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Introduction

015 has seen the very appropriate conjunction of the international year of light and
the centenary of Einstein’s general theory of relativity; it would have been difficult
to find a better occasion for presenting a thesis dedicated to the propagation of light in
cosmology. The paradigmatic revolution that represented general relativity one hundred
years ago indeed deeply changed our vision of the Universe, setting the foundations of
modern cosmology. Since then, this discipline grew and lived, becoming an entire field
of research. Physical phenomena that were formerly considered unmeasurable, such as
gravitational lensing, or whose very existence was ignored, such as the cosmic microwave
background radiation, became powerful cosmological probes, and have now reached an
unprecedented level of precision.

In contrast with this increasing accuracy of observations—which had us enter into
the so-called precision era of cosmology—, the theoretical framework currently used to
interpret the associated data is remarkably simple. In fact, for most practical purposes, it
has barely changed since the pioneering works of Friedmann and Lemaitre in the 1920s.
There was however no reason for such a change, since to date the Friedmann-Lemaitre
cosmological model, based on the assumption that the Universe is spatially homogeneous
and isotropic, has shamelessly passed all observational tests. Of course, the Universe is not
strictly homogeneous, especially on small scales, but it seems that such an inhomogeneity
does not need to be taken into account when interpreting cosmological observations.

The tremendous success of the homogeneous and isotropic model is particularly striking
if we consider the case of distance measurements. On astronomical and cosmological scales,
distances are mostly measured by comparing the apparent size or luminosity of a light
source with its intrinsic size or luminous power. Consequently, such measurements rely
on the good understanding of light propagation through the cosmos, in particular the
way light beams are focused by matter lying between the sources and us. The point is
that current observations involve beams with extremely different sizes: from less than a
microarcsecond for supernova observation, to a few degrees with baryon acoustic oscillation
experiments, in terms of angular aperture. Depending on the observations at stake, light is
thus expected to experience a completely different Universe. Yet the Friedmann-Lemaitre
model arises as one model to fit them all.

Why, and to which extent, such a simplistic model can be considered a good approxima-
tion for interpreting cosmological observations? If not, how to go beyond the assumptions
of perfect homogeneity and isotropy? are the fundamental questions which motivated the
present thesis. I chose to divide this dissertation in four parts, the first two being dedicated
to fundamentals, while the last two report the original research that I have performed
during the last three years. More precisely, in Part [} T introduce the laws governing light
propagation in curved spacetime, from a relativist’s point of view. The presentation is
intended to be modern and pedagogical, with a few novel elements absent from textbooks.
Part [[Tis dedicated to standard cosmology: after having presented the Friedmann-Lemaitre

Xi
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Introduction

model and the standard perturbation theory about it, I review the current observational
status, emphasizing the precise points on which the understanding of light propagation
through the Universe is required, and where the standard model is used. Part [[I])is the
heart of this thesis, it is devoted to the analysis of the effect of small-scale structures
on the interpretation of observations, in particular the Hubble diagram of supernovae. I
demonstrate that this effect may be non-negligible given the accuracy reached by current
and future measurements, and I propose a new theoretical framework for addressing this
issue. Finally, Part [[V] deals with two works related to cosmology beyond perfect isotropy.
Besides, elements of differential geometry and general relativity can be found in Appendix.

The research reported in this dissertation has been done in collaboration with several
colleagues, and led to the following articles:

1. P. Fleury, H. Dupuy, and J.-P. Uzan Interpretation of the Hubble diagram in a
nonhomogeneous universe. Phys. Rev. D 87, 123526 (2013), [arXiv:1302.5308].

2. P. Fleury, H. Dupuy, and J.-P. Uzan. Can all cosmological observations be accu-
rately interpreted with a unique geometry? Phys. Rev. Lett. 111, 091302 (2013),
[arXiv:1304.7791]. This letter has been highlighted by the science popularisation
website Phys.org.

3. P. Fleury. Swiss-cheese models and the Dyer-Roeder approzimation. JCAP06(2014)054,
[arXiv:1402.3123].

4. P. Fleury, J. P. Beltran Almeida, C. Pitrou, and J.-P. Uzan. On the stability and
causality of scalar-vector theories. JCAP11(2014)043, [arXiv:1406.6254]

5. P. Fleury, C. Pitrou, and J.-P. Uzan. Light propagation in a homogeneous and
anisotropic universe. Phys. Rev. D 91, 043511, [arXiv:1410.8473].

6. P. Fleury, J. Larena, and J.-P. Uzan. The theory of stochastic cosmological lensing.
Accepted for publication in JCAP. |[arXiv:1508.07903].


http://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.123526
http://arxiv.org/abs/1302.5308
http://link.aps.org/doi/10.1103/PhysRevLett.111.091302
http://arxiv.org/abs/1304.7791
http://phys.org/news/2013-09-universe-conflicting-cosmological.html
http://iopscience.iop.org/1475-7516/2014/06/054/
http://arxiv.org/abs/1402.3123
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Conventions, notations, and acronyms

Units. Numerical results are mostly given in terms of units of the International System.
In abstract calculations, we adopt the usual relativistic convention of ¢ = 1, so that lengths
and times have the same dimension.

Differential geometry. We follow the conventions of Misner, Thorne, Wheeler [1]. In
particular, the signature of spacetime’s metric is taken to be (— + ++). We use Einstein’s
summation rule over repeated indices, the range of the sum being dictated by the nature
of the indices (see Table [1)). As often as possible, we dedicate indices of the beginning of
the alphabet to components over orthonormal bases.

Notations. See Table [I] for a list of the recurrent symbols used in this dissertation. As
often in the relativity literature, vectors and tensors are identified with their components
over an arbitrary coordinate basis (e.g. w will be equivalently denoted u*). Partial
derivatives and covariant derivatives with respect to, e.g. coordinate z* are abridged as

of _ o ,_
L =o=1, )
Va/axuf = Vuf = f;u (2>

for any function or tensor f.
Sets of indices are symmetrised and antisymmetrised according to

1
Tpsopn) = Y Doty (3)
: UESn
1
Thoreogn] = — 2 2(0) Totps pun); (4)
to€ESn

for any tensor or subtensor T', where .S,, denotes the set of all permutations o of n elements,
and £(0) is the signature of o, i.e. +1 or —1 depending of whether it consists of an even
or odd number of transpositions, respectively. In particular,

(T = Top) - ()

N | —

(T + Top) Ty =

N | —

Tiw) =

Acronyms. They will be defined when used for the first time. See also Table
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Conventions, notations, and acronyms

Notation

Description

[ 111

bold symbols A, g, D, ...

greek indices o, 3, ..., v, ...

lowercase latin indices a, 0, ... 4,7, ...
uppercase latin indices A, B, ..., I, J,...
dQ? = d#? + sin? Odp?

[hvpo]

g = /Gl po)

Ly

fLh eSS NAY

3

H =a'da/dt
H=a"'da/dn = aH
Ql‘

0 =0dp/p

op

fro,a

Mo

definition

equality in a given coordinate system
vectors, tensors, and matrices

run from 0 to 3

run from 1 to 3

run from 1 to 2

infinitesimal solid angle in spherical coordinates
permutation symbol with [0123] =1
Levi-Civita tensor

Lie derivative along vector V
Killing vector, or separation vector
covariant derivatives

connection coefficients

curvature tensor

Ricci tensor, scalar

Einstein tensor

hypersurface

induced metric on a hypersurface
worldline

four-velocity

proper time

wave four-vector

affine parameter along null geodesics
source, observation events

Sachs (screen) basis

screen projector

optical tidal matrix

Ricci, Weyl lensing scalars

Wronski matrix

Jacobi matrix

amplification matrix

deformation rate matrix

null expansion rate, null shear rate
cosmic time

cosmic scale factor

conformal time, with dt = adn
Hubble expansion rate

conformal Hubble expansion rate
cosmological parameter associated with x
density contrast

Dirac distribution

smoothness parameter

Solar mass

Table 1 Description of the main notations used in this thesis.




Conventions, notations, and acronyms

Acronym | Signification
BAO | Baryon Acoustic Oscillation
BOSS | Baryon Oscillation Spectroscopic Survey
c.c. | complex conjugate
CFHT(LenS) | Canada-France-Hawaii-Telescope (Lensing Survey)
CMB | Cosmic Microwave Background
COSMOGRAIL | COsmological MOnitoring of GRAvItational Lenses
FL | Friedmann-Lemaitre
GR | General Relativity
HST | Hubble Space Telescope
JLA | Joint Lightcurve Analysis
(K)DR | (Kantowski)-Dyer-Roeder
ACDM | A Cold Dark Matter
LRG | Luminous Red Galaxy
LSST | Large Synoptic Survey Telescope
LTB | Lemaitre-Tolman-Bondi
MLCS | Multicolour Light Curve Shape
RS | Rees-Sciama
SALT | Spectral Adaptive Lightcurve Template
SDSS | Sloan Digital Sky Survey
SNLS | SuperNova Legacy Survey
SC | Swiss Cheese
SL | Strong gravitational Lensing
SN(e)(Ia) | (Type Ia) SuperNova(e)
(I)SW | (Integrated) Sachs-Wolfe
VLBI | Very Long Baseline Interferometry
WEFIRST | Wide-Field InfraRed Survey Telescope
WL | Weak gravitational Lensing
WMAP | Wilkinson Microwave Anisotropy Probe

Table 2 List of acronyms and their signification.
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CHAPTER 1

From electromagnetism
to geometric optics

N 1860, Maxwell unified electricity, magnetism, and light in a single physical theory, thus
I providing foundations for the phenomenological laws of geometric optics formulated
earlier by Euclid, Newton, Snell, Descartes, or Fermat. Because it is quite naturally
extended in the presence of gravity, described by Einstein’s general relativity, Maxwell’s
theory not only teaches us about the nature of light, it also tells us how its propagation is
affected by gravitational fields. This first chapter is a journey from standard Maxwell’s
electromagnetism to gravitational lensing, in which we review in details how gravity is
able to modify the path of light, but also its frequency, energy, and polarisation.

Contents
(1.1 Electromagnetism| . .. .. ... ... ............... 4
(1.1.1 In Minkowski spacetime| . . . . . . . .. ... .. ... ..... 4
(1.1.2  In curved spacetime| . . . . . ... ... ... .. ........ )
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(1.2.2  Photons follow null geodesics| . . . . . .. ... ... ... ... 10
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(1.2.4  Conserved quantities| . . . . . . . .. ... ... ... ...... 13
(1.2.5 Fermat’s principle] . . . . .. .. ... oo o0 13
1.3 Observables of an electromagnetic wave| . . . . . .. ... ... 15
(3.1 Kinematics| . . . . . .. . . o 16
[1.3.2  Emnergetics and photon conservation| . . . .. .. ... ..... 19
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Chapter 1  From electromagnetism to geometric optics

1.1 Electromagnetism

Maxwell’s theory of electromagnetism is naturally formulated in Minkowski spacetime,
the structure of which it historically revealed, leading to the development of special, and
later general, relativity. This section aims at reminding this standard formulation and
describing its extension in the presence of gravity. Because our main purpose is the analysis
of electromagnetic waves, we will only consider here Maxwell’s theory in electric vacuum,
that is in the absence of electric charges and currents; see Ref. [2] for details about the
coupling between electromagnetism and matter.

1.1.1 In Minkowski spacetime

In Maxwell’s theory of electromagnetism, the fundamental object is a vector field A, which
represents the four-vector potential from which derives the electromagnetic field. The
latter is encoded into the Faraday tensor F' defined as the field strength of A, i.e.

F=0,A, — 0,A,. (1.1)

This definition ensures that the intrinsic Maxwell equations ), F),, = 0 are satisfied. The
dynamics of the electromagnetic field is then described by an action principle, the Maxwell
action being

1

167

where M denotes the spacetime manifold. The 1/167 prefactor in Sgy indicates that we
work in the Gaussian system of units, in which the electric and magnetic fields have the
same dimension; see e.g. Ref. |2] for a detailed correspondence between Gaussian units
and the units of the International System.

In classical electromagnetism, the four-vector potential A is not observable, contrary
to its field strength F', directly related to the force that the electromagnetic field applies
on charged particlesﬂ. From the definition of F},,, we see that the potential A from
which it derives is not unique; any gauge transformation

SulA] = /M d*x F"™F,, (flat spacetime), (1.2)

Ay A, + 0, (1.3)

where s is a scalar quantity, indeed leaves F),, unchanged. The action (1.2)) is thus also
unaffected by : Maxwell’s theory is gauge invariant. As any symmetry in the action,
gauge invariance is associated via Noether theorem [4}5] with the conservation of a physical
quantity, which in this case is the vector Q¥ = J,F*”. When matter is (minimally) coupled
to the electromagnetic field, this is equivalent to the conservation of electric charge.

In the absence of any electric source, the four-vector potential A only appears in Sgn;
stationarity of the latter with respect to variations of the former thus leads to the equations
of motion

J
0= 47r5iM = 0, F" (flat spacetime), (1.4)

In quantum mechanics, however, the vector potential influences the phase of the wavefunction of
charged particles [3], in a way that depends on their path. Such an effect, named after Aharonov and Bohm,
is experimentally accessible via interferometry, and is used in Superconducting Quantum Interference
Devices (SQIDs) to measure magnetic fluxes.
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which represent the extrinsic Maxwell equations in vacuum. When we additionally impose
the Lorenz gauge condition 0, A* = 0, the extrinsic Maxwell equations (1.4)) take the form
of a simple wave equation

0A4,=0 (flat spacetime), (1.5)

where [1 = 00, is the d’Alembertian operator in flat spacetime.

1.1.2 In curved spacetime

Let us now examine how the laws of electromagnetism are affected by the presence of
gravity, that we will assume to be described by Einstein’s general theory of relativity.
Because the dynamics of the gravitational field is not the topic of this chapter, we will
not address it here, but we refer the reader to the appendix [A] for a summary of the
notations, conventions, physical quantities, and concepts of general relativity that we will
use throughout this thesis.

Minimally coupled electrodynamics

As stated by Einstein’s equivalence principle, the laws of non-gravitational physics must
be locally the same in the presence or in the absence of gravitation, provided they are
worked out in a freely falling frame. Hence, a theory of electromagnetism in curved
spacetime must give back the Lagrangian density of Eq. about any event E of M,
provided it is written using, e.g., Gaussian normal coordinates, for which g, (E) — 1,
and I'?,,(E) ~ 0.

Besides, since curvature cannot be eliminated by any coordinate transformation, we
deduce that any direct coupling in the action between A, and the Riemann tensor (or
higher derivatives of the metric) would violate Einstein’s equivalence principle as stated
above. Imposing this principle then results into the minimal coupling prescription for
making curved-spacetime laws from flat-spacetimes laws: starting from the action in
Minkowski spacetime,

1. Replace the coordinate volume element d*x by the covariant volume element /—g d*z,
where g denotes the determinant of spacetime’s metric. This quantity is defined
with respect to the covariant components g,, of the metric,

1 . .
9= 1 [ 3v0] [11vpa) Gap 98v Grp Yoo (sum on all indices) (1.6)

where [af70] is the completely antisymmetric permutation symbol, with the conven-
tion [0123] = 1.

2. Replace partial derivatives d,, by covariant derivatives V.

Applying the minimal coupling prescription to the Maxwell action (1.2) leads to the
standard action of electromagnetism in curved spacetime

SulA, g] 167T/ diz V=g F*F,,, (1.7)

where the Faraday tensor now reads F),, = V,A, — V,A,, which turns out to be equal to
its expression in flat spacetime (with partial derivatives), provided spacetime geometry is
torsion free as assumed in GR.

5
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The equations of motion deriving from the stationarity of Sgy are now
0Sem 1
A,  /—g

which can be rewritten in terms of the four-vector potential as

0=4nr

Ou (V=g F™) =V, ", (1.8)

0=V,F" (1.9)
=V, VA — Y, VYA (1.10)
= V,VFrA” — V'V, A — R VAP, (1.11)

where the Riemann tensor appeared due to the commutation of two covariant derivatives;
imposing in addition the general-relativistic form of the Lorenz gauge V,A* = 0, finally
yields

OA, — RvA, =0, (1.12)

with the covariant d’Alembertian [0 = V¥V, and the Ricci tensor R, = RPWV. It is
interesting here to note the importance of applying the minimal coupling prescription in
the action rather than in the equations of motion; indeed if we had replaced 0, by V,
directly in Eq. (1.5]), then we would have missed the Ricci curvature term that appears in
Eq. (1.12]).

The presence of covariant derivatives in [J and of the Ricci tensor in Eq. clearly
indicates that spacetime geometry affects the electromagnetic field. Note that the converse
is also true, since the electromagnetic field has energy and momentum, encoded into its
stress-energy tensor

-2 98 1 1
2= i = B = (P Furla] (113
which is a source of gravity in the Einstein field equations. It is a significant difference,
that it is worth emphasizing, between Newtonian gravity in which mass is the only form
of energy to gravitate, and general relativity in which all forms of energy have the ability
to curve spacetime; in Einstein’s theory, even photons attract each others!

Beyond minimal coupling?

If one relaxes the assumption of minimal coupling between the vector field A, and spacetime
geometry, then various terms involving spacetime curvature can appear in the action,
e.g. R " F, R, A'AY, RF*F,,, etc. Such couplings turn out to be generically
unhealthy [6], by generating Hamiltonian instabilities or, since they are already second-
order derivatives of the metric, third-order derivatives in the equations of motion; the
presence of a bare A also potentially violates the gauge-invariance of the electromagnetic
sector, which implies the nonconservation of electric charge if A is minimally coupled to
matter.

There is however at least one exception. In a very technical article [7], Horndeski
proved that if a theory which couples a vector field A to spacetime geometry (i) derives
from an action principle involving A and g; (ii) generates second-order equations of motion;
(iii) conserves the electric charge; and (iv) reduces to standard electromagnetism in flat
spacetime, then its action reads

62
Sul A, 9] = Seulgu] + SulAus 9] + 1o / dizy=g L"" F,, F,, (1.14)
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where the first term is the Einstein-Hilbert action (see appendix , the second term
is the Maxwell action as seen in the previous paragraph, and the last term is the only
nonminimal coupling term that is allowed by the above four assumptions. The L#*?
tensor is defined by

1
Y _iguVOéﬁgﬂU’stRaB_yé (115)

— QRMVPT 4 Y (Ru[ffgp]v + RV[UgP]M) + QRgM[Pgo}V’ (1.16)

it enjoys the same symmetries as the Riemann tensor, and is divergence free (i.e. V,L*"7 =
0). The coupling constant ¢, which has the dimension of a length, physically represents
the typical curvature radius scale below which this theory would significantly deviate from
minimally coupled electromagnetism. The sign of this new term in Eq. ensures the
Hamiltonian stability of the theory [§].

Due to its non-trivial coupling between electromagnetism and gravity, Horndeski’s
vector-tensor theory is expected to present a rich phenomenology beyond the standard
Einstein-Maxwell framework, such as photon-graviton oscillations, varying speed of light,
gravitational birefringence and optical activity, etc.

1.1.3 Electric and magnetic fields

Let us close this section on pure electromagnetism by indicating how to disentangle electric
and magnetic fields from the Faraday tensor F'. In a special-relativistic context, if F},, is
written as a matrix whose p, v respectively label the lines and columns, then

0 —F, —Ey, —Fj3

. E1 0 B3 —BQ
[Fiw] = Ey, —B; 0 B
Es By, —-B; 0

(flat spacetime), (1.17)

where E; and B; are the components of the electric and magnetic fields. This comes from
an identification between (i) the definition of the Faraday tensor F,, = 9,4, — 0, A,,
and (ii) the relation linking fields and potentials, usually written as E=-VV -3A
and B = V x A, with (A*) = (V, A). As parts of an order-two tensor, £ and B are
not, properly speaking, vectors: they are observer dependent, and thus transform in a
non-trivial way under Lorentz boosts.

Let w be the four-velocity of an experimentalist (with u”u, = —1) who wishes to
characterise the electric and magnetic parts of F' in her rest frame. By definition, the
components of the Faraday tensor over an orthonormal tetrad representing such a frame
must take the form of Eq. (1.17). One can therefore define the electric and magnetic fields
(E, B) as purely spatial vectors, i.e.

u, B" = u,B" =0, (1.18)

such that

Fu =2uy, By + €,,0u”BY, (1.19)

where we have introduced the Levi-Civita tensor

Epvpo = V=g [ po] (1.20)

7



8

Chapter 1  From electromagnetism to geometric optics

following the convention of Ref. [9]. Note that, given the definition of the metric determi-
nant g, the completely contravariant counterpart of Eq. (1.20)) is e"*" = —[uvpo]/v/—g.
By inverting Eq. (1.19)) one obtains the expressions of the electric and magnetic fields:

Ef =, F*, (1.21)

BH = —u, F", (1.22)
where sz = €upeFP7 /2 is the Hodge dual of the Faraday two-form. It enjoys a decom-
position similar to Eq. (1.19)), as F},, = —2u(, B, + €up0u”E?. Summarising, the Hodge
duality turns E into —B and B into FE.

These two quantities can also be used to rewrite the electromagnetic stress-energy
tensor T”EVM in a way that makes its interpretation in terms of energy, energy flux, pressure,

ete. easier. Introducing Eq. (1.19)) into Eq. (1.13)) one indeed obtains
TEVM = puyty, + 2u, ) +p L +11,, (1.23)
where we introduced the spatial part of the metric L,,= u,u, + ¢,,, while

E? + B2

p= (X? = X'X,), (1.24)
8
p

P=3 (1.25)

UPE 1y po EP B°
I, = —"7— —_ 1.26
o (1.26)

E,E,+ B,B,
I, =2p L, —*‘Z“, (1.27)
™

are respectively the energy density, isotropic radiation pressure, Poynting vector, and
anisotropic stress of the electromagnetic field. Both the Poynting vector and the anisotropic
stress are purely spatial (I, u* = 0, I, u* = 0), and the latter is trace free (IIf; = 0).

1.2 Light rays in geometric optics

In this section, we introduce what will be the framework for all the remainder of this
thesis, namely geometric optics. After having discussed the underlying assumptions—the
eikonal approximation—, we examine how the Maxwell equations in curved spacetime
govern the propagation of electromagnetic waves in this regime, and analyse some features
of their trajectories.

1.2.1 The geometric optics regime

An ansatz for electromagnetic waves

The geometric optics framework is conveniently discussed when one considers the following
ansatz for the vector four-potential of an electromagnetic wave,

A =ae? +cc, (1.28)

where a, ¢ respectively stand for the wave’s amplitude and the phase. While the latter
is real by definition, the former can be complex in general; here nevertheless we assume
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that a,, is real, i.e. we restrict our study to linearly polarised waves. This assumption can
actually be made without any loss of generality: thanks to the linearity of the Maxwell
equations , any elliptically polarised wave is indeed the superposition of two linearly
polarised ones.

To the wave ({1.28)) can be associated a wave four-vector defined as the gradient of the
phase,

k, = 0,9, (1.29)

which thus represents the local direction of propagation of the wave through spacetime.
Note that the Lorenz gauge condition already imposes conditions on a and k, namely

0=V, A" = (V,a" + ik,a") e + c.c. (1.30)
whose real and imaginary parts respectively imply
V' =0, kya" = 0. (1.31)

Such a wave is therefore transverse, in the sense that its directions of excitation and
propagation are orthogonal.

The eikonal approximation

Geometric optics corresponds to a regime for which the genuinely undulatory properties of
light are irrelevant, so that it behaves as a stream of classical point particles: well-defined
trajectories and no interference nor diffraction phenomena. In flat spacetime, such a
situation is achieved when the phase of the electromagnetic wave varies much faster than
its amplitude, i.e.

0o > a '0a, (1.32)

which is known as the eikonal approrimation.

In the presence of gravity, however, the approximation requires an additional assumption
since another spatio-temporal scale enters into the game: spacetime curvature itself. In
order for the undulatory phenomena not to be affected by this additional element, the
phase of the electromagnetic wave must evolve on scales much greater than the typical
spacetime curvature radius £, i.e.

O > 11 (1.33)

where /;! must be understood as the square-root of a typical component of the Rie-
mann curvature tensor. Assumption ((1.33) is therefore the second part of the eikonal
approximation in curved spacetime [1].

Let us examine the restrictiveness of in terms of the wavelength A—which is
indeed the typical evolution scale of ¢p—on two examples. In a cosmological context, the
typical curvature radius is given by the inverse of the expansion rate ¢, ~ ¢/H ~ 4 Gpc
today (that is essentially the size of the observable Universe) or ~ 0.2 Mpc at the epoch of
recombination; hence \ < /. is not particularly restrictive in this context. In the vicinity
of a spherically symmetric massive object, ¢. can be evaluated using the Kretschmann
scalai’| K as £, ~ K~1/* ~ \/r3 /rg, where rg denotes the Schwarzshild radius of the object,
and r the coordinate distance to it. On the surface of Earth, this implies A\ < 2 AU, while
on the horizon of a stellar black hole it leads to A < 3 km. Only in the latter—rather
extreme—case, a part of the radio domain does not satisfy the eikonal approximation.

2The Kretschmann scalar is defined as the contraction of the Riemann tensor with itself, K =
RFYPI R, 00, and is useful to investigate the properties of the complete spacetime curvature, rather than
restricting to the Ricci scalar which, for example, is useless in vacuum.

9
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The Maxwell equations in geometric optics

Inserting the ansatz ((1.28) for A into the Maxwell equations ((1.12)) gives
Oa* — (k"k,)a" — Rba” +1(2k"V 0" + oV, k") = 0. (1.34)

The real part of Eq. implies (k"k,)a" = Oa* — R*a”, but the eikonal approximation
indicates that the left-hand side is much larger than the right-hand side; both must
therefore vanish identically for the situation to be acceptable. Putting it together with
the imaginary part of Eq. results into the propagation equations of electromagnetic
waves in the geometric optics regime:

k'k, =0, (1.35)

1
KV, + (Y, E)a" = 0. (1.36)

The first one is the dispersion relation, while the second one contains both
photon conservation and the evolution equation of polarisation, as we shall see respectively
in § [3.2 and § L33

The eikonal approximation also leads to a familiar structure for the trio (k*, E*, B*).
The Faraday tensor indeed reads F), = 2ikj, A, + c.c. at leading order, so that E, =
2iu" ki, Ay + c.c. and B, = iu”e,0k” A% + c.c., whence

KE, = k"B, = E"B, =0, (1.37)

which express the wave’s transversality in terms of its electric and magnetic fields.

1.2.2 Photons follow null geodesics

We now focus on the trajectory followed by electromagnetic waves. Start with taking the
gradient of the dispersion relation £“k, = 0,

0=V, (kk,) = 2k"V k,. (1.38)

Because k, is defined itself as the gradient of the phase ¢, the indices of V,k, can be
inverted due to the symmetry of the Christoffel coefficients,

Vuk, =V,0,6 =0,0,0 — " 0,0,
and the above equation takes the familiar form

KV k= 0. (1.39)

The integral curves of the vector field k#*—the curves to which k* is everywhere tangent—
are therefore null geodesics, since they satisfy the geodesic equationﬂ (1.39) and their

3Tt is interesting to note here that the geodesic equation emerges as a consequence of the null condition
k*k, = 0, and it would be tempting to conclude that any null curve is a geodesic. This is actually the case
only if its tangent vector is a gradient, as this property of k* was a crucial ingredient in the derivation. A
counterexample is easily constructed in Minkowski spacetime; consider the curve defined as x = r cos(ct/r),
y = rsin(ct/r), which corresponds to a circular motion—a helicoid in spacetime—of radius r at velocity c.
Its tangent vector (u*) = [1, —csin(ct/r), ccos(ct/r),0] is clearly null, but it is not a geodesic.



1.2 Light rays in geometric optics

tangent vectors are null . Such curves, that we shall call light rays in the followingﬂ
can be interpreted as the worldlines of photons, referring to the Einstein-de Broglie duality
between waves and particles, according to which the momentum of a photon is p* = hk*,
where i = h/(27) denotes the reduced Planck constant.

A parameter v along a given light ray is naturally defined through its tangent vector by

k= ——, 1.40
W (1.40)

which tells us that a small variation dv of parameter v corresponds to the small displace-

ment dz* = k*dv along the ray. The geodesic equation (1.39) then reads, in terms of v,

DRk, d L detder

dv T dw LR = dov? + P dv dov’
where D /dv denotes the covariant derivative with respect to v. The particular form of
the geodesic equation, where Dk* /dv completely vanishes instead of just being proportional
to k*, indicates that v is not any parameter along the curve but an affine parameter (see
e.g. Ref. [9] for further details). Any affine transformation v — av + b indeed preserves
the form of Eq. . The physical meaning of v, which has been introduced so far as a
mathematical object, will be discussed in §[1.3.1]

(1.41)

1.2.3 Conformal invariance

Null geodesics turn out to enjoy a particular symmetry that they do not share with their
timelike or spacelike equivalents, namely the invariance under conformal transformations
of the metric. This property can be stated as the following theorem.

Theorem. Let g and g be two metric tensors for a same spacetime manifold M described
with an arbitrary coordinate system {z*},—o 3, related by a conformal transformation:

G (2?) = Qz(a:f’)gw(a:f’), (1.42)

where (2 is an arbitrary scalar function on M. If a curve « is a null geodesic for g, then it
is also a null geodesic for g. Moreover, if v is an affine parameter of + for g, then any o so
that dv = Q2d? is an affine parameter of v for g.

The above property is practically very useful when there exists a conformal transforma-
tion such that g,, is much simpler than g,,; the analysis of light propagation is then more
easily performed in terms §,,,, while its counterpart in g,, can be recovered by a systematic
procedure (see § for a complete dictionary and an example). Besides practical
calculations, conformal invariance also immediately explains the failure of Nordstrgm’s
theory of gravitation [10,/11], proposed in 1912—three years before Einstein’s general
relativity. In this theory, as reformulated by Einstein and Fokker in 1914, spacetime’s
geometry is conformally flat: its metric reads g,, = exp(2®)n,,,, where 7, denotes the
Minkowski metric and ® corresponds to the Newtonian potential in the weak-field regime.
Because of the conformal invariance of null geodesics, Nordstrgm’s gravity thus predicts
no gravitational deflection of light, and is therefore ruled out by observations.

4Albeit in their classical definition, light rays are rather the spatial projections of null geodesics.
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Proof of the theorem

Suppose that v is a null geodesic affinely parametrised by z*(v), so that its tangent
vector k* = dz* /dv satisfies Dk# /dv = 0. Then consider the same curve v but parametrised
by @, with dv = Q2d#; the associated tangent vector reads k* = dz*/do = Q%k*. The
covariant derivative

Siw o o
o = KNV kR = kYO, k" + T, K" kP (1.43)

0]
can be rewritten using the following correspondence between the Christoffel coefficients of

g and g:

- 1 o R ~ ~
I,y = 59 (00G0p + 0pGov = 0s9p) (1.44)
=1, — 25& )y InQ + g,,6"7 05 In QQ, (1.45)
so that o
Dk DE*
= =/ + (Kk,)g"° D, In Q)| = 1.4
W T + (k"k,) 9" 05 In 0, (1.46)

which concludes the proof.

Microscopic or emergent symmetry?

It is tempting to see in the conformal invariance of lightcones a consequence of the
conformal invariance of electromagnetism. Indeed, the Maxwell action is unchanged
by the transformation of the metric, without the need of any transformation of the
vector field A, it was therefore expected to find such a symmetry for the propagation of
light. However, this rationale only holds in four dimensions, since in dimension d,

SulA. 6] = [ A% V=555 FuFyo (1.47)
_ [ e TGy F (L9
£ Su[Ayg]  ifdA4, (1.49)

while the conformal invariance of null geodesics is fully general, regardless of the dimension—
as it was not involved in the proof of the previous paragraph. Yet photons do follow null
geodesics, even for d # 4, since the dimension was not involved in the derivation of §
either.

This paradoxical situation suggests that, in general, conformal invariance must emerge
somewhere on the way from electromagnetism to geometric optics. It can be understood
by considering the equation of motion for A which derives from the action (|1.48)),

A, — RYA, + (d — 4)F”,0,InQ = 0, (1.50)
where last term makes Eq. (1.50) differ from the Maxwell equations (1.12), and thus

spoils conformal invariance. This new term is however proportional to d1nQ ~ (o', where
(o denotes the typical evolution scale of €). Similar terms turn out to appear in the
transformation of the Ricci tensor between the metrics g and g (see e.g. Ref. [12] for
details), so that £5® can be considered a contribution to spacetime curvature. Hence,
by virtue of the eikonal approximation, the last term of can be neglected, and
conformal invariance is approximately recovered.

The conformal invariance of lightcones is therefore an emergent symmetry in general,
which accidentally coincides with a fundamental symmetry of electromagnetism in four
dimensions.
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1.2.4 Conserved quantities

In many situations of interest, spacetime geometry itself enjoys some symmetries, which
implies the existence of conserved quantities for its geodesics. Mathematically speaking,
such a symmetry is defined by the existence of a Killing vector £ along which the (Lie)
derivative of the metric vanishes [5,9]:

Leg = 0. (1.51)
In terms of components, the above equation reads
0=£0,0,0 + 04" gpr + 0uE" Gy (1.52)
= gpvpg/ux + vugpgplj + Vllgpgpu (153)
— 2Vl (1.54)

the tensor V&, is thus antisymmetric if £ is a Killing vector. This property implies that
its scalar product with the wave-four vector is a constant of motion, since

m
d(l:lvgﬂ) _ kukyvyg,u (155)
= 2RV 6 (1.56)
0. (1.57)

A spacetime with N Killing vectors (§,);=1..ny thus generates in principle N constants
C; = &'k, along any geodesic motion. The above calculations are indeed true for any
geodesic (timelike, spacelike or null).

1.2.5 Fermat’s principle

While both timelike and spacelike geodesics enjoy a intuitive geometrical meaning in terms
of extremalisation of the associated proper time or length, null geodesics are a priori harder
to interpret this way, because the line element ds? between two neighbouring events of any
null curve vanishes, by definition. It is thus unclear what extremalising such an always
zero function is supposed to mean.

Yet there exists a similar characterisation of null geodesics, reminiscent of classical
Fermat’s principle (see e.g. [13,/14]) which essentially states that light always follows the
quickest way between two points. In a general relativistic context, this can be formulated
as the following theorem, illustrated in Fig. [1.1]

Theorem. [15,/16] Let S be an arbitrary event (light emission) and consider a null curve 5
connecting S to the worldline .Z of an observer. Call O the intersection between 4 and .
(observation event), and 7o the proper time measured by the observer at O, with respect
to an arbitrary origin. Then 7 is a null geodesic if and only if 7o extremises the arrival
times 7 of all the null curves « connecting S to .Z which slightly deviate from 7.

Let us now prove this theorem. Our demonstration is partially inspired from Ref. [17],
pp- 101-102, though we tried to propose a more intuitive formulation of the converse
part. In all that follows, we respectively denote with z*(v) and z#(v) = z#(v) + dx*(v)
parametrisations of the neighbouring null curves 4 and ~; the associated tangent vectors
are defined by k* = dz#/dv and k* = dz#/dv. As an infinitesimal quantity, dz*(v) can be
considered a vector field along 7; we assume that its values at the events S and O read

dxly = 0, dxpy = ugHoT, (1.58)
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Figure 1.1 Relativistic Fermat’s principle. The
null curve 4 is a geodesic iff 7o is a local ex-
tremum of arrival times, i.e. 7 = 0 for any null
curve ~ slightly differing from 7.

where uf is the four-velocity of the observer at O. These assumptions mean that both 7
and v emerge from S, and cross .Z with a relative delay 7.

Finally, since the (covariant) derivative of dz* with respect to v reads Dox*/dv =
k" — kM = §k*, a consequence of the nullity of v is then

k'k, = 2k"ok, =0, (1.59)

at first order in dk*.

4 geodesic =—> 0T =0

Suppose that 7 is a null geodesic affinely parametrised by v (without loss of generality),
we then have

d /- D .
o (Kuo2#) = o0+ ok, =0, (1.60)

where both terms in the middle are zero because of, respectively, the geodesic equa-
tion (1.41), and Eq. (1.59). We conclude that k,dx" is a constant all along 7, which

moreover vanishes because dzy = 0, hence

0 = (k.62")0 = (k,u")odT, (1.61)

that is 67 = 0 since the null vector ko and the timelike vector uo cannot be orthogonal
to each other.

4 geodesic <—= 67 =0

Proving this converse assertion requires a more constructive approach. Let {e,}a—0. 3 be
a tetrad field so that ey(O) = up, and parallely transported along 4 from O to S. This
procedure basically generates a family of fictive observers with four-velocities eg(v) along
v, as illustrated in Fig. [1.2
Suppose each of these observers selects an arbitrary spatial position {dz%},—1. 3 in his
rest frame—i.e., with respect to the local tetrad {e,(v)}—so that the dz*(v) are smooth,
and consider the worldline v of a particle that would interpolate all those spatial positions
at the speed of light. By construction, ~ is therefore a null curve, and its deviation with
respect to 7 is
Sat = d2°ef + dxel, (1.62)

where the value of 62 is imposed 2% via the speed-of-light condition, i.e. k*0k, = 0 in
tetrad components. When integrated from S to O, this condition implies

ko0ke od (k
= — [ =) 62 1.63
ko /5 dv <k0> ' (1.63)

0]
5=5°:/d
T ZL'O SU
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B S
0xo = 0T U

@)

Figure 1.2 Geometry of the proof of (the converse of) Fermat’s principle. The four-velocity uy,
of the observer at O is parallely transported along 7 to generate a vector field eg(v), interpreted as
the four-velocity of fictive observers (two of them are represented, at v; and v2). The null curve ~y
is defined as the trajectory of a particle moving at the speed of light which is detected at spatial
positions dz%(v) by each of the fictive observers. This imposes the delay dz°(v) of this particle
with respect to the one following ¥, and thus the complete separation dx# = dz%f + szl
between v and 7.

after an integration by parts.
Now if §7 = 0 for any null curve « in the vicinity of 4, then Eq. (1.63]) implies

d [k,
— (=) =0 1.64
" ( k) , (1.64)

because the 6z%(v) were arbitrary fields. Besides, using k, = k,e/ and the fact that the
tetrad field {e,} is parallely transported along ¥ (De,/dv = 0), we can rewrite Eq. (|1.64])

as

ek (Dk“ - If“dko> =0, (1.65)
dv ko dv

so that the expression between parentheses vanishes, since its projection over e is also

clearly zero. The null curve 7 is therefore a geodesic as its tangent vector remains parallel

to itself. One can also recover the affinely parametrised geodesic equation using e.g. the

parameter w such that dv = kyodw instead of v.

1.3 Observables of an electromagnetic wave

So far, we have investigated the propagation of light from a four-dimensional, fully covariant,
point of view. In this section, on the contrary, we examine the properties of electromagnetic
waves which are actually observable, and therefore observer-dependent by definition. We
chose to divide them into three categories: the kinematical observables (§ , associated

15
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with light’s trajectory and frequency; the energetical observables (§ : and finally

polarisation (§[1.3.3).

1.3.1 Kinematics

The 341 decomposition of the wave vector

In the rest frame of an observer with four-velocity u, the electric field associated with a
wave A = ae'? + c.c. oscillates with an angular frequency w defined as the (absolute value
of the) rate of change of the phase ¢. If 7 denotes the proper time of this observer, we
thus have

w= ’jﬂ = |ut0,¢| = —u'k,, (1.66)

where the minus sign comes from the fact that we consider k as being future oriented,
i.e. K > 0 in any coordinate system. The frequency v is related to w via the usual
relation w = 27v.

Besides frequency, the wave is also characterised, in the frame of the observer, by its
direction of propagation, that is the opposite of the direction in which the observer must
look to actually detect the wave. It can be defined as being parallel to the spatial gradient
of the phase,

d" <1 0,6 = (g™ + uu”) k,, (1.67)

where L denotes the projector on the observer’s local space. In the above equation, we used
a proportionality symbol o instead of an equality, because we also want d to be a unit vector;
it is actually easy to check that the norm of 1# k" is w, so
that the right-hand side of Eq. must be divided by w.

The above definitions finally lead to the so-called 3+1
decomposition of the wave four-vector, illustrated in Fig. [1.3]

k—w(u+td), (1.68)
Figure 1.3 Decomposition of
the wave four-vector. with the orthonormality relations
wu, = -1,  d'd, =1,  u!d,=0. (1.69)

Physical meaning of the affine parameter

The 341 decomposition of the wave four-vector with respect to a given observer
provides a simple physical interpretation for the affine parameter v. Between v and v + dv,
the displacement of a photon through spacetime is given by dz* = k#dv. Hence, in the
frame of the observer, the photon travels over a distance

dl = d,dz" = d, k'dv = wdv, (1.70)
which gives to dv its meaning. Equivalently, wdv can be interpreted as the time lapse dr

measured by the observer between the events z#(v) and z*(v + dv), but it is somehow
harder to visualise than the corresponding travel distance.
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The redshift and its interpretation

The relative difference between the frequency emitted by a source, wg, and the one actually
measured by an observer, wp, is quantified by the redshift z as

ws _ (hy)s (1.71)

1 == =
T wWo u“ku)o

—~

Because the expression of z involves both the four-velocities and the wave four-vectors
at the source and observation events (respectively S and O), there is a fundamental
degeneracy in its interpretation—is it a Doppler effect due to their relative velocity, or an
Einstein effect due to, e.g., gravitational dilation of time?

This turns out to be a bad question in general, for its answer is coordinate dependent.
We are indeed always free to pick a comoving coordinate system (see Fig. [1.4]), with respect
to which both the source and the observer are at rest, u = uf, = 0, so that any difference

between wg and wo would be due to kl? + k:f . In such a case, z shall be interpreted as
a gravitational redshift. Besides, we could also make the opposite choice and pick an
observational coordinate system, such that now k9 = k2; any redshift would then be
attributed to ug # ug, and interpreted as a Doppler effect.

1 Bl
I,' 'I T=~ / ko
1 ,’ = YL . )
i COMovi 110 T
T — 2 ————— ,’-—-____Y}’hg lll
: A
! I [ Y
I 1 1
! ; / t=1
i r =
T=1----4- S-L /
u AT
! ksf ! ;
T—0 1 | observatjonal
- S T T---L__/
1 ! *t~
RNy
z=0 =1 ="

Figure 1.4 Tllustration of the coordinate dependence of the interpretation of the redshift. With

comoving coordinates (7', X )—Dblack, dashed—only the components of the wave four-vector differ
between S and O: z is interpreted as a gravitational redshift. With observational coordinates

(t, z)—grey, solid—only the components of the four-velocity of the source and the observer differ

z is interpreted as a Doppler effect.

The point I try to make here is that there is fundamentally no preferred interpretation
for the redshift of an observed signalﬂ In a cosmological context [19] for instance, it is not
more sensible to attribute the redshift of remote galaxies to a stretching of wavelengths,
due to the expansion of the Universe, than to a Doppler effect due to their recession
velocities. They are just two different points of view on a same physical phenomenonﬂ

5See however Ref. [18] for a case against this conclusion.
6This does not mean that the expansion of the Universe can be modelled by the motion of test particles

in a Minkowski spacetime. See e.g. Ref. [20] for a thought experiment illustrating the difference between

both situations.
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Observational notion of relative velocity

Pushing further the above reasoning, the redshift allows us to define a very general notion
of velocity of a light source as seen by an observer. It is essentially the velocity V' that the
observer would associate to the source by applying the special-relativistic Doppler formula

1—d-V

where —d is an Euclidean unit vector materialising the observer’s line of sight.
It can seem very artificial, but there is actually a fully covariant way of constructing
such this velocity (see Fig. . Let v be a light ray connecting a source S to an observer O,

affinely parametrised by v, and define the four-vector Ug(v) as the parallel transportation
of the source’s four-velocity ug from S to O along =,

DU
dv

=0 with  Uf(vs) = uf, (1.73)

Since both U’y and k are parallel transported along 7, their scalar product Utk is a
constant along this geodesic; in particular Ug(vo)kS = Ug(vs)k; = ulsky = —ws, the
redshift can therefore be written as
Uk (vo)k©
14+2= S(uioz)“. (1.74)
Uoku
If we work at O in the observer’s frame, for which u¥, = (1,0), ki = wo(l,cf), then

Uk(vo) = (1,V)/v/T = V2 in general, so that Eq. ([.74) is equivalent to Eq. (1.72). This

construction is orginally due to Synge [21].
ko

ug = Ug(vg) 1

S

Figure 1.5 Defining an observational notion of relative velocity. The four-vector Ug(v) is
constructed by parallel-transporting ug from S to O along the null geodesic v connecting
them. The resulting vector Ug(vp) at O represents the four—velocity of the source as seen
by the observer: the observed redshift is computed from it by applying the special-relativistic
formula (1.72)).

Let us give two concrete examples of this Synge velocity. In homogeneous cosmology,
where spacetime is described by the Friedmann-Lemaitre geometry (see Chap. , the
recession velocity of a comoving source with respect to a comoving observer reads V =
(a3 — a%)/(a? + a%), where ap = a(tg) denotes the scale factor at the cosmic time tg of
the event E. Note that for tp 2 tg we recover the Hubble law V ~ Hy(to — tg).
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In the vicinity of non-rotating body of mass M, where spacetime is described by the
Schwarzschild geometry, the recession Doppler velocity between a source at rg and an
observer at ro > rg with the same angular coordinates is V = (Ag — Ap)/(As + Ao),
where A(r) =1—2GM/r. If r¢ — 2GM, i.e. if the massive body is a black hole whose
horizon is approached by the source, then V' approaches the speed of light.

1.3.2 Energetics and photon conservation

As already mentioned in §[1.1.2]and §[1.1.3] any electromagnetic field possesses energy and
momentum, whose various components are encoded in the decomposition of its stress-
energy tensor. In the special case of an electromagnetic wave of the form A = ae’ + c.c.,
the energy density p and the Poynting vector II-—which represents the energy flux density,
or momentum density—read

FE? + B? _ w?a? sin? gzﬁ’ (1.75)
8T s

UYEpupe P B

11, “fl—ﬂ = pd,, (1.76)

P

with a? = a*a,, > 0, as ensured by the Lorenz gauge k*a,, = 0 together with the dispersion
relation k*k, = 0, and d is the unit vector in the direction of propagation introduced in
Eq. (1.68]).

In practice, experiments are not sensitive to the detailed time evolution of such
quantities, but rather to their average over a certain integration time A7 > w=!. For
instance, the luminous power P associated with an electromagnetic wave is the time
average of the flux of the Poynting vector over the detector surface

TH+AT
P(r) E// dQEH/ dt H“:// d425,d" (p) (1.77)
detect. T detect.

where (...) denotes (proper) time averaging. From Eq. we get (p) = w?a?/(27) for
the mean energy density of the electromagnetic wave. Note that, by virtue of Eq. (1.77]),
(p) also represent the power per unit area, that is, the luminous intensity I detected by
the observer.

If we now adopt a corpuscular description of light, i.e. if we consider the electromagnetic
wave as a photon stream, then the mean energy density can be written as (p) = n x hw,
where n denotes the number of photons per unit volume within the wave. Similarly,
because the Poynting vector is the momentum density of the wave, it reads (IT) = n x Aiwd
in terms of photons. These considerations naturally drive us to define the photon flux
density associated with the wave as

(p)uw+ ) o

=k (1.78)

J

Note that thanks to the above second equality, j is a real four-vector in the sense that it is
observer-independent, contrary to p, I1, or the photon number density given by n = —u*j,.

Going back to the propagation equations for electromagnetic waves, the contraction of
Eq. with a immediately leads to a continuity equation

V" =0, (1.79)
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which translates photon number conservation. Of course, this law is only valid in vacuum,
or at least in the absence of coupling between matter and the electromagnetic field, since
in the latter case photons can potentially be emitted of absorbed, which would generate a

source term in Eq. (1.79).

1.3.3 Polarisation

In terms of the vector potential

So far we have only exploited the information that Eq. provides about the norm
of the wave amplitude a, but it actually also drives the evolution of its direction. Let us
assume that a® # 0 (else the wave has no energy, i.e. does not exist at all), and define the
unit potential polarisation vector as

o= \2_2 (1.80)
Inserting a* = va2o* in Eq. (1.36)), we get
n
0=Va2k'V,a" + —— V,(a2k"). (1.81)

2va2

In the second term we recognise the divergence of the photon flux density 27AV, 7", which
vanishes by virtue of photon conservation as seen in the previous paragraph, so that finally

Do

——=0. 1.82
T (1.82)

The potential polarisation vector is thus parallely transported along the light ray.

In terms of the electric field

Albeit very convenient for a covariant description of polarisation, the vector potential is
not directly measurable. In practice, polarisation is rather characterised by the behaviour
of the electric field, but since the latter is observer-dependent, we can already suspect that
parallel transportation, satisfied for a, will not hold here. Defining the electric field all
along the wave’s worldline v indeed requires to define a family of observers, i.e. a field
of four-velocities w, which has no reason to be parallel-transported along ~. This issue
becomes evident when one calculates the covariant derivative of E* = 2iu, kA" + c.c.

along -,

DEF 1 Du,
— = (V) B + |2k A= e (1.83)

v
where we see that the second term, which prevents DE /dv from being proportional to E,
and thus prevents the electric polarisation vector

E
€= —
VE?2

from being parallely transported, precisely encodes the deviation from parallel transporta-
tion of u along ~.

Yet the electric polarisation partially inherits the propagation properties of «; it is
actually parallel-transported as much as possible, while keeping orthogonal to both v and d.

(1.84)
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Such a notion can be formalised by defining the projector on the two-plane orthogonal to
those vectors,

St = ok + utu, — d"d,, (1.85)
that we shall call screen projector, since the plane it projects on materialises a spatial
(L u) screen, orthogonal to the observer’s line of sight d. The electric polarisation then
reads

De”
SH

Y do

Let us now prove Eq. (1.86). First, because u*E,, = 0 = k*E,,, we also have d*E,, = 0,

so that E# = SFEY (the electric field belongs to the screen plane). Plugging-in the relation
between E* and A" yields

= 0. (1.86)

EP =58 2iu, kA + c.c. = iwSHA" + c.c., (1.87)
where we used S#k, = 0. The screen projection Eq. (1.83]) thus reads

pDE“ _
b du

1 1dw
N v v _ 14
< 2 Vk: ) E . (1-88)

The above equation can then be contracted with £, in order to get an equation govern-
ing E?%; combining the latter with the former finally gives Eq. (1.86]). Note that the same
calculations could have been done with the magnetic field instead of the electric field.
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CHAPTER 2

Light beams

BSERVATIONS in astronomy and cosmology often rely on the measurement of the
O apparent size, shape, and luminosity of distant light sources. Such notions cannot
be described from a single light ray, a single geodesic, but rather require a collection of
rays—a light beam—which connect each point of the extended source to the observer. If
the rays remain close enough to each other, then their collective behaviour can be studied
as a whole, and the beam considered an object in itself. This chapter is dedicated to the
laws governing the propagation of such narrow light beams, and their connection with
observables. In particular, we introduce the two fundamental tools of the gravitational
lensing theory, namely the Jacobi matrix and the optical scalars, which will be crucial for
discussing the various observable notions of distance in Chap. [3]
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Chapter 2 Light beams

2.1 Description of a light beam

In this section, we show how the covariant description of light beams (§ , which is
indeed the most natural way they are defined, can be turned to a more observation-oriented
description. This requires to introduce a notion of screen (§ on which observers can
project the beam and characterise its shape and extension. We will show in particular
that such morphological properties are actually observer independent. Their evolution

with light propagation will finally be discussed in §[2.1.3]

2.1.1 Covariant approach

We define a light beam as a set of light rays which all intersect at one event, the lightcone
of which they belong to. Depending on the physical situation that one wishes to address,
this event can either represent light emission S from which the rays emerge, or light
reception O towards which they converge. In this chapter, without loss of generality, we
will consider the second option.

Intrinsic coordinate system and basis

Geometrically speaking, a light beam is thus modelled by a bundle of null geodesic with
a vertex point. Its structure therefore only requires three coordinates to be explored
(see Fig. . One is naturally chosen to be an affine parameter v along each individual
geodesic within the bundle. The other two (y] )1=12 can be thought of as labels for the
geodesics, such as angular coordinates on the observer’s celestial sphere [22]. To this
coordinate system is canonically associated a vector basis formed by

k

er = aiyl (21)

0
ov’

Since all the geodesics of the bundle intersect at O, it is natural to affect to this
event a common value v (often set to zero) of their affine parametrisation: v = vy < O.
This choice implies that the coordinate system (v, y!) is singular at O—just like spherical
coordinates are singular at their origin—in particular the vectors e; vanish at O. Consider
indeed any two neighbouring rays v — x#(v,y’) and v — z#(v,y’ + dy’); because they
intersect at vp, we have

0= 2"(vo,y" + 6y") — 2*(vo,y") = e} (0)dy’, (2.2)

which implies €/(O) = 0 since 6y’ is arbitrary.

A second consequence of the existence of a vertex point in the geodesic bundle is the
orthogonality of k and e;. Proving this property requires to note that (k, e, es) is not
any vector set but a coordinate basis (or holonomous basis), which means that the Lie
brackets [k, e;] and [er, e;] must vanish [3]. In terms of components, [k, e;] = 0 reads

0=Fk"0,elf —e[0,k" = k"V e — e{V kH; (2.3)
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it follows that

aav(e’;ku) = k,k"V €} since K"V, k, =0 (2.4)
= k,e;V, k" because of Eq. (2.5)
AR A (2.6)
=0  as kisnull (2.7)

So the scalar product €7k, does not depend on v, whence
eik, = (efk,)o = 0. (2.8)

Physically speaking, this means that the phase ¢ of the electromagnetic wave represented
by the beam is the same for two events separated by da# = efdy!, since for such a
displacement d¢ = k,dz* = 0. The wave four-vector k being also orthogonal to itself, we
conclude that any displacement dz* = k*dv + ef/dy’ within the beam keeps ¢ unchanged:
the beam entirely belongs to a ¢ = cst-hypersurface, which defines the lightcone of O.

Figure 2.1 Schematic representation of a light beam converging at O, with its coordinate
system (v,y"',y?) and the associated basis (k, e1, e2). Red lines (solid and dashed) represent light
rays within the beam; the separation € between two of them is indicated in blue. Red surfaces
are iso-v; horizontal or vertical black lines are respectively the intersection between iso-y! or
iso-y? surfaces and iso-v surfaces.

Separation vector

The relative behaviour of two neighbouring rays, respectively labelled by y and y! + 6y’
is usually described by their separation vector (or connecting vector)

vyt y" + oyt = (v, y + 0y") — 2t (v, y") = ey’ (2.9)

As a linear combination of the e;, & inherits all their properties, namely

6 =0, (2.10)
KV, = €N,k (2.11)
&k, = 0, (2.12)

which will turn out to be particularly useful for the remainder of this chapter.
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Geodesic deviation equation

The fact that & is the separation between two geodesics imposes its evolution with v.
Taking the gradient of the geodesic equation in the direction of &, we indeed have

0= &'V, (KV, k") (
— (E°V k") (V, k") + €KYV VU, kM (2.14
= (K'Y ) (Vo k") + &RV, V k" — &RV RY K (
= KV, (&Y, k") = RV, kK€ (

where, in Eq. , we used Eq. to exchange the roles of & and k in the first term,
and the definition of the Riemann tensor to exchange V, and V, in the second term.
Using again Eq. (2.3), we can rewrite the first term of Eq. as kPV k"' V,&", which
is nothing but the second covariant derivative of & with respect to v; the result is known
as the geodesic deviation equation

D2¢r
dv?

R*,, KORVEP. (2.17)

This equation surely provides the best geometrical interpretation of curvature, as the
quantity which rules the relative acceleration between neighbouring geodesic motions.
Note that Eq. (2.17) also applies to timelike and spacelike geodesics.

2.1.2 Screen space

From now on, we restrict to infinitesimal light beams, within which any two rays are close
enough for their relative behaviour to be well-described by their separation vector &. This
vector is then the key tool for the analysis of a beam’s morphology, but its relation to
actually observable quantities requires to introduce a notion of screen.

Defining a screen

Consider an observer with four-velocity w whose worldline intersects the beam at an
event F different from O. Since in general €}/ (E) # 0, the beam has a nonzero extension
around E. In order to characterise its morphology, the observer shall project it on a screen,
defined as a two-dimensional spatial (L w) plane, and chosen to be orthogonal to the local
line-of-sight (L d).

The relative position, on the screen, of the two light spots associated with two rays
separated by &, is then

= 8ker, (2.18)

where the screen projector is defined by
St = g + utu” — dtd", (2.19)

and indeed coincides with the one introduced in §[1.3.3]
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The beam’s morphology is frame independent

Consider a set of any three rays v; 23 within the beam, the last two being respectively
separated from the first one by & and ¢, as depicted in Fig. 2.2l The scalar product of
their screen projection is then

fﬁ@j = l12013 cos 7V, (2.20)

where /;; stands for the (proper) distance between the spots ¢ and j, while ¥ is the angle
between the segments relating 1 to 2 and 1 to 3.

"1 Figure 2.2 Relative position,
Y3 on an observer’s screen, of the
/ three light spots associated

with the three rays v 2 3.

The orthogonality between & and k (2.12)) allows us to rewrite Eq. (2.18)) as

e —gr g g (2.21)
w
and the analog relation for ¢/, so that
¢ = €4, (2.22)

Therefore, the scalar product §i§lf does not depend on u, and so do the lengths ¢15, {13
(the above rationale can be done with & = (), and the angle ¥. We conclude that the
morphology of an infinitesimal light beam is an intrinsic property, neither its size nor its
shape depend on the frame in which they are measured. Let us emphasize that this property
is valid for measurements of lengths and angles on a screen by an experimentalist located
at a point where the beam has a nonzero extension. It does not apply to the observer
situated at O, where the beam converges. In particular, the relativistic aberration effects
that will be discussed in § [3.2.3] are precisely due to the fact that angles measured by an
observer at O depend on its four-velocity.

The Sachs basis

For the purpose of characterising the morphology of a beam, it is convenient to introduce
an orthonormal basis (s4)4-12 for the screen. By definition, its vectors must satisfy

shu, = shd, =0, shspu = 0aB, (2.23)

which also implies %4k, = 0 since k* = w(u* + d*"). The screen projector is naturally
decomposed in terms of this basis as

SH = §4B gh s (2.24)
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Suppose that a family of observers, lying all along the beam and thus defining a
four-velocity field u(v), want to compare the patterns they observe on their respective
screen. Each of them can define a basis (s4)4-12(v) according to the requirements (2.23),
but these requirements do not specify any orientation—the bases of two different observers
could be arbitrarily rotated with respect to each other.

In order for the orientation of the patterns on the screens to be tractable, the screen
vectors s4(v) should be parallely transported along the beam. However, just like for
polarisation (§[1.3.3), a complete parallel transportation is forbidden if w(v) is not, because
s, and v must keep orthogonal to each other. The solution is again a partial parallel
transportation, in the sense of

D5 _

Y dv
Vector 4, where a dot denotes the covariant derivative D/dv, can thus be decomposed as
54 = au + fd. Furthermore, since k, s’y = 0 and k=0 (geodesic equation), we also have
k,s'y = 0, which implies o = ; in other words,

0. (2.25)

54 x k. (2.26)

The above relation, together with k = 0, then implies that any nth-order covariant
derivative of s4 along k is parallel to k.

In many references on gravitational lensing theory (e.g. Refs. |[17,23]), the authors
take advantage of observer independence of the beam’s morphology and assume, without
loss of generality, that u(v) is actually parallely transported along the beam, hence so are
the sa(v). With this additional requirement, (s, s2) is called the Sachs basis. We choose
here not to make this assumption and work with a generic u(v) field. We will however use
the same terminology for simplicity.

An advantage of our choice is that our Sachs basis enjoys a simple physical interpretation.
The transportation law is indeed reminiscent of the electric polarisation vector €
defined in §[1.3.3) and we can make the following identification:

81 — €, SS9 — ﬂ, (227)

where B is the magnetic analog of €; the Sachs vectors then indicate the directions of
oscillation of the electric and magnetic fields of a given photon within the beam. Of course,
any global isometry between (si,s3) and (g, 3) is allowed as well. Note also that the
identification does not hold if other physical phenomena besides gravitation affect
polarisation, such as optically active matter or Faraday rotation in the presence of strong
background magnetic fields.

2.1.3 Propagation in screen space

We now want to investigate the consequences of the geodesic deviation equation (2.17)) on
the evolution, with v, of the beam’s morphology. For that purpose, it is natural to focus
on the components of £ on the Sachs basis, defined by

€4 = 556, = ek, (2.28)
and therefore such that
£, =&, (2.29)

Note that the position of indices A, B, C'... does not matter (here £4 = £,) as they are
raised and lowered by d45.
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The Sachs vector equation

An evolution equation for 4, directly inherited from the geodesic deviation equation, can
be derived the following way. We first decompose its second derivative with respect to v
thanks to the Leibnitz rule,

Ea = Eusly + 26,84 + €., (2.30)

where, again, a dot denotes a covariant derivative D/dv. We have seen in the previous
paragraph that both $4 and s4 are parallel to k; the orthogonality of k and & then implies
that the last two terms in the right-hand side of Eq. vanish identically. Inserting
Eq. in the first one therefore leads to

S:A = R,ul/pgsikukpga- (231)

Finally, using 7 = £ + (§Yu, /w)k?, and the antisymmetry of the Riemann tensor under
p <> o, we obtain the Sachs vector equation

d2§A
dv?

= RAEB, (2.32)

in which the left-hand side involves a simple (not covariant) derivative, because &4 is
actually a scalar, and where we introduced the optical tidal matriz

Rap = Rupos' ik ks, (2.33)

Because the Riemann tensor is invariant under the exchange of the first pair of indices
with second one, the optical tidal matrix is symmetric Rap = Rpa, which justifies a

posteriori the notation R4 in Eq. (2.32).

Ricci and Weyl lensing

As any 2 x 2 matrix, R can be decomposed into a pure-trace part and a trace-free part.

This decomposition turns out to fit very well with the decomposition of the Riemann
tensor as

1
Ruupa = Ru[pgcr}u - Ru[pgo],u - gRg,u[pgo]u + C/Ll/p0'7 (234)

where C),,,, denotes the Weyl (or conformal curvature) tensor; it has the same symmetries
as the Riemann tensor, and it is trace free, in the sense that C*, = 0. Inserting this

decomposition in the definition ([2.33)), and using the orthogonality relations involving k*,
o
s'y, we get

Rap = —;ka“k” 0B + CuvpoShk” kP s%, (2.35)
whose last term is a trace-free matrix, indeed
5ABCHVszZk”kpsj§ = Cpo k" kP SH (2.36)
= Cuvpok” kP (uu® — d"d?) (2.37)
= wQ(C’ngd”dpu’“‘u” — Clport’u’d"d?) (2.38)
=0, (2.39)

where we used that the Weyl tensor is trace free in the second line, and its symmetries in
the third and fourth lines.
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The optical tidal matrix therefore takes the simple form

Z 0 —Re? ImW
R‘(o %)“L(Imw ReV/) (2.40)
which involves the Ricci lensing and Weyl lensing scalars, respectively defined by
1 14
X = —iRWk“k , (2.41)
1
W = —EC’WPU(S’f —ish) k" kP (s] — is9). (2.42)

Physical interpretation

The decomposition (2.40) of R is useful to qualitatively understand the physics of gravita-
tional lensing. It is indeed clear that Ricci and Weyl curvatures affect the beam’s geometry
in different ways:

« Suppose that only Z is at work, then the separation {4 between any two light spots
on a screen evolves as £4 = ZE4 as the beam propagates. Ricci lensing thus induces
a homothetic transformation of the beam’s pattern.

o The Weyl lensing matrix, on the contrary, has two different eigenvalues F|#'|, whose
eigendirections are respectively rotated by 8 and 8 + 7/2, with # = |# |e=%#, with
respect to the Sachs basis. The separation vectors &5 aligned with those directions
thus evolve as Sj = +|#|€5, so that the beam’s shape gets elongated in the first
direction and contracted in the second one. Weyl lensing thus tends to shear light
beams.

Ricci and Weyl curvatures have distinct physical origins. On the one hand, the Ricci
tensor is directly to matter’s local density of energy and momentum via the Einstein
equation R, — Rg,.,/2+ Ag,, = 87GT),,, which implies

R = —AnGT,, K"k <0 (2.43)

under the null energy condition. In the case of a perfect fluid with rest-frame energy
density p and pressure p, the stress-energy tensor reads 7}, = (p + p)u,t, + pg,w, and the
above relation becomes simply Z = —4rwG(p + p)w?. Ricci lensing thus tells us how a light
beam is focused by the matter it encloses. Note by the way that the cosmological constant
does not have any focusing effect, like any other form of matter equivalent to a perfect
fluid with p = —p.

The Weyl tensor, on the other hand, describes the nonlocal effects of gravity. The
simplest examples are the tidal forces created around a massive body, but gravitational
waves or frame dragging are also gravitational phenomena encoded in the Weyl tensor.
Hence, unlike Ricci lensing, Weyl lensing is mostly due to matter lying outside the beam.
This fits quite well with our Newtonian intuition: a mass inside the beam attracts all the
rays towards it, generating convergence, while a mass outside shears it by tidal effects.

Self focusing

Let us close this section by a remark on the potential ability of light beams to focus
themselves. As mentioned in §[1.1.2] light indeed possesses energy and momentum, whose
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contribution to Ricci focusing reads
Rt = —ATG T KMk = —167G1w?, (2.44)

where [ is the luminous intensity (power per unit area) of the beam, also equal to its
energy density ppeam- This quantity is not a constant during light propagation, the energy
being diluted over the growing wavefront and redshifted. If the light source has an absolute
luminosity (power) L, the observed intensity goes like I = L/(4wD?), where Dy, denotes
the luminosity distance from the source to the observer—see Chap. |3| for more details
about distances in curved spacetime.

The amplitude of self focusing can be evaluated by comparing it to the cosmic Ricci
focusing Zeosm = —47G prw?, associated with the mean matter density py, = 2.8 x 10727 (1+
2)3 kg/m? in the Universe. We get

(2.45)

Rsel . 1.7x 1076 L (1 pC)2
%COSm B (1 + Z)3 L@ DL ’

where Lo = 3.8 x 102 W is the solar luminosity. For stellar sources, this is therefore a very
small number; but for much brighter sources such as quasars, with a typical luminosity
of L ~ 10* W ~ 10 L, self focusing turns out to dominate over cosmic focusing as far
as Dy, < 10 kpc. This effect makes very luminous sources appear even brighter than they
already are.

2.2 The Jacobi matrix

The comparison between the physical morphology of a source and how it appears to an
observer is the heart of gravitational lensing experiments. The Jacobi matrix, which we
introduce in this section, precisely contains this information.

2.2.1 Definition and interpretation

Wronski matrix

The Sachs vector equation (2.32)) is a second-order linear differential equation, which
satisfies the Cauchy-Lipshitz conditions if we assume that R ap(v) is smooth. Hence there
is a linear one-to-one and onto relation between any solution of Eq. and its initial
conditions; in other words, there exists a 4 x 4 invertible matrix W such that

&1 &
gg (’UQ) = W(’UQ < Ul) EQ (U1>. (246)
-1 -1
$ S

We shall call W the Wronski matriz of the Sachs equationﬂ The notation vy <— vy, which
indicates that Eq. (2.32)) is integrated from v; to vs, is useful for expressing the elementary

In a mathematically rigorous way, W(v < vg) is the Wronski matrix associated with a fundamental
system of solutions (M1, M2) of the matrix equation M = RM, with initial conditions M(vy) =
MQ(’U()) = 12 and Ml(l}o) = Mg(’l}o) = 02

31



32

Chapter 2 Light beams

properties of WW implied by its very definition, namely

W (vs < v1) = W(v3 < v2)W (g < v1), (2.47)
W(vy ¢ v1) = [W(v1 < v2)] 7. (2.48)

Its propagation equation, inherited from Eq. (2.32)), reads

0, 1,

R(Ug) 02

0
%W(’UQ — 1}1) = (

) W(vs < v1), (2.49)

with initial condition W(v; < v1) = 14, and where 0,,, 1,, respectively denote the n x n
zero and unity matrices. This Cauchy problem is formally solved by

v (0 1
W(vg — vp) = Vexp/v (R(Qv) 02) dv, (2.50)

where Vexp is the affine-parameter ordered exponential defined, for any matrix-valued
function M (v), by

Wn—1

Vexp /U2 M (v)dv = > /U2 dw, /wl dws .. / dw,, M (wy)M (ws) ... M (w,).
1 n—=0 01 V0 v

0
(2.51)
This expression reduces to a regular exponential if, for all v, v/, M (v) commutes with
M (v'). In the case of Eq. (2.50)), this occurs if, and only if, R(v) is a constant.

Because of its “Chasles relation” , the Wronski matrix is a very convenient tool
for solving the Sachs equation piecewise, as the junction between various pieces of
solution is simply achieved by matrix multiplications. This is indeed the reason why the
Wronski matrix was introduced independently by Ref. [24] (not under this name) and by
the author of this thesis in Ref. [25], in order to deal with light propagation in Swiss-cheese
models (see Chap. @ In most cases, however, only a 2 x 2 part of W is really useful, as
we will see below.

Jacobi matrix

If we choose the initial conditions for the integration of the Sachs equation to be a vertex
point of the light beam (here the observation event O), then by definition {4(vo) = 0, and
Eq. (2.46)) indicates that £4(v # vo) is related to €4(vo) as

B

§A(v) = DAB(U — vo)(ifv(vo), (2.52)

where D(v < vp) is the 2 x 2 top-right block of W(v < vp); it is called Jacobi matriz
for reasons that shall become clearer below.

In § of the previous chapter, we have seen that an increase dv of the affine
parameter corresponds, in the rest frame of arbitrary observer, to a displacement d¢/w of
the photon. It follows, as depicted in Fig. , that the derivative &8 (vo) involved in the
definition of D reads

d¢?
dv

de?

