G. B. Frisoni, N. C. Fox, C. R. Jack, P. Scheltens, and P. M. Thompson, The clinical use of structural MRI in Alzheimer disease, Nature Reviews Neurology, vol.15, issue.2, pp.67-77, 2010.
DOI : 10.1038/nrneurol.2009.215

V. L. Villemagne, S. Burnham, P. Bourgeat, B. Brown, K. A. Ellis et al., Amyloid ?? deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study, The Lancet Neurology, vol.12, issue.4, pp.357-367, 2013.
DOI : 10.1016/S1474-4422(13)70044-9

D. Mungas, B. Reed, W. Jagust, C. Decarli, W. Mack et al., Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease, Neurology, vol.59, issue.6, pp.867-873, 2002.
DOI : 10.1212/WNL.59.6.867

J. P. Lerch, J. C. Pruessner, A. Zijdenbos, H. Hampel, S. J. Teipel et al., Focal Decline of Cortical Thickness in Alzheimer's Disease Identified by Computational Neuroanatomy, Cerebral Cortex, vol.15, issue.7, pp.995-1001, 2005.
DOI : 10.1093/cercor/bhh200

D. H. Salat, R. L. Buckner, A. Z. Snyder, D. N. Greve, R. S. Desikan et al., Thinning of the Cerebral Cortex in Aging, Cerebral Cortex, vol.14, issue.7, pp.721-730, 2004.
DOI : 10.1093/cercor/bhh032

B. C. Dickerson, E. Feczko, J. C. Augustinack, J. Pacheco, J. C. Morris et al., Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area, Neurobiology of Aging, vol.30, issue.3, pp.432-440, 2009.
DOI : 10.1016/j.neurobiolaging.2007.07.022

D. Taylor, M. Falconer, C. Bruton, and J. Corsellis, Focal dysplasia of the cerebral cortex in epilepsy, Journal of Neurology, Neurosurgery & Psychiatry, vol.34, issue.4, pp.369-387, 1971.
DOI : 10.1136/jnnp.34.4.369

R. Guerrini, F. Sicca, and L. Parmerggian, Epilepsy and malformations of the cerebral cortex, Epileptic Disorders, vol.5, pp.9-26, 2003.

A. Bernasconi, N. Bernasconi, B. Bernhardt, and D. Schrader, Advances in MRI for 'cryptogenic' epilepsies, Nature Reviews Neurology, vol.73, issue.2, pp.99-108, 2011.
DOI : 10.1038/nrneurol.2010.199

M. Bureau, P. Kahane, and C. Munari, Épilepsies partielles graves pharmacorésistantes de l'enfant : stratégies diagnostiques et traitements chirurgicaux, 1998.

N. Bernasconi and A. Bernasconi, Epilepsy: Imaging the epileptic brain???time for new standards, Nature Reviews Neurology, vol.10, issue.3, 2014.
DOI : 10.1016/j.neuroimage.2009.10.002

B. Devaux, F. Chassoux, E. Landre, B. Turak, Z. Abou-salma et al., Résections en région fonctionnelle : étude d'une série de 89 cas Surgical resections in functional areas, Neurochirurgie, 2008.

E. Aronica, S. Leenstra, C. W. Van-veelen, P. C. Van-rijen, T. J. Hulsebos et al., Glioneuronal tumors and medically

M. Giulioni, E. Galassi, M. Zucchelli, and L. Volpi, Seizure outcome of lesionectomy in glioneuronal tumors associated with epilepsy in children, Journal of Neurosurgery: Pediatrics, vol.102, issue.3, pp.288-293, 2005.
DOI : 10.3171/ped.2005.102.3.0288

S. K. Lee, S. Y. Lee, K. Kim, K. Hong, D. Lee et al., Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy, Annals of Neurology, vol.84, issue.4, pp.525-532, 2005.
DOI : 10.1002/ana.20569

O. Colliot, S. B. Antel, V. B. Naessens, N. Bernasconi, and A. Bernasconi, In Vivo Profiling of Focal Cortical Dysplasia on High-resolution MRI with Computational Models, Epilepsia, vol.24, issue.6, pp.134-142, 2006.
DOI : 10.1002/ana.410300602

URL : https://hal.archives-ouvertes.fr/hal-01259128

P. Widdess-walsh, B. Diehl, and I. Najm, Neuroimaging of Focal Cortical Dysplasia, Journal of Neuroimaging, vol.63, issue.10, pp.185-196, 2006.
DOI : 10.1111/j.1552-6569.2006.00025.x

C. Yang, M. Kaveh, and B. Erickson, Automated detection of Focal Cortical Dysplasia lesions on T1-weighted MRI using volume-based distributional features, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.865-870, 2011.
DOI : 10.1109/ISBI.2011.5872541

O. Colliot, T. Mansi, N. Bernasconi, V. Naessens, D. Klironomos et al., Segmentation of focal cortical dysplasia lesions on MRI using level set evolution, NeuroImage, vol.32, issue.4, pp.1621-1630, 2006.
DOI : 10.1016/j.neuroimage.2006.04.225

URL : https://hal.archives-ouvertes.fr/inria-00614998

A. Bernasconi, S. B. Antel, D. L. Collins, N. Bernasconi, A. Olivier et al., Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy, Annals of Neurology, vol.7, issue.6, pp.770-775, 2001.
DOI : 10.1002/ana.1013

A. Bernasconi, Advanced MRI Analysis methods for detection of focal cortical dysplasia, Epileptic Disorders, vol.5, pp.81-84, 2003.

