S. J. Singer and G. L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes, Science, vol.175, issue.4023, pp.175720-175751, 1972.
DOI : 10.1126/science.175.4023.720

G. Van-meer, Cellular lipidomics, The EMBO Journal, vol.5, issue.18, pp.3159-65, 2005.
DOI : 10.1074/jbc.M401205200

H. Goldfine and M. E. Ellis, N-Methyl groups in bacterial lipids, Journal of bacteriology, vol.87, pp.8-15, 1964.

A. Yamaji-hasegawa and M. Tsujimoto, Asymmetric Distribution of Phospholipids in Biomembranes, Biological & Pharmaceutical Bulletin, vol.29, issue.8, pp.1547-1553, 2006.
DOI : 10.1248/bpb.29.1547

J. S. O-'brien and E. L. Sampson, Lipid composition of the normal human brain : gray matter, white matter, and myelin, J. Lipid Res, vol.6, issue.4, pp.537-544, 1965.

H. Kaneko, M. Hosohara, M. Tanaka, and T. Itoh, Lipid composition of 30 species of yeast, Lipids, vol.9, issue.12, pp.837-844, 1976.
DOI : 10.1007/BF02532989

R. F. Epand, P. B. Savage, and R. M. Epand, Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins), Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.10, pp.17682500-17682509, 2007.
DOI : 10.1016/j.bbamem.2007.05.023

C. S. Ejsing, J. L. Sampaio, V. Surendranath, E. Duchoslav, K. Ekroos et al., Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry, Proceedings of the National Academy of Sciences, vol.106, issue.7, pp.2136-2177, 2009.
DOI : 10.1073/pnas.0811700106

S. Paul-andré and M. Norio, of Advances in Photosynthesis and Respiration, Lipids in Photosynthesis : Structure, Function and Genetics, 1998.

S. Sonnino and A. Prinetti, Membrane domains and the "lipid raft" concept, Current medicinal chemistry, vol.20, issue.1, pp.4-21, 2013.

G. Van-meer, D. R. Voelker, and G. W. Feigenson, Membrane lipids : where they are and how they behave. Nature reviews, Molecular cell biology, vol.9, issue.2, pp.112-136, 2008.

J. R. Silvius, B. D. Read, and R. N. Mcelhaney, Thermotropic phase transitions of phosphatidylcholines with odd-numbered n-acyl chains, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.555, issue.1, pp.175-178, 1979.
DOI : 10.1016/0005-2736(79)90081-6

T. Parasassi, M. Loiero, M. Raimondi, G. Ravagnan, and E. Gratton, Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1153, issue.2, pp.143-54, 1993.
DOI : 10.1016/0005-2736(93)90399-K

M. L. Schmidt, L. Ziani, M. Boudreau, and J. H. Davis, Phase equilibria in DOPC/DPPC: Conversion from gel to subgel in two component mixtures, The Journal of Chemical Physics, vol.131, issue.17, p.131175103, 2009.
DOI : 10.1063/1.3258077

T. Heimburg, A Model for the Lipid Pretransition: Coupling of Ripple Formation with the Chain-Melting Transition, Biophysical Journal, vol.78, issue.3, pp.1154-65, 2000.
DOI : 10.1016/S0006-3495(00)76673-2

K. Jorgensen, Calorimetric detection of a sub-main transition in long-chain phosphatidylcholine lipid bilayers, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1240, issue.2, pp.111-114, 1995.
DOI : 10.1016/0005-2736(95)00216-2

J. H. Ipsen, O. G. Mouritsen, and M. J. Zuckermann, Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol, Biophysical Journal, vol.56, issue.4, pp.661-668, 1989.
DOI : 10.1016/S0006-3495(89)82713-4

J. Hjort-ipsen, G. Karlström, O. G. Mourtisen, H. Wennerström, and M. J. Zuckermann, Phase equilibria in the phosphatidylcholine-cholesterol system, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.905, issue.1, pp.162-172, 1987.
DOI : 10.1016/0005-2736(87)90020-4

A. Yamaji-hasegawa and M. Tsujimoto, Asymmetric Distribution of Phospholipids in Biomembranes, Biological & Pharmaceutical Bulletin, vol.29, issue.8, pp.1547-53, 2006.
DOI : 10.1248/bpb.29.1547

G. Van-meer, Dynamic transbilayer lipid asymmetry. Cold Spring Harbor perspectives in biology, 2011.

R. Lindner and H. Y. Naim, Domains in biological membranes. Experimental cell research, pp.3152871-3152879, 2009.

F. Contreras, L. Sánchez-magraner, A. Alonso, and F. M. Goñi, ) lipid motion and lipid scrambling in membranes, FEBS Letters, vol.127, issue.9, pp.1779-86, 2010.
DOI : 10.1016/j.febslet.2009.12.049

S. Dogra, S. Krishnamurthy, V. Gupta, B. L. Dixit, C. M. Gupta et al., Asymmetric distribution of phosphatidylethanolamine in C. albicans : possible mediation by CDR1, a multidrug transporter belonging to ATP binding cassette (ABC) superfamily, Yeast, vol.15, issue.2, pp.15111-15132, 1999.
DOI : 10.1002/(SICI)1097-0061(19990130)15:2<111::AID-YEA350>3.3.CO;2-5

J. A. Virtanen, K. H. Cheng, and P. Somerharju, Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model, Proceedings of the National Academy of Sciences, vol.95, issue.9, pp.4964-4973, 1998.
DOI : 10.1073/pnas.95.9.4964

K. A. Fisher, Analysis of membrane halves: cholesterol., Proceedings of the National Academy of Sciences, vol.73, issue.1, pp.173-180, 1976.
DOI : 10.1073/pnas.73.1.173

P. Wydro, The influence of cholesterol on multicomponent Langmuir monolayers imitating outer and inner leaflet of human erythrocyte membrane, Colloids and Surfaces B: Biointerfaces, vol.103, pp.67-74, 2013.
DOI : 10.1016/j.colsurfb.2012.10.020

W. G. Wood, U. Igbavboa, W. E. Müller, and G. P. Eckert, Cholesterol asymmetry in synaptic plasma membranes, Journal of Neurochemistry, vol.3, issue.1, pp.684-693, 2011.
DOI : 10.1111/j.1471-4159.2010.07017.x

U. Igbavboa, N. A. Avdulov, S. V. Chochina, and W. G. Wood, Transbilayer Distribution of Cholesterol Is Modified in Brain Synaptic Plasma Membranes of Knockout Mice Deficient in the Low-Density Lipoprotein Receptor, Apolipoprotein E, or Both Proteins, Journal of Neurochemistry, vol.69, issue.4, pp.1661-1667, 2002.
DOI : 10.1046/j.1471-4159.1997.69041661.x

L. Blau and R. Bittman, Cholesterol distribution between the two halves of the lipid bilayer of human erythrocyte ghost membranes, The Journal of biological chemistry, vol.253, issue.23, pp.8366-8374, 1978.