= = —wpbB 2.
; wWo (M wWo 0> ( 53)

O
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Figure 2.3 The vector égs 4 at O is directly proportional to the observed angular separation
0o = 968,4 between the rays, since 4 = d¢4 /de.

where 05 < 1 denotes the angular separation, on the observer’s celestial sphere, between
the two images associated with two rays separated by &. The minus sign on the right-hand
side is due to the fact that k* is future oriented, so that d¢ is positive for a displacement

towards the future, whereas 05 is more naturally defined from a past-oriented displacement.

In light of the identification (2.53]), the matrix D(S < O) corresponding to the
integration of the Sachs equation from the observation event O to the source event S can
be written as

1 0¢84
DS+ 0) = —— 23 2.54
We conclude that, modulo the normalization factor —1/we, D(S < O) indeed represents
the Jacobi matrix of the map {64} — {£4}, which relates the positions of images on the
observer’s celestial sphere to the physical separations of the associated sources. As such,
D(S «+ O) encodes all the gravitational distortions of the image of a very small light

source.

2.2.2 Decompositions

General case

The Jacobi matrix D(S <— O) can be decomposed in a way that emphasize the geometrical
transformations between the observed image and the actual source—whose intrinsic
morphology cannot be observed. First note that its determinant is, still modulo a
frequency factor, the Jacobian of {85} — {4}, that is, the ratio between the physical area
of the source Ag and its apparent angular size (observed solid angle) 2o, both assumed to
be infinitesimal quantities. In other words,

det(woD) = == = D3, (2.55)
o

where we anticipated on Chap. [3, § 3.2.3] identifying the above ratio with the square of
the angular diameter distance D between the source and the observer.

As any 2 x 2 matrix, D/+v/det D can be written as the product RS of a rotation
matrix R and a symmetric matrix S. Moreover, since its determinant is unity, we can
write S as the exponential of traceless symmetric matrix. The resulting decomposition of
the Jacobi matrix thus reads

~ Da [cosyp —siney -7 e
D = —E (sinw COS'(ﬂ > exXp ( 72 ’}/1 . (256)
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A further step consists in diagonalising the exponential matrix; it is convenient for that
purpose to define v > 0 and ¢ such that v, + iy, = ye 2%, leading to

exp (—71 72> _ (cQSgo — sin go) (e‘“’ 0) < cos ¢ sin gp) ' (2.57)
Y2 M sing  cosp 0 e") \—sinyp cosyp
The various quantities involved in the above decomposition must be interpreted the

following way (see Fig.[2.4]). Starting from an observed image, the intrinsic properties of
the source are reconstructed by successively:

1. contracting and expanding the image by factors e™” and e, respectively, in the
directions

S_ = cos s + sin sy, (2.58)
s, = —sinps; + cos pso, 2.59)

this shear operation preserves the area of the image;
2. rotating anticlockwise the result by the angle 1;
3. translating angles into physical distances by multiplying them with Dj.

The changes of orientation of the image with respect to its source—induced by shear (2.)
and rotation (3.)—are a priori not measurable, because it is a priori impossible to know
what is the intrinsic orientation of the source. Nevertheless, for a source of polarised
light, whose shape is aligned with the direction of polarisation (e.g. in quasar jets),
such effects can become observable because they generically break the alignment between
polarisation—materialised by the Sachs basis—and the image’s shape.

Perturbative case

In a number of practical situations, the lensing effects encoded in the Jacobi matrix result
from small perturbations of the spacetime geometry, with respect to a background which
generates no shear nor rotation of images (Friedmann-Lemaitre or Minkowski), i.e. for
which D = —Dy /wols. In such cases, the general decomposition (2.56) can be expanded
at order 1 in the deformation scalars v;,v2,% < 1, and in the convergence

Dy — Dy
=K1, 2.60
R= A (260
under the form -

D=AD+ ..., (2.61)

where the amplification (or magnification) matrix reads

l—k=—m  7—v
A= . 2.62
( Yoty l1—kK+m (2.62)

In fact, we will see in § that if v < 1, then ¢ ~ 4% and can thus be neglected in the
above first-order expansion. This is the reason why the amplification matrix is usually
considered symmetric in the weak-lensing literature [17}26].

In principle, it is possible to use a decomposition of the form even for finite
deformations, but the quantities x,y, 1 ~ 1 then differ from the ones defined in Egs. ,
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3. scaling g \1/’
X _DA e 7 '":. » '

Figure 2.4 Transformations of an image due to gravitational lensing, as encoded in the decom-
position (2.56)) of the Jacobi matrix. In this example, the angular distance between the source
galaxy and the observer is Dy = 10 kpc/3 arcmin =~ 1 Mpc.

(2.60)), and thus lose their geometrical meaning. For instance, the relative correction to
the angular distance is, in that case, no longer equal to the convergence, but rather to

Da=Da_y 1 (2.63)

where the magnification p reads

1 1
= et A~ (1—k)2—~2+4¢%

(2.64)

Note by the way that the conventional name “magnification matrix” for A is somewhat
misleading, and would be more adapted to A™'. It is precisely this loss of geometrical
interpretation for the commonly used k, 7, which led the author of this thesis to propose
the more generally sensitive decomposition ([2.56]).

Let us finally mention that a perturbative expansion of the form (2.61f) can also be
performed with respect to a background with nonzero shear and rotation—e.g. for weak

lensing in a perturbed Bianchi I universe —but the expression (2.62)) of A needs to
be slightly adapted to account for it.
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2.2.3 Evolution

Formally, the evolution of the Jacobi matrix with v is entirely determined by simply
extracting the 2 x 2 top-right block of the Wronski matrix given by Eq. . However,
affine-parameter ordered exponentials are not particularly easy to handle, and thus of
limited interest for practical calculations.

Jacobi matrix equation

An evolution equation for D only is directly obtained by taking the second derivative of
its definition ([2.52)) and inserting the Sachs equation (2.32)), which yields

aa;’D(v +— v0) = R(v)D(v < vp), (2.65)

that we will refer to as the Jacobi matriz equation, and abridge as D = RD, where it is
understood that a dot stands for a derivative with respect to the final affine parameter v
of D(v + vp).

The initial conditions (v = vp) for the differential equation derive from the very
definition of the Jacobi matrix, and read

’D(Uo — Uo) = 0, (266)

D(Uo — Uo) = 1. (267)

The set of Eqs. (2.65)), (2.66), and (2.67) thus completely characterises the evolution of

the Jacobi matrix with v.

Etherington’s reciprocity law

We have seen in Eq. that the Wronski matrix enjoys a simple reciprocity law:
inverting the initial and final conditions simply turns W into its inverse. There exist a
similar relation for the Jacobi matrix, known as Etherington’s reciprocity law [29], but
contrary to the former, the latter does not trivially follow from a definition: it relies on
the specific equation governing the evolution of D.

Following Refs. [23,30], we consider two solutions v — D(v <— v1) and v — D(v < vq)
of the Jacobi matrix equation, and define

Cv) = ’DT(U — ) D < vy) — DY < v)D(v <+ vy), (2.68)

where T denotes matrix transposition. The symmetry of the optical tidal matrix RT = R
implies that C' is a constant; in particular, C(v;) = C(vy) implies

D(v) < v3) = =D (vy < 1)) (2.69)

by virtue of Egs. (2.66), (2.67). A particular consequence of the above relation is that
inverting v; and vy leaves the determinant of the Jacobi matrix unchanged:

det D(vy < v9) = det D(vg <— v1), (2.70)

which will allow us to derive the duality relation between the angular and luminosity
distances in Chap. [3|
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2.3 The optical scalars

The propagation equations for light beams can be reformulated in terms of their deformation
rates, also known as the optical scalars. This formulation has the advantage of exhibiting
even more clearly the respective roles of Ricci or Weyl curvatures, and allows one to derive
the so-called focusing theorem.

2.3.1 Definitions

From the Jacobi matrix

Since the deformations of a light beam are described by the Jacobi matrix, the associated
deformation rates are naturally defined by its logarithmic derivative with respect to the
affine parameter; we thus introduce the deformation rate matriz

e sA =0t (2.71)
B afB

The conservation law (2.68) applied for v; = vy (hence C = 0,) reads
0, =D'S"™D - D'SD (2.72)

which, if we assume det D # 0, implies that S is a symmetric matriz.
Decomposing § into its pure-trace and trace-free parts then yields

(00 —01 Oy
(09 (2 7). oy
where € and o = 01 + io9 are the optical scalars; they are called respectively the beam’s
expansion rate and shear rate, for reasons that shall become clearer in § Note that,

despite its notation, this # must not be confused with an angle, both # and ¢ have the
dimension of [v]7!.

From the gradient of the wave four-vector

Alternatively, one can define the deformation rate matrix &, and thus the optical scalars
0,0, via

Sap = shsEV k. (2.74)
Let us show that this definition is indeed equivalent to the previous one (12.71)),

€a= KV,(46) (2.75)
= sHk"V ., since §f oc k* L s’ (2.76)

= s%¢M'V .k, because of Eq. (2.77)

= s4¢NV ik, as k'V , k, =0 (2.78)
(2.79)

_ v eB o
= s4E7s5V .k,

whose derivative with respect to ¥ indeed leads to the expression (2.74), modulo an
inversion of the indices p <+ v, which is allowed since V,k, is a symmetric tensor. This
property, which comes from the fact that k, is the gradient of the wave’s phase, is an
alternative proof for the symmetry of S.
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More generally, the tensor V,k, can be decomposed over the four-dimensional or-
thonormal basis (u*, d", s, sb) according to
v

V,k, = Sapsts? — 2w_1Ska,,)uUVpkza + cu_?k:ﬂk,,upu"vpk‘g, (2.80)

which can be derived starting from V,k, = 6£0;V k,, with of = S + d,d” — u,u”, and
using k*k, = 0 = k"V,k,. Taking the trace of Eq. (2.80) then yields

V' = trS = 26, (2.81)

while the trace of its square gives

(Vuk)(VPE) = t2(8%) = 2(6% + |0?)). (2.82)

The quantities 6 and \0]2 are thus fully covariant quantities, which reflects the frame
independence of the beam’s morphology.

2.3.2 Geometrical interpretation

Expansion rate

The physical cross-sectional area of a light beam is defined as

A= d§1d§2:/

beam bea

det D deLde?. (2.83)

For an infinitesimal light beam, D can be considered constant in the above integral, and
the evolution rate of A with the affine parameter reads

A 1 d(detD)
A detD dv

= tr(DD7!) = 18, (2.84)

whence

1 dA 1 dD,

QZEE_DA dv

(2.85)

where we reintroduced the angular diameter distance D o v/A. The quantity 26 therefore
represents the evolution rate of the beam’s area.
Shear rate

Consider two light rays separated by &. The distance ¢ between the associated light spots
on the local screen reads

¢ =glg =% =DpDac 665, (2.86)
and since (dD'D)/dv = 2D*SD, we conclude that the evolution rate of ¢ reads

1dl_ £4Sape"

T T e, 0 — |o| cos 2, (2.87)
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where ¢ denotes here the angle between (¢€4) and the eigendirection of S associated with
the eigenvalue § — |o|. The quantity ¢/¢ thus belongs to the interval [§ — ||, 0 + |o|],
which gives |o| its geometrical meaning;:

1d¢ 1d¢
20| = <€d?f>max - <fdv>min (2.88)

is the rate of stretching of the light beam. Note by the way the alternative expression for
the expansion rate, 20 = (£/€)max + (£/0) min-

Relation with the deformation scalars

We have just seen that the expansion rate 6 is related to Da via Eq. . Similarly,
there exist relations between the shear rate o, the net shear ~, its direction ¢, and the
rotation angle v, which can be derived by inserting the decomposition of D in the
definition of §. The result is explicitly

S_DA <(1) (1)>+(¢+@)<(1) —Ol>+ﬁ<—cos2(¢+g&) —sin2(¢+<p)>

~ Da —sin2(+ )  cos2(¢+ )
. sin 2(¢ + ) sinh 2 cosh 2y — cos 2(1) + ¢) sinh 2 (2.89)
¥\ - cosh 279 — cos 2(1) + ) sinh 2 — sin 2(¢) + ¢) sinh 2 T

which, after regrouping the trace, trace-free symmetric, and antisymmetric parts, and
identifying with Eq. (2.73)), indeed confirms Eq. (2.85)) and yields

o = (4 — ipsinh 27y) e 2W+9) (2.90)
0 = 1) — 2psinh?® . (2.91)

An alternative expression for o can also be derived by combining Eqgs. (2.90)), (2.91)), and

reads

B 1 d
7= cosh 27y dw

In the weak-lensing case (y < 1), Eq. (2.91]) implies that ) ~ v? is a second-order quantity
and can be neglected. Besides, Eq. (2.92) becomes

[e’m(w*@) sinh 27} : (2.92)

d,
~ —alp
oo (e 2%). (2.93)
The geometrical interpretation of Eq. (2.90]) is more easily discussed if we introduce
the angle a such that o = |o|e~%%; moving the phase term e*(¥+%) to the left-hand side

of Eq. (2.90) and taking the real and imaginary parts then gives

lo|cos2(p+ ¢ —a) =7, (2.94)
lo|sin2(¢ + 1Y — a) = —¢psinh 2y, (2.95)

which tell us how the shear rate works on an already sheared image, depending on their
relative orientation. On the one hand, as already illustrated in Fig. 2.4 ¢ + ¢ is the angle
between s; (resp. s2) and the direction in which the beam has been effectively contracted
(resp. expanded). On the other hand, « is the angle between s; (resp. s3) along which
the beam undergoes minimum (resp. maximum) elongation rate £/¢. The following three
situations, depicted in Fig. are then easily understood:
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1. If @« = ¥+, then the stretching described by o occurs precisely in the same direction
along which the beam is already stretched. Its deformation is then amplified, without
any change of its orientation: 4 = |o|, ¢ = ¥ = 0.

2. If a =+ @+m/2, it is the contrary of the above, elongation occurs in the direction
for which the beam is contracted, and vice versa. The deformation thus tends to
attenuate, ¥ = —|o|, p =9 = 0.

3. If « = ¢+ p+m/4, we have an interesting situation for which the shear rate actually
generates no distortion of the beam (¥ = 0). The pattern displayed on the screen
thus conserves its degree of deformation, but the direction in which the latter occurs
changes according to ¢ = |o| /sinh 2. It also undergoes a global rotation according
to ¢ = 2psinh? v = |o|tanh 7.

T T
1.0421/1—1—90 2.0(:7,/14-904'5 3.04:@/1—#90%—1

Figure 2.5 Tllustration of the effect of the shear rate ¢ for the three configurations discussed
in the text. Blue ellipses represent the cross-sectional shape of an initially circular light beam,
for two successive values of the affine parameter: v (dashed) and v + dv (solid). Black arrows
indicate the eigendirection of the shear rate matrix.

2.3.3 Evolution

Sachs scalar equations

Besides the geometrical meaning of its components, the deformation rate matrix S can be
considered a Riccati variable associated with D, since its allows one to trade the second-
order linear Jacobi matrix equation (2.65)) for a first-order nonlinear Riccati equation

S+8*=R, (2.96)

that one easily obtain by taking the derivative of 8 and replacing D by RD. Inserting
the decomposition (2.73]) of S then leads to the Sachs scalar equations

0+6%+ 0> =2, (2.97)
&+200=W. (2.98)

They confirm the discussion of § regarding the respective role of Ricci and Weyl
tensors in gravitational lensing, as % stands for the source of convergence (antiexpansion),
while # is a source of shear. Note however the presence of |¢|* in Eq. (2.97), which
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adds to the focusing effect of # and therefore makes Weyl lensing an indirect source of
convergence. This property is far from being obvious if one works within the Jacobi matrix
formalism only.

Initial conditions

Due to the initial condition D(vo < vo) = 0y for the Jacobi matrix, the deformation
matrix & = DD~ diverges at O, and so do in principle the optical scalars 6, 0. This
divergence can be analysed from the Taylor series of the Jacobi matrix in the vicinity of
vo, that is

D(v <+ vo) = (v—1v0)ls + (1}_3;}0)3 Ro + O(v —wvo), (2.99)

hence
8 = [1,+0(v —v0)’] [(v — vo) 1z + O(w — vo)?] (2.100)
= (v —v0) My + O(v —vp). (2.101)

The deformation matrix therefore has a simple pole at O, which moreover only concerns
its trace part (expansion rate). In other words, the initial conditions for the optical scalars
are

0= (w—v0)"+0{—10), (2.102)
o=0(w—1v9). (2.103)
The initial divergence of # makes it inconvenient for numerical calculations. It is preferable,

in practice, to use directly the area A of the beam, or the angular distance Dy, as in the
equations exhibited hereafter.

Focusing theorem

Replacing # by (dv/A/dv)/v/A in the first Sachs scalar equation (2.97) leads to the
following evolution equation for the beam’s area A, known as the focusing theorem,

dz;/f = (% -10") VA<, (2.104)

where we used #Z < 0, as ensured by the null energy condition (see § 2.1.3)). Note that, by
virtue of Eq. , VA could also have been replaced by the angular distance Dy in the
above. A similar introduction of Dy in Eq. then leads to the following reformulation
of the Sachs scalar equations

d®Dy

= (% — |of*) Da, (2.105)
dD%o 9
=D 2.1
dv AW7 ( 06)

which enjoy a better behaviour at O than the original ones, and are therefore more adapted
to numerical calculations of Dy (v).

Physically speaking, the focusing theorem tells us that v/A cannot increase more than
linearly with v, and that any gravitational effect tends to focus the beam. This seems to
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imply that there exist no divergent gravitational lenses. Yet that is wrong in general: for
example, a beam going through the interior of a matter circle is defocused. The point is
that the focusing theorem is true for infinitesimal light beams only. If this assumption is
relaxed, if the beam has a finite extension, then its rays no longer have the same direction
of propagation, and their separations no longer belong to the same screen space, etc. It is
precisely the existence of a collection of different screen spaces within a finite beam that
can make it locally focused and globally defocused.



CHAPTER 3

Distances

HE greatest achievement of the theory of relativity is certainly the unification of the
T concepts of space and time, which implies in particular that the notion of spatial
distance is fundamentally ambiguous. Yet astronomy—hence, to some extent, cosmology—
is all about distance measurements, which encourages us to try to generalise the notion of
distance in a relativistic context, rather than abandoning it. We here review a number
of attempts to address this issue, both from purely theoretical and observational points
of view. Throughout this chapter, at least ten different well-defined and well-motivated

notions of distance are presented.
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3.1 Defining distances

In this section, we expose several theoretical constructions for characterizing spatial
distances in relativity. The first difficulty being to artificially disentangle space from time,
we start by investigating the issue in the context of special relativity (§[3.1.1]), where we
show that distances can be univocally defined. The conclusion is nevertheless drastically
different if we allow observers to be noninertial, or spacetime to be curved (§ .

3.1.1 In special relativity

We suppose in all this subsection that spacetime geometry is described by the Minkowski
metric, and we use an inertial coordinate system {x®} for which its components read

9(84,05) = nup = [diag(—1,1,1,1)]4p.
Distance between two events

Let A and B be two events with coordinates 2% 5. Their spatio-temporal separation is
defined as the norm of the four-vectolff] AB connecting them, that is

As*(A, B) = g(AB, AB) = n,3Ar"Ax”, (3.1)

with Az® = 2% — 2. This separation is timelike, null, or spacelike respectively for As? < 0,
As? = 0, or As? > 0 respectively. In the third case, it can be interpreted as the square of
the spatial distance between A and B,

D(A, B) = \/As*(A, B). (3.2)

As originally shown in Ref. [31], this notion of distance can also be expressed in terms
of time measurements only. Consider an arbitrary inertial observer whose worldline .
passes through A. Without loss of generality, we assume the coordinate system {z®} to
be adapted to this observer, in particular z° = ¢ is her proper time, and t4 is the date of
A in her rest frame. We define two events FE, R € . from the construction depicted in
Fig. the observer emits a photon at E, which is reflected at B back to the observer,
who finally receives it at R. We call tg,tr the corresponding dates.

This construction implies that both the four-vectors EB and BR are null, because
proportional to the emitted and reflected wave four-vectors. From EB = EA + AB we
deduce

0=g(EB, EB) (3.3)
—g(EA,EA) + g(EA, AB) + g(AB, AB) (3.4)
= —(ta—tp)’ + (ta — tr) g(8;, AB) + g(AB, AB), (3.5)

where we used EA = (t4 — tg)0; and g(8;, 0;) = —1; the same calculation with BR =
BA + AR then yields

0=—(tp —ta)? — (tr —t4)g(8:, AB) + g(AB, AB). (3.6)

IThis notion of four-vector connecting two arbitrary events is meaningless in general, but Minkowski
spacetime is an exception.
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Combining Eqgs. (3.5)), (3.6)) to eliminate the scalar product between 8; and AB, we finally
obtain
g(AB,AB) = (tA—tE)(tR—tA), (37)

which is positive iff t4 € [tg, tg], that is, as expected, iff A lies outside the lightcone of B.
When this condition is fulfilled, the above relation yields the Synge formula [32] for the
distance between two events

D(A, B) = \/(ta — tr)(tn — ta). (3.8)

Although it involves here the proper time of a particular observer, D(A, B) is by definition
a Lorentz-invariant quantity, thus any inertial observer can calculate D(A, B) using the
Synge formula.

Observer independence is, however, the reason why D(A, B) actually fails in describing
what we usually call a spatial distance. For example, the couple of events corresponding
to (A) the emission of a photon by this text, and (B) its reception by your eye, has
D(A, B) = 0 by definition. Yet the text does not touch your eye, hopefully. The reason for
such a failure is that the natural questions associated with spatial distances concern the
distance between an event and an worldline (how far is this supernova explosion from us?)
or between two worldlines (how far is this text from your eye?), rather than the distance
between two events.

Distance between an event and an inertial observer

Let .Z be the worldline of an inertial observer and B an arbitrary event. The dis-
tance D(.Z, B) between them is naturally defined as D(A*, B), such that A* € £ and B
are simultaneous in the observer’s frame. The notion of simultaneity invoked here admits
three equivalent definitions in special relativity:

1. t4« = tp in an inertial coordinate system associated with .Z.

2. tg —tar =ty —tg, where E, R € £ are, as in the previous paragraph, the emission
and reception by the observer of a photon reflected at B. This definition is known
as the Einstein-Poincaré simultaneity criterion [33}34].

3. g(A*B,8,) = 0.

Therefore

(L, B) = D(A*, B) = by = 17, (3.9)

where we have chosen .Z as the origin of spatial coordinates {2%},—1_ 3 in the penultimate
expression, while the last one have been obtained from the Synge formula by replacing
ta by tas = (tg + tgr)/2. By virtue of the same Synge formula, it is easy to check that
D(Z, B) is also the maximal distance between B and any event of the observer’s worldline,

D(&Z, B) = max D(A, B), (3.10)

provided this quantity exists.

Another possible characterization of D(.Z, B) relies on the affine parametrisation of null
geodesics connecting B with .Z. We have seen in §[1.3.1]that the affine parameter v indeed
represents the distance travelled by light, modulo a frequency factor. Here the geodesic
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(a) Distance D(A, B) be- (b) Distance D(.Z, B) be- (c) Distances between an in-
tween two events A, B. tween an inertial world- ertial worldline . and a (pos-
line .# and an event B. sible noninertial) particle .£”.

Figure 3.1 Defining distances in special relativity.

equation is easily solved, e.g. from B to R, leading in particular to k' = cst = wg, where wp
is the cyclic frequency measured by the observer at R. In other words, dt/dv = wg, which
we immediately integrate as wr(vg —vg) = tg —tp = D(Z, B). We could also have chosen
to integrate along the past ray (from E to B), and get wg(vg —vg) =tp —tg = D(Z, B)
as well.

Summarizing, the special-relativistic distance between a worldline and an event is
univocally defined, because

D(¥,B) = max D(A, B) = wg(vg — vg) = tp— 1k

mas —, (3.11)

though each expression actually corresponds to a different geometrical construction.

Distance between a particle and an inertial observer

Consider a (possibly noninertial) particle following a worldline .#”. The distance between
this particle and the inertial observer following . is, in general, a time-dependent quantity,
because of their relative motion. There are three possible definitions for this distance
represented in Fig. [3.1c} let P be an event on £ and ¢ the associated date in the observer’s
frame,

o the instantaneous distance is Dy (t) = D(Z, 1), where I € £' and P are simulta-
neous in the observer’s frame;

o the retarded distance reads D, (t) = D(Z, R), where R € £’ is the emission of a
photon received at P—it is the notion of distance involved, e.g., in special-relativistic
electrodynamics [2]; and finally

o the advanced distance is D,y (t) = D(Z, A), where A € £’ is the reception of a
photon emitted at P.

They all differ, except when they are constant.
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3.1.2 In general relativity

In curved spacetime, or for non-inertial observers in Minkowski spacetime, the previous
reasonings still apply locally, i.e. for small distances compared to (i) spacetime’s curvature
radii, and (ii) the inverse of the observer’s acceleration. In the previous chapters, we tacitly
took advantage of this property to univocally invoke physical distances—e.g. between
two light spots on a screen—when they were infinitesimal. When they are not, many
constructions which coincide locally turn out to differ globally.

Distance between two events

Let A, B be two events, and assume that they are connected by a unique geodesic ¢ affinely
parametrised by A, as represented in Fig. [3.2] In mathematical terms, B is said to lie in a
normal neighbourhood of A, and conversely. A natural extension of the spatio-temporal
separation As? defined in § to the general-relativistic case is then given by (twice)
Synge’s worldfunction

_1

B
o(A,B) = 5 (s = Aa) /A tht, A\, (3.12)

where t# = dz#/d is the tangent vector to ¢ associated with A. The geodesic equation
Dt/d\ = 0 implies that "¢, is a constant along ¢, so o(A, B) = (A — Aa)?tHt,/2. Just
like As?(A, B) in special relativity, the sign of o(A, B) dictates the nature of ¢:

e 0(A,B) <0< ¥ is timelike. In this case, the affine parameter A can be chosen as
the proper time 7 along ¢, so that tt, = —1, and o(A, B) = —(75 — 74)%/2.

e 0(A,B) =0« ¥ is null.

e 0(A,B) >0 < ¥ is spacelike. If we choose an affine parameter A = s such that
t't, =1, then o(A, B) = (sp — s4)*/2.

In the last case, we conclude that

D(A, B) = \/20(A, B) = |s5 — s.4] (3.13)

generalises the special-relativistic notion of spatial distance between two events. There is
however no equivalent of the Synge formula (3.8)) in general relativity, in the sense that

a quantity of the form \/ (T4 — 7g)(TR — Ta)—where 7 is the proper time of an observer
whose worldline .Z contains A, and F, R € £ are the emission and the reception of a
photon reflected at B—is observer dependent and does not coincide with Eq. (3.13).

t _»B
"""""" —-""" A\

Figure 3.2 Geodesic ¢ linking two events A, B, and its tangent vector t* = dz# /dA.
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Distances between an event and an observer

Let .Z be the worldline of a possibly noninertial observer and B an event. A straightforward
generalization of the special-relativistic distance D(.Z, B), that we shall call spatial-geodesic
distance, is

Ds(Z, B) = rglgéD(A, B), (3.14)

where D(A, B) is now given by Eq. (3.13)). An equivalent definition for the same quantity,
whose construction is depicted in Fig. is the following: find the assumed-to-be unique
spacelike geodesic ¢* starting from B and intersecting .Z orthogonally; call A* their
intersection; then Dg(.Z, B) = D(A*, B). Note the similarity with the construction of
Fermi normal coordinates in the vicinity of a timelike geodesic [9].

The equivalence between both definitions follows from the properties of Synge’s world-
function. One shows [35] that if the event A is displaced by dx'y = u/407 along .Z, where
u 4 denotes the four-velocity of the observer at A, then o(A, B) changes by

0o = ()\B — )\A) (t“uM)A5T. (315)

We conclude that o(A, B) is stationary with respect to displacements of A along .Z iff
the geodesic ¢ along which it is computed is orthogonal to .Z. Moreover, this stationary
point is a maximum if we suppose that it is unique, i.e., if we suppose that only one
geodesic ¥* connects B and .Z orthogonally. Indeed, (A, B) is positive if A lies between
the intersections E and R of . with the lightcone of B [see Fig. where it vanishes.
Hence a unique stationary point between them must be a maximum.

Besides distances, the above construction also defines a notion of simultaneity: A* € Z
and B are spatial-geodesic simultaneous for the observer iff the geodesic ¢* connecting
them is orthogonal to .Z at A*. Contrary to the special-relativistic case, this prescription
for simultaneity does not necessarily coincide with the Einstein-Poincaré criterion: 75 — 74+
and 74« — 7, where F/ and R are defined as before, are different in general. However, the
equality can be shown to approximately hold, up to second order in Dg(A, B), if £ is a
timelike geodesic.

We thus expect from constructions based on light rays to define distinct notions of
distance between . and B. For example, the radar distance defined as half the duration
of light’s round trip from .Z to B,

Dr(Z,B) = % (3.16)

has no reason to be equal to Dg. Similarly, a null-geodesic distance, relying on the affine
parametrisation of a null geodesic connecting B to .Z, e.g.,

DN<$7 B) ELUR(UR—’UB), (317)

generically differs from both Dg and Dg. It could also have been defined as wg(vg — vg)
leading to a fourth distinct distance.

A last option for connecting an event to a worldline consists in relying on a particular
foliation of spacetime by spacelike hypersurfaces. Suppose M = {J¥;, where t is a label
for the hypersurfaces ¥;. Spacetime’s metric g induces on each of them an intrinsic metric
h(t) = g|s,. The associated Levi-Civita connection then allows us to define h-geodesics
on Y; which are not, in general, g-geodesics of M. A foliation-based distance Dg(£, B)
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(a) Distances based on geodesics. (b) Distance based on a foliation.

Figure 3.3 Defining distances between a worldline .2 and an event B in general relativity.

between . and B can be constructed the following way, illustrated in Fig.|[3.3bf (i) identify
the hypersurface ¥, such that B € ¥; (ii) call A, = £ N3, and %, the h-geodesic of %,
connecting A; with B; (iii) define

DF(.,%,B) = Dh(At,B) = \/20h(At,B), (318)

where oy, is Synge’s worldfunction for the manifold ¥, equipped with h(t).

This procedure can seem quite natural for spacetimes which admit a preferred folia-
tion, for example to exhibit their stationarity (Schwarzschild, Reissner-Nordstrgm, Kerr,
Majumdar-Papapetrou, etc.), or their homogeneityﬂ (Friedmann-Lemaitre, Bianchi); how-
ever, for Dg to locally coincide with the other notions of distance, the foliation must be
orthogonal to the observer’s worldline .. A way to construct such a foliation in any
spacetime consists in using the Einstein-Poincaré criterion: for any event A € £, the
set of all B which are Einstein-Poincaré simultaneous with A indeed form a hypersurface
which is orthogonal to .Z.

Distance between a particle and an observer

Like in special relativity, the instantaneous, retarded, and advanced distances between
an observer following .Z and a particle following .#’ can be constructed from each of the
event-worldline distances exposed in the previous paragraph. The associated prescriptions
for simultaneity can be used for defining the event I € #’ simultaneous to a given P € &,
in the case of the instantaneous distance.

3.2 Measuring distances

In the previous section, we have demonstrated the ambiguity of the notion of spatial
distance in general relativity by proposing half a dozen theoretically well-motivated

2In cosmology, the D associated with the foliation of spacetime by homogeneous hypersurfaces is
usually referred to as the physical distance, not because it is more physical than Dg, Dy, or Dg, but
rather to distinguish it from the comoving (or conformal) distance. It is also the notion of distance which
is implicitly chosen in, e.g., Buchert’s approach to the backreaction issue [36].
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definitions for it. However, none of them is actually observable—except the radar distance,
but it is practically very limited. In the present section, we thus adopt a complementary
approach, reviewing the main observables used to measure distances in astronomy and
cosmology, and the different notions of distance they define. Table provides a summary
of what follows, together with some orders of magnitude.

observable distance applicability range precision
time radar Dy Solar system AU 10~
angle parallax Dp Milky way kpc 1-10%
angular Dy extragalactic ~ Gpc  10-50% (clusters)
5% (BAO)
intensity  luminosity Dy, extragalactic 10 Mpc 5% (Cepheids)
Gpc 20% (SNe)

Table 3.1 Summary of the observable notions of distance in astronomy and cosmology, with
their domains of applicability, and orders of magnitude for their maximum range and current level
of precision. The precision on Dg refers to the Viking Earth-Mars distance measurement [37]; on
Dp to the objectives of the Gaia mission [38]; on Da to galaxy-cluster distances measured from
the X-ray emission/SZ effect [39], or to the BAO scale with BOSS [40]; finally the precisions on
Dy, for Cepheids and SNe are based respectively on Refs. [41] and [42].

3.2.1 Radar distance

Already defined in Eq. of the previous section, the radar distance Dg corresponds
to half the duration of a light signal’s round trip between the observer and its target, as
measured in the observer’s frame.

This method is of daily use for short-distance measurements on the Earth, but it is
not adapted to astronomy as it requires high-reflexivity objects. As such, it is limited to
distance measurements within the Solar system. A notable example is the Earth-Moon
distance, thanks to the five retroreflector arrays installed by the US missions Apollo 11, 14,
15, and Soviet missions Luna 17, 21. The associated Lunar Laser Ranging experiments have
determined the radar distance to the Moon with a precision on the order of the centimetre,
that is, enough to carry tests of the equivalence principle and Lorentz invariance [43-46].
The radar distances to Venus, Mars, and Cassini have also been used to measure the
Shapiro time delay, which is a standard test of GR in the Solar system [1].

The radar distance is also involved in gravitational wave detection experiments, such
as the ground interferometers LIGO [47], VIRGO [48], and the future space mission
eL.ISA [49]. All three are based on the same principle: as a gravitational wave propagates
through the interferometer, the radar length of each arm is affected differently, inducing a
phase difference between light signals propagating inside, and therefore a characteristic
interference signal.

3.2.2 Parallax distance
Definition

Parallax is the apparent displacement of a light source caused by a displacement of its
observer. The larger the distance between them, the smaller the parallax, so that a
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measurement of the apparent motion of the source by the observer, together with the
knowledge of its own actual motion, is a method for measuring distances. For simplicity,
we restrict here to the case where the observer’s motion is orthogonal to the line of sight
(see Fig. ; the parallax distance is then

Ao
Dp = — 1

where Ap is the physical area of the observer’s trajectory and Qo < 1 is the solid angle
occupied by the apparent trajectory of the source on the observer’s celestial sphere.

apparent motion

of the source

Figure 3.4 Solar parallax. The revolution of the Earth around the Sun induces an apparent
motion of the source on the observer’s celestial sphere. The solid angle o corresponding to
this apparent motion is smaller as the source is farther. The parallax distance is obtained by
comparing 2o with the area Ao of the observer’s motion—here Ap = m(AU)?—according to
Dl% = Ap/Qo. We chose to depict a beam with some focusing, which tends to increase Dp.

In astronomy, solar parallax—due to the revolution of the Earth around the Sun—is

the most common technique for determining the distance of stars within the Milky Way.

It gave birth to the parsec unit, defined as the distance such that a source has a solar
parallax of one arcsecond. The European astrometry satellite Hipparcos [50], launched in
1989, measured the parallax of 2.5 millions stars. It has been replaced in 2013 by Gaia [38],
which is expected to deliver a catalogue of 1 billion stars, with a precision of 20-200 pas
on their parallax. This level of precision is the best that we can achieve today, even with
Very Long Baseline Interferometry (VLBI) whose resolution is on the order 1 mas, setting
the current limit on parallax distance measurements to Dp < 10 kpc.

Theoretical expression

Let us relate the definition ((3.19) of the parallax distance to the properties of a light beam
connecting the source to the observer. For that purpose, consider the beam delimited by
all the rays emerging from S and reaching a possible position of the Earth on its trajectory
around the Sun, as depicted in Fig. [3.4l Let O be, for example, the intersection between
the beam with the Sun’s worldline. Note that, contrary to the convention adopted in
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Chap. [2 this beam has a vertex at S and a nonzero extension around O. The ecliptic
plane then plays the role of screen space at O.

On the one hand, the area Ap of the Earth’s trajectory is clearly identified with the
area d2¢5 of the beam at O, with &5 the components of the separation vector & over the
Sachs basis at O. On the other hand, Qp = w(;?dzfé, where wp is the observed frequency
since, as discussed in § , w‘1|SA| represents the angle between two rays separated
by £&. We conclude that

deA wQ
D2 = O — o 3.20
P wgkd2Es T det S(0O + S)’ (3.20)

by definition (2.71]) of the deformation rate matrix &. The parallax distance can therefore
be expressed in terms of the optical scalars as

wo

Dp=-—=9 (3.21)

NG

where ¢ and o correspond to S(O < S), i.e. to an integration of the Sachs equation from
the source to the observer. Note that our expression (3.21)) differs from the one given in
Ref. [51] and used in Ref. [52], in which the shear rate |o|” has been neglected.

Since Dp is an decreasing function of #2 and an increasing function of |o|*, the Sachs
scalar equations , imply that any gravitational lensing effect tends to increase

the parallax distance.

3.2.3 Angular diameter distance
Definition

The notion of angular diameter distance, or area distancdﬂ is based on the fact that a
given object appears smaller as it lies farther form us. It is defined by

As

Dy =
A Qov

(3.22)

where Ag is the physical area of the light source, and 2o < 1 its apparent angular size
for the observer, as depicted in Fig. [3.5]

The difficulty of measuring angular distances in astronomy is that it requires standard
rulers, i.e. sources whose size is known, or at least can be calibrated by independent
experiments. An important example in cosmology is the Baryon Acoustic Oscillation
(BAO) scale, which corresponds to the maximum distance travelled by a sound wave in
the primordial Universe. It can be extracted from the analysis of the anisotropies of the
Cosmic Microwave Background (CMB), and in the distribution of galaxies. The angular
diameter distance is also naturally involved in strong gravitational lensing and time delays
experiments.

3 Angular diameter distance and area distance can actually be considered two slightly different notion |23).
Strictly speaking, the former is a comparison between the proper and apparent diameter of the source,
which thus depends on its orientation if some shear is at work. The area distance do not suffer from this
ambiguity.
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Figure 3.5 The angular diameter distance, or area distance, is obtained by comparing the
actual and apparent sizes of a light source, according to Di = Ags/Qo.
Theoretical expression

The angular diameter distance is directly related to the determinant of the Jacobi matrix

(sce § 2.0) via

Dy = woy/det D(vs + vo). (3.23)

The notation vg <— vo indicates that the Jacobi matrix equation (2.65) must be solved
from the observation event O, where all the rays converge, to the source event S.

By comparing Egs. (3.21) and Eq. (3.23), we immediately deduce that Da # Dp
in general. If an observer performs two experiments to measure his distance to a light

source, the first one using the solar parallax and the second one using the angular-diameter
method, the results will generically disagree. In particular, the focusing theorem derived
in § implies that any gravitational effect tends to reduce Dy, contrary to Dp.

In the gravitational lensing literature, it is customary to set the observed frequency wo
to one—which can be considered a particular choice of units for frequencies—in order
to simplify Eq. . However, keeping explicitly wo in the expression of Da has a
significant pedagogical advantage: it allows one to easily understand (i) aberration effects,
and (ii) the relation between the angular diameter distance and the luminosity distance,

defined in §|3.2.4]

Aberration effects

Because the cross-sectional area of a light beam is frame independent (see §, the
source’s area Ag involved in the definition of the angular distance does not depend
on the source’s four-velocity ug. On the contrary, the observer angular size (2o does
depend on up in general. We thus expect Dy to be independent from the source’s velocity,
but to be affected by the observer’s velocity.

These dependences are evident in Eq. . The Jacobi matrix is indeed independent
from any four-velocity, as it is driven by the optical tidal matrix R, independent of the
frame in which the screen space is defined. Besides, the wo term exhibits a up-dependence
of D, which is responsible for aberration effects. If the observer moves towards the source,
wo increases and the source thus appears smaller (i.e. farther, Dy is larger) to her, than
if she were receding from it. The same phenomenon potentially occurs if the observer
lies within a stronger gravitational field—hence increasing wo—though it also potentially
affects the Jacobi matrix.
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3.2.4 Luminosity distance
Definition

A light source not only appears smaller but also fainter as it lies farther from the observer.
In a nonrelativistic picture, if the source has isotropic light emission, then the energy 0 F
it emits during a short period of time 0t is homogeneously distributed on a spherical shell
(the photosphere) with a surface density dE/(4nr?), where r is the shell’s radius which
increases as light propagates. An observer located at ro thus receives an energy per unit
time and area equal to dE/(4mr?)/dt. This motivates the following definition for the

luminosity distance:
Ls
Dy, = /—— 3.24
" Varry (3:24)

where Lg denotes the intrinsic luminosity of the source, that is, the total luminous power
it emits in all directions; I is the observed luminous intensity, defined as Ip = Pp /Ao,
where Ap is the area of the observer’s detector, and Py the luminous power measured by
this detector. The relevant geometry is represented in Fig. [3.6]

ﬁ@ %\ Io = Po/Ao

Figure 3.6 The luminosity distance is defined from the ratio between the intrinsic luminosity
(total emission power) Lg of the source and the observed luminous intensity Ip = Po/Ao, where
Pp is the power detected at O by a small detector of area Ap. g denotes the angular aperture,
in the source’s frame, of the beam intercepted by the observer. The relevant picture is thus
reversed compared to the angular distance’s, since the vertex of the beam is here S rather than
O, like for the parallax.

In astronomy, the luminosity distance is often used under a logarithmic form called
distance modulus, and defined as

Dy,
=51 . 2
p, =5 0g<10pc> (3.25)

It is the most used notion of distance in practice, as it applies to extra-galactic sources
contrary to the parallax, and to unresolved sources contrary to the angular diameter
distance. Nevertheless, similarly to the latter, any direct measurement of Dy, requires
sources whose intrinsic luminosity Lg is known, or can be inferred from other observations:
the so-called standard(-isable) candles.

A good example is provided by Cepheid variables, which are pulsating stars whose
luminosity oscillates with a period correlated with its mean [53,54]. Once calibrated,
typically with auxiliary parallax distance measurements, this relation can then be used
to deduce the intrinsic luminosity of any Cepheid variable from a measurement of its
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period. Type la supernovae (SNela), which are mostly thought to originate from binary
systems where a white dwarf reaches its Chandrasekhar mass by accreting matter from
its companion—though the nature of progenitors is still debated [55]—, are also good
standard-isable candles, as there exists a relation between the duration of the explosion
and its peak luminosity [56]. In cosmology, they are used to plot the Hubble diagram from
which key information on the expansion history of the Universe can be extracted (see
Chap. . Recently, a Hubble diagram has been constructed from quasars [57], by exploiting
a relation between their X-ray and UV luminosities. Because they are orders-of-magnitude
brighter than supernovae, quasars have the advantage of providing a much deeper Hubble
diagram, up to z = 6.

Future detections of gravitational waves are also expected to provide excellent mea-
surements of the luminosity distance to their sources [58,59]. Indeed, gravitational waves
follow null geodesics just like electromagnetic waves, hence all the notions defined for the
latter apply to the former as well. In addition, theoretical analyses of the signal generated
by an inspiraling binary system of compact objects (neutrons stars, black holes, etc.) show
that its phase gives access to the mass of the objects, i.e. to the gravitational luminosity
of the system. For that reason, binary systems of compact objects have been nicknamed
standard sirens—the gravitational analog of standard candles. They have, compared to
supernovae, the significant advantage of relying on well-controlled theoretical predictions,
and should therefore be less plagued by systematics.

Distance duality relation

The similarity of the pictures that we used to define angular and luminosity distances
(compare Figs. , strongly suggests that they are not independent notions. This
expectation can be made more explicit by reexpressing Dy, as a function of the geometrical
quantities 2g, Ap. Consider the fraction of all the photons emitted during a short time
interval 075 in the source’s frame which can be received by the observer’s detector. By
definition, there are

Ls Qs
ON = — X 019 X — 3.26
th s 47 ( )
such photons. Assuming that none of them is absorbed by some interaction with matter on
its way to the observer, and according to the photon conservation law derived in §[1.3.2]

we also have

I
SN = hTO x 070 X Ao, (3.27)

o
where d7p is the time interval, in the observer’s frame, corresponding to the reception of
all these photons. Note that the ratio between 679 /d7s is the same as the ratio between
the observed and emitted periods of a light signal, in other words

(STO Wwg
=2 14+ 3.28
57’5 wo = ( )

L A
Dy = ,/4750 = (1+z)\/§. (3.29)

It is then tempting to recognise the angular distance in the right-hand side of Eq. (3.29)),
except that the roles of S and O are inverted compared to the definition (3.22)) of Dy.

so that
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This can nevertheless be solved by

A 0 wgy/det D(vp <+ v

|40 Yo _ sy/det D(vo  vs) — 142, (3.30)
Qs V As wo\/det D(vg < vo)

where we have used the consequence (2.70)) of Etherington’s reciprocity law, which states

that the determinant of the Jacobi matrix is invariant under the exchange of its arguments.
The distance duality relation finally reads

Dy, = (1 + 2)?Da. (3.31)

The origin of the redshift factor (1 + 2)? can be summarised as 2 = 1/2+ 1/2 + 1. The
first 1/2 comes from the fact that the energies of emitted and received photons differ; the
second 1/2 is due time dilation between the source and the observer; and finally the 1
originates from the exchange of the roles of S and O in Figs. 3.5 [3.6l The latter can
be seen as a comparative aberration effect, which for the angular distance occurs at O,
whereas for the luminosity distance it occurs at S.

Equation holds for any spacetime, as long as any physical process capable of
violating photon conservation is negligible. Note also that strict GR is not even necessary,
in the sense that the dynamics of the metric has no impact on the distance duality law. It
therefore remains valid for Nordstrem’s gravity, f(R), ..., provided electromagnetism is
still minimally coupled to the metric. A counterexample is the Horndeski vector-tensor
theory mentioned in § [I.1.2]

Observational tests of the distance duality relation thus potentially provide constraints
on the transparency of the Universe (photon conservation) and on some potential departures
from GR. A method based on the X-ray emission and the Sunyaev-Zel’dovich effect in
galaxy clusters was proposed in Ref. [60], and concluded that (1 + 2)2Da /Dy, = 0.937903,
suggesting no significant violation of the distance duality relation. Besides, it has recently
been shown by Ref. [61] that any violation of Etherington’s reciprocity law—in particular
of its consequence —Would induce spectral distortions in the observed CMB. Such
violations cannot exceed 0.01%.
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CHAPTER 4

The standard cosmological spacetimes

OSMOLOGY has today an impressively successful standard model. Discussing the
C reasons of such a success is central to this thesis, which cannot be done without
presenting the model itself. In this first chapter dedicated to standard cosmology, we
introduce the spacetime geometries used to describe the Universe on large scales: first the
purely homogeneous and isotropic Friedmann-Lemaitre model, with the cosmic history
reconstructed from it; then the perturbation theory relaxing the strict assumptions of
homogeneity and isotropy, whose limitations will also be discussed.
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Chapter 4 The standard cosmological spacetimes

4.1 Homogeneous and isotropic cosmologies

Observing our Universe, in particular through the cosmic microwave background, reveals
that its properties are almost identical whatever the direction we look at. This fact, together
with the Copernican principle, according to which we do not occupy a special place in
the cosmos, led cosmologists to model the Universe as statistically spatially homogeneous
and isotropic, a hypothesis known as the cosmological principle. This section examines
the consequences of the simplest application of this principle: strictly homogeneous and
isotropic cosmologies.

4.1.1 The Friedmann-Lemaitre geometry

The first proposal of a spacetime geometry satisfying the cosmological principle was
formulated in 1917 with Einstein’s static Universe [62]. Einstein’s approach was then
generalised, allowing for the possibility of an evolving cosmos, independently by Friedmann
in 1922 [63], and Lemaitre in 1927 [64] who also predicted the redshift of receding galaxies
before its observation by Hubble [65] in 1929. The work of Friedmann was noticed by
Robertson in 1929 [66], followed by Walker. In the 1930s, both of them analysed in great
details |[67H70] the properties of the metric discovered by Friedmann and Lemaitre, which
we shall call FL metric throughout this thesis.

Coordinate systems and metric

Suppose spacetime can be foliated by a family of spacelike hypersurfaces {3;} whose
intrinsic geometry is homogeneous and isotropic. Their label, ¢, is naturally used as a
time coordinate; each hypersurface X, of the foliation is thus characterised by the simple
equation t = ty, and the one-form associated with its normal vector n satisfies

n,dat oc dt, (4.1)

which implies 0 = n; = g(n, ;). In other words, whatever the choice of the other three
coordinates {x'};—; 3, the associated vector fields 8; are tangent to ¥;. A convenient
setting then consists in imposing that the 2° = cst curves are orthogonal to the foliation,
i.e. 8; x m. This means that the metric has no shift: g, = 0 (see Fig. [£.1). Finally,
the assumed homogeneity of the geometry of ¥, allows us to rescale the coordinate ¢ so
that g, = g(0y,0;) = —1 everywhere. The metric, expressed in terms of the resulting
coordinate system (¢, z%)—called synchronous—, reads

ds® = —dt* + g;;da’da’. (4.2)

In the context of cosmology, the coordinate ¢ is called cosmic time.
The homogeneity and isotropy assumptions for ¥; can be shown [12] to impose the
following form of the spatial metric:

Gij = a2(t)%j (a:k)dxida:j, (4.3)

where a(t) > 0 is called the scale factor, and ;; denotes the intrinsic metric of ¥, (as
within any >}, the scale factor can be absorbed by a coordinate transformation). The high
level of symmetry of v;; imply that its Riemann tensor reads

3Rijk€ = 2K y1i75)e5 (4.4)



4.1 Homogeneous and isotropic cosmologies

nonzero shift (g, # 0) zero shift (gy; = 0)

Figure 4.1 Given a foliation {3;} of spacetime, the coordinate systems {x’} of the hypersurfaces
are generally shifted with respect to each other: the x* = cst curves are not orthogonal to the
hypersurfaces. In this case gy; = g(84, 8;) # 0.

where K is a constant of dimension L2 called spatial curvature parameter. The cases
K <0, K =0, and K > 0 respectively correspond to hyperbolic, Euclidean, and spherical
foliations. Explicit forms of the metric v;; can be written using various spherical-like
coordinate systems, such as

2
i o 1 2 2 2
dr? 9
e — 0? 4.
o2 + rodQ”, (4.6)
= dx® + fi(x) A2, (4.7)

with dQ? = d#? + sin® # dp?, and where the radial coordinates o, r, x are related by

Sih(V—KY) e
v—K
X if K =0, (4.8)
VK
The foliation-based distance Dp (see § [3.1.2) between the worldline y = 0 and the
event (t,z') is easily checked to be a(t)x which leads us to call x the conformal radial
distance. Besides, within a given spatial section ¥; the proper area of a xy = cst sphere

1—{—[(@@2/4 =r= fr(x)

is 4ra®(t) f2(x) = 4ma®(t)r?, hence r represents the conformal areal radius of the sphere.

The last radial coordinate o has no specific interpretation, but it is adapted to the
introduction of Cartesian-like coordinates z = gsinf cosy, y = psinfsinp, 2 = pcosb,
since do? + 02d0? = da? + dy? + dz2.

It is often convenient to introduce the conformal time 1 defined from cosmic time by
dt = adn, in order to completely factorise the scale factor in the expression of the metric,

ds? = a*(n) (—d7]2 + %»jdxide) : (4.9)

Geometrical properties

Table summarises all the geometrical quantities (Christoffel symbols, curvatures, etc.)
associated with the FL spacetime, for two different choices for the 2%-coordinate: cosmic
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time ¢ or conformal time n. We introduced the evolution rates of the scale factor

T adt

1da @
H=-2=20 =280 _%_ g (4.10)
a

respectively called the Hubble expansion rate and conformal Hubble expansion rate, for
reasons that shall become clearer below. We see from Table that the FL spacetime
admits three typical curvature scales, namely H2?, H’', and K.

Interestingly, since its Weyl tensor vanishes, the FL. geometry is conformally flat. This
property is obvious if K = 0, as the metric then reads ds* = a?n,, dz*dz”, so that the
conformal factor is simply a?; for K # 0 the underlying conformal transformation is more
complicated, in particular it is no longer homogeneous [71].

0=t z°=n
Metric ds? = —=dt? + a®(t)y;da’da? | ds* = a®(n) (—dn® + yi;da’da?)
symbols i i i 31 i i i 371
a . a . A .
ROin = — Y9ij Rigjo = == 0; Roi()j = H'"i Rio;0 = —H'0;
Riemann tensor - a , KN a A , ‘
szkﬂ =2 (H + ag) 5fk9€]j szké =2(H° + K)(ka”mj
i\ 2 KN\N?l 12
Kretschmann K =12 <a> + <H2 + ) = (") + ("2 + K]
scalar a a? at
3
Ry = _ Roy = —3H'
Ricci tensor a 2K
( K 6
Ricci scalar R—6<a+H2+2>—2(’H’+’H2+K)
a a a
Weyl tensor Ciuvpe =0
s K 2
E00:3 H—i—? EOOZ?’(H —|—K)
Einstein tensor B
24 s K / 2
Ez’j:_ ;—FH —|—? Gij E”:—(QH +H +K>’yw

Table 4.1 Geometry of the FL spacetime for two different choices of the time coordinate: t or
1. A dot and a prime respectively denote a derivative with respect to ¢ and 7, with the relation
X' = aX. The associated evolution rates for a are H = a/a and H = a’/a = aH. The notation
?Tijk stands for the Christoffel symbols associated with the three-dimensional metric v;;. We
recall that the Kretshmann scalar is defined by K = R**7R,,, 5.
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Fundamental observers, cosmic expansion

Let us now turn to the physical interpretation of the FL. geometry. First note that the
curves defined by 2! = cst are timelike geodesics, as easily shown by checking that the
associated four-velocity u# = 0} satisfies u* + I, ju”uf = 0. These curves thus correspond
to the worldlines of free-falling observers, called fundamental observers, whose proper
time is cosmic time ¢. The spatial coordinates {z'} can also be viewed as Lagrangian, or
comoving, coordinates for the fundamental observers.

The kinematics of the fundamental geodesic flow can be described using Fermi normal
coordinates around, e.g., the worldline .%, defined by x* = 0. A possible choice is

T=t+ }2] [a(t)r]?, (4.11)
D = a(t)r, (4.12)

in terms of which the metric is indeed Minkowskian, up to terms on the order of curv. x D?,

ds* = (=1 +3H?D*+ HD*+ .. .)dr* + (1 4+ H?D? + .. )dD? + D*dQ* + ... (4.13)

In the vicinity of r = 0, the quantity D = a(t)r is thus a good notion of physical
distancd’] We conclude that a particle following the neighbouring fundamental geodesic
%,., with comoving coordinate r, moves radially with respect to .4, with a velocity
v =dD/dr = ar = HD as measured in the observer’s frame. Because the origin of the
spatial coordinate system is arbitrary, the previous reasoning equally applies to the vicinity
of any fundamental observer. The cases H < 0 or H > 0 therefore correspond respectively
to a contracting or expanding universe, in which fundamental observers are all approaching
or receding from each other. In 1929, the observation of nearby galaxies by Hubble [65]
revealed that our Universe lies in the second case. It also established empirically the
relation v = HD, called the Hubble law in the honour of its discoverer.

4.1.2 Dynamics of cosmic expansion

The dynamics of the scale factor, hence of cosmic expansion, is governed by the matter
content of the Universe via the Einstein equation. Before we analyse their specific
consequences, let us first discuss the description of matter in cosmology.

Description of matter

For matter to respect the assumptions of homogeneity and isotropy, its stress-energy tensor
must read

T = p(t) wpu, + p(t) L., (4.14)

identified with a homogeneous perfect fluid?| following the fundamental geodesic flow, with
u = 0;, and whose energy density p and isotropic pressure p do not depend on spatial
coordinates; L ,,= g, + u,u, denotes the projector on spatial sections ¢ = cst, hence

LAll the worldline-event distances defined in the previous chapter coincide with D up to curvature
terms. Note that we could have replaced r by x in the expression of D, since both quantities differ by
terms on the order of Ky?2.

2A perfect fluid is an idealised fluid model with no viscosity, anisotropic stress, or diffusive heat
transport.
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1,0=0and 1;;= g;; here. The form of T}, forbids, for instance, the presence of a
cosmic electromagnetic field which, as we will see in Chap. [0} generically creates anisotropy.
Nevertheless, the superposition of a large number of electromagnetic fields with random
polarizations, i.e. a gas of photons, is allowed.

The cosmological fluid described by the stress-energy tensor is in principle made
of several species s, so that we must write

p= Zpsa p= Zps- (415)

Each species is characterised by its equation-of-state parameter w, defined as the ratio
between its pressure and its energy density

ws = ) (416)

or in other words, the ratio between (two thirds of) its microscopic kinetic energy and its
total energy. For example, a nonrelativistic perfect gas of point particles with mass m at
a temperature 7' has

T T
Weas = :i?=:920><10—11<1001<) (ig{), (4.17)
where kg = 1.38 x 10723 J/K is the Boltzmann constant, and m, = 938 MeV /c? is the
proton mass; wg,s is thus a very small quantity, except at very high temperatures, for
which the gas becomes relativistic. The other end of the spectrum is ultrarelativistic
matter, i.e. radiation, for which we have already seen in § that wpq = 1/3. The
effective equation-of-state parameter for the cosmological fluid can be written as

w=?= Zfsws, with  f, = &; (4.18)
PS5 p
it approaches 0 when the total energy is dominated by nonrelativistic matter (baryons,
dark matter), and 1/3 when dominated by radiation (photons, neutrinos).
The conservation of total matter’s energy V, T = 0 leads to the following constraint
for the time evolution of p

p+3H(1+w)p =0, (4.19)

while the conservation of total momentum V, 7% = 0 is here trivially satisfied.

The Friedmann equations

The Einstein equation, including a cosmological constant and using the stress-energy
tensor (4.14)) on the right-hand side leads to the two Friedmann equations governing the
dynamics of cosmic expansion

G K A
H*="p-—+= 4.2
3 Ry (4.20)
a 4G A
=701 i 4.21
. 3( +&mp+3 (4.21)

Because of the link between the conservation of energy-momentum and the Bianchi
identity, Eq. (4.19)) is not independent from the Friedmann equations, more precisely

A[T20) /dt — 2 x [@.21) < ([E19).
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The first Friedmann equation shows that, at any time, the cosmic expansion
rate has three distinct contributions: matter’s energy density, spatial curvature, and
cosmological constant. Their relative weight is usually quantified by introducing the
associated cosmological parameters

8tGp -K A
P O = —— Q)= —
"= 3H? K= @2H? AT 3HY

whose sum is 1 by virtue of Eq. (4.20)). In the case where Q,,, > Qk, Q, and assuming
that matter’s energy density is dominated by its nonrelativistic (w = 0) or ultrarelativistic

(w = 1/3) component, we find from Eq. (4.19)

a? ifw=0
) 4.23
poc{a4 ifw=1/3 (4.23)

(4.22)

Equation (4.20)) is then integrated as

23 o if w = 0
a x o nw . (4.24)
2 xn fw=1/3
Another interesting case is Qx < Q,, Qx4 > 0, with w = 0, which yields
V3A
a(t) o sinh?? (2 t) : (4.25)

This solution coincides with a o t*/2 in the limit A — 0; on the contrary, when the cosmo-
logical constant dominates over the contribution of matter we get a(t) o< exp(t/A/3) =
exp(Ht), the expansion rate being a constant in this case.

Possible sources of accelerated expansion

The last case is an example of accelerated expansion (¢ > 0), driven by a positive
cosmological constant. As clearly shown by the second Friedmann equation , standard
matter is generally unable to produce such an acceleration—which fits with our Newtonian
intuition that gravity is an attractive force—unless its energy density is negative, or
w < —1/3. The first possibility is excluded by stability requirements; the second one
would mean that matter has negative pressure, which cannot happen with standard matter
since pressure is proportional to kinetic energy, hence always positive. However, such a
behaviour can be mimicked by a quantum ﬁeldEL the simplest example being a scalar.

Consider a scalar field ¢ minimally coupled with spacetime geometry, and self interacting
through a potential V'(¢). The associated action reads

Silo.gl = [ e v=g[-10,00% - V()] (4.26)

and the corresponding stress-energy tensor is

g —2 65
= g0

3Quantization is actually not required here, but an action of the form ([4.26] is motivated by quantum
field theory.

1
== aﬂ¢ 81/¢ - 5(ap¢ ap¢) g;w - V(¢)9MV‘ (427)
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Suppose this field is homogeneous on spatial sections ¢ = cst, then 0,¢ = —(buu and the
above stress-energy tensor takes the form

i (¢ ¢
15, = (2 + V) Uy Uy + (2 - V) L, (4.28)
readily identified with Eq. (4.14). A homogeneous scalar field thus behaves similarly to a
perfect fluid with equation-of-state parameter

¢ — 2V (¢)

= o) (4.29)

Wef

which can be negative, and even reach —1 if the field evolves very slowly compared to
the amplitude of its potential, ¢*> < V(¢). In this extreme case, it is similar to the
cosmological constant, Tl}jﬁf = —Vgu.

As will be discussed in § [4.1.3] our Universe seems to have experienced two eras of
accelerated expansion: an early-time one known as inflation, and a recent one. Both can
be driven by a scalar field—respectively called inflaton and quintessence [72]—but there
are in fact many other mechanisms capable of producing acceleration, gathered in the
denomination of dark energy |73] in the late-time case. A noncomprehensive list includes:

o The presence of exotic matter, either minimally coupled to gravity, such as
quintessence and Chaplygin gas [74], or nonminimally coupled such as chameleons [75],
Galileons, Horndeski theories |76] and beyond [77,78]. Models involving nonminimally
coupled fields can also be viewed as

« modified theories of gravity [79], more precisely scalar-tensor theories, which
also contain f(R) actions [80]. Other theories beyond GR include bimetric and
massive gravities [81], Lorentz-violating models like Einstein-sether gravity [82], etc.

o In a more conservative way, acceleration could be due to the backreaction of
inhomogeneities on the average cosmic expansion [83H85] (see also §[4.2.3]).

Another possibility is that acceleration is apparent, due to a misinterpretation of
our observations. Two scenarios—though now ruled out as viable explanations of dark
energy—can be cited:

o A strong absorption of the photons emitted by SNe, or their oscillations with
axions [86], which would explain their overdimming (see §[5.3.1]) by violating the
distance-duality relation. The photon-axion oscillation model has been eliminated
by taking into account the effects intergalactic plasma [87]. Besides, the violations
of the distance duality relation compatible with observations [60] are not sufficient
to explain SN data without the need of dark energy.

e A second option consists in violating the Copernical principle, by assuming that
we lie at the centre of a huge void [88] (modelled e.g. by the Lemaitre-Tolman-
Bondi metric) expanding faster than the homogeneous Universe. This possibility
is nevertheless highly constrained by observations related to CMB scattering (see
Ref. [89] and references therein), and would therefore require a unnatural level of
fine tuning.
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4.1.3 Content and history of our Universe

The cosmological parameters of our Universe, whose geometry is assumed to be well
modelled by the FL metric, have been measured with an increasing precision over the
last decades. Most observations agree [90] on the following value for today’s expansion
rate [91]

Hy =67.74 £ 0.46 km/s/Mpc, (4.30)

often written as Hy = h x 100 km/s/Mpc, and with the concordance set of cosmological
parameters [91]

Qmo = 0.3089 £+ 0.0062, Qo = 0.00085 5059,  Quo = 0.6911 £0.0062,  (4.31)

where a subscript zero conventionally denotes today’s value of a quantity. The mean
matter density in today’s Universe is therefore pno ~ 3 x 1072" kg/m®. Among this
matter content, only one sixth is made of quarks and nonrelativistic leptons—abusively
called baryonic matter in cosmology, as leptons and mesons do not contribute significantly
to the total amount—with Quoh? = 0.02230 & 0.00014 [91], while radiation—photons
and neutrinos—represent much less, Q.o ~ 10~*. The actual nature of the remainder is
unknown, except that it is nonrelativistic and does not seem to interact with normal matter;
it has in particular no electromagnetic signature, and therefore has been denominated
(cold) dark matter [92]. The resulting cosmological model, in which spacetime is described
by the FL geometry, whose dynamics is dictated by General Relativity with a cosmological
constant, and where five sixth of the material content today is made of noninteracting and
nonrelativistic dark matter, is known as A-Cold-Dark-Matter (ACDM).

Let us close this section with a brief history of our Universe, as inferred in the ACDM
framework and summarised in Fig. [£.2] First of all, following the Friedmannian dynamics

backwards in timelz_f] shows that a singularity, namely a = 0, occurs in a finite-time past.

If this so-called Big Bang singularity is taken as the origin of cosmic time, then today
corresponds to ty = 13.81 Gyr. During the first ~ 1073%s after the Planck era (¢t ~ 107°s),
our Universe is thought to have experienced a first period of accelerated expansion, cosmic
inflation, during which distances have increased by a factor ¢, where N > 60 is the
number of e-folds characterizing the duration of inflation. Originally introduced as a
solution to the flatness and horizon problems of the Hot-Big-Bang model [93-95], inflation
now fully belongs to standard cosmology; see however Refs. [96,97] for alterinflationarist
theories. Although hundreds of inflationary models have been proposed and tested against
observations [98], the most popular ones involve a single scalar field (the inflaton), whose
slight inhomogeneities, due quantum fluctuations, have been the seeds of the structures
that we observe today. The end of inflation is followed by a reheating phase, during which
the inflaton decays into particles of the standard model of particle physics. Nevertheless,
the underlying mechanisms are still poorly constrained by observations [99].

After reheating, the Universe is made of a dense quark and lepton plasma. As
the temperature drops due to expansion, hadrons are formed, followed by light atomic
nuclei (essentially deuterium, helium, and lithium): this is primordial nucleosynthesis
(from kgT ~ 150 MeV to ~ 50 keV). At the end of this period, the scale factor reads

ap/a, = 5 x 107, and the expansion dynamics is still by far dominated by radiation.

However, as seen in Eq. (4.23), the energy density of radiation decreases faster than the
one of nonrelativistic matter, and both contributions become comparable (§2, ~ €2,) for

4and extrapolating it to energy scales where current physical theories are expected to break down
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Figure 4.2 A brief history of our Universe, in terms of cosmic time ¢. Image courtesy of ESA.



4.2 Linear perturbation theory

a0/ Aeq = Qo /o ~ 3400. This equality represents the transition between the radiation
and matter eras, i.e. between the two expansion laws of Eq. . At this stage, however,
the photon fluid is still dense and energetic enough to maintain matter ionised. For
ag/a, = 1100 (kgT ~ 0.3eV), this condition is no longer fulfilled, and the recombination of
atomic nuclei and electrons into atoms occurs, followed by the decoupling between photons
and electrons: the Universe becomes neutral and transparent. The light released at that
epoch is observed today under the form of a cosmic microwave background (CMB).

After recombination, the Universe remains neutral for a few hundreds of millions of
years (the dark ages), during which structures form via gravitational accretion. On small
scales, some matter clumps collapse and get hot enough to activate the fusion of hydrogen
into helium, giving birth to the first stars. The light they emit induces a reionisation of the
Universe (ag/ay =~ 12). The next billions of years are then characterised by the formation
and evolution of galaxies on small scales; and by the apparition of a large-scale cosmic
web |100], where voids (from 10 to 150 Mpc) are separated by walls and filaments. The
cosmological constant starts to dominate over matter’s energy density for ag/ageq =~ 1.3,
leading to an acceleration of cosmic expansion well described by Eq. .

4.2 Linear perturbation theory

Our own existence, on a planet orbiting around a star, within a galaxy belonging to a
supercluster, indicates that the Universe is not perfectly homogeneous, but rather presents
structures over a wide variety of scales, the largest one being the cosmic web, whose
typical inhomogeneity scale is ~ 100 Mpc today. A possible strategy for modelling this
departure from strict homogeneity and isotropy consists in introducing small perturbations
to FL geometry. In this section—essentially based on textbook [101], though much less
complete—we summarise the main features of the cosmological perturbation theory at
linear order.

4.2.1 Perturbed quantities

The scalar-vector-tensor decomposition

Before discussing the standard perturbation scheme, let us introduce the scalar-vector-
tensor (SVT) decomposition of spatial vectors and tensors. Let V' be a vector tangent to
a spatial hypersurface ¥; equipped with the metric «(¢). It can be uniquely decomposed
into a gradient part and a curl (divergent-free) part as

Vi=8,V+V;,  with D,Vi=0, (4.32)
where D denotes the covariant derivative associated with the Levi-Civita connection of
~(t). The 3 degrees of freedom (dofs) of V' are thus split into 1 scalar dof plus 3 — 1 =2
vector dofs. Note that, in all this section, the indices i, j, ... are raised and lowered by v

and 7,5, and a hat will always denote a divergence-free quantity.
Similarly, any rank-two symmetric tensor T' € TX; ® T>; can be decomposed as

Tij = DD Ty + Tyyyy + DTy + Ty, with DT° = DT = T7 = 0, (4.33)

which spreads the 6 dofs of T into 2 scalar dofs, 3 — 1 = 2 vector dofs, and 6 —3 — 1 =2
tensor dofs. Such decompositions will be particularly convenient for the cosmological
perturbation theory, because the scalar, vector, and tensor components will turn out to
decouple from each other at linear order.
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Perturbed metric

The cosmological perturbation theory consists in modelling the full spacetime metric g
as approximately equal to the FL metric g—hereafter, a bar denotes an unperturbed,
background quantity—from which it differs by a small perturbation dg. The general
expression for this perturbed metric is thus

ds? = (G + 0g,s) datda” (4.34)
= a*(n) {—(1 + 2A)dn? + 2B;dz'dn + (vi; + ZCij)dxidxj} : (4.35)

where A, B;, C;; < 1. All three are functions of the spacetime coordinates (1, z*). Mathe-
matically speaking, they are respectively a scalar, a vector and a tensor with respect to
the spatial hypersurfaces ¥; equipped with the background spatial metric vv. As such, B;
and C}; can be decomposed according to the SVT scheme as

Cij = DiD;Cy + Coyrysj + D(iéj) + CA'Z'j (4.37)

with the conventional requirements on hatted quantities. Among the 10 dofs of the set
{A, B;,C;;}, 4 are spurious, because associated with the detailed coordinate mapping
between the background and perturbed spacetimes (see e.g. Chap. 5 of Ref. [101] for
details). This issue is known as the gauge freedom of the cosmological perturbation theory.
The remaining 10 — 4 = 6 dofs can be encoded into the following gauge-invariant quantities

®=A+H(B-C))+(B-0), (
= -Cy — H(B - CY), (4.39

O =B,— (G, (

(

o
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As in classical electrodynamics, the gauge can be fixed by imposing some conditions
on the gauge fields (here A, B;, C;;). A few interesting choices exist, we here choose to
work in the so-called Poisson (or Newtonian or longitudinal) gauge, for which

A

so that the metric can be completely written in terms of gauge-invariant quantities as

ds? = a*(n)| — (1 + 2®)dn? + 20 dz'dy + (1 — 20)y,;datda? + Cyydaida?|.|  (4.43)

Note that there are some variations in what is called Newtonian gauge in the literature;
for instance, in Ref. [101] B; is set to zero, while C; is nonzero in general. The perturba-
tions of geometrical quantities (Christoffel symbols, curvatures,...) associated with the
metric (4.43) can be found in the Appendix C of Ref. |101].