J. Wagner, B. Weber, H. Urbach, C. E. Elger, and H. Huppertz, Morphometric MRI analysis improves detection of focal cortical dysplasia type II, Brain, vol.134, issue.10, pp.2844-2854, 2011.
DOI : 10.1093/brain/awr204

J. P. Mugler and J. R. Brookeman, Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE), Magnetic Resonance in Medicine, vol.8, issue.1, pp.152-157, 1990.
DOI : 10.1002/mrm.1910150117

J. Marques, T. Kober, G. Krueger, W. Van-der-zwaag, P. Van-de-moortele et al., MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field, NeuroImage, vol.49, issue.2, pp.1271-1281, 2010.
DOI : 10.1016/j.neuroimage.2009.10.002

P. A. Bottomley, T. H. Foster, R. E. Argersinger, and L. M. Pfeifer, A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1?100 MHz : dependence on tissue type, NMR frequency, temperature, species, excision, and age Magnetic Field and Tissue Dependencies of Human Brain Longitudinal 1 H 2 O Relaxation in Vivo, Medical physics Magnetic Resonance in Medicine, vol.11, issue.318, pp.425-448, 1984.

H. Gudbjartsson and S. Patz, The rician distribution of noisy mri data, Magnetic Resonance in Medicine, vol.3, issue.6, pp.910-914, 1995.
DOI : 10.1002/mrm.1910340618

B. Belaroussi, J. Milles, S. Carme, Y. M. Zhu, and H. Benoit-cattin, Intensity non-uniformity correction in MRI: Existing methods and their validation, Medical Image Analysis, vol.10, issue.2, pp.234-246, 2006.
DOI : 10.1016/j.media.2005.09.004

O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado et al., Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian???Eulerian PDE approach using partial volume maps, Medical Image Analysis, vol.13, issue.5, pp.730-743, 2009.
DOI : 10.1016/j.media.2009.07.003

URL : https://hal.archives-ouvertes.fr/hal-00911253

M. Ballester, A. Angel, M. Zisserman, and . Brady, Segmentation and measurement of brain structures in MRI including confidence bounds, pp.189-200, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00615101

M. Á. Ballester, A. P. Zisserman, and M. Brady, Estimation of the partial volume effect in MRI, Medical Image Analysis, vol.6, issue.4, pp.389-405, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00615630

J. P. Lerch, J. Pruessner, A. P. Zijdenbos, D. L. Collins, S. J. Teipel et al., Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls, Neurobiology of Aging, vol.29, issue.1, pp.23-30, 2008.
DOI : 10.1016/j.neurobiolaging.2006.09.013

K. Chapman, E. Wyllie, I. Najm, P. Ruggieri, W. Bingaman et al., Seizure outcome after epilepsy surgery in patients with normal preoperative MRI, Journal of Neurology, Neurosurgery & Psychiatry, vol.76, issue.5, pp.710-713, 2005.
DOI : 10.1136/jnnp.2003.026757

J. Kassubek, H. Huppertz, J. Spreer, and A. Schulze-bonhage, Detection and Localization of Focal Cortical Dysplasia by Voxel-based 3-D MRI???Analysis, Epilepsia, vol.16, issue.6, pp.596-602, 2002.
DOI : 10.1046/j.1528-1157.2002.41401.x

D. W. Kim, S. Kim, S. Park, C. Chung, and S. K. Lee, Comparison of MRI features and surgical outcome among the subtypes of focal cortical dysplasia, Seizure, vol.21, issue.10, 2012.
DOI : 10.1016/j.seizure.2012.09.006

S. Hong, H. Kim, D. Schrader, N. Bernasconi, B. C. Bernhardt et al., Automated detection of cortical dysplasia type II in MRI-negative epilepsy, Neurology, vol.83, issue.1, pp.10-1212, 2014.
DOI : 10.1212/WNL.0000000000000543

A. C. Bastos, R. M. Comeau, F. Andermann, D. Melanson, F. Cendes et al., Diagnosis of subtle focal dysplastic lesions: Curvilinear reformatting from three-dimensional magnetic resonance imaging, Annals of Neurology, vol.13, issue.1, pp.88-94, 1999.
DOI : 10.1002/1531-8249(199907)46:1<88::AID-ANA13>3.0.CO;2-4

S. B. Antel, A. Bernasconi, N. Bernasconi, D. L. Collins, R. E. Kearney et al., Computational models of MRI characteristics of focal 56

O. Colliot, N. Bernasconi, N. Khalili, S. Antel, V. Naessens et al., Individual voxel-based analysis of gray matter in focal cortical dysplasia, NeuroImage, vol.29, issue.1, pp.162-171, 2006.
DOI : 10.1016/j.neuroimage.2005.07.021