K. Simons and G. Van-meer, Lipid sorting in epithelial cells, Biochemistry, vol.27, issue.17, pp.6197-202, 1988.
DOI : 10.1021/bi00417a001

R. F. De-almeida, A. Fedorov, and M. Prieto, Sphingomyelin/Phosphatidylcholine/Cholesterol Phase Diagram: Boundaries and Composition of Lipid Rafts, Biophysical Journal, vol.85, issue.4, pp.2406-2422, 2003.
DOI : 10.1016/S0006-3495(03)74664-5

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.387, issue.6633, pp.569-72, 1997.
DOI : 10.1038/42408

L. J. Pike, Rafts defined: a report on the Keystone symposium on lipid rafts and cell function, The Journal of Lipid Research, vol.47, issue.7, pp.1597-1605, 2006.
DOI : 10.1194/jlr.E600002-JLR200

T. Lang, SNARE proteins and 'membrane rafts'. The Journal of physiology, pp.693-701, 2007.

C. Klose, C. S. Ejsing, A. J. García-sáez, H. Kaiser, J. L. Sampaio et al., Yeast Lipids Can Phase-separate into Micrometer-scale Membrane Domains, Journal of Biological Chemistry, vol.285, issue.39, pp.28530224-28530256, 2010.
DOI : 10.1074/jbc.M110.123554

S. Morandat, M. Bortolato, and B. Roux, Cholesterol-dependent insertion of glycosylphosphatidylinositol-anchored enzyme, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1564, issue.2, pp.473-478, 2002.
DOI : 10.1016/S0005-2736(02)00497-2

R. Schroeder, E. London, and D. Brown, Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior., Proceedings of the National Academy of Sciences, vol.91, issue.25, pp.9112130-9112134, 1994.
DOI : 10.1073/pnas.91.25.12130

K. Kirat and S. Morandat, Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.9, pp.17682300-17682309, 2007.
DOI : 10.1016/j.bbamem.2007.05.006

URL : https://hal.archives-ouvertes.fr/hal-00192568

E. Yamada, THE FINE STRUCTURE OF THE GALL BLADDER EPITHELIUM OF THE MOUSE, The Journal of Cell Biology, vol.1, issue.5, pp.445-58, 1955.
DOI : 10.1083/jcb.1.5.445

V. L. Reeves, C. M. Thomas, and E. J. Smart, Lipid rafts, caveolae and GPI-linked proteins Advances in experimental medicine and biology, pp.3-13, 2012.

D. A. Cadenhead, F. Muller-landau, and B. M. Kellner, Bilayers at the air???water interface?, Nature, vol.33, issue.5485, pp.694-700, 1974.
DOI : 10.1038/252694a0

P. Dynarowicz-??tka and K. Kita, Molecular interaction in mixed monolayers at the air/water interface, Advances in Colloid and Interface Science, vol.79, issue.1, pp.1-17, 1999.
DOI : 10.1016/S0001-8686(98)00064-5

K. Hac-wydro and P. Dynarowicz-latka, Interaction between nystatin and natural membrane lipids in Langmuir monolayers???The role of a phospholipid in the mechanism of polyenes mode of action, Biophysical Chemistry, vol.123, issue.2-3, pp.154-61, 2006.
DOI : 10.1016/j.bpc.2006.05.015

A. Ambike, V. Rosilio, B. Stella, S. Lepêtre-mouelhi, and P. Couvreur, Interaction of Self-Assembled Squalenoyl Gemcitabine Nanoparticles with Phospholipid???Cholesterol Monolayers Mimicking a Biomembrane, Langmuir, vol.27, issue.8, pp.274891-274900, 2011.
DOI : 10.1021/la200002d

P. Calvez, S. Bussières, E. Demers, and C. Salesse, Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers, Biochimie, vol.91, issue.6, pp.91718-91751, 2009.
DOI : 10.1016/j.biochi.2009.03.018

O. Albrecht, H. Gruler, and E. Sackmann, Polymorphism of phospholipid monolayers, Journal de Physique, vol.39, issue.3, pp.309-322, 1978.
DOI : 10.1051/jphys:01978003903030100

URL : https://hal.archives-ouvertes.fr/jpa-00208764

R. A. Demel, L. L. Van-deenen, and S. C. Kinsky, Penetration of Lipid by Polyene Antibiotics, Journal of Biochemical Chemistry, vol.240, issue.6, pp.2749-2753, 1965.

R. Maget-dana, The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1462, issue.1-2, pp.109-149, 1999.
DOI : 10.1016/S0005-2736(99)00203-5

S. Azouzi, K. Kirat, and S. Morandat, The Potent Antimalarial Drug Cyclosporin A Preferentially Destabilizes Sphingomyelin-Rich Membranes, Langmuir, vol.26, issue.3, pp.1960-1965, 2010.
DOI : 10.1021/la902580w

URL : https://hal.archives-ouvertes.fr/hal-00468460

S. Azouzi, S. Morandat, and K. Kirat, The Potent Antimalarial Peptide Cyclosporin A Induces the Aggregation and Permeabilization of Sphingomyelin-Rich Membranes, Langmuir, vol.27, issue.15, pp.279465-72, 2011.
DOI : 10.1021/la201040c

URL : https://hal.archives-ouvertes.fr/hal-00637393

S. Pérez-lópez, M. Nieto-suárez, C. Mestres, M. A. Alsina, I. Haro et al., Behaviour of a peptide sequence from the GB virus C/hepatitis G virus E2 protein in Langmuir monolayers: Its interaction with phospholipid membrane models, Biophysical Chemistry, vol.141, issue.2-3, pp.153-61, 2009.
DOI : 10.1016/j.bpc.2009.01.007

P. R. Cullis and B. De-kruijff, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.559, issue.4, pp.399-420, 1979.
DOI : 10.1016/0304-4157(79)90012-1

C. Huang, Phosphatidylcholine vesicles. Formation and physical characteristics, Biochemistry, vol.8, issue.1, pp.344-352, 1969.
DOI : 10.1021/bi00829a048

F. Olson, C. A. Hunt, F. C. Szoka, W. J. Vail, and D. Papahadjopoulos, Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.557, issue.1, pp.9-23, 1979.
DOI : 10.1016/0005-2736(79)90085-3

R. L. Hamilton-jr, J. Goerke, L. S. Guo, M. C. Williams, and R. J. Havel, Unilamellar liposomes made with the French pressure cell : a simple preparative and semiquantitative technique, J. Lipid Res, vol.21, issue.8, pp.981-992, 1980.

E. Mayhew, R. Lazo, W. J. Vail, J. King, and A. M. Green, Characterization of liposomes prepared using a microemulsifier, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.775, issue.2, pp.169-174, 1984.
DOI : 10.1016/0005-2736(84)90167-6

O. Zumbuehl and H. G. Weder, Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.640, issue.1, pp.252-262, 1981.
DOI : 10.1016/0005-2736(81)90550-2

A. Filippov, G. Orädd, and G. Lindblom, Effect of NaCl and CaCl2 on the lateral diffusion of zwitterionic and anionic lipids in bilayers, Chemistry and Physics of Lipids, vol.159, issue.2, pp.81-88, 2009.
DOI : 10.1016/j.chemphyslip.2009.03.007

C. G. Sinn, M. Antonietti, and R. Dimova, Binding of calcium to phosphatidylcholine???phosphatidylserine membranes, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.282, issue.283, pp.282-283410, 2006.
DOI : 10.1016/j.colsurfa.2005.10.014

H. I. Petrache, S. Tristram-nagle, D. Harries, N. Kucerka, J. F. Nagle et al., Swelling of phospholipids by monovalent salt, The Journal of Lipid Research, vol.47, issue.2, pp.302-311, 2006.
DOI : 10.1194/jlr.M500401-JLR200

J. Valério, M. H. Lameiro, S. S. Funari, M. J. Moreno, and E. Melo, Temperature Effect on the Bilayer Stacking in Multilamellar Lipid Vesicles, The Journal of Physical Chemistry B, vol.116, issue.1, pp.168-78, 2012.
DOI : 10.1021/jp206848u

R. Volinsky, L. Cwiklik, P. Jurkiewicz, M. Hof, P. Jungwirth et al., Oxidized Phosphatidylcholines Facilitate Phospholipid Flip-Flop in Liposomes, Biophysical Journal, vol.101, issue.6, pp.1376-84, 2011.
DOI : 10.1016/j.bpj.2011.07.051