Physically speaking, (i) the scalars ®, ¥, called the Bardeen potentials, are analogous to
the Newtonian gravitational potential; (ii) the vector perturbation €); is a gravitomagnetic
term producing inertial-frame dragging, analogously to the g, component of the Kerr
geometry [102]; while (iii) the tensor perturbation Cj; represents gravitational waves.



4.2 Linear perturbation theory

Perturbed stress-energy tensor

The perturbations of spacetime’s geometry are sourced by inhomogeneities of the distribu-
tion of matter. We here make the simplifying assumptions that the perturbed cosmological
fluid (i) consists of one species; and (ii) can still be modelled by a perfect fluid. The
associated perturbed stress-energy tensor thus reads

Tuu = _uu + 6Tuu (444)
= (p+p)wts +p G- (4.45)
While these assumptions are wrong in general, they are sufficient to model matter during

the (dark-)matter-dominated and dark-energy-dominated eras, where matter’s anisotropic
stress is negligible.

Decomposing each quantity ¢ of Eq. (4.45)) as ¢ + dq yields
0T = (6p + Op)Upty + 2(p + P)U(uOUy) + P OGpuw- (4.46)

The conventional normalisations of the background and perturbed flows u* and u*, namely

Gut"u” = gyutu’ = —1 (4.47)
imply at first order

d
20, U 0u” + 8g,ut e’ =0 e du'=——, (4.48)
a

where it is understood that a Oth component refers to a component with respect to 9,,.
As for the spatial components of the perturbation of the four-velocity, they can be written
as du’ = a~1v?, where the vector v'8; belongs to TX,—like the vector perturbation of the
metric—and can thus be decomposed as

These perturbation of matter’s stress-energy tensor is also subject to gauge freedom, and
it can be shown that the following combinations

dpp =dp +p/(B — CY), (4.50)
dpp = 0p+p'(B — (), (4.51)
T=0v+0, (4.52)
Ti =0; + éia ( )

which coincide with dp, dp, v, O; respectively in the Poisson gauge (B = C; = C; = ), are
gauge invariant.

Because the cosmological fluid is assumed to contain a single matter species, its
pressure and energy density are univocally related, through p = wp. As a consequence,
their perturbations are related as well; in particular, the ratio

op _dp dw

= =W+ p— =
op dp P dp °
defines the sound velocity cg, i.e. the velocity of adiabatic pressure waves within the fluid.
For w = cst, we thus have ¢ = w. Note that ¢? is gauge invariant, since

opn - Sp+p(B—-C1)  dp+p(B—CY) ’ '

at first order in perturbations.

(4.54)
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4.2.2 Evolution of perturbations

Let us now focus on the evolution equations for the metric and matter perturbations. As
previously mentioned, the equations of motion naturally separate into a decoupled set of
scalar, vector, and tensor modes.

Einstein’s equation

The tensor modes of the Einstein’s equation yields

with A =~%D;D;; it is analogous to a wave equation with friction (27{0{]) in a harmonic
potential with stiffness 2K . During the matter- and radiation-dominated eras, Eq. (4.56))
can be solved in Fourier space thanks to Bessel functions. The amplitude of C;; turns out
to decrease with kn, and is therefore negligible on small scales and at late times.

The vector modes satisfy the following constraint and evolution equations:

(A4 2K)Q; = —167Gpa®(1 4+ w)T; (4.57)
Q + 2HO; = 0. (4.58)
From the second one, we deduce that Q; a~2, the vector perturbation of the metric is

damped in an expanding Universe, and can therefore be neglected in late-time cosmology.
Finally, the scalar modes of Einstein’s equation read

(A + 3K)VU = 47Ga* (5pp + p'Y) (4.59)

U—0=0 (4.60)

U+ HP = —4nGp(1 +w)Y (4.61)

W+ 3H(1+ )V + 20 + (H? = K)(1432)| ¥ — AW =0 (4.62)

Note the similarity between Eq. and the Poisson equation of Newtonian gravitation.
The second term on its right-hand side, p’'Y, is related to the perturbation of the fluid’s
velocity, it can be understood as a kinetic energy term which, contrary to the Newtonian
case, gravitates just as mass does.

Conservation of energy and momentum

The conservation of the fluid’s energy and momentum, encoded in the equation V,T"" = 0,
also leads to a set of equations for the vector and scalar modes of matter perturbations.
The vector mode, on the one hand, satisfies

T+ H(1—3H)T; =0. (4.63)

When the sound velocity ¢, is nonrelativistic (¢? < 1), then Y, o a=!. On the other hand,
the scalar modes are governed by

§p + 3H(c2 —w)dp = —(1 +w)(AYT — 3V) (4.64)

62

T +H1-3HT =-d— ——§p (4.65)

14+ w
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where we introduced the density contrast

J
I3 4.66
F (4.66)

J

which, here, is worked out in the Poisson gauge and thus denoted dp. Equation (4.64) is
analogous to the conservation of mass in fluid dynamics, while Eq. is similar to
a integral of the Euler equation. Note that, just like in the unperturbed FL case, the
evolution equations for matter and spacetime’s metric are not independent from each

other. For instance, inserting (4.58)) into d(4.57)/dn yields (4.63). In the set of all the

scalar equations, only four are independent (three if we directly replace ¥ by ®).

Newtonian regime

Let us focus on the late-time Universe, where the cosmological fluid essentially consists of
a pressureless matter, so that we can take w = ¢ = 0 in all the above equations. Besides,
as previously mentioned, vector and tensor perturbations decrease with cosmic expansion,
so that we can neglect them at late times for any reasonable initial condition, the metric
therefore reads

ds? = a’(n) [~ (1 +2®)dn? + (1 — 20)y;;dz’da’ | (4.67)
in that regime.

If we consider relatively small scales (compared to H '), then the spatial derivatives
of the perturbations completely dominate over the background quantities, in particular, in

Eq. (4.59) A® > 3K®, and
(S,OP 513 (SP A

YT HY T T 12D

where we used successively Egs. (4.19)), (4.65)), and (4.59)). The resulting system of evolution
equations reads

<1, (4.68)

A® = 47Ga*ps, (4.69)
§ = —AT, (4.70)
T +HY = -, (4.71)

which is identical to the Euler-Poisson system of Newtonian cosmology. Note that we have
dropped the index P of the density contrast d, because in this regime the discrepancies due
to a gauge choice vanish (for ¢, but not for the metric perturbations). This is no longer
true when Hubble-scale perturbations are at stake—see e.g. Fig. 5.6 of Ref. [101].

Equations (4.70) and (4.71) can be combined to get
5"+ HE' = AnGps, (4.72)

which rules the evolution of § only. It is straightforward to check that, during the
matter-dominated era (a < n?), Eq. (4.72) admits a growing solution D, and a damping
solution D_ such that

D, xn*xa, D_ o3 oca™d?, (4.73)
and over which the general solution can be decomposed as

8(n, ") = Dy (n < i) 04 (Mint, %) + D_ (1 4= Mt )6— (1hni, %). (4.74)
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If the initial time is much later than matter-radiation equality, then the decaying mode
can be neglected, and the density contrast becomes proportional to its initial condition
5(n, 2%) = Dy (0 = 1ini)d(Nini, ). The major part of structure formation occurs during
the matter era, since the cosmological constant (or dark energy) starts to dominate at
very late times, which justifies the relevance of the expressions for Dy. The growing
mode can however be modified to allow for the effect of A as [103]

1 11 V3A V3A
D, x,F; [1, —:—; —sinh? (; tﬂ sinh?/? (; t) (4.75)

aldy
O — Qp + (1= Qun + 2)(1 + Q4 /70)

(4.76)

Transfer function

The evolution equations being (by construction) linear, they are conveniently worked
out in Fourier space. From now on, we suppose for simplicity that K = 0—a choice
also motivated by observations—, so that the spatial metric is Euclidean, v;; = d;;. Any
quantity Q(n,x") can then be decomposed into Fourier modes according to the convention

Qn,z") = / (;’; ¥ Qn, k), (4.77)
Q. ki) = [ dz e Q. a). (478)

The partial differential equations governing the evolution of perturbations thus become
systems of independent ordinary differential equations (with respect to 1) for each mode k
of each quantity, which is therefore linearly related to its initial conditions. Regarding the
scalar potential ® in particular, it is customary to introduce the transfer function

T(77 < Mini, kz) = m»

(4.79)

which depends on the cosmological parameters.

4.2.3 Limits of the linear perturbation theory

Correlation function and power spectrum

Because the inhomogeneity of the Universe is believed to origin from the primordial
quantum fluctuations of the inflaton, any comparison between theoretical predictions
and observations must rely on statistics—in particular, the statistics of matter’s density
contrast 0. A central object, for that purpose, is the correlation function

Sty y) = (3(n,2")3(n, ') (4.80)

which quantifies the statistical similarity between §(n, z%) and §(n,y"). A positive corre-
lation indicates that if the region around z' is overdense (resp. underdense), then the
region around %' is likely to be overdense (resp. underdense). A negative correlation
(anticorrelation) indicates the opposite situation.
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The assumptions of statistical homogeneity and isotropy of our Universe, based on the
cosmological principle, imply that £ can only depend on the distanceE] between z¢ and v,

Emsatsy') = E(ns ' — o). (4.81)

As a consequence, the Fourier transform of £ with respect to both x and y reads
E(n i, 1) = (3(n, k) (. 1)) (4.82)
= (2m)6p (ki + 1) Ps(n; |ki]), (4.83)

where dp denotes the Dirac distribution, and where we introduced the matter power
spectrum P, defined as

sin kr

=) (4:34)

P(n; k) = /d3x eiijjf(n; 2']) = 47r/ r2dr

0
Analogous quantities can be defined for the other quantities of interest, in particular for
the scalar potential ®, whose evolution is described by the transfer function defined in

Eq. (4.79)), so that
Py(nik) = TQ(W < Mini &) Po (Ninis £). (4.85)

Figure |4.3| compares the observed power spectrum with theoretical predictions, in
particular the linear perturbation theory (dashed line). We see that the latter fails at
reproducing the actual behaviour of P(k) on scales smaller than 10 Mpc/h (k > 0.1h Mpc),
where the nonlinearities of self-gravitating fluid dynamics become significant. On such
scales, theoretical models must rely on advanced perturbative techniques [104] or N-body
simulations (e.g. Ref. [105]).

Refinements

Besides nonlinearities at small scales, let us mention a few possible refinements for standard
perturbation theory in general. Among the simplifying assumptions that we made in
the present section, the crudest is the single-fluid approximation, which may be valid
at late time but certainly not, e.g., at the epoch of recombination. A more precise
approach considers the cosmological fluid as made of several species—see e.g. Ref. [101]
for the detailed treatment of two fluids (dark matter and radiation). Nevertheless, a
fluid description is not capable of modelling precisely the matter-matter and radiation-
matter interactions, which rather require kinetic theory and the Boltzmann equation [107].
The presence of massive neutrinos also potentially affect the formation of the large-scale
structure; this issue has been investigated, e.g., in Refs. |[L08H110].

Backreaction and related issues

By definition, the whole formalism developed in this section assumes that spacetime
geometry is well approximated by the FL metric, i.e., that perturbations are small. While
it should be valid on very large scales—i.e. typically for the description of the cosmic
web, where substructures are somehow smeared out—such a perturbative approach is
nevertheless highly questionable on small scales. For instance, the density contrast 0
corresponding to a galaxy is pga/po ~ 10* > 1, which cannot be considered a small
perturbation; the associated formalism thus should not be extrapolated to those scales.

5We here refer to distances within a spatial hypersurface, i.e. Euclidean distances as we set K = 0.
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Figure 4.3 Matter power spectra measured from the luminous red galaxy (LRG) sample and
the main galaxy sample of the Sloan Digital Sky Survey (SDSS). Red solid lines indicate the
predictions of the linear perturbation theory, while red dashed lines include nonlinear corrections.

From Ref. .

While the perturbative dynamics clearly breaks down on small scales, it can be argued
that the form of the metric still holds, except in the vicinity of very compact object
such as neutron stars or black holes, because the density contrast d is a second derivative
of the metric perturbation ®, therefore it can be very large with ® remaining small. This
argument is reinforced by the fact that Eq. is essentially a metric formulation of
Newtonian gravity, which turns out to be very successful at describing gravitating systems
on small scales, far from compact objects. This question of how well is the Universe
modelled by the FL metric is still an open question, and was recently the subject of a

lively debate in Refs. [111-113].

It could be argued that cosmology does not a priori aim at describing the Universe on
small scales. Just like geometric optics in dielectric media does not require to describe the
interactions between each photon of the ray with each quark of each atom of each molecule
of the medium, but rather relies on a continuous approximation, cosmology should not
have to care about each star, or each dark matter halo to get a satisfactory description
of the cosmos. There are however two significant differences between cosmology and this
example of optics in media.

First, cosmology is mainly based on gravitation, which, if described by the general
theory of relativity, is nonlinear contrary to electromagnetism. Linearity indeed facilitates
smoothing procedures: suppose (...) denotes a coarse-graining operator, then, in elec-
tromagnetism, the coarse-grained four-vector potential (A) is governed by the Maxwell
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equation with a coarse-grained four-current (J), since
V?(A) = (V°A) = 4r (J). (4.86)

On the contrary, in gravitation the Riemann curvature, and thus the Einstein tensor, is
highly nonlinear with respect to the metric g, as it involves its inverse. It follows [30] that

E[(g)] # (Elg]) = 87G (T); (4.87)

in other words, the procedures corresponding to (i) coarse graining a solution g of the
Einstein equation driven by T, or (ii) solving the Einstein equation driven by a coarse-
grained (T'), yield different results. In cosmology, we ideally would like to perform (i), but
the FL approach consists in (ii), the resulting Friedmann equations thus potentially predict
a wrong dynamics for cosmic expansion. Contrary to electromagnetism, the small scales
which are smeared out in cosmology can effectively reemerge in the large-scale dynamics.
This issue, known as backreaction, has been proposed in the late 1990s as an explanation
of the recent acceleration of cosmic expansion without the need of dark energy [114].

A second—though related—difference between gravitation and any other physical
theory concerns the coarse-graining procedure itself. In a theory of macroscopic electro-
magnetism, for instance, the coarse-graining operator and the target of this operator (the
electromagnetic field) are independent. In macroscopic gravitation, on the contrary, the
metric is involved in the coarse-graining procedure (since it defines physical lengths and
times) while being its target. This issue, together with the mathematical question of
defining covariant averages in curved spacetime, has been addressed in Ref. [115], and
summarised in Ref. [116] in a more cosmology-oriented way.

Relativistic effects in cosmology, including backreaction, have recently stimulated
various works, both from the numerical [117,118] and analytical points of view, such as
the timescape scenario [85]; traceless backreaction |[119], a Lagrangian perturbation theory
based on a relativistic Zel’dovich approximation [120-122], an effective-cosmological-fluid
theory [123],... As emphasized by Ref. |[112], no definite conclusions on the amplitude of
backreaction phenomena can be drawn so far.

The issues raised here concern the way we model the dynamics of cosmic expansion:
How, given a realistic inhomogeneous distribution of matter in the Universe, does the
latter evolve on large scales? Such a question however only represents half the way towards
a fully relativistic description of the cosmos. The other half concerns kinematics—in
particular optics: How does light propagates through a realistic model of the Universe?
How can we allow for a realistic distribution of matter when interpreting cosmological
observations? These questions are the main concerns of the present thesis. In the next
chapter, we will present the answers proposed by standard cosmology, and then focus on
alternatives in Part [TIl
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CHAPTER 5

Observations in standard cosmology

ALMOST all cosmological measurements rely, so far, on the observation of distant light

sources, such as galaxies, supernovae, or quasars, in a wide range of wavelengths.

Interpreting these observations, that is, extracting from them information about the
structure and dynamics of the Universe, thus requires to know its optical properties. In
this second chapter dedicated to standard cosmology, we present the answers provided
by the Friedmann-Lemaitre model and by the standard perturbation theory. We then
review a number of cosmological observations with the constraints they impose on some
cosmological parameters. Their surprising level of agreement, despite the fact that they
involve totally different scales, finally leads us to discuss the motivations of this thesis.
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5.1 Optics in homogeneous and isotropic cosmologies

This first section is dedicated to light propagation in Friedmann-Lemaitre cosmologies.
We first introduce a method for simplifying the underlying calculations, based on the
invariance of lightcones under conformal transformations, and then use it to solve explicitly
the null geodesic equations and calculate the lensing Jacobi matrix.

5.1.1 The conformal trick

As demonstrated in §[I.2.3] null geodesics are invariant under conformal transformations
of spacetime’s metric. This property can be conveniently exploited to simplify the analysis
of light propagation in cosmology, since both the unperturbed and perturbed FL metrics
take the form

g=a’(n)g, (5.1)
with, in the unperturbed caseﬂ

Gudatdz” = —dn® + dx* + fr(x) (d02 + sin® 0d902) , (5.2)

which does not depend on 7. From a purely technical point of view, it is much simpler
to analyse light propagation in terms of g, getting rid of the geometrical terms due to
the time evolution of a, and then recover all the lensing quantities for g thanks to the
dictionary given in Table 5.1l This dictionary is completely general, in the sense that it
applies for any metric and any conformal factor a; in particular, the latter could depend
on all spacetime coordinates. It was used for instance in Ref. |[124]—which belongs to
the present thesis, see Chap. [8}—in order to simplify the analysis of light propagation in
anisotropic cosmologies of the Bianchi I kind.

Before applying it to the FL spacetime, let us comment a few entries of the conformal
dictionary. Most relations are actually direct consequences of the definitions of the
quantities at stake, in particular & = £ is due to the fact that the definition of the
separation vector does not involve the metric, but only the coordinates of null geodesics.
On the contrary, w = a '@ is a choice, made here for simplicity, because the four-
velocities of sources and observers are independent from the laws of light propagation.
The correspondence between the Sachs bases follows from this choice, and from their
normalization conditions. One can also check that, with this correspondence, the partial
parallel transport requirement for s, is satisfied iff it is for 4,

DsY, ~ Ds",
SHZ2A — () = SH="A — ), 5.3
1% dv 1% df} ( )

5.1.2 Light rays

Without loss of generality, we choose the observation event O (here and now) to be the
centre x = 0 of the spatial coordinate system. As mentioned in the previous chapter, in

!This conformal transformation is somehow incomplete for K # 0, in the sense that it does not fully
take advantage of the conformal flatness of the FL geometry: there indeed exists a conformal factor Q(a*)
such that g = Q2 f where f is the Minkowski metric [71]. However, as we will see below, factorizing a?
out already simplifies enough the calculations.
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Quantity Correspondence
metric | g, = a?g  g" = a"2g"
affine parameter | dv = a?do
wave four-vector | k* = a=2k* k, = IEM
four-velocity | u* = a~'a*  u, = ad,
frequency | w = a='@
redshift | 1+ 2z = apag' (1 + 2)
propagation direction | d* = a~tdn d, = aczu
screen projector | S, = a?S,, S* =a 25"
Sachs basis | 5%y =a™'8) s = a3
separation four-vector | £* = &# £, = a%¢,
separation in screen space | {4 = ag A

Jacobi matrix
angular distance

luminosity distance

D(S + 0) = agapD(S + O)

DA == CLsDA

DL = a%)(lngL

deformation scalars | v, ¢, v = 7, @,

1da ~
deformation rate matrix | S = =—15 + a %S
adv
1da
expansion rate | = —— + a 20
adv
shear rate | 0 = a7 25

Table 5.1 The conformal dictionary of geometric optics in curved spacetime. All quantities are
defined in Chaps. Tilded and untilded four-dimensional vectors and tensors are defined on
the same manifold, but not with respect to the same metric: (un)tilded indices u, v are raised
and lowered, respectively, by the (un)tilded metric.

cosmology, quantities referring to O are conventionally denoted with a zero subscript o,
this standard notation will here be equivalent to the o subscript.
It is straightforward to check that the radial null curves such that

X=m-mn 0 ¢=cst (5:4)
satisfy the null geodesic equations for the static metric , and are therefore null
geodesics for g as well. They form the lightcone of O. Note that although the curves
(5.4) appear as straight lines in terms of the coordinates (x, 6, ¢), when K # 0 they are
exceptions in the sense that other null geodesics (out of the lightcone of O) do not. Any
affine parametrisations of the null curves is, with respect to g, simply proportional
to conformal time do = @~ 'dn, with @ = @ = cst. In other words, k* = cst. We conclude

that, with respect to the original metric g,

2
a
b= ()
a
where it is understood that 1 = 0 would refer to a component with respect to 9,,, not 9,.
The frequency measured by a comoving observer at 7 is thus w = [ag/a(n)]wo, and the

(5.5)
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redshift between emitted light as S and the observed light at O reads

142=2>1 (5.6)
as

in agreement with the relation given by Table since Z = 0. By virtue of Eq. (5.4)), the
redshift is related to the radial coordinate y of S by dz/dx = agH, integrated as

aox = / / A¢ [Qmo(1+ O + Qo1+ 0 + o] *, (5.7)

where we used the first Friedmann equation to link H with a, i.e. with 2. In
homogeneous cosmology, the redshift can thus be considered a kind of distance measurement.
Depending on the cosmological parameters, the integral of Eq. can be calculated
either analytically or numerically.

The observed redshift of a comoving source (with x = cst) generally evolves with time.
Consider a light signal observed at ty + dtg; to this reception cosmic time corresponds an
emission time tg + dtg, where dtg = dtg/(1 + z) by the very definition of the redshift. The
associated correction to the redshift reads

1odt 1odt
d(1+4 2) = 020 _ g 258 (5.8)
CLS CLS
whence
dz
dto

This redshift drift was first mentioned by Refs. [125,[126]. Its theoretical order of magnitude
is dz/dtg ~ 107" yr=t for 2 ~ 1. Albeit very small, next generation high-resolution
spectroscopy experiments, such as the COsmic Dynamics EXperiment (CODEX) [127]
proposed for the European Extremely Large Telescope (E-ELT), should be able to measure
redshift drifts by the next decades. As forecasted by Ref. [128], such a measurement over
30 years, applied to z > 2 quasars, could contribute to observationally distinguish between
several models of dark energy.

5.1.3 Light beams
We now investigate the properties of radial light beams. Like for single light rays, we start

with the conformal geometry g, for which calculations are simpler.

In the conformal geometry

The spatial direction of propagation of radial geodesics (5.4) is d= —0,.. The other two
spatial basis vectors being orthogonal to d, it is natural to use them for constructing the
Sachs basis as

-1 0 -1 0
5 =— 3 5.10
R % fGosmoay 10
It is straightforward to check that these vectors indeed satisfy the transport condition (5.3)).
The optical tidal matrix associated with this Sachs basis then reads R = —@02K 1,5, where

we used that the frequency @ measured by comoving observers (@ = 9,,) is a constant. The
full specification of the Sachs basis was actually not necessary to get this result, since the



5.1 Optics in homogeneous and isotropic cosmologies

FL geometry is conformally flat, which implies that the optical tidal matrix R has only
a Ricci (pure-trace) part Z1y, with Z = —(1/2)R,,,k*k” = —w}K. The Jacobi matrix
equation

2D, =
P ~0y KD (5.11)
is then easily solved as
D(S + 0) = @5 fx(ns — mo) 12, (5.12)

where 1y — ng can be replaced by the conformal radial distance yg of the source.

In the original geometry

Recovering all lensing quantities for the original FL metric g is now easily achieved using
the dictionary of Table In particular, the Jacobi matrix reads

D(S + 0) = —aswy  fx(xs) 1o (5.13)

Note that the minus sign is here due to our conventional future orientation of the wave
four-vector. As expected, light propagation in the FL spacetime exhibits no shear nor
rotation: the Jacobi matrix is directly proportional to the angular diameter distance (see

§R22)

Dy = asfr(xs)- (5.14)

The above result matches the interpretation of fx(x) = R as a conformal areal radius.
For a given radial coordinate y, sources appear larger (closer) as K increases. This, however
shall not be interpreted as if spatial curvature had any actual focusing effect. As discussed
in § 2.1.3] the physical source of focusing is the local density of energy and momentum,
due to Ricci focusing, which here reads Z = —4nG(p+ p)w?. Spatial curvature only enters
into the game via the dynamics of a(t), related to p by the Friedmann equations.

In Table we summarise the expressions of the other observational notions of distance
defined in Chap. |3|in a FL spacetime. Note that, contrary to the angular and luminosity
distances, the radar and parallax distances are given as the results of an academic exercise,
since they cannot be applied to cosmological distances in practice (see § As such,
they can nevertheless serve to illustrate the difference between the various observational
notions of distance in general relativity.

Distance Expression
1 rmo
radar | Dr = = a dn
2 Jno—2x
, —1
parallax | Dp = [Ho + fK(XS)]
ao [ (xs)
angular | Da = asfr(xs)
luminosity | Dy, = a2ag’ fx(xs)

Table 5.2 Expressions of the observational distances in a FL geometry, for a source with
comoving radial coordinate x. The radar distance is here defined as a retarded distance.
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5.2 Optics in perturbation theory

The presence of perturbations with respect to strict homogeneity and isotropy (see §
modifies the propagation of light compared to the previous results. This section reviews
the consequent corrections to light’s frequency, beam’s morphology, etc. For that purpose,
we restrict to the Newtonian regime, where the metric reads

ds* = a*(n) [—(1 +2®)dn? + (1 — QCD)vijdxidxj} (5.15)
= a®*(0) (G + 0§y )dtda” (5.16)

which, as discussed in § [£.2.2] is a good approximation at late times, and provided
large-scale perturbations are not concerned. The first assumption is meaningful because
gravitational lensing is mostly due to (i) collapsed structures, or (ii) the cosmic web; both
are absent in the primordial Universe, and appear during the matter-dominated era. The
second assumption is generally satisfied in gravitational lensing, because the size of the
beam dictates the relevant scales.

5.2.1 Perturbation of light rays

We start with the effect of metric perturbation on single light rays. Like in the previous
section, we take advantage of the conformal invariance of null geodesic and work with the
conformal metric g + 6g. Note that, in order to be perfectly consistent, the conformal
background metric should be denoted g; we here choose to drop the tilde to alleviate
notations. In the remainder of this section, a bar thus denotes conformal background
quantities, except explicit mention of the contrary.

__ Decomposing the perturbed wave four-vector as k = k + 0k, the geodesic equation
V;Cl;: = 0 reads, at first order in Jk,

0= Z}V/v/yk# (517)
= k"0, k" + T, K"k (5.18)
= KV 4 0Kk + R V,0R + T8, Bk + O(2). (5.19)

The first term of Eq. vanishes by virtue of the background geodesic equation. The
second term is related to the deviation between neighbouring background geodesics; it
is negligible sufficiently far from the vertex point of the light beam (source or observer,
depending on the point of view), where the electromagnetic wave can be considered plane.
Therefore, at linear order, the perturbation of the wave four-vector is ruled by

KV, 0k = — 6T, FVRe. (5.20)

Effect on the frequency

Let us first calculate the effect of perturbations on the observed frequency of the light
signal. By definition, we have

@ = —ii, k" (5.21)
=0+ 0k" + @(® — vid) + O(2). (5.22)
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where we have used the decomposition of the perturbation of the four-velocity introduced
in § as 0u = —®d, + v'@;. We see that only the Oth component of dk needs to be

determined for computing the perturbed frequency. On the one hand, using that fOV , =0
(see Table [4.1| with a = cst), we obtain

o dek
'V, 0k = K70,k = TR (5.23)

(%

where v denotes the affine parameter in the conformal background geometry, such that
dv = w~'dn with @ = cst. On the other hand, using the perturbed Christoffel symbols [101]

5f00u = 0,9, 6f0ij = —(0®) Yijs (5.24)
we deduce
5T ke = 2092 029,0 (5.25)
vp d@ (I .

Integrating Eq. (5.20) for i = 0 between the source and the observer then yields
7.0 o ~ O —2 o — i —
0R) S = —23 (@2 + 257 [ a5 an@ly, 7 (0)], (5.26)
s

from which we conclude that

dwy Owg -0z

wo wS:1+z

= —[o+ud]]+2 ["an ol 7). (5.27)

ns

where we have reintroduced the frequencies defined with respect to the full perturbed
metric. The quantity v;d’ can be considered either with respect to the conformal metric
(i.e. yi;0'd) or with respect to the full metric (i.e. g;;u'd’), because both are equal. Note
that the integral term on the right-hand side of Eq. (5.27)) is not trivially integrated,
because the partial derivative d, only hits the first 7; in other words, while the integral
is a curvilinear integral along the unperturbed null geodesic z*(n), the derivative is not
performed along this geodesic.

Physically speaking, the bracket term on the right-hand side of Eq. contains the
intuitively expected corrections to the redshift, respectively interpreted as gravitational
and Doppler effects with respect to this coordinate system. The gravitational part [—®]9
is sometimes referred to as the Sachs-Wolfe (SW) effect, while the quantities v}, and v} are
usually called the observer’s and source’s peculiar velocities, they encode the deviation of
their motions with respect to the Hubble flow. They are, of course, gauge dependent. The
integral term, contrary to the previous ones, depends on the whole light path from S to O,
and is specific to time-dependent perturbations. The corresponding physical phenomenon
is either called integrated Sachs-Wolfe (ISW) effect [129] or Rees-Sciama (RS) effect [130],
depending on its physical cause.

First note that, in linear perturbation theory during the matter-dominated era (€2, ~ 1),
since ¢ « a, Eq. implies that 9,® = 0, so the integrated effect vanishes in this case.
There are three possible excursions from this situation:

1. Before the matter era, i.e. during the radiation era. We then talk about the early
ISW effect. Note that the above calculations cannot be directly applied to this case,
since vector, tensor modes, and anisotropic stress cannot be neglected.
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2. After the matter era, when the cosmological constant (or dark energy, or spatial
curvature) starts to affect the growth of structures. This is the late ISW effect. It
has first been detected in 2004 by cross-correlating the CMB map of the Wilkinson
Microwave Anisotropy Probe (WMAP) with maps of the large-scale structure [131];
since then, the late ISW effect has been exploited in a number of studies to put
constraints on dark energy (see e.g. Ref. [132] and references therein). For instance,
the recent Planck results [133] exclude A = 0 at a 30 confidence level, from the ISW
effect only.

3. In the matter era, but beyond the linear regime. The time-dependence of the
gravitational potential then occurs in the vicinity of virialised structures. In this case
we talk about the Rees-Sciama effect. We will see in Chap. [6] an explicit example of
this phenomenon in Swiss-cheese cosmological models.

Effect on the source’s position

We now turn to the spatial part of the perturbed geodesic equation (5.20). The left-hand
side, for p =i reads

déki

KV, 0k =
v dv

ASkT (0 s o\ s
-2 5t — 0L 6%) ok’ 2

T g BRI 629

where we used that k' = —&d?, and that the nonzero Christoffel symbols I, of the

background spatial metric v;; such that [ = x are *I'), =% = fi(x)/fx(x). Besides,
the right-hand side of Eq. (5.20]) requires the correction to the Christoffel coefficients

5Ty = 0'D, 0Ty = —6% 9, T, = —26(,00® + 717" 01 P, (5.29)

so that q
—0L RR = = (OF) + KEI0;® — 20%70;0. (5.30)

The resulting differential equation is naturally expressed in terms of v. We have seen in
the previous paragraph that it can be written in terms of 1 since dv = &~'dn; similarly,

since at the background level dn = —dy, we can translate it as
Aokl i) 1 —oood N
+2 0 — 0 0% ) Ok = — (®d') — wd'd + 2wy 0;®. 5.31
dx fK(X)<” ) dx( ) T (5:31)

Let us focus on the perturbation to the position of the source on the observer’s
celestial sphere. The problem can be formulated as follows: consider a line of sight —d,
corresponding to the direction (6, ) = (64) 41, towards which the observer looks; the
deflection of light by ® implies that the light ray deviates from the radial straight
line #4 = 64 = cst, so that the source event S actually has angular coordinates 64 + 664,

This new direction corresponds to the direction in which the observer would see the image
if light did follow a radial straight line (see Fig. [5.1).

<) Figure 5.1 Perturbation of the angular
O coordinates (64) = (0, ) of the source,
given an observation direction —d.
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The correction 664 is related to the perturbation of the wave four-vector via 6k? =
dd0!/dv = —wddf? /dy. For i = A, the first two terms on the right-hand side of Eq. (5.31)

vanish, because d = —5;, and the equation is integrated twice as
X X' 13 .
50A — _2/ dX// dX” [fK(X )1 VABﬁB‘I)[TI",fl(ﬂ")], (532)
0 0 fr(X')

where it is understood that 1 = 1y — x”, and #*(n") = (", X", 0, ¢) is the unperturbed ray.

The properties of the areal function fx allow us to turn the double integral of Eq. (5.32)
into the single integra]ﬂ

504 = —2 /OX dy’ fK(X/}J;K(Sg ~X) YABogd[n, ' (). (5.35)

This formula agrees with the Newtonian intuition according to which particles are deflected
by gravitational fields, i.e. by —0®, modulo a factor two which distinguishes the deflection
of light with the deflection of nonrelativistic particles in GR. Note the form of the kernel

e —xX) fx(X') o DA(L + O)Da(S <+ L)
fr(x) Da(S + O) ’

sometimes called lensing efficiency, which peaks for x’ = x/2, i.e. when the lens L is such
that Da(S < L) = Da(L < O). This is a generic characteristic of gravitational lensing:
the most important contributions to the net deflection are due to gravitational fields lying
halfway between the source and the observer.

(5.36)

5.2.2 Perturbation of light beams

The previous paragraph showed that an inhomogeneous potential ® tends to deflect light
with respect to the purely radial geodesics of the background FL spacetime. Considering
now a family of neighbouring light rays, we expect from their differential deflection to
distort and focus the underlying beam.

Perturbed optical tidal matrix

The sources of focusing and distortions of a light beam are encoded in the optical tidal
matrix (see Chap. . We keep working in the confornial geometry, and decompose the
conformal optical tidal matrix as R = R + IR, with R = —w?K. Its perturbation

SRap = 0 (Ryupes'k kP s%) (5.37)

2A first step consists in changing the integration scheme as

X X/ X X
/ Xm/ dX// F(XI, X”) — / dx”/ dX/ F(X/7 XN), (5.33)
0 0 0 X

and then perform the integration with respect to x’,
1 _ Sk =X")

X dX/ - _& Xwi / o "l
o TEX) { fKL T () () UG 1 0C) = Fre i ol = Fe(X") fr(x)’

where we used twice the fact that fx is either sin or sinh (or the identity). Renaming x” as x’ finally

gives the result of Eq. (5.35))

(5.34)
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contains a priori terms of the form § Rskks o< §(0%g), and Réskks, R56kks o< §(dg). As
discussed at the end of the previous chapter, the perturbations of curvature §(9?¢g) are
generally much larger than the perturbations of lower-order derivatives of the metric. At
leading order, we can thus neglect the latters compared to the formers, so that

Rap ~ O Ry po 51K KP5 neglecting Roskks, Rs0kks (5.38)
~ 20T (p o] 4 K" K5, neglecting ToT (5.39)

1 ~ ~ <1 SV 1.p1.0
=35 (0Guvpo + 0Gpoyu) SuSHE K. (5.40)

Similar considerations allow us to write

o 2
0w po S SHRPKT ~ ¥ (00,54 5%) , (5.41)

0Gpo S SR kT = —40*® ,, 5 5%, (5.42)
which finally leads to

d2

SRup = —20%0L0Ld + —
AB = TAOA0RO F R

(0g,w5%45%) + O(09) + O(2). (5.43)

In Eq. (5.43)), we have introduced transverse derivatives 05 = 540, such that

9?2 1 92
1 = -
1al _ —p= 862 6 960
81483 - Sisga}ial/ = f2 ( ) 1 52 Slnl 82@ . (544)
K\X sinf 800p  sin? 6 Op?

Jacobi matrix at linear order

Let us now exploit the perturbed optical tidal matrix to determine the correction to
the Jacobi matrix. Still in conformal geometry, we decompose it into a background and
a perturbation as D = D + 6D. At linear order in perturbations, the Jacobi matrix
equation ([2.65|) reads

42D

a2

R 6D + R D, (5.45)

or, in terms of the comoving radial coordinate x, and replacing the background quantities
by their expressions,

d20D
dy?

A Green-function method for solving this second-order differential equation then yields

= KD — o % fr(x)6R. (5.46)

0D = = [ SO =) @R, (5.47)

which is easily checked to be a solution of Eq. (5.46), with initial conditions 6Dy =
(doD/dv)g = 0,.

In the expression of 6R, the total derivative d?(3g,,545%)/dv* can be integrated
by parts, and yields a term on the order of K®, which is much smaller than 9?® because
the gravitational potential varies on distances much smaller than the background spatial
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curvature radius. Back to the original perturbed geometry, we thus obtain the following
formula for the Jacobi matrix, at first order in cosmological perturbations:

) fx(x — X')
fr(X)

Das(S & 0) = asai i) {an —2 [y I o030l 2]},

(5.48)

which is a standard textbook result |101,[134].

Inside the braces, we recognise the amplification matrix A = DD ' defined in §
Interestingly, this expression of A could also have been obtained from Eq. (5.32). By
definition, this matrix is indeed

S

Aty = o250 — =
B 9gs ogB|,  oeB

(5.49)

where €4 and &4 are defined as follows and depicted in Fig. m Consider two (very
close) directions of observation defined by the angles (62') and (64'). To these directions
of observation correspond, for a given radial coordinate y, two sources S; and Sy, whose
positions differ whether we consider the perturbed or background spacetime; £4 (resp. £4)
represents the physical separation, in screen space, between the sources in the background
(resp. perturbed) spacetime.

Figure 5.2 Position of two light
sources S1, S2, associated with the
directions of observation 03, 63', and
their physical separation in screen
space for the background (£4) and
perturbed (£4) spacetimes.

We assume for simplicity that the system of axes is set so that the directions that we
are considering lie in the vicinity of the § = 7/2 plane; the physical separation between
the points (1, x, 04') and (n, x, #3) is then simply a(n) fx (x)(05 — 6:') (at the background
level). In particular, it avoids complications due to the sin @ term, always present in the
geometry of spherical coordinates. We thus have

_ _ _. 0664 -
¢ = afic(x) |05 + 003 — (0 + 001)] = € + =" (5.50)
" 96604
Al =68+ ——, 5.51
B =05+ oo (5.51)

which, using the expression of 664, indeed coincides with Eq. .

Note that the Jacobi and amplification matrices are symmetric here, i.e. at linear
order in cosmological perturbations. This agrees with the discussion of § 2.2.2] where we
have seen that when Weyl lensing is treated as a perturbation, rotation is a second-order
quantity contrary to convergence k and shear v, and we can write

A= (1_”_% 2 ) . (5.52)

Y2 I —Kk+m
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Cosmic convergence

The net convergence k of a light beam due to cosmological perturbations is called cosmic

convergence. It represents the order-one correction to the observed angular distance of

a given light source, compared to the background FL case, and is extracted from the

amplification matrix as

DA — DA —1 tl“A
Dy 2

Taking the trace of Eq. (5.48]) yields a transverse Laplacian of the gravitational potential

K (5.53)

S4B OED = 59,0, = AD — 92, (5.54)

where we identified the coordinate Laplacian v¥9;0; with the background covariant Lapla-
cian A = v9D;D;, because their difference is on the order of TO® which is negligible
compared to 0?°®. By virtue of the Poisson equation , A® can be replaced by
4mnGa’pd, where 0 is matter’s density contrast. Besides, the longitudinal derivative 92®
can also be neglected because of the integrationﬁ with respect to x/, and the convergence
finally reads

3. X RO (=) o', 2 ()]
K_2m@mé(u Fre(x) a(iy)

where we assumed that matter is well modelled by a pressureless dust (w = 0) in order
to write p = (ap/a)?po, and introduced the cosmological parameter Q0,0 = 87Gpy/(3H?).
This expression of x shows that overdensities (§ > 0) or underdensities (6 < 0) respectively
tend to focus and defocus light beams with respect to their background behaviour, in
agreement with the effect of Ricci focusing % discussed in Chap. Weyl lensing #
is indeed absent from Eq. , which could have been derived e.g. from Eq.
by taking ¢ = 0. This no longer true for lensing at second order in perturbations, see
e.g. Refs. [135H139).

Besides second-order effects, several first-order contributions have also been neglected
to obtain the simple result . In particular, by identifying the amplification matrix A
with the expression between braces in Eq. , we did not take into account the fact
that the observed frequency wy is also affected by cosmological perturbations, leading to a
Doppler contribution to the amplification matrix. Physically speaking, this a contribution
to the convergence corresponds to the aberration effects discussed in §[3.2.3] It can actually
be large [140], and generically dominates over deflection effects on short distances [141}[142].
For a more careful derivation of the correction to the convergence, taking into account
all the first order contributions, see e.g. in Ref. [143], see also Ref. [144] for calculations
which include the effect of vector and tensor modes.

: (5.56)

3Contrary to what is sometimes claimed [101,/134], the contribution of 8)2<<I> does not trivially vanish
after integrating by parts. First note that it is only a partial derivative, which cannot be directly
integrated by parts, for the same reason that we could not do so for the ISW term in Eq. .
However, since the time evolution of ® is much slower than its spatial evolution, we can consider
d®/dxy = —w~'d®/dv = 0, P — 9,® ~ 9, ®. A double integration by parts then gives

X 2 X
| £10O =) oy = £ 0 [800 = 2(0)] =2 [ a Fet) il = )R, (555)
0 X 0

which does not exactly vanish, but can be neglected as it does not contain second-order derivative of ®
any more.
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Averaging the expression ([5.56|) over a large number of sources yields the effective
cosmic convergence which only depends on the line of sight

o', 7' (n')]

o = 500 [ g0 fi 0 T (557)
where . ,
9(x) = /X dx’p(x’)w (5.58)

is the integrated lensing efficiency, p(x)dy being the probability of finding a source within
the interval [x, x + dx]. The resulting power spectrum P, for kg, in the so-called flat-sky
approximationﬁ together with an analogue of Limber’s approximation [145], is related to
the matter density power spectrum Pjs as

Pu(k) ~ (;’ H§Qm0)2/0°° dy ZZ% P; ln, ka(jx)] , (5.59)

where it is understood that n = n(x) = no — x.

Cosmic shear

Lensing does not only affect the apparent size (or distance) of light sources, but also their
shape. Observing the shape of lensed galaxies provides a measurement of this cosmic

shear effect, which encodes key information on the matter distribution in the Universe.

Suppose that we observe remote galaxies, whose intrinsic shape and observed shape are
well described by ellipses. The properties of any ellipse & can be quantified by a complex
number € = £, +igy = |ele™2?, which defines the transformation which must be applied to
a circle € to obtain it, according to

& = exp (_51 62) . (5.60)

g2 &

For a circle € with unit radius, the ellipse & has semi-minor axis b = el along the
direction ¥, and semi-major axis a = el along the orthogonal direction, so that the
ellipticity of & is given by (a — b)/(a + b) = tan|e|. Note that the present ¢ is not the
complex ellipticity usually defined in this context [26] (though they agree for |¢| < 1). Our
choice, however, together with the general decomposition of the Jacobi matrix introduced
in §[2.2.2] turns out make the following discussion clearer.

By definition (see § the source .7 is related to the image .# by the Jacobi matrix
as . = —woD(S < 0).#. Normalizing .¥ (resp. .#) by its physical size (resp. angular
size) results into a unity-area ellipse &, (resp. &ups) characterizing the intrinsic shape
of the source (resp. observed shape of the image). These two ellipses are thus related by

Entr = (—D/Vdet D)&Eyps, which, introducing the decomposition (2.56) of D, yields

Sops = €xP ( o _72) ( cos Smw) ot (5.61)

-2 —71) \—siny cosy

4This approximation consists in computing the Fourier transform of keg(64) as if the angular variables
64 were Cartesian coordinates, hence neglecting the curvature of the celestial sphere. It is justified by the
fact that the correlations between lines of sight with large angular separations are small.
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Now suppose that many galaxies are observed in a small region of the sky, across which
D (hence 7,1) can be considered constant. Since the galaxies have in principle random
shapes and orientationsﬂ we have (&) = €, and the ensemble average of the observed
ellipses reads

(Eops) = exp ( n _72> @, (5.62)

Y2 N
Comparing with Eq. (5.60), we conclude that this average ellipse is characterised by
Eobs = —7. The same reasonings apply to the two-point correlation function of the

observed galaxy shapes, which thus coincides with shear correlation function.

While the above considerations are fully general, they can be further exploited in
the context of cosmological perturbation theory. In the expression of the Jacobi
matrix, we see that the convergence (trace part) and the shear (trace-free part) both
come from derivatives of the same function ®, so they are not independent from each
other. For example, it can be shown that x and ~ have the same angular power spectrum,
P, = P, = P.. In Ref. [148], Kaiser and Squires exploited this property to design an
algorithm for reconstructing the convergence, which is not directly observable, from the
shear. Observing the shape of galaxies therefore allows one to infer the properties of the
density contrast, via the reconstructed convergence.

5.3 Some observations and their interpretation

In the previous sections we have derived the theoretical optical properties of the standard
cosmological model. This provide a framework to interpret cosmological observations, i.e.,
to validate or falsify the model, and to measure its free parameters such as the €2s. In
this section, we briefly review the main current cosmological probes, namely the Hubble
diagram of SNe (§ [5.3.1)), the CMB (§ [5.3.2), BAO (§[5.3.3), and mention some other
observations in § [5.3.4] For all of them, we will emphasize the crucial character of the
relation between distances and redshift for their correct interpretation.

5.3.1 Hubble diagram

The Hubble diagram is, conceptually, the simplest observation to interpret. It consists in
plotting the luminosity distance Dy, or the distance modulus pr,, of objects with known
intrinsic luminosity—the so-called standard-(isable) candles—as a function of their redshift.
In cosmology, as discussed in §, type Ia supernovae (SNela) are the best candidates.

In practice, SNela are standardised by the measurement of their lightcurve, that is the
evolution of the luminosity of the event with time (which typically lasts from a few weeks
to a few months). Most current analyses are based on the assumption that the absolute
magnitudes of all SNela are comparable, and that their variations can be captured by
two parameters X; and C, characterizing respectively the duration and the colour of the
explosion [149]. Together with the observed peak B-band magnitude mj of the SNIa, they
allow one to determine its distance modulus according to [42]

‘D *
puz, = 5logy, (mpc> — mjy — (Mg — aX; + 8C), (5.63)

5This hypothesis can however be spoiled by the potential trend of galaxies to align each others, or
with the cosmic web, due to gravitational interactions [146}/147].
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where Mg, «, and [ are three nuisance parameters which are fitted simultaneously
with the cosmological parameters. The redshift is determined besides by spectroscopic
measurements. Figure shows the most recent Hubble diagram [42], obtained from the
joint lightcurve analysis (JLA) of 740 SNela belonging to four different samples: Low-z
survey , the SDSS-II supernova survey , the 3-year data release of the SuperNova
Legacy Survey (SNLS) [152], and a few high redshift SNe detected with the Hubble Space
Telescope (HST) [153].

46

N ~
o =~
T

my, — M(G) + aX; —BC

Figure 5.3 A Hubble diagram obtained by the joint lightcurve analysis of 740 SNela from four
different samples: Low-z, SDSS-II, SNLS3, and HST. The top panel depicts the Hubble diagram
itself with the ACDM best fit (black line); the bottom panel shows the residuals. From Ref.

In all current analyses of the Hubble diagram, including Ref. , the data are
interpreted assuming that light propagates through a perfectly homogeneous and isotropic
Universe, so that the theoretical relation between luminosity distance and redshift to which
observations are confronted is

1
aoHy

Du() = ao1 + 2)fic (g [7dC [ o1+ € + Queol1+ O+ o] ), (5:64)
which is derived from Dy, = (1 + 2)2Da, and with the results of §[5.1 We can see in
Fig. that this model provides an excellent fit to the data. The resulting constraints
on the free parameters €),0, {270 are displayed in Fig. [5.4] which shows in particular that
the absence of dark energy is excluded at a 30 confidence level. The Hubble diagram of
SNela is indeed particularly adapted to investigating the existence and properties of dark
energy, as it probes the Universe at low redshift, i.e. at late times. This is the reason
why SNela provided the first evidence of the acceleration of cosmic expansion in the late
1990s ,, a discovery rewarded by the 2011 Nobel Prize.

Physically speaking, the cosmological constant affects SNIa observations in two com-
plementary ways. Consider a source at a given affine-parameter distance v from us. On
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Figure 5.4 Constraints on the cosmological parameters 2,0, 279 obtained from the Hubble
diagram of Fig. (blue contours), together with other observations: CMB (green), and
CMB+BAO (red). The dot-dashed contours corresponds to the constraints from earlier SN
data [156]. The dashed line indicates Qo + Q0 = 1, i.e. K = 0. From Ref.

the one hand, A reduces its redshift due to the acceleration of cosmic expansion: if the
expansion accelerates, then it was slower in the past, so the recession velocity of a distant
object is smaller. In other words, zx.0(v) < za=o(v), as confirmed by the fact that, in a

FL model, ac

= | T o (5.65)
which can be derived from dz/dv = d(ag/a)/dv, using that d/dv = k*d/dt = wo(1+2)d/dt.
On the other hand, for a given expansion rate today H,, the presence of A reduces
the Universe’s matter density (it reduces €2), so it reduces the actual Ricci focusing
experienced by light beams, therefore enhancing the observed angular distance: DA=%(v) >
DA7°(v). As illustrated in Fig. these two effects combine so that DA7%(z) > DA=0(z),
hence Di7%(z) > DA=9(z) as well. We conclude that SNe with a given observed z appear
dimmer in a Universe with dark energy than without. Of course, it could also be attributed
to a negative spatial curvature K < 0, which acts similarly to A. This is the reason why
the constraints of Fig. are degenerate in the direction orthogonal to K = cst.

In the context of linear perturbation theory, the use of the background distance-redshift
relation for modelling the Hubble diagram can be justified by the fact that the
corrections are negligible once averaged over many sources. Indeed, regarding the correction
to the redshift , the Doppler contribution vanishes if we suppose that the SNe have
random peculiar velocities (see however Ref. [157]), while the SW and ISW/RS effects are
anyway very small. As for the cosmic convergence k, since by definition (§) = 0, we deduce
that (k) = 0 after averaging over the skyﬁ The cosmological perturbations thus do not
significantly bias the distance-redshift relation at linear order. However, they are expected
to contribute to the scattering of the Hubble diagram: at low redshift because some SNe

6We here identified three notions of averaging with the notation (- - -): sky averaging, ensemble averaging,
and source averaging. Such an assumption is valid as far as only first-order perturbations are at stake,
but it breaks down at second order, as discussed in Refs. [158}160].
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are more or less redshifted due to their peculiar velocity; at high redshifts because some
are magnified and others demagnified. In the analysis of SN data, these effects are taken
into account by adding two terms diagonal terms agec and o2, to the covariance matrix
of the x?. In Ref. [42], for instance, opec = (5 x 150 km/s)/(czIn10) and 0jens = 0.0552.
For comparison, the intrinsic scatter of SN magnitudes is oy, ~ 0.1 [156].

If gravitational lensing is worked out at second-order in cosmological perturbations,
then the apparent luminosity of the SNe is biased with respect to the background case. This
bias remains however very small [141}/159,161,{162]. This conclusion does not necessarily
hold in nonperturbative approaches, in particular when the fluid description of matter in
the Universe is abandoned, as we shall see in Part [[TI]

Let us finally mention that, although SNIa observations are often presented as the most
model-independent cosmological probes, the accuracy of this claim actually depends on the
lightcurve fitter used for processing the data [163]. The results presented here have been
obtained with the Spectral Adaptive Lightcurve Template (SALT2) method [164], where
the phenomenological parameters «, § are fitted simultaneously with the cosmological
parameters. So in this approach, the SN distance moduli themselves are measured by
assuming a homogeneous FL. model. This method is therefore not completely model-
independent, in the sense that alternative cosmological models cannot be consistently
tested with these data. An alternative method is the Multicolour Light Curve Shape
(MLCS) fitter |165], whose calibration is performed using only low-redshift SNe, where
only the linear Hubble law is required. Though more model independent, MLLCS has the
disadvantage of producing results with larger error bars than SALT2.

5.3.2 Cosmic microwave background

A dissertation on cosmology cannot be without mentioning the observation of the CMB,
which is certainly the archetype of high-precision cosmological experiments. Its origin, as
originally understood by Refs. [166}/167] in 1948, goes back to the early Universe, when
the primordial plasma cooled enough for the atomic nuclei to recombine with electrons,
forming (mostly) neutral hydrogen atoms. Light thus suddenly stopped being scattered by
charged particles, and started propagating freely, following null geodesics. According to
the cosmological principle, this happened everywhere at the same (cosmic) time, so that
whatever the direction we look at today, we receive such photons which travelled from
some remote place of the Universe where they were released during 13.8 billion years.
The first experimental evidence for the CMB was (accidentally) found in 1964 [168],
and rewarded by the 1978 Nobel Prize. Since then, considerable efforts were carried
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out to measure and analyse this primordial radiation with an increasing precision, both
with Earth-based and space experiments, such as the COsmic Background Explorer
(COBE) [169], the Wilkinson Microwave Anisotropy Probe (WMAP) [170], and lately the
Planck satellite [171]. The CMB appears today as an almost perfect black body, very
well-described by a Planck spectrum of temperature Teyp = 2.72548 £ 0.00057 K ,
whose peak wavelength isﬂ Acmp ~ mm (microwave/radio domain). This observed signal
corresponds to an emitted Planck spectrum of temperature kg7, ~ 0.3 eV (A, ~ pm)
redshifted by 2, = 1089.90 & 0.23 due to cosmic expansion.

The CMB is however not perfectly isotropic, and the fluctuations of the observed
temperature © = 6T/T ~ 10 pK (see Fig. actually contain a lot of information about
the Universe. The origin of the temperature anisotropies can be separated in two categories:
(i) primary anisotropies, generated before recombination, and thus related to the physics
of inflation and of the primordial plasma; (ii) secondary anisotropies, due to what happens
to the CMB photons after their release and before their observation (gravitational lensing,
SZ effect in galaxy clusters, etc.) We refer the reader to textbooks [101},[174] for details
about the physics and the analysis of the CMB. In the perspective of the present thesis,
we choose to restrict to a single important feature of the CMB anisotropies: the acoustic
horizon scale.

L] ] I
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Figure 5.6 Temperature anisotropy of the CMB, as observed by the Planck satellite. This map
of the whole celestial sphere is obtained by a Mollweide projection. From Ref. [175]

Assuming statistical isotropy, the covariance of the temperature fluctuation © as
observed in two directions e, e; can be decomposed over Legendre polynomials P as

©lenBle)) = > L Cper ) (5.66)

£=0

where e; - e; = cos ) denotes the Euclidean scalar product between the unit spatial vectors
e, e, and @ is the angle between them. Physically speaking, C;, quantifies the correlation
between the temperature of two points in the sky separated by an angle 6 ~ 7/¢. Tt thus

TAccording to Wien’s displacement law, A\peak?’ = b, with \\ b=2.8977729 x 1073 m - K.
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corresponds to an angular power spectrum. Figure shows the Y, or more precisely the
Dy = ((L +1)Cy/27, as measured by the Planck mission.
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Figure 5.7 Angular power spectrum of the temperature anisotropies of the CMB, as measured
by the Planck mission. From Ref. [175]

Among the features of this plot, note the oscillation of D,, with a period of A/, = 300,
indicating a particular correlation between points separated by 6, ~ 0.5 deg. The origin of
this correlation lies in the presence of sound waves propagating within the photon/plasma
fluid before recombination, sustained by radiation pressure. From its birth at the end of
inflation to its disappearance at recombination, such a wave propagates over a distance r;
called sound horizon. At recombination, two overdensities (or underdensities) are thus
more likely to be separated by rg. This implies, on the CMB temperature map, that two
hot (or cold) points are more likely to be separated by an angle 6, = ry/Da, where Dy is
the angular diameter distance from us to the last scattering surface.

While rg depends on the physics of the primordial plasma, in particular through the
density of baryonic matter €2, it requires a model for the angular distance-redshift
relation Da(z) to be connected with the observable quantity 6,. The situation is similar
to the analysis of the Hubble diagram, where a model for Dy (z) is required, and once
again the standard choice is to use the distance-redshift relation of a FL. model. Because
this relation involves €),,o and €25, the analysis of the CMB provides constraints on these
parameters, as shown in Fig. [5.8] Its degeneracy direction is kindly orthogonal to the one
of SNIa constraints, making the combination of both a powerful and accurate measurement
of o, Q2a0. These parameters are not the only ones to be constrained by the CMB,
from which can also be extracted crucial information on the amplitude of matter density
fluctuations [91], cosmic topology [176], inflation [177], reionisation, etc.

In the standard CMB analyses, gravitational lensing is considered to act essentially as
a remapping of anisotropies of the temperature field [178,/179], according to the first-order
formula (5.32). This brings an additional contribution to the angular power spectrum C,
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Figure 5.8 Constraints on the cosmological parameters 0, 240, and on the Hubble expansion
rate Ho, obtained from the analysis of the CMB. From Ref. [91]

but it does not affect the mean angular distance Dy (z.) mentioned above, and thus does
not lead to any shift in the position of the acoustic peaks. This approach has been
questioned recently in Ref. [180], where second-order lensing corrections seemed to affect
the average distance to the last-scattering surface by a few percents, a correction which
would significantly impact the analysis of the CMB. Almost one year later, however, it
was shown independently by Refs. [159,181] (one of them being coauthored by the very
authors of Ref. [180]) that this effect is actually caused by a subtle confusion between
source averaging, sky averaging, and ensemble averaging. The distinction between these
different ways of averaging physical quantities, and their natural domain of applicability,
had been emphasized earlier by Ref. [158]; it now seems to be fully understood [160]. In
the end, this debate validated the standard treatment of CMB lensing.

5.3.3 Baryon acoustic oscillation

The acoustic feature present in the CMB corresponds to a rather large scale, which
is weakly affected by the gravitational evolution of the Universe between the epoch of
recombination and today—contrary to small-scale inhomogeneities which tend to collapse
and lose information about their initial conditions. As a consequence, this correlation has
survived within the distribution of baryonic matter in the Universe. In this case, it is
referred to as the Baryon Acoustic Oscillation signal. Because it only grows with cosmic
expansion, the BAO scale (or its comoving counterpart ygao) can be considered a cosmic
standard ruler, by analogy with the notion of standard candle.

From the above reasoning, it is easy to estimate the BAO scale today r4 as
90— (14 2.)Da()0, ~ 150 Mpc ~ 100k~ Mpc,

*

(5.67)

rq =

where we used the FL expression of Da(z). The first detection of the BAO signal in
today’s distribution of matter has been obtained by the Sloan Digital Sky Survey (SDSS),
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in the two-point correlation function of low-redshift LRGs [182]. To date, the most precise
measurements has been realised by the Baryon Oscillation Spectroscopic Survey (BOSS)
of SDSS-III [183], with two complementary experiments: (i) a large survey of 1 million
galaxies between 0.2 < z < 0.7 |184]; (ii) a survey of distant quasars (2.1 < z < 3.5), and
of the intergalactic medium traced by the Lyman-« forest in their spectrum [40]. The
corresponding correlation functions are shown in Fig. [5.9, where the BAO signal is evident
(7o confidence level), and in agreement with the order of magnitude obtained above. It is
remarkable that this property of the matter distribution can be observed at so different
epochs of the Universe: z = 1090 (Fig. [5.7)), z = 2.35, and z = 0.54 (Fig. 5.9).
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Figure 5.9 Left panel. Two-point correlation function (top) and power spectrum (bottom) of
the distribution of the BOSS CMASS galaxy sample (0.2 < z < 0.7), as a function of comoving
distance s and comoving wavenumber k, respectively. This BAO signal is effectively measured
at z = 0.57. From Ref. [184]. Right panel. Two-point correlation function for objects aligned
with the line of sight (top), or orthogonal to the line of sight (bottom), measured with the BOSS
quasars (2.1 < z < 3.5) and the intergalactic medium traced by their Lyman-« forest, as a
function of comoving distance r. The effective redshift is z = 2.34 here. From Ref. [40].

Experiments such as BOSS have the advantage, with respect to CMB observations,
of extracting the BAO signal from a three-dimensional distribution rather than from a
two-dimensional map. Hence, additionally to the angular correlation scale Oga0, they yield
a redshift correlation scale Azgpo associated with BAOs aligned with the line of sight.
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Figure 5.10 Left panel. Constraints on the longitudinal and transverse distances Dy /rq, Dy /rq
at z = 2.34 from BAO measured with quasars and intergalactic medium. The green contours
indicate the constraints from the CMB in the case of a flat FL. model. Right panel. Consequent
constraints on the cosmological parameters €2,,0, Q9. The yellow star indicates the concordance
ACDM model. From Ref. .

Assuming a FL model, these quantities are related to the BAO scale today rq = apxBao as

a Tq o Tq
@D (17 2)Da) (5.68)

Tq
Dy(2)’

OBa0 =

Azpao = H(z)apxsao = (5.69)

for observations at redshift z, with Dy = 1/H, and where we used Eq. for writing
apAx = Az/H. Given a set of cosmological parameters, Ogao and Azgao are therefore
precisely related, so that their comparison allows to test the choice of these cosmological
parameters, or the validity of the FL model itself. This procedure is known as the Alcock-
Paczynski test . In Fig. |5.10| are represented the observed values of Dy /rq, Dy /74,
and the consequent constraints on 2,9, 2p0 obtained by Ref. . Note that, here again,
the standard interpretation of the observed data relies on the FL Dy (z) relation.

5.3.4 Other observations

Let us finally mention a few other cosmological probes which, though less emblematic,
have become more and more precise over the last years and are now efficient complements
to SNIa, CMB, and BAO observations.

Baryon and gas fraction in galaxy clusters

The potential of galaxy clusters as cosmological probes was revealed in the early 1990s,
when Ref. seriously challenged the standard paradigm of that time, according to
which €0 = 1. By measuring the gas and stellar masses Mg,s, Mg 0of the Coma cluster,
respectively from its X-ray and B-band luminosities, the authors of Ref. estimated
the total baryonic mass M, = Mga + Mgas of this cluster and compared it with its total
(dynamical) mass M. Assuming a ratio My, /Mo equal to the mean cosmological baryonic
fraction,

Mtot QmO ’

(5.70)
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and using the value of €,y obtained by analyses of the Big Bang Nucleosynthesis (BBN),
they concluded that ,,0 ~ 0.28 (for h = 0.7), a result surprisingly close to the current
admitted value. It is worth emphasizing that this discovery occurred before the first
analyses of the Hubble diagram, which really opened the era of dark energy cosmology.
Three years later, Ref. [187] proposed a more subtle method for constraining cosmo-
logical parameters with galaxy clusters. The X-ray data of galaxy clusters are indeed
interpreted in such a way that the gas mass fraction extracted from them reads

85— B(2)DY?(2), (5.71)

where B is independent from the cosmological parameters, so that Da(z) contains all the
cosmological dependence. Assuming that fg,s does not depend (on average) on the redshift
of the cluster, we conclude that a plot representing the fq.s of several clusters as a function
of their redshift must be flat. However, it is not the case if a wrong cosmology—or more
generally a wrong distance-redshift relation—is assumed for the data analysis. This idea
provides a consistency test of the cosmological model, similarly to the comparison between
the longitudinal and transverse BAO signal. Though limited by the intrinsic scatter of
faas, estimated to be (7.4 £ 2.3)% by Ref. [188], this method provides today constraints
on (Qmo, ao) which are competitive with BAO’s or SNela’s (see Fig. [5.11a)). We keep
emphasizing that, like all the other cosmological probes reviewed so far, the fz,s method
relies on a particular model for Dy (z), taken to be the FL one.

Weak lensing tomography

We have seen in §[5.2.2] that the observations of the shapes of lensed galaxies gives access
to the power spectrum of cosmic convergence, via the one of cosmic shear, as P, = P, = P..
Besides, the expression (5.59)) of P, turns out to involve the cosmological parameters
in various ways: directly on .0 and Hy, and indirectly via both the lensing efficiency
and the matter power spectrum Ps;. Measuring the statistics of galaxy ellipticities is
therefore a means to constrain the cosmological parameters. As an illustration, Fig.
shows the constraints on 1,0, a9 obtained from the two- and three-point correlation
functions of cosmic shear, as measured by the Canada France Hawaii Telescope Lensing
Survey CFHTLenS [189] in Ref. [190]. These constraints are rather loose compared to
ones obtained with other cosmological probes. Weak lensing (WL) is actually much
more efficient at constraining og, which is the standard deviation of the matter density
fluctuations § smoothed over a comoving sphere of radius R = 8h~! Mpc,

o = < l47T3R3 /xi|§R d*z 5(1‘)] > = /OOO d: [W] Ps(k) ~ 1, (5.72)

where j; is the order-one spherical Bessel function [191]. This can be understood by the
fact that Q2,02 essentially sets the amplitude of P, while its dependence in the other
cosmological parameters is weaker.

Alternative methods exploiting weak lensing, e.g. from the shear ratio around galaxy
clusters [192], or using higher-order statistical properties such as shear peak counts [193,194],
are still under development. They are expected to provide very accurate measurements

of the cosmological parameters from future large surveys, such as Euclid [195], or the
Wide-Field InfraRed Survey Telescope (WFIRST) [196].
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Figure 5.11 Some cosmological constraints from fy,s measurements in galaxy clusters (left
panel) or weak-lensing tomography (right panel).

Strong lensing and time delays

When very massive or compact objects lie between a light source and an observer, the
deflection they induce can be large enough for allowing light to have several paths from
the one to the other. In this regime of strong gravitational lensing (SL), the observer can
thus see multiple images of a single source (gravitational mirages), or images which are
so sheared that they appear as luminous arcs around the lens [17]. The size and shape
of these arcs, or the Shapiro time delay between two different images, depend on the
properties of the lens, but also on the lensing efficiency factor , and therefore on
the cosmological parameters. Provided one has an accurate model for the lenses, this
property can be exploited to constrain the cosmological parameters from strong lensing
measurements [197]. This idea has the advantage, with respect to WL, that it can be
applied to single objects [19§], rather than relying on statistics. Its main limitation,
however, concerns the uncertainties on the lens properties. Recently, time delays between
multiple images observed by the COSmological MOnitoring of GRAvItational Lenses
(COSMOGRAIL) [199] were used to measure h = 0.800109% [200]. Besides, strong lensing
measurements were recently exploited to constrain spatial curvature via the distance sum
rule Qo [201], or the dark-energy equation of state [202].

5.3.5 Discussion

This brief review of the current status of observational cosmology shows that the standard
ACDM model consistently fits all the data with an impressively high level of precision,
given its simplicity. We emphasized that the interpretation of every observation involves
the relation between angular (or luminosity) distance and redshift Da(z), from which
generally comes its sensitivity with respect to the cosmological parameters. This relation
is always assumed to be the one of a FL spacetime, derived in § 5.1} In other words, all the
distances necessary to interpret cosmological observations are calculated by assuming that
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light propagates through a perfectly homogeneous and isotropic Universe. The success of
this strong assumption is particularly striking if we compare the scales involved in all these
observations, listed in Table 5.3l We see that the typical observed angles, i.e. the typical
size of the corresponding light beams, span 12 orders of magnitude. To my knowledge,
there exists no model in the whole History of physics whose domain of validity is so widdf|

The issue raised here must be connected to the laws of geometric optics in curved
spacetime presented in Part [l We have seen in Chap. [2] that the evolution of the angular
distance is driven by Ricci and Weyl curvatures in quite different ways. Ricci lensing
tends to directly reduce Dy by focusing the underlying light beam, while Weyl lensing
indirectly reduces it via the beam’s shear rate. However, what is considered Ricci or Weyl
lensing depends on the size of the beam itself: a distribution of point masses can appear
alternatively clumpy or smooth to a beam whose cross-sectional diameter is respectively
much smaller or much larger than the typical distance between two point masses. Similarly,
our Universe can be considered smooth—Ricci dominated—for the beams involved in BAO
observations, but it is certainly very clumpy—Weyl dominated—when SN observations
are at stake. This Ricci- Weyl paradox of cosmology is central to the present thesis, whose
motivation can be summarised by the following question: why is the FL geometry so
efficient at interpreting all the cosmological observations? The next part intends to provide
elements of answer.

observation relevant angular scale typical value (rad)
BAO BAO scale at z ~ 0.5, 2 1074, 1072
CMB BAO scale at z ~ 1000 1072
feas apparent size of a cluster at z ~ 0.5 1073
SL Einstein radius of a galaxy on cosmological scales 1074
WL apparent size of a galaxy at z ~ 0.5 1075
SNela apparent size of a SN at z ~ 0.5 10713

Table 5.3 Relevant angular size (observed angular aperture) of the light beams involved in
various cosmological observations, and their orders of magnitude.