URL : https://hal.archives-ouvertes.fr/hal-01259130

S. M. Smith, Fast robust automated brain extraction, Human Brain Mapping, vol.20, issue.3, pp.143-155, 2002.
DOI : 10.1002/hbm.10062

K. V. Leemput, F. Maes, D. Vandermeulen, and P. Suetens, Automated model-based bias field correction of MR images of the brain, IEEE Transactions on Medical Imaging, vol.18, issue.10, pp.885-896, 1999.
DOI : 10.1109/42.811268

N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan et al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.1310-1320, 2010.
DOI : 10.1109/TMI.2010.2046908

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071855

A. Zijdenbos, B. Dawant, and R. Margolin, Intensity correction and its effect on measurement variability in the computer-aided analysis of MRI, Proc. 9th Int. Symp. Exhibition Computer Assisted Radiology (CAR), pp.216-221, 1995.

M. Tincher, C. Meyer, R. Gupta, and D. Williams, Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI, IEEE Transactions on Medical Imaging, vol.12, issue.2, pp.361-365, 1993.
DOI : 10.1109/42.232267

G. J. Harris, P. E. Barta, L. W. Peng, S. Lee, P. D. Brettschneider et al., MR volume segmentation of gray matter and white matter using manual thresholding : dependence on image brightness, American journal of neuroradiology, vol.15, issue.2, pp.225-230, 1994.

J. G. Sled, A. P. Zijdenbos, and A. C. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, vol.17, issue.1, pp.87-97, 1998.
DOI : 10.1109/42.668698

K. V. Leemput, F. Maes, D. Vandermeulen, and P. Suetens, Automated model-based tissue classification of MR images of the brain, IEEE Transactions on Medical Imaging, vol.18, issue.10, pp.897-908, 1999.
DOI : 10.1109/42.811270

J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, issue.3, pp.839-851, 2005.
DOI : 10.1016/j.neuroimage.2005.02.018

J. Tohka, A. Zijdenbos, and A. Evans, Fast and robust parameter estimation for statistical partial volume models in brain MRI, NeuroImage, vol.23, issue.1, pp.84-97, 2004.
DOI : 10.1016/j.neuroimage.2004.05.007

K. Van-leemput, F. Maes, D. Vandermeulen, and P. Suetens, A unifying framework for partial volume segmentation of brain MR images, IEEE Transactions on Medical Imaging, vol.22, issue.1, pp.105-119, 2003.
DOI : 10.1109/TMI.2002.806587

O. Esteban, G. Wollny, S. Gorthi, M. Ledesma-carbayo, J. Thiran et al., MBIS : Multivariate Bayesian Image Segmentation Tool Maximum likelihood from incomplete data via the EM algorithm, Journal of the royal statistical society. Series B (methodological), pp.1-38, 1977.

J. Manjón, J. Tohka, and M. Robles, Improved estimates of partial volume coefficients from noisy brain MRI using spatial context, NeuroImage, vol.53, issue.2, pp.480-490, 2010.
DOI : 10.1016/j.neuroimage.2010.06.046

J. West, J. Warntjes, and P. Lundberg, Novel whole brain segmentation and volume estimation using quantitative MRI, European Radiology, vol.313, issue.5, pp.1-10, 2012.
DOI : 10.1007/s00330-011-2336-7

J. Warntjes, O. D. Leinhard, J. West, and P. Lundberg, Rapid magnetic resonance quantification on the brain: Optimization for clinical usage, Magnetic Resonance in Medicine, vol.20, issue.2, pp.320-329, 2008.
DOI : 10.1002/mrm.21635

W. J. Niessen, K. L. Vincken, J. Weickert, B. T. Romeny, and M. A. Viergever, Multiscale segmentation of three-dimensional MR brain images, International Journal of Computer Vision, vol.31, issue.2/3, pp.185-202, 1999.
DOI : 10.1023/A:1008070000018

J. Tohka, Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: A review, World Journal of Radiology, vol.6, issue.11, p.855, 2014.
DOI : 10.4329/wjr.v6.i11.855

H. S. Choi, D. R. Haynor, and Y. Kim, Partial volume tissue classification of multichannel magnetic resonance images-a mixel model, IEEE Transactions on Medical Imaging, vol.10, issue.3, pp.395-407, 1991.
DOI : 10.1109/42.97590

P. Santago, H. D. Gage, and S. Member, Quantification of MR brain images by mixture density and partial volume modeling, IEEE Transactions on Medical Imaging, vol.12, issue.3, pp.566-574, 1993.
DOI : 10.1109/42.241885

P. Santago and D. H. Gage, Statistical models of partial volume effect, IEEE Transactions on Image Processing, vol.4, issue.11, pp.1531-1540, 1995.
DOI : 10.1109/83.469934

J. Besag, Statistical analysis of dirty pictures*, Journal of Applied Statistics, vol.6, issue.5-6, pp.259-302, 1986.
DOI : 10.1016/0031-3203(83)90012-2

R. M. Brouwer, H. E. Pol, and H. G. Schnack, Segmentation of MRI brain scans using non-uniform partial volume densities, NeuroImage, vol.49, issue.1, pp.467-477, 2010.
DOI : 10.1016/j.neuroimage.2009.07.041

D. Haynor and Y. Kim, Multivariate tissue classification of mri images for 3-d volume reconstruction-a statistical approach, 1989.