J. C. Bozelli, E. Sasahara, M. R. Pinto, C. R. Nakaie, and S. Schreier, EFFECT OF HEAD GROUP AND CURVATURE ON BINDING OF THE ANTIMICROBIAL PEPTIDE TRITRPTICIN TO LIPID MEMBRANES, Chemistry and Physics of Lipids, vol.165, issue.4, pp.365-73, 2012.
DOI : 10.1016/j.chemphyslip.2011.12.005

T. Shimizu, T. Mori, M. Tomita, and K. Tsumoto, pH Switching That Crosses over the Isoelectric Point (pI) Can Improve the Entrapment of Proteins within Giant Liposomes by Enhancing Protein???Membrane Interaction, Langmuir, vol.30, issue.2, pp.554-63, 2014.
DOI : 10.1021/la403361j

T. Shimanouchi, N. Yoshimoto, A. Hiroiwa, K. Nishiyama, K. Hayashi et al., Relationship between the mobility of phosphocholine headgroup and the protein???liposome interaction: A dielectric spectroscopic study, Colloids and Surfaces B: Biointerfaces, vol.116, pp.343-350, 2013.
DOI : 10.1016/j.colsurfb.2013.07.028

Y. Zhao, A. Vararattanavech, X. Li, C. Hélixnielsen, T. Vissing et al., Effects of Proteoliposome Composition and Draw Solution Types on Separation Performance of Aquaporin-Based Proteoliposomes: Implications for Seawater Desalination Using Aquaporin-Based Biomimetic Membranes, Environmental Science & Technology, issue.3, pp.471496-503, 2013.
DOI : 10.1021/es304306t

M. Cristani, M. D. Arrigo, G. Mandalari, F. Castelli, M. G. Sarpietro et al., Interaction of Four Monoterpenes Contained in Essential Oils with Model Membranes:?? Implications for Their Antibacterial Activity, Journal of Agricultural and Food Chemistry, vol.55, issue.15, pp.556300-556308, 2007.
DOI : 10.1021/jf070094x

D. Trombetta, F. Castelli, M. G. Sarpietro, V. Venuti, M. Cristani et al., Mechanisms of Antibacterial Action of Three Monoterpenes, Antimicrobial Agents and Chemotherapy, vol.49, issue.6, pp.2474-2482, 2005.
DOI : 10.1128/AAC.49.6.2474-2478.2005

L. Duelund, A. Amiot, A. Fillon, and O. G. Mouritsen, Leaves on Lipid Membranes, Journal of Natural Products, vol.75, issue.2, pp.160-166, 2012.
DOI : 10.1021/np200713q

A. , V. Turina, M. V. Nolan, J. A. Zygadlo, and M. A. Perillo, Natural terpenes : self-assembly and membrane partitioning, Biophysical chemistry, vol.122, issue.2, pp.101-114, 2006.

A. M. Batenburg, J. C. Hibbeln, and B. De-kruijff, Lipid specific penetration of melittin into phospholipid model membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.903, issue.1, pp.155-165, 1987.
DOI : 10.1016/0005-2736(87)90165-9

C. E. Dempsey, The actions of melittin on membranes, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.1031, issue.2, pp.143-161, 1990.
DOI : 10.1016/0304-4157(90)90006-X

A. Colotto, D. P. Kharakoz, K. Lohner, and P. Laggner, Ultrasonic study of melittin effects on phospholipid model membranes, Biophysical Journal, vol.65, issue.6, pp.2360-2367, 1993.
DOI : 10.1016/S0006-3495(93)81298-0

M. Monette and M. Lafleur, Modulation of melittin-induced lysis by surface charge density of membranes, Biophysical Journal, vol.68, issue.1, pp.187-95, 1995.
DOI : 10.1016/S0006-3495(95)80174-8

N. K. Subbarao and R. C. Macdonald, Lipid unsaturation influences melittin-induced leakage of vesicles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1189, issue.1, pp.101-107, 1994.
DOI : 10.1016/0005-2736(94)90286-0

M. Monette and M. Lafleur, Influence of lipid chain unsaturation on melittin-induced micellization, Biophysical Journal, vol.70, issue.5, pp.2195-202, 1996.
DOI : 10.1016/S0006-3495(96)79785-0

T. Pott, M. Paternostre, and E. J. Dufourc, A comparative study of the action of melittin on sphingomyelin and phosphatidylcholine bilayers, European Biophysics Journal, vol.27, issue.3, pp.237-282, 1998.
DOI : 10.1007/s002490050130

K. Hall, T. Lee, and M. Aguilar, The role of electrostatic interactions in the membrane binding of melittin, Journal of Molecular Recognition, vol.822, issue.3-4, pp.108-126, 2011.
DOI : 10.1002/jmr.1032

M. J. Garcera, M. G. Elferink, A. J. Driessen, and W. N. Konings, In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition, European Journal of Biochemistry, vol.267, issue.2, pp.417-422, 1993.
DOI : 10.1016/0968-0004(91)90090-I

A. D. Paiva, E. Breukink, and H. C. Mantovani, Role of Lipid II and Membrane Thickness in the Mechanism of Action of the Lantibiotic Bovicin HC5, Antimicrobial Agents and Chemotherapy, vol.55, issue.11, pp.555284-93, 2011.
DOI : 10.1128/AAC.00638-11

A. D. Paiva, N. Irving, E. Breukink, and H. C. Mantovani, Interaction with Lipid II Induces Conformational Changes in Bovicin HC5 Structure, Antimicrobial Agents and Chemotherapy, vol.56, issue.9, pp.4586-93, 2012.
DOI : 10.1128/AAC.00295-12

K. Kirat, S. Morandat, and Y. F. Dufrêne, Nanoscale analysis of supported lipid bilayers using atomic force microscopy, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1798, issue.4, pp.750-65, 2010.
DOI : 10.1016/j.bbamem.2009.07.026

URL : https://hal.archives-ouvertes.fr/hal-00468464

V. Vié, N. Van-mau, E. Lesniewska, J. P. Goudonnet, F. Heitz et al., Distribution of Ganglioside G M1 between Two-Component, Two-Phase Phosphatidylcholine Monolayers, Langmuir, issue.16, pp.144574-4583, 1998.

R. P. Richter, R. Bérat, and A. R. Brisson, Formation of Solid-Supported Lipid Bilayers:?? An Integrated View, Langmuir, vol.22, issue.8, pp.3497-3505, 2006.
DOI : 10.1021/la052687c

I. Reviakine and A. Brisson, Formation of Supported Phospholipid Bilayers from Unilamellar Vesicles Investigated by Atomic Force Microscopy, Langmuir, vol.16, issue.4, pp.1806-1815, 2000.
DOI : 10.1021/la9903043

I. Reviakine, A. Simon, and A. Brisson, on the Morphology of Mixed DPPC???DOPS Supported Phospholipid Bilayers, Langmuir, vol.16, issue.4, pp.1473-1477, 2000.
DOI : 10.1021/la990806g

M. Pawlak, S. Stankowski, and G. Schwarz, Melittin induced voltage-dependent conductance in DOPC lipid bilayers, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1062, issue.1, pp.94-102, 1991.
DOI : 10.1016/0005-2736(91)90339-A

A. M. Feigin, J. H. Teeter, and J. G. Brand, The influence of sterols on the sensitivity of lipid bilayers to melittin. Biochemical and biophysical research communications, pp.312-319, 1995.