80mne could argue that the validity of quantum electrodynamics has been experimentally verified over
more than 11 orders of magnitude, but the latter is more a theory than a model.
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HE question of how the clumpiness of the Universe affects the interpretation of
T cosmological observations has a long history. It was first raised more than 50 years
ago, in 1964, by Zel’dovich in Ref. [203], and by Feynman in a colloquium given at the
California Institute of Technology (mentioned e.g. in Ref. [204]). The underlying argument
is that, on the very small scales probed by, e.g., the light beam coming from a supernova,
a fluid description of the surrounding matter shall not hold in principle, as it is rather
concentrated in clumps than smoothly distributed. A typical beam is thus expected to
encounter less matter than in a strictly homogeneous model. Then followed a series of
seminal articles, both on the Soviet side by Dashevskii & Slysh [205-207], and on the
western side by Bertotti [208] and Gunn [204,209].

While those studies were based on general arguments about geometric optics in an
inhomogeneous Universe, Kantowski [210], and later Dyer & Roeder [211214], relied on
an exact solution of the Einstein equation, namely the Swiss-cheese model. This solution,
obtained by gluing together the Schwarzschild and FL spacetime—which makes a ‘hole’
inside the Friedmann-Lemaitre ‘cheese’—had been originally proposed by Einstein &
Straus [215]216] as a means to model individual stars within the expanding Universe (see
Chap. @ for more details). These analyses yielded in particular a procedure for determining
the effective impact of clumpiness on the angular distance-redshift relation, known as the
partially-filled beam approximation, or Dyer-Roeder approximation, the name of Kantowski
being usually—but unfairly—omitted in the literature. In agreement with Zel’dovich’s
original intuition, this approximation predicts that a typical light beam is defocused with
respect to the FL behaviour, and therefore bias distance measurements towards larger
values. Such a conclusion was criticized by Weinberg in Ref. [217], who argued on the
basis of flux conservation that inhomogeneities should have no mean effect. Although this
argument turns out to be inexact, it holds in principle at a very high order of precision
(see e.g. Ref. [159,/181] for recent discussions). In practice, however, Weinberg’s approach
fails at capturing the consequences of: (a) the sparsity of observations—we do not observe
an infinity of sources over the whole sky—; and (b) selection effects—some lines of sight
can be masked [218]—which were central to the earlier results.

The whole issue has been then progressively left aside, presumably because no observa-
tion managed to arbitrate between the various points of view. It was revived in the 2000s
within a new cosmological paradigm, in particular with the perspective of explaining the
apparent acceleration of cosmic expansion without the need of dark energy. Most analyses,
in this case, focused on the impact on observations of the large-scale inhomogeneity, relying
either on the standard perturbation theory [135-139,141}/159,161},162.|180,219-225], or
on Swiss-cheese models with Lemaitre-Tolman-Bondi holes [24,140,226-238] or Szek-
eres [239-242] holes, which typically aim at modelling superclusters or cosmic voids (see
also Refs. [243],244]). Particular efforts were made in Refs. [245-250] in order to con-
nect observables with the backreaction and cosmic averaging problems. In contrast, less
attention was paid to the specific issue of clumpiness—with the notable exceptions of
Refs. [251-256], where inhomogeneities are treated in a fashion similar to the historical
Einstein-Straus Swiss-cheese model. It was exhumed by Clarkson et al. [257], who reviewed
past and present approaches, emphasizing that no definite answer had been formulated so
far.

This latter article motivated the present part of my thesis, which represents roughly
three quarters of it—the last quarter concerns anisotropic cosmologies and is the subject
of Part [IV] It is divided into two chapters, which present two different approaches to the
initial question raised by Zel’dovich and Feynman. In Chap. [0 I revisit light propagation
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in Einstein-Straus Swiss-cheese models with the eyes of modern cosmology. In Chap. [7] I
propose a completely new framework for dealing with lensing on small scales, based on
the theory of stochastic processes.



Swiss-cheese cosmologies

HIS chapter is devoted to the analysis of light propagation in the Einstein-Straus
Swiss-cheese model. Because it does not rely on a fluid description of matter, this
model is indeed particularly adapted to modelling the small-scale inhomogeneity of the
Universe, and evaluating its consequences on the interpretation of the Hubble diagram. It
consists of three articles, whose main results are summarised in §[6.1 The first two articles,
given in §[6.2] and [6.3] were done in collaboration with Hélene Dupuy and Jean-Philippe
Uzan; they cover theoretical calculations, cosmological interpretations, and data analysis.
The third article, given in §[6.4], contains important theoretical complements on the relation

between Swiss-cheese models and the so-called Dyer-Roeder approximation.
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Chapter 6 Swiss-cheese cosmologies

6.1 Summary

The Einstein-Straus Swiss-cheese (hereafter SC) model is constructed from a homogeneous
Universe by introducing spherical ‘holes’, with a point mass at their centres, within the
FL ‘cheese’. Inside a hole, spacetime geometry is described by the Schwarzschild metric,
or the Kottler—also called Schwarzschild-de Sitter—metric in the presence of a nonzero
cosmological constant. The boundary of the hole, where the junction between both
geometries is performed, is a sphere of constant comoving radius Ry, = fx(xn). For this
junction to be smooth, the central mass M must be related to the hole radius via

47
M = TplaR), (6.1)

where p is the average cosmic matter density, and a the scale factor. This result can be
proven by two methods. In Art. we followed the traditional derivation based on the
Darmois-Israel junction conditions [258-260], according to which the induced metric and
the extrinsic curvature of the junction hypersurface R = R} must be identical as seen from
the interior or from the exterior. In Art. I proposed a novel approach where the Kottler
metric is first written in terms of free-fall coordinates, similar to the coordinates used by
Lemaitre for demonstrating the absence of singularity at the horizon of the Schwarzschild
geometry [261},262]. In terms of those coordinates, the Kottler metric takes a form very
similar to the FL metric, and the junction is then performed more naturally, because the
coordinate system is actually valid both inside and outside the hole.

The analysis of the propagation of single light rays through a SC model reveals that
the presence of holes only marginally affects the relation between redshift z and affine
parameter v. Corrections are due to a subtle mix between the Shapiro time delay caused
by the central mass, and the Rees-Sciama due the fact that, in comoving coordinates, the
gravitational potential inside the hole changes with timd'] In Art.[6.4] T have rigorously
proved that the corresponding fractional correction to 1+ z is on the order of rg/R, < 1,
where rq = 2G'M is the Schwarzschild radius associated with the central mass.

Regarding light beams, I introduced in Art. a technique based on the lensing
Wronski matrix, in order to facilitate both the analytical and numerical treatments of the
problem. I carefully rederived in Art. [6.4] the earlier results by Kantowski [210] and Dyer &
Roeder [213], and reached the same conclusions: if the masses inside the holes are opaque,
with physical radius 7pnys > 73, then Weyl lensing is essentially negligible, while Ricci
focusing is reduced by a factor f € [0, 1], corresponding to the fraction of volume occupied
by the FL regions, with respect to the homogeneous case. Note that this smoothness
parameter is denoted « in Art. [6.4] This tends to bias the distance-redshift relation
towards larger distances. I then checked those results numerically. This step required to
design a numerical ray-tracing code in SC models. I wrote two different versions of it: the
first one, exploited in Art. [6.2] has its holes arranged on a regular compact hexagonal
lattice; the second one, exploited in Art. [6.4] has a random distribution of holes, where
randomness was implemented by the method of Ref. [251], so that “each ray creates its
own universe”.

The cosmological consequences of these results were analysed in Arts. [6.2] in two
complementary ways, detailed below.

! Alternatively, if one uses the standard Droste coordinates with respect to which the Schwarzschild
spacetime is explicitly static, then the radius of the hole grows with cosmic expansion. The gravitational
potential experienced by an entering photon is thus lower than when the same photon exits from the hole.
The latter thus gains a slight blueshift.



6.1 Summary

Fitting Mock Hubble diagrams. By randomly throwing rays in a SC model, whose
FL regions are characterised by a set of cosmological parameters {2}, I generated mock
catalogues of SNe. The potential error in the interpretation of SN data caused by
inhomogeneity was then quantified by fitting the associated Hubble diagrams with the
FL distance-redshift relation, i.e. by wrongly assuming that the light of SNe propagated
through a homogeneous Universe. The best-fit apparent cosmological parameters {Q}
turned out to significantly differ from the input ones {Q2}. For instance, a SC model
constructed from the Einstein-de Sitter universe, i.e. (Qmo, 2xo0,2x0) = (1,0,0), with
f = 0.26, would be observed as (o, Qxo, Qo) = (0.5,0.8,—0.3), or (0.15,0,0.85) if
spatial curvature is forced to vanish (see Fig. 19 of Art. . In other words, the light
defocusing effect in SC models tends to mimic the effect of a negative spatial curvature, or a
cosmological constant. The effect is however too small to explain SN observations without
the need of dark energy. Importantly, the discrepancy Q — Q between the inferred and
actual cosmological parameters drastically reduces as A increases. This can be understood
as follows: the cosmological constant being homogeneous, if it dominates the geometry
of spacetime then the difference between a SC and the underlying FL universe is not
dramatic.

Re-analysing actual SN data. The natural questions arising from the above are: How
should we interpret SN data in order to account for the effect of small-scale inhomogeneity?
What are the values of the cosmological parameters inferred in this case? To the first
question, the natural answer provided by Swiss-cheese models is to use the Kantowski-
Dyer-Roeder distance-redshift relation, instead of the FL one, in order to fit the Hubble
diagram. Note that this option was already considered by Perlmutter et al. in Ref. [155],
in order to check whether inhomogeneity could be the origin of the apparent accelerating
expansion. It cannot. We repeated this analysis on a more recent data set, namely the
SNLS3 catalogue [156], and found that the smoothness parameter f is not constrained by
SN observations. However, fixing a smaller value for f, i.e. increasing the clumpiness of
the SC, increases the inferred value of 2,9 from 0.25 (f = 1) to 0.3 (f = 0). See Fig. 25
of Art.[6.2] That answers the second question. We used this effect in Art. to reconcile
the constraints on o obtained by SNLS3 (best-fit value of 0.2) with the one of Planck
(0.31). Note however that, on the experimental side, recalibrations of the SDSS-1T and
SNLS lightcurves posterior to our work also managed to reduce this tension, attributed to
systematics (see e.g. § 6.6 of Ref. [42]). This conclusion is only partially convincing, since
as emphasized in Ref. [163], the calibration of SN lightcurves with the SALT2 method has
a degree of model dependence which might force SN data to agree with the FL model.

From this series of works, we shall conclude that nature has somehow been kind with
us by making a Universe dominated by the cosmological constant today. Indeed, if on the
contrary it were dominated by matter, then the net effect of clumpiness on SN data would
be larger, leading to a clear discrepancy between the cosmological parameters measured
from the Hubble diagram and the ones measured from other probes, such as CMB or BAO
experiments. Nevertheless, Art. revealed that, in the era of precision cosmology, such
effects may start to become non-negligible.
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Interpretation of the Hubble diagram in a nonhomogeneous universe
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In the standard cosmological framework, the Hubble diagram is interpreted by assuming that the light
emitted by standard candles propagates in a spatially homogeneous and isotropic spacetime. However, the
light from ““point sources”’—such as supernovae—probes the Universe on scales where the homogeneity
principle is no longer valid. Inhomogeneities are expected to induce a bias and a dispersion of the Hubble
diagram. This is investigated by considering a Swiss-cheese cosmological model, which (1) is an exact
solution of the Einstein field equations, (2) is strongly inhomogeneous on small scales, but (3) has the
same expansion history as a strictly homogeneous and isotropic universe. By simulating Hubble diagrams
in such models, we quantify the influence of inhomogeneities on the measurement of the cosmological
parameters. Though significant in general, the effects reduce drastically for a universe dominated by the

cosmological constant.

DOI: 10.1103/PhysRevD.87.123526

I. INTRODUCTION

The standard physical model of cosmology relies on a
solution of general relativity describing a spatially homo-
geneous and isotropic spacetime, known as the Friedmann-
Lemaitre (FL) solution (see e.g. Ref. [1]). It is assumed to
describe the geometry of our Universe smoothed on large
scales. Besides, the use of the perturbation theory allows
one to understand the properties of the large scale struc-
ture, as well as its growth from initial conditions set by
inflation and constrained by the observation of the cosmic
microwave background.

While this simple solution of the Einstein field equa-
tions, together with the perturbation theory, provides a
description of the Universe in agreement with all existing
data, it raises many questions on the reason why it actually
gives such a good description. In particular, it involves a
smoothing scale which is not included in the model itself
[2]. This opened a lively debate on the fitting problem [3]
(i.e. what is the best-fit FL. model to the lumpy Universe?)
and on backreaction (i.e. the fact that local inhomogene-
ities may affect the cosmological dynamics). The ampli-
tude of backreaction is still actively debated [4-6], see
Ref. [7] for a critical review.

Regardless of backreaction, the cosmological model
assumes that the distribution of matter is continuous (i.e.
it assumes that the fluid approximation holds on the scales
of interest) both at the background and perturbation levels.
Indeed numerical simulations fill part of this gap by deal-
ing with N-body gravitational systems in an expanding
space. The fact that matter is not continuously distributed
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can however imprint some observations, in particular
regarding the propagation of light with narrow beams, as
discussed in detail in Ref. [8]. It was argued that such
beams, as e.g. for supernova observations, probe the space-
time structure on scales much smaller than those accessible
in numerical simulations. The importance of quantifying
the effects of inhomogeneities on light propagation was
first pointed out by Zel’dovich [9]. Arguing that photons
should mostly propagate in vacuum, he designed an
“empty beam” approximation, generalized later by Dyer
and Roeder as the “partially filled beam” approach [10].
More generally, the early work of Ref. [9] stimulated many
studies on this issue. [11-25].

The propagation of light in an inhomogeneous universe
gives rise to both distortion and magnification induced by
gravitational lensing. While most images are demagnified,
because most lines of sight probe underdense regions,
some are amplified because of strong lensing. Lensing
can thus discriminate between a diffuse, smooth compo-
nent, and the one of a gas of macroscopic, massive objects
(this property has been used to probe the nature of dark
matter [26-28]). Therefore, it is expected that lensing shall
induce a dispersion of the luminosities of the sources, and
thus an extra scatter in the Hubble diagram [29]. Indeed,
such an effect does also appear at the perturbation level—
i.e. with light propagating in a perturbed FL spacetime—
and it was investigated in Refs. [30-35]. The dispersion
due to the large-scale structure becomes comparable to the
intrinsic dispersion for redshifts z > 1 [36] but this disper-
sion can actually be corrected [37-42]. Nevertheless, a
considerable fraction of the lensing dispersion arises
from sub-arc minute scales, which are not probed by shear
maps smoothed on arc minute scales [43]. The typical
angular size of the light beam associated with a supernova
(SN) is typically of order 107 arc sec (e.g. for a source of

© 2013 American Physical Society
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physical size ~1 AU at redshift z ~ 1), while the typical
observational aperture is of order 1 arc sec. This is smaller
than the mean distance between any massive objects.

One can estimate [27] that a gas composed of particles
of mass M can be considered diffuse on the scale of
the beam of an observed source of size A, if M<
2 X 1073 Myh*(A,/1 AU)3. In the extreme case for which
matter is composed only of macroscopic pointlike objects,
then most high-redshift SNela would appear fainter than in
a universe with the same density distributed smoothly, with
some very rare events of magnified SNela [27,44,45]. This
makes explicit the connection between the Hubble diagram
and the fluid approximation which underpins its standard
interpretation.

The fluid approximation was first tackled in a very
innovative work of Lindquist and Wheeler [46], using
a Schwarzschild cell method modeling an expanding
universe with spherical spatial sections. For simplicity,
they used a regular lattice which restricts the possibilities
to the most homogeneous topologies of the 3-sphere [47].
It has recently been revisited in Refs. [48] and in Refs. [49]
for Euclidean spatial sections. They both constructed
the associated Hubble diagrams, but their spacetimes are
only approximate solutions of the Einstein field equations.
An attempt to describe filaments and voids was also pro-
posed in Refs. [50].

These approaches are conceptually different from the
solution we adopt in the present article. We consider an

FL model

SN Ia

Ricci=0

2 A Real Unlixge‘:!'ée. »‘ g
et o TN R
FIG. 1 (color online). The standard interpretation of SNe data
assumes that light propagates in purely homogeneous and iso-
tropic space (top). However, thin light beams are expected to
probe the inhomogeneous nature of the actual Universe (bottom)
down to a scale where the continuous limit is no longer valid.
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exact solution of the Einstein field equations with strong
density fluctuations, but which keeps a well-defined FL
averaged behavior. Such conditions are satisfied by the
Swiss-cheese model [51]: one starts with a spatially homo-
geneous and isotropic FL geometry, and then cuts out
spherical vacuoles in which individual masses are em-
bedded. Thus, the masses are contained in vacua within a
spatially homogeneous fluid-filled cosmos (see bottom
panel of Fig. 2). By construction, this exact solution is
free from any backreaction: its cosmic dynamics is identi-
cal to the one of the underlying FL spacetime.

From the kinematical point of view, Swiss-cheese
models allow us to go further than perturbation theory,
because not only the density of matter exhibits finite fluc-
tuations, but also the metric itself. Hence, light propagation
is expected to be very different in a Swiss-cheese universe
compared to its underlying FL. model. Moreover, the in-
homogeneities of a Swiss cheese are introduced in a way
that addresses the so-called “Ricci-Weyl problem.”
Indeed, the standard FL. geometry is characterized by a
vanishing Weyl tensor and a nonzero Ricci tensor, while in
reality light mostly travels in vacuum, where conversely
the Ricci tensor vanishes—apart from the contribution of
A, which does not focus light—and the Weyl tensor is
nonzero (see Fig. 1). A Swiss-cheese model is closer to
the latter situation, because the Ricci tensor is zero inside
the holes (see Fig. 2). It is therefore hoped to capture the
relevant optical properties of the Universe.

FL model

SN Ia

Ricci =0
Weyl =0

Swiss—cheese model

FIG. 2 (color online). Swiss-cheese models (bottom) allow us
to model inhomogeneities beyond the continuous limit, while
keeping the same dynamics and average properties as the FL
model (top).

123526-2



6.2 Interpretation of the Hubble diagram in a nonhomogeneous universe

INTERPRETATION OF THE HUBBLE DIAGRAM IN A ...

In fact, neither a Friedmann-Lemaitre model nor
a Swiss-cheese model can be considered a realistic
description of the Universe. They share the property of
being exact solutions of the Einstein equations which satisfy
the Copernican principle, either strictly or statistically.
Swiss-cheese models can be characterized by an extra-
cosmological parameter describing the smoothness of their
distribution of matter. Thus, a FL spacetime is nothing but a
perfectly smooth Swiss cheese. It is legitimate to investigate
to which extent observations can constrain the smoothness
cosmological parameter, and therefore to quantify how close
to a FL model the actual Universe is.

The propagation of light in a Swiss-cheese universe was
first investigated by Kantowski [52], and later by Dyer and
Roeder [53]. Both concluded that the effect, on the Hubble
diagram, of introducing “‘clumps” of matter was to lower
the apparent deceleration parameter. The issue was revived
within the backreaction and averaging debates, and the
Swiss-cheese models have been extended to allow for
more generic distributions of matter inside the holes—
instead of just concentrating it at the center—where space-
time geometry is described by the Lemaitre-Tolman-Bondi
(LTB) solution. The optical properties of such models have
been extensively studied (see Refs. [54-62]) to finally
conclude that the average luminosity-redshift relation re-
mains unchanged with respect to the purely homogeneous
case, contrary to the early results of Refs. [52,53].

In general, the relevance of “LTB holes” in Swiss-
cheese models is justified by the fact that they allow one
to reproduce the actual large-scale structure of the
Universe (with voids and walls). However, though inho-
mogeneous, the distribution of matter in this class of
models remains continuous at all scales. On the contrary,
the old-fashioned approach with “clumps’ of matter inside
the holes breaks the continuous limit. Hence, it seems more
relevant for describing the small-scale structure probed by
thin light beams.

In this article, we revisit and update the studies of
Refs. [52,53] within the paradigm of modern cosmology.
For that purpose, we first provide a comprehensive study of
light propagation in the same class of Swiss-cheese mod-
els, including the cosmological constant. By generating
mock Hubble diagrams, we then show that the inhomoge-
neities induce a significant bias in the apparent luminosity-
redshift relation, which affects the determination of the
cosmological parameters. As we shall see, the effect in-
creases with the fraction of clustered matter but decreases
with A. For a universe apparently dominated by dark
energy, the difference turns out to be small.

The article is organized as follows. Section II describes
the construction and mathematical properties of the Swiss-
cheese model. In Sec. III, we summarize the laws of light
propagation, and introduce a new tool to deal with a patch-
work of spacetimes, based on matrix multiplications. In
Sec. IV, we apply the laws introduced in Sec. III to

PHYSICAL REVIEW D 87, 123526 (2013)

Swiss-cheese models and solve the associated equations.
The results allow us to investigate the effect of one hole
(Sec. V) and of many holes (Sec. VI) on cosmological
observables, namely the redshift and the luminosity dis-
tance. Finally, the consequences on the determination of
the cosmological parameters are presented in Sec. VII.

II. DESCRIPTION OF THE SWISS-CHEESE
COSMOLOGICAL MODEL

The construction of Swiss-cheese models is based on the
Einstein-Straus method [51] for embedding a point-mass
within a homogeneous spacetime (the “cheese’). It con-
sists in cutting off a spherical domain of the cheese and
concentrating the matter it contained at the center of the
hole. This section presents the spacetime geometries inside
and outside a hole (Sec. I A), and how they are glued
together (Sec. 11 B).

A. Spacetime patches
1. The ““cheese”—Friedmann-Lemaitre geometry

Outside the hole, the geometry is described by the
standard FL metric

ds® = =dT* + A(Ddx* + fx(x)dQ?], 2.1

where a is the scale factor and T is the cosmic time. The
function fx(y) depends on the sign of K and thus of the
spatial geometry (spherical, Euclidean or hyperbolic),

sin VK y sinh/—Ky
K VK
respectively for K > 0, K = 0 or K < 0. The Einstein field

equations imply that the scale factor a(T) satisfies the
Friedmann equation

=870, KA i =
3 P23 T adT
and where p = py(ay/a)’® is the energy density of a
pressureless fluid. A subscript 0 indicates that the quantity
is evaluated today. It is convenient to introduce the
cosmological parameters
_ 87Gp, __ K A
"aE Y @y Y 3HY
in terms of which the Friedmann equation takes the form

(ﬁ)z _ Qm(@)3 + QK(@>2 0. @25
H, a a

fxO) = (2.2)

1 da 2.3)

(2.4)

2. The “hole”—Kottler geometry

Inside the hole, the geometry is described by the exten-
sion of the Schwarzschild metric to the case of a nonzero
cosmological constant, known as the Kottler solution
[63,64] (see e.g. Ref. [65] for a review). In spherical
coordinates (r, 8, ¢), it reads

123526-3
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ds? = —A(nd + A7N(r)dr? + r2dQ?, (2.6)
A 2
with A()=1-2-20 2.7)
r

3
and where rg = 2GM is the Schwarzschild radius associ-
ated with the mass M at the center of the hole. It is easy to
check that the above metric describes a static spacetime.
The corresponding Killing vector ¢# = &) has norm
8urE* € = A(r) and is therefore timelike as long as
A > 0. Hence, there are two cases:

(1) If9(GM)>A > 1, then A(r) < O for all » > 0, so that
&* is spacelike. In this case, the Kottler spacetime
contains no static region but it is spatially
homogeneous.

(2) If9(GM)?>A < 1, then A(r) > 0 for r between r, and
r. > r, which are the two positive roots of the
polynomial rA(r), and correspond respectively to
the black hole and cosmological horizons. We have

2
re = \/—K cos (? + g) 2.8)
2
= = cos (% - g) (2.9
with cos ¢y = 3GM+/A, so that
1
rs<}’b<§rs<7<r< 3 (210)

20 VA

In the region r, < r < r,, the Kottler spacetime is

static. Note also that » = r, and r = r, are Killing

horizons, since ¢ vanishes on these hypersurfaces.
In practice, we use the Kottler solution to describe the
vicinity of a gravitationally bound object, such as a galaxy,
or a cluster of galaxies. In this context, we have typically
9(GM)*A < 107'* (see Sec. VA), so we are in the second
case. Moreover, this solution only describes the exterior
region of the central object; it is thus valid only for r >
Tphys> Where 7y is the physical size of the object. For the
cases we are interested in, rpny 3> ry,, so that there is
actually no black-hole horizon.

B. Junction conditions

Any spacetime obtained by gluing together two different
geometries, via a hypersurface 3, is well defined if—and
only if—it satisfies the Israel junction conditions [66,67]:
both geometries must induce (a) the same 3-metric, and
(b) the same extrinsic curvature on ..

The junction hypersurface 3 is the world sheet of a
comoving 2-sphere, as imposed by the symmetry of the
problem. Hence, it is defined by y = yx;, = cst in FL
coordinates, and by r = r,(r) in Kottler coordinates. Both
points of view are depicted in Fig. 3.
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<
z

—

Kottler

FL

FIG. 3 (color online). The junction hypersurface as seen from
the FL point of view with equation y = y;, (left); and from the
Kottler point of view with equation r = ry(¢) (right).

In the FL region, the normal vector to the hypersurface is
given by nfu = 8%/a. The 3-metric and the extrinsic

curvature induced by the FL geometry are respectively

dsi = —dI? + &*(T) 3 (x,)dQ, 2.11)

K" dxadxt = a(T)fx On) i (xn)dQ2,

where (x%) = (T, 0, ¢) are natural intrinsic coordinates for
3,. We stress carefully that, in the following and as long as
there is no ambiguity, a dot can denote a time derivative
with respect to T or ¢, so that @ = da/dT and 7y, = dr,/dt,
while a prime can denote a derivative with respect to y or r,
so that f} = dfg/dy and A" = dA/dr.

The 3-metric induced on %, by the Kottler geometry is

(2.12)

ds? = —k2(r)df* + rﬁ(r)dﬂz, (2.13)
where
A2[ry(1)] — i3 (0)
k(i) =4———F75— 2.14
O =~ A 219
Therefore, the first junction condition implies
() = a(T)fx(xn) (2.15)
4 _ o), (2.16)
dt

which govern the dynamics of the hole boundary, and

relate the time coordinates of the FL and Kottler regions.
The extrinsic curvature of 2 induced by the Kottler

geometry, but expressed in (x*) coordinates, reads

K®dgpadeb = — 07 Kzf,(rh)/ 2 ar2 4+ AW 402
- K
(2.17)
Hence, the second junction condition is satisfied only if

_ A(m) dT _ Ala(T)fx(xn)]

whence — = ) (2.18)

T FicOxn)’ dr
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It is straightforward to show that Eq. (2.18), together with
the Friedmann equation (2.3), imply that the Kottler and FL.
regions have the same cosmological constant, and

dar

M =
3

pa’ fz(xn). (2.19)

C. Summary

Given a FL spacetime with pressureless matter and a
cosmological constant, a(T) is completely determined
from the Friedmann equation. A spherical hole of
comoving radius yj;, which contains a constant mass
M = 4mpa’fy(xy)/3 atits center, and whose geometry is
described by the Kottler metric, can then be inserted any-
where. The resulting spacetime geometry is an exact
solution of the Einstein field equations.

By construction, the clump inside the hole does not
backreact on the surrounding FL region. It follows that
many such holes can be inserted, as long as they do not
overlap. Note that if two holes do not overlap initially, then
they will never do so, despite the expansion of the universe,
because their boundaries are comoving.

III. PROPAGATION OF LIGHT
A. Light rays

The past light cone of a given observer is a constant
phase hypersurface w = const. Its normal vector k, =
d,w (the wave four-vector) is a null vector satisfying the
geodesic equation, and whose integral curves (light rays)
are irrotational:

kMk,u =0, kyvvk,u =0, V[Mky] =0. @G.D

For an emitter and an observer with respective four-

velocities uty and u’, , we define the redshift by

ugmkp,(vem)
uby k,(0)

obs

1+z= (3.2)
where v is an affine parameter along the geodesic, so that
k#* = dx*/dv, and v = 0 at the observation event. The
wave four-vector can always be decomposed into temporal
and spatial components,

k* = (1 + z)(u* — d*), d*u, =0, ard, =1,

(3.3)

where d* denotes the spatial direction of observation. In
Eq. (3.3), we have chosen an affine parameter adapted to
the observer, in the sense that 27y, = ué‘bsk#(O) = 1. This
convention is used in all the remainder of the article.

B. Light beams
1. Geodesic deviation equation

A light beam is a collection of light rays, that is, a bundle
of null geodesics {x*(v, )}, where 7y labels the curves and
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v is the affine parameter along them. The relative behavior
of two neighboring geodesics x#(-, y) and x*(-, y + dy) is
described by their separation vector £# = dx*/dy. Hence,
this vector encodes the whole information on the size and
shape of the bundle.

Having chosen v = 0 at the observation event—which is
a vertex point of the bundle—ensures that the separation
vector field is everywhere orthogonal to the geodesics,
k# £, = 0. In such conditions, the evolution of {# with v
is governed by the geodesic deviation equation

KRBV Vgt = RE, K"k €5, (3.4)

where R, 5 is the Riemann tensor.

2. Sachs equation

Consider an observer with four-velocity u*. In view of
relating &# to observable quantities, we introduce the
Sachs basis (s%)acqi 2}, defined as an orthonormal basis
of the plane orthogonal to both u* and k*,

ShSpy = Oap, shu, = shk, =0, (3.5)
and parallel-transported along the geodesic bundle,
k'V sk = (3.6)

The plane spanned by (s}, s,) can be considered a screen on
which the observer projects the light beam. The two-vector
of components &4, = & Msff then represents the relative
position, on the screen, of the light spots corresponding
to two neighboring rays separated by &*.

The evolution of £, with light propagation, is deter-
mined by projecting the geodesic deviation equation (3.4)
on the Sachs basis. The result is known as the Sachs
equation [1,68,69], and reads

dPén _ B
W - RABg ’ (37)
where R ,p =R#,,aﬁk”k“sﬁfsg is the screen-projected

Riemann tensor, called optical tidal matrix. It is conven-
iently decomposed into a Ricci term and a Weyl term as

] 0 —Re¥, ImV¥
Rap)={ * T e G X )
0 q)oo Im\IIO RC\PO
with
() =—1R k*kY, W =—1C Mk P 3.9
0= "5 Ru , 0= "5Curap? of, (3.9

and where o* = s{' — is}.

3. Notions of distance

Since the light beam converges at the observation event,
we have é4(v =0)=0. The linearity of the Sachs
equation then implies the existence of a 2 X 2 matrix
DA > called Jacobi matrix, such that
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Ev) = D“B(v)((;iﬁ (3.10)

v=0

From Eq. (3.7), we immediately deduce that this matrix
satisfies the Jacobi matrix equation

2
%DAB — RA.DC,, G.11)
v
with initial conditions
dDA
DAL0) =0, dUB (0) = &4. (3.12)

We shall also use the short-hand notation & = (£4) and
D = (D*y) so that Eq. (3.11) reads d*>D/dv> = R - D,
with D(0) = 0 and D(0) = 1.

Since the Jacobi matrix relates the shape of a light beam
to its ““initial” aperture, it is naturally related to the various
notions of distance used in astronomy and cosmology. The
angular distance D, is defined by comparing the emission
cross-sectional area d*S,,,.. of a source to the solid angle
dQ2, . under which it is observed,

d%Sguree = DRAQ2,... (3.13)
It is related to the Jacobi matrix by
Dy = \/I det D(vguree) s (3.14)

where vy, 1S the affine parameter at emission.

The luminosity distance D; is defined from the ratio
between the observed flux F,, and the intrinsic luminosity
Lource Of the source, so that

Lource = 47D} F g (3.15)

It is related to the angular distance by the following
distance duality law:

D, = (1+ 2D, (3.16)

Hence, the theoretical determination of the luminosity
distance relies on the computation of the Jacobi matrix.

C. Solving the Sachs equation piecewise

Since we work in a Swiss-cheese universe, we have to
compute the Jacobi matrix for a patchwork of spacetimes.
It is tempting, in this context, to calculate the Jacobi matrix
for each patch independently, and then try to reconnect
them. In fact, such an operation is unnatural, because the
very definition of D imposes that the initial condition is a
vertex point of the light beam. Thus, juxtaposing two
Jacobi matrices is only possible at a vertex point, which
is of course too restrictive for us.

We can solve this problem by extending the Jacobi
matrix formalism into a richer structure. This requires us
to consider the general solution of Eq. (3.7), for arbitrary
initial conditions. Thus, we have

PHYSICAL REVIEW D 87, 123526 (2013)
dé

d V=Vnit

(3.17)

i

& (v) = C(v; Vi) * €=y, T D(Vs Vi) -

as for any linear second order differential equation, solved
from vj,; to v. In the following, C(v; vyy,) is referred to as
the scale matrix. It is easy to check that both the scale and
Jacobi matrices satisfy the Jacobi matrix equation (3.11)
but with different initial conditions:

dD

D (Vipis Vinie) = 0, E(Uinil; vi) =1, (3.18)
whereas
dc
C (Vinits Vinit) = 1, a(vinit; Vinie) = 0. (3.19)

The most useful object for our problem turns out to be
the 4 X 4 Wronski matrix constructed from C and D,

W(U; Vinit) = ( Clvsvim) — Dlv: v

% (V3 Vigit) % (V5 Vipiy)

), (3.20)
in terms of which the general solution (3.17) reads
(&) = W v - (& )om

dv dv

It is clear, from Eq. (3.21), that "W satisfies the relation
W(Ul;v3) = W(Ul; vy) - W(U2§U3)- (3.22)

(3.21)

Hence, the general solution of the Sachs equation in a
Swiss-cheese universe can be obtained by multiplying
Wronski matrices, according to
1 . (1
W(vsource; 0) = WFL(Usource; vj(n)) ' ’WK(U‘( ), vg)u)t

n °
: WFL(U&)G Uﬁ)) e WFL(UgILYB; 0)
(3.23)

where Wy and Wy are the Wronski matrices computed
O]

respectively in the FL region and in the Kottler holes; v,

and vé?n are the values of the affine parameter respectively
at the entrance and the exit of the ith hole.

IV. INTEGRATION OF THE GEODESIC
AND SACHS EQUATIONS

Consider an observer lying within a FL region, who
receives a photon after the latter has crossed a hole. In
this section, we determine the light path from entrance to
observation by solving the geodesic equation, and we
calculate the Wronski matrix for the Sachs equation.

The main geometrical quantities are summarized in
Fig. 4. d* is the direction of observation as defined in
Eq. (3.3). The spatial sections of the FL region can be
described either by comoving spherical coordinates
(x, 6, ¢) or, when the spatial sections are Euclidean, by
comoving Cartesian coordinates (X, Y, Z).

123526-6
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FIG. 4 (color online).
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A light ray propagates alternatively in FL and Kottler regions. The main geometrical quantities defined and

used in Sec. IV are depicted in this simplified view of a single hole.

The hole is characterized by its comoving spatial
position X; ! in terms of the FL coordinates, and its mass
M, or equivalently its comoving radius p;,. Note that,
contrary to Sec. IT' A, it is no longer denoted y;,, in order
to avoid confusion with the radial comoving coordinate of
the center of the hole.

A photon enters into the hole with wave vector k., exits
from it with wave vector k£, and reaches the observer with
wave vector k{j . We respectively denote &;;, €., and &, the
associated events. The coordinates of the first two can be
expressed either with respect to FL, e.g. as (T, X/) in
Cartesian coordinates, or with respect to the hole, e.g. as
(tin Tin» Oin> @in) in the Kottler spherical coordinate system.

Our calculations go backward in time. Starting from &,
we first determine €y, Wr (Vouss Vobs)> and second &,
W (Vin; Uou)- The same operations can then be repeated
starting from &;, and so on.

A. Friedmann-Lemaitre region (from & to £,,,)

The geometry of the Friedmann-Lemaitre region is
given by the metric (2.1) which can be rewritten in terms
of the conformal time 7, defined by dn = dT/a(T), as

ds? = a®(g)[—dn? + dx* + f2(x)dQ?]. 4.1)

1. Geodesic equation

If one chooses the center y = 0 of the FL spherical
coordinate system on the worldline of the (comoving)
observer, then the geodesic equation is easily solved as

x(n)=mno—m, 0 = 6, o=@, (42

which corresponds to a purely radial trajectory. Note
however that for a generic origin, this is no longer true.
The associated wave vector remains collinear to the
observed one, k. It is only subject to a redshift induced
by the cosmic expansion, so that

(4.3)
a

2
v = (@) K.
We stress that, in Eq. (4.3), u = 0 refers to components on
d,,noton dp = d,/a.

2. Intersection with the hole

Once the geodesic equation has been solved and the
position of the hole has been chosen, we can calculate
the intersection &, between the light ray and the hole
boundary. In the particular case of a spatially Euclidean
FL solution (K = 0), the Cartesian coordinates X/, of &,y
satisfy the simple system of equations

{5ij(x(i)ut - X}il)(X(j)ut - X{l) = p}% (4.4)

Xg)ut = X(l) + (770 - nout)diy

where X/ and X}, are the respective Cartesian coordinates
of the hole and the observer, while d' is the spatial direction
of observation. Although conceptually similar, the deter-
mination of £, for a FL solution with arbitrary spatial
curvature is technically harder.

In general, we deduce from Eq. (4.3) that the wave
vector at Eqy 18 kb = (ao/aou)*kly , Where agy = a(mgy)-

3. Wronski matrix

In the FL region, the Sachs basis (s, s,) is defined with
respect to the fundamental observers, comoving with four-
velocity u = dy. The explicit form of this basis does not
need to be specified here.

The Sachs equation can be solved analytically by means
of a conformal transformation to the static metric

d§? = af[—dn? + fF()dQ?] = g, dxtdx”. (4.5)
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Because the geometries associated with g,,, and g,,, are
conformal, any null geodesic for g, affinely parametrized
by v is also a null geodesic for g,,, affinely parametrized
by ¥, with a?d? = a3dv. As dv = (a?/ay)dn, it follows
that o = apm.

For the static geometry, the optical tidal matrix reads
R = —(K/d?)1, so that the Sachs equation is simply

d2& 2

— = —K¢&. 4.6
= é (4.6)
We then easily obtain the Jacobi and scale matrices:
D = apfx(n — M) L, C=fim—mm)l.  (47)

To go back to the original FL spacetime, we use that
dv = a?dn and the fact that the screen projections of
the separation vectors for both geometries are related by
a& = ay£. The final result is

a
Dy = ainita_OfK(n = Mini) 1, (4.8)

CrL = %[fk(ﬂ = Mini) = HimieS k(1 — i) ]L, (4.9
ni1
where H = a'(n)/a(n) is the conformal Hubble function.
This completely determines Wy .
Note that we can recover the standard expression of
the angular distance by taking the initial condition at the
observer. The relation (3.14) then implies

a
DA =W det DFL = —Ofl((nsource))

T+ (4.10)

where z = ay/a — 1 is the redshift of a photon that only
travels through a FL region.

B. Kottler region (from &, to &;,)
1. Initial condition at €,

In the previous section, we have determined &, and k%,
in terms of the FL coordinate system. However, in order to
proceed inside the hole, we need to express them in terms
of the Kottler coordinate system (z, r, 8, ).

A preliminary task consists in expressing &, and k%, in
terms of FL spherical coordinates, with origin at the center
of the hole. This operation is straightforward. The event
Eou 18 then easily converted, since (a) we are free to set
Tout = 0, (b) Eq (215) lmphes Tout = a(noul)ph’ and
(c) the angular coordinates 6,,, ¢, remain unchanged
if the Kottler axes are chosen parallel to the FL ones.

The first junction condition ensures that light is not
deflected when it crosses the boundary 3 of the hole.
Indeed, the continuity of the metric implies that the
connection does not diverge on . Integrating the geodesic
equation dk* = —T'% Bk"‘kﬁdv between v, and v}, then

shows that k* is continuous at &,,. Therefore, we just need

PHYSICAL REVIEW D 87, 123526 (2013)

to convert its components from the FL coordinate system to
the Kottler one. The result is

a ’
ktoul = A(;)ut ) I:k(?ut + l - A(rout)kgut]
out
k(r)ut = aoutl: vl - A(rout)kgut + koXut:I (412)

0 _—_ 10
kout - kout

4.11)

(4.13)

[ZR—
kout - kout'

(4.14)

2. Shifting to the equatorial plane

Since the Kottler spacetime is spherically symmetric, it
is easier to integrate the geodesic equation in the equatorial
plane 6 = /2. In general, however, we must perform
rotations to bring both £, and k,, into this plane.

Starting from arbitrary initial conditions (€, kb)), we
can shift to the equatorial plane in two steps. In the
following, R;(1) denotes the rotation of angle ) about
the x’-axis. The operations are depicted in Fig. 5.

(i) First, bring £y, to the point &, .4 on the equatorial

plane by the action of two successive rotations,
R (— ¢, followed by R (7/2 — 6,,). The wave
vector after the two rotations is denoted k/%,.

(ii) Then, bring k, to the equatorial plane with
R, (— ), where i is the angle between the projec-
tion of k% on the yz-plane and the y-axis. Note that
such a rotation leaves &£y ¢q unchanged.

It follows that, after the three rotations
T
R = Rx(_w) ° R}(E - eout) ° Rz(_¢out)) (4.15)

Eou and kg, are changed into &y eq and kg ¢q Which lie in
the equatorial plane. In the following, we omit subscripts
“eq,” keeping in mind that we will have to apply R to
recover the original system of axes.

3. Null geodesics in Kottler geometry

In the Kottler region, the existence of two Killing vec-
tors associated to statisticity and spherical symmetry im-
plies the existence of two conserved quantities, the energy
E and the angular momentum L of the photon. It follows
that a null geodesic' is a solution of

dr dr\2 [L\2 de
A(r)—=E, —) +(=) A(r) = E2, 2 =],
(r) dv (dv) (r) (r) d dv
(4.16)

'See e.g. Refs. [70,71] for early works on the propagation of
light rays in spacetimes with a nonvanishing cosmological
constant.
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FIG. 5 (color online).

PHYSICAL REVIEW D 87, 123526 (2013)

out,eq

u
k out,eq

An arbitrary initial condition is rotated so that the geodesic lies in the equatorial plane 6 = /2. Left: £, is
brought (a) to ¢ = 0 by the rotation R (—¢,y), and (b) to § = /2 by the rotation R,(7/2 —

ou)- The resulting event and wave

vector are denoted Eqyeq and K& Middle: k%, is brought to the equatorial plane by the rotation R,(— ). Right: Final situation.

Introducing the dimensionless variable u = rg/r and the
impact parameter b = L/E, Eqgs. (4.16) imply

du u?

(E) — S PAG) 4.17)
du\2

ré du\2 ut

with

Alw) =1—u— gu? P(u) = e — u*A(u),

(4.20)

and where &; = rg/b and &, = Ark/3.

Our purpose is now to compute the coordinates
(fin» Tin» @in) and the components k!, of the wave vector at
the entrance event &;,, given those at £,,,. The situation is
summarized in Fig. 6.

The radius ry, (or alternatively u;,) and time #, at
entrance are determined by comparing the radial dynamics
of the photon, governed by Eq. (4.17), to the one of the hole
boundary. The latter is obtained from Eqgs. (2.14) and (2.18).
By introducing uy, = rg/ry, it reads

d
re gt = —12AGuy 1 — Aluy).

Equations (4.17) and (4.21) are then integrated” as fohoton (1)
and fpo1.(up,). The entrance radius then results from solving
numerically the equation Zpnon(Uin) = fnote(it;y), Which
also provides #;,.

The usual textbook calculation of the deflection angle
A g, of a light ray in Kottler geometry yields

4.21)

>The integration can be performed either numerically, or
analytically in the case of Eq. (4.17) and perturbatively for
Eq. (4.21).

4GM , Ab2
Apw = 2¢, 1+%=GT 1+Tb (4.22)
1

at lowest order in &; and &,. However, we cannot use this
expression here—although it gives its typical order of
magnitude—because Ag,, represents the angle between
the asymptotic incoming and outgoing directions of a ray,
whereas we must take into account the finite extension of
the hole (see Fig. 6).

In general, the deflection angle Ap = ¢ — @, 1S

un  du 4 un  du
Uin ‘\/P(H) Uout ‘\/P(u)

where P(u) is the polynomial defined in Eq. (4.20), and
u,, is the value of u# at minimal approach. The integral
involved in Eq. (4.23) can be rewritten as

B 2 . |uy —u ouy — uy
= F| arcsin L — |,
\/l/l3 — Uy Uy — Uy Uy — Ujy

(4.24)

Ap =

— 2 (4.23)

un  du’

VP

u
kout

FIG. 6 (color online). Null geodesic in the Kottler region.
Depicted with the Kottler coordinate system, the hole grows so
that the ray enters with r;, and exits with ry, > r,.
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where u; < u, = u, <uy are the three (real) roots of
P(u), and F(i, e) denotes the elliptic function of the first
kind [72]

U
F(i,e) = f —_ (4.25)
0 1 — esin?6
Thus, Eq. (4.24) provides an exact expression of the
deflection angle A ¢, and therefore of ¢;,.
Once &;, is determined, it is easy to obtain ki by using
the constants of motion. The result is

E A(Four)
ko= = ot 426
n A(rln) A(rin) out ( )
L
K== ("““) ke, (4.27)
Tin Tin
— —JIAGWKL P — A (rnk)% (4.28)

4. Final conditions at &;,

The last step consists in coming back to the original FL.
coordinate system. That means (a) using R™! to recover the
initial system of axes, and (b) converting the components
of &, and k£ in terms of the FL coordinate system. We
have already described such operations in Secs. IV B 2 and
IVB1 respectively, except for the time coordinate
(since we set t,,; = 0).

The easiest way to compute the cosmic time T, at
entrance is to use the relation ry, = a(T},)fx(pp). In a
spatially Euclidean FL spacetime (K = 0), we get

2 Q, 7 \3/2
T;, = ———— argsinh 1’ ( = ) . (429
3H) Q) |: 1 = Q) \appp

With this last result, we have completely determined the
entrance event &;,.

5. Sachs basis and optical tidal matrix

Once the geodesic equation is completely solved, we are
ready to integrate the Sachs equation in the Kottler region,
that is, to determine the Wronski matrix "W(. Such a task
requires us to first define the Sachs basis (s, s,) with
respect to which "Wy will be calculated.

The four-velocity u is chosen to be the one of a radially
free-falling observer,

1—A>Nd,. (4.30)

1
——9,+
TAn”
This choice ensures the continuity of u through the hole
frontier, where u = d7. The wave four-vector k is imposed
by the null geodesic equations, and reads

PHYSICAL REVIEW D 87, 123526 (2013)

k=-""s, +E‘/1—b2A(")a + 50,
A( r ! r2

where the = sign depends on whether the photon ap-
proaches (—) or recedes ( + ) from the center of the hole.

By definition, the screen vectors s;, s, form an
orthonormal basis of the plane orthogonal to both u and
k. Here, since the trajectory occurs in the equatorial plane,
the first one can be trivially chosen as

1

s = GZ = —;69

4.31)

(4.32)

The second one is obtained from the orthogonality and
normalization constraints, and reads

1 [,/1 —A0

N|  A()

1 _ b2A(r)
+m(\/l—A(r)+‘/1 -5 )a¢], (4.33)

where the normalization function is

(1 = T A1 -2 A(r)) (4.34)

Using the Sachs basis defined by Egs. (4.30), (4.31), (4.32),
and (4.33), we can finally compute the optical tidal matrix,

§y) = 6,+8r

N =0

and get
r_( RO O (4.35)
0 R(r) ) '
where the function fR(r) is
_ L 2(1s)

As expected from the general decomposition (3.8), R is
trace free because only Weyl focusing is at work. Let us
finally emphasize that A does not appear in the expression
(4.36) of R(r), which is not surprising since a pure
cosmological constant does not deflect light.

6. Wronski matrix

The Sachs equations can now be integrated in order to
determine the scale matrix Cx and the Jacobi matrix Dy
that compose the Wronski matrix "Wy.

First, since R is diagonal, the Sachs equations (3.7) only
consist of the following two decoupled ordinary differen-
tial equations:

¢ _

L~ R ), 37)
PE L Rrw))E (). (4.38)
dv?
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Clearly, the decoupling implies that the off-diagonal terms
of Cx and Dy vanish,
ck =ck =Dk =D =0 (4.39)

The calculation of the diagonal coefficients requires
us to integrate Eqs. (4.37) and (4.38). This cannot be
performed analytically because there is no exact expres-
sion for r as a function of v along the null geodesic. Indeed,
we can write v as a function of » from Eq. (4.19) but this
relation is not invertible by hand.

Nevertheless, we are able to perform the integration
perturbatively in the regime where &,/ < g < 1,
the relevance of which shall be justified by the orders of
magnitude discussed in the next section. Solving Eq. (4.19)
at leading order in g, &, leads to

€1 &2
= + (9( 2 —) 4.40
“(v) V1 + (v — v,)?/Av? “ g ( )

with Av = b/E, and where v,, denotes the value of the
affine parameter v at the point of minimal approach.
Equation (4.37) then becomes, at leading order in &, &,,
and using the dimensionless variable w = (v — v,,)/Av,

Foy_ oLy,

dw? 2 \1 + w?

4.41)

The perturbative resolution of Eq. (4.41) from vy, to v
finally leads to

3e
ch=1- %[_B/(Winit)(w = Wini) + BW) — Bwiyio)]

+—@(sifi) (4.42)
€]
and
K 3ey
D1 1= (v = Vi) + TAU{Winit[B(W) — B(Wiyit)
— B/ (Wini) W — wini)] = [C(w) — C(wiy;p)
~ ) =i} + O3, 22). 4y
€1
where the functions B and C are given by
1+ 2w? —w
Bw)=———= and C(w)=—=. (444
3vV1 + w? 3VI1 + w?

The expressions of C%, and DY, are respectively obtained
from Egs. (4.42) and (4.43) by turning &, into —¢&;.

Note that in the limit &, &,/e; — 0, i.e. b — o and
A =0,wefindC=1and D = (v — vy, )1, which are the
expected expressions in Minkowski spacetime.

C. Practical implementation

This section has described the complete resolution of the
equations for light propagation in a Swiss-cheese universe.
All the results are included in a Mathematica program

PHYSICAL REVIEW D 87, 123526 (2013)

OneHole which takes, as input, the observation conditions
and the properties of the hole; and returns &;,, k;, and
w(vsource; Vghs) = WK(vin; Vou) * WFL(vout; Vgps)- For
simplicity, this program has been written assuming that
the FL region has Euclidean spatial sections (K = 0).

Iterating OneHole allows us to propagate a light signal
back to an arbitrary emission event. Eventually, the redshift
Z is obtained by comparing the wave vector at emission
and reception; and the luminosity distance is extracted
from the block D(vgyree; Vobs) Of the Wronski matrix
W (Vgource: Vobs) according to

DL = (1 + Z)Z’Jdet D(vsource; vobs)' (445)

Note finally that, when iterating OneHole, we must also
rotate the Sachs basis (sy, s,), to take into account that the
plane of motion differs for two successive holes.

V. EFFECT OF ONE HOLE

Our method is first applied to a Swiss cheese with a
single hole. The purpose is to study the effects on the
redshift and luminosity distance—for the light emitted by
a standard candle—due to the presence of the hole.

A. Numerical values and “opacity” assumption

The mass M of the clump inside the hole depends on
what object it is supposed to model. The choice must be
driven by the typical scales probed by the light beams
involved in supernova observations. As discussed in the
introduction the typical width of such beams is ~AU; for
comparison the typical interstellar distance within a galaxy
is ~pc. Hence, SN beams are sensitive to the very fine
structure of the Universe, including the internal content of
galaxies. This suggests that the clump inside the hole
should represent a star, so that the natural choice should
be M ~ M. Unfortunately, we cannot afford to deal with
such a fine description, for numerical reasons.

Instead, the clump is chosen to stand for a gravitation-
ally bound system, such as a galaxy (M ~ 10''M,,), or a
cluster of galaxies (M ~ 10'3M,). By virtue of Eq. (2.19),
the corresponding hole radii are respectively r, ~ 1 Mpc
and r, ~ 20 Mpc. It is important to note that this choice
keeps entirely relevant as far as the light beam does not
enter the clump (so that its internal structure does not
matter), that is, as long as

b> by, ~ (5.1)

Tphys»

where rpp,, is the physical size of the clump. For a galaxy
Iphys ~ 10 kpc, and for a cluster rp s ~ 1 Mpc. We choose
to work under the assumption of Eq. (5.1); in other words
we proceed as if the clumps were opaque spheres.

In the case of galactic clumps this “opacity’” assumption
can be justified by the three following arguments (in the
case of clusters, however, it is highly questionable).
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FL Kottler

'h << I'Hubble

FIG. 7. Geometry and hierarchy of distances for a typical

Swiss-cheese hole: rg <K rypys <Ky <K Frypple-

Statistics. Since rphys <K< 1, the cross section of the
clumps is very small; thus we expect that most of the
observations satisfy the condition (5.1).

Screening. A galaxy standing on the line of sight can
simply be bright enough to flood a SN located behind it.
For comparison, the absolute magnitude of a galaxy ranges
from —16 to —24 [73], while for a SN it is typically
—19.3 [74].

Strong lensing. A light beam crossing a galaxy enters the
strong lensing regime, because the associated Einstein
radius is rg ~ \/rsDasn = 10 kpc ~ rypy. In this case,
we expect a significant magnification of the SN which
could be isolated, or even removed during data processing.

The “‘opacity” assumption is at the same time a key
ingredient and a limitation of our approach.

The various distance scales involved in the model are
clearly separated. The resulting hierarchy is depicted in
Fig. 7, and the typical orders of magnitude are summarized
in Table 1. The Ilatter includes the small parameters
e, = rg/b and &, = Ar2/3 ~ (rs/ruupie)’- Their values
justify a posteriori the perturbative expansion performed in
Sec. IVB 6, where we assumed that g,/e; < g; < 1. In
fact, one can show from Eq. (2.19) that &, ~ &7 ..

In this section and the next one, we temporarily set for
simplicity the cosmological constant to zero. The FL re-
gion is therefore characterized by the Einstein—de Sitter
(EdS) cosmological parameters

Q. =1, 0Qg=0, Q,=0. (52
TABLE I. Typical orders of magnitude for galaxylike
(M ~ 10" M) and clusterlike (M ~ 103 M) Swiss-cheese holes.
Type rs (pC)  rpnys (kpe)  ry (Mpe) € £
Galaxy 1072 10 I 10781076 1072
Cluster 100 1000 20 1076-107* 10715
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The effect of the cosmological constant will be studied in
detail in Sec. VII. The value of the Hubble parameter is
fixed to Hy = h X 100 km/s/Mpc, with & = 0.72.

B. Setup

In order to study the corrections to the redshift z and
luminosity distance Dy, due to the presence of the hole, we
consider the situation depicted in Fig. 8.

Our method is the following. We first choose the mass M
inside the hole and the redshift z,,,.. of the source. We then
fix the comoving distance between the observer and the
center of the hole, in terms of the cosmological (FL) redshift
ZleL) of the latter. To finish, we choose a direction of obser-
vation, defined by the angle 8 between the line of sight and
the line connecting the observer to the center of the hole.

Given those parameters, the light beam is propagated
(in presence of the hole) until the redshift reaches zyyce-
We obtain the emission event &y, and the luminosity
distance Dy . We then compute zgl;ﬁr)ce and DiFL) by consid-
ering a light beam that propagates from &g, to the
observer without the hole (bottom panel of Fig. 8).

C. Corrections to the redshift
1. Numerical results
The effect of the hole on the redshift is quantified by

_ (FL)
-z
0z = w, (5.3)
where we wused the short notation z instead of

Zsource- Figure 9 shows the evolution of 6z with B, for

E

source

Zsource

P R Dy

Esource
(FL)

/ |;Z source
\
/ (FL)
\ DL

FIG. 8 (color online). Setup for evaluating the effect of one
hole on the redshift and luminosity distance.
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FIG. 9 (color online). Relative correction to the redshift z, due
to the hole in the line of sight, as a function of the direction of
observation B, for a source at zyy. = 0.05. Top panel: The
mass of the hole is M = 10M,, and three positions between
the source and the observer are tested, Z;FL) /Zsource = 0.1
(blue, dot-dashed), 0.5 (purple, dashed), and 0.9 (red, solid).
Bottom panel: The hole is at zk(]F L — 0.5Z¢ource and three values
for the mass are tested, M/10°My, =3 (blue, dot-dashed),
2 (purple, dashed), and 1 (red, solid).

Zsource = 0.05 and various hole positions and masses.
We have chosen M ~ 103 M, because the effect is more
significant and displays fewer numerical artifacts than for
M~ 10"M,.

We only consider directions of observation such that the
light beam crosses the hole. Thus, Bnin < B < Bmax
where B, and B..x depend on the physical cutoff

I'phys» the radius ry of the hole, and its distance to the

observer ZEFL). Those dependences can be eliminated by

plotting 6z as a function of (8 — Bmin)/(Bmax — Bmin)
instead of B, as displayed in Fig. 10.

As expected, 0z tends to zero when 8 approaches B,.x
(light ray tangent to the hole boundary). We notice that 6z
does not significantly depend on the distance between the
observer and the hole. However, the effect clearly grows
with the mass of the hole.

2. Analytical estimation of the effect

The correction in redshift due to hole can be understood
as an integrated Sachs-Wolfe effect (see e.g. Chapter 7 of

PHYSICAL REVIEW D 87, 123526 (2013)
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FIG. 10 (color online). Same as Fig. 9, but plotted in
terms of the centered and normalized observation direction

(B - Bmin)/(ﬁmax - ﬁmin)'

Ref. [1]). As the boundary of the hole grows with time
(see Fig. 6), the light signal undergoes a stronger gravita-
tional potential at entrance than at exit. That induces a
gravitational redshift 8z, which adds to the cosmological
one, and reads

_ kitn =A(roul)

1+6 =_n . 54
Gy = T A ©4)

The order of magnitude of §z4,, can be evaluated as
follows. Let 6r = r,,, — r;, be the increase of the radius of
the hole between entrance and exit. The expansion dynam-
ics implies 6r ~ \/e1At, where At =t = tiy ~ Fin, Tou
is the time spent by the photon inside the hole. Using
Eq. (5.4), we conclude that

8Zgray ~ €72 (5.5)

For M = 10 M, (clusterlike hole), the numerical values
given in Table I yield 8Zgrymax ~ 107°. This order of
magnitude is compatible with the full numerical integra-
tion displayed in Figs. 9 and 10.

Such an analytical estimate enables us to understand
why Oz increases with M, that is, with the size of the
hole. Indeed, the bigger the hole, the longer the photon
travel time so that the hole has more time to grow, and
finally A(ryy) — A(ri,) is larger.
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D. Corrections to the luminosity distance

The effect of the hole on the luminosity distance can be
characterized in a similar way by

D, — DY

oD, =
L DfL)

(5.6)

The associated results, in the same conditions as in the
previous paragraph, are displayed in Figs. 11 and 12.

We notice that Dy is maximum if the hole lies halfway
between the source and the observer, which is indeed
expected since the lensing effects scale as

D, (observer, lens) X D, (lens, source)

, 5.7
D 4 (observer, source) 5.7)

which typically peaks for zjens = Zgource/2. The maximal
amplitude of the correction is of order 1074, for masses
ranging from 10"°Mg to 3 X 10'3M,. Just as for the red-
shift, the effect increases with the size of the hole.

lok/y,_y\yyyyyyxVVVVYVVVVYVVVVYVVVVA
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FIG. 11 (color online). Relative correction to the luminosity
distance Dy, due to the hole in the line of sight, as a function of
the direction of observation S, for a source at zyq,.e = 0.05. Top
panel: The mass of the hole is M = 10" M, and three positions
between the source and the observer are tested, zl(fL) / Zsource =
0.1 (blue, dot-dashed), 0.5 (purple, dashed), and 0.9 (red, solid).
Bottom panel: The hole is at zf,FL) = 0.5Z¢ource and three values
for the mass are tested, M/10° M, = 3 (blue, dot-dashed), 2
(purple, dashed), and 1 (red, solid).
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FIG. 12 (color online). Same as Fig. 11, but plotted in
terms of the centered and normalized observation direction
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Note that 6Dy, can be related to the relative magnifica-

tion u, frequently used in the weak-lensing formalism, and
defined by

() = () ()

a Dy 1+ \ D/~

Hence, if the correction on z is negligible compared to the
one of D,, then the relation between 6Dy and u is

1
8D ~— — 1

JE

E. Summary

(5.8)

(5.9)

The presence of a single hole between the source and the
observer induces both a correction in redshift and luminos-
ity distance. For a hole with mass M ~ 1015Mo, the rela-
tive amplitudes of those corrections are 8z ~ 107 7-1076
and 6D; ~ 1008z. The same study for M ~ 10'' M, leads
to similar results with 8z ~ 1071°-107°. Therefore, the
effects of a single hole seem negligible.

VI. EFFECT OF SEVERAL HOLES

We now investigate a Swiss-cheese model containing
many holes arranged on a regular lattice. Again, in this
entire section, the cosmological parameters characterizing
the FL region are the EdS ones.

123526-14
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INTERPRETATION OF THE HUBBLE DIAGRAM IN A ...

A. Description of the arrangement of holes
1. Smoothness parameter

The smoothness of the distribution of matter within a
Swiss cheese can be quantified by a parameter f con-
structed as follows. Choose a region of space with—
comoving or physical—volume V, where V!/3 is large
compared to the typical distance between two holes.
Thus, this volume contains many holes, the total volume
of which is V} s, while the region left with homogeneous
matter occupies a volume Vi, = V — Vj ... We define the
smoothness parameter by

6.1)

In particular, f = 1 corresponds to a Swiss cheese with no
hole—that is, perfectly smooth—while f = 0 corresponds
to the case where matter is under the form of clumps. Of
course, f also characterizes the ratio between the energy
density of the continuous matter and the mean energy
density.

2. Lattice

We want to construct a Swiss cheese for which the
smoothness parameter is as small as possible. If all holes
are identical, this close-packing problem can be solved by
using, for instance, a hexagonal lattice. The corresponding
arrangement is pictured in Fig. 13. The minimal value of
the smoothness parameter is in this case

T

fmin =1- ﬁ = 026
In order to reach a smoothness parameter smaller than
fmin» one would have to insert a second family of smaller
holes. By iterating the process, one can in principle make f
as close as one wants to zero.

6.2)

B. Observations in a unique line of sight

We now focus on the corrections to the redshift and
luminosity distance of a source whose light travels through
the Swiss-cheese universe described previously. We study

FIG. 13 (color online).

Hexagonal lattice of identical holes. On
the left, the arrangement is close-packed, so that the smoothness
parameter is f = f.;, = 0.26. On the right, f = 0.7.

PHYSICAL REVIEW D 87, 123526 (2013)

the influence of (a) the distance between the source and the
observer, (b) the smoothness parameter f, and (c) the mass
M of the holes.

1. Setup

After having chosen the parameters (f, M) of the model,
we arbitrarily choose the spatial position of the observer in
the FL region, and fix its direction of observation. The
method is then identical to the one of Sec. V. The light
beam is propagated from the observer until the redshift
reaches the one of the source, z. The ending point defines
the emission event E,.... We emphasize that only emis-
sion events occurring in the FL region are considered in
this article.

2. Influence of the smoothness parameter

In this paragraph, the mass of every hole is fixed to
M = 10'""M, (galactic holes). The relative corrections to
the redshift 6z and luminosity distance 6Dy, as functions
of the redshift z of the source, have been computed and are
displayed in Fig. 14 for different values of the smoothness
parameter f.

10:‘ — T T L A T T T L '/"/'_Jj
i - f=026 7
0.8F I ]
ER A v
X L / =V, 4
06, -
S la b T
| e O4k| as ]
L L

151 7

FIG. 14 (color online). Relative corrections to the redshift z
(top panel) and luminosity distance D; (bottom panel) as func-
tions of z, for an arbitrary light beam traveling through a
Swiss-cheese universe. All holes are identical; their mass is
M = 10" M. Three different smoothness parameters are tested:
f=0.26 (blue, dot-dashed), 0.6 (purple, dashed), and 0.9
(red, solid).

123526-15

127



128

Chapter 6 Swiss-cheese cosmologies

FLEURY, DUPUY, AND UZAN

T T T3

10F
. 08}
=1 [
~ [
- 0.6: ,
R = M=10"M
w2 04 ° ]
| ~ 1 4
. - M=2x10"M_ | ]
02 — M=3x10"M_ | ]
00 o]
0.0 05 1.0 15 20
Z
= M=10"M
15+ © 1
— — - — 11
e M=2x10"M
~ — M=3x10"M
) 10+ © :
<2
| 2
.| 9
Q 5k ]
0' L n n n n n n n n n n n 1 n n n n 17
0.0 05 1.0 15 20

FIG. 15 (color online). Same as Fig. 14 but with f = 0.26
and three different values for the masses: M/10''My =1
(blue, dot-dashed), 2 (purple, dashed), and 3 (red, solid).

While the corrections to the redshift remain small—
typically 8z < 10~°—the cumulative effect of lensing on
the luminosity distance is significant. For instance, a source
at z ~ 1.5 would appear 10% farther in a Swiss cheese with
f = 0.26, than in a strictly homogeneous universe. Both 6z
and 6Dy increase with z and decrease with f, as intuitively
expected. Thus, the more holes, the stronger the effect. As
examples, the light beam crosses ~300 holes for (f = 0.26,
z=0.1)or (f = 0.9, z = 1), but it crosses ~2000 holes for

(f:fminvzz 1)

3. Influence of the mass of the holes

We now set the smoothness parameter to its minimal
value f.;, = 0.26, and repeat the previous analysis for
various hole masses. The results are displayed in Fig. 15.

We conclude that neither 6z nor 6Dy depends signifi-
cantly on M, that is, on the size of the holes. Thus, what
actually matters is not the number of holes intersected by
the beam, but rather the total time spent inside holes.

C. Statistical study for random directions
of observation

The previous study was restricted to a single line of sight,
but since a Swiss-cheese universe is not strictly homoge-
neous, the corrections to z and D; are expected to vary from
one line of sight to another. As pointed out by e.g.

PHYSICAL REVIEW D 87, 123526 (2013)

Refs. [57,61], such a restrictive analysis can lead to over-
estimate the mean corrections induced by inhomogeneities.
Besides, as stressed by Ref. [8], the dispersion of the data is
crucial for interpreting SN observations. Hence, the
conclusions of the previous subsection need to be com-
pleted by a statistical study, with randomized directions of
observation.

Since the effect on the redshift is observationally negli-
gible, we focus on the luminosity distance. After having set
the parameters (f, M) of the model, we fix the position of
the observer in the FL region. Then, for a given redshift z,
we consider a statistical sample of N, randomly distrib-
uted directions of observation d € S?, and compute
8D (z, d) for each one.

Figure 16 shows the probability distribution of 6Dy for
sources at redshifts z = 0.1 (top panel) and z = 1 (bottom
panel). We compare two Swiss-cheese models with the
same smoothness parameter f = f .. but with different
values for the masses of their holes (M = 10''M, and
10'3M,). The histograms of Fig. 16 are generated from
statistical samples which contain N, = 200 directions of
observation each.
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0.15

Probability

0.05

0.08 0.10 0.12 0.14 0.16 0.18 0.20
(D -D ™) /DY (%)
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Probability

0.10
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0.00

(D.-D ™) /D" (%)

FIG. 16 (color online). Probability distribution of the relative
correction to the luminosity distance for random directions of
observation, at z = 0.1 (top panel) and z = 1 (bottom panel).
The smoothness parameter is f = f,;, and two different values
for the masses of the holes are tested: M = 10'' M, (blue, solid)
and M = 10 M, (purple, dashed).
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FIG. 17 (color online). Evolution, with redshift z, of the rela-
tive correction to the luminosity distance averaged over N, =
200 random directions of observation. Error bars indicate the
dispersion o5p, around the mean correction (6Dy). As in
Fig. 16, we compare Swiss-cheese models with M = 10'' M,
(blue, filled markers) and M = 10'5M,, (purple, empty markers).

From the statistical samples, we can compute the mean
correction (6D )(z) and its standard deviation op, (2),
whose evolutions are plotted in Fig. 17.

The results displayed in Fig. 17 confirm the conclusions
of Sec. VIB. The distance-redshift relation in a Swiss
cheese is biased with respect to the one of a purely homo-
genous universe. This effect is statistically significant, we
indeed estimate (empirically) that

(8D1)(z) = 8 X asp, (2). (6.3)

The bias slightly decreases with the mass parameter M.
However, it can be considered quite robust because a
variation of 4 orders of magnitude for M only induces a
variation of ~10% for the bias.

The intrinsic dispersion of Dy, associated with osp, ,
can be compared with the typical dispersion of the obser-
vation. For instance, at z = 1 the former is ~1%, while the
latter is estimated to be typically ~10% [75]. It follows
that the dispersion induced by the inhomogeneity of the
distribution of matter remains small compared to the
observational dispersion.

D. Summary and discussion

This section has provided a complete study of the effect
of inhomogeneities on the Hubble diagram, investigating
both the corrections to the redshift and luminosity distance
of standard candles. The Swiss-cheese models are made of
identical holes, defined by their mass M, and arranged on a
regular hexagonal lattice. The fraction of matter remaining
in FL regions defines the smoothness parameter f. For the
hexagonal lattice, f,;, = 0.26.