D. W. Shattuck, S. R. Sandor-leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, Magnetic Resonance Image Tissue Classification Using a Partial Volume Model, NeuroImage, vol.13, issue.5, pp.856-876, 2001.
DOI : 10.1006/nimg.2000.0730

B. S. Khundrakpam, J. Tohka, A. C. Evans, and B. D. Group, Prediction of brain maturity based on cortical thickness at different spatial resolutions, NeuroImage, vol.111, 2015.
DOI : 10.1016/j.neuroimage.2015.02.046

B. Fischl and A. M. Dale, Measuring the thickness of the human cerebral cortex from magnetic resonance images, Proceedings of the National Academy of Sciences, pp.11-050, 2000.
DOI : 10.1073/pnas.200033797

S. E. Jones, B. R. Buchbindern, and I. Aharon, Three-dimensional mapping of cortical thickness using Laplace's Equation, Human Brain Mapping, vol.10, issue.1, pp.12-32, 2000.
DOI : 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K

A. M. Dale, B. Fischl, and M. I. Sereno, Cortical Surface-Based Analysis, NeuroImage, vol.9, issue.2, pp.179-194, 1999.
DOI : 10.1006/nimg.1998.0395

B. Fischl, M. I. Sereno, and A. M. Dale, Cortical Surface-Based Analysis, NeuroImage, vol.9, issue.2, pp.195-207, 1999.
DOI : 10.1006/nimg.1998.0396

D. Macdonald, N. Kabani, D. Avis, and A. C. Evans, Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI, NeuroImage, vol.12, issue.3, pp.340-356, 2000.
DOI : 10.1006/nimg.1999.0534

J. S. Kim, V. Singh, J. K. Lee, J. Lerch, Y. Ad-dab-'bagh et al., Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification, NeuroImage, vol.27, issue.1, pp.210-221, 2005.
DOI : 10.1016/j.neuroimage.2005.03.036

P. Bourgeat, O. Acosta, M. Zuluaga, J. Fripp, O. Salvado et al., Improved cortical thickness measurement from MR images using partial volume estimation, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.205-208, 2008.
DOI : 10.1109/ISBI.2008.4540968

S. R. Das, B. B. Avants, M. Grossman, and J. C. Gee, Registration based cortical thickness measurement, NeuroImage, vol.45, issue.3, pp.867-879, 2009.
DOI : 10.1016/j.neuroimage.2008.12.016

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836782

C. Hutton, E. De-vita, J. Ashburner, R. Deichmann, and R. Turner, Voxel-based cortical thickness measurements in MRI, NeuroImage, vol.40, issue.4, pp.1701-1710, 2008.
DOI : 10.1016/j.neuroimage.2008.01.027

I. Aganj, G. Sapiro, N. Parikshak, S. K. Madsen, and P. M. Thompson, Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue, Human Brain Mapping, vol.39, issue.10, pp.3188-3199, 2009.
DOI : 10.1002/hbm.20740

K. R. Rocha, A. J. Yezzi, and J. L. Prince, A Hybrid Eulerian&ndash;Lagrangian Approach for Thickness, Correspondence, and Gridding of Annular Tissues, IEEE Transactions on Image Processing, vol.16, issue.3, pp.636-648, 2007.
DOI : 10.1109/TIP.2007.891072

M. M. Galloway, Texture analysis using gray level run lengths Computer graphics and image processing, pp.172-179, 1975.
DOI : 10.1016/s0146-664x(75)80008-6

P. Besson, F. Andermann, F. Dubeau, and A. Bernasconi, Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus, Brain, vol.131, issue.12, pp.3246-3255, 2008.
DOI : 10.1093/brain/awn224

J. Marques, T. Kober, G. Krueger, W. Van-der-zwaag, P. Van-de-moortele et al., MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field, NeuroImage, vol.49, issue.2, pp.1271-1281, 2010.
DOI : 10.1016/j.neuroimage.2009.10.002

J. P. Mugler and J. R. Brookeman, Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE), Magnetic Resonance in Medicine, vol.8, issue.1, pp.152-157, 1990.
DOI : 10.1002/mrm.1910150117

P. Van-de-moortele, E. J. Auerbach, C. Olman, E. Yacoub, K. U?urbil et al., T1 weighted brain images at 7??Tesla unbiased for Proton Density, T2??? contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization, NeuroImage, vol.46, issue.2, pp.432-446, 2009.
DOI : 10.1016/j.neuroimage.2009.02.009

P. Hou, K. M. Hasan, C. W. Sitton, J. S. Wolinsky, and P. A. Narayana, Phasesensitive T1 inversion recovery imaging : a time-efficient interleaved technique for improved tissue contrast in neuroimaging, American journal of neuroradiology, vol.26, issue.6, pp.1432-1438, 2005.