T. L. Jones, R. Fu, F. Nielson, T. A. Cross, and D. D. Busath, Gramicidin Channels Are Internally Gated, Biophysical Journal, vol.98, issue.8, pp.981486-93, 2010.
DOI : 10.1016/j.bpj.2009.11.055

URL : http://doi.org/10.1016/j.bpj.2009.11.055

M. Nishio, A. Shoji, and M. Sugawara, Planar Lipid Bilayers Containing Gramicidin A as a Molecular Sensing System Based on an Integrated Current, Analytical Sciences, vol.28, issue.7, pp.661-668, 2012.
DOI : 10.2116/analsci.28.661

P. A. Gurnev, S. Yang, K. C. Melikov, L. V. Chernomordik, and S. M. Bezrukov, Cationic Cell-Penetrating Peptide Binds to Planar Lipid Bilayers Containing Negatively Charged Lipids but does not Induce Conductive Pores, Biophysical Journal, vol.104, issue.9, pp.1933-1942, 2013.
DOI : 10.1016/j.bpj.2013.02.053

URL : http://doi.org/10.1016/j.bpj.2013.02.053

S. Morandat and K. Kirat, Membrane Resistance to Triton X-100 Explored by Real-Time Atomic Force Microscopy, Langmuir, vol.22, issue.13, pp.5786-91, 2006.
DOI : 10.1021/la0604228

URL : https://hal.archives-ouvertes.fr/hal-00090294

M. N. Puchkov, R. A. Vassarais, E. A. Korepanova, and A. N. Osipov, Cytochrome c produces pores in cardiolipin-containing planar bilayer lipid membranes in the presence of hydrogen peroxide, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.2, pp.1828208-1828220, 2013.
DOI : 10.1016/j.bbamem.2012.10.002

S. Morandat and K. Kirat, Real-Time Atomic Force Microscopy Reveals Cytochrome c-Induced Alterations in Neutral Lipid Bilayers, Langmuir, vol.23, issue.22, pp.10929-10961, 2007.
DOI : 10.1021/la702158j

URL : https://hal.archives-ouvertes.fr/hal-00195664

K. Kirat and S. Morandat, Cytochrome c interaction with neutral lipid membranes: influence of lipid packing and protein charges, Chemistry and Physics of Lipids, vol.162, issue.1-2, pp.17-24, 2009.
DOI : 10.1016/j.chemphyslip.2009.08.002

URL : https://hal.archives-ouvertes.fr/hal-00437701

C. Carrillo, J. A. Teruel, F. J. Aranda, and A. Ortiz, Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1611, issue.1-2, pp.91-97, 2003.
DOI : 10.1016/S0005-2736(03)00029-4

M. Deleu, J. Lorent, L. Lins, R. Brasseur, N. Braun et al., Mingeot-Leclercq. Effects of surfactin on membrane models displaying lipid phase separation, Biochimica et biophysica acta, issue.2, pp.1828801-1828816, 2013.

J. L. Vázquez, S. Merino, Ò. Dom?nech, M. Berlanga, M. Viñas et al., Determination of the partition coefficients of a homologous series of ciprofloxacin: influence of the N-4 piperazinyl alkylation on the antimicrobial activity, International Journal of Pharmaceutics, vol.220, issue.1-2, pp.53-62, 2001.
DOI : 10.1016/S0378-5173(01)00646-9

H. Bensikaddour, K. Snoussi, L. Lins, F. Van-bambeke, P. M. Tulkens et al., Interactions of ciprofloxacin with DPPC and DPPG: Fluorescence anisotropy, ATR-FTIR and 31P NMR spectroscopies and conformational analysis, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.11, pp.17782535-17782578, 2008.
DOI : 10.1016/j.bbamem.2008.08.015

G. De-arriba, M. Calvino, S. Benito, and T. Parra, Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission, Toxicology Letters, vol.218, issue.1, pp.30-38, 2013.
DOI : 10.1016/j.toxlet.2013.01.007

A. Berquand, M. Mingeot-leclercq, and Y. F. Dufrêne, Real-time imaging of drug???membrane interactions by atomic force microscopy, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1664, issue.2, pp.1664198-205, 2004.
DOI : 10.1016/j.bbamem.2004.05.010

N. Fa, L. Lins, P. J. Courtoy, Y. Dufrêne, P. Van-der-smissen et al., Decrease of elastic moduli of DOPC bilayers induced by a macrolide antibiotic, azithromycin, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.7, pp.17681830-17681838, 2007.
DOI : 10.1016/j.bbamem.2007.04.013

D. R. Walters, J. D. Dutcher, and O. Wintersteiner, THE STRUCTURE OF MYCOSAMINE, Journal of the American Chemical Society, vol.79, issue.18, pp.5076-5077, 1957.
DOI : 10.1021/ja01575a070

E. L. Hazen and R. Brown, Fungicidin, an Antibiotic Produced by a Soil Actinomycete, Experimental Biology and Medicine, vol.76, issue.1, pp.93-97, 1951.
DOI : 10.3181/00379727-76-18397

H. A. Gallis, R. H. Drew, and W. W. Pickard, Amphotericin B: 30 Years of Clinical Experience, Clinical Infectious Diseases, vol.12, issue.2, pp.308-337, 1990.
DOI : 10.1093/clinids/12.2.308

A. W. Ng, K. M. Wasan, and G. Lopez-berestein, Development of liposomal polyene antibiotics : an historical perspective Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Société canadienne des sciences pharmaceutiques, pp.67-83, 2003.

A. J. Carrillo-muñoz, G. Quindós, C. Tur, M. T. Ruesga, Y. Miranda et al., In-vitro antifungal activity of liposomal nystatin in comparison with nystatin, amphotericin B cholesteryl sulphate, liposomal amphotericin B, amphotericin B lipid complex, amphotericin B desoxycholate, fluconazole and itraconazole, Journal of Antimicrobial Chemotherapy, vol.44, issue.3, pp.44397-401, 1999.
DOI : 10.1093/jac/44.3.397

S. Arikan, L. Ostrosky-zeichner, M. Lozano-chiu, V. Paetznick, D. Gordon et al., In Vitro Activity of Nystatin Compared with Those of Liposomal Nystatin, Amphotericin B, and Fluconazole against Clinical Candida Isolates, Journal of Clinical Microbiology, vol.40, issue.4, pp.1406-1418, 2002.
DOI : 10.1128/JCM.40.4.1406-1412.2002

R. Semis, I. Polacheck, and E. Segal, Nystatin-Intralipid Preparation: Characterization and In Vitro Activity Against Yeasts and Molds, Mycopathologia, vol.36, issue.Suppl 1, pp.333-374, 2010.
DOI : 10.1007/s11046-009-9271-z

D. Ellis, Amphotericin B: spectrum and resistance, Journal of Antimicrobial Chemotherapy, vol.49, issue.suppl 1, pp.7-10, 2002.
DOI : 10.1093/jac/49.suppl_1.7

URL : http://jac.oxfordjournals.org/cgi/content/short/49/suppl_1/7

A. M. Tortorano, A. Prigitano, E. Biraghi, and M. A. Viviani, The European Confederation of Medical Mycology (ECMM) survey of candidaemia in Italy: in vitro susceptibility of 375 Candida albicans isolates and biofilm production, Journal of Antimicrobial Chemotherapy, vol.56, issue.4, pp.777-786, 2005.
DOI : 10.1093/jac/dki310

Z. A. Kanafani and J. R. Perfect, Resistance to Antifungal Agents: Mechanisms and Clinical Impact, Clinical Infectious Diseases, vol.46, issue.1, pp.120-128, 2008.
DOI : 10.1086/524071

URL : http://cid.oxfordjournals.org/cgi/content/short/46/1/120

M. A. Pfaller, S. A. Messer, L. Boyken, S. Tendolkar, R. J. Hollis et al., Geographic variation in the susceptibilities of invasive isolates of Candida glabrata to seven systemically active antifungal agents : a global assessment from the ARTEMIS Antifungal Surveillance Program conducted in, Journal of clinical microbiology, issue.7, pp.423142-423148, 2001.

S. Ball, C. J. Bessell, and A. Mortimer, The Production of Polyenic Antibiotics by Soil Streptomycetes, Journal of General Microbiology, vol.17, issue.1, pp.96-103, 1957.
DOI : 10.1099/00221287-17-1-96

J. O. Lampen, E. R. Morgan, A. Slocum, and P. Arnow, Absorption of nystatin by microorganisms, Journal of bacteriology, vol.78, pp.282-291, 1959.

