luntz, Electrical Conductivity in Li2o2 and Its Role in Determining Capacity Limitations in Non-Aqueous Li-O2 Batteries, Journal of Chemical Physics, vol.135, p.214704, 2011.

L. Johnson, C. Li, Z. Liu, Y. Chen, S. A. Freunberger et al., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li???O2 batteries, Nature Chemistry, vol.4, issue.12, pp.1091-1099, 2014.
DOI : 10.1021/jz401926f

A. C. Luntz and B. D. Mccloskey, Nonaqueous Li???Air Batteries: A Status Report, Chemical Reviews, vol.114, issue.23, 2014.
DOI : 10.1021/cr500054y

G. Gritzner and S. Sperker, Solvent donor and acceptor properties of pyridine, Journal of Solution Chemistry, vol.76, issue.1, pp.543-553, 1990.
DOI : 10.1007/BF00647028

D. Addison and G. V. Chase, Predicting Solvent Stability in Aprotic Electrolyte Li?Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2??). The Journal of Physical Chemistry A, pp.12399-12409, 2011.

S. Katritzky and A. R. , Theoretical Scales of Hydrogen Bond Acidity and Basicity for Application in Qsar/Qspr Studies and Drug Design. Partitioning of Aliphatic Compounds, Journal of Chemical Information and Computer Sciences, vol.44, pp.1042-1055, 2004.

A. Khetan, A. Luntz, and V. Viswanathan, Batteries: Solution-Driven Growth versus Nucleophilic Stability, The Journal of Physical Chemistry Letters, vol.6, issue.7, pp.1254-1259, 2015.
DOI : 10.1021/acs.jpclett.5b00324

D. Britz, Digital Simulation in Electrochemistry, 2005.

J. Savéant, Effect of Ion Pairing on the Mechanism and Rate of Electron Transfer