P. Kellman, A. E. Arai, E. R. Mcveigh, and A. H. , Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement, Magnetic Resonance in Medicine, vol.35, issue.2, pp.372-383, 2002.
DOI : 10.1002/mrm.10051

J. Ma, Multislice and multicoil phase-sensitive inversion-recovery imaging, Magnetic Resonance in Medicine, vol.6, issue.4, pp.904-910, 2005.
DOI : 10.1002/mrm.20414

R. M. Garach, J. X. Ji, L. Ying, and J. Ma, Robust phase sensitive inversion recovery imaging using a Markov random field model, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1569-1572, 2004.
DOI : 10.1109/IEMBS.2004.1403478

B. U. Forstmann, M. C. Keuken, A. Schafer, P. Bazin, A. Alkemade et al., Multi-modal ultra-high resolution structural 7-Tesla MRI data repository, Scientific Data, 2014.
DOI : 10.1038/sdata.2014.50

URL : http://doi.org/10.1038/sdata.2014.50

M. Bach-cuadra, S. Gelin, A. Roche, O. Esteban, T. Kober et al., Classical segmentation methods on novel MR imaging : a study of brain tissue segmentation of MP2RAGE vs MPRAGE, 2013.

K. R. O-'brien, T. Kober, P. Hagmann, P. Maeder, J. Marques et al., Robust T1-Weighted Structural Brain Imaging and Morphometry at 7T Using MP2RAGE, PLoS ONE, vol.2, issue.6, p.99676, 2014.
DOI : 10.1371/journal.pone.0099676.t001

P. Bazin, M. Weiss, J. Dinse, A. Schäfer, R. Trampel et al., A computational framework for ultra-high resolution cortical segmentation at 7 Tesla, NeuroImage, 2013.

]. K. Fujimoto, J. R. Polimeni, A. J. Van-der-kouwe, M. Reuter, T. Kober et al., Chapitre 6 New partial volume estimation methods for MRI MP2RAGE Bibliography Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7T, NeuroImage, issue.1, 2013.

O. Acosta, J. Fripp, V. Doré, P. Bourgeat, J. Favreau et al., Cortical surface mapping using topology correction, partial flattening and 3D shape context-based non-rigid registration for use in quantifying atrophy in Alzheimer's disease, Journal of Neuroscience Methods, vol.205, issue.1, pp.96-109, 2012.
DOI : 10.1016/j.jneumeth.2011.12.011

A. Rueda, O. Acosta, M. Couprie, P. Bourgeat, J. Fripp et al., Topology-corrected segmentation and local intensity estimates for improved partial volume classification of brain cortex in MRI, Journal of Neuroscience Methods, vol.188, issue.2, pp.305-315, 2010.
DOI : 10.1016/j.jneumeth.2010.02.020

URL : https://hal.archives-ouvertes.fr/inserm-00608891

V. Doré, V. L. Villemagne, P. Bourgeat, J. Fripp, O. Acosta et al., Cross-sectional and Longitudinal Analysis of the Relationship Between A?? Deposition, Cortical Thickness, and Memory in Cognitively Unimpaired Individuals and in Alzheimer Disease, JAMA Neurology, vol.70, issue.7, pp.903-911, 2013.
DOI : 10.1001/jamaneurol.2013.1062

J. Marques, T. Kober, G. Krueger, W. Van-der-zwaag, P. Van-de-moortele et al., MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field, NeuroImage, vol.49, issue.2, pp.1271-1281, 2010.
DOI : 10.1016/j.neuroimage.2009.10.002

M. Ballester, A. Angel, M. Zisserman, and . Brady, Segmentation and measurement of brain structures in MRI including confidence bounds, pp.189-200, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00615101

K. Van-leemput, F. Maes, D. Vandermeulen, and P. Suetens, A unifying framework for partial volume segmentation of brain MR images, IEEE Transactions on Medical Imaging, vol.22, issue.1, pp.105-119, 2003.
DOI : 10.1109/TMI.2002.806587

D. W. Shattuck, S. R. Sandor-leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, Magnetic Resonance Image Tissue Classification Using a Partial Volume Model, NeuroImage, vol.13, issue.5, pp.856-876, 2001.
DOI : 10.1006/nimg.2000.0730

J. Manjón, J. Tohka, and M. Robles, Improved estimates of partial volume coefficients from noisy brain MRI using spatial context, NeuroImage, vol.53, issue.2, pp.480-490, 2010.
DOI : 10.1016/j.neuroimage.2010.06.046

J. Tohka, A. Zijdenbos, and A. Evans, Fast and robust parameter estimation for statistical partial volume models in brain MRI, NeuroImage, vol.23, issue.1, pp.84-97, 2004.
DOI : 10.1016/j.neuroimage.2004.05.007

J. P. Mugler and J. R. Brookeman, Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE), Magnetic Resonance in Medicine, vol.8, issue.1, pp.152-157, 1990.
DOI : 10.1002/mrm.1910150117

Q. Duché, O. Acosta, G. Gambarota, I. Merlet, O. Salvado et al., Bi-exponential Magnetic Resonance Signal Model for Partial Volume Computation, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2012, pp.231-238, 2012.
DOI : 10.1007/978-3-642-33415-3_29

K. P. Whittall, A. L. Mackay, D. A. Graeb, R. A. Nugent, D. K. Li et al., In vivo measurement ofT2 distributions and water contents in normal human brain, Magnetic Resonance in Medicine, vol.94, issue.1, pp.34-43, 1997.
DOI : 10.1002/mrm.1910370107

W. D. Rooney, G. Johnson, X. Li, E. R. Cohen, S. Kim et al., Magnetic Field and Tissue Dependencies of Human Brain Longitudinal Bibliographie Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7T, NeuroImage, issue.1, 2013.