F. M. Harold, Adv in Microbial Physiology APL, 1970.

A. P. Stuyk, I. Hoette, G. Drost, J. M. Waisvisz, T. Van-eek et al., Pimaricin, a new antifungal antibiotic, Antibiotics annual, vol.5, pp.878-85, 1957.

G. M. Hahn, G. C. Li, and E. Shiu, Interaction of amphotericin B and 43 degrees hyperthermia, Cancer research, vol.37, issue.3, pp.761-765, 1977.

S. Hartsel and J. Bolard, Amphotericin B: new life for an old drug, Trends in Pharmacological Sciences, vol.17, issue.12, pp.445-449, 1996.
DOI : 10.1016/S0165-6147(96)01012-7

DOI : 10.1073/pnas.48.6.1049

H. Goldfine, Adv in Microbial Physiology APL, 1972.

J. T. Dodge and G. B. Phillips, Composition of phospholipids and of phospholipid fatty acids and aldehydes in human red cells, Journal of lipid research, vol.8, issue.6, pp.667-75, 1967.

J. O. Lampen and P. M. Arnow, Location and role of sterol at nystatin-binding sites, Journal of bacteriology, vol.84, issue.6, pp.1952-60, 1962.

W. A. Zygmunt and P. A. Tavormina, Steroid interference with antifungal activity of polyene antibiotics, Applied microbiology, vol.14, issue.6, pp.865-874, 1966.

B. De-kruijff, W. Gerritsen, A. Oerlemans, R. A. Demel, and L. L. Van-deenen, Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.339, issue.1, pp.30-43, 1974.
DOI : 10.1016/0005-2736(74)90330-7

D. B. Archer, Effect of the lipid composition of Mycoplasma mycoides subspecies Capri and phosphatidylcholine vesicles upon the action of polyene antibiotics, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.436, issue.1
DOI : 10.1016/0005-2736(76)90220-0

J. Bolard, M. Seigneuret, and G. Boudet, Interaction between phospholipid bilayer membranes and the polyene antibiotic amphotericin B, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.599, issue.1, pp.280-293, 1980.
DOI : 10.1016/0005-2736(80)90074-7

J. Bolard, P. Legrand, F. Heitz, and B. Cybulska, One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium, Biochemistry, vol.30, issue.23, pp.305707-305722, 1991.
DOI : 10.1021/bi00237a011

R. Seoane, J. Miñones, O. Conde, M. Casas, and E. Iribarnegaray, Molecular organisation of amphotericin B at the air???water interface in the presence of sterols: a monolayer study, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1375, issue.1-2, pp.73-83, 1998.
DOI : 10.1016/S0005-2736(98)00137-0

P. Dynarowicz-??tka, J. Miñones, O. Conde, M. Casas, and E. Iribarnegaray, BAM studies on the penetration of amphotericin B into lipid mixed monolayers of cellular membranes, Applied Surface Science, vol.246, issue.4, pp.334-341, 2005.
DOI : 10.1016/j.apsusc.2004.11.037

P. Dynarowicz-??tka and R. Seoane, Study of penetration of amphotericin B into cholesterol or ergosterol containing dipalmitoyl phosphatidylcholine Langmuir monolayers, Colloids and Surfaces B: Biointerfaces, vol.27, issue.2-3, pp.249-263, 2003.
DOI : 10.1016/S0927-7765(02)00099-1

W. C. Chen and R. Bittman, Kinetics of association of amphotericin B with vesicles, Biochemistry, vol.16, issue.19, pp.4145-4154, 1977.
DOI : 10.1021/bi00638a002

A. Vertut-croquin, J. Bolard, M. Chabbert, and C. Gary-bobo, Differences in the interaction of the polyene antibiotic amphotericin B with cholesterol-or ergosterolcontaining phospholipid vesicles. A circular dichroism and permeability study, Biochemistry, issue.12, pp.222939-222983, 1983.

S. Clejan and R. Bittman, Rates of amphotericin B and filipin association with sterols. A study of changes in sterol structure and phospholipid composition of vesicles, The Journal of biological chemistry, vol.260, issue.5, pp.2884-2893, 1985.

C. Charbonneau, I. Fournier, S. Dufresne, J. Barwicz, and P. Tancrède, The interactions of amphotericin B with various sterols in relation to its possible use in anticancer therapy, Biophysical Chemistry, vol.91, issue.2, pp.125-133, 2001.
DOI : 10.1016/S0301-4622(01)00164-8

C. M. Gary-bobo, Polyene???sterol interaction and selective toxicity, Biochimie, vol.71, issue.1, pp.37-47, 1989.
DOI : 10.1016/0300-9084(89)90129-6

C. Hsuchen and D. Feingold, Selective Membrane Toxicity of the Polyene Antibiotics: Studies on Natural Membranes, Antimicrobial Agents and Chemotherapy, vol.4, issue.3, pp.316-325, 1973.
DOI : 10.1128/AAC.4.3.316

M. Baginski, H. Resat, and E. Borowski, Comparative molecular dynamics simulations of amphotericin B???cholesterol/ergosterol membrane channels, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1567, issue.12, pp.63-78, 2002.
DOI : 10.1016/S0005-2736(02)00581-3

M. Baran, E. Borowski, and J. Mazerski, Molecular modeling of amphotericin B???ergosterol primary complex in water II, Biophysical Chemistry, vol.141, issue.2-3, pp.162-170, 2009.
DOI : 10.1016/j.bpc.2009.01.010

URL : https://hal.archives-ouvertes.fr/hal-00519617

A. Neumann, M. Baginski, and J. Czub, How Do Sterols Determine the Antifungal Activity of Amphotericin B? Free Energy of Binding between the Drug and Its Membrane Targets, Journal of the American Chemical Society, vol.132, issue.51, pp.18266-72, 2010.
DOI : 10.1021/ja1074344

A. Neumann, J. Czub, and M. Baginski, On the Possibility of the Amphotericin B-Sterol Complex Formation in Cholesterol- and Ergosterol-Containing Lipid Bilayers: A Molecular Dynamics Study, The Journal of Physical Chemistry B, vol.113, issue.48, pp.15875-85, 2009.
DOI : 10.1021/jp905133f

C. C. Hsuchen and D. S. Feingold, Selective Membrane Toxicity of the Polyene Antibiotics: Studies on Lecithin Membrane Models (Liposomes), Antimicrobial Agents and Chemotherapy, vol.4, issue.3, pp.309-324, 1973.
DOI : 10.1128/AAC.4.3.309

J. Bolard, How do the polyene macrolide antibiotics affect the cellular membrane properties?, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.864, issue.3-4, pp.257-304, 1986.
DOI : 10.1016/0304-4157(86)90002-X

B. De-kruijff, W. Gerritsen, A. Oerlemans, P. Vandijk, R. A. Demel et al., Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. II. Temperature dependence of the polyene antibiotic-sterol complex formation, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.339, issue.1, pp.44-56, 1974.
DOI : 10.1016/0005-2736(74)90331-9

A. Coutinho and M. Prieto, Cooperative Partition Model of Nystatin Interaction with Phospholipid Vesicles, Biophysical Journal, vol.84, issue.5, pp.3061-78, 2003.
DOI : 10.1016/S0006-3495(03)70032-0

S. C. Kinsky, Effect of polyene antibiotics on protoplasts of Neurospora crassa, Journal of bacteriology, vol.83, pp.351-359, 1962.

C. L. Slayman and C. W. Slayman, Measurement of Membrane Potentials in Neurospora, Science, vol.136, issue.3519, pp.876-883, 1962.
DOI : 10.1126/science.136.3519.876

R. Holz and A. Finkelstein, The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. The Journal of general physiology, pp.125-170, 1970.