The effect on the redshift is negligible (§z < 1072),
while the correction to the luminosity distance is signifi-
cant (6D > 10% at high redshift). Compared to the ho-
mogeneous case, sources are systematically demagnified in

PHYSICAL REVIEW D 87, 123526 (2013)

a Swiss-cheese universe. The effect increases with z and
decreases with f.

Our results differ from those obtained in Swiss-cheese
models with LTB solutions inside the holes. In the latter
case, a source can be either demagnified if light mostly
propagates through underdense regions [54,55,59] (and if
the observer is far away from a void, see Ref. [76]), or
magnified otherwise. It has been proven in Refs. [58,61,62]
that the global effect averages to zero when many sources
are considered. Hence, LTB holes introduce an additional
dispersion to the Hubble diagram, but no statistically sig-
nificant bias. On the contrary, in the present study, light
only propagates through underdense regions, because we
only consider light beams which remain far from the hole
centers. This assumption has been justified in Sec. VA by
an “opacity”” argument. The bias displayed by our results
is mostly due to the selection of the light beams which can
be considered observationally relevant.

Our results also differ qualitatively from those obtained
in the framework of the perturbation theory. In Ref. [31],
the probability density function P(w) of the weak lensing
magnification w, due to the large scale structure, has
been analytically calculated by assuming an initial
power spectrum with slope n = —2. Just as for LTB
Swiss-cheese models, the magnification shows no intrin-
sic bias (i.e. {(u) = 1), but it is shown that P(u) peaks at
a value e, slightly smaller than 1. Hence, a bias of
order pipe, — (u), which is typically 1% at z = 1, can
emerge from observations because of insufficient statis-
tics. However, this bias is far smaller than the one
obtained in our Swiss-cheese model, of order 26D; ~
15% at z = 1.

Besides, the dispersion around the mean magnification is
stronger for perturbation theory (~ 10%) than for both
LTB and Kottler Swiss-cheese models (~ 2%).

VII. COSMOLOGICAL CONSEQUENCES

Since the Hubble diagram is modified by the presence of
inhomogeneities, the resulting determination of the cos-
mological parameters must be affected as well.

More precisely, consider a Swiss-cheese universe whose
FL regions are characterized by a set of cosmological
parameters (., Qg, Q4), called background parameters
in the following. If an astronomer observes SNe in this
inhomogeneous universe and constructs the resulting
Hubble diagram, but fits it with the usual FL luminosity-
redshift relation—that is, assuming that he lives in a strictly
homogeneous universe—then he will infer apparent cos-
mological parameters (Q,, Ok, Q) which shall differ
from the background ones. Evaluating this difference is
the purpose of Secs. VII A, VIIB, and VIIC.

The natural question which comes after is, assuming that
our own Universe is well described by a Swiss-cheese
model, what are the background cosmological parameters

123526-17
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FIG. 18 (color online). Hubble diagram of a Swiss-cheese
universe (dots) with f = fuin, M = 10"'M, and EdS back-
ground cosmology. For comparison, we also display the
distance-redshift relations of purely FL universes, with EdS
parameters (blue, solid) and (Q, Qk, Q,) =(0.3,0,0.7)
(black, dashed).

which best reproduce the actual SN observations? This
issue is addressed in Sec. VIID.

A. Generating mock Hubble diagrams

The Hubble diagram observed in a given Swiss-cheese
universe is constructed in the following way. We first
choose the parameters of the model: f, M, and the
background cosmology (Q,,, O, =1—Q,).> We then
fix arbitrarily the position of the observer in the FL region,
and we simulate observations by picking randomly the

line of sight d, the redshift z € [0, Zmax I, and we compute

the associated luminosity distance Dy (z, d) as in Sec. VL
In order to make our mock SNe catalog resemble the
SNLS 3 data set [77], we choose zg.,x = 1.4 and
Nops = 472.

An example of mock Hubble diagram, corresponding to
a Swiss-cheese model with f = f..,, M = 10''M, and
(Q., Qk, Qp) = (1,0,0) is plotted in Fig. 18. As a com-
parison, we also displayed D; (z) for a homogeneous uni-
verse with (1) the same cosmological parameters, and
(2) with (Q, Qg, Q) = (0.3,0,0.7).

B. Determining apparent cosmological parameters

The apparent cosmological parameters Q,,, 0, and
Qr=1-0,—Q, are determined from the mock
Hubble diagrams by performing a x> fit. The y? is
defined by

*Recall that in the practical implementation of the theoretical
results (see Sec. IVC), we assumed that K = 0, so that the
background cosmology of our Swiss-cheese models is com-
pletely determined by (), or . Nevertheless, the apparent
curvature parameter (g is a priori nonzero.

PHYSICAL REVIEW D 87, 123526 (2013)

R e

i=1

]2, (7.1)

where u no longer denotes the magnification, but rather the
distance modulus associated with Dy, so that

D
m = Slog 10(7L).

7.2
10 pc (7.2)

In Eq. (7.1), (z;, u;) is the ith observation of the simulated
catalog. In order to make the analysis more realistic, we
have attributed to each data point an observational error bar
Ap; estimated by comparison with the SNLS 3 data set
[77]. Besides, wp (zIQ,, Q4) is the theoretical distance
modulus of a source at redshift z, in a FL universe with
cosmological parameters QO QO =1-0, — Q4.

The results of this analysis for two mock Hubble dia-
grams are shown in Fig. 19. An EdS background leads to
apparent parameters (Q,, Q. Q) = (0.5,0.8, —0.3),
which are very different from (1,0,0). Thus, the positive
shift of Dy (z)—clearly displayed in Fig. 18—turns out to
be mostly associated to an apparent spatial curvature,
rather than to an apparent cosmological constant. In this
case the apparent curvature is necessary to obtain a good fit
Q x = 0 is out of the 20 confidence contour), because a
spatially flat FL. model does not allow us to reproduce both
the low-z and high-z behaviors of the diagram. The effect is
weaker for a background with (Q., Q,) = (0.3,0.7),
which leads to (Q,,, Qg, Q) = (0.2,0.2, 0.6).

1.OF

Qp

0.0r

FIG. 19 (color online). Comparison between background
parameters (crosses) and apparent parameters (disks) for two
Swiss-cheese models with f = f,;, and M = 10'5M,. In blue,
(Qm Q4) = (1,0) leads to (Qy,, Q) = (0.5, —0.3). In black,
Q. Q) =(0.3,0.7) leads to (Q, Q,) = (0.2,0.6). The 1o
and 20 contours are respectively the solid and dashed ellipses.
The solid straight line indicates the configurations with zero
spatial curvature.
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FIG. 20 (color online). ~Apparent cosmic parameters Q,, (gray
disks), Qg (red squares) and Q, (black diamonds) versus
smoothness parameter f, for a Swiss-cheese universe with EdS
background (Q, Qg, Q) = (1,0,0). Solid lines and filled
markers correspond to M = 10''M,, dashed lines and empty
markers to M = 105 M,

C. Quantitative results
1. Influence of the smoothness parameter

Consider a Swiss-cheese model with EdS background
cosmology. Figure 20 shows the evolution of the apparent
cosmological parameters with smoothness f. As expected,
we recover (); = Q; when f = 1, the discrepancy between
background and apparent cosmological parameters being
maximal when f = f. ;.. Surprisingly, a Swiss-cheese
universe seems progressively dominated by a negative
spatial curvature for small values of f.

The apparent deceleration parameter § = Q,,/2 — O,
is plotted in Fig. 21 as a function of f. Interestingly, even
for f = fin, g remains almost equal to its background
value g = 1/2. Therefore, though the apparent cosmologi-
cal parameters can strongly differ from the background

———— : : : : :
Nl A N
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FIG. 21 (color online). Apparent deceleration parameter g as a
function of smoothness parameter f, for Swiss-cheese models
with EdS background (g = 1/2). Solid lines and filled markers
correspond to M = 10'' M, dashed lines and empty markers to
M =10"M,.
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ones, the apparent expansion history is almost the same—
at second order—as the background one.

Note that the results displayed in Figs. 20 and 21 are
consistent with each other. The apparent cosmological
constant (), is slightly smaller for M = 10'M, than for
M = 10" M, so that g is slightly larger.

2. Influence of the background cosmological constant

Now consider a Swiss-cheese model with f = f;, and
change its background cosmology. Figure 22 shows the
evolution of the apparent cosmological parameters versus
the background cosmological constant ),. As it could
have already been suspected from Fig. 19, the difference
between apparent and background parameters decreases
with Q,, and vanishes in a de Sitter universe. This can
be understood as follows. The construction of a Swiss-
cheese universe consists in changing the spatial distribu-
tion of the pressureless matter, while the cosmological
constant remains purely homogeneous. Thus, the geometry
of spacetime is less affected by the presence of inhomoge-
neities if Q,/Q,, is greater. In the extreme case
(Q.,, Qp) = (0, 1), any Swiss cheese is identical to its
background, since there is no matter to be reorganized.

We also plot in Fig. 23 the difference between the
apparent deceleration parameter g and the background
one g = O,,/2 — Q,, as a function of ¢g. Again, § does
not significantly differ from g. This result must be com-
pared with Fig. 11 of Ref. [53], where (g — ¢)/q = 100%.

3. Comparison with other recent studies

The impact of a modified luminosity-redshift relation—
due to inhomogeneities—on the cosmological parameters
has already been investigated by several authors. In
Ref. [55], it has been suggested that a Swiss-cheese model

Q, (background value)

FIG. 22 (color online).  Difference between apparent and back-
ground cosmological parameters (., — €, (gray disks),
Qg — Qg (red squares) and O, — Q, (black diamonds) versus
background (), for Swiss-cheese models with f = f;,. Solid
lines and filled markers correspond to M = 10''M,, dashed
lines and empty markers to M = 10 M.
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FIG. 23 (color online). Difference between apparent and back-
ground deceleration parameters § — ¢ as a function of ¢, for
Swiss-cheese models with f = f ... Solid lines and filled
markers correspond to M = 10''M,, dashed lines and empty
markers to M = 105 M,

with LTB holes and EdS background displays an apparent
cosmological constant (), =0.4; but as already
mentioned in Sec. VID, such a claim was proven to be
inaccurate in Refs. [57,58,62], because it relies on obser-
vations along a peculiar line of sight. When many random
directions of observation are taken into account, the mean
magnification goes back to 1. Hence, contrary to our
results, the apparent cosmological parameters of a Swiss-
cheese model with LTB holes are identical to the back-
ground ones. This conclusion is in agreement with
Ref. [78], where similar studies are performed in various
cosmological toy models; and also with Ref. [31] in the
framework of perturbation theory.

However, it is crucial to distinguish those approaches
(LTB Swiss-cheese models and perturbation theory)
from the one adopted in this article, because they do not
address the same issue. The former share the purpose of
evaluating the influence of inhomogeneities smoothed on
large scales, while we focused on smaller scales for which
matter cannot be considered smoothly distributed. Thus,
our results must not be considered different, but rather
complementary.

D. An alternative way to fit the Hubble diagram

Let us now address the converse problem, and determine
the background cosmological parameters of the Swiss-
cheese model that best reproduces the actual observations.
For that purpose, the simplest method would be to fit our
observed Hubble diagram using the theoretical luminosity-
redshift relation D]S;C(z) of a Swiss-cheese universe. Hence,
we need to derive such a relation in order to proceed.

1. Analytical estimation of the distance-redshift relation
of a Swiss-cheese universe

As argued in Sec. V, any observationally relevant
light beam which crosses a Kottler region has an impact

PHYSICAL REVIEW D 87, 123526 (2013)

parameter b much larger than the Schwarzschild radius rg
of the central object. Moreover, since the cosmological
constant has no effect on light focusing, we conclude that
inside a hole, the evolution of the cross-sectional area of a
light beam behaves essentially as in Minkowski spacetime.
This conclusion is supported by the perturbative calcula-
tion of the Wronski matrix "Wy performed in Sec. IV B 6.

If both the observer and the source are located on the
surface of a hole, their angular distance is therefore
DYle = /det D = vy — Vi, Where v denotes the affine
parameter. More generally, for a beam which crosses N
contiguous holes, we get

N
Dl}\oles ~ Z AU[,
i=1

(7.3)

where Av; = vy, — vy,; is the variation of the affine
parameter between entrance into and exit from the i th
hole. Let us now evaluate Av;. The time part of the
geodesic equation in Kottler geometry yields

dr E r>rg

t= ~" E = constant,

=—=— 7.4

dv  A(r) 7.4)
where E is the usual constant of motion. We conclude that
Av; = ki ;At;. Besides, the relations (2.16) and (4.11)
between FL and Kottler coordinates on the junction hyper-
surface, together with A(ry) = 1, lead to At; = AT; and

k! = aou/ay. Finally,

N
Diples = 3 o A7, f D, as)

=1 %o T 4o

where we approximated the sum over i by an integral. This
operation is valid as far as AT; remains small compared to
the Hubble time. In terms of redshifts, we have

. d7’
Dholes ) = fz .
A (2) o (1 +Z)H®)

By construction, this formula describes the behavior of the
angular distance when light only travels through Kottler
regions. In order to take the FL regions into account, we
write the distance-redshift relation D3C(z) of the Swiss
cheese as the following (heuristic) linear combination

D3E(z) = (1 — f)DR'*(z) + fDYE(2),

(7.6)

(1.7)

where f still denotes the smoothness parameter defined in
Sec. VIA 1, and DEL(z) is the distance-redshift relation in a
FL universe, given by Eq. (4.10).

A comparison between the above analytical estimation
and the numerical results is plotted in Fig. 24. The agree-
ment is qualitatively good, especially as it is obtained
without any fitting procedure. Moreover, it is straightfor-
ward to show that D3(z) and D5M(z) are identical up to
second order in z. This is in agreement with—and some-
how explains—the numerical results of Secs. VIIC 1 and
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FIG. 24 (color online). Comparison between the approxi-
mate luminosity-redshift relation D{¢(z) = (1 + z)>D3(z) in a
Swiss-cheese universe (solid lines), simulated observations
(dots), and the Dyer-Roeder model DPR(z) with a(z) = f
(dashed lines). Three different values of the smoothness parame-
ter are tested, from top to bottom: f = f;, = 0.26, f = 0.7,
f=0.9.

VIIC2, where we showed that the apparent deceleration
parameter g is the same as the background one g.

Note finally that the general tendency of our analytical
relation is to overestimate 6Dy at high redshifts. The main
reason is that its derivation uses the behavior of Wy at
zeroth order in rg/b; that is, it neglects the effect of the
central mass in the Kottler region. The first-order term in
‘W —taken into account in the numerical results—tends
to lower the associated luminosity distance.

2. Comparison with the Dyer-Roeder approach

Another widely used approximation to model the propa-
gation of light in underdense regions was proposed by Dyer
and Roeder [10] in 1972. It assumes that (1) the Sachs
equation and the relation v(z) are the same as in a FL
spacetime—in particular, the null shear vanishes—and
(2) the optical parameter @, (see Sec. III B 2) is replaced
by a(z)®, where a(z) represents the fraction of matter
intercepted by the geodesic bundle. In brief, the DR model
encodes that light propagates mostly in underdense regions
by reducing the Ricci focusing, while still neglecting the
Weyl focusing. Under such conditions, the DR expression
of the angular distance DYR(z) is determined by

d’DRR (d nH 2 )dD',iR
dz? dz 1+2z/) dz
30,

: (%)2(1 + Da@DRE).  (1.8)

This attempt to model the average effect of inhomogene-
ities, while assuming that the Universe is isotropic and
homogeneous, has been widely questioned [79-82] and
recently argued to be mathematically inconsistent [8].

Interestingly, our estimation D3C(z) of the distance-
redshift relation in a Swiss-cheese universe reads

PHYSICAL REVIEW D 87, 123526 (2013)

d’D5C¢ <d InH k6 2 )dDiC
dz? dz 1+2z) dz

-5 () 0ot

which is similar to Eq. (7.8) with a(z) = f, except that the
right-hand side is proportional to DF- instead of DSC.
Nevertheless, it turns out that such a difference has only
a very weak impact, in the sense that

DSC(z) = DRR(z), ie. DC(z) = DPR(z),

(7.9)

(7.10)

if a(z) = f. This appears clearly in Fig. 24, where the
dashed and solid lines are almost superimposed. In fact, it
is not really surprising, since both approaches rely on the
same assumptions: no backreaction, no Weyl focusing and
an effective reduction of the Ricci focusing.

Note however that this approach models the effect of the
inhomogeneities on the mean value of the luminosity dis-
tance but does not address the dispersion of the data.

3. Fitting real data with D3¢ (z)

The modified luminosity-redshift relation Df(z) de-
rived in the previous paragraph can be used to fit the
observed Hubble diagram. We apply the same x> method
as described in Sec. VII B, except that now (1) the triplets
(zj, pi» A ;) are observations of the SNLS 3 catalog [77],
and (2) ppL(z|Qm, Qy) is replaced by pge(z|Qn, f),
where the background curvature Qg is fixed to O (so that
Q5 =1-— Q). Hence, we are looking for the smoothness
parameter f, and the background cosmological parameters,
of the spatially Euclidean Swiss-cheese model which best
fits the actual SN observations.

The results of the y? fit are displayed in Fig. 25. First of
all, we note that the confidence areas are very stretched

0.40 [ ' ' ' ' g

0.35}

0.30

Q m

0.251

0.20 1

0.15 & . . . . d
0.0 0.2 0.4 0.6 0.8 1.0
Smoothness f

FIG. 25 (color online). Fit of the Hubble diagram constructed
from the SNLS 3 data set [77], by using the luminosity-redshift
relation DC(z|Q,, f) of a spatially Euclidean Swiss-cheese
model. The colored areas indicate (from the darkest to the
lightest) the 10, 20 and 30 confidence levels.
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horizontally, so that the smoothness parameter f cannot be
reasonably constrained by the Hubble diagram. There are
two reasons for this. On the one hand, we know from
Sec. VIIC2 that f has only a weak influence on the
luminosity-redshift relation in a universe dominated by
the cosmological constant, which is the case here
(Qp ~0.7-0.8). On the other hand, since Dj¢(z) and
DfL(z) only differ by terms of order z> and higher,
one would need more high-redshift observations to
discriminate them. However, all the current SNe
catalogs—including the SNLS 3 data set—contain mostly
low-redshift SNe.

Besides, Fig. 25 shows that fixing a given value of f
changes the best-fit value of (). In the extreme case of a
Swiss cheese only made of clumps (f =0) we get
Q. = 0.3, while in the FL case (f = 1) the best value is
Q,, = 0.24, in agreement with Ref. [77]. Such a discrep-
ancy, of order 20%, is significant in the era of precision
cosmology, where one aims at determining the cosmologi-
cal parameters at the percent level.

Let us finally emphasize that such a fit is only indicative,
because it relies on an approximation of the luminosity-
redshift relation in a Swiss-cheese universe.

VIII. CONCLUSION

In this article, we have investigated the effect of the
distribution of matter on the Hubble diagram, and on the
resulting inference of the cosmological parameters. For
that purpose, we have studied light propagation in Swiss-
cheese models. This class of exact solutions of the Einstein
field equations is indeed very suitable, because it can
describe a strongly inhomogeneous distribution of matter
which does not backreact on the global cosmic expansion.
The latter is entirely governed by the background cosmo-
logical parameters (), ) characterizing the FL regions
of the model. The inhomogeneities are clumps of mass M,
while the fraction of remaining fluid matter is f—called
smoothness parameter. The Swiss-cheese models are there-
fore defined by two “dynamical” parameters (Q,,, ),
and two “‘structural” parameters (f, M).

The laws of light propagation in a Swiss-cheese universe
have been determined by solving the geodesic equation and
the Sachs equation. For the latter, we have introduced a new
technique—based on the Wronski matrix—in order to deal
more easily with a patchwork of spacetimes. Our results,
mostly analytical, have been included in a Mathematica
program, and used to compute the impact of the Swiss-
cheese holes on the redshift and on the luminosity distance.
For a light beam which crosses many holes, we have shown
that the effect on the redshift remains negligible, while the
luminosity distance increases significantly with respect to
the one observed in a FL universe (6 Dy, ~ 10% for sources
at z ~ 1), inducing a bias in the Hubble diagram.

The consequences of the bias on the inference of the
cosmological parameters have been investigated by

PHYSICAL REVIEW D 87, 123526 (2013)

simulating Hubble diagrams for various Swiss-cheese
models, and by fitting them with the wusual FL
luminosity-redshift relation. In general, the resulting
“apparent” cosmological parameters are very different
from the ‘““background” ones which govern the cosmic
expansion, but in a way that leaves the deceleration pa-
rameter unchanged. Moreover, the discrepancy between
apparent and background cosmological parameters turns
out to decrease with A, and is therefore small for a universe
dominated by the cosmological constant. Finally, we have
derived an approximate luminosity-redshift relation for
Swiss-cheese models, which is similar to the one obtained
following the Dyer-Roeder approach. Using this relation to
fit the Hubble diagram constructed from the SNLS 3 data
set, we have found that the smoothness parameter cannot
be constrained by such observations. However, turning
arbitrarily f = 1 into f = 0 has an impact of order 20%
on the best-fit value of (), which is significant in the era of
precision cosmology (see Ref. [83] for further discussion).

Of course, our model is oversimplifying for various
reasons. First, it does not take into account either the
complex distribution of the large scale structures, or the
presence of diffuse matter on small scales—such as gas
and possibly dark matter. Second, it does not take strong
lensing effects into account, assuming that clumps are
“opaque.” We can conjecture that this overestimates the
actual effect of the inhomogeneities. Nevertheless, it shows
that their imprint on the Hubble diagram cannot be ne-
glected, and should be modeled beyond the perturbation
regime. Note finally that several extensions are allowed by
our formalism. For instance, we could introduce different
kinds of inhomogeneities, in order to construct fractal
structures for which the smoothness parameter is arbi-
trarily close to zero. Additionally to the Hubble diagrams,
we could also generate the shear maps of Swiss-cheese
models, and determine whether their combination allows
for better constraints on the various parameters.

This work explicitly raises the question of the meaning
of the cosmological parameters, and of whether the values
we measure under the hypothesis of a pure FL background
represent their “true” or some ‘“‘dressed” values. Similar
ideas have actually been held in other contexts [84,85], and
in particular regarding the spatial curvature [86,87]. We
claim that the simplest Swiss-cheese models are good
models to address such questions—as well as the Ricci-
Weyl problem and the fluid approximation—with their
own use, between the perturbation theory and N-body
simulations.
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The recent analysis of the Planck results reveals a tension between the best fits for (€}, H,) derived
from the cosmic microwave background or baryonic acoustic oscillations on the one hand, and the Hubble
diagram on the other hand. These observations probe the Universe on very different scales since they
involve light beams of very different angular sizes; hence, the tension between them may indicate that they
should not be interpreted the same way. More precisely, this Letter questions the accuracy of using only
the (perturbed) Friedmann-Lemaitre geometry to interpret all the cosmological observations, regardless of
their angular or spatial resolution. We show that using an inhomogeneous ‘‘Swiss-cheese” model to
interpret the Hubble diagram allows us to reconcile the inferred value of (},,, with the Planck results. Such
an approach does not require us to invoke new physics nor to violate the Copernican principle.

DOI: 10.1103/PhysRevLett.111.091302

The standard interpretation of cosmological data relies
on the description of the Universe by a spatially homo-
geneous and isotropic spacetime with a Friedmann-
Lemaitre (FL) geometry, allowing for perturbations [1].
The emergence of a dark sector, including dark matter
and dark energy, emphasizes the need for extra degrees
of freedom, either physical (new fundamental fields
or interactions) or geometrical (e.g., a cosmological
solution with lower symmetry). This has driven a lot
of activity to test the hypotheses [2] of the cosmological
model, such as general relativity or the Copernican
principle.

The recent Planck data were analyzed in such a frame-
work [3] in which the cosmic microwave background
(CMB) anisotropies are treated as perturbations around a
FL universe, with most of the analysis performed at linear
order. Nonlinear effects remain small [4] and below the
constraints on non-Gaussianity derived by Planck [5]. The
results nicely confirm the standard cosmological model of
a spatially Euclidean FL universe with a cosmological
constant, dark matter, and initial perturbations compatible
with the predictions of inflation.

Among the constraints derived from the CMB, the
Hubble parameter H, and the matter density parameter
Q,, are mostly constrained through the combination
O, 0k, where Hy = h X 100 km/s/Mpc. It is set by the
acoustic scale 6, = r,/D,, defined as the ratio between the
sound horizon and the angular distance at the time of last
scattering. The measurement of seven acoustic peaks
enables one to determine 6, with a precision better than
0.1%. The constraints on the plane (£,,y, H) are presented
in Fig. 3 of Ref. [3] and clearly show this degeneracy.
The marginalized constraints on the two parameters were
then derived [3] to be

0031-9007/13/111(9)/091302(5)
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Hy, = (67.3 = 1.2) km/s/Mpc,
Q,0 = 0315 = 0.017 (1)

at a 68% confidence level. It was pointed out (see
Secs. 5.2-5.4 of Ref. [3]) that the values of H, and (),
are, respectively, low and high compared with their values
inferred from the Hubble diagram. Such a trend was
already indicated by WMAP-9 [6] which concluded
Hy = (70 = 2.2) km/s/Mpc.

Regarding the Hubble constant, two astrophysical
measurements are in remarkable agreement. First, the
estimation based on the distance ladder calibrated by
three different techniques (masers, Milky Way cepheids,
and Large Magellanic Cloud cepheids) gives [7] Hy =
(74.3 = 1.5 = 2.1) km/s/Mpc, respectively, with statisti-
cal and systematic errors. This improves the earlier con-
straint obtained by the Hubble Space Telescope (HST)
Key program [8], Hy, = (72 * 8) km/s/Mpc. Second, the
Hubble diagram of type Ia supernovae (SNe Ia) calibrated
with the HST observations of cepheids leads [9] to Hy, =
(73.8 = 2.4) km/s/Mpc. Other determinations of the
Hubble constant, e.g., from very-long-baseline interferom-
etry observations [10] or from the combination of Sunyaev-
Zel’dovich effect and X-ray observations [11], have larger
error bars and are compatible with both the CMB and
distance measurements.

Additionally, the analysis of the Hubble diagram of SNe
Ta leads to a lower value of (),,,—e.g., 0.222 = 0.034 with
the SNLS 3 data set [12]—compared to the constraint (1)
by Planck. As concluded in Ref. [3], there is no direct
inconsistency, and it was pointed out that there could be
residual systematics not properly accounted for in the
SN data. Still, it was stated that ‘‘the tension between

© 2013 American Physical Society
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CMB-based estimates and the astrophysical measurements
of H, is intriguing and merits further discussion.”

Interestingly, the CMB constraints on ({,,, Hy) are in
excellent agreement with baryon acoustic oscillation
(BAO) measurements [13], which allow one to determine
the angular distance up to redshifts of order 0.7. The
common point between the CMB and BAO measurements
is that they involve light beams much larger than those
involved in astronomical observations. Indeed, a pixel of
Planck’s high-resolution CMB maps corresponds to 5 arc
min [14], while the typical angular size of a SN is
1077 arc sec. This means that the two kinds of observa-
tions probe the Universe at very different scales. Moreover,
for both the CMB and BAO measurements the crucial
information is encoded in correlations, while SN observa-
tions rely on ““1-point measurements’ (we are interested in
the luminosity and redshift of each SN, not in the correla-
tions between several SNe). Because of such distinctions
one can expect the two classes of cosmological observa-
tions to be affected differently by the inhomogeneity of the
Universe, through gravitational lensing.

The effect of lensing on CMB measurements is essen-
tially due to the large-scale structure, and it can be taken
into account in the framework of cosmological perturba-
tion theory at linear order [15] (see, however, Ref. [16] for
a discussion about the impact of strong inhomogeneities).
We refer to Ref. [17] for a description of the lensing effects
on BAO measurements. Regarding the Hubble diagram,
the influence of lensing has also been widely investigated
[18]. The propagation of light in an inhomogeneous uni-
verse gives rise to both distortion and magnification. Most
images are expected to be demagnified because their lines
of sight probe underdense regions, while some are ampli-
fied due to strong lensing. It shall thus induce a dispersion
of the luminosities of the sources, that is, an extra scatter in
the Hubble diagram [19]. Its amplitude can be determined
from the perturbation theory [20] and subtracted [21].
However, a considerable fraction of the lensing effects
arises from sub-arc-min scales, which are not probed by
shear maps smoothed on arc min scales [22].

The tension on (£,,9, Hy) may indicate that, given the
accuracy of the observations achieved today, the use of a
(perturbed) FL geometry to interpret the astrophysical data
is no longer adapted. More precisely, the question that we
want to raise is whether the use of a unique spacetime
geometry is relevant for interpreting all the cosmological
observations, regardless of their angular or spatial resolu-
tion and of their location (redshift). Indeed, each observa-
tion is expected to probe the Universe smoothed on a
typical scale related to its resolution, and this can lead to
fundamentally different geometrical situations. In a uni-
verse with a discrete distribution of matter, the Riemann
curvature experienced by a beam of test particles or
photons is dominated by the Weyl tensor. Conversely, in
a (statistically spatially isotropic) universe smoothed on

large scales, it is dominated by the Ricci tensor. Both
situations correspond to distinct optical properties [23].

In the framework of geometric optics, a light beam is
described by a bundle of null geodesics. All the informa-
tion about the size and the shape of a beam can be encoded
in a2 X 2 matrix D% called the Jacobi map (see Ref. [24]
for further details). In particular, the angular and luminos-
ity distances read, respectively,

Dy = 4/l det D, Dy =(1+2?D,,
where z denotes the redshift. The evolution of the Jacobi
map with light propagation is governed by the Sachs
equation [25,26]

d2 a a C

v D2, = ReLDe, 3)
where v is an affine parameter along the geodesic bundle.
The term R ;,, which controls the evolution of D%, is a
projection of the Riemann tensor called the optical tidal
matrix. It is defined by R, = R#,,aﬁk”k"‘sé‘sf, where k*
is the wave vector of an arbitrary ray, and the Sachs basis
{s&}.=1- spans a screen on which the observer projects the
light beam. Because the Riemann tensor can be split into a
Ricci part R, and a Weyl part C the optical tidal
matrix can also be decomposed as

(Rab) _ (@00 0 ) n (_Re ‘1,0 Im \I,O >, (4)

nvaf

0 (I)OO Im ’\IIO Re ’\IIO

J \ J

'S

'
Ricci lensing Weyl lensing

with @y = —(1/2)R,,, k*k” and Wy = —(1/2)C,,ap
(st — iszﬂ)k”(sf — isf)ka. It clearly appears in Eq. (4)
that the Ricci term tends to isotropically focus the light
beam, while the Weyl term tends to shear and rotate it. The
behavior of a light beam is thus different whether it expe-
riences Ricci-dominated lensing (large beams, e.g., CMB
measurements) or Weyl-dominated lensing (narrow beams,
e.g., SN observations).

This Ricci-Weyl problem can be addressed with differ-
ent methods. One possibility, a representative of which is
the Dyer-Roeder approximation [27], is to construct a
general distance-redshift relation which would take into
account the effect of inhomogeneities in some average
way. However, such approaches are in general difficult to
control [18] because they rely on approximations whose
domain of applicability is unknown. An alternative possi-
bility consists in constructing inhomogeneous cosmologi-
cal models, with a discrete distribution of matter, and
studying the impact on light propagation. Several models
exist in the literature: the Schwarzschild-cell method [28]
or the lattice universe [29], which are both approximate
solutions of the Einstein equations, and the Swiss-cheese
models [30], which are constructed by matching together
patches of exact solutions of the Einstein equations.
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This last approach is the one that we shall follow in this
Letter.

Consider a Swiss-cheese model in which clumps of
matter (modeling, e.g., galaxies), each of them lying at
the center of a spherical void, are embedded in a FL
spacetime. The interior region of a void is described by
the Kottler geometry—i.e., Schwarzschild with a cosmo-
logical constant—while the exterior geometry is the FL
one. By construction, such inhomogeneities do not modify
the expansion dynamics of the embedding FL universe,
thus avoiding any discussion regarding backreaction. The
resulting spacetime is well defined, because the Darmois-
Israel junction conditions are satisfied on the boundary of
every void. Compared to a strictly homogeneous universe,
a Swiss-cheese model is therefore characterized by two
additional parameters: the size of the voids (or equivalently
the mass of their central bodies) and the volumic fraction of
the remaining FL regions, which encodes the smoothness
of the distribution of matter. It is naturally quantified by the
smoothness parameter

— i VEL

f= lim =7, o)
where Vi is the volume occupied by the FL region within
a volume V of the Swiss cheese. With the definition (5),
f =1 corresponds to a model with no hole (i.e., a FL
universe), while f = 0 corresponds to the case where
matter is exclusively under the form of clumps inside
voids.

Of course such a model cannot be considered realistic,
but neither does the exact FL geometry, used to interpret
the Hubble diagram. Both spacetimes describe a spatially
statistically homogeneous and isotropic universe, and the
former permits additionally the investigation of the effect
of a discrete distribution of matter. Since the FL universe is
a particular Swiss-cheese model, this family of spacetimes
therefore allows us to estimate how good the hypothesis
of strict spatial homogeneity—with a continuous matter
distribution at all scales—is.

The propagation of light in a Swiss-cheese model has
been comprehensively investigated in Ref. [24], generaliz-
ing earlier works [31], with the key assumption that light
never crosses the clumps. This “opacity assumption” can
be observationally justified in the case of SN observations
if the clumps represent galaxies (see Ref. [24] for a dis-
cussion). Compared to the strictly homogeneous case, any
light signal traveling through a Swiss-cheese model then
experiences a reduced Ricci focusing. This leads [see
Egs. (2)—(4)] to an increase of the observed luminosity
distance D;. The effect of Weyl lensing—i.e., here
shear—is relatively small.

This systematic effect, due to inhomogeneities, tends to
bias the Hubble diagram in a way that mimics the contri-
bution of a negative spatial curvature or a positive cosmo-
logical constant. In other words, if one interprets the
Hubble diagram of a Swiss-cheese universe by wrongly

assuming that it is strictly homogeneous, then one under-
estimates the value of (),,y. The error reaches a few per-
cent, which is comparable to other estimates in similar
contexts [32]. Note, however, that in the case of Swiss-
cheese models with Lemaitre-Tolman-Bondi patches
instead of Kottler voids, the effect of inhomogeneities
has a much smaller impact on the Hubble diagram [33].
Thus, the systematic effect exhibited in Ref. [24] must be
attributed to the discreteness of the distribution of matter.

Simulating the mock Hubble diagrams for Swiss-cheese
universes with various values of its parameters, we inferred
a phenomenological expression for the luminosity distance
D (z; Q0. Qa0 Hy, f), which is very close to the Dyer-
Roeder one. This expression was then used to fit the
Hubble diagram constructed from the SNLS 3 catalog
[12]. Figure 25 of Ref. [24] shows that f influences the
result of the best fit on (},,, that can shift from 0.22 for
f =1 (in agreement with the standard FL analysis per-
formed in Ref. [12]) to 0.3 for f = 0.

Figure 1 shows the constraints in the plane (h, Q,,)
imposed by Planck on the one hand, and by the Hubble
diagram on the other hand, whether it is interpreted in a
spatially flat FL universe (f = 1) or in a spatially flat
Swiss-cheese model for which matter is entirely clumped
(f = 0). The agreement between the CMB and the Hubble
diagram is clearly improved for small values of f, espe-
cially regarding (),,9, while & is almost unaffected.

Note that SN observations alone cannot constrain H,,
because of the degeneracy with the (unknown) absolute
magnitude M of the SNe. For the results of Fig. 1 the
degeneracy was broken by fixing M = —19.21, according
to the best-fit value obtained by Ref. [12] with a fiducial
Hubble constant 2 = 0.7. Thus, the horizontal positions of
the SN contours in Fig. 1 are only indicative.

0351
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0.25¢
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0.15L . . . . . . J
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FIG. 1 (color online). Comparison of the constraints obtained
by Planck on (Q,,, &) [3] and from the analysis of the Hubble
diagram constructed from the SNLS 3 catalog [12]. The shaded
contour plots correspond to two different smoothness parame-
ters. For f = 1, the geometry used to fit the data is the FL one.
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Alleviating the tension on H, remains an open issue.
Because inferring its value from SNe is a local measure-
ment, a promising approach consists in taking into account
the impact of our close environment. It has been suggested
[34] that cosmic variance increases the uncertainty on
H>d and thus reduces the tension with HEMB. More
speculatively, Hi*d > HSMB may be a hint that our local
environment is underdense [35]. Our conclusions on €,
remain, however, unaffected by this issue.

Our analysis, though relying on a particular class of
models, indicates that the FL geometry is probably too
simplistic to describe the Universe for certain types of
observations, given the accuracy reached today. In the
end, a single metric may not be sufficient to describe all
the cosmological observations, just as Lilliputians and
Brobdingnag’s giants [36] cannot use a map with the
same resolution to travel. A better cosmological model
probably requires an atlas of maps with various smoothing
scales, determined by the observations at hand.

Other observations, such as lensing [37], may help to
characterize the distribution and the geometry of voids
[38], in order to construct a better geometrical model.
For the first time, the standard FL background geometry
may be showing its limits to interpret the cosmological
data with the accuracy they require.
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1 Introduction

All cosmological observations involve, today, exclusively photons as the carrier of the infor-
mation. In order to interpret them correctly, it is thus primordial to understand how light
propagates through the Universe. In particular, the relation between the angular diameter
distance D (or the luminosity distance Dy,) and the redshift z of remote sources, is a key in-
gredient both in the interpretation of the baryon acoustic oscillation (BAO) signal, whether
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it is extracted from the correlation function of the matter distribution [1, 2] or from the
anisotropies of the cosmic microwave background (CMB) [3]; and, of course, in the analysis
of the Hubble diagram, constructed from supernova (SN) observations [4, 5].

Though crucial, the determination of a reliable optical model of our Universe, known as
the fitting problem [6], still remains to be done. In practice, observational cosmologists always
rely on the somehow least worst model, in which light propagates through a Friedmann-
Lemaitre (FL) spacetime, describing a perfectly homogeneous and isotropic universe [7].
While such an approximation may be valid for wide light beams (e.g., involved in BAO
observations), typically sensitive to the large-scale structure of the Universe, it is much more
questionable regarding the very narrow beams involved in astronomical observations, e.g.,
SNe [8].

Of course, the challenge of establishing a better optical model for the Universe led
to many studies based on various methods. Popular ones, in the paradigm of standard
cosmology, consist in the analysis of weak lensing in a perturbed FL spacetime [9-17], or in
cosmological simulations [18]. Alternative relativistic models for the inhomogeneous Universe
can also be considered, such as Swiss-cheese models [19-30], lattice models [31, 32], or plane-
symmetric models [33]. Finally, rather than specifying any spacetime model, one can use
simplifying assumptions about the impact of the inhomogeneity of matter distribution on
light propagation, in order derive an effective model. It is the case of the Dyer-Roeder
approach [34], inspired from Zel’dovich’s original intuition [35]. We refer the reader to, e.g.,
refs. [36, 37] for elements of review and comparison.

Among all those approaches, the Dyer-Roeder (DR) approximation on the one hand,
and the “traditional” Swiss-cheese (SC) models generated by the Einstein-Straus method [38,
39] on the other hand, used to be studied in parallel and presented together (see, e.g.,
Textbook [40]). This is actually not surprising, because, in its origin, the DR approximation
was motivated by such SC models. Though very different in their philosophy — the former is
an effective theory, based on assumptions, while the latter relies on a well-defined spacetime
model — both approaches seem to generate similar distance-redshift relations [41]

DRR(2) ~ DSC(2). (1.1)

However, to the knowledge of the author, such a correspondence has never been explained,
nor rigorously proved, in the litterature. The purpose of this article is thus to fill the blank,
not only by checking the conjecture (1.1) numerically, but also by proposing an analytical
proof of it, in order to understand the underlying mechanisms, and its domain of validity.

In section 2, we recall theoretical elements about geometric optics, needed for the re-
mainder of the article. In sections 3 and 4 we introduce, respectively, the DR approximation
and SC models. Section 5 is then dedicated to the analysis of the optical properties of SC
models, that we prove to be equivalent to the ones predicted by the DR approach, at a
very good level of approximation. Finally, in section 6, we propose numerical illustrations
of our results, and we analyse the origin of the small discrepancies between the SC and DR
approaches.

2 Geometric optics in curved spacetime

This section reviews some generic elements about the propagation of light in arbitrary space-
times. We define our notations, and introduce several tools which will be useful in the
remainder of the article.

145



146

Chapter 6 Swiss-cheese cosmologies

2.1 Description of a light beam

A light beam is a collection of light rays, that is, a bundle of null geodesics {z*(v,r)}, where r
labels the rays and v is the affine parameter along them. The wave four-vector k# = dx* /Ov
is a null vector field, tangent to the rays r = cst. It therefore satisfies

Kk, =0,  kK'Vyk,=0. (2.1)

Besides, the relative behavior of two neighboring rays x#(-,r) and a*(-,r 4+ dr) is de-
scribed by their separation vector £ = dz#/0r. One can always choose the origin of the
affine parametrization of each ray r = cst so that

ke, = 0. (2.2)

Note that this condition is automatically satisfied if one sets v = 0, for each geodesic, at
a vertex point of the bundle, that is an event where &# = 0. When the condition (2.2)
is satisfied, the evolution of £&* along the light beam is governed by the geodesic deviation
equation

kkOV o Vg€t = R!,05k" kOEP (2.3)

where R¥,,3 is the Riemann tensor.

2.2 The Sachs formalism

Consider an observer, with four-velocity u# (uj u* = —1), who crosses the light beam. With
respect to this observer, one defines the spatial direction of light propagation as the opposite
of the only direction for which the observer can detect a signal. It is spanned by the purely
spatial unit vector d*,

d"u,, =0, d'd, =1, (2.4)

which leads to the 3+1 decomposition of the wave four-vector
EF = w(ut —dt), (2.5)

where w = 27v = —u,k# is the cyclic frequency of the light signal in the observer’s rest

frame. Note that d¢ = wdv is the proper distance (measured by the observer) travelled by

light for a change dv of the affine parameter. The redshift z is defined as the relative difference

between the emitted frequency vg, in the source’s frame, and the observed frequency v, in
the observer’s frame, so that

_ Vs u’;k#(vs)

l+z=—=—F7"—"7—.

Vo  uoky(vo)

Now suppose that the observer wishes to measure the size and the shape of the light

beam. For that purpose, he must use a (spatial) screen orthogonal to the line of sight. This

screen is spanned by the so-called Sachs basis (s) Ae{1,2}, defined by

(2.6)

shuy, = shyd, =0, Sy sh = 0aB, (2.7)

and by the transport property (2.8) below. The projections {4 = sff@# indicate the relative
position, on the oberver’s screen, of the light points corresponding to two neighboring rays
separated by &*. Thus, it encodes all the information about the size and shape of the beam.

Consider a family of observers u#(v), along the beam, who wants to follow the evolution
of the shape of the beam (typically for shear measurements). For that purpose, they must all
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use the “same” Sachs basis, in order to avoid any spurious rotation of the pattern observed
on the screens. This is ensured by a partial parallel transportation

S kPV 5% = 0, (2.8)

where S# = §4B shst = g 4+ u'u” — d'd” is the screen projector. The reason why s’y
cannot be completely parallel-transported is that, in general, u* is not.!

The evolution of £4, with light propagation, is determined by projecting the geodesic
deviation equation (2.3) on the Sachs basis. The result is known as the Sachs equation [40, 42],

d*€a B
=R 2.9
Q2 ABE", (2.9)

where Rap = Ruvapk” ko‘s’jlsg is the screen-projected Riemann tensor, called the optical
tidal matrix. The properties of the Riemann tensor imply that this matrix is symmetric,
Rap = Rpa. Note that the altitude of the “screen indices” (A, B,...) does not matter,
since they are raised and lowered by d45. In the following, to alleviate the notation, we use
bold symbols for quantities with screen indices, and an overdot for derivatives with respect
to the affine parameter v. The Sachs equation (2.9) thus becomes £ = RE.

The Riemann tensor can be decomposed into a Ricci part and a Weyl part,

1
Riuvas = uia R = Gufallg — §Rgu[agﬁ}v + Cuvag: (2.10)

where the Ricci tensor Ry, is directly related to the local density of energy-momentum via
Einstein’s equations; and the Weyl tensor C),, contains the long-range effects of gravitation.
As a consequence, the optical tidal matrix can also be splitted into a pure-trace Ricci-lensing
term and a traceless Weyl-lensing term as

_ (IJO() 0 —Re \I/[) Im\IIO
R= < 0 @00) * ( Im ¥, Rew)’ (2.11)
Ricci\hransing Weyl lensing
with
_ 1 IR _ 1 B sy pval B s B
Do = _§R“Vk kY, and Uy = _icpwaﬁ(sl — ish) k" k*(s] —ish). (2.12)

It is then clear, from the Sachs equation (2.9), that the Ricci term tends to isotropically focus
the light beam, while the Weyl term tends to shear it. For this reason, ®gg is called “source
of convergence” and W, “source of shear”? [43].

n fact, it is also possible to choose a family of observers such that the four-velocity field u* is parallel-
transported along the beam, without affecting the optical equations [40]. In this case, however, the observers
are generally not comoving, and thus have no clear cosmological interpretation.

2This name, however, omits a part of the optical effects due to Wo; strictly speaking, we should write
“source of shear and rotation”. Indeed, even though the beam is an irrotational bundle of null geodesics
(Viuk,) = 0), a rotation of the image can appear due to cumulative shearing along different directions.
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2.3 Wronski matrix, Jacobi matrix

Because the Sachs equation is a second-order homogeneous linear differential equation, any
solution is linearly related to its initial conditions (v = vg), so that

&(v) = C(v + v9)&(vo) + D(v + v9)&(vo), (2.13)
£(v) = C(v + v9)&(vg) + D(v + vy)&(wp), (2.14)

where C(v < vg) and D(v + vg) are 2 X 2 matrices, respectively called scale matrix and
Jacobi matrix, which satisfy the Sachs equation like &€(v), with initial conditions

. . 5

C(’UQ — v()) =19 and D(Uo — ’Uo) =09 (2.15)
C(’Uo — Uo) =09 D(Uo — ’U()) =1

where 0,, and 1,, denote respectively the n x n zero and identity matrices. Equations (2.13),
(2.14) can finally be gathered into a single 4 x 4 matrix relation:

(g) (v) =W(v < wo) <§) (vo),  where W= <g g) (2.16)

is the 4 x 4 Wronski matrix of the Sachs equation. As we will see in section 5, it is particularly
convenient for dealing with light propagation through a patchwork of spacetimes, such as
Swiss-cheese models, because by construction

W(Ug < Ul) = W(Ug — 'U2)W('U2 — Ul). (2.17)

It is easy to see that the Wronski matrix is the only solution of

W(v + 1g) = (,RO(QU) 32) W vg)  with  W(vg < vg) = 14. (2.18)

This differential equation is formally solved by

W(v + vg) = Vexp/

vo

(Ro(ju) (1)2) dw, (2.19)

where Vexp is the affine-parameter ordered exponential, analogous to the time-ordered ex-
ponential in quantum field theory. It is defined, for any matrix-valued function M, by

v o0 v w1 Wn—1
Vexp/ M(w)dw:Z/ dwl/ dwg.../ dw, M(wi)M(ws) ... M(wy).
V0 n=0 " v0 Vo Vo
(2.20)

This expression reduces to a regular exponential if, for all v, v, M(v) commutes with M (v").
In the case of eq. (2.19), this apples if, and only if, the optical tidal matrix R (v) is a constant.

2.4 Angular distance and luminosity distance

The observational notion of angular distance Dj, which relates the emission cross-sectional
area d?Ag of a source to the observed angular aperture dQ2?, via

d*A, = D3dQ2, (2.21)
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is naturally related to the Jacobi part D of the Wronski matrix. Indeed, on the one hand
&(vs) = £ is the proper separation (in the source’s frame) between two emission points within
the extended source; on the other hand & (Vo) /wo = B, is the observed angular separation
between the light rays emitted by these points. Thus, from eq. (2.13), we find

0&(vs) Ok

WOD(US — ’UO) = m = 800

, (2.22)

so that

D = v/detw,D(s + o). (2.23)

The observational luminosity distance Dy, relating the source’s intrinsic luminosity Lg and
the observed flux F, via Lg = 47TDI%FO, can also be expressed in terms of D [44] according to

Dy, = (14 2)y/detwyD(o + s) = (1 + 2)?Da. (2.24)

We stress that, contrary to what it is sometimes wrongly believed, the duality law (2.24) is
true for any spacetime, as far as the number of photons is conserved during light travel.

Since the Jacobi matrix D not only encodes information about the size of the beam,
but also about its shape, all the weak-lensing observational quantities (convergence, shear,
magnification) can be extracted from it; see, e.g., ref. [43] for more details. Moreover, some
genuinely relativistic effects, such as optical rotation, which are usually not taken into account
by weak lensing studies, are also encoded in D; ref. [45] provides an example in the context of
anisotropic cosmology. Let us finally indicate that, by a suitable choice of coordinates adapted
to the lightcone, called GLC gauge [46] (inspired from the observational coordinates [47]),
the expression of the Jacobi matrix can be trivialized [48], so that the whole information is,
in this case, contained in the Sachs basis only.

3 The Dyer-Roeder approximation

In this section, we describe in detail the propagation of light in a homogeneous and isotropic
universe, and how it must be modified according to the Dyer-Roeder (DR) prescription. The
last subsection is dedicated to a discussion about its physical motivations and its limitations.

3.1 Light propagation in a homogeneous and isotropic universe

Let us apply the formalism developed in the previous section to the Friedmann-Lemaitre (FL)
geometry. The associated metric reads (in three different coordinate systems)

2 2 2 dR2 2 2
ds? = —dT? + a(T) e + R2dAQ (3.1)
= d7? + aQ(T) [dx2 + fK(X)QdQQ] (3.2)
= a’(n) [=dn* + dx* + fx(x)*dQ?], (3.3)

where dQ? = d#? + sin? de? is the infinitesimal solid angle; T,  denote respectively the
cosmic and conformal times, with dT" = adn; a is the scale factor; x is the comoving radius,
R = fk(x) the comoving areal radius, with
sin(VEy)/VK if K >0
Jfrk(x) = § x ifK=0; (3.4)
sinh(vV—-Ky)/v—-K if K<0
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and finally 6K /a? is the (intrinsic) scalar curvature of the T' = cst spatial hypersurfaces. The
time evolution of the scale factor a(T') is ruled by the Friedmann equation

1da)? 8tGpy rap\3 K A
2 _ (Ltda) _ ap\» A A
H _<adT> 3 (a) a2+3’ (3:5)

where p is the homogeneous energy density of matter, modelled by a dust fluid filling space,
and A is the cosmological constant. As usual, a subscript 0 denotes the present value of a
quantity. The Friedmann equation can be also written in terms of the cosmological parame-
ters {Q},

ag\3 ap\ 2
H? = Hg |:Qm0 (;) + Qxo (;) + QA()] , (3.6)
with 8 % A
- _
Qo = £0 Ogo = 575 ) (3.7)

ZHZ = 3m2

We now focus on light propagation. Consider a comoving observer, who can be chosen
without loss of generality at the origin of the spatial coordinate system. A light ray reaching
this central observer today is purely radial, and propagates according to x = 1o —n. Along it,
the affine parameter v satisfies dn/dv = w/a, and aw is a constant (whence the FL expression
for the redshift, 1 + z = ao/as). The evolution of the redshift with the affine parameter is

therefore ruled by
1 d 1
—_—— =H. .
wo dv <1+z> (38)

The screen vectors si, so, forming the Sachs basis, do not need here to be specified
explicitely to get the optical tidal matrix R, because of the high degree of symmetry (in
particular, spatial isotropy) of the FL spacetime. The result is

Ry, = —4nGpw?1s. (3.9)

As expected, a FL spacetime only focus light via a Ricci term (source of convergence), because
conformal flatness imposes that the Weyl tensor (source of shear and rotation) vanishes. The
Sachs equation (2.9) can then be solved exactly, e.g., by taking advantage of the conformal
flatness [41], in order to obtain the blocks of the Wronski matrix:

CrL(2+ 1) = Zfi[ﬁ((’h*m)*?‘h fK(772*771)}12, (3.10)
Cn2 1) =2 fae e 1) = 2K il —m) + %0 film =1}, G1)
W1DFL(2 < 1) = a2 fK(772 — 171) 12, (3.12)
wleL(Q — 1) = % Ho [W1D(2 — 1)] =+ w1 % f}{(ng — ?71) 1o, (313)

2

where H = a/(n)/a = aH is the conformal Hubble parameter, and a prime denotes a deriva-
tive with respect to conformal time 7. Note that (3.12) gives the well-known expression for
the angular distance in a FL universe,

DY = \/det woDrr (s + 0) = asfx (xs). (3.14)
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Although it is not obvious when written under this form, eq. (3.14) must be considered a
relation between the angular distance and the affine parameter, because it results from solving
d®*D/dv? = RD. From this point of view, the usual distance-redshift relation Da(z) —as
used, e.g., for interpreting the SN data — arises from both eq. (3.8) and eq. (3.14). The
importance of such a remark will become clearer in the next subsection.

3.2 The Dyer-Roeder approximation

As first pointed out by Zel’dovich [35], at the scale of the typical cross-sectional area of
a light beam involved in astronomical observations, such as SNe, our Universe cannot be
reasonably considered as homogeneously filled by a fluid, but rather composed of more or
less concentrated clumps of matter. Therefore, the light signals involved in these observations
must essentially propagate through vacuum, and consequently undergo focusing effects which
are different from the FL case, presented in the previous subsection.

Such an intuition led Zel’dovich to propose an “empty-beam” approximation, general-
ized later into a “partially-filled-beam” approach [34, 49], better known today as the DR
approximation. The aim is to provide an effective distance-redshift relation D (z) which
would take the small-scale inhomogeneity (i.e. the clumpiness) of our Universe into account.
Such a relation can then be used for interpreting the SN data, instead of the standard FL one.

The DR approximation is based on three hypotheses:

DR1 The relation between the redshift z and the affine parameter v is essentially unaffected
by the inhomogeneity of the distribution of matter.

DR2 Weyl focusing is negligible regarding the evolution of the angular distance.

DR3 Ricci focusing is effectively reduced, with respect to the FL case, by a factor 0 < o < 1,
called smoothness parameter, due to the fact that light mostly propagates through
underdense regions of the universe. The physical meaning of « is thus the effective
fraction of diffuse matter intercepted by the light beam during its propagation.

Those conditions imply that the DR relation between angular distance and redshift, DR®(z),
is generated by solving both

1d 1
o do <1 n z) =H (unchanged w.r.t. the FL case), (3.15)
d*Dpr L : ,
TR oRr1,Dpr (reduced Ricci focusing, no Weyl focusing). (3.16)

Note that, since Rpp, x 1z, the Jacobi matrix Dpgr can be replaced in eq. (3.16) by the
square-root of its determinant, that is DY®. Equations (3.15) and (3.16) can also be gathered
in order to get a unique, second-order, differential equation

d2DRR ( 2 dlnH) dDRR 3ano[H0

dz? 1+z+ dz & 2 H(z

known as the DR equation. In the original formulation of the DR approximation, the smooth-
ness parameter o was assumed to be a constant. However, according to its very definition,
one can expect « (i) to depend on the line of sight, and (ii) to vary even along a given line
of sight. In particular, it has been shown empirically [50] that, at least in a particular model
for matter distribution, the DR equation gives results in good agreement with weak lensing
if @ — 1 oc (14 2)7%%. See also ref. [51] for a discussion about how to measure o and test
the DR approximation.

J 2 (14 2)DRR(2) =0, (3.17)
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3.3 On the physical relevance of the approximation

The physical relevance and the mathematical consistency of the DR approximation have been
both questioned in the litterature [37, 52-55]. One of the criticisms, which lead to a “modified
DR approximation” [37, 56], relies on the argument that it is inconsistent to consider the
Universe effectively underdense only in the focusing term, and not in the z(v) relation. In
other words, hypotheses DR1 and DR3 would be incompatible.

In reaction to this argument, we stress that the essence of the DR approximation is
precisely to notice that z(v) and Da (v) are ruled by the properties of the Universe considered
at distinct scales. On the one hand, z(v) essentially® depends on how the source and the
observer move with respect to each other (adopting a Doppler-like interpretation of the
cosmological redshift [57]). he geodesic deviation equation indicates that this relative motion
is governed by spacetime curvature on the scale of the distance between the source and the
observer. On the other hand, D (v) depends on the relative motion of two neighbouring rays
within the beam, governed by spacetime curvature on the scale of the beam itself. The ratio
between both scales is given by the angular aperture of the beam, which is typically ~ 10710
for SN observations. Therefore, it is not inconsistent to suppose that a typical light beam
could “feel” an underdense universe while the source and the observer do not.

Let us close this section by a word on backreaction. It is known since the late 90s that
inhomogeneities of the distribution of matter in the Universe potentially affect its expansion
averaged on cosmological scales (see, e.g., refs. [58—-60] for reviews). For the purpose of
tracking such an effect in cosmological observations, one must wonder which properties of light
propagation would be the most affected. Proceeding the rationale of the above paragraph,
we expect the Dj (v) relation to be unaffected by any backreaction effect, because it involves
too small scales. On the contrary, since the z(v) relation has much more to do with a
notion of global expansion, backreaction should have an impact on it. Therefore, one way
of reading hypothesis DR1 of the DR approximation is that it describes a clumpy universe
with no backreaction. This is, precisely, one of the main properties of the Swiss-cheese models
presented in the next section (although this can be discussed, see section 4.4.)

4 Swiss-cheese models

Historically, Swiss-cheese (SC) models were introduced by Einstein and Straus [38, 39], in
1945, as a method to embed a compact object within the expanding universe. It consists
in removing a spherical comoving region from a FL spacetime, and replacing it by a point
mass at the center of the region (see figure 1). This creates a “hole” within the Friedmannian
“cheese”, and the operation can be repeated anywhere else, as long as the holes do not overlap.
The reason why such a construction is possible is that the Schwarzschild (or Kottler) and
FL geometries glue perfectly on a spherical frontier. This property can be justified (see, e.g.,
refs. [20, 41]) invoking the Darmois-Israel junction conditions [61-63] between two spacetimes.
In this section, we propose a slightly more intuitive approach.

4.1 Free-fall coordinates for the Kottler metric

The Kottler geometry [64] is the extension of the Schwarzschild geometry to the case of a non-
vanishing cosmological constant. Written with the usual Droste-Schwarzschild coordinates,

31.e., neglecting purely gravitational effects such as the (integrated) Sachs-Wolfe or Rees-Sciama effects.
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Figure 1. Schematic construction of a Swiss-cheese model.

the associated metric reads

2
ds? = —A(r)dt® + ar

2102
Al + r<dQ”, (4.1)

with A(r) = 1 —rg/r — Ar?/3, rs = 2GM being the Schwarzschild radius associated with
the central mass M. It is possible to make this metric resemble the FL one (3.1), by using
comoving and synchronous coordinates adapted to radially free-falling observers, analogous
to the ones used to describe the Lemaitre-Tolman-Bondi (LTB) geometry [65-67]. The
construction is the following. Consider a test particle, which starts (at ¢ = 0) a radial
free fall from » = R. Since R is, here, an initial position, it can play the role of label for
the particle, like a Lagrangian coordinate. If, from the point of view of a static observer at
infinity, the particle has an energy v(R), then its free-fall is characterized by the four-velocity

u= Zl((]j)) O + VV2(R) — A(r) Oy. (4.2)

One can indeed check that u satisfies the geodesic equation. Let T’ be the proper time of the
particle (dT" = w,dx"), with an arbitrary origin 7" = Ty(R). Since u" = dr/dT, the relation
between r, R, and T can be obtained by integrating eq. (4.2), so that

T—-1To

" dr
g@:/ : _ (4.3)
R /72 (R) — A(T)
We now consider an infinity of such free-falling particles, filling space, and we rewrite
the Kottler metric (4.1) using the coordinates (7', R) instead of (¢,7). It is not necessary, for
that purpose, to integrate explicitely eq. (4.3). Using only the free-fall four-velocity u, we get

1
ds? = —dT? + ( or

2
- 2 43T 02, 4.4
27 \ or T> dR?* +r*(T,R)d (4.4)

Furthermore, taking the derivative of eq. (4.3) with respect to R (with T fixed) leads to

or| _
OR|,

1 +1d772 " dr _dTy
V(R —AR)  2dR Jr 2(R) - A dR |

V*(R) — A(r) (4.5)

The generic “free-fall form” of the Kottler metric therefore depends on two arbitrary func-
tions, namely v(R) and To(R). Note that the above calculations implicitely assume v(R) > 1,
in other words, all the particles have initially a velocity greater than the escape velocity, so
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that their Droste radial coordinate r goes from R to infinity. Nevertheless, the same con-
struction is also possible for v(R) < 1, provided one considers two successive phases of the
particles’ motion: outgoing first and then ingoing (see Novikov coordinates, at page 826 of
ref. [68]).

Various coordinate systems, which already exist in the litterature, can be recovered from
the above construction by specifying particular functions v(R), To(R). For example:

e Lemaitre coordinates [65, 69] with v =1, dTy/dR =1/4/1 — A(R) — 1;
e Robertson coordinates [70] with v =1 and Tp = 0;

e Novikov coordinates [68] with v2(R) = A(R) and Ty = 0. The actual radial coordinate
used by Novikov was, however, R* = \/A(R)/[1 — A(R)] instead of R. Note that one
cannot use eq. (4.5) in this case.

Here, we generalize the Lemaitre coordinate system by choosing v = cst # 1, and

dTp/dR = 1/4/7* — A(R)—1. We define an inhomogeneous scale factor a(T, R) = r(T, R)/R,
and the associated expansion rate H (T, R) = (0a/0T')/a. The Kottler metric then reads

[:[2R2
ds? = —dT? + a*(T, R) v dR? + R%d0?| , (4.6)
the scale factor a(7, R) satisfying a Friedmann-like equation
-~ 8mGpo(R) rag\3 K(R) A
=" () — — 4.7
i (3) @ e 7

where po(R) = M/[47(agR)?/3] is the mean density of the sphere of radius agR, and K(R) =
(1—~2)/R% We conclude that each hypersurface R = cst behaves exactly as a (layer of a) FL
universe, with comoving density jo(R) and spatial curvature parameter K (R). Moreover, K
can indeed be related to spatial curvature, because the Ricci scalar of a T' = cst hypersurface
can be shown to be ~
2(1-+%) 2K

r2 a2

®R = (4.8)

4.2 Matching the Friedmann-Lemaitre and Kottler geometries

Free-fall coordinates provide a natural extension of cosmic time and comoving coordinates
inside the Kottler holes of a SC universe. They also allow us to understand more intuitively
the junction between the FL and Kottler spacetimes at the boundary of a hole. Indeed, as
we have seen above, each layer R = cst expands as a FL universe with density po(R) and
curvature parameter K (R). Hence, if we choose the boundary of a Kottler hole as a sphere

of radius Ry, so that
3M

dm(agRy)?’ (4.9)

po = po(Ry) =

and, additionally, set v so that K (Rp) = K, then such a sphere will have the same expansion
dynamics as the one of the FL cheese. In other words,

VI a(T,Ry) = a(T), (4.10)

which matches the Kottler and FL geometries on the layer R = Ry,.

- 11 -



6.4 Swiss-cheese models and the Dyer-Roeder approximation

For the sake of completeness, let us also check that, under the conditions specified
above, the two Darmois-Israel junction conditions are automatically satisfied. First, the
intrinsic metric of the junction hypersurface (i.e., the hole boundary) is the same whether
one computes it from the inside of from the outside,

ds? (R = Ry) = —dT? + @*(T, Ry) R}d0? (4.11)
= —dT? + a*(T)REdN? (4.12)
=ds? (R = Ry). (4.13)

Secondly, the extrinsic curvature of the junction hypersurface R = Ry is identical whether
one computes it from the inside or from the outside. Recall that the extrinsic curvature
tensor of a hypersurface is

Kab = e,l'e))’Vuny, (4.14)

where n is a normal unit vector, and the e, are three tangent vectors to the hypersurface.
Here, the latter can be trivially chosen as (eq) = (Or,0p,0,). From the FL (outside) point

of view, the unit normal vector reads n, = aéﬁ /4/1— KR?, from which one deduces

Koptdatda® = a(T)Ryy/1 — KR} dQ2. (4.15)

From the Kottler (inside) point of view, normal vector reads n, = aH thf /7, from which

one computes
Kidada® = a(T, Ry)Ryy/1 — K (Rp)R? dQ. (4.16)

Thus, both tensors (4.15) and (4.16) coincide, provided that K(Ry) = K and a(T, Ry) =
a(T).

4.3 Orders of magnitude

For a SC model to fit with the general philosophy of the DR approximation, it must aim at
representing the clumpy, small-scale structure of the Universe. In principle, to be consistent
with the typical cross-sectional scale of a light beam associated with astronomical obser-
vations, the holes should represent the local environment of individual stars. However, as
already discussed in ref. [41], we will not consider such an extreme resolution, but rather stop
at the scale of individual galaxies. This leads us to choose the mass parameter of the Kottler
regions as M ~ Mgy ~ 10" M, which corresponds, because of the junction condition (4.9),
to a typical hole radius

Ry, ~ 1 Mpc. (4.17)

A crucial assumption, for the above choice to be meaningful and the calculations of this
article to be justifed, is that the clumps at the center of the holes are considered effectively
opaque. In other terms, when studying light propagation through a Swiss cheese in section 5
below, we will impose a lower cutoff, for the photon’s impact parameter in the Kottler regions,
corresponding to the physical size of the central galaxy (see figure 2)

b > rga ~ 10kpe. (4.18)

Albeit an instrinsic limitation to the SC approach, such an assumption can be justified
statistically (the cross-section of a galaxy is relatively small) and observationally (a galaxy
is bright enough to hide a supernova behind it). See refs. [41, 71] for further discussions.
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Kottler

Figure 2. Hierarchy of length scale and opacity radius in a Kottler hole.

Summarizing, Kottler holes are characterized by a hierarchy of length scales
s K rgal < Ry < Hy ' S KY2 A7V2 (4.19)
essentially controlled by the single dimensionless parameter €, so that

e= 15« (HyRy)? ~ 1078, (4.20)
Ry,
The second relation is deduced from the junction condition (4.9) and the Friedmann equa-
tion (3.5). Parameter ¢ will be ubiquitous in the perturbative expansions of section 5.

4.4 Backreaction and Swiss-cheese models

By construction, the Einstein-Straus method allows one to introduce inhomogeneities in a
FL universe without changing its expansion law. This implies, in particular, that the physical
distance between the point masses at the center of two neighbouring holes increases according
the Hubble law. In this sense, SC models can be considered backreaction free. In principle,
this reasoning should also remain valid for other classes of SC models, a notable representative
of which is the LTB SC model, whose holes are filled with an inhomogeneous, non-static, and
spherically symmetric dust fluid. While such models differ from the Einstein-Straus one by
the choice of the interior metric, the general philosophy is still the same: pick a comoving ball
within a FL universe, and reorganize the matter inside it. Again, by construction, this does
not change the exterior expansion law (i.e., the expansion law of the FL regions of the SC).

Nevertheless, it might be naive to directly conclude that SC models are backreaction
free. Indeed, the spatially averaged expansion rate of, e.g., a LTB SC model, can differ from
the exterior one [59, 72, 73]. Thus, in this sense, SC models are in general not backreaction
free. We emphasize that this interpretation tacitely considers the averaged expansion rate
as the relevant physical quantity to decribe the dynamics of the Universe, which is a highly
non-trivial, and widely debated assumption. Notable contributions to this debate [55, 73-75]
concluded that, in a fluid-filled and shell-crossing-free universe, the spatially averaged expan-
sion rate really governs the angular distance-redshift relation, and therefore has a powerful
physical and observational meaning. However, there is a priori not reason why this result
should hold for a more realistic description of the Universe, with shell crossings, formation
of virialized structures decoupled from the expansion, etc.
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6.4 Swiss-cheese models and the Dyer-Roeder approximation

In particular, the class of Swiss-cheese models that we study in the present article, where
holes are composed of vaccum and structures in equilibrium, seems precisely to be a coun-
terexample. Indeed, in vacuum there is no unique and natural way to define a 3+1 foliation,
and a fortiori a spatially averaged expansion rate. Hence such a notion automatically loses its
relevance and its observational meaning — in particular, it cannot drive the distance-redshift
relation — when Kottler holes are present. The very meaning of backreaction also becomes
unclear, since it usually refers to the influence of inhomogeneities on the average expansion
rate. Here, we choose to avoid this issue and identify the expansion rate of our SC model
to the one of its FL regions, because it is the only unambiguous choice that we can make.
Thus, from this naive point of view and according to the discussion of the first paragraph
above, the model is backreaction free.

5 Geometric optics in Swiss-cheese models

Swiss-cheese models have been used since the late 60s [19-21, 41] to investigate the impact of
a clumpy distribution of matter on light propagation, and its consequences on cosmological
observables. More recently, they were revisited by replacing Kottler holes by LTB holes, in
order to model the large-scale structure of the Universe (voids and walls) rather than its
small-scale clumpiness. See refs. [22-30] for detailed studies about their optical properties.

In this section, we prove analytically that the DR approximation captures the essen-
tial physics of light propagation in SC models with Kottler holes, provided the conditions
described in section 4.3 are fulfilled.

5.1 Relation between affine parameter and redshift

The presence of Kottler holes, in a SC universe, modifies the z(v) relation. In this subsection,
we show that such a correction is of order Ne, where IV is the number of holes crossed by
the light beam, and e the small parameter defined in section 4.3.