M. Reuter, N. J. Schmansky, H. D. Rosas, and B. Fischl, Within-subject template estimation for unbiased longitudinal image analysis, NeuroImage, vol.61, issue.4, pp.1402-1418, 2012.
DOI : 10.1016/j.neuroimage.2012.02.084

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389460

O. Acosta, P. Bourgeat, M. A. Zuluaga, J. Fripp, O. Salvado et al., Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian???Eulerian PDE approach using partial volume maps, Medical Image Analysis, vol.13, issue.5, pp.730-743, 2009.
DOI : 10.1016/j.media.2009.07.003

URL : https://hal.archives-ouvertes.fr/hal-00911253

A. Rueda, O. Acosta, M. Couprie, P. Bourgeat, J. Fripp et al., Topology-corrected segmentation and local intensity estimates for improved partial volume classification of brain cortex in MRI, Journal of Neuroscience Methods, vol.188, issue.2, pp.305-315, 2010.
DOI : 10.1016/j.jneumeth.2010.02.020

URL : https://hal.archives-ouvertes.fr/inserm-00608891

W. D. Rooney, G. Johnson, X. Li, E. R. Cohen, S. Kim et al., Magnetic Field and Tissue Dependencies of Human Brain Longitudinal 1 H 2 O Relaxation in Vivo, Magnetic Resonance in Medicine, vol.318, pp.308-318, 2007.

S. E. Jones, B. R. Buchbindern, and I. Aharon, Three-dimensional mapping of cortical thickness using Laplace's Equation, Human Brain Mapping, vol.10, issue.1, pp.12-32, 2000.
DOI : 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K

O. Acosta, J. Fripp, V. Doré, P. Bourgeat, J. Favreau et al., Cortical surface mapping using topology correction, partial flattening and 3D shape context-based non-rigid registration for use in quantifying atrophy in Alzheimer's disease, Journal of Neuroscience Methods, vol.205, issue.1, pp.96-109, 2012.
DOI : 10.1016/j.jneumeth.2011.12.011

R. Team, R : A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2014.

D. Bates, M. Maechler, B. Bolker, and S. Walker, Linear mixed-effects models using Eigen and S4, 2014, r package version 1, pp.1-7

D. Bates, M. Maechler, B. M. Bolker, and S. Walker, lme4 : Linear mixed-effects models using Eigen and S4, " 2014, arXiv e-print

N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan et al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.1310-1320, 2010.
DOI : 10.1109/TMI.2010.2046908

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071855

J. G. Sled, A. P. Zijdenbos, and A. C. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, vol.17, issue.1, pp.87-97, 1998.
DOI : 10.1109/42.668698

R. Guerrini, W. B. Dobyns, and A. J. Barkovich, Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options, Trends in Neurosciences, vol.31, issue.3, pp.154-162, 2008.
DOI : 10.1016/j.tins.2007.12.004

D. Taylor, M. Falconer, C. Bruton, and J. Corsellis, Focal dysplasia of the cerebral cortex in epilepsy, Journal of Neurology, Neurosurgery & Psychiatry, vol.34, issue.4, pp.369-387, 1971.
DOI : 10.1136/jnnp.34.4.369

A. Palmini, Electrophysiology of the focal cortical dysplasias, Epilepsia, vol.50, issue.suppl 4, pp.23-26, 2010.
DOI : 10.1111/j.1528-1167.2009.02437.x

I. Blümcke, M. Thom, E. Aronica, D. D. Armstrong, H. V. Vinters et al., The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission1, Epilepsia, vol.120, issue.Suppl 1, pp.158-174, 2011.
DOI : 10.1111/j.1528-1167.2010.02777.x

A. Palmini, A. Gambardella, F. Andermann, F. Dubeau, J. C. Da-costa et al., Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results, Annals of Neurology, vol.34, issue.4, pp.476-487, 1995.
DOI : 10.1002/ana.410370410

F. Chassoux, B. Devaux, E. Landré, B. Turak, F. Nataf et al., Stereoelectroencephalography in focal cortical dysplasia: A 3D approach to delineating the dysplastic cortex, Brain, vol.123, issue.8, pp.1733-1751, 2000.
DOI : 10.1093/brain/123.8.1733

J. Kassubek, H. Huppertz, J. Spreer, and A. Schulze-bonhage, Detection and Localization of Focal Cortical Dysplasia by Voxel-based 3-D MRI???Analysis, Epilepsia, vol.16, issue.6, pp.596-602, 2002.
DOI : 10.1046/j.1528-1157.2002.41401.x

D. W. Kim, S. Kim, S. Park, C. Chung, and S. K. Lee, Comparison of MRI features and surgical outcome among the subtypes of focal cortical dysplasia, Seizure, vol.21, issue.10, 2012.
DOI : 10.1016/j.seizure.2012.09.006