B. V. Cotero, S. Rebolledo-antúnez, and I. Ortega-blake, On the role of sterol in the formation of the amphotericin B channel, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1375, issue.1-2, pp.43-51, 1998.
DOI : 10.1016/S0005-2736(98)00134-5

B. E. Cohen, A sequential mechanism for the formation of aqueous channels by amphotericin B in liposomes. The effect of sterols and phospholipid composition, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1108, issue.1
DOI : 10.1016/0005-2736(92)90113-Z

B. Venegas, J. González-damián, H. Celis, and I. Ortega-blake, Amphotericin B Channels in the Bacterial Membrane: Role of Sterol and Temperature, Biophysical Journal, vol.85, issue.4, pp.2323-2355, 2003.
DOI : 10.1016/S0006-3495(03)74656-6

B. E. Cohen, Amphotericin B Membrane Action: Role for Two Types of Ion Channels in Eliciting Cell Survival and Lethal Effects, The Journal of Membrane Biology, vol.36, issue.Pt 3, pp.1-20, 2010.
DOI : 10.1007/s00232-010-9313-y

D. M. Kami?ski, Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments, European Biophysics Journal, vol.10, issue.271, 2014.
DOI : 10.1007/s00249-014-0983-8

C. Tsai and . Su, Quantifying membrane permeability of amphotericin B ion channels in single living cells, Biochimica et biophysica acta, issue.8, pp.18281794-801, 2013.

W. I. Gruszecki, M. Gago?, M. Here?, and P. Kernen, Organization of antibiotic amphotericin B in model lipid membranes. A mini review, Cellular & molecular biology letters, vol.8, issue.1, pp.161-70, 2003.

W. I. Gruszecki, M. Gagos, and P. Kernen, Polyene antibiotic amphotericin B in monomolecular layers: spectrophotometric and scanning force microscopic analysis, FEBS Letters, vol.1373, issue.1-3, pp.92-98, 2002.
DOI : 10.1016/S0014-5793(02)03009-0

E. P. Reeves, T. Murphy, P. Daly, and K. Kavanagh, Amphotericin B enhances the synthesis and release of the immunosuppressive agent gliotoxin from the pulmonary pathogen Aspergillus fumigatus, Journal of Medical Microbiology, vol.53, issue.8, pp.53719-53744, 2004.
DOI : 10.1099/jmm.0.45626-0

T. Katsu, S. Okada, T. Imamura, K. Komagoe, K. Masuda et al., Precise Size Determination of Amphotericin B and Nystatin Channels Formed in Erythrocyte and Liposomal Membranes Based on Osmotic Protection Experiments, Analytical Sciences, vol.24, issue.12, pp.241551-241557, 2008.
DOI : 10.2116/analsci.24.1551

B. E. Cohen, Amphotericin B toxicity and lethality: a tale of two channels, International Journal of Pharmaceutics, vol.162, issue.1-2, pp.95-106, 1998.
DOI : 10.1016/S0378-5173(97)00417-1

Y. M. Te-welscher, H. H. Ten-napel, M. M. Balagué, C. M. Souza, H. Riezman et al., Natamycin Blocks Fungal Growth by Binding Specifically to Ergosterol without Permeabilizing the Membrane, Journal of Biological Chemistry, vol.283, issue.10, pp.2836393-401, 2008.
DOI : 10.1074/jbc.M707821200

K. C. Gray, D. S. Palacios, I. Dailey, M. M. Endo, B. E. Uno et al., Amphotericin primarily kills yeast by simply binding ergosterol, Proceedings of the National Academy of Sciences, vol.109, issue.7, pp.2234-2243, 2012.
DOI : 10.1073/pnas.1117280109

B. De-kruijff and R. A. , Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.339, issue.1, pp.57-70, 1974.
DOI : 10.1016/0005-2736(74)90332-0

T. M. Anderson, M. C. Clay, A. G. Cioffi, K. A. Diaz, G. S. Hisao et al., Amphotericin forms an extramembranous and fungicidal sterol sponge, Nature Chemical Biology, vol.146, issue.5, pp.400-406, 2014.
DOI : 10.1016/0927-7765(96)01283-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992202

D. S. Palacios, I. Dailey, D. M. Siebert, B. C. Wilcock, and M. D. Burke, Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities, Proceedings of the National Academy of Sciences, vol.108, issue.17, pp.6733-6741, 2011.
DOI : 10.1073/pnas.1015023108

A. Strachecka, G. Borsuk, K. Olszewski, J. Paleolog, M. Gago? et al., The Effect of Amphotericin B on the Lifespan, Body-surface Protein Concentrations, and DNA Methylation Levels of Honey Bees (Apis mellifera), Journal of Apicultural Science, vol.56, issue.2, pp.107-113, 2012.
DOI : 10.2478/v10289-012-0028-4

R. Schneiter, B. Brügger, R. Sandhoff, G. Zellnig, A. Leber et al., Electrospray Ionization Tandem Mass Spectrometry (Esi-Ms/Ms) Analysis of the Lipid Molecular Species Composition of Yeast Subcellular Membranes Reveals Acyl Chain-Based Sorting/Remodeling of Distinct Molecular Species En Route to the Plasma Membrane, The Journal of Cell Biology, vol.175, issue.4, pp.741-54, 1999.
DOI : 10.1002/yea.320110602

E. M. O-'shaughnessy, C. A. Lyman, and T. J. Walsh, Amphotericin B : Polyene Resistance Mechanisms Antimicrobial Drug Resistance -Mechanisms of Drug Resistance, pp.299-304, 2009.

X. Su, K. Hayton, and T. E. Wellems, Genetic linkage and association analyses for trait mapping in Plasmodium falciparum, Nature Reviews Genetics, vol.73, issue.7, pp.497-506, 2007.
DOI : 10.1038/nrg2126

K. Haldar, N. Mohandas, B. U. Samuel, T. Harrison, N. L. Hiller et al., Protein and lipid trafficking induced in erythrocytes infected by malaria parasites, Cellular Microbiology, vol.95, issue.7, pp.383-95, 2002.
DOI : 10.1034/j.1600-0854.2000.010605.x

V. L. Lew, T. Tiffert, and H. Ginsburg, Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells, Blood, vol.101, issue.10, pp.4189-94, 2003.
DOI : 10.1182/blood-2002-08-2654

S. Vippagunta, Characterization of chloroquine-hematin ??-oxo dimer binding by isothermal titration calorimetry, BBA) -General Subjects, pp.1475133-140, 2000.
DOI : 10.1016/S0304-4165(00)00058-1

H. Ginsburg and R. A. , The effect of ferriprotoporphyrin IX and chloroquine on phospholipid monolayers and the possible implications to antimalarial activity, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.732, issue.1
DOI : 10.1016/0005-2736(83)90219-5

K. Becker, L. Tilley, J. L. Vennerstrom, D. Roberts, S. Rogerson et al., Oxidative stress in malaria parasite-infected erythrocytes: host???parasite interactions, International Journal for Parasitology, vol.34, issue.2, pp.163-89, 2004.
DOI : 10.1016/j.ijpara.2003.09.011

C. Asher, K. A. De-villiers, and T. J. Egan, Speciation of Ferriprotoporphyrin IX in Aqueous and Mixed Aqueous Solution Is Controlled by Solvent Identity, pH, and Salt Concentration, Inorganic Chemistry, vol.48, issue.16, pp.487994-8003, 2009.
DOI : 10.1021/ic900647y

P. Loria, S. Miller, M. Foley, and L. Tilley, Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials, The Biochemical journal, vol.2, pp.339363-70, 1999.