Let us start by investigating the effect of a single hole. Consider a source and an
observer comoving with the boundary of the hole (both have a four-velocity u = dr); denote
respectively “in” and “out” the emission and the reception events. The redshift of a photon
which has travelled through the hole is

Vin (u“k“ )in ]{?17;1

1 in ut = = = . 1
( + Z) —out Vout (uukﬂ)out kgut (5 )

Without any loss of generality, we assume that the photon travels in the plane § = /2. The
symmetries (Killing vectors) of the Kottler geometry imply the existence of two conserved
quantities: the “energy” E and the “orbital momentum” L of the photon, so that, in terms
of Droste coordinates,

AME =E, k¥ =1L. (5.2)

Besides, the coordinate transformation (¢,r) — (7, R) implies
2 A b\’| E
kT:ykt—VTk”: N2 A 1—A<> o (5.3)
T

where b = L/FE is the impact parameter, and + = sign(k") depends on whether the photon
is approaching (—) or receding (+) from the center of the hole. In eq. (5.3), we have used
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the constants of motion, and the fact that k is null-like. The redshift is therefore

A 1+ VI= A/ = A (b/rn)?
Ain 1— m\/l — Aout (b/TC)ut)2

where A, = A(rin) = A(ainRy), and the same for Ayyg. This relation is exact. Using the
equations which rule the dynamics of the photon and of the hole boundary, it is possible to
show that the right-hand side of eq. (5.4) is essentially the cosmological redshift agy/ain,
modulo corrections of order ¢ (see appendix A for a proof),

(1 + Z)in—>out = ) (5'4)

(14 2)insout = 28 1+ O(e)]. (5.5)

alIl

The corrections hidden in the O(g) term contain both the effect of light deflection in the
Kottler hole, and the integrated Sachs-Wolfe (or Rees-Sciama) effect.
If, during its travel through the SC, the photon crosses N holes, then the total redshift is

a(Ty)
a(Ts)

N
(14 2)sso = % [Tir+o0e)= [1+ O(Ne)]. (5.6)
S i=1

Equation (5.6) indicates that if a photon is emitted at cosmic time Ty and observed at Tp,
then the redshift zgc measured in a SC universe is zpr, +O(N¢), where zpy, is the redshift that
would be measured in a FL universe. Interestingly, this also implies that the corresponding
affine parameters read vgc = [1 + O(Ne)]vpr. Let us justify this subtle point. By definition,
the T'(v) relation is governed by

ar

o =kl = w=we(1+2), (5.7)
thus, because of eq. (5.6),
dvse _ 1) 1 o(ve) LUt h — [1 4+ O(Ne)] (5.8)
dT = 9 dT whence vsCc = €)|VFL- .

We conclude that the affine parameter-redshift relation of a SC only differs by terms of order
Ne from the FL one. This corresponds to the hypothesis DR1 of the DR approximation. A
numerical illustration, performed by ray tracing in a SC model, is proposed in section 6.

We emphasize that, in the above proof, both the source and the observer were as-
sumed to be comoving within FL regions. Hence, two effects which affect the z(v) relation
were neglected. First, a source and an observer lying inside Kottler holes would in general
undergo a different gravitational potential, depending on their distance to the hole center.
The actual redshift must therefore be corrected by a factor A(r,)/A(rs), which is at most
~ 147r5/rgal = 14+0O(100¢). This effect is therefore subdominant when many holes are crossed
(N > 100). The second neglected effect is the one of peculiar velocities (Doppler shift), and
is potentially much more significant. Note that it would not only affect the redshift, but also
the angular/luminosity distance [15, 76-78].

For a more general point of view, as already mentioned in section 3.3, we suspect that
the deep underlying reason why, here, there is no strong modification of the v(z) relation,
is the absence of backreaction in SC models. Proving this intuition may however require a
dedicated study, whose starting point can be elements proposed in refs. [37, 55].
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6.4 Swiss-cheese models and the Dyer-Roeder approximation

5.2 Ricci and Weyl focusing in holes

The focusing properties of a Kottler hole are ruled by its optical tidal matrix Rk. In order
to compute it, we first need to specify a Sachs basis. The reference observers’ family is
chosen as “generalized comoving observers”, that is, observers with constant Lemaitre radial
coordinate R. As already seen in section 4, such observers have the four-velocity v = dp
defined by eq. (4.2). The screen vectors sj, sy form an orthonormal basis of the plane
orthogonal to both w and k. As before, we can, without loss of generality, assume that the
light’s trajectory occurs in the equatorial plane § = /2, so that a first screen vector can be
trivially chosen as

$1=0, = —% 0. (5.9)

It is straightforward to check that s; fulfills the transport condition (2.8). The second screen
vector, sg, can then be obtained from the orthogonality and normalization constraints defining
the Sachs basis, but it turns out that its explicit expression is not required here.

We now compute the optical tidal matrix Rgk. It is convenient, here, to use the Ricci-
Weyl decomposition (2.12). Indeed, since the Kottler geometry describes vacuum, the only
contribution to its Ricci tensor is the cosmological constant, 1, o< Ag,,, so that

1
(I>00 = 7§R/“,k"ukiy =0 (510)

Thus, there is no source of convergence in a Kottler hole, and Ry is trace free. The calculation
of the source of shear Wy is detailed in appendix B, and the result leads to

_ 2 5
RK:( 51’0 \1(1)0), with Ty = % (é) (%S) . (5.11)
As one could expect, the effect of the central mass is to vertically squeeze and horizontally
stretch the light beam via tidal forces. The effect is stronger as M increases, and as b
decreases. Besides, it is remarkable that the cosmological constant A, though having an
impact on light deflection, does not focus light. From an observational point of view, it
means that for a given value of the affine parameter v, the position on the sky of a light
source can be affected by A, but not its magnitude.
The Sachs equation £ = Rk& can be solved perturbatively [41] in order to get the
expression of the Wronski matrix Wg. However, at the order of interest for the discussion
of this article, the result is simply

Wi (out < in) = <(1)§ (Vout 12”“1)12> +0(). (5.12)

In other words, light behaves in the Kottler geometry as in Minkowski spacetime, modulo
small tidal terms contained in the O(g) term, that we neglect here. Note that neglecting
tidal effects, i.e., the source of shear, in the Kottler holes, corresponds to hypothesis DR2 of
the DR approximation.

5.3 Effective Ricci focusing in a Swiss cheese

As already mentioned in section 2.3, the Wronski matrix is a particularly convenient tool
for dealing with a patchwork of spacetimes, such as a SC model, thanks to its “Chasles
relation” (2.17). Indeed, consider a light beam which travels, in a SC universe, from a
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Kottler
. 13
outs

Figure 3. A light beam travels, through the Swiss-cheese universe, from a source s to an observer o.
The entrance and exit event for the nth Kottler hole are respectively denoted in,, and out,,.

source, s, to an observer, o, both located in FL regions. If this beam crosses N Kottler holes,
then the Wronski matrix describing its evolution can be decomposed as

Wsc(o — S) = WFL(O — outN) .. -WFL(inn—H — outn)WK(outn — inn) - WFL(in1 — S)

Wsc(ing 11 4-ing) =W
(5.13)
where in,,, out,, respectively denote the entrance and exit of the nth hole (see figure 3).
The matrices W,, = Wsc(in,+1 < iny,,) represent the elementary bricks of the complete
evolution. As we will see below, they merge the FL and Kottler optical properties into an
effective behavior, which coincides with the one proposed by the Dyer-Roeder approximation.
First consider the FL part. Since the path between the holes n and n+1 is small compared to
the cosmological scale H ™!, one can expand the exact results (3.10), (3.11), (3.12), and (3.13)
to obtain

(n+1) _ (n)
13 [Uin - vout:| 1o
WrL(inp41 < outy,) = + O |(HAT 2 ,
(i1 el g o] 1, L |(HAT)?]
(5.14)
where AT = Tiglnﬂ) - Tégt) The matrix product between egs. (5.12) and (5.14) then yields
(n+1) _ (n)
0o [v- — V. } 19

(n) in in 2
Wee = 14 + " n + O |e,(HAT)"| (5.15)

—47Gppw? [vi(n D v(()u%} 1; 02 [ }
=Lt (o2 ) [t = o] 4 0 [, (AT (5.16)

anRrL(vy) 02) L0 m ’ ’

where we have recognized the FL optical tidal matrix Ry, given in eq. (3.9), while

(n+1) (n)
Y — Uout

a, =250 (5.17)
L)

represents the portion of the path (in, — in,41) that light spent in the FL region. Interpo-
lating the sequence (av,) allows one to define a function a(v), which, in principle, depends
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6.4 Swiss-cheese models and the Dyer-Roeder approximation

on the path of light through the Swiss cheese. Note that the way we deal with the expan-
sion (5.16) is licit; it is indeed reasonable to consider that the separation between successive
holes has the same order of magnitude as the radius of a hole, thus (HAT)? ~ (HRy)? ~ ¢
(see section 4.3).

We now show that oRp1, plays the role of an effective optical tidal matrix. First note
that eq. (5.16) can be seen as a first-order Taylor expansion of Wsc(v), so that, at leading
order in the small parameters of the problem,

02 Ly .. O0Wsc N OWsc
<O‘(U)RFL(U) 02) o vl/lglv ov (v v ) - v (U — v)a (5.18)

Besides, taking the derivative of the “Chasles relation” (2.17) with respect to vs, and evalu-
ating the result for vy = v3, yields

ow w

81}50 (v3 «—v1) = av:C (v <= v3)Wsc(vs < v1) (5.19)
(5.18) 0, 1,

) : 5.20

(a(vs)RFL(US) 02> Wsc(vs « v1) (5.20)

Therefore, comparing the above relation with eq. (2.18) shows that aRpy, is the effective
optical tidal matrix Rgc(v) for the Swiss cheese. In particular, the Jacobi matrix equation
inherited from eq. (5.20) is

DSC = a’RFL’DSC. (521)

This is exactly the hypothesis DR3 of the Dyer-Roeder approximation. It also provides a
precise definition of the smoothness parameter « in the context of SC models, namely, the
fraction of light path spent in the FL regions.

6 Numerical results

This last section aims at illustrating the results of the previous one, using numerical ray
tracing in a SC universe.

6.1 Details of the numerical model and ray-tracing technique

We consider SC models with a random distribution of Kottler holes. As mentioned in sec-
tion 4.3, each hole is supposed to model the local environment of a galaxy, the central mass
being the galaxy itself. Since we do not want all galaxies to have the same mass, we use,
in our model, the (stellar) mass function proposed in ref. [79], to which we add artificially a
factor 10 to take dark matter into account. The result is

1 M \“ M

with o = —1.16, M* = 7.5 x 1019 h=2M,. This expression is considered valid in the interval
Mpin < M < Myax, with [79] Mpin = 1085 Mg, Myax = 10'3M, and set to zero elsewhere.
Thus, the normalization factor IV is

M, o
max M M
= — M. 2
N Mo (10M*> eXp( 10M*>d (6:2)
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Figure 4. Ray tracing in a random SC universe. For each hole, the impact angle 6, the impact
parameter B, and the separation Axgr, until the next hole, are random numbers.

Regarding ray tracing, the random character of the spatial distribution of holes is mod-
elled using a simple technique where each ray “creates its own universe”. This method was
first proposed by ref. [80], and it has already been used in many studies involving SC models,
see, e.g., refs. [24, 29, 30, 81]. It consists in putting holes on the light’s trajectory, with
random (comoving areal?) impact parameter B, random impact angle #, and with a random
comoving length Axpr, between the exit of the nth hole and the entrance of the (n + 1)th
one. The situation is depicted in figure 4.

We consider that all the impacts positions, within the authorized cross section of a given
hole, are equiprobable. Thus, the random impact angle 6 is uniformly distributed; and the
probability density function (PDF) of the impact parameter B reads

2BdB

2 2 0
Rh - Rgal

p(B) dB = Rgal < B < Ry, (6.3)

where R), is the comoving areal radius of the hole — related to its central mass via eq. (4.9)
— and Ry, is the opacity radius mentioned in section 4.3. We choose to link it to the mass M
of the galaxy via a constant density pga = 5 X 10% M kpe™3, so that

Ry(M) = ( 3M )1/3: < Po

47Tpgal Pgal

1/3
) Ry(M). (6.4)

As a last simplifying assumption, the FL separation Aygr, between two successive holes
is also chosen to be uniformly distributed® between 0 and max(AxrL) = 2{AxrL). We
parametrize the mean value with an effective constant smoothness parameter &, so that

(AxFL) = % (Axx) (6.5)

4The usual impact parameter b = L/E is defined with respect to the Droste coordinate system. Its
comoving counterparts are 8 = b/ain and B = fx(8). Note that, in practice, B ~ 8 since \/WB ~bHy <« 1.

®Note that this does not correspond to a Swiss-cheese model with randomly distributed, non-overlapping,
holes. Strictly speaking, in the latter situation, there would be a correlation between the impact parameter
B and AxrL, because, e.g., Axrr, = 0 is only possible between two holes with the same impact parameter.
We do not take this correlation into account for simplicity.

~19 —



6.4 Swiss-cheese models and the Dyer-Roeder approximation

4F —————————————
e} a"’/ C7=O
S I — x=05 | -
X 3 > r="
_ - ’/- a=09
% I ]
Sl —= 2t » S Caid
i S} L .,‘?WM’WW#"* : |
| L (»W'!ﬂ'
— -~ L., wf.g,d'b-"""
2 | | odagutor” i
59 Bk
S 1h 1
[ 5 v Pt S T e Y% eI 1B |
[0 = S R R P R B B

0.0 02 04 0.6 0.8 10 12 14
redshift z

Figure 5. Relative difference between the affine parameter-redshift relation |vpr(z)| of a FL model
and of a SC model |vgc(z)|, with different values for the mean smoothness parameter &. From top to
bottom, & = 0 (blue), @ = 0.5 (magenta), and & = 0.9 (yellow). Absolute values are used in order to
avoid any conventional discussions about whether v increases or decreases towards the past.

where (Axk) is the comoving distance spent inside a Kottler hole. The calculation of this
quantity is given in appendix C, and the result is

4 3 1/3 Mrnax
(Axk) ~ = [ —— / p(M)M*? dM. (6.6)
3 47Tp0 Mmin

In practice, the author wrote a Mathematica program to perform ray tracing in the
conditions decribed previously. Calculations start at the observation event and go backward
in time. The code consists in iterating the following steps. (i) Pick a FL comoving distance
AXFL,» and propagate the beam across it; (ii) pick a mass M,,, an impact parameter B,,, and
an impact angle 6,, defining light propagation through the nth Kottler hole; (iii) compute the
redshift and Wronski matrix across this hole. We stress that, for those numerical calculations,
we did not use the lowest-order expression (5.12) for the Wronski matrix Wy, but rather
the one of ref. [41], which takes into account tidal effects at order one.

6.2 Relation between affine parameter and redshift

In this paragraph, we illustrate the results of section 5.1, regarding the affine parameter-
redshift relation. Figure 5 shows the relative difference, for the v(z) relation, between a FL
model and three different SC models, from very clumpy (& = 0) to very smooth (& = 0.9).
All the models are characterized by the cosmological parameters obtained by the Planck
experiment [3], namely Q0 = 0.315, Q59 = 0.685. For each SC model, 500 observations are
simulated within the range 0 < z < 1.5, according to the method presented in section 6.1.

Even for a model entirely filled by Kottler holes (& = 0), we see that the relative
correction to the v(z) relation is very small, less than 1075. This order of magnitude is
compatible with the results of section 5.1.
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Figure 6. Correction, with respect to FL, of the angular distance-redshift relation Da(z) of several
models. Dots are simulated observations in SC models with three different mean smoothness param-
eters @. From top to bottom, & = 0 (blue), @ = 0.5 (magenta), and & = 0.9 (yellow). Solid lines
indicate the corresponding DR relations DY®(z) with constant smoothness parameter a = a.

6.3 Relation between distance and redshift

In this paragraph, we illustrate the results of section 5.3, regarding effective Ricci focusing
in a SC model, and its comparison with the DR approximation. figure 6 shows the relative
correction to the D (z) relation, for three different SC and DR models, with respect to the
corresponding FL models. As before, the cosmological parameters are Planck’s best-fit ones,
and for each SC model, 500 observations are simulated within the range 0 < z < 1.5.

First note that the difference between Dic and DEL is of the percent order, and reaches
more than 12% at z = 1.5 for a very clumpy SC model (the cosmological implications of this
difference are discussed in refs. [8, 41]). It confirms that, in SC models, the correction to the
v(z) relation (figure 5) is negligible compared to the D (v) one.

In figure 6, the good agreement between dots and solid lines numerically confirms the
main point of this article, namely, that the Dyer-Roeder approximation provides a good
effective description of light propagation in SC models. However, this agreement is not
perfect, especially for @ = 0, where the mean behavior of Dic (z) is slightly overestimated by
DER(Z), with some rare events in strong disagreement. As we shall see in the next subsection,
this is due to the neglected Weyl lensing effects, i.e., departures from hypothesis DR2.

6.4 Lensing beyond the Dyer-Roeder approximation

This last subsection is dedicated to some lensing effects which are present in a SC model,
but not taken into account by the DR approximation. In order to compare the focusing
properties of a given spacetime with those of FL. model, it is convenient to introduce the
amplification (or magnification) matrix

D

— -1

(6.7)

This matrix describes the geometrical transformations of an image (magnification, defor-
mation, rotation) which add to the global FL focusing effect. For instance, the relative
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magnification u, defined as the ratio between observed angular size of an object, and the one
that would be observed in a FL universe, is related to A via®

2
L= oz DiE _ 1 6.8)
A2 Da det A’ '

In general, as any 2 x 2 matrix, A can be decomposed as the product between an SO(2)
matrix, encoding the image rotation; and a symmetric matrix, encoding its distortion:

_ [ cosvy siny 1—k—m -2
A= (- sin1) cos @ZJ) < —ve  1—k+ 71) ) (6.9)
where A "
12 — A21
_ 1
1) = arctan <A11 +A22> (6.10)

is the rotation angle, k is the convergence, and v = ; + i the shear, of the image. It is
straighforward to check that the magnification is related to those quantities according to

- 1
=T

T e (6.11)

In the DR approximation, shear and rotation are neglected. But since we are able to
compute them numerically for SC models, it is interesting to see how they can induce a
departure from the DR behavior. Figure 7 shows, as examples, the PDFs of the optical
quantities, generated by simulating 10* observations at redshift z = 1 in three different SC
models with & = 0, 0.5, 0.9. The values predicted by the DR approximation, with o = &, are
indicated for comparison. The evolution of the first two moments of the PDFs (mean and
standard deviation) with the mean smoothness parameter & of the SC model are depicted in
figure 8. In this figure, the mean magnification (u) and convergence (k) are also compared
with the DR values.

We see that the DR approximation predicts a value for the convergence in excellent
agreement with the mean convergence (k) in SC models, but slightly underestimates the
mean magnification (u), as already suspected in figure 6. The difference increases as the
mean smoothness parameter & decreases, and reaches (u) — upr = 0.4% for @ = 0. More
precisely, we see from the top panel of figure 7 that upr gives essentially the most probable
magnification, which is different from the mean magnification because the PDF is clearly
skewed. Besides, since the PDF of the convergence seems much more symmetric, such a
skewness can only come from the shear. Thus, we conclude that, in SC models, departures
from the DR behavior are due to neglecting Weyl lensing, i.e. hypothesis DR2.

However, such departures remain small, since in the worst case (u) — upr = 0.4%, while
(u) — prr = (u) —1 = —12%. This could be surprising, because the shear is not intrinscally
negligible compared to the convergence, we indeed see from figure 8 that (k) ~ (|y]) ~ %. The
difference between those optical quantities is that, fortunately, the magnification p involves
k at order one, but 7 only at order two [see eq. (6.11)]. This justifies a posteriori the
expression (5.12) of Wk, used in the proof of section 5.3, where we completely dropped the
Weyl focusing effects. Such an approximation would not have been consistent if we were
interested in anything else than the angular distance, i.e. the determinant of the Jacobi
matrix.

5Note by the way that the usual names “amplification” or “magnification” matrix for A are particularly
misleading, and would be much more adapted to A ™.
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Figure 7. Probability density functions (PDFs) of the magnification u (top panel), convergence &
(middle panel), shear |y| (bottom-left panel), and rotation angle ¢ (bottom-right panel), in three
different SC models with respective mean smoothness parameter @ = 0 (blue), @ = 0.5 (magenta),
and @ = 0.9 (yellow). The magnification and convergence predicted by the DR approximation are
also indicated, for comparison, by vertical dashed lines.

7 Conclusion

In this article, we analysed the suspected correspondence between light propagation in
Einstein-Straus Swiss-cheese (SC) models and the Dyer-Roeder (DR) approximation. Invok-
ing both analytical proofs and numerical illustrations, we proved that such an approximation
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SC models, as a function of their mean smoothness parameter @. The magnifications and convergences
obtained from the DR approach are indicated by dashed lines, for comparison.

is indeed excellent for predicting the distance-redshift relation of SC models, provided that
(i) the matter clumps at the center of SC holes are effectively opaque, and (ii) reasonable
orders of magnitude are taken for the mass and compacity of the clumps.
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Rather than just checking the good agreement between the results of both approaches,
our main purpose was to understand why the various hypotheses of the DR approximation
are satisfied in SC models. It appeared that:

e The affine parameter-redshift relation v(z) is essentially the same in SC and FL models
because the deflection and ISW effects are negligible. Independently of such effects, we
also suspect that the absence of backreaction in our SC model (the holes do not affect
the expansion law of the FL regions) is the deep reason why the FL v(z) relation holds.

e In SC models, Weyl lensing (source of shear and rotation) and Ricci lensing (source
of convergence) are intrinsically comparable. However, compared to the latter, the
former have a negligible impact on the angular distance-affine parameter relation Dy (v),
because shear only appears at order two in the expression of the magnification.

e The way the DR approximation deals with Ricci lensing, i.e., making heuristically the
replacement p — ap in the Sachs equation, works in SC models because (i) the clumps
inside the holes are considered opaque; and (ii) FL regions and Kottler regions alternate
many times over cosmological scales. This, indeed, allows the SC Wronski matrix to
get an effective behavior which fits the DR one.

In the case of extremely clumpy SC models (entirely filled by Kottler holes), small
departures from the DR predictions are observed, regarding the mean magnification. We
saw that they were due to the effect of the neglected Weyl lensing. However, such departures
remain small, since at worst (i) — upr = 0.4%, to be compared with (u) — pupr, = —12%.
Moreover, the PDF of the magnification in SC models being skewed, the most probable
magnification is smaller than the mean one, and thus in even better agreement with upg.
We conclude that, regarding the distance redshift relation, one can safely consider the DR
and SC approaches as equivalent.

The question of whether those approaches are relevant alternatives to the standard
interpretation cosmological data is beyond the scope of this article. It regroups at least two
crucial issues of modern cosmology. The first one is the amplitude of backreaction, neglected
in both the DR and SC approaches. The second one concerns the actual clumpiness of our
Universe, which is closely related to the problem of structure formation, and even to the
question of the nature of dark matter.
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A Redshift through a Kottler hole

Let us show that the redshift of a photon crossing a Kottler hole is essentially agut/ain,

Qout Agyy  'in v 1- Ain/’yz \/ Ti2n - bgAin
X

Qin Ain royt — \/ 1 — Agut /7?2 \/ T2 — b2AoutJ’
1+0(e)

(1 + Z)in—)out = (Al)

where € = rg/Ry,. To do so, we must use both the dynamics of the photon 7,(t) and of the
hole boundary 7(t), in terms of Droste coordinates:

T iA(rp>\/ L Alry) (b) (A2)

dry
dt N2 7

(A.3)

where the + sign depends on whether the photon is approaching (—) or receding (+) from
the hole center. The order of magnitude of the time spent by the photon inside a hole is
the radius of the latter, At ~ r,. From eq. (A.3), we deduce that, during this amount of
time, the hole radius increases by dry, /ry ~ /€. The corresponding variation of A(ry,) is then
Aout/Ain — 1 ~ £3/2. Hence, since we aim at studying the expression of (1 + 2)in—out up to
order one in €, we can already neglect the ratio Aoyt/Ain which appears in eq. (A.1).

Let t,, be the instant when the coordinate distance between the photon and the center
of the hole is minimal, r,(ty) = mm. Taylor-expanding the function 7, (t) from ti, to tm

leads to
Ain
Th(tm) = Tin + (tm - tin)Ain“ 1-— 72

where we replaced (dry,/dt)i, by its expression (A.3). Besides, from eq. (A.2), we get

. i Tin dr \/—7[)214”1 Tin p2 _ bZA/Q Aldr (A 5)
m in = - AW A . m 242" .

Vv
5in

inO(e), (A4)

where the second equality is an integration by parts. A rough analysis shows that d;y, =
(r2 /b*)O(e), that is, using the orders of magnitude of section 4.3, &, = rinO(c'/?). Hence,
we conclude that eq. (A.4) can be rewritten as

Th(tm) = Tin + \/i m\/im—f'?"m (A.6)

The same calculations, but starting from an expansion of ry(t) from ¢, to t,, give

/ [ Aou
Th(tm) = Tout — Tgut —b2Aoutr 1 — f;’; + 7out O(), (A.7)

so that, finally,

Tin + /1 — 1n/7 — b?Aig _ rh(tm) + 7in O(e)
rout — /T = Agm /) \/rout —B2Ay h(tm) FrowO(e)

=1+0(e). (A.8)
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B Source of shear in Kottler geometry

We compute the Weyl part (source of shear) of the optical tidal matrix Rk for the Kottler
geometry, using the regular Droste coordinates (t,r,6,¢). The non-zero components of the
Riemann tensor are

A rd’ A .
Ripr = 5) Ripip = 9 Rtaptcp = SlHQ 0 R0, (B-l)
rA .9 2 )
Ryor9 = BEVE Ry prp = sin® 0 R, gy, Rgpp, = 17(1 — A)sin” 6. (B.2)

Without loss of generality, we assume that the axes have been chosen so that the light path
lies in the plane @ = 7/2, which implies k% = 0. The four-velocity of the reference observers
is given by eq. (4.2), in particular u’ = 0.

RE = Ruvapstk ks (B.3)
= _7‘_2Ru9u9kuky (B4)
! /
s A(k:t)Q - ﬂ(kﬂ")z (1 — A)(E9)?] . (B.5)
2 2A
but
rA’A rd rA’ , rA’ r3A’
(K")? = 5 (k") = —— [gu(K")* + g (K")?] = ——gop(k?)* = (k)*  (B.6)
2 24 2 2
therefore,
k [ r& o 3rg L?
Ry = [—2 —(1- A)] (k%) = —5 5 (B.7)

Since the Ricci-focusing term is zero, the optical tidal matrix is trace-free, so that R{{l =
—RY,. Besides, the off-diagonal terms RY, = RY are zero, indeed

R, < Royapk’ ks, (B.8)

and the vectors k, sy have no components along Jp (so that v,a,8 # ), while all the
components of the Riemann tensor involving a single index 6 vanish.

C Mean Kottler path

Let us compute the mean comoving distance (Axk) spent inside a Kottler hole. First note
that, as already mentioned in footnote 4, since the size of the holes is small compared to
cosmological scales, we can reasonably consider

Moreover, if a hole is crossed with (comoving areal) impact parameter B, and neglecting

light deflection, we have
fr(Axk) ~ 2y/R2 — B2, (C.2)

(Ayx) ~ 2 <, /R2 ~ B?> _ 2/RW dRy p(Rn) /Rh dBp(B)\/R2 — B2, (C.3)

Rmin Rgal

thus
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where Ruyin = Rh(Mmin) = (3Mmin /47rp0)1/ 3 idem for Rmax. The integral over B is easily
calculated, and we finally obtain

4 Rmax
(Bic) ~ 3 /R dRy p(Rw) \/RZ — B2, (C.4)
Mo
= / dMp(M)\/ Ry (M) — RZ, (M) (C.5)
Mmll’l
4 1/3 \/—2/3 Mumax /
dM p(M) M3 C.6
=3 4@0 pgal In v (C.6)
4 1/3 Mmax 1/3
~ = — dM p(M) M C.7
i () [ aan (©7)
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6.5 Minor errata

The published versions of the articles presented here still contains a few typos and minor
mistakes, which however do not change any of the main results and conclusions.

6.5.1 Interpretation of the Hubble diagram in a nonhomogeneous
universe

1. In Eq. (2.17), which gives the extrinsic curvature of a hole boundary induced by the
Kottler geometry, the T"T-component is incorrect. The actual expression is

_7.“.h + A’(Th) [3,‘-{2/2 - A(Th)] dT2 + M

K(K)d ad b _
ab 4T AT K3 K

do?. (6.2)

2. In Eq. (4.5), which gives the conformal counterpart of the FL metric, the radial
component is missing. The correct equation is

ds* = a? [—dn2 +dy? + f%(x)dQQ} = gdatda”. (6.3)

6.5.2 Swiss-cheese models and the Dyer-Roeder approximation

1. In section 6, the lower cutoff for the comoving impact parameter B for light inside
a hole, that is, the comoving radius of the central clumps (galaxies) Rg,, has been
considered constant with time in the ray-tracing simulations. However, because the
are supposed to represent virialised objects, these clumps are not expanding; hence
it would have been more sensible to assume that their physical radius rg. = afg. is
a constant, so that their comoving radius Ry, decreases with time. The numerical
results presented in the article therefore tend to underestimate the actual cutoff for
B, i.e. to overestimate the shear.

2. In appendix C, Eq. (C.5), there is a pre-factor 4/3 missing before the integral sign.



CHAPTER 7

Stochastic cosmological lensing

ALTHOUGH Swiss-cheese models seem to capture some essential features of the small-
scale inhomogeneity of the Universe, they remain toy models which suffer from
a number of intrinsic limitations. First, they are unable to model at the same time
small-scale and large-scale inhomogeneities, such as a cluster or a filament, with their
substructure. One has to choose between a large-scale description—using for instance
LTB or Szekeres holes—or a small-scale description—using Schwarzschild holes—where
clumps are then homogeneously distributed, the junction conditions preventing from
any over- or underdensity (a larger hole implies a more massive clump inside). Second,
even though the distance-redshift relation in a SC model is well approximated by the
Kantowski-Dyer-Roeder approximation, the latter only characterizes its mean behaviour,
so it tells us nothing about the dispersion, or any higher-order moment of the statistics of
gravitational lensing. Determining such statistical quantities in a SC model requires to
perform computationally expensive and time-consuming ray-tracing simulations.

Yet extracting this information could be very useful for constraining the cosmological
parameters from SN lensing, as emphasized by Marra, Quartin, and Amendola [263-265].
Those works exploited an efficient weak-lensing code by Kainulainen & Marra [266-268],
where inhomogeneities such as dark matter halos of filaments are randomly placed on
the line of sight, according to a statistic dictated by the cosmological parameters. This
chapter presents a complementary approach, which (i) focuses on smaller scales; (ii) is
purely analytical; and (iii) does not rely on the weak-lensing approximation. It consists of
an article written in collaboration with Julien Larena and Jean-Philippe Uzan. Our goal
was to design an efficient framework for investigating small-scale lensing, which would be
at the same time more practical and flexible than model-based approaches. In particular,
it is aimed at eventually being combined with large-scale cosmic lensing.

Small-scale structures are expected to manifest in the lensing equations as a very
rapidly fluctuating contribution to the source terms %, % . This is reminiscent of the
problem of Brownian motion, e.g., for a dust particle suspended in water due to the myriad
of collisions with the molecules forming the liquid. This phenomenon cannot be explained
by relying on a purely fluid description of water; one usually adopts a semi-microscopic
approach in which collisions are encoded in a stochastic force, mathematically modelled
by a white noise. We here apply the same idea to lensing, splitting its sources into an
average, slowly varying contribution and a stochastic contribution as

R = (R) + 0, (7.1)
W =W+ W, (7.2)

where the (X) terms stand for the lensing sources due to the mean universe and the large-
scale structure, while the §.X terms encode the effect of small scales. The present chapter
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only deals with the latter, i.e. to the diffusive behaviour of lensing, its combination with
the large-scale behaviour being left for future studies. Summarizing the results obtained
so far, we derived the Fokker-Planck-Kolmogorov equations governing the evolution of
the probability density functions of the lensing observables, and used them to deduce
general results on the mean and standard deviation of the angular distance. We then
tested the validity of our formalism by applying it to Swiss-cheese models. This allowed
us in particular to derive a post-Kantowski-Dyer-Roeder approximation, which turns out
to be in excellent agreement with ray-tracing simulations. Regarding the dispersion of
the angular distance, however, there can appear discrepancies between the predictions of
our stochastic lensing formalism and the output of ray tracing. We found out that those
discrepancies stemmed from the non-Gaussianity of the lensing sources, which therefore
seem to constitute the main limitation of the present approach. Despite this weakness,
the stochastic lensing framework opens a new window towards a precise and consistent
treatment of very small scales.
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Abstract. On the scale of the light beams subtended by small sources, e.g. supernovae, matter
cannot be accurately described as a fluid, which questions the applicability of standard cosmic
lensing to those cases. In this article, we propose a new formalism to deal with small-scale
lensing as a diffusion process: the Sachs and Jacobi equations governing the propagation
of narrow light beams are treated as Langevin equations. We derive the associated Fokker-
Planck-Kolmogorov equations, and use them to deduce general analytical results on the mean
and dispersion of the angular distance. This formalism is applied to random Einstein-Straus
Swiss-cheese models, allowing us to: (1) show an explicit example of the involved calculations;
(2) check the validity of the method against both ray-tracing simulations and direct numerical
integration of the Langevin equation. As a byproduct, we obtain a post-Kantowski-Dyer-
Roeder approximation, accounting for the effect of tidal distortions on the angular distance,
in excellent agreement with numerical results. Besides, the dispersion of the angular distance
is correctly reproduced in some regimes.
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1 Introduction

The understanding of light propagation in the Universe, in particular through the relation
between distances and redshifts, is central for the interpretation of almost all cosmological
observations. The standard approach consists in assuming that light propagates through a
strictly homogeneous and isotropic Friedmann-Lemaitre (FL) spacetime [1], assumed to be a
good model on cosmological scales.! Such a crude—but surprisingly efficient—approximation
can be refined by taking into account: (i) the actual non-comobility of both the light sources
and the observer; (ii) the gravitational lensing caused by the large-scale structure. This more
realistic description generally relies on the cosmological perturbation theory [5-7]. At first
order, it essentially introduces a dispersion of the distance-redshift relation with respect to the
background FL prediction [8-12], which can be partially corrected if a lensing map is known.
There was recently an interesting debate on the bias potentially introduced by second-order
corrections: based on the calculations of Refs. [13, 14] (see also Refs. [15-17] for earlier
results), Ref. [18] suggested that second-order lensing could significantly affect the standard
interpretation of the cosmic microwave background (CMB) observations. Nevertheless, this
statement turned out to be inaccurate, due to confusions between several averaging schemes
for the observable quantities at stake [19-22].

This problem of determining the effect of inhomogeneities on light propagation can
also been tackled in a nonperturbative way, e.g. by relying on toy models. The most
common examples are Swiss-cheese models [23, 24], where inhomogeneities are introduced
within a background FL spacetime by inserting spherical patches of another exact solution of
Einstein’s equation. Recent analyses generally exploit the Lemaitre-Tolman-Bondi (LTB) [25-
39] or Szekeres [40—43] geometries as interior solutions, which aim at describing large-scale
inhomogeneities such as superclusters or cosmic voids (see also Refs. [44, 45]). Observations
have also been connected to the cosmic coarse-graining and backreaction issues in the series
of works [46-54].

!See however Refs. [2-4] for a recent debate on this specific issue.
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All the above-mentioned approaches have in common that they describe matter in the
Universe as a fluid. However, when it comes to narrow beams, such as those involved in
supernova (SN) observations, this approximation should no longer hold.? The applicability of
the perturbation theory in this regime, in particular, has been questioned in Ref. [55]. This
specific issue of how the clumpiness of the Universe affects the interpretation of cosmological
observables was first raised by Zel’dovich [56] and Feynman [57]. The basic underlying idea is
that in a clumpy medium, light mostly propagates through vacuum, and therefore experiences
an underdense Universe. This stimulated a corpus of seminal articles [58-64], including the
first analyses based on a Swiss-cheese model with Schwarzschild vacuoles [65-70]. Contrary
to LTB or Szekeres holes, the latter aim at modelling relatively small gravitationally bound
structures, such as individual galaxies or stars. The analysis of light propagation in such
models resulted in the so-called Dyer-Roeder approximation—that we shall rather call the
Kantowski-Dyer-Roeder (KDR) approximation in this article, the name of Kantowski being
unfairly omitted in the literature. Its correspondence with Swiss-cheese models has been
carefully rederived and numerically checked in Ref. [71], although its mathematical consistency
was questioned in Refs. [49, 55]. Analyses based on other models than Swiss cheeses, albeit
physically similar in the sense that they also describe universes made of point masses, have
been proposed in Refs. [72-77]. When applied to the interpretation of SN data, these various
approaches generically do find a bias in the measurement of the cosmological parameters,
on the order of a few to more than ten percent [78-82]. It has been shown in Ref. [81] that
such an effect improves the agreement between SN and CMB observations regarding the
measurement of Q0.

While the KDR approximation may capture the main effects of the Universe’s clumpiness
on the average distance-redshift relation, it does not tell anything about its dispersion, and
a fortiori about its higher-order moments. Model-based approaches do not in principle
suffer from this weakness, but in all the works cited above, extracting e.g. the probability
density function (PDF) of the observed angular distance at a fixed redshift requires numerical
simulations which, because of their computational cost, lack of flexibility. A practical solution
was proposed with the sGL method of Kainulainen and Marra [83-85], in which weak-lensing
simulations have been maximally optimised so that generating 10°> mock observations only
takes a few seconds. This method has been applied to forecast to which extent future
SN observation campaigns, e.g. with the Large Synoptic Survey Telescope (LSST), would
be able to constrain cosmological parameters from the moments of the distribution of SN
magnitudes [86-89].

The goal of the present work is to propose an analytical and a priori non-perturbative
framework for determining the statistical impact of small-scale structures on light propagation.
Possible applications are the analysis of the bias and dispersion induced by these structures
on cosmological observables, non only for distances measurements but also, e.g., cosmic shear.
The main idea is that, on very small scales, the matter density field (i.e. the source of
lensing) can be treated a white noise, giving to lensing a diffusive behaviour. The equations
of geometric optics in curved spacetime then take the form of generalised Langevin equations,
which come with the whole machinery of statistical physics. Indeed, similar approaches have
been exploited in other domains of physics [90, 91], e.g., for describing the secular evolution
of the Solar system. This systematic treatment of lensing as a stochastic process allows us to

2The typical physical size of a supernova explosion is on the order of a hundred astronomical units, which
fixes the typical maximum cross-sectional diameter of the associated light beam. On such scales, the distribution
of matter in the Universe cannot be considered smooth.
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derive Fokker-Planck-Kolmogorov (FPK) equations for the PDF of the lensing observables,
such as the angular distance, on which we will particularly focus in this article.

The benefits of this new approach are multiple. Its analytical character potentially
provides a better physical understanding of small-scale lensing, together with avoiding to rely
on heavy ray-tracing simulations. It must be considered complementary to cosmic lensing
due to the large-scale structure, with which it is planned to be merged in the future, in order
to design a consistent multiscale description of lensing. Similarly to Refs. [86-89], we have in

mind applications to a better characterisation of the matter distribution within the Universe.

These various applications lie beyond the scope of the present article, which however proposes,
as starters: (i) an extension of the KDR approximation, and (ii) an analytical calculation of
the variance of the angular distance in an Einstein-Straus Swiss-cheese model.

The article is organised as follows. Section 2 provides a theoretical lensing toolkit, which
contains all the necessary material exploited in the remainder of the article, in particular the
Jacobi matrix and the optical scalars. Sections 3 and 4 are the heart of our approach: the
former presents our fundamental hypotheses; the latter derives the FPK equations governing
the PDF of the Jacobi matrix and of the optical scalars. Section 5 deduces general analytical
results from the FPK equations, in particular regarding the first two moments of the PDF of
the angular distance. In order to test our formalism, we apply it to a Swiss-cheese model, and
confront the associated predictions to numerical ray-tracing results in Section 6. Section 7 is
finally devoted to a second check of our calculations, based on the numerical integration of the
Langevin equation using the stochastic Euler method. It sheds some light of the connection
between the accuracy of our predictions and the Gaussianity of the sources of lensing.

2 Propagation of narrow light beams: two complementary formalisms

Consider a narrow light beam, that is an infinitesimal bundle of null geodesics, converging at
an observation event O. Among the geodesics of the bundle, we arbitrarily pick a reference
ray z#(v), where v is an affine parameter along the ray. The associated tangent vector
k* = dx# /dv represents the wave four-vector of the light beam. If we choose k as past oriented
(so v increases from O to the source), then the (cyclic) frequency measured by an observer
crossing the beam with four-velocity w is w = u#'k,. In this article, we set by convention v =0
at O, and normalise all frequencies with respect to the observed one w, = (uk,)|o = 1.

The behaviour of any ray x*(v) of the beam, relative to z#(v), is characterised by its
connecting vector £ = z# — zH. If an observer at ¥*(v) projects the beam on a screen,
spanned by the Sachs basis (see Appendix A), then the relative position of the two light spots
associated with ¥ and x* is a Euclidean two-dimensional vector (£A) A=1,2-

2.1 Jacobi matrix

The first standard tool for describing the effects of gravitational lensing is the Jacobi matrix,
whose evolution with light propagation is a second-order linear differential equation.

2.1.1 Definition

The Jacobi matrix is a 2 x 2 matrix D = [D4p] which relates the physical separation &4
(in screen space) between two rays with their angular separation £2(0)—a dot denotes a
derivative with respect to v—on the observer’s celestial sphere, according to

¢4 (v) = Dp(v) £5(0). (2.1)
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The determinant of D thus represents the ratio between the beam’s cross-sectional area A(v) =
d2¢(v) at v with its observed angular aperture Q, = d2¢. When evaluated at the source event
(v = vg), we recognise the definition of the (squared) angular diameter distance between the
source and the observer

A
det D(vy) = == = D3. (2.2)

Qo
We recall that, if the number of photons is conserved during their travel from the source to the
observer, then the angular diameter distance Dy is related to the luminosity distance—used

e.g. in the Hubble diagram of SNe—by the distance duality relation
Dy, = (14 2)*Da, (2.3)

which involves the redshift z = (ws — wo)/w, between the emitted and observed frequencies.
The other three degrees of freedom of D encode the deformations of the light beam,

i.e. the deformations between the intrinsic source’s shape and the observed image. This

information is conveniently extracted from D by the decomposition given in Appendix A.

2.1.2 Evolution: the Jacobi matrix equation

Because D describes the relative behaviour of two neighbouring light rays, its evolution with
light propagation (i.e. with v) is inherited from the geodesic deviation equation; it results
into the following second-order linear Jacobi matrix equation [92]

D =R(v)D(v) (2.4)

where Rap = Ru,,pgsik’”kps% is called the optical tidal matrix, and (si)A:Lg denotes the
Sachs basis. The optical tidal matrix is symmetric due to the symmetries of the Riemann
tensor R,,p0. The decomposition of the latter into a Ricci (trace) part and a Weyl (trace-free)
part implies, for the optical tidal matrix,

R=Z1:+W, (2.5)

1, standing for the 2 x 2 unity matrix, while

1
R =~ Rk k" (2.6)

Wap = ul/pasikukps%a (27)

where R, and C,,,; denote respectively the Ricci and Weyl tensors. It is straightforward to
check that W is trace free, and can thus be written as

— 1
W= < Zl Zf) o with W5 = = = Cue(h — SRS —is8) (2.8)

The Ricci term, on the one hand, is directly related to the local energy-momentum density via
the Einstein equation, Z = —4nGT,, k*k" < 0 (under the null energy condition); it translates
the isotropic focusing effect caused by smooth matter enclosed by the light beam. The Weyl
term, on the other hand, essentially encodes tidal distortion effects, due to matter outside the
beam, which tends to shear and rotate it.
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The initial conditions (v = 0) for Eq. (2.4) are by definition [see Eq. (2.1)]

D(0) = 02 (2.9)
D(0) = 1, (2.10)
so that, near the observer (v — 0), the Jacobi matrix admits the expansion
o3
D(v) =vly+ §R0+(’)(v4). (2.11)
It also implies, using that for any matrix M, det(1 +eM) =1+ etrM + O(e?),
o3
Da(v) =v+ 31 Py + O(vh). (2.12)

2.2 Optical scalars

A standard alternative to the Jacobi matrix consists in a set of optical scalars, describing the
deformation rate of the beam rather than net transformations. The resulting light propagation
equations (Sachs equations) are a set of first-order nonlinear equations.

2.2.1 Definition

The deformation rate of the light beam is naturally defined by a logarithmic derivative of the
Jacobi matrix, namely through '
S=DD . (2.13)

This deformation rate matrix can be shown to be symmetric, because of the symmetry of R,

and is thus decomposed as
(00 —01 09
5= (0 0) i ( v 01) , (2.14)

where 0 and 0 = 01 + io2 are the optical scalars, respectively called the expansion rate and
the shear rate. The first one is directly related to the increase rate of the angular diameter
distance, since d(Indet D)/dv = trS, i.e.

= g‘:. (2.15)
2.2.2 Evolution: the Sachs scalar equations
Inserting the definition (2.13) into Eq. (2.4) yields the evolution equation for S,
S+82=R, (2.16)
from which the Sachs scalar equations follow:
046>+ o> =% (2.17)
c+200=%. (2.18)
Using that 6 = Dy /Da, the above equation yields the so-called focusing theorem
Da = (% — |o*)Da, (2.19)
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where we see that, while Ricci lensing has a direct focusing effect which tends to reduce Da,
Weyl lensing has a similar but indirect effect, via the shear rate.

The initial conditions for the optical scalars are nontrivial, because D vanishes for
v = 0, which implies that & must have a pole at the observation event. Precisely, the initial
behaviour (2.11) of the Jacobi matrix yields

1

S)=[1a+0wH] [vl +OW*)] " =v "1+ O(v), (2.20)

and we conclude that the initial conditions (v — 0) for the optical scalars are

O(v) = % + O(v), (2.21)

o(v) = O(v). (2.22)

Hence only the expansion rate has a pole at v = 0, while the shear rate is regular.

3 Small-scale lensing as a diffusion process

We now focus on the specific issue of lensing caused by the small-scale inhomogeneity of the
Universe, i.e, down to scales where the matter distribution experienced by the light beam
cannot be considered a continuous medium, but rather by a multitude of mass clumps that all
slightly distort it. This situation is analogous to the Brownian motion of a particle suspended
in water, where a macroscopic—continuous-medium—description of the liquid is no longer
sufficient, and must be replaced by a semi-microscopic approach in order to account for the
collisions between the particle and water molecules.

The approach developed in the present article is based on this analogy. Just like in the
standard treatment of the Brownian motion, where particle-molecule collisions are modelled
by a stochastic force, we propose to introduce stochastic terms in the lensing scalars %, # .
The equations governing light propagation will thus take the form of Langevin equations.

3.1 Fundamental hypotheses

We split the Ricci and Weyl lensing scalars experienced by the light beam into a deterministic
part representing their average, slowly varying behaviour, and a stochastic part modelling
their rapid fluctuations:

R = (R) + 6%, (3.1)
W= W)+ W,

where (...) is an ensemble average, and (0Z) = (0#') = 0. All these quantities are in principle
functions of the affine parameter. Note that, despite the notation, 6% and 0% are not
necessarily small with respect to (#) and (#'), they are not dealt with as perturbations. The
deterministic components can be thought of as the optical properties of an average universe,
in the sense e.g. of Ref. [54]—a notion which may not coincide with a spatial average, or with
a FL model.

We now make the following hypotheses:

Azimuthal symmetry about the beam. We suppose that the Universe is statistically
homogeneous and isotropic, which implies statistical symmetry with respect to rotations
about any light beam. This motivates us to assume that the direction along which a
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beam is sheared is independent from the shear amplitude. It is also independent from
Ricci focusing. In other words, decomposing the Weyl lensing scalar as # = |# e~ 27,
we assume that f is statistically independent from |#'| and #. However, we emphasize
that |#/] is not independent from Z.

Statistical isotropy. We suppose that the Universe has no preferred (spatial) direction,
which implies that 8 must be uniformly distributed in [0, 7]. As a consequence,

o) = (7)) (%) =0, (3.3)

where we have also used our first hypothesis. We can thus omit the § in the stochastic
part of #'. Furthermore, for any v, w

R0 (w)]) <e*215<m> —0, (3.4)

(02 ()W (w)) = (
= (|7 (v)|?*) (sin4B(v)) = 0. (3.5)

4]
i) W50) =

White noises. Because they model rapidly fluctuating functions, the coherence scale of
0% and # is much smaller than the typical evolution scale of the Jacobi matrix, of
the optical scalars, and than the typical distance between the source and the observer.
Therefore, they can be considered white noises, i.e. d-correlated Gaussian random
processes>, with

(0Z(v)0 R (w)) = C(v)d(v — w) (3.7)
Cy (v)dapd(v —w), (3.8)

N
O
N
S
I

where the d 45 in Eq. (3.8) comes from statistical isotropy. The functions Cy, Cy shall
be called the covariance amplitudes of Ricci and Weyl lensing. Gaussianity, which is
motivated by the central limit theorem, ensures that 6% (v) [resp. # (v)] and 6% (w # v)
[resp. # (w # v)] are not only uncorrelated, but also independent.

Physically speaking, the covariance amplitude C'x of the white noise X (¢) modelling
a physical process Xpnys(t) must be understood as Cx ~ ((5Xphys)2AtCOh, where 6 Xppys is
the typical fluctuation amplitude of Xy, while Atcy is the scale on which it remains
coherent. For classical Brownian motion, this scale corresponds to the duration of a typical
particle-molecule collision; in gravitational lensing, it will represent the typical extension of
a gas cloud/dark matter halo (Ricci lensing), or the affine-parameter length over which the
beam undergoes the tidal influence of a given deflector (Weyl lensing).

In principle, the deterministic components (%) and (#') could also allow for the large-
scale structure of the Universe (cosmic voids, walls, and filaments). For simplicity, we do
not consider this possibility in the present paper, and focus our attention on the rapidly

3 A random process t +— X (t) is Gaussian if any of its finite-dimensional probability distributions is a
multivariate Gaussian,

1 < -
DPty,...tn (CL‘17 .. .LEn) X exp (2 Z micij1$j> s (36)
i,j=1

where Ci; = C(ti, ;) = (X (t;) X (t;)) is the covariance of the process, and C~' denotes its inverse. A white
noise corresponds to the limit where C(;,t;) o< §(¢i,t;). Hence, for a white noise, X (¢1) and X (t2 # ¢1) are
independent.
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fluctuating terms. It will be convenient, in the following, to gather them into a 3-dimensional

noise vector IN such that
N = (6%, 71, %5). (3.9)

We also introduce the diffusion matriz Q of N, defined by? (N (v)NT(w)) = Q(v)d(v — w),
which here reads

Q = diag(C, Cy, Cy). (3.10)
3.2 Langevin equation for the Jacobi matrix

The Jacobi matrix equation (2.4) reads
D= (%)D+ (6% +W)D, (3.11)

where we have separated the deterministic and stochastic terms on the right-hand side. It is
analogous to a system of coupled harmonic oscillators with fluctuating stiffness. Some further
insights on this dynamical system can be obtained thanks to a Hamiltonian formulation

: OH
Dap =Pap =
OPas (3.12)
g Mine _ _OH '
AB — DAB = ODAB AB
with 1
= Str (P™P - (%) D'™D), N =(6%12+W)D, (3.13)

and where the Hamiltonian H encodes only the non-stochastic part of the process. Such a
dynamics is very similar to the integrable systems with stochastic perturbations discussed
e.g. in Ref. [90], except that (i) due to the explicit v-dependence of H, through (%), the
unperturbed system is not fully integrable; and (ii) the stochastic term N contains the
variable D: the noise is multiplicative. This analogy with dynamical systems in statistical
mechanics also provides a nice interpretation of the deformation rate matrix S: as a Ricatti
variable associated with D, it defines the so-called Kolmogorov-Sinai entropy of the random
process, hks = tr(S).

Let us now put the Jacobi matrix equation in the form of a first-order Langevin equation,
which will be useful for deriving the associated Fokker-Planck-Kolmogorov equations in Sec. 4.
For that purpose, we first need to vectorise the Jacobi matrix as

D = (Da)ae{l...4} Wlth DAB = D2(A—1)+B; (314)

in other words, we represent the couples of matrix indices (AB) by one single index «, so
that 1 = (11), 2 = (12), 3 = (21), 4 = (22). We then construct an 8-dimensional vector
JT = (D, D), whose dynamics is described by the Langevin equation

dJ
where the drift matrix is
0, 14
M = , 3.16
o) (319

4Equivalently, the diffusion matrix can be defined from the increments of the Brownian motion B associated
with IV, i.e. such that dB = Ndv. Between v; and vg, the increment of B is AB = B(v2) — B(v1), and its
variance reads <ABABT> = QAv, with Av = vy — v1.
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and the noise-mizring matrix reads

04x3 04x3
Dy —D1 D3 D11 —D11 Doy
LJac = D2 —D2 D4 = D12 —D12 D22 . (317)
D3 D3 D Do1 Do1 D11
Dy Dy Do Doy Doz Do

Equation (3.15) is linear, with a multiplicative noise.

3.3 Langevin equation for the optical scalars

A similar procedure can be achieved for the optical scalars. The Sachs equations (2.17-2.18),
together with the relation (2.15) between the angular distance and the beam’s expansion rate,
form the system

DA = 60Day, (3.18)
0=—0%—|o|* + (R) + 6%, (3.19)
b=-200+¥, (3.20)

which, defining the 4-dimensional vector ST = (D, 0, 01, 02), becomes the Sachs-Langevin
equation

ds

e F(v,S)+ LgcaN (v), (3.21)
where the drift term reads FT = (0Da, —602 — |0|* + (%), —2001, —2003), while the noise
mixing matrix is
000
100
010
001

Lo = (3.22)

Contrary to Eq. (3.15), Eq. (3.21) has a nonlinear drift term (which reflects the nonlinearity
of the Sachs scalar equations), but its noise is additive, in the sense that the stochastic term
Lg..1IN is independent of the variable S.

4 The lensing Fokker-Planck-Kolmogorov equations

The presence of stochastic terms in the optical equations gives a diffusive behaviour to the
lensing observables, which can be quantified by their PDFs. When a dynamical system is ruled
by a Langevin equation, its PDF in phase space satisfies a partial differential equation called
the Fokker-Planck-Kolmogorov (FPK) equation. In § 4.1, we recall the general procedure to
derive the FPK equation associated with a Langevin equation; we then apply it to the Jacobi
matrix (§ 4.2) and to the optical scalars (§ 4.3).

4.1 From Langevin to Fokker-Planck-Kolmogorov

Consider the following general Langevin equation governing the evolution of a n-dimensional
random process t — X (1),

dX

& = T(X. D+ LX )N(1), (4.1)
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where the n-dimensional vector f and the n x n matrix L are deterministic, while IV is a
white noise. One can easily see that both our Langevin equations (3.15) and (3.21) have this
form, the affine parameter playing the role of time ¢, and the random process being either J
or S. The mathematical difficulty of Eq. (4.1) is that it cannot be treated with the ordinary
theory of differential equations, because N (t) is discontinuous everywhere. In general, the
solution of Eq. (4.1) is not unique, even for a given realization of N.

A standard approach [94-99] consists in introducing the Ito calculus, the main properties
of which we summarise below. One can formally integrate Eq. (4.1) as

X() - X(to) = [ f(X.0) dt+/tL(X,t) N(t)dt, (4.2)

to to
where the second integral requires particular attention, because the Riemann or Lebesgue

definitions cannot apply, due to the unboundedness and discontinuity of INV. First, it must be
reformulated as a Stieltjes integral

/t L(X,t) dB (4.3)

to

where B is a Brownian motion, i.e. a stochastic process whose any increment ABy = B(tg41)—
B(ty) is a zero mean Gaussian random variable with variance <AB;€ABE> = Q(tk, tg+1) Aty
Q is called the diffusion matriz of B. The white noise IN is thus considered a formal derivative
of the Brownian motion B, i.e. dB = Ndt. One possible definition for the integral (4.3)
follows the so-called Ito stochastic prescription [100],

n—1

/t L(X,t)dB = lim > LIX (t), ti] [B(ti1) — B(t)]- (4.4)
to k=0

n—o0

This definition leads to some modifications with respect to ordinary differential calculus
when B is involved. For example, it can be shown by calculating explicitly the Ito integral of
Bde] that d(Bsz) = BZdB] + B]dBl + Qijdt, which implies

dBdB" = Qdt. (4.5)

The above quantity is thus of order 1 in d¢, contrary to what we would naively expect by
replacing dB by Ndt. Equation (4.5) is the most important rule of the Ito calculus. As a
consequence, the first-order Taylor expansion of any function ¢ (¢, X) must actually include
second-order terms oc dX; dXj, since

dX = f(X,t)dt + L(X,t)dB, (4.6)
contains dB. More precisely,
09 1010 ' 0%¢ v
d¢ = Edt + ax, dX; + IX,0X, dX;dX; (4.7)
(09 % 9
= <8t lekaL]l) dt + T&dX“ (48)

which is known as the Ito formula [94-100] .

~10 -
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From the Ito formula, one can deduce the Fokker-Planck-Kolmogorov (FPK) equation
governing the PDF p(t; X)) of the stochastic process X (¢). The derivation [95, 97| relies on a
trick which consists in inserting Eq. (4.8) in the time derivative of the expectation value of an
arbitrary function ¢(t, X),

@)1= [ ot X)p(t: X) X, (4.9)
which, after a few integration by parts, yields

ap(t; 9 ’
p(t; X) [fi(X7t)p(t;X)]+;W

- e {[EX)QMLT(X, 0], p(t: X) } . (410)
The first term on the right-hand side is a drift term, it drives the global displacement of the
probability packet, while the second is a diffusion term, which tends to spread it. With this
summary of textbook results [94-100] we wish to emphasize that the derivation of the FPK
equation requires the noise to be white, i.e. N = dB/dt where B is a Brownian motion, so
that the Ito calculus can be applied. The hypotheses formulated in § 3.1 are therefore crucial
for this formalism to be applicable.

4.2 FPK equation for the Jacobi matrix

Let us now derive the FPK equation governing the PDF of the Jacobi matrix. Applying the
general formula (4.10) to the Langevin equation (3.15) leads to the following equation for the
PDF p(v; J),

op 0 1 0

—— (M z

% o aj [(LJ&CQLJTac)abp] ) (411)

where the indices a,b run from 1 to 8. Using the explicit expression (3.17) of Lj,e, we can
write the matrix involved in the diffusion term as

Ly QLT = {gj (H : (4.12)
where the components of the 4 x 4 symmetric matrix I' are
T = (Cz + Cy)DF, + Cy'D3y
I'i2 = (Cz + Cy)D11D1g + CyDa1 Doy = Ty
'3 = C4Do1 D11 =3y
'y = (Cz — Cy)D11 D2 + Cy Do D1 = 'y
Ty = (Cy + Cy)Diy + Cy D,
Ia3 = (Cz — Cy)D12D21 + CyD11Daz = I3z
oy = C4D12D2g = g2
33 = (C + Cy)D3; + Cy'Diy
'3y = (Cz + Cy)D21Da2 + CyD11D12 = Ty3
Ty = (Cz + Cy)D3y + CyDy. (4.13)

11 -
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A few calculations and reorganizations yield the following explicit form of the FPK equation
of p(v; J) = p(v; D, D),

dp : dp Ip
Z—_D —(R) Dpp—
ov ABBDAB () ABZ?DAB
+ 2100 anber + Cp (5acdpr — eacenr) DisD O (4.14)
9 % OAEOCF W\ \OACOEF ACEEF EBYFD 8DA38'Z')CD .

where € 4p is the two-dimensional antisymmetric matrix with €12 = 1. Equation (4.14) can
also be rewritten in an elegant formal way as
2
oD

[ (570 e (o) 4 O
@v_{ tr<’D (9’D> <%’>tr<’D 8’b>+ 2tr

G [o (o )| - evan (o7 ) e ars

which involves in particular the 2 x 2 matrix differential operator

<DT6.> =Dcy o (4.16)
oD ) ap D

Finally, the boundary condition for Eq. (4.14) is deduced from the initial conditions (2.9),
(2.10), and reads ‘ .
p(0; D, D) = 6(D)5(D — 12). (4.17)

4.3 FPK for the optical scalars
Regarding optical scalars, starting from the Langevin equation (3.21), one can derive the
following FPK equation for p(v; S) = p(v; Da, 0,01, 02),

o _ OFp 1 &
v 05, | 205,09

[(LSC&lQLsTcal)agp} : (4.18)

where «, 8 run from 1 to 4, and where the diffusion term reads

00 0 O
+ _locy 0 0
LSC&lQLscal_ 0 0 C‘/// 0 (419)
0 0 0 Cyp
It follows that Eq. (4.18) takes the explicit form
dp ODap | O [(p2 2 doip | Doap
i . =z - p
o0~ " aDs T o0 (7 +1o = )] o] +20 801 | B
Cp0®p Cy (0% 9%p
—_— 4+ — . 4.2
TSt 2 e Tae2) | 420

The initial condition for # being singular, it is not possible to write a boundary condition for
Eq. (4.20) as we did for Eq. (4.14).

- 12 —
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5 General analytical results

Because it is a partial differential equation, the FPK equation is generally impossible to
solve analytically, except in a few known special cases [99]. Nevertheless, it can be used to
derive evolution equations for the moments of the PDF, some of which are solvable. In this
section, we derive some general analytical formulae on the moments of lensing observables.
The results for the Jacobi matrix (§ 5.1) and for the optical scalars (§ 5.2) will turn out to be
complementary, and used for deriving an evolution equation for the variance of the angular
diameter distance in § 5.3.

5.1 Moments of the Jacobi matrix distribution

The Jacobi matrix formalism has this considerable advantage on the optical scalar formalism
that it enjoys a linear Langevin equation. Despite the fact that its noise is multiplicative,
this implies that all the moments of order-n of the PDF of D satisfy a closed system of
differential equations. It is not the case when nonlinearities are present, in which case emerges
a hierarchy of equations, where the evolution of the lower-order moments depends on moments
of higher-order.

5.1.1 Order-one moments

Let us start by deriving the evolution equations for the expectation values (D) and (D). We
proceed by multiplying the FPK equation (4.14) by Dy (or Dry) and then integrating it with
respect to D and D. For Dy, this procedure yields

d . ODapp . ODapp :
— | D d4Dd4’D:—/D 22X DA D - (% /D — 252 P*Dd*D
& [P g @) [ D1
1 2 .
+ = /DIJ-- {[C% da80cF + Cy (5acdrF — eacerr)| PepDrp p} d*DA*D.
2 0DAp0Dcp

(5.1)

The left-hand side is clearly d(Dr,) /dv. On the right-hand side, the first term can be
integrated by parts to give (Dys); the other two vanish since they can both be written as the
integral of a derivative with respect to Dap. Equation (5.1) is thus simply

d (D) .
= (D 2
S (D) (52)
as one can intuitively expect. ‘
The same method applied to Dy leads to
d(D)
= (%) (D 5.3
Sl o)), (53)

so that the expectation value of the Jacobi matrix reads

d*(D)

= () (D). (5.4)

Note that this result could also have been obtained by directly averaging the Sachs-Langevin
equation. However, this naive method would not work for higher-order moments, which is

~13 -
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why we preferred to directly use a rigorous technique for deriving the evolution equation for
the expectation value of D.

It is tempting to conclude that the average angular diameter distance (D) satisfies
Eq. (5.4) as well, but such an assertion would be wrong, because Dy = v/det D is a nonlinear
function of the components of the Jacobi matrix.

5.1.2 Order-two moments

We apply the same method to get evolution equations for the order-two moments of D. This
leads to the following closed system of equations

S (DasDep) = (DasDep) + (DasDen) (5.5)
L (DanDen) = (DanDen) + (@) (DasDen) (5.6)
%(bAB@Cw = (%) ((DABDCD> + <DABT>CD)) + C% (DapDcp)

+ Cy (0acOrr — cacerr) (PesDrp) (5.7)

which consists of 10 + 16 + 10 = 36 independent equations for the quantities (DapDcp),
<7>ABD0D> and (ZjABDCD>. By combining the second derivative of Eq. (5.5) with the
derivative of Eq. (5.6) and Eq. (5.7), we can eliminate the moments (D45Dcp) and (DapDep),
in order to end up with a closed system for (DspDcp),

a3 d d{#
T8 (DapDcp) = 4(Z%) e (DapDcp) +2 (év> + Cge) (DaDcp)

+2Cy (0acOrr — cacerr) (DesDrp), (5.8)

which consists of 10 independent third-order differential equations. We shall not try to solve
this system, but rather extract from it information on the angular distance.

5.1.3 Application to the squared angular distance

The square of the angular distance is the determinant of D, hence quadratic in its components.
Its expectation value,

(D}) = (det D) = (D11Da2) — (D12Da1) (5.9)

is therefore ruled by Eq. (5.8). Applying it for ABC'D = 1122 and ABC'D = 1221, we have

a3 d d(2) ,

@ <D11D22> =4 <<@> a <D11D22> +2 <d’U + Cg) <D11D22> —2Cy <DA> , (510)
d3 d d{(#

103 (D12D21) = 4(Z%) e (D12D21) + 2 <c<1v> + Cﬂ’) (D12Dg1) +2Cy (DR),  (5.11)

which, by subtraction, yields the following equation for <Di> only,

T _ 4 L) 15 (194 0y 20 ) (3). (512)
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To our knowledge, it is the first time that such a general exact equation for the evolution of
the dispersion of the angular distance in an inhomogeneous universe is derived.

Solving this differential equation requires initial conditions for <Di> and its first and
second derivatives. They are easily obtained from the Taylor expansion (2.12) of Dy for
v— 0,

d(D})

dv?

(0) =2. (5.13)
Equation (5.12) can also be elegantly rewritten in terms of a variable x defined by

dv
Dj(v)’

dz = (5.14)

where Dg(v) is the background angular distance, i.e. satisfying Dy = (%) Dy. It is indeed
straightforward to show that the differential operator involved in Eq. (5.12) reads

d3 d @) _ &

— =4 — 4+ 2 — D72 1
dov3 () dv + dv 0 qa370 (5.15)
so that
d* ((D}) " ;
a3 ( D2 > =2Dq (Cz — 2Cy) (DX) - (5.16)

Though formally simpler, this alternative form of Eq. (5.12) cannot be used for numerical
integration, because z is singular at the observation event—Dg(v,) = 0—usually chosen as
initial condition.

5.1.4 Expectation value of a general function

More generally, by multiplying the FPK equation with an arbitrary function F(D, ’D) and
integrating the right-hand side by parts, we obtain

d(F) /. oF oF
dv <DAB(973AB > %) <DAB GDAB>

1 O*F
4+ = |Cpda0cr + Cy (0acOEF — €aCE DegDrp ———— ). (5.17
5 <[ % 0aE0cr + Cy (6acdpr — eacerr) |PeBDrD 8DA33D0D> (5.17)

If F is an order-n monomial of the form F = DPD?, with p 4+ ¢ = n, and where DP stands
for any product of p components of the Jacobi matrix, then the left-hand side of Eq. (5.17)
is d(DPD?) /dv, while the three terms on the right-hand side are respectively of the form
(Dp—1patly (prHIPa—1y and (DPH2DI2), so they are all order-n moments. This confirms
what we claimed in the introduction of this section, namely that order-n moments form a
closed system of differential equations.

5.2 Moments of the optical-scalar distribution

Contrary to the Jacobi matrix, the optical scalars satisfy a nonlinear Langevin equation. An
important consequence on the associated FPK equation (4.20) is that it generates an infinite
hierarchy of evolution equations for the moments of the distribution p(v;.S). For instance, if

~15 —
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one is interested in computing the average angular distance (Dj), then Eq. (4.20) generates
(using the same technique as in § 5.1)

d

o (D) = (0Da) (5.18)
L(0Dx) = ~(lo* Da) + () (D) (5.19)
;7)< o> D) = —3( |02 0Da) + 2Cy (DA), (5.20)

where the evolution of an order-n moment systematically involves order-(n + 1) moments.
Clearly, such a system cannot be solved analytically, and requires a perturbative approach to
be dealt with. A first possibility consists postulating a closure relation for the hierarchy at a
given order, but such a method does not seem particularly adapted to the present situation,
because the physical meaning of the underlying approximation is unclear, and therefore poorly
controlled.

We choose instead to perform a perturbative expansion with respect to the shear rate o,
that we assume to be a small quantity. In the following, we focus on the average angular
diameter distance (D), and determine its evolution at first and second order in |o|?.

5.2.1 First-order perturbative expansion

We decompose the angular distance and the expansion scalar as

Da = Do+ Dy, (5.21)
0 =60+ 01, (5.22)

where Dy, already introduced in § 5.1.3, is the solution of Dy = (#) Dy, and 0y = Dy /Dy
is the corresponding expansion rate; both are deterministic quantities. We assume that the
stochastic quantities D;,#; are small, in the sense that their probability distributions are
concentrated on values much smaller than Dy, 6y respectively.

We then expand Eq. (5.18) and the following two equations, generated by FPK,

Loy =)~ (o) + (), (5.23)
S {lo®) = ~a{6lo) + 20y, (520

at first order in D1, 61, |0|2, which gives

d 559 — 60 (D) + (61) Dy (5.25)
LOD o t00) ~ () (5.26)
‘“(‘fp — —46y(|o]?) + 2Cy, (5.27)
whence
(1) _ <D1> _ v dv1 u1 dvg v2 v 4 v v
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which represents the relative correction between (D) and Dy at first order in Weyl lensing.