P. Widdess-walsh, B. Diehl, and I. Najm, Neuroimaging of Focal Cortical Dysplasia, Journal of Neuroimaging, vol.63, issue.10, pp.185-196, 2006.
DOI : 10.1111/j.1552-6569.2006.00025.x

A. Mcgonigal, F. Bartolomei, J. Régis, M. Guye, M. Gavaret et al., Stereoelectroencephalography in presurgical assessment of MRI-negative epilepsy, Brain, vol.130, issue.12, pp.3169-3183, 2007.
DOI : 10.1093/brain/awm218

C. G. Bien, M. Szinay, J. Wagner, H. Clusmann, A. J. Becker et al., Characteristics and Surgical Outcomes of Patients With Refractory Magnetic Resonance Imaging???Negative Epilepsies, Archives of Neurology, vol.66, issue.12, p.1491, 2009.
DOI : 10.1001/archneurol.2009.283

K. Chapman, E. Wyllie, I. Najm, P. Ruggieri, W. Bingaman et al., Seizure outcome after epilepsy surgery in patients with normal preoperative MRI, Journal of Neurology, Neurosurgery & Psychiatry, vol.76, issue.5, pp.710-713, 2005.
DOI : 10.1136/jnnp.2003.026757

C. Yang, M. Kaveh, and B. Erickson, Automated detection of Focal Cortical Dysplasia lesions on T1-weighted MRI using volume-based distributional features, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.865-870, 2011.
DOI : 10.1109/ISBI.2011.5872541

A. Bernasconi, S. B. Antel, D. L. Collins, N. Bernasconi, A. Olivier et al., Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy, Annals of Neurology, vol.7, issue.6, pp.770-775, 2001.
DOI : 10.1002/ana.1013

A. Bernasconi, Advanced MRI Analysis methods for detection of focal cortical dysplasia, Epileptic Disorders, vol.5, pp.81-84, 2003.

S. B. Antel, D. Collins, N. Bernasconi, F. Andermann, R. Shinghal et al., Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis, NeuroImage, vol.19, issue.4, pp.1748-1759, 2003.
DOI : 10.1016/S1053-8119(03)00226-X

T. Thesen, B. T. Quinn, C. Carlson, O. Devinsky, J. Dubois et al., Detection of Epileptogenic Cortical Malformations with Surface-Based MRI Morphometry, PLoS ONE, vol.8, issue.Pt 6, p.16430, 2011.
DOI : 10.1371/journal.pone.0016430.t002

J. Rajan, K. Kannan, C. Kesavadas, and B. Thomas, Focal Cortical Dysplasia (FCD) lesion analysis with complex diffusion approach, Computerized Medical Imaging and Graphics, vol.33, issue.7, pp.553-558, 2009.
DOI : 10.1016/j.compmedimag.2009.05.004

J. Wagner, B. Weber, H. Urbach, C. E. Elger, and H. Huppertz, Morphometric MRI analysis improves detection of focal cortical dysplasia type II, Brain, vol.134, issue.10, pp.2844-2854, 2011.
DOI : 10.1093/brain/awr204

J. Kabat and P. Król, Ogniskowa dysplazja korowa ??? stan obecny wiedzy, Polish Journal of Radiology, vol.77, issue.2, p.35, 2012.
DOI : 10.12659/PJR.882968

J. T. Lerner, N. Salamon, J. S. Hauptman, T. R. Velasco, M. Hemb et al., Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: A critical review and the UCLA experience, Epilepsia, vol.46, issue.suppl 2, pp.1310-1335, 2009.
DOI : 10.1111/j.1528-1167.2008.01998.x

A. C. Bastos, R. M. Comeau, F. Andermann, D. Melanson, F. Cendes et al., Diagnosis of subtle focal dysplastic lesions: Curvilinear reformatting from three-dimensional magnetic resonance imaging, Annals of Neurology, vol.13, issue.1, pp.88-94, 1999.
DOI : 10.1002/1531-8249(199907)46:1<88::AID-ANA13>3.0.CO;2-4

J. Marques, T. Kober, G. Krueger, W. Van-der-zwaag, P. Van-de-moortele et al., MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field, NeuroImage, vol.49, issue.2, pp.1271-1281, 2010.
DOI : 10.1016/j.neuroimage.2009.10.002

J. P. Marques, R. Gruetter, B. Ramanan, W. Holmes, W. Sloan et al., New Developments and Applications of the MP2RAGE Sequence - Focusing the Contrast and High Spatial Resolution R1 Mapping, PLoS ONE, vol.32, issue.7, pp.69294-4027, 2010.
DOI : 10.1371/journal.pone.0069294.t001

M. Gordon, K. Chu, A. Margaritis, A. Martin, C. Ethier et al., Measurement of Gd-DTPA diffusion through PVA hydrogel using a novel magnetic resonance imaging method, Biotechnology and Bioengineering, vol.9, issue.4, pp.459-467, 1999.
DOI : 10.1002/(SICI)1097-0290(19991120)65:4<459::AID-BIT10>3.0.CO;2-O