H. Ginsburg, O. Famin, J. Zhang, and M. Krugliak, Inhibition of glutathionedependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action, Biochemical Pharmacology, issue.10, pp.561305-1313, 1998.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques et al., Fate of haem iron in the malaria parasite Plasmodium falciparum, Biochemical Journal, vol.365, issue.2, pp.365343-365350, 2002.
DOI : 10.1042/bj20020793

A. N. Hoang, K. K. Ncokazi, K. A. De-villiers, D. W. Wright, and T. J. Egan, Crystallization of synthetic haemozoin (beta-haematin) nucleated at the surface of lipid particles, Dalton transactions, issue.5, pp.391235-391279, 2003.

E. Hempelmann, C. Motta, R. Hughes, S. A. Ward, and P. G. Bray, Plasmodium falciparum: sacrificing membrane to grow crystals?, Trends in Parasitology, vol.19, issue.1, pp.23-26, 2003.
DOI : 10.1016/S1471-4922(02)00011-9

S. Azouzi, Interactions de molécules antipaludiques avec des systèmes membranaires biomimétiques, 2011.

B. M. Greenwood, D. A. Fidock, D. E. Kyle, S. H. Kappe, P. L. Alonso et al., Malaria: progress, perils, and prospects for eradication, Journal of Clinical Investigation, vol.118, issue.4
DOI : 10.1172/JCI33996

M. Foley, Quinoline Antimalarials Mechanisms of Action and Resistance and Prospects for New Agents, Pharmacology & Therapeutics, vol.79, issue.1, pp.55-87, 1998.
DOI : 10.1016/S0163-7258(98)00012-6

P. B. Macomber and H. Sprinz, Morphological Effects of Chloroquine on Plasmodium berghei in Mice, Nature, vol.148, issue.5091, pp.937-946, 1967.
DOI : 10.1016/0035-9203(49)90050-4

D. C. Warhurst and D. J. Hockley, The mode of action of Chloroquine on blood stages of malaria parasites, Parasitology, vol.57, issue.4, p.23, 1967.

M. Aikawa, High-resolution autoradiography of malarial parasites treated with 3 H-chloroquine. The American journal of pathology, pp.277-84, 1972.

P. H. Schlesinger, D. J. Krogstad, and B. L. Herwaldt, Antimalarial agents: mechanisms of action., Antimicrobial Agents and Chemotherapy, vol.32, issue.6, pp.793-801, 1988.
DOI : 10.1128/AAC.32.6.793

S. R. Hawley, P. G. Bray, B. K. Park, and S. A. Ward, Amodiaquine accumulation in Plasmodium falciparum as a possible explanation for its superior antimalarial activity over chloroquine, Molecular and Biochemical Parasitology, vol.80, issue.1, pp.15-25, 1996.
DOI : 10.1016/0166-6851(96)02655-2

C. P. Sanchez, S. Wünsch, and M. Lanzer, Identification of a Chloroquine Importer in Plasmodium falciparum: DIFFERENCES IN IMPORT KINETICS ARE GENETICALLY LINKED WITH THE CHLOROQUINE-RESISTANT PHENOTYPE, Journal of Biological Chemistry, vol.272, issue.5, pp.2652-2660, 1997.
DOI : 10.1074/jbc.272.5.2652

T. J. Egan, Interactions of quinoline antimalarials with hematin in solution, Journal of Inorganic Biochemistry, vol.100, issue.5-6, pp.916-942, 2006.
DOI : 10.1016/j.jinorgbio.2005.11.005

P. A. Adams, P. A. Berman, T. J. Egan, P. J. Marsh, and J. Silver, The iron environment in heme and heme-antimalarial complexes of pharmacological interest, Journal of Inorganic Biochemistry, vol.63, issue.1, pp.69-77, 1996.
DOI : 10.1016/0162-0134(95)00212-X

A. Chai, R. Chevli, and C. Fitch, Ferriprotoporphyrin IX Fulfills the Criteria for Identification as the Chloroquine Receptor of Malaria Parasites., Biochemistry, vol.19, issue.8, pp.1543-1549, 1980.
DOI : 10.1021/bi00549a600

S. Moreau, B. Perly, and J. Biguet, Interaction of chloroquine with ferriprotophorphyrin IX. Nuclear magnetic resonance study, Biochimie, vol.64, pp.11-121015, 1982.

G. Blauer, Optical properties of complexes of antimalarial drugs with ferriprotoporphyrin IX in aqueous medium, Archives of Biochemistry and Biophysics, vol.251, issue.1, pp.306-314, 1986.
DOI : 10.1016/0003-9861(86)90078-0

L. B. Casabianca, D. An, J. K. Natarajan, J. N. Alumasa, P. D. Roepe et al., Quinine and Chloroquine Differentially Perturb Heme Monomer???Dimer Equilibrium, Inorganic Chemistry, vol.47, issue.13, pp.476077-81, 2008.
DOI : 10.1021/ic800440d

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584347

L. M. Ursos, K. F. Dubay, and P. D. Roepe, Antimalarial drugs influence the pH dependent solubility of heme via apparent nucleation phenomena, Molecular and Biochemical Parasitology, vol.112, issue.1, pp.11-17, 2001.
DOI : 10.1016/S0166-6851(00)00342-X

L. M. Ursos, S. M. Dzekunov, and P. D. Roepe, The effects of chloroquine and verapamil on digestive vacuolar pH of P. falciparum either sensitive or resistant to chloroquine, Molecular and Biochemical Parasitology, vol.110, issue.1, pp.125-134, 2000.
DOI : 10.1016/S0166-6851(00)00262-0

C. D. Fitch, Y. Chen, and G. Cai, Chloroquine-induced Masking of a Lipid That Promotes Ferriprotoporphyrin IX Dimerization in Malaria, Journal of Biological Chemistry, vol.278, issue.25, pp.27822596-27822605, 2003.
DOI : 10.1074/jbc.M301407200

R. C. San-george, R. L. Nagel, and M. E. Fabry, On the mechanism for the red-cell accumulation of mefloquine, an antimalarial drug, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.803, issue.3, pp.174-181, 1984.
DOI : 10.1016/0167-4889(84)90007-7

R. Chevli and C. D. Fitch, The antimalarial drug mefloquine binds to membrane phospholipids., Antimicrobial Agents and Chemotherapy, vol.21, issue.4, pp.581-587, 1982.
DOI : 10.1128/AAC.21.4.581

J. Desneves, Photoaffinity labeling of mefloquine-binding proteins in human serum, uninfected erythrocytes and Plasmodium falciparum-infected erythrocytes, Molecular and Biochemical Parasitology, vol.82, issue.2, pp.181-194, 1996.
DOI : 10.1016/0166-6851(96)02732-6

D. E. Schwartz, G. Eckert, D. Hartmann, B. Weber, D. Richard-lenoble et al., Single Dose Kinetics of Mefloquine in Man, Chemotherapy, vol.28, issue.1, pp.70-84, 1982.
DOI : 10.1159/000238062

A. F. Slater, Chloroquine: Mechanism of drug action and resistance in plasmodium falciparum, Pharmacology & Therapeutics, vol.57, issue.2-3, pp.203-235, 1993.
DOI : 10.1016/0163-7258(93)90056-J

A. C. Chou and C. D. Fitch, Control of heme polymerase by chloroquine and other quinoline derivatives. Biochemical and biophysical research communications, pp.422-429, 1993.