Note that, again, the above result naturally exhibits the integration measure D 2dv = duz, it
can therefore be rewritten as
d3 5(1)

D
deA = —2DSCy . (5.29)

5.2.2 The shear rate at first order

From Eq. (5.27) we have deduced the following expression for the variance of the shear rate,

oy =2 [ aw [P0 ¢y ), (5.30)

at first order. Let us simply mention that, to this order of approximation, we can easily obtain
the full PDF of 0. Linearizing the second scalar Sachs equation (2.18), we indeed get

&= 2000 + W + O(c?). (5.31)

which is identical to the historical Langevin equation for diffusion. The associated FPK
equation for the PDF p,(v;0) is easily shown to be

Opo do1ps | doaps\ | Cy (Pps  0°py

— =26 — . 5.32

=20 (G G )+ 5 (Gt 5
It can be solved by (i) using a polar description for ¢ = oy + igy = |o|e'?, then (ii) using

the statistical isotropy assumption that implies p,(v;o1;02) = f(v, |o|), and (iii) performing
simple changes of variable to recover a standard diffusion equation. The result is a Gaussian
distribution, describing a 2-dimensional random walk with nonconstant diffusion coefficient,

po(v;0) = _ exp (—‘0‘2> (5.33)
’ m(|of*) (v) (o]*) (v)

where (|o]?) is given by Eq. (5.30).

5.2.3 Second-order perturbative expansion

In § 5.1.3 we derived an evolution equation for (D?Q, while § 5.2.1 provided an expression for
(Da). Subtracting the results should therefore lead to the variance of the angular diameter
distance. However, the first-order expansion performed in the previous paragraphs is not
sufficient for that purpose. This can be understood the following way: if Dy = Do+ 6D, then

var(Da) = (D) — (Da)* = (6D?) — (5D)? (5.34)

involves second-order quantities, neglected in § 5.2.1. In this paragraph, we therefore expand
the equations governing the evolution of (Da) up to second order in (|o|?), i.e. formally up
to second order in Cy .

We start back from Eqgs. (5.18), (5.19), (5.20), which can be gathered as

;; <<gﬁ>> = —2Cy D§ (Da) + 3D |o|”* DA (6 — 6p)). (5.35)

17 -
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The difficulty now consists in evaluating the last term. First note that, since it is already a
second-order quantity,

{|o]> Da(6 — 00)) = Do{ |a|* 61) + O(C)). (5.36)
Let us then write
(lo*02) = (lo* )(01) + (lo*6) = (|o]* )(0) - (5.37)
Sy

The first term on the right-hand side can be expressed using the first-order results of § 5.2.1,
which, using the x variable, take the simple form

25(1)
(lof*) = =Dy~ +0(C3), (5.38)
WL
(61) = Dy dr +0(Cy). (5.39)

Evaluating the cross-correlation term I'y, can be achieved by using again the hierarchy
of moments generated by the FPK equation. Combining Egs. (5.23), (5.24) with

%(9 0]*) = =5(6* o> ) — {|o|*) + (&) { |o|* ) +2C(0), (5.40)

we get '
oo + 60005, = (0?2 = (|o*) + O(C3)), (5.41)

where we have expanded the higher-order correlator (82 |o|*) as 82(|o|*) +200 (01 |o|*) +O(Cy).
Now, by comparing the evolution equations for (|o|?)2 and (|o|*), which are

d 2
2 {lel”) = =801o* )(lol*) +4Cy (lof*), (5.42)
d
o {lol") = =80 ol") +8Cy (lo*), (5.43)
we conclude that (jo|*) = 2(|o|*)? at leading order. Note that this result coincides with

the predictions of the Gaussian distribution (5.33) obtained for ¢ in the previous paragraph.
Hence Eq. (5.41) is solved as

- —D0_6/ dw D§{ |o|* >2 +0(C3) (5.44)
0
x d258)
—6
=—-Dj j da’ ( dm2A> +0(C3), (5.45)

where we used Eq. (5.38). The lower bound “0” of the latter integral is formal, because
variable x is singular for v = 0. This was the last missing piece to the differential equation
governing the evolution of (Dja) at second order in Cy,

& [ (Dy) (Dy) _def) a2 e (@D
( >+20WDS — 3 DPa” Da —3/ da! | B | +0(C)). (5.46)
o

dz3 \ Dy Dy dr da2 22
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In terms of an expansion of the form Da = Dy + Dy + D5, and defining the second-order

mean correction 553211 = (Dq) /Dy to the angular distance, the above result reads

2
d35g) d(;(l) d25(1) T d25(1)
A _ Da Da / Dy
BT B B Pl Bt / da’ | 4| <o (5.47)

5.3 Variance of the angular distance

We now have enough material to propose an approximate evolution equation for the variance
of the angular distance. On the one hand, we have obtained in § 5.1 the following exact
equation for <Di>,

@ ((D3) (D3)
dx3< D%\ ) +2D5 20y — Cz) D—‘g =0. (5.48)

On the other hand, the second-order Eq. (5.46) is easily turned into an equation for (Dy)?,

2
P <<D10*>) +4Cy D <<D10*>) = —6/ da’ ( dng +0(C3). (5.49)
By subtraction, we finally obtain
2
d3 [var(Da) 6 var(Day) 6 v, 2 Sl 3
@ Tg + 2D0(2C7/ - C@)Tg = 2C%DO +6 A dx dz? + O(ny),
(5.50)

where we recall that do = Dy 2dv, and that the third derivative d®/dz? is given by Eq. (5.15).

We see that both Ricci lensing and Weyl lensing drive the variance of Da. This can be
easily understood from the focusing theorem (2.19), where # is the main driving term, which
explains why Cg appears directly on the right-hand side of (5.50); #, on the other hand,

affects D only indirectly, via |o|*. It is the reason why d%gi /da? o (|o|?) is also present on
the right-hand side of Eq. (5.50).

It is remarkable that this result on the variance of Dj required the use of both the
Jacobi matrix and the optical scalars. Although they are completely equivalent formulations,
it would have been much more painful to derive Eq. (5.50) by using exclusively one of them.

6 Application to a Swiss-cheese model

The stochastic lensing formalism developed throughout Secs. 3, 4, and 5 depends on three
free functions: the average Ricci focusing (#) (v), and the two covariances amplitudes C(v),
Cy (v) which need to be specified, or deduced from a spacetime model, in order to draw
any physical conclusion. In this section, we propose an application of this formalism to
Swiss-cheese (SC) cosmological models. Our goal is twofold: on the one hand, it provides an
explicit example about how stochastic lensing can be applied, and of the involved calculations;
on the other hand, it allows us to test its validity, by comparing its analytical predictions
with the numerical results of a ray-tracing code for SC models, which was developed by one
of the authors and used in Refs. [71, 101]. As a byproduct, we also obtain an improvement of
the Kantowski-Dyer-Roeder approximation, which allows for shear.
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6.1 The Einstein-Straus Swiss-cheese model

We consider here an Einstein-Straus [23, 24, 102-104] SC model, where individual masses,
whose vicinity is characterised by the Schwarzschild solution (or the Kottler solution, for
a nonvanishing cosmological constant), are embedded in an expanding homogeneous and
isotropic Universe, forming spherical holes within the Friedmannian cheese. This model aims
at describing static, gravitationally bound objects, such as stars, galaxies, or clusters of
galaxies, and is therefore more adapted to the problematic of small-scale inhomogeneities
tackled here than LTB [105, 106] or Szekeres [106, 107] Swiss-cheese models.

6.1.1 Spacetime geometry

Let us briefly summarise the main geometrical properties of the Einstein-Straus model—more
detailed explanations can be found, e.g., in our previous works [71, 101]. Consider one hole
of the SC, whose centre is taken to be the origin of the coordinate system, without loss of
generality. On the one hand, the metric of the exterior region is

dR?

2 2 2

+ R? dsz?} , (6.1)

with dQ? = d#? + sin? @dp?, K = cst, and where the evolution of the scale factor a with
cosmic time T is ruled by the Friedmann equations, in particular

1da\? 8tGpy rap\3 K A
2 = - — — - —
H _<adT> 3 (a) a2+3’ (6.2)

where pg is today’s mean density of matter, modelled by a pressureless fluid. The cosmological
parameters quantifying the relative importance of matter, spatial curvature, and cosmological
constant in the expansion dynamics are respectively Qy, = 87Gpo/(3H?), Qx = —K/(aH)?,
and Qx = A/(3H?). The interior geometry is, on the other hand, given by the Kottler (or
Schwarzschild-de Sitter) metric

ds? = —A(r)d2 + AN () dr? +02dQ%  with A(r)=1-2—-=— (6.3)

and where rs = 2 GM 1is the Schwarzschild radius associated with the mass M at the centre
of the hole.

The metrics (6.1) and (6.3) are glued together on a spacelike hypersurface corresponding
a comoving sphere (the boundary of the hole), hence defined by R = R}, = cst in terms
of exterior coordinates, and r = r,(¢) in terms of interior coordinates. The Darmois-Israel
junction conditions [108-110] then impose

r(t) = a(T) Ry, (6.4)
M = %poRﬁ. (6.5)

Equation (6.5) must be understood as follows: the mass M at the centre of the hole is identical
to the one that should be contained in the sphere of comoving radius Ry, if the latter were
homogeneously filled with the same comoving density pg as the exterior.
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6.1.2 Optical properties of each region

Within the cheese, since the FL metric is conformally flat, light rays follow straight lines
in terms of a suitable coordinate system. The cyclic frequency of the associated wave, as
measured by a comoving observer (with four-velocity dr), and normalised by the observed
frequency at O, reads

N dT N ag
dv a(T)

from which follows the relation between redshift z and affine parameter v for a light ray
propagating through the cheese only,

1+2=w=Kk"

(6.6)

dv 1

dz  H(2)(1+2)% (6.7)
Besides, the Ricci and Weyl lensing scalars are shown to be

Ry, = —4AnGw? p(T) (6.8)

Wr1, = 0. (6.9)

Inside the hole, a light ray propagating in the § = 7 /2-plane admits two constants of
motion, E = A(r)k! and L = r?k?, respectively associated with the stationarity and spherical
symmetry of the metric. Their ratio defines the impact parameter b = L/FE, roughly equal to
the closest approach radius rmin = b of the photon trajectory if b > rg. The Ricci and Weyl
lensing scalars read, in this case,

Zx =0 (6.10)
_ 3GML? o—2i8
7o

Wk ; (6.11)
where 3 is the impact angle, corresponding to the angle between the plane of the trajectory
and the first vector of the Sachs basis, as represented on Fig. 1.

6.2 Effective optical properties

Because of the intrinsically discrete nature of the SC model, we need to design an effective
approach to be able to use the formalism developed in this paper.

6.2.1 The Kantowski-Dyer-Roeder approximation

The first set of effective optical properties for SC models was proposed by Kantowski [65] in
1969, assuming that the mass clumps modelled by the central mass of the holes are extended
and opaque, i.e., imposing a cutoff for the impact parameter b > by, which corresponds to the
physical radius 7phys of the clump. This work was generalised in 1974 by Dyer and Roeder [69]
in order to include the cosmological constant. The resulting behaviour at lowest order, that we
shall call the Kantowski-Dyer-Roeder (KDR) approximation, can be summarised as follows:

KDR1 The relation between affine parameter v and redshift z is not significantly affected by
the holes, so that Eq. (6.7) can still be applied in a SC model.

KDR2 The effect of the shear, due to Weyl lensing in the holes, on the angular distance is
negligible. In other words, #kpr = 0.
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Figure 1: Impact parameters in a Kottler hole. The grey disk is the intersection between
the hole and the plane orthogonal to the wave-vector k at minimal approach, also spanned
by the Sachs basis (s1,s2) there. The impact parameter b = L/E is approximately the
minimal approach radial coordinate of the photon, and 3 is the angle between the plane of
the trajectory and the plane spanned by k, s; at minimal approach. It is also the angle
corresponding the basis change which diagonalises the optical tidal matrix Rk in the hole.

KDR3 Ricci lensing is the same as in the cheese but reduced by a factor & € [0, 1], called
smoothness parameter, so that Zxpr = aZrL, = —4rGw?ap(T).

A detailed analysis of this approximation was presented recently in Ref. [71]. Hypoth-
esis KDR1 turns out to be valid up to terms on the order of the ratio rg/ry, between the
Schwarzschild radius of the central mass and the radius of the hole, which is very small in
practice. Therefore, we will adopt KDR1 for the remainder of this article. The relevance of
KDRS3 can be understood as follows: consider an interval [v,, v,41] of the light path, where
vy, corresponds to the entrance into the hole number n, and v,+1 = v, + Av, to the entrance
into the next one; the effective Ricci focusing over this interval can be defined as

Un41 FL
1 n+ Av,

Reoit = Ao, X dv ~ A

Ky, (6.12)

Un Un

where AvEl is the fraction of light path spent into the FL region (between the exit from the
hole n and the entrance into the hole n + 1) over which Zpy, can be considered constant. This
defines a local smoothness parameter o, = AvE"/Av,. Interpolating the sequence (c,) on
the whole light path yields a function «(v) which, after averaging over many lines of sights,
defines @(v).

In terms of the stochastic lensing formalism, we can thus identify

(#) = #KDR.- (6.13)

As a consequence, the angular diameter distance predicted by the KDR approximation
corresponds to Dy introduced in § 5.1.3, i.e. satisfying Dy = (%) Dy.

6.2.2 Effective Weyl lensing in a hole

Numerical ray-tracing simulations in SC models [71] show that, while the KDR approximation
satisfactorily reproduces the true D (v) relation for most lines of sights, some exhibit significant
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deviations. Such discrepancies are due to Weyl lensing, neglected in the KDR approach
(KDR2), but which we would like to include in the stochastic approach. It will be convenient,
for that purpose, to first derive an effective expression for the Weyl lensing scalar # in a
single hole, defined as

Vout
Vig=— [ ) dv, (6.14)
Vout — Vin Joy,
where vi,, vout respectively denote the affine parameter at entrance and exit.

Like in the KDR approach, we assume from now on that the central mass is an extended
opaque object, whose physical radius rppys > rs is thus a lower cutoff of impact parameters.
As shown in Ref. [101], the radial coordinate r(v) of a photon propagating through the hole
with an impact parameter b reads, at lowest order in rg/b,

r(v) = /b2 + E2(v — vy)2, (6.15)

where vy, denotes the affine parameter at minimal approach, and F = wi, & wout. Moreover,
if we neglect the growth of the hole between the photon entrance and exit, then

vout—vm%vm—vianflw/rﬁ—bZ. (6.16)

Calculating the integral of Eq. (6.14) thus yields

1 2 :
W =GME? | = + — | e 38 6.17
i [rf’l + b2rh] e ( )
1 2 /12 :
_ 22,4 ('h —2ip
4 Glpw [3 +3 ( b) ]e . (6.18)

We see that, for b < 1y, the ratio between Weyl and Ricci lensing can actually be very large,
| Wil | R < (11,/b)%. Tt is the randomization of B which, in practice, drastically reduces the
net impact of Weyl lensing on the angular distance.

6.3 Calculation of the covariance amplitudes

We now turn to the calculation of the statistical quantities Cy, C'y of the white noises which
best reproduce lensing in a Swiss-cheese model.

6.3.1 Statistical setup

The randomness of our SC model is constructed in a way that—as originally formulated
by Ref. [72]—*“each ray creates its own Universe”. One realization of the various stochastic
processes at stake thus corresponds to the disposition of successive holes on a photon’s
trajectory, with random sizes, impact parameters, and separations. Expectation values (. ..)
will be considered with respect to such realizations. As in Ref. [71], we make the following
assumptions:

e The properties (mass, size, impact parameters) of two different holes are independent,
as well as the separation between different successive holes.

e All the impact positions, within a given hole cross-section, are equiprobable. In other
words, the impact angle 8 is uniformly distributed in [0,27], and the PDF of the
comoving areal impact parameter B is

BdB

B)dB = |R. £ B< Ry| —5——, 6.19
p(B)AB = [Re < B< Rl 75 o (619)
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where the squared bracket is 1 if the assertion inside is true, 0 if not; R. denotes the
comoving areal radius of the central matter clump, and Ry the comoving areal radius of
the hole. We assume that the matter clump is static, i.e., its physical radius r. = aR. is
constant, hence R, o< ™! is not, contrary to Ry,.

e The distributions of both Ry, and r. are governed by the specific matter clumps that one
wishes to model. For most of our theoretical results, they do not need to be explicitly
specified. For numerical illustrations, we consider galaxylike clumps which all have the
same physical density p. = 3M/(4rrd) = 3.47 x 10722 kg/m3—this fixes the relation
between r. and M (hence Ry, )—, and whose mass function is inspired from Ref. [111],

M
MYAM oc M—116 - dM. 2
p(M)dM o< eXp( 75 x 1011h—2M@> (6.20)

e The PDF of the comoving separation Axgr, between two successive holes is taken to be
uniform, between 0 and 2 (Axrr), with

Qi

(Axrr) = (Rn) - (6.21)

ol i

1-—

Ql

This choice ensures that the mean smoothness parameter (a) = (Avpy,/Av) is indeed a.

6.3.2 Ricci-lensing covariance

In reality, the Ricci and Weyl lensing scalars in a random Swiss-cheese model are not white
noises: they have a self-correlation length on the order of the hole sizes. We here aim at
determining the properties of the white noises which best reproduce the actual behaviour of
Z and # . In the case of the Ricci covariance amplitude, this can be achieved by integrating
Eq. (3.7) with respect to w,

Coav) = / dw (52 (v)5(w)) ~ / dw (5Bt (v)0 st () (6.22)

with
6Roft = Rog — (Rot) = —4AmGpo Wi, (6.23)

and da(v) = a(v) — @. As mentioned above, the expectation value (...) is identified with an
average over all possible realizations (r) of the SC, that is over the position, size, and impact
parameter of each hole that is crossed by the light beam,

(0 eit(v)0 Regt(w)) = lgnooﬁz(s,@eﬁ )62 (w). (6.24)

For each realization (r), the complete light path through the SC can be split into
elementary intervals I,, = [vy,vp+1], of affine parameter length Av, where, as before, v,
corresponds to the entrance into the nth hole. Within each interval, 0Z.g = 0%, is considered
constant, and 0%, is independent of 6%, if n # m. Hence, if we call I(;)(v) the elementary
interval of (r) such that v € I(;)(v), then there are two categories of realizations: those where
w € I()(v) as well; and those where w ¢ I(;)(v). The net contribution of the second category
to the sum of Eq. (6.24) vanishes.
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In order to calculate this sum, it is convenient to sort the realizations (r) in terms of
the properties of I(,)(v). The affine-parameter length Av of any elementary interval I can be
decomposed into its FL and hole contributions as

1
Av = Avgr, + Avy, = 2 (AXh + 24/ R}QI - Bz> , (6.25)

where we neglected the global beam deflection in the hole part, and used the FL relation
between affine parameter and comoving distance, even in the hole®. Awv thus depends on the
random parameters Axrr,, Ry, and B, which we regroup in a triple IT = (Axr, rh, B). We
now organise the sum of Eq. (6.24) in terms of the parameters IT characterizing the interval
containing v, which yields

(6 eit ()6 Bogr(w)) = / dM p(IIjv € Iry) Prob(w € Irg|v € Iy, IT) 6%2%(IT).  (6.26)

In the above equation, p(II|v € Ity) dII represents the (conditional) probability that the
interval Iy containing v has its parameters within dIT around II. It can be rewritten thanks
to the Bayes formula as

Prob(v € Iry|II)

Py € In) = Prob(v € I)

x p(II), (6.27)

where p(IT) is the unconstrained PDF of I, i.e. as provided by the assumptions of § 6.3.1.

Simple geometric arguments show that the probability that v belongs to a given interval Iy,
with affine-parameter length Av(II), is

Prob(v € Irg|II) o< Av, (6.28)

so that the normalization factor in the denominator of Eq. (6.27) is simply Prob(v € I)
(Av)py, where the average is performed with respect to p(II).

The second term in the integral of Eq. (6.26) represents the probability that w belongs
to the interval Iy, given its parameters IT and the fact that v already belongs to it. Again,
simple geometry yields

v — w|

P T In,II)=1(1-
rob(w € Ig|v € Iy, IT) < Au

) O(Av — |v —w)), (6.29)

where © denotes the Heaviside function. Gathering all the results, and using the expression
of 0%, we obtain

Av — |v — A 2
(6 Rl Ran(w0) = (nGo®)? [ antpiam) 2= o — o — i) (G —a)
(6.30)
Performing the integration, plus the one with respect to w, finally yields
11 27 (R?) — (Ry,)?
Cop=a*(1 —a)Hg% (1 +2)% | = (Ry) + 27 (Fy) = (Ru)” (6.31)
8 8 (Rn)

This operation is justified by KDR1, which is very accurately satisfied in a SC model
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in terms of the usual cosmological quantities. In the above equations, angle brackets denote
averaging with respect to the mass function of the matter clumps, which rules the size of the
hole they belong to via Eq. (6.5). Note that we get C5 = 0 in both limits @ = 0,1. This
was indeed expected: for & = 0 the Swiss cheese is completely filled by holes, so that #Z = 0
everywhere; for & = 1, we recover the strictly homogeneous FL spacetime, in which Z = (%)
everywhere. In both cases the fluctuation d% vanishes.

6.3.3 Weyl-lensing covariance

Just like in the Ricci case, the covariance amplitude Cy of the white noise which best
reproduces Weyl lensing in a SC model is

Cy(v) = - / dw (W (o)W (w)) ~ % / du { a0 ()] 200200 (6.32)

2

where a star denotes the complex conjugate, and the 1/2 prefactor comes from the fact that
in Eq. (3.8) we defined Cy as the covariance amplitude of each independent component #4.

We then proceed as before, decomposing the expectation value (#eg(v)# (w)) as a sum
over all possible realizations of the SC. Since #4¢ is nonzero only in holes, we fully decompose
each realization into FL and hole elementary paths (rather that {FL-+hole} sets as before).
In the average, only the realizations such that v and w belong to the same hole H contribute
to the net result. Hence the analogue of Eq. (6.26) is

([#eg(0) Weg(w)]) = (1 — @) /dH p(ITjv € Hyp) Prob(w € Hyglv € Hyy, IT) | #a(IT)|?,

(6.33)
where IT is now the couple (B, Ry,) characterising a hole H. The (1 — &) prefactor corresponds
to the probability that the elementary interval to which belong v is a hole. The involved
probabilities are formally identical to the Ricci case, except that the interval length is now
Awy, instead of Av = Avy, + Avpr,. The integral to calculate is therefore

Avy — v — w|

. O(Av, — |v — w))

([Hesi(v) Wemr(w)]) = (1 = a)(47TGPow5)2/dH p(II)

2

1 2 /Ry’
-+ - | = 6.34
x !3 T3 ( B > (6:34)

The final result, after integration over IT and w, is
)
_ § _aVH2O 6\ S ¢
Cy = 2(1 a)HyOmo(1 + 2) TN (6.35)
(")

Like in Eq. (6.31), angle brackets denote here averages with respect to the statistical properties
of the matter clumps.

A comparison of the covariance amplitudes Cy and Cy, calculated with the setup and
numerical values listed in § 6.3.1, is depicted in Fig. 2. It is clear here that Weyl covariance
dominates over Ricci covariance. This result is characteristic of the Einstein-Straus SC model,
where the local matter density experienced by light oscillates between p (cheese) and 0 (holes);
this highly underestimates the fluctuations of Ricci focusing compared to reality.
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CpIC 1 (%)
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Mean smoothness a

Figure 2: Ratio C»/Cy between the covariance amplitudes of the Ricci lensing and Weyl
lensing in a Swiss-cheese model, as a function of the mean smoothness parameter &, for three
different values of the redshift z = 2 (blue), z = 1 (orange), and z = 0.1 (green).

6.4 Results and comparison with ray tracing

We now apply the general results derived in Sec. 5 with the expressions (6.31) and (6.35) for
C% and Cy . After having discussed our expression of the average shear rate with respect to
earlier works, we compare the predictions of our formalism for (Da) and var(Da) with the
output of numerical ray-tracing simulations in a SC model.

6.4.1 Shear rate and astrophysical parameter

Introducing the expression (6.35) of Cy in Eq. (5.30) yields the following formula for the
average shear rate

{|o]*) = AH3Q O/wa [Do(w)]4(l+z)6 (6.36)
o 0 Do(v) 7
where we introduced a dimensionless astrophysical parameter
4/3 _
3 _ <TS Te 2>
A="(1-a)~—— 1~ (6.37)
Hy

CoN

which encodes the statistical assumptions about the mass and compacity of the matter clumps.
It also contains the main dependence with respect to the smoothness parameter &, since
the integral of Eq. (6.36) is almost independent from it, as shown in Fig. 3. In terms of
orders of magnitude, for & = 0, Ay ~ g/Hy, where g = GM /r? is the surface gravity of the
central matter clumps. If they represent galaxies, then Ag is typically of order unity, but it is
potentially much larger for more compact objects (see table 1).

Equation (6.36) is very similar to the ones obtained, e.g., by Gunn [62] or Kantowski [65]
by different methods. Both get the same integral term, but their estimations of the astrophys-
ical parameter differ with ours. In particular, Kantowski obtains® (Eq. (42) of Ref. [65])

_ B st
Ay = (1= ) (6.38)

5Dyer and Roeder also obtained the same result, given in Eq. (25) of Ref. [69] with no derivation, but
referring to Dyer’s PhD thesis [68].
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Nature of the clumps M rg Te Ao
galaxy clusters 10M, 100pc 10Mpc 1073
galaxies 10MMs  1072pc 10kpe 1
stars Mgy km 10%km 10

Table 1: Typical orders of magnitude for the mass M, Schwazschild radius rg, and physical
size 1. of three possible types of matter clumps modelled in a SC model, with the associated

astrophysical parameter Ay ~ rg/(Hor?2) for & = 0.

which only differs from Eq. (6.37) by the powers of rg in the averages. In a SC model where
all the holes are identical, we thus have Ax = A, but if their masses are distributed according
to the same distribution as in Ref. [71], then Ak /A = 1.9. Although the calculation leading
to Eq. (6.38) is not fully detailed in Ref. [65], its discrepancy with our result (6.37) may
be due to different statistical assumptions. In particular, we suspect that Kantowski took
into account that bigger SC holes have a larger probability to be encountered by a light
beam, whereas we did not—in our approach, holes are randomly placed on the line of sight,
irrespective of their sizes. While the former is relevant in an exact SC model, the latter may
better correspond to the actual small-scale structure of the Universe.

g
| —a=0
2 gl
96, a@=0.5
T | -
§4f a=1
52
ol

00 02 04 06 08 10 12 14
redshift z

Figure 3: Evolution of the integral of Eq. (6.36), as a function of the redshift, for three
different smoothness parameters & = 0,0.5, 1.

6.4.2 A post-Kantowski-Dyer-Roeder approximation

In § 5.2.1 we have derived the general expression (5.28) of the correction (5}2 = ((Da)—Dy)/Dg
to the mean angular distance with respect to the zero-shear distance Dy—here given by the
KDR approximation. With the formula (6.35) for Cy in a SC model, this post-Kantowski-
Dyer-Roeder (pKDR) term reads

# d21 z dZQ 2 dZ3
o E(z1) Jo E(z2) )y E(z3)

2o 2
59 = —AQumo Dy (z3) ] . (6.39)

150(21)150(22)

with E(z) = H(2)/Ho = /Qmo(1 + 2)® + Qao, and where Dy(z) = (1 + 2)Do(z) is sometimes
called the corrected luminosity distance, here associated with the KDR distance Dy.
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Figure 4 represents 683\ as a function of the smoothness parameter & (4a) and of the

redshift z (4b), comparing our calculation with the earlier result of Kantowski [65]. On Fig. 4a
are also plotted the results of ray-tracing simulations in SC model, as described in Ref. [71].
Each square represents the average of (Da — Dg)/Dg over 1000 runs. These numerical results
are thus in excellent agreement with the predictions of the stochastic lensing calculations,
which proves its efficiency.

000 ;\ T 000 - ‘ ‘
~0.05 o
= 7 = -0.10 |
£ 010, e £ 015
A 015 } —/;—4 Our calculation & -020}
=VU. r ” 1
- _~"———— Kantowski's 025
-0.20 A —0.30 ¢
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 06 08 10 1.2 14

mean smoothness a redshift z

(b) Post-KDR correction 5(Dli as a function of
redshift z for three different smoothness param-
eters &« = 0,0.5,0.9.

(a) Post-KDR correction 58/1 as a function of
the smoothness parameter &, at redshift z = 1.
Black squares are results from simulations.

Figure 4: pKDR correction on the angular diameter distance 58{1 = ((Da) — Dy)/ Dy, at
linear order in Weyl lensing, in SC models made of galaxylike clumps, with Ay = 0.5. Solid
lines correspond to our calculations and dashed lines to Kantowski’s.

The results depicted on Fig. 4, namely 58{1 ~ 1073, confirm that the KDR approximation

provides a very good effective description of the angular distance-redshift relation in SC
models [71], at least when galaxy-like clumps are at stake. Nevertheless, since 583\ x A, this
pKDR correction can become very large as the clumps are more compacts; the orders of
magnitude given in table 1 suggests that for a SC model made of stars, 6(Dli ~ 107. This
unreasonably large number is a hint that our calculations may break down if too small
deflectors are involved. In particular, the infinitesimal light beam approximation—on which
both the Jacobi matrix and optical scalar formalisms are based—is not valid for describing the
lensing of a star at cosmological distances, which rather requires a microlensing description.
See also a discussion by Gunn in Ref. [63] on this issue.

6.4.3 Dispersion of the angular distance

The general equation governing the variance of the angular distance, var(Dy), based on
second-order calculations in Weyl lensing, has been derived in § 5.3. In terms of the redshift,
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using both Eqgs. (5.14), (6.7), it reads
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(6.40)

where a prime denotes here a derivative with respect to z. To our knowledge, it is the first
time that such a theoretical prediction of the dispersion of the angular distance though a SC
model is proposed. This equation is solved numerically, using (%Z) = —(3/2) HZaQmo(1 + 2)°
and the expressions for Cy and Cy derived previously; the output is shown in Fig. 5 with,
on Fig. ba, a comparison with simulated data.
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(a) Standard deviation of Dy at redshift z =1 as
a function of smoothness &. Black squares result
from ray-tracing simulations and lines from the
numerical integration of Eq. (6.40).
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Figure 5: Standard deviation op, = /var(Dj) of the angular distance Dj in SC models,
normalised by the KDR distance Dy, as a function of the smoothness parameter & and
redshift z.

We see that, contrary to its average (Dj), the standard deviation op, of the angular
distance predicted by the stochastic lensing formalism does not fit with the results of ray-
tracing simulations. They differ here by a factor 1.7 for & = 0. We performed a number of
consistency checks on both the analytical and numerical sides, and found no errors. It turns
out that such a discrepancy between theoretical and numerical results is actually a genuine
limitation of our formalism, due to the fact that we modelled Weyl fluctuation by a Gaussian
noise.

Let us first show that the problem indeed comes from Weyl lensing. Formally, Eq. (6.40)
reads

D2 var(Da) = Sy + Sy, (6.41)

where D, is a linear differential operator, and S, Sy are source functions respectively due to
Ricci and Weyl lensing. Contrary to C/Cy, the ratio Sy /S is not necessarily small here;
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in fact, it is of order unity in the SC model used to generate the results of Fig. 5. A way to
tune this ratio—and thus to decide which among Ricci and Weyl fluctuations dominates the
dispersion of Dj—consists in changing the lower cutoff by, = r. of impact parameters in
the holes. By virtue of Eq. (6.35), decreasing r¢, i.e. enhancing the compacity of the central
clumps, increases Cy .

In Fig. 6, we compare again the predictions of the stochastic lensing formalism with
ray-tracing results, but for two different classes of SC models: with less compact clumps
(twice larger for the same mass, left panel); or more compact clumps (twice smaller for the
same mass, right panel) than before. We see that the agreement between theory and numerics
is now excellent in the first case, where Sg > Sy, while it is slightly worse than in Fig. 5a in
the second case, where on the contrary Sg < Sy . The very good agreement regarding 5&1
in both cases confirms that there are no mistakes in the evaluation of Cy

Such results suggest that our modelling of Ricci lensing fluctuations is more accurate
than the one of Weyl lensing fluctuations. The weakness does not seem to be related with
the d-correlation hypothesis, because (i) the numerical SC model is constructed so that the
properties of two different holes are indeed independent; (ii) the size of the holes is much
smaller than the typical evolution scale of Dy; and (iii) this hypothesis equally applies to
both Ricci and Weyl fluctuations, any deviation from it would therefore be manifest for any
value of S /Sy, which is not what we observe.

The Gaussian hypothesis is more questionable. In the standard Langevin description of
Brownian motion, the Gaussianity of the random force is justified by the central-limit theorem:
during a mesoscopic time interval At, the Brownian particle is hit by many molecules, and
the associated microscopic momentum transfers dpmicro Sum into an effective transfer Ap,

whose PDF is therefore well approximated by a Gaussian, whatever the PDF of each dpmicro-

However, while a microscopic Brownian particle undergoes ~ 10%° collisions per second, a

typical light beam in a SC models encounters only ~ 103 holes from the source to the observer.

The convergence towards central limit must therefore be very efficient for the Gaussian model
to be adapted. In the case of Ricci lensing, #Z simply oscillates between 0 and Zrr,; the sum
of such a random variable converges quite quickly towards the Gaussian limit, in particular
because its support is compact. The case of Weyl lensing is different. One can easily check
from the statistical assumptions of § 6.3.1 and the expression (6.18) of #.g that its PDF reads

2

(il = 55—

Wea| 1\
’W ?‘ - 3> [Wmin < [Wet| < Pnax], (6.42)

with #uin = 47Gpo(1 + 2)° and #inax = #nin[l + 2(rn/7¢)?]/3 > #inin. This PDF thus has a

very long algebraic tail, which drastically slows down the convergence towards central limit.

This argument is, in our opinion, the most probable explanation of the discrepancy between
theory and numerics observed in Fig. 5a, and of its disappearance in the left panel of Fig. 6,
where Ricci lensing dominates. This argument shall be reinforced by the results of the next
section.

7 Numerical integration of the Langevin equation

The FPK equation, Eq. (4.14) for the Jacobi matrix or Eq. (4.20) for the optical scalars,
contains all the information necessary to characterise the statistical properties of stochastic
lensing, provided this part of lensing can be well approximated by a Gaussian, uncorrelated
noise (white noise). However, as mentioned before, it is in general impossible to solve explicitly
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Figure 6: pKDR correction to the mean angular distance 5811 (top); normalised standard
deviation op, /Do (middle); and ratio Sz /Sy between the Ricci and Weyl sources of variance
(bottom), as a function of the mean smoothness parameter & at redshift z = 1, for SC models
with two different clump densities: p./8 < 2r. (left panel) and 8p. < 7./2 (right panel),
where p. = 3.5 x 10722 kg/m? is the density used for the previous plots 4a, 5a. For a given SC
hole, the minimal impact parameter by, = 7. is thus respectively increased or reduced by a
factor 2 with respect to the previous calculations. As before, squares correspond to the output
of ray-tracing simulations, while lines are the predictions of the stochastic lensing formalism.

the FPK equation, and one ought to rely on numerical methods to extract the statistical
information available. From the numerical point of view, solving a partial differential equation
is harder than tackling an ordinary differential equation and therefore, it is certainly better to
concentrate on the Langevin equation rather than on the FPK equation. In this section, we
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aim at solving the Langevin equation for the Jacobi matrix, Eq. (3.15) for a double purpose.
First, we wish to show that, in the approximation of a white noise for the Ricci and Weyl
lensing, the ray-tracing and analytical results of the previous section are well re-produced by
directly solving the Langevin equation. Second, we would like to probe the effect of relaxing
the Gaussian approximation: we will show that in the SC model, if the ‘true’ PDF of #g,
Eq. (6.42), is used, the discrepancy in the fluctuations of D4 between the ray-tracing results
and the analytical estimates coming from the FPK equation can clearly be attributed to the
non-Gaussianity of the noise and the lack of convergence towards the central limit when the
number of holes encountered is too small.

7.1 The stochastic Euler method

We begin by a short exposition of the numerical discretisation of the general Langevin
equation (4.1). For an infinitesimal time step dt, we can rewrite this equation as

X(t+dt)=X(t)+ f(X,t)dt + L(X,t)N(t) dt. (7.1)
Noting dB(t) = N (t)dt, this becomes simply
X(t+dt)=X(t)+ f(X,t)dt + L(X,t)dB(t), (7.2)
which, after discretisation, gives the Euler approximation to the Langevin equation
X (tiv1) = X(t) + FIX (), i) At + L[ X (t:), ti] AB(t:), (7.3)

where we have assumed, for simplicity, a constant time step At. As discussed in Sec. 4.1,
if the noise IN is a white noise, then B is a Brownian motion, i.e. its increment AB is a
zero-mean Gaussian process with covariance matrix

<AB(ti)ABT(t]~)> = O(t;)0;; At (no summation over 7). (7.4)

In practice, simulating one realisation of the process X (¢) is thus identical to numerically
solving an ordinary differential equation, except that at each time step ¢; the quantity AB(t;)
is randomly picked, according to a Gaussian PDF with variance Q(¢;)At, and independently of
the other steps. This means that the components of the stochastic term AB have fluctuations
on the order of v/At: the stochastic Euler method only converges as v/At, instead of At for
its deterministic counterpart. This limitation will not be a problem in what follows.

Note also that we can still apply this discretisation if the noise is not Gaussian, but the
term IN (¢)At must then be evaluated from the true PDF of N. The main caveat, in this case,
lies on the fact that the simulation is no longer resolution independent (see § 7.3).

7.2 Application to the Swiss-cheese model — Gaussian case

Let us now turn to our specific Langevin equation for the Jacobi matrix (4.14), in the SC
model. Using the relationship between affine parameter and redshift, we can rewrite it as

dJ 1
FP m [M(2)J (2) + Ljac(J)N (2)] . (7.5)

Discretising this equation with a constant redshift step Az (for simplicity), one gets

1

Jog =y b
A TS (N

[M (2) J3uA% + Lyac(Ji) AB(21)] (7.6)
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with Ji = J(21), and where the covariance matrix of AB involves the diffusion matrix of
Eq. (3.10) according to

(AB(2,)AB" (%)) = Q(z1,) Az (7.7)
= diag(Cx, Cy,Cy ) Az. (7.8)

At each time step, the quantity ABT = (ABy, ABy,, ABy,) is obtained by randomly picking
ABg and ABy, according to a zero-mean Gaussian distribution with variance C»Az and
Cy Az, respectively.

Using the expressions for C(z) and Cy (z) found in the case of the SC model, Eqgs. (6.31)
and (6.35) respectively, we can now integrate numerically the Langevin equation. Results
are presented in Fig. 7, for the same set of parameters as those used in the previous section,
i.e. with a standard distribution of galaxy-type holes. Statistical averages are performed
over 1000 realisations of J(z), for each possible value of &, each realisation being simulated
according to the stochastic Euler method with a redshift step Az = 10™*. The agreement
with the results from the FPK approach is striking, and provides strong support for the
analytical expressions found previously. Compared to ray-tracing simulations, the pKDR
corrections to (D) are very accurately reproduced, but the dispersion of Dy suffers from the
same systematic underestimation as in the previous section. If one could resolve this tension,
because the numerical integration of the Langevin equation is much faster than ray-tracing
simulations, it would provide an efficient way to estimate statistical quantities.
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Figure 7: Results of the numerical integration of the Langevin equation with a Gaussian
noise (empty purple circles), compared with analytical calculations (blue lines) and ray-tracing
simulations (black squares) in the SC model. Left panel (same as Fig. 4a): pKDR correction,
in percent, to the angular distance at z = 1, as a function of &. Right panel (same as Fig. 5a):
fractional dispersion, in percent, of Da at z =1 as a function of a.

7.3 Beyond the Gaussian approximation

Now that we have shown that numerically integrating the Langevin equation leads to the same
results as the use of the FPK equation in the Gaussian noise limit, we would like to show that
the discrepancy between these results and the ray-tracing results stems from non-Gaussianity.
Indeed, as discussed in the previous section, the Weyl lensing is very poorly described by
a Gaussian noise, since its actual PDF in a SC model presents a long non-Gaussian tail,
corresponding to not so rare events during which light rays pass very close to masses and
experience significant tidal distortions. In order to probe this effect, in this subsection, we
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limit ourselves to the case & = 0 in which the Ricci lensing is zero, thus isolating effects due
to a pure Weyl lensing. We also use an SC model with one size of holes for simplicity.

We come back to Eq. (7.5) but we no longer treat the noise term as the increments AB
of a Brownian motion B, and replace it by AB such that

= 3RLAz

AB"//l = m |%H| COS 2&7 (79)
- A

ABy, = — |- 2TB2 1y inog, (7.10)

(1+2)*H(z)

where £ is uniformly distributed within [0, 27], while the PDF of |#4g| is given by Eq. (6.42).

One can check that the above choice ensures that <ABABT> = diag(Cx, Cy,Cy)Az as

before. In other words, the resulting AB is a non-Gaussian process whose first two moments
match the ones of the Gaussian model. Note that this is somehow artificial, because the
noise modelled by AB now depends on the resolution Az used for integrating the Langevin
equation. This can be understood as follows. Suppose one solves the Langevin equation
with two different resolutions: a low resolution (LR) Azrgr, and a high resolution (HR)
Azpr = Azpr/n. During a given interval [z, z + Azpr], the HR simulation performs n steps,
and the effective noise associated with the set of these n steps reads

n—1

ABHR(Z — z+ AZLR) = Z ABHR(Zk — zk+1), (7.11)
k=0

with z; = 2z + kAzpr. Contrary to the Gaussian case, the above sum is not equal to ABiR,
because any random variable does not enjoy the invariance under addition; in particular, for
n — oo it becomes Gaussian itself, by virtue of the central limit theorem.

We therefore expect the output of numerical integration of the Langevin equation with
AB (i) to depend on the resolution Az, and (ii) to converge towards the Gaussian case for
Az — 0. This is illustrated in Fig. 8, where the mean and dispersion of the angular distance
at z = 1, obtained by integrating Langevin equation in the Gaussian and non-Gaussian
cases, are plotted as a function of Az. We also indicate, for comparison, the analytical and
ray-tracing results. A number of comments shall be formulated about those figures. First, all
the results on the mean angular distance (D )—more precisely, its pKDR correction 5gi—are
in excellent agreement. It is not the case concerning the dispersion op, of Da. Then, as
expected, the Gaussian numerical results coincide with the analytical calculations, as well
as the non-Gaussian result for Az — 0. The latter however depart from the formers as Az
increases, and coincides with the ray-tracing results for Az ~ 2.5 x 10~%. This particular value
can be understood as follows: physically speaking, a non-Gaussian Langevin simulation with
redshift step Az corresponds to a SC model where successive holes are typically separated
by Az, that is z/N where z is the redshift of the source and N the typical number of holes
between the source and the observer. As a matter of fact, with the parameters used for
generating Fig. 8, the average number of holes encountered by a photon is on the order of
3000, corresponding to a Az ~ 3 x 10~4, which is very close to the value 2.5 x 10™% where
the ray-tracing and the stochastic non-Gaussian results match.

This confirms our point that, in the SC models investigated here, the typical number
of collisions is marginally too small to warrant a treatment of the lensing in terms of a pure
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white noise, i.e. with a FPK equation. This understanding of the problem provides two ways
of escaping from it: (1) dealing with smaller-scale structures; (2) increasing the redshift z of
the source. In both situation, the number N of deflectors, that is the physical resolution of
the problem, is increased, which should thus improve the agreement between exact ray-tracing
results and the analytical FPK calculations. A quantitative criterion, allowing us to estimate
the precision of the FPK approach, remains nevertheless to be determined.
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Figure 8: pKDR correction to (D) (top panel) and dispersion of Da (bottom panel) at
z = 1, computed from numerical integration of the Langevin equation (7.5) with a Gaussian
noise AB (empty circles) or a non-Gaussian noise AB (filled circles), as functions of the
redshift step Az used in the Euler method. Each circle is obtained from the statistical
properties of a sample of 1000 realisations of J. For comparison, dotted lines indicate the
output of ray-tracing simulations, while the solid lines are the analytical predictions of the
stochastic lensing formalism, i.e. given by Egs. (6.39), (6.40). The smoothness parameter of
the underlying SC model is @ = 0; all holes have the same mass M = 10'' M, and density p.
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8 Conclusion

In this article, we proposed a new theoretical framework in which the gravitational lensing
caused by the small-scale structure of the Universe is treated as a diffusion process. The Sachs
equations governing the propagation of narrow light beams were provided with stochastic
components modelled as white noises. We derived the associated Fokker-Planck-Kolmogorov
equations for the PDF of the Jacobi matrix and the optical scalars. We used them to deduce
(1) the corrections to the mean angular distance due to Weyl lensing, and (2) a differential
equation for the dispersion of the angular distance. These results depend on three free
functions, namely the mean Ricci lensing (#) and the covariance amplitudes of Ricci and
Weyl lensing C'g, Cy, which need to be specified from a model. As both an illustration
and a test of this new formalism, we applied it to Einstein-Straus Swiss-cheese models. The
results on (Dya) offer an extension to the Kantowski-Dyer-Roeder approximation, in excellent
agreement with numerical simulations. The theoretical predictions for the variance of Da
are however systematically lower than their numerical counterpart. We located the origin of
this discrepancy in the actual non-Gaussianity of Weyl lensing, which cannot be captured by
the FPK approach. This was confirmed by direct simulations of the Langevin equation with
Gaussian and non-Gaussian source terms.

This new approach has the advantage of dealing with small-scale lensing in a mathemat-
ically consistent and efficient way, without the need for computationally expensive ray-tracing
simulations. It complements the standard description of weak lensing caused by the large-scale
structure, allowing for the effect of smaller scales. It is also very flexible, in the sense that it
can be applied, in principle, to any model for the distribution of matter on those scales.

The main limitation of our formalism, under its present form, lies in the assumption of
Gaussianity. This hypothesis is indeed central in the general derivation of the Fokker-Planck-
Kolmogorov equation, on which our main results are based, but it may not hold in the actual
Universe, as illustrated on the particular example of Swiss-cheese models. There is, on the
mathematics side, active ongoing research on stochastic processes with non-Gaussian noises.
Unfortunately no definite standard prescription about how to modify the FPK equation has
been established so far, which is the reason why we did not enter into such discussions in the
present article. Nevertheless, from a practical point of view, we empirically checked that the
Gaussian limit provides good estimations of the lensing quantities, as far as only their mean
and variance are concerned: the largest discrepancies are expected to appear for higher-order
moments.

In the future, we plan to apply the stochastic lensing framework to more realistic models
than the Swiss cheese, in particular for comparing its output with the numerical results of
Refs. [86, 87]. We also intend to include the effect of peculiar velocities, which is not expected
to contain major difficulties. On longer terms, we aim at explicitly combining our formalism
with the standard perturbation theory, which would ideally provide a consistent multiscale
treatment of cosmological lensing. This will however require to establish a quantitative
criterion about the transition scale from one behaviour to the other. Finally, we emphasize
the very general character of the approach presented here, which may also be applied to
spacetimes with very different symmetries, to treat e.g. the microlensing due to stars in a
galaxy, or the effect of a stochastic background of gravitational waves.
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A Geometric optics in curved spacetime

This appendix summarises textbook elements about the propagation of light in arbitrary
spacetimes, which aims at supplementing the relatively sharp presentation of Sec. 2. For more
general introductions, see Refs. [92, 93, 112-114].

A.1 Description of a light beam

A light beam is a collection of light rays, that is, a bundle of null geodesics {v — z*(v,y*)}
converging at a given event (here taken to be the observation event O), where the two
coordinates (y*)q=12 label the rays, while v is the affine parameter along them. There is no
need for a fourth coordinate because the beam entirely belongs to the lightcone of O, which is
an isophase hypersurface.

The wave four-vector k* = dz#/0v is a null vector field, tangent to the rays y* = cst. It
satisfies the null geodesic equations

Kk, =0, and  k’V,k,=0. (A1)

Besides, the relative behaviour of two neighbouring geodesics of the bundle, (-, y®)
and z# (-, y* + 0y®), is described by their connecting vector * = (dx# /0y*)dy®. If the origin
v = 0 of the affine parametrisation of all rays is taken at O, then

ke, = 0. (A.2)

As soon as the condition (A.2) is satisfied, the evolution of £# along the beam is governed by
the geodesic deviation equation

kOKPV o Vg€t = R* ok k€, (A.3)
where R¥,,3 is the Riemann tensor.

A.2 The Sachs formalism

Consider an observer, with four-velocity u* (u,u* = —1), who crosses the light beam. The
spatial direction of propagation of the beam, relative to this observer, is defined as the opposite
of the direction in which the observer must look to detect a signal. It is spanned by a purely

spatial unit vector d*,
d"u,, =0, d'd, =1, (A.4)

such that (remember that we took k* future oriented in this article)

kt = —w(ut + dH), (A.5)
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where
w = 271v = u, k" (A.6)

is the cyclic frequency of the light signal in the observer’s rest frame. Note that d¢ = wdv is
the proper distance (measured by the observer) travelled by light for a change dv of the affine
parameter. The redshift z is defined as the relative change between the emitted frequency vy,
in the source’s frame, and the observed frequency vy, in the observer’s frame, that is

n
Vs ug Ky (vs)
l4z2=-2=—"F 22,

Vo  ubky(vo)

(A7)

Suppose that the observer measures the size and the shape of the light beam. For that
purpose, he must use (and thus define) a (spatial) screen orthogonal to the line of sight. This
screen is spanned by the so-called Sachs basis (s) Ae{1,2}, defined by

shuy, = shyd, =0, GuvSysh = 0aB, (A.8)

and by the transport property (A.9) below. The projections 4 = s/4¢,, indicate the relative
position, on the observer’s screen, of the light points corresponding to two neighbouring rays
separated by £*. Thus, it encodes all the information about the size and shape of the beam.
Consider a family of observers u#(v), along the beam, who wants to follow the evolution
of the shape of the beam (typically for shear measurements). For that purpose, they must all
use the “same” Sachs basis, in order to avoid any spurious rotation of the pattern observed on
the screens. This is ensured by imposing that the Sachs basis is a parallel transported as

S kPV 5% = 0, (A.9)

where
St = §ABgh st = gM + utu” — d'd” (A.10)

is the screen projector. The reason why sffl cannot be completely parallel-transported is that,
in general, u* is not’.

The evolution of €4, with light propagation, is determined by projecting the geodesic
deviation equation (A.3) on the Sachs basis. The result is known as the Sachs equation [93,
115, 116],

d2§A B
—= =R A1l
2 aB&", (A.11)
where
Rap = Ruash’ kst s?, (A.12)

is the screen-projected Riemann tensor, usually called the optical tidal matriz. The properties
of the Riemann tensor imply that this matrix is symmetric, Rap = Rpa. Note that the
position of the screen indices (A, B, ...) does not matter, since they are raised and lowered
by dap. In this article, to alleviate the notation, we use bold symbols for quantities with
screen indices, and an overdot for derivatives with respect to the affine parameter v. The
Sachs equation (A.11) thus becomes

£ =RE. (A.13)

"In fact, it is also possible to choose a family of observers such that the four-velocity field u* is parallel-
transported along the beam, without affecting the optical equations [93]. In this case, however, the observers
are generally not comoving, and thus have no clear cosmological interpretation.
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A.3 Evolution in terms of potentials

It is interesting to note that the Sachs equation can be reformulated in terms of a potential, as

- ov
with ) .
V(D) = —584aRaBSE = —§ETRE. (A.15)

This equally applies to the Jacobi matrix equation Dap = —OViae /0D ap, with Vi, (D) =
—(1/2)DapRacDep = —(1/2)tr (DTRD).
Regarding the optical scalars, the Sachs equations can be rewritten as

% (3) - (gi) Vcal + (Z) ) (A.17)

(93
Vical = 5+ o]0, (A.18)

8

where

and the focusing scalars % and # are here treated as an external force; they could also have
been included in the potential according to

Vical = Vacal — #0 — W 0. (A.19)

Note however that V., does not depend explicitly on v, while ‘7sca1 and Vj,c generally do,
because of the presence of Z and #'.

A.4 Decompositions of the Jacobi matrix

As defined in Sec. 2, the Jacobi matrix relates the physical separation £4(v) of two neighbouring
rays of a beam at v to their observed separation £4(0), as

¢ (v) = D p(0)E7(0). (A.20)

When applied to an observed image, D(vs) thus returns the intrinsic physical properties of
the source.

A.4.1 General decomposition

As any 2 x 2 (nonsymmetric) matrix, the Jacobi matrix has 4 degrees of freedom. It can be
decomposed in a way that highlights the geometrical transformations between the source and
the image. First of all, up to frequency factor w, fixed to 1 in this article, the determinant of
the Jacobi matrix is related to the angular diameter distance as

area of the source at v

D% (v) = = det D(v). A.21
Alv) observed angular size (v) ( )
8 As usual, we define the complex derivative as
of _1(of of
do 2 <801 1302) ’ (A.16)

for o = 01 + i0>.
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Factorising the determinant, we are left with a 2 x 2 matrix of determinant 1, which can be
decomposed as the product between a symmetric matrix and the exponential of a symmetric
traceless matrix:

o (cost sinw — 7
D = Dy <_ sinp cosz/;) exp ( v 71) . (A.22)
The exponential matrix can also be diagonalised by defining v > 0 and ¥ as
(’717 72) = V(COS 2197 —sin 219)7 (A23)
so that
_ costY —siny\ [costy —sind) (e 0 cost sind
D =Da (sinw cos Y > <sin19 cos v ) ( 0 e“/> <— sin?d cos® )’ (A-24)

This decomposition shows that, in order to reconstruct the physical properties of a light
source from its observed image, one must:

1. Contract it by a factor e™ along a direction inclined of ¥ with respect to the Sachs
basis, and stretch it by a factor €” along the orthogonal direction. This represent the
net shear, which preserves the area of the image.

2. Rotate anticlockwise the result by an angle 1.
3. Scale it with Dj to turn angles into lengths.

Note that, by virtue of Etherington’s reciprocity relation [92, 118], which stipulates that
the Jacobi matrix obtained by integrating the Sachs equation (A.11) from the observer O to
the source S or from the source to the observer are opposite and transposed with respect to
each other,?

D(S + 0) = —DT(0 + 9), (A.26)

the net shear v is independent of the sense in which this integration is made. This is the general
nonperturbative generalization of the shear reciprocity relation mentioned in appendix A of
Ref. [39].

A.4.2 Perturbative case

Usually, when dealing with weak lensing as caused by perturbations with respect to Minkowski
or Friedmann-Lemaitre spacetimes, one uses that at background level both shear and rotation
vanish so that D = D 1. The decomposition (A.24) can then be expanded at first order in
v1,72 and ¥ to get the definition of the amplification matriz as

D=AD +0(2) (A.27)
with
l—k—71 Y+
= A2
A < Yo — 1 1—/i+71>’ (4.28)

9 This can directly be shown from the fact that RT = R, which implies that, for any two v, vs the
function C(v) defined by C(v) = 'DT(v — v1)D(v + v2) — DT (v  v1)D(v + v2) is a constant. Writing
C(v1) = C(v2), we conclude that

D(Ul < 1}2) = —DT(UQ — ’Ul). (A25)
This relation is central to the derivation of the distance duality relation Dy, = (14 z)QDA. The latter is however
more easily achieved by abandoning the convention w, = 1. See e.g. Ref. [119] for further details.
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where the convergence is defined as

DA—DA

1

The rotation angle 1) can be proved to be on the order of ¥, and can thus be omitted at linear
order, which yields the standard form of the amplification matrix. The decomposition (A.24)
is however much more relevant in nonperturbative cases, or when either the shear or the
rotation does not vanish at background level; see e.g. Ref [120].
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APART from homogeneity, the cosmological principle stipulates that the Universe is
isotropic. Both hypotheses are not redundant, in particular homogeneity does not
imply isotropy; for example, the Universe can be the same everywhere while having an
expansion faster in some directions than in others. Just like cosmic homogeneity, cosmic
isotropy is therefore an assumption to be tested in order to validate or falsify the standard
model. For that purpose, it is natural to start by investigating cosmological models where
isotropy only is relaxed. The corresponding spacetimes follow Bianchi’s classification of
three-dimensional homogeneous spaces [269], and were therefore baptised the Bianchi
spacetimes. For details about their construction and classification, see Ref. [270]. In
these models, anisotropy can show up in both the intrinsic and extrinsic curvatures of the
homogeneity hypersurfaces. The simplest case is Bianchi I, whose metric reads

ds® = —dt® + a2 (t)da” + a2(t)dy® + a2(t)d=,

where ¢ is a cosmic time with the same meaning as in the FL case: it is the proper
time measured by fundamental observers following ¢ = cst worldlines. In this particular
example, the homogeneity hypersurfaces (t = cst) are intrinsically Euclidean, hence
anisotropy is only present in their extrinsic curvature, i.e. in the difference between the
time evolution of the three scale factors a,,a,,a.. As a total, there are nine types of
Bianchi models, two of which have two subcases (Vly, VI, VI, VII,). Only types I, V,
VII, and IX enjoy an isotropic (FL) limit [271].

Of course, since we observe a very isotropic CMB, less attention was dedicated to testing
cosmic isotropy than homogeneity. However, since an anisotropy of cosmic expansion—such
as in the Bianchi I case—only sources the low multipoles of the CMB temperature map,
the precision of any constraint is strongly affected by cosmic variance, which limits the
ever achievable level of precision of these constraints. Subtler signatures of anisotropy
can also be found in the CMB polarisation, as shown by Ref. [272] in the case of a
type-VII, Bianchi model. To date no evidence of such signatures have been found [176],
but the CMB is not the only possible probe of cosmic anisotropy. In particular, it is not
particularly adapted to investigating any late-time anisotropy, which could be sourced by
anisotropic dark energy [273], or emerge from backreaction mechanisms [274] or if gravity
actually follows bimetric theories [275]. Late-time anisotropy is usually tested from SN
data by dividing the sky in two and fitting the Hubble diagram independently in each
hemisphere. This allows to look for both local anisotropy (the “bulk flow”) [276-27§]
and global anisotropy [273],279-287]. The very sparse sky coverage of current SN data is
however a strong limitation to this approach, so that no definite conclusion could be drawn
so far [288]. A very different method has been proposed recently in Refs. [28,289,1290],
where anisotropy is traced from weak-lensing B-modes, i.e. curl patterns in the distribution
of galaxy ellipticities across the sky.

This last part of the present dissertation is a contribution to the cosmic anisotropy
issue. Chapter |8 analyses in great details how light propagates in Bianchi I spacetimes.
Chapter [9 is devoted to scalar-vector field theories, which are potential candidates as
sources of anisotropy, and puts fundamental constraints on their action on the basis of
stability and causality requirements.
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CHAPTER 8

Observing an anisotropic universe

ESIDES the quest for detecting any large-scale anisotropy in the Universe arises the
B question of how such a discovery would affect the way we interpret cosmological
observations. In other words: how does light propagate through an anisotropic universe?
Elements of answer have been provided in a seminal article by Ellis and MacCallum [291],
for general Bianchi models. More specifically, a remarkably simple expression for the
angular distance has been derived by Saunders [292,293] in the Bianchi I case. The present
chapter is a complement to those earlier studies. It consists of an article, written in
collaboration with Cyril Pitrou and Jean-Philippe Uzan, which proposes a comprehensive
analysis of geometric optics in the Bianchi I spacetime. In particular, in addition to
Saunders’ result, I solved explicitly the Jacobi matrix equation, and therefore determined
the impact of Weyl curvature—caused by the anisotropy of the expansion flow—not only
on the angular distance, but also on the shear and rotation of images.
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This article proposes a comprehensive analysis of light propagation in an anisotropic and spatially
homogeneous Bianchi I universe. After recalling that null geodesics are easily determined in such a
spacetime, we derive the expressions of the redshift and direction drifts of light sources; by solving
analytically the Sachs equation, we then obtain an explicit expression of the Jacobi matrix describing the
propagation of narrow light beams. As a by-product, we recover the old formula by Saunders for the
angular diameter distance in a Bianchi I spacetime, but our derivation goes further since it also provides
the optical shear and rotation. These results pave the way to the analysis of both supernovae data and weak
lensing by the large-scale structure in Bianchi universes.

DOI: 10.1103/PhysRevD.91.043511

I. INTRODUCTION

The standard cosmological model relies heavily on the
assumption that on the large scale it is well described by a
spacetime with homogeneous and isotropic spatial sections.
All cosmological observations tend to agree with this
geometrical assumption, and to back up the predictions
of the ACDM model with a primordial inflationary phase.

A lot of efforts are invested in order to determine whether
the source of the acceleration of the expansion of the
Universe is due to a cosmological constant or has a
dynamical origin (new matter fields dubbed dark energy
or gravity beyond general relativity); see e.g. Refs. [1,2].
It has also revived the importance of testing the validity of
the Copernican principle.

While a primordial shear decays if it is not sourced,
late-time anisotropy appears in many phenomenological
models of dark energy [3—7] and is a generic prediction of
bigravity models [8] and backreaction [9]. Contrary to the
former [10-14], the latter remains weakly constrained
by the observation of the cosmic microwave background
temperature field; this naturally stimulated analyses based,
e.g. on the observation of supernovae [15-27], or using
low-redshift galaxies [28,29]. Besides the strict detection
of anisotropy, drawing quantitative conclusions from such
analyses requires one to understand how light propagates
through an anisotropic universe. This issue has been
addressed since the late sixties [30-33], in particular, a
remarkably simple expression of the angular diameter
distance in Bianchi I models was found by Saunders
[30,31] using observational coordinates [34], and recently
rederived in Ref. [16].
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1550-7998/2015/91(4)/043511(13)

043511-1

PACS numbers: 98.80.-k, 04.20.-q, 42.15.-i

The purpose of this article is to provide a complete
analytical study of light propagation in Bianchi I space-
times. On the one hand, the integration of the null geodesic
equation (though already well known) allows us to derive
the expressions of the redshift, redshift drift and position
drift of an arbitrary light source. More importantly, on the
other hand, we solve the Sachs equation governing the
geometry of geodesic bundles. From the resulting Jacobi
matrix, we not only recover Saunders’ formula for the
angular diameter distance, but also characterize the whole
lensing properties generated by anisotropy. These results
pave the way to the computation of the lensing B-mode
signal induced in an anisotropic universe—as predicted in
Ref. [35]—since it provides the background result for the
general computation in perturbed Bianchi models.

The article is organized as follows. After summarizing
the main geometrical properties of a Bianchi I universe
in Sec. II, and the laws of geometric optics in curved
spacetime in Sec. III, we solve the null geodesic equation
and derive the expressions of the redshift and direction
drifts in Sec. IV. One technical key point of our con-
struction is the use of a conformal transformation, whose
dictionary is detailed in Sec. V. The heart of our derivation
is then exposed in Secs. VI and VII, in which, respectively,
we construct the Sachs basis and obtain the expression of
the Jacobi matrix—see in particular Eq. (7.8). An algo-
rithmic way of using our results is proposed in Sec. VIIIL.
Finally, in the Appendix we give a proof of the result of
Ref. [31].

II. THE BIANCHI I SPACETIME

The classification of spatially anisotropic and homo-
geneous spacetimes [36] is based on the Bianchi’s classi-
fication of homogeneous but not necessarily isotropic
three-dimensional spaces [37]. The spatial sections of these

© 2015 American Physical Society
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spacetimes are Bianchi spaces characterized by their
Riemann tensor (more precisely the Riemann tensor of
the induced metric on the spatial sections), and the full
geometry is then determined from the extrinsic curvature
of the spatial sections. The simplest of these spacetimes is
Bianchi I, which enjoys Euclidean spatial sections, that is
with a vanishing Riemann tensor of the induced 3-metric.
Its metric reads simply

ds? = g, dx*dx* = —d* + a*(1)y;;dx'dx/, (2.1)

where the spatial metric is given by

Yij = ezﬂiméij (2.2)
with the constraint
3
> Bi=0. (2.3)
ps
The inverse spatial metric is y” = e %()§;;, such that

Yy = 5/ With this choice of the metric parametrization,
the Volume expansion is encoded in the scale factor a(z),
while the evolution of y;; is volume preserving, thanks to
the condition (2.3). The conformal time # is defined from
cosmic time ¢ by the usual relation dz = adp.

The conformal shear (rate) tensor o;; is defined by

0ij = (Yzj) :ﬂi/%‘p (2.4)

N =

where a prime denotes a derivative with respect to con-
formal time #. Its geometrical interpretation is simple as
it is directly related to the traceless part of the extrinsic
curvature of space sections, whose components are just

;- The indices of ¢;; are respectively raised and lowered
by y’f and y;;. Note that var® = &) implies

o'l = Byl = —%(yij)’, ol = pisl. (2.5)
Since the spatial sections are homogeneous, there
exists a class of preferred observers—called fundamental
observers—for which space indeed looks homogeneous.
They are comoving with respect to the Cartesian coordinate
system introduced in Eq. (2.1), and cosmic time ¢ represents
their proper time, so that the four-velocity of fundamental
observers reads u* = (0,)".
For a universe filled by a homogeneous fluid, the stress-
energy tensor is
T/w = pu,u, + P(g;w + M}lul/) + Hﬂl/’ (26)
with p and P being the energy density and the isotropic
pressure, and where II,, the anisotropic stress. This latter
symmetric tensor is traceless and spatial, in the sense that
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utTl,, = 0 = II;. We further define the conformal aniso-
tropic pressure by r;; =I1;;/a* and '/ = I1Va* such that
the indjces of r;; are respectively raised and lowered by y;;
and yY, as is the case for jj-

The Einstein field equations then read

872G o’
HZ 7; a2p+€ (27)
. 4G o’
H = -~ (p+3P) . (2.8)
(61) = ~2Ho' + 82Ga’x, (2.9)

where H = a’/a is the conformal expansion rate, and

or = 6”0

(2.10)

Z(ﬂ,)-

i=1

III. GEOMETRIC OPTICS IN A GENERAL
CURVED SPACETIME

This section briefly reviews the essential equations
governing light propagation in curved spacetime, its main
purpose being to fix the notations. For further details, we
refer the reader e.g. to the textbook [38] or the review [39]
and our previous papers [40—42].

A. Light rays

Electromagnetic waves, described by Maxwell electro-
dynamics and identified to light rays in the eikonal
approximation, are shown to follow null geodesics [43].
If v denotes an affine parameter along such a geodesic,
its tangent vector k* = dx*/dv—which is also the wave
four-vector of the electromagnetic signal—is a null vector
(k*k, = 0) that satisfies the geodesic equation

Dk#

dh— Ho—
=k k= (3.1)

where V,, denotes the covariant derivative associated to the
metric g,,.

An observer whose worldline intersects the ray can
naturally define the notions of pulsation (or energy) o,
and spatial direction of observation d”, by performing a
3 4 1 decomposition of k# with respect to his own four-
velocity u#, as

kK=o —d"), (3.2)
where @ = —u,k*, and d" is a unit spatial vector, i.e.
w'd, =0 and d"d, = 1.

043511-2
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LIGHT PROPAGATION IN A HOMOGENEOUS AND ...
B. Light beams

A (narrow) light beam is a collection of neighboring light
rays, i.e. an infinitesimal bundle of null geodesics. The
behavior of any such geodesic, with respect to an arbitrary
reference one, is described by the separation (or connect-
ing) vector &. If all the rays converge at a given event
O—the observation event “here and now”” denoted with the
index “0” in the following—then & (v,) = 0. The evolu-
tion of & (v) along the beam is governed by the geodesic
deviation equation [43]

D2§” v (o3
W - Rﬂb/mk kpg N (33)
where R,,,, denotes the Riemann tensor.

C. Sachs basis

For any observer whose worldline intersects the light
beam at an event different from O, the beam has a nonzero
extension since a priori & # 0. The observer can thus
project it on a screen to characterize its size and shape.
This screen is by essence a two-dimensional spacelike
plane chosen to be orthogonal to the local line-of-sight d*.
Thus, if (s%),_;, is an orthonormal basis of the screen,
then

R
sAuﬂ—sAd”—O,

shSpy = Oap- (3.4)
Note that, by virtue of Eq. (3.2), we also have sk, = 0.

Now, consider a flow of observers lying all along the
beam [defining a four-velocity field u#(v)] who want to
compare the size, shape, and orientation of the pattern they
observe on their respective screen. To avoid any spurious
rotation of this pattern, one has to further impose that the
basis vectors (s ),_; , are Fermi-Walker transported along
the beam,

v
Ds% _

Sll
Y do

0, (3.5)

where

S=§ABslsy = g + wrut — d'd (3.6)
is the screen projector. The transport rule (3.5) must be
understood as: s, is parallel transported as much as
possible while keeping it orthogonal to u* and d*.

The set of vectors (s/),_,, satisfying Eqs. (3.4) and
(3.5) is known as the Sachs basis.

D. Jacobi matrix

The screen projection of the connecting vector, {,=
s’gfﬂ, represents the relative position on the screen of
the two light spots associated with two rays separated

PHYSICAL REVIEW D 91, 043511 (2015)

by &”. Similarly, and if we set by convention w, = 1, 04 =
—(dé4/dv), represents the angular separation of those
rays, as observed from O. The matrix relating &,(v) to
6, via

$a(v) = Dap(v<=1,)0p (3.7)
is known as the Jacobi matrix. The equation governing

its evolution along the beam derives from the geodesic
deviation equation (3.3), and reads

d*D
52~ = RacDes, (3.8)
where Rup = —R,,,84k"spk? is called the optical tidal

matrix. Note that the position of the screen indices
A,B,C,... does not matter, since they are raised and
lowered by d45. The initial conditions for Eq. (3.8) are

Dyp(vo<1,) =0, (3.9)
d’Dyg
d—v(v(,(—UO) = =845 (3.10)
v

By definition (3.7), the Jacobi matrix relates the size
and shape of the beam to its observed angular aperture. It is
thus naturally related to the angular diameter distance D,
linked to the ratio of the area d’A, of a (small) light source
to its observed angular size d’Q,,

(3.11)

d?A,
D, = 70, = /det D(vs<,).