Q. Duché, O. Acosta, G. Gambarota, I. Merlet, O. Salvado et al., Bi-exponential Magnetic Resonance Signal Model for Partial Volume Computation, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2012, pp.231-238, 2012.
DOI : 10.1007/978-3-642-33415-3_29

. Le-modèle-bi, la modélisation (tissus cérébraux) et les méthodes de traitement d'images (estimation de volume partiel) par une modélisation quasi complète des signaux obtenus. La preuve de concept a été réalisée sur des fantômes physique et numérique avec des séquences en écho de spin et inversion récupération (chapitre 4) Son application sur des images in vivo est limitée aux séquences permettant l'obtention de deux images recalées (par acquisition) de contrastes différents. La séquence MP2RAGE apparaît donc comme un candidat idéal (chapitre 5) pour utiliser ce modèle. Nous avons également montré que le modèle bi-exponentiel est non seulement utilisable avec MP2RAGE, mais est également préférable au modèle du mixel qui sous-estime la proportion de GM aux frontières corticales (chapitres 6 et 7) Cette sous-estimation a été démontrée en simulation (annexe A), sur un fantôme physique (chapitre 7) et sur des données in vivo (chapitre 6). Lors de l'application du modèle linéaire sur des données MP2RAGE, le biais systématique mesuré à l'échelle du voxel se propage dans la mesure du biomarqueur qu'est l'épaisseur corticale (chapitre 8) Nos résultats sont comparables à ceux déjà publiés dans la littérature qui avaient permis de relever ce biais systématique, nous avons proposé un fantôme physique pour simuler l'aspect visuel des caractéristiques d'une dysplasie corticale focale observées en IRM pondérée T1 (chapitre

. La-particularité-principale, Elle donne lieu à un tissu intermédiaire apparaissant flou entre le cortex et la substance blanche. Nos résultats suggèrent qu'une telle région est potentiellement mieux décelable à travers l'interprétation d'une cartographie T1. Notre contribution principale est d'avoir proposé, vérifié et validé statistiquement l'hypothèse que le biais de mesure d'épaisseur corticale rapporté par Fujimoto et al. dans MP2RAGE provenait d'une modélisation inappropriée du phénomène de volume partiel dans la séquence MP2RAGE (chapitre 8) Il ne semble pas être corrélé à une région anatomique particulière. Ce travail permet donc de confirmer l'intérêt de la séquence MP2RAGE pour la segmentation et l'estimation d'épaisseur corticale

Q. Acosta, O. Gambarota, G. Merlet, I. Salvado, O. Saint-jalmes et al., son application car il implique d'émettre des hypothèses sur les propriétés de relaxation des tissus. Les valeurs de T 1 sont mesurées via la séquence MP2RAGE mais les densités protoniques tissulaires ? utilisées ne peuvent Liste des publications Articles dans des conférences internationales avec comité de lecture ? Duché Bi-Exponential Magnetic Resonance Signal Model for Partial Volume Computation, Limites Le modèle bi-exponentiel est limité dans Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012, pp.231-238

?. Duché, Q. Raniga, P. Egan, G. F. Acosta, O. Gambarota et al., New Partial Volume Estimation Methods for MRI MP2RAGE, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2014, pp.129-136
DOI : 10.1007/978-3-319-10443-0_17

Q. Duché, O. Acosta, G. Gambarota, I. Merlet, O. Salvado et al., A Magnetic Resonance Signal-Based Approach to deal with Partial Volume Effects, 2012.

?. Duché, Q. Raniga, P. Egan, G. F. Acosta, O. Gambarota et al., A comparative study of two partial volume estimation methods with MP2RAGE data at 3T Modeling focal cortical dysplasia lesions using diffusion of gadolinium-DTPA in gel phantoms Cortical thickness measurements with MPRAGE and MP2RAGE at 3T, Proceedings of the ISMRM 22nd meeting Proceedings of the ISMRM 22nd meeting Proceedings of the ISMRM 23rd meeting, 2014.

?. Duché, Q. Acosta, O. Gambarota, G. Merlet, I. Salvado et al., Partial Volume Estimation in Magnetic Resonance Imaging : a signal-based model " Nouvelles méthodologies en Imagerie du vivant (2012) A physical phantom modelling focal cortical dysplasia lesions, Communications dans des conférences nationales avec comité de lecture

A. Annexe, Simulations d'estimation de volume partiel avec MP2RAGE

J. Marques, T. Kober, G. Krueger, W. Van-der-zwaag, P. Van-de-moortele et al., MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field, NeuroImage, vol.49, issue.2, pp.1271-1281, 2010.
DOI : 10.1016/j.neuroimage.2009.10.002

B. U. Forstmann, M. C. Keuken, A. Schafer, P. Bazin, A. Alkemade et al., Multi-modal ultra-high resolution structural 7-Tesla MRI data repository, Scientific Data, 2014.
DOI : 10.1038/sdata.2014.50

URL : http://doi.org/10.1038/sdata.2014.50

K. Fujimoto, J. R. Polimeni, A. J. Van-der-kouwe, M. Reuter, T. Kober et al., Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7T, NeuroImage, vol.90, 2013.
DOI : 10.1016/j.neuroimage.2013.12.012