G. Vanderkooi, P. Prapunwattana, and Y. Yuthavong, Evidence for electrogenic accumulation of mefloquine by malarial parasites, Biochemical Pharmacology, vol.37, issue.19, pp.3623-3631, 1988.
DOI : 10.1016/0006-2952(88)90394-2

C. D. Fitch, R. L. Chan, and R. Chevli, Chloroquine Resistance in Malaria: Accessibility of Drug Receptors to Mefloquine, Antimicrobial Agents and Chemotherapy, vol.15, issue.2, pp.258-62, 1979.
DOI : 10.1128/AAC.15.2.258

C. Mullié, A. Jonet, C. Desgrouas, N. Taudon, and P. Sonnet, Differences in anti-malarial activity of 4-aminoalcohol quinoline enantiomers and investigation of the presumed underlying mechanism of action, Malaria Journal, vol.11, issue.1, p.65, 2012.
DOI : 10.1038/sj.bjp.0705721

J. M. Karle, R. Olmeda, L. Gerena, and W. K. Milhous, Plasmodium falciparum: Role of Absolute Stereochemistry in the Antimalarial Activity of Synthetic Amino Alcohol Antimalarial Agents, Experimental Parasitology, vol.76, issue.4, pp.345-51, 1993.
DOI : 10.1006/expr.1993.1042

R. Shepherd, Use Of (+)mefloquine For The Treatment Of Malaria -The Lens, 1998.

H. Ginsburg and R. A. , Interactions of hemin, antimalarial drugs and hemin-antimalarial complexes with phospholipid monolayers, Chemistry and Physics of Lipids, vol.35, issue.4, pp.331-378, 1984.
DOI : 10.1016/0009-3084(84)90076-8

K. K. Ncokazi and T. J. Egan, A colorimetric high-throughput ??-hematin inhibition screening assay for use in the search for antimalarial compounds, Analytical Biochemistry, vol.338, issue.2, pp.306-325, 2005.
DOI : 10.1016/j.ab.2004.11.022

S. Henon and J. Meunier, Microscope at the Brewster angle: Direct observation of first???order phase transitions in monolayers, Review of Scientific Instruments, vol.62, issue.4, p.936, 1991.
DOI : 10.1063/1.1142032

D. Hoenig and D. Moebius, Direct visualization of monolayers at the air-water interface by Brewster angle microscopy, The Journal of Physical Chemistry, vol.95, issue.12, pp.4590-4592, 1991.
DOI : 10.1021/j100165a003

D. M. Jameson and G. Weber, Gregorio Weber, 1916???1997: A Fluorescent Lifetime, Biophysical Journal, vol.75, issue.1, pp.419-440, 1916.
DOI : 10.1016/S0006-3495(98)77528-9

T. Parasassi, G. De-stasio, G. Ravagnan, R. M. Rusch, and E. Gratton, Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence, Biophysical Journal, vol.60, issue.1, pp.179-89, 1991.
DOI : 10.1016/S0006-3495(91)82041-0

S. A. Sanchez, M. A. Tricerri, G. Gunther, and E. Gratton, Laurdan generalized polarization : from cuvette to microscope, Modern Research and Educational Topics in Microscopy, pp.1007-1014, 2007.

K. Hac-wydro and P. Dynarowicz-?atka, Nystatin in Langmuir monolayers at the air/water interface, Colloids and Surfaces B: Biointerfaces, vol.53, issue.1, pp.64-71, 2006.
DOI : 10.1016/j.colsurfb.2006.07.015

O. Domènech, J. Ignés-mullol, M. T. Montero, and J. Hernandez, Unveiling a complex phase transition in monolayers of a phospholipid from the annular region of transmembrane proteins, The journal of physical chemistry B, vol.111, issue.37, pp.10946-51, 2007.

J. Miñones, S. Pais, O. Conde, and P. Dynarowicz-?atka, Interactions between membrane sterols and phospholipids in model mammalian and fungi cellular membranes ??? A Langmuir monolayer study, Biophysical Chemistry, vol.140, issue.1-3, pp.1-369, 2009.
DOI : 10.1016/j.bpc.2008.11.011

S. Alexandre, G. Colé, S. Coutard, C. Monnier, V. Norris et al., Interaction of FtsZ protein with a DPPE Langmuir film, Colloids and Surfaces B: Biointerfaces, vol.23, issue.4, pp.391-395, 2002.
DOI : 10.1016/S0927-7765(01)00262-4

M. N. Islam and T. Kato, -Glycerol at the Air???Water Interface, Langmuir, vol.21, issue.24, pp.10920-10922, 2005.
DOI : 10.1021/la051563x

URL : https://hal.archives-ouvertes.fr/hal-00107364

M. V. Dwivedi, R. K. Harishchandra, O. Koshkina, M. Maskos, and H. J. Galla, Size Influences the Effect of Hydrophobic Nanoparticles on Lung Surfactant Model Systems, Biophysical Journal, vol.106, issue.1, pp.289-98, 2014.
DOI : 10.1016/j.bpj.2013.10.036

R. Meade, Drug therapy reviews : clinical pharmacology and therapeutic use of antimycotic drugs, American journal of hospital pharmacy, vol.36, issue.10, pp.1326-1360, 1979.

A. Coutinho, L. Silva, A. Fedorov, and M. Prieto, Cholesterol and Ergosterol Influence Nystatin Surface Aggregation: Relation to Pore Formation, Biophysical Journal, vol.87, issue.5, pp.3264-76, 2004.
DOI : 10.1529/biophysj.104.044883

J. Milhaud, M. A. Hartmann, and J. Bolard, Interaction of the polyene antibiotic amphotericin B with model membranes: differences between small and large unilamellar vesicles, Biochimie, vol.71, issue.1, pp.49-56, 1989.
DOI : 10.1016/0300-9084(89)90130-2

. Ol, M. Weso?owska, J. Kuzdza?, K. Strancar, and . Michalak, Interaction of the chemopreventive agent resveratrol and its metabolite, piceatannol, with model membranes, Biochimica et biophysica acta, issue.9, pp.17881851-60, 2009.

J. Bolard, M. Cheron, and J. Mazerski, Effect of surface curvature on the interaction of single lamellar phospholipid vesicles with aromatic and nonaromatic heptaene antibiotics (vacidin A and amphotericin B), Biochemical Pharmacology, vol.33, issue.22, pp.3675-3680, 1984.
DOI : 10.1016/0006-2952(84)90156-4

J. Miñones, C. Carrera, P. Dynarowicz-?atka, J. Miñones, O. Conde et al., Orientational Changes of Amphotericin B in Langmuir Monolayers Observed by Brewster Angle Microscopy, Langmuir, vol.17, issue.5, pp.1477-1482, 2001.
DOI : 10.1021/la0008380

A. Marty and A. Finkelstein, Pores formed in lipid bilayer membranes by nystatin, Differences in its one-sided and two-sided action, The Journal of General Physiology, vol.65, issue.4, pp.515-541, 1975.
DOI : 10.1085/jgp.65.4.515

P. Van-hoogevest and B. De-kruijff, Effect of amphotericin B on cholesterol-containing liposomes of egg phosphatidylcholine and didocosenoyl phosphatidylcholine. A refinement of the model for the formation of pores by amphotericin B in membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.511, issue.3, pp.397-407, 1978.
DOI : 10.1016/0005-2736(78)90276-6

I. Gruda and J. Bolard, On the existence of an amphotericin B ??? sterol complex in lipid vesicles and in propanol???water systems, Biochemistry and Cell Biology, vol.65, issue.3, pp.234-242, 1987.
DOI : 10.1139/o87-030

A. J. Verkleij and R. F. , The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freezeetch electron microscopy, pp.178-193, 1973.

R. Michael, . Yeaman, Y. Nannette, and . Yount, Mechanisms of antimicrobial peptide action and resistance, Pharmacological reviews, vol.55, issue.1, pp.27-55, 2003.

Y. Shai, Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by ??-helical antimicrobial and cell non-selective membrane-lytic peptides, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1462, issue.1-2, pp.55-70, 1999.
DOI : 10.1016/S0005-2736(99)00200-X

R. F. Zwaal and A. J. Schroit, Pathophysiologic implications of membrane phospholipid asymmetry in blood cells, Blood, vol.89, issue.4, pp.1121-1153, 1997.