More generally, the Jacobi matrix encodes all the
information about the deformation of a light beam with
its propagation through a curved spacetime, i.e. gravita-
tional lensing. A canonical de:composition1 of D that makes
such effects explicit is

'Although the authors have never seen this decomposition
used in the literature so far, they advocate that it is more
meaningful than the standard one

1—x—y
V) +

V2 -

— nFL
D_DA 1—K'+J/1 ’

(3.12)

which explicitly makes use of the angular distance in a
Friedmann-Lemaitre (FL) spacetime, D", and the “convergence”
K, “‘shear” yy », and “rotation” w with respect to it. Additionally to
the fact that such a decomposition relies on the choice of a
specific background (namely FL), the quantities «, y;,, and @
lose their geometrical meaning for finite (noninfinitesimal)
lensing effects. This is why, for instance, y appears in the
expression of the magnification. It is not the case for the
decomposition proposed in Eq. (3.13).

043511-3
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_ cosy  siny - I,
’D_DA{—siny/ cosy/} exp{ r, F1:| . (3.13)
rotation shear

According to this decomposition, the real size and shape
of a light source is obtained from its image by performing
the following transformations: (i) an area-preserving shear,
(ii) a global rotation, (iii) a global scaling.

IV. GEODESIC MOTION IN BIANCHI 1

There is a simple and elegant way to determine geodesics
in a spacetime with spatial homogeneity, without explicitly
solving the geodesic equation (3.1). It relies on the basic
fact [44] that for any Killing vector {# of the metric, the
scalar k*{, is constant along the geodesic whose tangent
vector is k# (whether it is null or not).

A. Light rays

Since 0; is a Killing vector of the Bianchi I spacetime,
the quantity g(9;, k) = k; is a constant of geodesic motion.
Moreover, since k is a null vector, w? = (k')> = '/ kik; and
the wave four-vector thus reads

k; = cst, k' = a=2y'k; # cst, (4.1)
)
_w 4.2
(,U a 9 ( )
where
(4.3)

The components of the direction of observation vector d*
are, by definition,

d; = —ki/w, d =—k'/w. (4.4)
From now on, we set by convention a(t,) =1 and
pi(t,) =0 at O (t = t,), hence the redshift is given by

The constants of motion k; are directly related to the
direction in which the observer at O needs to look to detect
the light signal. Indeed, with the conventions specified
above, at the observation event (g;;), = &;;, moreover we
have used the remaining freedom to set w, = 1, so that
—k; = (d;), is a unitary Euclidean three-vector.

Chapter 8 Observing an anisotropic universe
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B. Parentheses: On timelike geodesics

The previous reasonings also apply to timelike geo-
desics. Consider a general observer, whose four-velocity v*
can be decomposed with respect to the four-velocity u* of
the fundamental (comoving) observers as

v = Eu' + pt (4.6)
with u*p, = 0 and w"u, = —1. Since v"v, = —1, we have
pp,=-1+ E?. Now the constancy of p; implies that
E? =1+a?y;p;p; — 1 as t increases (in an expanding
universe), so that the worldline of the observer tends to
align with the worldline of the fundamental observers,
i.e. the Hubble flow, exactly as in Friedmann-Lemaitre
spacetimes [45].

C. Redshift and direction drifts

1. Redshift drift

As originally pointed out by Sandage and McVittie
[46,47] a consequence of the expansion of the Universe
is the existence of a drift of the cosmological redshifts.
This effect is thought to be observationally accessible
[48,49] in the standard cosmological framework [50-53].

Consider a photon received at ¢, + dt,, corresponding to
the emission time #; + Ot,; by definition of the redshift,

t,+ ot
l—l—z—I-(SZEw(s—i_ S)z
@(to+6t,)

9 (1, +61,)kik;
gij(to +5to)kikj.

(4.7)
We can expand the above formula at first order in ot, and
St using ¢ = y'//a?, which leads to

oz ot
—(

.. Ot P i
1+z a, H+o;d d])o_a_:<H+6ijd &), (48)

Since moreover &t,/8t, = 1/(1 + z), we finally get the
redshift drift z, = 6z/6t, observed by O:

to=(1+z)H! - H! (4.9)

where

HI (Z,di) =

Q| —

It is interesting to notice that Eq. (4.9) is identical to the
one obtained in a Lemaitre-Tolman-Bondi universe [51],
and indeed reduces to the Sandage formula [46,47] in the
isotropic case.

2. Direction drift

A consequence of anisotropic expansion is that, besides
redshift drift, the position of a comoving light source on the

043511-4
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observer’s celestial sphere also changes with time. Let us
compute the velocity of this direction drift. The position x!
of the source is obtained by integrating the wave vector k'
with respect to the affine parameter,

. DS . ,US .
Xy = / kidv = (/ a‘ze‘%‘dv) d,
Vo Vo

where we used k; = cst = di. Like for redshift drift, we
can evaluate the above relation at a later observation time
t, + ot, corresponding to an emission time f, + &t,. If the
source is comoving, then x! remains unchanged, so that

v(t5) )
(/ a‘ze‘zﬁ'dv> d’
v(to)

v(ts+ot . .
:(/t t)a‘ze‘zﬂidv>(dg+5dg). (4.12)

(tO +6t0 )

(4.11)

The direction drift velocity d. = é6d/5t, is finally
obtained by performing a first-order expansion of
Eq. (4.12), using in particular v(r + 1) = v(t) + 5t/ w,
and the result is

. v e i
d, = </ a‘ze_zﬂ"dv> <d§, _ )
Vo 14z

V. THE CONFORMAL DICTIONARY

(4.13)

The determination of the Jacobi matrix in a Bianchi I
spacetime is greatly simplified by using the fact that two
conformal spacetimes have the same light cone.” Let the
conformal metric g,, be defined by

g/u/ = azg;w' (51)
Property—Any null geodesic for g, affinely parametrized
by w, is also a null geodesic for g,,, affinely parametrized
by ¥ with dv = a*>dp. The associated wave four-vectors
then read k¥ = a2k*.

As a consequence, the covariant components of k are
unchanged by the conformal transformation, indeed

k, = gk = ag,dk =k, (5.2)

The four-velocities of comoving observers for both geom-
etries are respectively u = d, and i = 0,, so that u* = au,
thus

’In four dimensions, this result can be related to the conformal
invariance of Maxwell theory. However, this property of the null
geodesics holds even in higher dimensions whilst Maxwell theory
is no more conformal invariant. From the physical point of view,
this is due to the fact that in the eikonal approximation all the
terms which are not conformally invariant are subdominant. It
follows that geometric optics enjoys more symmetries than the
microscopic theory it derives from.

PHYSICAL REVIEW D 91, 043511 (2015)

w = g, 'k = a‘lgwﬁf‘fc” =®/a. (5.3)
The 3 + 1 decomposition of k" is therefore
k= ot — d") (5.4)

with @ = ad* implying d, = d,/a.
The Sachs basis (5 ),_, , for the conformal geometry is
related to the original one by

o g
sy = asy.

(5.5)

One can indeed check that, with Eq. (5.5), the usual
orthonormality and Fermi-Walker transport conditions
are preserved by the conformal transformation,’ i.e.

i, =0,
§hd, =0,

& ~Mf‘ g (5.7)
SASB/l = 6AB’

3kV,5 = 0.

shu, =0,

sﬁdﬂ =0,
SI,:SB/J = S48,
SykPV 54 = 0.

In these relations, S, is the screen projector defined in
Eq. (3.6) and we have an analogous definition for the
conformal geometry, which implies §,, = azSW.

The separation four-vector & between two neighboring
geodesics is defined by comparing events only, independ-
ently from any metric. It is therefore invariant under
conformal transformations. However, its projection over
the Sachs basis changes (since the Sachs basis itself
changes), indeed

Ey =&, = a'Sha?E, = aé,. (5.8)
The above relation allows us to relate the Jacobi matrices
calculated in both geometries, and the result is

Dyp(s<0) = a,Dyp(s<0), (5.9)
which, by virtue of Eq. (3.11), implies
DA = asDA (510)

VI. SACHS BASIS IN A CONFORMAL
BIANCHI I GEOMETRY

Important remark.—In this section, all the calculations
are performed in the conformal geometry g,,. Since only
intermediary results are at stake, we temporarily drop all

3The connections V and V are related by

V.V, =V,V, = V,[28,V, Ina - 99V Inal.

(5.6)

043511-5
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the tildes on the vectors d*, E’;‘ to alleviate notation.

However, we do not drop the tilde on @ because it could
lead to ambiguities.
By definition, the Sachs basis is purely spatial, so
u,shy = 0. (6.1)
The evolution of the nonzero spatial part of s’ follows from
the Fermi-Walker transport (3.5), which takes the form
(si) + Siolsk =0, (6.2)
where S = 8} — d'd; (since u' = 0) and we used that the
only nonvanishing Christoffel coefficients are

i i o _
Foj—ﬁj, F,j—ﬁ

(6.3)

ije

A. General solution of the transport equation

Let (ny),_,, be an arbitrary orthonormal basis of the
screen space (i.e. orthogonal to both u* and d*), not
necessarily Fermi-Walker transported along the light beam.
Explicit examples of such a basis will be given in Sec. VI C.
The Sachs basis (s, ),_, , being also an orthonormal basis
of the same space, the two basis are related by a rotation

{ s| = cosIn + sinInh, (6.4)

sh = —sindn/ + cos 9nh.

Hence, provided the basis (n}),_,, is known, the Sachs
basis is entirely determined by the angle 9.

In order to determine the evolution of this angle, it is
convenient to rewrite Eq. (6.2) in terms of the components
of s, over a tetrad basis (e,),_; 5 rather than over the
coordinate basis (9;);,_; 3. The choice ¢!, = exp(—;)d],
and ef = exp(f;)6¢ implies that the components s4 =
g(sa,e,) read

(s5) + d*(dy)'s}, = O, (65)
thus
(cos9) = (n1,89) = (n1,)'s§ — nlad“(db)’sﬁ’. (6.6)
——

=0

Since n; is normalized, (n;,)'n{=0, so (ny,) =

(n1p)'nsny, + (ny,)'d"d,, therefore

(cos 9)' = (myy)'nlnzgsi = (my,)ngsind,  (6.7)
which finally reduces to
8 = —(n14)'ng = (nya)'nf. (6.8)
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Summarizing, if a basis (rn},n}) can be found, then the

Sachs basis is completely determined by Eq. (6.4) with &
given by the integral of (n,,)'n{.

B. Evolution matrix

Let £ be the 2 x 2 matrix that relates the components sh
of the Sachs basis to their values at O, (s%,), = s, (1),

su(m) = Eap(n<11o)(sh)o- (6.9)

It is straightforward to show that this evolution matrix is the
solution of

Evp +0ac€cp =0, (6.10)

5AB(’70<—’70) = Oap» (6.11)

where 6,5 = s',530;;. Note that, by definition (6.9),

Eap(nen,) = Si\ (n)spi(15)- (6.12)

Note also that the position of i does matter in the above
relation, because the vectors s4(17) and s4(7,) do not live in
the same tangent spaces of the spacetime manifold M. The
former live in T, (M), their indices are raised and lowered
by 7;;(n), while the latter live in T, (M), their indices are
raised and lowered by y;;(1,) = &;;.

In fact, inverting the position of the i indices in Eq. (6.12)
leads to the transposed inverse (E')T of the evolution
matrix, because

SAi(ﬂ)S%(Wo) = SAI(W)EBC(”Q(_”/)SiC(n)
= Epa(no<1)

= Epa(n<no). (6.13)
It is straightforward to check that (€7!)" satisfies a
differential equation almost identical to Eq. (6.10), except
for a minus sign before o4,
(E34) = oacEpt = 0. (6.14)
Using the general solution for the Sachs basis con-
structed in Sec. VI A, the evolution matrix and its trans-
posed inverse take the form

&{wwmeﬂmm@mm}(mﬂ

1

—sin® cosd] [ nh(s1;)y nh(s2:),

(E_I)T:[cosﬁ sin&Hn”(s? n”(s%)()} 6.16)

—sind cosd] [ ny;(s})

o
o i (SIZ o
with the angle 9 given by Eq. (6.26).

Let us close this subsection by showing that the
determinant of £ has a remarkably simple expression.

Indeed
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(det€) = Tr(E7'E) det €
= -Tr(E'6E) det €

= —Tro det £, (6.17)

where 6 = (0,4) is the projection of 6;; on the Sachs basis,
as defined below Eq. (6.11); its trace reads
TI‘G:O'ﬁ :O'l'jSij :O'i:—O'ijdidj, (618)

but, on the one hand, remember that Eq. (2.3) implies

3
ol=> p =0, (6.19)
i=1
and, on the other hand,
Lo olkky  (=yUkik;) @'
O-ijd d’ = &)2 S — 2&)2 )L = -, (620)
so that finally
@' 1
(det€) = ——det€ whence det€ =—.  (6.21)
@ @

We shall see in Sec. VII that the evolution matrix is a key
ingredient in the expression of the Jacobi matrix.

C. Explicit examples

This subsection provides three explicit examples of
orthonormal basis (n;,n,) which can be used for the
construction described in Sec. VI A, and the associated
rotation angle 9. For the last example, we also give the
expression of the evolution matrix.

1. Frenet basis

Since d* it is easy to construct a vector orthogonal to it
from its own derivative. Here again, calculations are easier
if one works with the components over the tetrad basis
(e4)a—1 3- We thus define

a\/
SR Co (6.22)
(dy)'(d")

and complete it by n§ = %;,.d’nS. In terms of components
over the coordinate basis (0;), we have

/ .
= (o + ) @aysiosa)™ (629

nh = ¢ dink. (6.24)
The equation (6.8) for the evolution angle J then reads

Eaped® (d")'(d°)"

N DA

(6.25)

PHYSICAL REVIEW D 91, 043511 (2015)

which, in terms of components over the coordinate basis,
becomes

9 ehdifd;|(Br)*di — Pidi]
diO'ijSiU];df .

(6.26)

Interestingly, the two terms in the numerator of Eq. (6.26)
are sourced by distinct geometrical properties of the
Bianchi I spacetime. On the one hand, the term in (f))?
is essentially a Vandermonde determinant,

ek d i d; (B dy = diods ][ (B, - ).

i>j

(6.27)

It depends on the triaxiality of the Bianchi spacetime, and
vanishes for an axisymmetric Bianchi I since two f are
equal. On the other hand, the term in ] in Eq. (6.26) can be
rewritten in terms of matter’s anisotropic stress. Indeed,

using Eq. (2.9) and 0{ = 151’ (without summation), we get

8i~ikdiﬂ9djﬂ;(/dk = SﬂGazeifkd,-defﬂZ’dm. (6.28)
Thus, with the choice of Egs. (6.23)—(6.24) for (n,, n,), the
angle J is ruled by an equation of the form
Y =90, + Hresse (6.29)
where 9;; and 9. vanish in, respectively, an axisym-
metric and anisotropic-stress-free Bianchi I model.
Though having interesting properties, the Frenet basis
presented in this paragraph suffers from singularities: for a
beam propagating along a principal axis of the Bianchi
spacetime, d* = cst, so that n; cannot be defined. The next
two examples will be free from such problems.

2. Initial basis

Another way of constructing vectors which keep
orthogonal to d* is to use that k; are constants of motion
[see Eq. (4.1)], which implies that the covariant vector
d; = @ 'k; always points towards the same direction.
Thus, the Sachs basis (s/,), at O remains orthogonal to
d;(n) at any time:

Vi di(n)(sy), = 0. (6.30)
This motivates the following definitions,
ni = (s1)o
{ it (6.31)
ny =& ydink,

with 71,(7) = 7:;(n) (s’ s]),. Note that n} cannot be con-
structed from (s}), in the same way as n} is from (s¢),,
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because then n; and n, would not be orthogonal to
each other.
In this example, the angle 9 reads

_8ijkdio-§(sjls{)o

Vij (sll sjl )o

8 = (ny,)'nf = —Uij”li"'é = (6.32)

All these quantities are well behaved, as long as y;; # 0.

3. Symmetrized initial basis

The construction of the previous example can be slightly
improved in order to be more symmetric. As mentioned
above, if we define

1}"1 = (Slo)o , 1)3 = (szo)o , (6.33)
V711 \/ 722
with
Yap(n) = 7ij(’7)(sgsé)o (6.34)

as in Eq. (6.31), then v/, is normalized and d;v', = 0, but v,
and v, are not orthogonal to each other. Let us call 5(») the
angle expressing their departure from orthogonality,

o (6.35)

\/ }0/1170/22

Albeit not orthogonal itself, (v, v,) can easily be used to
obtain an orthonormal basis. Like for any couple of unit
vectors, v, + v, is orthogonal to v; — v,, which encourages
us to define

cos<g+ 5) = —siné = y;;v} vé =

v’i + vé
V2F2siné

This could be used as the orthonormal basis of this last
example, however we will prefer its rotation by z/4,

(6.36)

1
ny

(n', +nb), n

Sl -

(6.37)

(n} —nl),

»—;N-
Il
S

Sil-

so that (n), = (s%,),, i.e. 9, = 0. In this case, and after a
few calculations, we obtain that the angle 9 reads

¥ = (nZa)/n? = (ny4)'n? (6.38)

1 y !
= —tané[]n(@)} ,
4 Y11

that can also be written (tan 8)o,;(vjv} — viv])/2.

(6.39)
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Finally, let us also give the (transposed inverse) evolution
matrix which, in the present example, enjoys the relatively
simple expression

sin(5/2)
cos(6/2)

cosd

ey — [ sin&] {005(6/2)

—sind cosd ] | sin(6/2)

\/ i 0
0 \/ 722

Note that the second matrix of Eq. (6.40) is not a rotation
matrix. From this result one can deduce the interesting
relation

o=detE! = \/ Y11722€088 = \/ Yirn =71 (6.41)

which can also be checked by brute-force calculation.

(6.40)

VIL. JACOBI MATRIX IN A CONFORMAL
BIANCHI I GEOMETRY

As in the previous one, all the calculations of this section
are performed in the conformal geometry g,,. However,
all the tildes will here be carefully written, because non-
intermediary results are derived.

A. General solution for the Jacobi matrix

Let us now solve the Jacobi matrix equation

(7.1)

where we recall that the optical tidal matrix is defined by

Rap = =Rk 54K755. (7.2)
The nonzero components of the Riemann tensor for the
conformal Bianchi I geometry being

Rijkf = zak[i(;j]f' (73)

I _ -k /
Roi; = ook — 0y,

A straightforward calculation, using in particular Egs. (6.2)
and (6.20), then leads to

~/
Rap = @* |:(UAB)/ +04acocp + &)GAB] . (7.4)

Therefore, since d/dv = @d/dy, Eq. (7.1) reads
~!

_ @ ~ & _
Dyp + EDIIAB = {(GAC)/ + 64popc + EGAC} Deg. (7.5)

Now notice that if a matrix M,z is solution of
My = oacMcp, then it is also solution of Eq. (7.5).
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Comparing with Eq. (6.14), we deduce that the transposed
inverse (E71)7 of the evolution matrix is such a solution.
However, it is not the Jacobi matrix, because it does not
satisfy the right initial conditions (3.9) and (3.10), but
rather

(E)palMo<1o) = as. (7.6)
W ) = oy ()

From this particular solution, one can obtain the Jacobi
matrix by use, for instance, of the method of the “variation
of the constant” to get

Dlnyen,) = ()7 / “orlgTEdn. (18
s
This formula is the main result of our article. Since
Eap(ns<=no) = 34 (1,)35: (1), (7.9)
(EN)hs(nsn0) = 5ai(n)55(n0).  (7.10)

it can also be rewritten in terms of the components of the
Sachs basis as

z~7AB('7S<—'I<>) = (5Ai)s(§ic§cj')o

x (/,7” &)—lekdn> Gp)or  (1.11)

This form of the Jacobi matrix, entirely determined by
the Sachs basis, reminds us about the recent results of
Refs. [54,55], based on the geodesic-light-cone coordinates
[56]. The connection between the two formalisms is left
for further studies.

B. An explicit expression

Of course, Eq. (7.8) cannot be considered explicit as
long as one does not have an expression for £, which was
precisely the purpose of Sec. VI. Here, we choose to use the
results of our third example (Sec. VIC 3): plugging the
expression (6.40) of £ into Eq. (7.8), we obtain

B ) [ cos 9 sin&s] {cos(és/Z) sin(8,/2)
s o) = . .
1< —sind, cosd ] | sin(5,/2) cos(5/2)
f’u(ﬂs) 0
0 722 (115)
X/’?oil_’é]lf?,z }:12‘|7 (712)
o @Y i
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where the various quantities are defined in Sec. VIC 3, and
thing, = thing(s,). In particular,

1 [} ANT
,982—/ #[m(o—”)}dn.
4y, @ 1

C. Angular diameter distance

(7.13)

The angular diameter distance is related to the Jacobi
matrix via Eq. (3.11), that is here

Dp = \/deté"l\/det / " o ETEdn, (7.14)
”5

We have already seen at the end of Sec. VIB that the
determinant of £7! is @, see Eq. (6.21), so that

Dp = V@A, (7.15)

where A denotes the second determinant involved in
Eq. (7.14). As originally found by Saunders in Ref. [31],
this determinant admits the remarkably simple expression

A= LIk (7.16)
i
with
’10
Iiz/ o~3e*idn. (7.17)
rl&

It is however surprising that the author of Ref. [31] gives this
nontrivial expression of A with no derivation. Since we did
not find any elsewhere in the literature, we propose one in
the Appendix. Note that, by computing directly the deter-
minant of the explicit expression (7.12), one can obtain an
alternative form—though mathematically equivalent—of
Saunders’ determinant

A =TTy, -1, (7.18)

with

Mo ~_R0o
Zap E/ @37 4pdn. (7.19)
;73

D. The weak shear regime

Our solution for the Jacobi matrix is completely general,
which means that it remains valid even for very anisotropic
Bianchi I spacetimes [with f; = O(1)]. However, because
cosmological observations suggest that our Universe is
extremely close to isotropic, it can be interesting in practice
to study the weak-shear behavior of our solution. We now
perform such an expansion of the Jacobi matrix—and the
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related quantities—at first order in f; < 1, in the conformal
Bianchi I geometry.

In this regime, the cyclic frequency of the photons and
the evolution matrix of the Sachs basis respectively read

o=1-B+0(p?), (7.20)
Eap = Oap + Bap + O(f7), (7.21)
where we have defined the first order quantities
3 . .
Bap(n) = Zﬂi(’?)(sﬁslza)m (7.22)
i=1
3
B(n) = Zﬁi(”)kiz = —Tr(Bag). (7.23)
i=1

Note that, in terms of the notations of Sec. VIC,
Yap = Oap +2Bag + O($?). The expression of the
Jacobi matrix is then easily found to be

~ Mo
Dyp(ns<1,) = Sap |:(7/Is —1,) + / Bdn]

s

+ (ns - WO)BAB(ﬂs) -2

< [ Budn + O (7.24)
’]S

Note that, at this order, the Jacobi matrix remains
symmetric. In terms of the decomposition of Eq. (3.13),
it means that the rotation angle vanishes y = O(f?). The
angular diameter distance is obtained by computing the
(square root of the) determinant of (7.24), which leads to

o <1_’§s> (=) +2 [ " Ban+0(g).  (7.25)
s

Finally, the optical shear, encoded into the exponential
matrix of Eq. (3.13) is at this order equal to the traceless
part of the Jacobi matrix D ,p),

[_Fl 1“2] = (11y = 10)Bagy (15)
L, I ‘ ‘

'70
2 / Bugdn + O, (7.26)
']S

where (AB) means the traceless part with respect to S4p;
in particular Bz = Byp — BSsp/2. Note that the above
shear ~dog:s not need to be tilded, because D x D so
that (Fl,rz) = (Flv Fz)

PHYSICAL REVIEW D 91, 043511 (2015)
VIII. SUMMARY

Before concluding, let us summarize the main results of
this paper, under the form of a recipe for the reader who
would like to use them in practice. It is also the occasion to
recover the untilded quantities from the tilded ones using
the dictionary of Sec. V.

(1) Solve for the cosmology (Sec. II) to determine the
scale factor a(#), and the functions f;(57) character-
izing the spatial conformal metric y,;. Set by con-
vention a(n,) = 1 and p;(n,) so that (g,,), = -
Note that, by virtue of the dictionary of Sec. V,
all conformal (tilded) quantities are equal to their
untilded counterpart at # = 7,. An example of such
dynamics can be found in Ref. [11].

(2) Pick a direction of observation d’, on the sky and an
initial Sachs basis (s’,), orthogonal to it. A possible
choice using spherical coordinates (0,, @) is

(d"), = (sin @, cos @,, sin @, sin @,, cos O,),  (8.1)
(s1)o = (€08 B, cO8 5, COS B, sin @, — sin 6,

(8.2)
(55)o = (= sin g,, cos ¢y, 0). (8.3)

(3) Set by convention w, = 1. The wave four-vector of
the photon is then characterized at any time by k; =
cst=d! and k' = w = @/a where @ is given by
Eq. (4.3). This is enough to compute the redshift
z=1/w — 1, the redshift drift (4.9), the direction
drift (4.13), and the angular diameter distance
Dx =aDs = VawA, where A is given by
Egs. (7.16) and (7.17). In the weak shear regime,
use the expression (7.25) for D,.

(4) In order to get the full Jacobi matrix D, first
determine the evolution matrix £ using the method
described in Sec. VI, then plug it into Eq. (7.8) to
obtain D. An example of this procedure had been
given in Sec. VIIB. Apply finally the conformal
dictionary relation D = aD.

(5) Quantities such as optical shear and optical rotation
are obtained by performing the canonical decom-
position (3.13) of the obtained Jacobi matrix. Their
weak-shear expressions are the ones obtained in
Sec. VIID.

IX. CONCLUSION

This article detailed an analytic integration of all the
equations governing light propagation in a Bianchi I
spacetime. From a technical point of view, the symmetries
of the problem were central in our derivations. First, in
Sec. IV, the invariance of the metric under spatial trans-
lation allowed us to solve the null geodesic equation
without any calculation. Second, the invariance of the
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equations governing light propagation under conformal
transformations allowed us to greatly simplify the calcu-
lation of the Jacobi matrix in Sec. VIL

As a first output, we obtained formulas for the redshift
and direction drift in a Bianchi I universe, which are
comparable to former papers generally restricted to
Lemaitre-Tolman-Bondi spacetimes [51,53]. As a second
output and sanity check, we recovered the already known
[16,30,31] expression of the angular diameter distance.
However, we emphasize that our results are more powerful,
because they also give access to the complete lensing
behavior of Bianchi I, including optical shear and rotation.
This new step will be the starting point of a deeper analysis
of light propagation in a perturbed Bianchi I spacetime,
which would allow us to evaluate the amplitude of the
comic shear B-mode signal associated with a violation of
local isotropy, as predicted by Ref. [35].

Our study can therefore be used to set constraints on the
spatial isotropy of the Hubble flow from the analysis of the
Hubble diagram, but also from possible future observation
such as the redshift drift [48,49] (see e.g. Ref. [52] for a
review of the observational possibilities concerning both
the time and direction drifts). Together with weak lensing
[35], this offers a set of tools to constrain any late-time
anisotropy of cosmic expansion.

ACKNOWLEDGMENTS

This work was made in the ILP LABEX (under reference
ANR-10-LABX-63) and was supported by French state
funds managed by the ANR within the Investissements
d’Avenir programme under reference ANR-11-IDEX-
0004-02 and the Programme National de Cosmologie et
Galaxies.

APPENDIX: DERIVATION OF
SAUNDERS’ FORMULA

Let us calculate Saunders’ determinant [31], defined as

A = det / " o1 ETEd (A1)
rIS
= det[(s4:)oZ" (58;)); (A2)
where we have denoted
Tii = / " o 15iidy, (A3)
r]i

so that the quantity A is the determinant of the restriction of
Z = (ZV) on the 2-plane spanned by [(s4;)o)u_ »- It turns
out that this restriction actually encodes the whole matrix
T . Indeed, since Z"k; = 0 (k; being a constant, it can safely
enter into the integral), it is easy to check that

PHYSICAL REVIEW D 91, 043511 (2015)
(A4)

Iij = [(SAk)oka(sBzf’)o] (sziﬁlsé)o;

in other words, written in the basis [k, (s}),, (s5),], the
matrix Z reads

0 0
($106Z7(51))0 (51100 (527)0
(52000Z7(s17)0  (520)0Z" (52))
We conclude that if (0,Z,,Z_) denote the three eigenval-
ues of Z, then A =7 ,7_ is the product of the last two.

Let us now calculate this product.
The characteristic polynomial of Z reads

0
=10 (AS)
0

xz(X) = det(T - X15) (A6)
= —% (TrZ)* - Te(Z?)] + X°TrZ - X* (A7)
=-XT,T_+X*T,+7.)-X>, (A8)

where we have used that detZ = 0, and the fact that the
roots of yz are (0,Z,,Z_); thus

1
A=1.7 = 3 [(TrZ)? — Tr(Z?)]. (A9)
Written explicitly, the expression above is
A = I]]IZZ + 111133 —0—122133
_ (113)2 _ (IIZ)Q _ (I23)2, (AIO)

but it can be further simplified using again that Z/k; = 0,
which implies

z‘ll — _EIIZ _@1'13’

All

L kl (A1)

2= —%I‘z - %123, (A12)
2 2

= fepm Mg (A13)

ks ks

Plugging these relations in Eq. (A10) indeed leads to

klIIZIIB +k21121'23 +k3I]3IZ3

A= Al4
kykaks (A14)
Finally, with the definitions
1'23 113 IIZ
li=—— L= IL=——, Al5
YTk T kiky T kky (A15)

we recover Saunders’ formula
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A =15 + k3115 + K34 1. (A16)

Of course, we also have to check that the I;s defined in
Eq. (A15) agree with the expressions given in Eq. (7.17).
Consider for instance /4, starting from

e 1

’]0 ~
- = [T 18P
kyks koks Jy

s

I, = (A17)

Because §% =y — &*d®, and (y") is diagonal, we have
_ PP
g e_zﬁle_zﬁ:s 32213

= e (a7 k) (@7 ks) (A18)
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= e2ﬁ]d)_2k2k3, (Alg)

whence

770
I, = / -3¢ dn. (A20)
rIS

In Eq. (A18) we have used that Zf.’:] pi =0, and in

Eq. (A19) the relation I~<,- = k; established in Sec. V.
Equation (A20) agrees with Eq. (7.17), and it is clear that
the same calculation can be done for I, I5.
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8.2 Minor errata

The published version of the article presented here suffers from typos in the equations,
which do not affect the main results or conclusions.

1. Equation (3.10), which gives the initial conditions for the derivative of the Jacobi
matrix, has been altered during the publishing process. It should actually read

dDyp
dv

(Uo < Uo) = _5AB- (81)

2. In Egs. (4.8), (4.10) concerning the redshift drift, the position of the indices ¢ in the
shear terms must be inverted:

and ]
Hl(z,d)) = - (H + o' did’). (8.3)

This difference is important, because the indices of o;; are raised and lowered by the
conformal metric 7;;, while the index of d; is raised and lowered the full metric g;;,
hence

O';dld] = ’}/ikgkjgildldj = 0,20ijdidj 7& O'ijdidj. (84)
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ANY anisotropy tends to decay if it is not sourced by matter or anisotropic spatial
curvature. In the previous chapter, we have seen in the Bianchi I case that the shear
rate tensor J§ of the Hubble flow reads

(o)) + 2Ho) = 87Ga’n). (9.1)

If matter has vanishing anisotropic stress (71'; =0), then O';- o a~? rapidly decreases as the
Universe expands; such a component is therefore necessary for anisotropy to persist. The
simplest possible sources of anisotropy are vector fields, because they naturally possess
a preferred direction. Let us illustrate their effect with the example of a single cosmic
electromagnetic field A, described by Maxwell’s theory, in a Bianchi I universe. For
homogeneity to be respected, the field must have vanishing Lie derivatives along any
vector V' tangent to the homogeneity hypersurfaces, Ly A = 0. In comoving coordinates,
it implies simply 0;A4,, = 0, so that the field strength of A has no magnetic component
(with respect to this coordinate system). Using the expression of the stress-energy
tensor of the electromagnetic field, we conclude that its conformal anisotropic stress reads

) 1 E?2 .
= ( ;—EZEJ) (9.2)

I Ara? 3

with F; = —0,4;, and E* = 4" E;. The gravitational effect of a homogeneous electric field
thus consists in decelerating cosmic expansion in the direction of E, and accelerating it in
the orthogonal directions.

Research on potential sources of anisotropy was recently stimulated by low-multipole
anomalies in the CMB temperature map, first reported by WMAP [294/-296] and confirmed
by Planck [297,298|. The independence of both experiments suggests that those anomalies
are not due to systematics, but rather are genuine physical features of the CMB. Some
of them were interpreted as hints of statistical anisotropy, which could arise either from
an anisotropic inflation era [299], or from anisotropic dark energy [273]. Such properties
can be obtained (among many other possibilities) by modifying the usual scalar-field

paradigm with the addition of a vector field, forming the class of scalar-vector theories.

The most emblematic example couples the scalar ¢ with the kinetic term of Maxwell’s
Lagrangian as g(¢) " F),,, where g is a positive function. It was highlighted in Ref. [300]
as a counterexample to the so-called cosmic no-hair theorem. In a quite different context,
similar models have been proposed as mechanisms for generating magnetic fields during
inflation, giving a primordial origin to the large-scale intergalactic magnetic fields that
we observe today [301]. There is however an infinity of ways to couple a scalar with a
vector, leading to a huge variety of models which cannot be investigated one by one. The
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aim of the article presented in this chapter was to reduce this variety, by excluding the
models which do not fulfil the fundamental physical requirements of stability (Hamiltonian
bounded by below) and causality (hyperbolic equations of motion). The work reported
here has been performed in collaboration with Juan Pablo Beltran Almeida, Cyril Pitrou,
and Jean-Philippe Uzan.

Its conclusion can be summarised under the form of the following theorem. Consider a
field theory with one scalar ¢ and one vector A. If (a) the fields are minimally coupled to
spacetime geometry, and if the associated action (b) contains at most order-one derivatives
of ¢, A, (c) is gauge invariant, and (d) is at most quadratic in A, then the most general
form of the action leading to a stable and causal theory is

S16, 4s9) = [ d'ev=g [~ fol6 K) = LHOF"Fu — Lh@F"Fu], (03

with K = (09)?, Fu = €,u,0F° /2, and where the coupling functions fo; 2 obey:

dfo/OK = 0;

¢ — fo(o, K > 0) is bounded by below;

f1>0;
Ofo /DK + 2K fo /K2 > 0.
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1 Introduction

Inflationary models including a vector-field sector have been studied following diverse ap-
proaches over the past few years. Among the most recent models, a sizable fraction was mo-
tivated mainly by the appearance of certain “anomalies” pointed out by observations [1-6],
later confirmed by Planck’s results [7], which suggested the presence of statistical anisotropies
and maybe signals of parity violation in the cosmic microwave background (CMB). Although
the statistical significance of these anomalies is still a matter of debate [8, 9] (possible sys-
tematic errors, contamination by foregrounds, asymmetric beams, etc.), it is not excluded
that they are actually seeded by a source, different than an inflaton scalar field, during the
early stages of the Universe. In this context, vector fields arise as suitable, simple and natural
candidates to explain the origin of such anomalies as they possess intrinsically a preferred
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direction. With these motivations and the requirement to generate both the inflationary dy-
namics and the presence of a detectable level of statistical anisotropy in the CMB within an
unified framework, several models involving vector fields have recently been proposed. Their
classical dynamics and statistical properties have thus been explored in great details [10-46]
(for reviews see refs. [47-49]). The determination of cosmological parameters related to the
presence of a statistical anisotropy in the CMB can provide valuable information about the
mechanisms governing the dynamics of the inflationary Universe, and their possible devia-
tions from the reference single-field model.

In the recent literature, popular models propose to couple scalar and vector fields by
modifying the standard kinetic term of the vector as f(¢)F* F),, [14, 22]; or adding a term of
the form QSFWF/“’ (F being the Hodge dual of F') which couples vectors and “pseudo scalars”
or axions [50-54] (see the review [55] for further references); or variants and generalizations
of the above ideas including non-Abelian gauge fields [23, 24, 41, 46, 47]. These models have
been proved to be free from instabilities, in particular they do not possess any longitudinal
propagating mode; they also have the virtue of generating a non-diluting amount of statis-
tical anisotropy [22, 35] which could leave measurable imprints in the CMB. Note also that
such scalar-vector models have been proposed recently [56] to give an inflationary origin to
extragalactic magnetic fields [57-59].

Of course, scalar-vector theories offer a very broad set of possibilities, among which the
examples mentioned above are somehow the simplest representatives. Apart from Occam’s
razor, there is a priori no reason to focus on these models specifically, hence one could wonder
which subset of all possibilities are worth investigating. This motivates the present article,
whose purpose is to identify a class of fundamentally healthy scalar-vector theories, which
could then be safely considered candidates for inflationary or dark energy models. More
precisely, we focus on theories involving one scalar field and one (gauge-invariant) vector
field, both minimally coupled to spacetime geometry, and we study the necessary conditions
for such theories to be stable — their Hamiltonian must be bounded by below — and causal
— their dynamics must be governed by hyperbolic equations of motion. This method has the
advantage of being nonperturbative, and thus more general than only studying the behavior
of small perturbations about a given background. The application of the healthy models
to cosmology, together with the tests of their compatibility with current observations, are
beyond the scope of our analysis and left as future projects.

The article is organized as follows. In section 2, we derive the most general form of
a theory involving a scalar field and a gauge-invariant vector field, both minimally coupled
to gravity, and propose a reasonable restriction motivated by previous works. The Hamil-
tonian stability of this theory is analyzed in section 3, and then its causality in section 4.
Finally, section 5 is dedicated to a summary of the results, followed by a discussion about
possible extensions.

2 Building general scalar-vector models

2.1 General assumptions

Consider, as a starting point, the most conservative theory in which matter is described by
the standard model of particle physics, while being minimally coupled to spacetime geometry
governed by general relativity. To this theory, we add two new fields, namely a scalar ¢ and
a vector A*, which for convenience will be referred to as “dark sector”, though it can stand
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for inflationary models as well as for dark energy models (see, e.g., ref. [60] for a discussion
of the different classes of universality of extensions).

The presence of such new fields potentially offers a huge amount of possibilities, de-
pending on how they couple to standard matter, to spacetime geometry, or simply to each
other. Among them, many shall lead to unhealthy theories, typically due to instabilities (e.g.,
ghosts), or violations of causality. Since obviously we cannot analyse all possible theories,
we choose to focus on those satisfying the following three conditions.

1. The fields ¢, A* are uncoupled to standard matter, and minimally coupled to gravity.
In other words, the action of the theory takes the form

S = Sen [g,ul/] + SSM[wmQ g,uy] + Sps [¢7 A'u; guu]v (2'1)

where Sgy is the Einstein-Hilbert action, Sgy the action of the standard model of par-
ticle physics, and Spg the action of the dark sector. This assumption ensures (a) the
non-violation of the equivalence principle, and (b) the constancy of fundamental con-
stants [61, 62]. Note that for a scalar field alone, non-minimal couplings to spacetime
geometry have been actively studied, e.g. in the context of scalar-tensor theories, and
now well understood [63, 64]. For a vector field alone, it has been proved that non-
minimal coupling generically leads to instabilities [17, 21]. See also refs. [65, 66] for
stability analyses of Horndeski’s vector-tensor theory [67] in a cosmological context.

2. The action only contains at most order-one derivatives of ¢, A*. This is a sufficient
condition to have second-order equations of motion, though not necessary — see for
instance Horndeski and Galileon models [68-73].

3. The action is gauge invariant'. This restriction is essentially chosen for simplicity.
The variety of models breaking gauge invariance is indeed extremely broad, even in
the absence of scalar fields (see, e.g., refs. [73, 74]), which would make the analysis
performed in the present article much more involved.

The last two asumptions imply that the action of the dark sector reads

Spg = /d4x\/jg Los(9, 0ud, Fuvi guv ), (2.2)

where g is the determinant of spacetime’s metric, and F' = dA = (F),,/2) da# A dz¥, with
F = 0,A, — 0,A,, is the field-strength two-form associated with the vector field. The
latter can only appear through F' in Lpg, since any other type of term (e.g., A*A,, or 0,A")
would be gauge dependent, which is excluded by assumption 3.

2.2 A general class of Lagrangians

Let us construct the most general Lagrangian density for the dark sector, under the as-
sumptions formulated above. As a scalar, Lpg can only depend on the scalars that can be
constructed from ¢, 0,,¢, F},,; in principle, their free indices could be contracted with arbitary
tensors — standing for parameters of the theory — and lead to terms of the form

TOv Ol oY () 8 b Dy G F g - - Flu (2.3)

Tn the sense of gauge transformations of the vector field, i.e. A, — A, + 9, A, where A is an arbitrary
scalar function.
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However, from a tensorial parameter there generally emerges fundamentally preferred direc-
tions in spacetime,? that we do not wish in the theories considered here. The only nondy-
namical tensor escaping from this rule is the Levi-Civita tensor €,,,0 = —/—g[puvpo], where
[uvpo| stands for the permutation symbol, with the convention [0123] = 1. It turns out that
any scalar constructed from ¢, 0,¢, F,, gu, and €., can be written as a function of ¢,

K = 0,¢0"¢, (2.4)
X = F*F,, (2.5)
Y =F"E,, (2.6)
Z = (0upF")(0,0F", ), (2.7)
where F/w = poFP7 /2 are the components of the Hodge dual xF' of F'; so that
£D8(¢7K7X7Y;Z)' (28)

Let us prove this assertion. First, it is clear that the Levi-Civita tensor cannot be
involved without being contracted with Fj,,; if both indices of the latter are contracted with
the former, then it leads to F),,; if only one index is contracted, then we get

1 ~
Eppr 7 = _5511”905&&\0}7&5 (2.9)
1 ~
= 50000, Fap (2.10)
= Fu6) + Fpudy + 0. (2.11)

So when the Levi-Civita tensor appears, the associated expression can be rewritten in terms
of xF', whence Lpgs(¢, 0,¢, Fluv, Flu). There are two elementary classes of scalars that can be

constructed from contractions of d,¢, F),,, F},,,, namely

Fr F Fen, or O (PR F,, . F,) 0", (2.12)
where F stands either for F or for F. Indeed, since 0,,¢ has only one index, it always ends a
contraction branch, hence if more than two 0,¢ are involved in a scalar term, then it can be

factorized into chains of the form (2.12). Finally, such F-chains can in general be reduced
thanks to the identities®

- 1

F'Fpo — F"Fro = 5 X8, (2.14)
~ 1

FF o = TV (2.15)

2An example can be found in refs. [75, 76], where the arrow of time emerges from the gradient of a
nondynamical scalar within a Riemannian manifold.

3These identities can be considered a special case of the following lemma: in a four-dimensional manifold,
for any two 2-forms A = (A, /2)dz* Adz” and B = (Bu,/2)dz" A dz”,

A" B+ B"* A, = % (B Aag) o1 (2.13)

This can be easily derived by using the contraction of two Levi-Civita tensors €,,,,*"*7 = —5La5562].
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Indeed, if in a F. _chain, an F and an F' are contiguous, then we can use eq. (2.15) to factorize
the couple. If there are only F's (or only F s) in a chain with strictly more than two F' s, then
we use eq. (2.14) to create FF pairs, and so on. The only irreducible chain® is therefore
FHFYFE,, (or alternatively F “O‘F,,a), that is, if contracted with the gradient of the scalar
field, 9,pF"*F,,0"¢ (or alternatively 9,pFH*F,,0"¢ = —Z). In this article, we consider
Z instead of the untilded contraction, because it will turn out to be more convenient for
presenting the results of section 3.

2.3 A reasonable restriction

In ref. [21], the authors have analyzed the stability and causality conditions for vector theories
whose Lagrangian density is an arbitrary function of F2? and FF, i.e. Lyee(X,Y). Although
general conclusions could not be drawn, it appeared that nonlinear functions of only X,
or only Y, are excluded. This motivates our fourth restrictive assumption: we only con-
stder models which are at most linear in X, Y, and Z, i.e., at most quadratic in the vector
field. Thus, in the remainder of this article, we consider a dark-sector Lagrangian density of
the form

Los = — 5 /o(6, K) — 171(6, )X — 1 1o(6, K)Y + 3 fo(0, K)Z, (2.16)

and investigate under which conditions on the four functions fy 123 a model is both stable
— Hamiltonian bounded by below — and causal — hyperbolic equations of motion.

Our analysis can also be considered a starting point for more ambitious ones, where some
of our four restrictive assumptions would be dropped (see, e.g., appendix B for elements about
Lagrangian densities £Lpg which are nonlinear in X, Y, 7).

3 Stability of the models

In this section, we turn to the study of the stability of a dark sector defined by the Lagrangian
density (2.16). After having computed the associated Hamiltonian density (subsection 3.1),
we investigate in details the conditions under which it is bounded by below (subsection 3.2),
that is necessary for the stability of the quantum theory, and we summarize the results in
subsection 3.3. In this last subsection, we also discuss why all the results, though derived in
Minkowski spacetime, are also completely valid in the presence of gravity.

3.1 Hamiltonian formulation
3.1.1 Canonical momenta
The canonical momentum conjugate to the scalar field ¢ is

6 _ 0L _ 10fiy  10f2,, Ofs

o (9fo _0J3 P 70
=55 =91+ 2oR X 30Ky G 2) HH KPR )

where an overdot stands for a time derivative qﬁ = 0O¢; as usual, greek indices run from 0
to 3, while latin indices run from 1 to 3. The canonical momentum 7 can be expressed in
terms of the electric and magnetic parts E, B of the field strength tensor, defined by

) ) ) -1 ..
E' = F% Bi=F% = igkajk, (3.2)

4The situation changes, however, in the case of non-Abelian gauge fields, since there appear non-zero terms
of the form FFF, FFF, etc. This will be briefly discussed in section 5.



On the stability and causality of scalar-vector theories

(we use bold fonts for spatial vectors) as

JO0fo , 0N dfa JE ;
70 :¢{8K+8K(32_E2)_2ME-B+8K[(B-V¢)2—(¢B—ExV¢)2]}

+f3(¢, K) [¢B* + det (V¢, E, B)|, (3.3)

where V = (0;) is the spatial gradient, an in-line dot and a cross respectively denote the
Euclidean scalar product U - V' = §;;U*V7 and vector product (U x V)& = [ijk]U'VI, and
det(U,V,W) = (U x V) -W = [ijk]U'VIWF is the 3-dimensional determinant.

The canonical momenta conjugate to the vector field A* are

0= a—ﬁ =0 (3.4)
A,
7= 5 = RO KF + a6, K)F = ol K)e 000,08, (3.5)

When expressed in terms of the electric and magnetic fields, the latter reads
™= —fi(¢, K)E — f2(¢, K)B — f3(¢,K) [¢B x Vo — (E x V¢) x V| (3.6)

3.1.2 Constraint on the nondynamical field component
Since the total Lagrangian density £ does not involve any Ag term, Ay is a nondynamical
degree of freedom. The associated (Euler-Lagrange) equation of motion,
0 oL oL
Ozt | 0(0,Ao) Ao

=0, (3.7)

is therefore a constraint. Equation (3.7) can be rewritten using 9L/ 0Ag = 0 and that 9;Ag
only appears within terms of the form Fjy, thus it always comes with —A;. As a consequence

oL oL oL

50~ 9Fy ~ oA —nt, (3.8)

and the constraint reads
V-w=0. (3.9)

Had we considered terms breaking the gauge invariance in the action, then this constraint
would have been altered on its right hand side.

3.1.3 Hamiltonian density

Since the dark sector is decoupled from the other fields, its contribution to the Hamiltonian
density is obtained by ' -
Hps = %6 + ' A; — Lps. (3.10)

The canonical term 7 A; can be rewritten in the following way:
WZAZ =7’ (F()Z' + aLAO) = 7TiFOZ' - Aoaﬂri + 0; (Agﬂi> , (3.11)

and the spatial divergence 0; (Amri) can be dropped, since it would disappear in a boundary
term while integrating Hpg to build the Hamiltonian. Using the constraint (3.9) then yields

7TZA,L == 7TiFOi =—-x- -E. (312)
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Finally, we inject the expression of the canonical momenta and of the Lagrangian density,
and reorganize the various terms to obtain

Hps = i H, (3.13)
with -
Ho = %fo(qb, K) + g‘;(oqﬁz, (3.14)
My = L6, K) (B + BY) + LB - 1), (3.15)
Ho = — 2%@219 . B, (3.16)
Hy = 15(0,K) [(B- Vo)’ + (9B — B x Vo)’]
+ %{# (B-V¢)?— (6B — E x V¢)?|. (3.17)

In eq. (3.13), the Hamiltonian density is not expressed in terms of its natural variables,
which are 7%, V¢, w, and VA*. Here, we actually choose to describe a physical state of
the theory using the time derivatives of the fields instead of the canonical momenta. This is
perfectly licit, since there exists a one-to-one and onto relation between both descriptions,
and this choice will turn out to make the discussions of the following sections easier.

3.2 Hamiltonian stability of the theory

In this subsection, we study the necessary conditions on the functions fo 1,23 for the Hamil-
tonian density (3.13) to be bounded by below. Our method relies on proofs by contradiction:
given some properties of fo 123, we look for configurations of the fields ¢, A*, such that Hpg
can be made arbitrarily negative. If at least one such state can be exhibited, then the theory
is unstable, thus forbidden.

3.2.1 Conditions on fy

For this paragraph only, and without loss of generality, we consider states for which E = B =
0, so that the contributions H 2 3 of the Hamiltonian density do not enter into the discussion.
There are two necessary conditions on fy for Hpg to be bounded by below, namely:

O0fo/0K > 0. If there existed a state (¢, K) of the scalar field so that fo/0K < 0, then we
could take ¢, |V¢| — oo while keeping K constant, which would make the Hamiltonian
density diverge towards —oo. Such a situation is therefore excluded.

fo(¢, K > 0) must be bounded by below. If there existed a positive value of K so that
¢ = fo(¢, K) was not bounded by below, then we could set the derivatives of ¢ so that
¢ = 0, hence Hps = fo/2, which would not be bounded by below.

Note that the above reasoning does not apply for negative values of K, since the term
$?0fy/OK can possibly compensate the divergence of fy. As an example, fo(¢, K) = ¢*K is
clearly not bounded by below for K < 0, but its contribution in the Hamiltonian density is

_Jo  9fo ¢°

7‘[0 . ?

5 T op? =5 [0+ (Vo) >0, (3.18)

hence completely admissible.
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3.2.2 Conditions on f3

There are two conditions on f3 for the Hamiltonian density to be bounded by below:

Ofs/OK = 0. If there existed a configuration (¢, K) so that this derivative was not zero,
then we could always tune E, B so that 9 f3[(B - V¢)? — (¢B — E x V¢)?] < 0, and
take ¢,|V¢| — oo (while keeping K constant) which would imply Hps — —oo. This
divergence would have no chance to be compensated by the terms Hg 12, since they are
quadratic in the derivatives of ¢, whereas H3 is quartic.

f3 > 0. Consider a state for which E L B and E? = B?, so that both %5 and the term
associated with 0f; /0K vanish. Also set, for instance, V¢ parallel to B, so that all
the terms of Hpg involving the electric and magnetic fields gather into

fi+ L@+ v B2 (3.19)

Thus, if there existed a configuration (¢, K) so that f3(¢, K) < 0, then the prefactor of

B? in eq. (3.19) could be made strictly negative by taking ¢, |V ¢| large enough (while
keeping K constant). Finally, B? — co would imply Hpg — —oo.

Therefore, we consider f3(¢, K) = f3(¢) > 0 from now on.

3.2.3 Conditions on f;

The conditions on f1 turn out to be the same as those on f3, although their proofs are slightly
subtler due to the difficulty of controlling the possible compensations between terms.

O0f1/0K = 0. If there existed a configuration (¢, K) so that 0f1/OK > 0, then a state with,
for example, B = 0, E parallel to V¢, and ¢, |V¢| — oo (while keeping K constant)
would make Hpg — —oo.

If there existed a configuration (¢, K) so that 0f1/0K < 0, then we could choose a
state where E, B, V¢ are all orthogonal to each other, and

fay/1+ K/¢? (3.20)

T fs(1+ K/%) — 20k fi

@ =

so that _
sz/(2¢2) — (O f1)?
f3(1+K/$?)/2 — O f1

< 0 for ¢ large enough

Hps = Ho + %(E2 +B%)+

$*B?; (3.21)

in this situation, ¢2, BZ — 0o (keeping K constant) would imply Hpg — —o0.

f1 > 0. Consider a state for which ¢B = E x V¢, so that Ho = Hz = 0. If there existed
a configuration (¢, K) so that fi(¢,K) < 0, then taking E?> — oo or B? — oo would
make Hpg — —o0.

Therefore, we consider fi(¢, K) = f1(¢) > 0 from now on.
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3.2.4 Condition on f5

Just as fi3, f2 cannot depend on K for the theory to be stable. Indeed, if there existed a
configuration (¢, K) so that 0fa/OK # 0, then we could consider a state for which E, B,
V¢ are aligned, with sgn(FE - B) = sgn(9x f2), and set for instance

E 14 f3
- = : 3.22
B~ 20k 522
In this situation, the Hamiltonian density would become
. KB?
Hps = Ho + H1 — ¢°B? + ng (3.23)

so that <b2,B2 — 00, while keeping K constant, would imply Hpg — —oo. Hence, we can
consider fa(¢, K) = fa(¢) from now on. Note that, contrary to fi 3, there is no restriction
on the sign of fo, since the function itself does not appear in the Hamiltonian.

3.3 Summary and discussion

We have proved that, among the various couplings between the scalar field and the vector
fields, many bring uncompensated instabilities in the theory, by making the Hamiltonian
unbounded by below. In the framework chosen in this article, the most general Lagrangian
density for the dark sector leading to a stable theory is

Los =~ folé, K) = L)X — 1R(8)Y + 5 15(6)2 (324)

4

where f1, f3 are positive functions, ¢ — fo(¢, K > 0) is bounded by below, and dfy /0K > 0.

So far, our analysis has been performed on a Minkowski spacetime. Nevertheless, our
conclusions remain valid in the presence of gravity, thanks to the equivalence principle. In-
deed, the divergences underlined in the previous paragraphs are local properties, namely,
they regard the Hamiltonian density rather than the Hamiltonian itself. Suppose one wishes
to perform the same study in an arbitrary spacetime. Then, in the vicinity of any event E,
one is free to work in a free-falling frame, where spacetime is locally Minkowskian, and thus
where the above calculations are valid (modulo negligible gravitational tidal effects). In
other words, in the vicinity of E, one could construct a configuration of the fields so that
the Hamiltonian density is arbitrarily negative. Note that this reasoning would not be true
if the fields were non-minimally coupled to gravity, or more generally in any scenario where
the equivalence principle is not respected.

4 Causality of the models

A field theory is considered causal if it admits an unambiguous notion of time evolution; any
initial condition of the fields — i.e., their state on a spacelike hypersurface — must generate
a unique final state through the equations of motion. In other words, time evolution must
be a well-posed Cauchy problem. This is equivalent to the mathematical statement that
the equations of motion must be hyperbolic, that is, whose second-order part involve a
differential operator G*0,,0,, with signature (—, +, 4+, +), where the (—)-direction is timelike
with respect to spacetime’s metric.
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4.1 Equations of motion

Let us first determine the equations of motion induced by the action (3.24). On the one
hand, stationarity with respect to variations of the scalar field implies

58 dfo 10fp 1
5¢ OK 206 4

- 1 1
0="2"2 =9, aw) — fs0u (FIFY,000) — 52— TAX = 2BY + 552, (4)

where primes in f{’2,3 denote derivatives with respect to ¢. On the other hand, stationarity
of the action with respect to variations of the vector field implies

08

Ozé_AU:

o [leMJ + f2ﬁ‘MU — f3€apuaaa¢85¢ﬁ’3p] . (4.2)

Equations (4.1) and (4.2) form a coupled system of second-order differential equations
for ¢ and A*, which can be formally written as

DY DY, { d)’} _ {H"ﬁ(gb, 99, aA)} (43)
D3 D, | [A7| T |H($,0¢,04)] '
D

where the first line corresponds to eq. (4.1) and the second line to eq. (4.2). The matrix
of operators denoted D contains the second-order part of the equations of motion, while
[H?, H°] contains the remaining part. Explicitly, we have

po = 2oy 28% M’ — f3(d)FHPE | 9,0, (4.4)
¢ 0K K2 s PR ‘
DG =177 DY, = — f3(¢)e* Dud F, 0,0y, (4.5)
DY = f1(9) (650 — 8°0,) — f3(¢)e7c" ¥ 000300, (4.6)

where [J = 9#9,, denotes the d’Alembertian.

4.2 Diagonalizing the system of equations of motion

As it appears clearly in the expression (4.5) of D, the presence of f3 couples the equations of
motion of the scalar and vector fields even in their second-order part. As a consequence, we
cannot investigate their hyperbolicity independently from each other; instead, we must con-
sider the whole system (4.3), diagonalize® it, and study the hyperbolicity of each “eigenequa-
tion”. In practice, we proceed by diagonalizing the principal symbol op(p,) of the system,
defined as the matrix-valued polynomial obtained from the principal differential operator D
by replacing 0,, with an abstract variable p,.

In the expression of op, there naturally appear three vectors, namely p*, 0*¢, and
Bt = paﬁa“, from which we can construct an orthonormal tetrad (eq)q=1...4; assuming that

5Concretely, this diagonalization procedure is equivalent to finding new fields, combinations of ¢ and A",
whose second-order part of the equations of motion are decoupled.

~10 -
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p* is not null-like, we define indeed

i =p"//Ip?l. (4.7)

v i

g=oo/I@uF  winn oo =org- OO (45)
_ o - _ (B,O1$)0\ ¢

el = 5“5wela625637. (4.10)

the orthogonality between €/ and e being ensured by the antisymmetry of FH_ Let us use
these notations to rewrite the various contractions involved in the symbol op,

Fr R pupy = B, (4.11)

e 00 dF", pupy = \/[P2(010)2B7 | €40, (4.12)

P por = )pzl eferor, (4.13)

E“”“"Eﬁp”a/ 0 PO PPy = )pZ(am)?] (ei egesy + €3 eZe4gz> . (4.14)

Since the above expressions exhibit projections over the tetrad vectors (such as ej,7e), we
expect the symbol to be much simpler if it is written in the tetrad basis® (e4, e1, €2, €3) instead
of the coordinate basis (9,,),=o...3; and indeed the result is

o) af 0 0 0
O’é of 0 0 0
op=|0 0 0 0 0 (4.15)
0 0 0 fip? 0
0 0 0 0  fip’+ f3(0.0)%°
with
2
7t = 000 2 4 20 Lo 0,07 — ()8 (1.16)
0f = (e1)’0h = —(ea)* f3(0)/|P2(016)*B2 |, (4.17)
ot = [1(¢)p” + f3(8)(016)°p. (4.18)

The five eigenvalues of op are therefore \; = 0, Ay = f1p?, A\3 = f1p? + f3(0.¢)?p?, and the

two solutions (Mg, Ag) of the second-degree equation (O‘i — N0} —\) = afai, that is

2
%p2+23 fo

o Pt 2570 (0 00) — f3B2 = X| [fip® + f3(0.0)°p® — M+ £ (010)° BT =0, (4.19)

where we used that e?e3e3e? = —1, since an orthonormal tetrad has only one timelike vector.

5The odd ordering of the vectors is chosen for the blocks of the matrix (4.15) to appear more clearly.

- 11 -
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If p# is null, the construction of the tetrad is slightly different. One can set, e.g., ] = pH,
and e = Ot/ (pY0,¢) — (09)?p*/2(p"d,¢)?, so that both e} and €5 are null vectors, and
ef'ea;, = 1. The other two ones, €5 and ¢/ are defined similarly as before, except that B/ must
be B* — (e5B,)p*. One can check that the expression of the symbol in the basis (e4, e1, €2, €3)
is then the same as in eq. (4.15) with p? = 0.

In principle, the second-order differential operators involved in the eigenequations of
motion are obtained from the eigenvalues of the principal symbol op by using the correspon-
dance p, <+ d,,. This can be directly achieved for \; 2 3, yielding the eigenoperators

D, =0, (4.20)
Dy = f1(¢)0, (4.21)
Dy = [f1(¢) + f3(¢)K]U — f3(¢)0" 90" $0,.0, . (4.22)

The fact that one operator is zero is not suprising, because it translates that one of the
degrees of freedom of the vector field is non-dynamical. As solutions of eq. (4.19), the last
two eigenvalues of the principal symbol generally involve square roots, and it is unclear how
one should interpret them in terms of differential operators. In the case f3 = 0, however, op
as written in eq. (4.15) is already diagonal, and the remaining differential operators read

[fs=0] _ % % U L AV
D" = S O+ 2525 060" 60,0, (4.23)
pis=0 — p, = f1(¢)00. (4.24)

4.3 Hyperbolicity of the eigenequations

It turns out that the third eigenoperator D3 is actually sufficient to rule out the f3-term.
Indeed, consider for instance a state with a purely homogeneous scalar field,” then

D3 = f1(¢)0 — f3(8)d°A, (4.25)

where A = 0'9; is the Laplacian. We know from the stability analysis that f3 > 0, but if
there exists a value of ¢ so that f3(¢) > 0, then for gb large enough, D3 becomes elliptical.
Therefore, it is necessary to have f3 = 0 for the theory to be both stable and causal.

For f3 = 0, the eigenoperators D;. 4 are all proportional to [, which is hyperbolic with a
timelike (—)-direction, thus the causality requirement does not impose further constraints on
f1. Concerning fy, additionnally to the condition dfy/0K > 0 imposed by the Hamiltonian
stability requirement, we must also have

9 fo & fo

o T 2K 5em >0, (4.26)

for the eigenoperator Dy of eq. (4.23) to be hyperbolic. We propose, in appendix A, a simple
proof of the above condition, which is well known® in the the context of k-essence [77-81].

"This does not restrict the generality of our discussion. Indeed, just as for the stability analysis, it is
sufficient to find one counterexample (here a particular state for which the equations of motion are not
hyperbolic) to exclude a theory, provided it is considered fundamental.

8Note, by the way, that the discussion about hyperbolicity in one of the first reference article [77] is
partially wrong. Indeed, the authors claim that the hyperbolicity conditions are (a) dfo/0K > 0, and (b)
8?fo/OK? > 0, which is not really the case: (a) is rather imposed by the stability condition, and (b) does
not exist at all. They also mention Ineq. (4.26), but as a condition which “assures the stability of the Cauchy
problem — that is, small changes in the Cauchy data cannot produce large changes in the solution arbitrarily
close to the initial surface”.

- 12 —
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5 Conclusion and further remarks

We have derived necessary conditions for the stability and causality of models built from
one scalar field and one vector field coupled to each other. Under the restrictions stated
in section 2, we showed that the most general action describing a stable vector-scalar dark
sector, whose dynamics is ruled by hyperbolic equations of motion, reads

Sos = [ alav/=g| - 36, K) ~ TAOF" B - LROFFu] . 5)

with K = 0*¢0,,¢, and where the coupling functions obey:
e 0fy/OK >0, and fo(¢, K > 0) bounded by below (stability);
e £1(6) > 0 (stability);
e 0fy/0K +2Kd?fy/0OK? > 0 (hyperbolicity).

There are no further restrictions over the coupling function fs. It is remarkable that the class
of models satisfying the assumptions of section 2 are so constrained by the basic principles
of stability and causality. However, it is worth noting that the theories excluded by our
analysis are really ruled out only if one considers them as fundamental. If, on the contrary,
they represent the effective behavior of a more fundamental but healthy theory, then the only
requirement is a reasonable domain of stability and causality. By essence, the present work
cannot draw any definite conclusion within the world of such effective theories.

Gauge invariance was a central assumption in our analysis. We shall mention that
an important issue with this property in vector-field models was pointed out in ref. [82],
where the authors considered a possible generalization of electromagnetism in Minkowski
spacetime, inspired from scalar Galileon theories. Their conclusion came in the form of a
“no-go theorem” for generalized vector field Galileons, which states that it is impossible
to construct more general theories than standard electromagnetism, because all possible
extensions following the Galileon construction procedure lead to topological or boundary
terms, and are thus nondynamical. In order to escape this theorem, one can however build
models with multicomponent gauge-invariant vector fields, or couple the vector field with
another field, e.g., a scalar field as done in this article. The coupling of different types of
fields with non-trivial dynamics was addressed earlier in refs. [71, 83], while ref. [84] proposed
a complete study of scalar Galileons with gauge symmetries.

One may then wonder what models can be built once the condition of gauge invariance
is removed. References [73, 74] have recently addressed the problem of gauge-invariance
breaking for single-vector-field models, in the spirit of Galileon theories. These analyses
conclude that, for some particular combinations of the non-gauge invariant terms, ghost-like
instabilities disappear and it is possible to obtain a well-behaved Galileon-type generalization
of the Proca theory with three physical propagating degrees of freedom. In general, dropping
gauge invariance in a vector-scalar theory leads to a system with more physical degrees of
freedom, the dynamics of which can be governed by a huge variety of terms in the action,
corresponding to all the possible contractions formed out of A,,0,¢,9,A,, such as A*A,,
A9, 0, 01 A, AJA FROUEY, A0, QFFYEY, 0, A, FFYFY,, | ete. Given that the structure of
each of these terms is very different, there is a priori no general procedure to deal with all of
them together, so that one should probably perform a dedicated analysis of the stability and

~13 -
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causality for each model. Nevertheless, we can point out that some particularly interesting
terms are often studied, and admit a simple analysis; for instance, vector potentials of the
form V(A?%), or couplings of the form A9, 9, O* A, A very specific class of models of the
form f(F?) 4 V(A?) was recently studied in ref. [85], and where shown to have hyperbolic
equations of motion for some special regions of phase space.

Finally, we should mention that our analysis admits a straightforward generalization to
multiple vector fields which are gauge invariant under a non-Abelian gauge group. However,
in the non-Abelian case we have an important difference with respect to the U(1) Abelian
case. As shown in subsection 2.2, in the U(1) case any term of the action involving the vector
can always be reduced to even powers of the Faraday tensor or its dual, possibly contracted
with the derivatives of the scalar field, which can be further reduced to products of X, Y
and Z. All the odd products of the Faraday tensor and its dual are identically zero. In
presence of a non-Abelian gauge group, this is no longer the case, and there appear other
combinations which add non-trivial dynamics to the system. Among the lowest order terms,
there appear for instance cubic combinations of the form FFF and FFE:

Scubic = - /d4ZC\/ -9 [f(¢l)cachaﬂprpy Fcy,u +g(¢I)CachaﬂnguF0pu] ’ (52)

where C’gc are the structure constants of the group and a, b, c are Lie algebra indices. These
terms are consistent with gauge symmetries and are dynamical. The term FFF appears
generically in non-Abelian gauge theories and terms like FFF appear for instance in QCD
when discussing CP-violations originated by gluonic operators of dimension six [86]. Recently,
the dynamics of such terms was also studied in the context of leptogenesis in non-Abelian
gauge fields populated models [87]. Despite of the numerous ways in which the the fields can
interact when gauge invariance is broken or when non-Abelian gauge groups are considered,
it is expected that the stability and the causality analysis would impose constraints over all
those possible interactions and it would be interesting and valuable to extend the methods
followed here to those cases.
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A Hyperbolicity of the scalar sector

Consider the differential operator

2
(gf(oﬂ“” + 22 [fg 8“¢6”¢> 0,0, = G"9,0,. (A1)
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Its hyperbolicity can be investigated by distiguishing two cases, depending on the sign of K.

1. K < 0. Define n* = —0*¢/+/—K. Since n* is a unit timelike vector, we can always
find a Lorentz tranformation A such that n® = A% n# = §§. Thus, in this new frame
(GB = A“MABVG/““’ ), the differential operator reads

0 0?

9 fo

S, (A.2)

and is therefore hyperbolic if and only if dfy/0K + 2K0?fy/0K? > 0 (additionally to
the stability condition 0fy/0K > 0).

2. K > 0. Define n* = 9*¢/+/ K, which is now a unit spacelike vector, thus there exists
a Lorentz transformation A such that, e.g., n® = A% n# = 4f. In this new frame, the
differential operator becomes

910 o dfo 0% fo dfo
af 2
G000 = — 208 + <8K+2K8K2 0% + 572 Ao, (A.3)

and is hyperbolic under the same condition as in the case K < 0 above.

3. K = 0. This case is slightly less trivial than the previous two ones. Up to a spatial
rotation, we can write 9#¢ = ¢(—d}' + 6}'). The differential operator G**9,,0, can then
be diagonalized using the two vectors

fo 8200 — |6V (£ + (ff 2)2J o
+ = )
V7 + [ £ VTP + (757

where we denoted f() = 0fp/0K for short. Using the basis (0_, 04, d2,03), the differ-

ential operator indeed becomes

(A.4)

GP0,05 = G~0% + G102 + Agp, (A.5)

with
G =l (f’)2 (f”éQ)2 <0, (A.6)
Gt = =+ (102 + (f16?)? (A7)

Thus, the differential operator is always hyperbolic. The question is now whether the
(—)-direction is timelike or spacelike; it is immediate to check that

200/ (F)? + (f” )2

(a 78): 2
g\0+, 0+ (f,,¢2 {f’:l:\/ f//¢2 J

(A.8)

so that 0_ is timelike (and 04 is spacelike) if and only if f) = 9fo/0K > 0, which is
consistent with the condition found in the previous two cases, for K = 0.
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B Beyond linearity in X, Y, Z

In this appendix, we provide some results that can be a starting point for the analysis of
more general models than the ones described by action (2.16). Namely, consider a dark-sector
Lagrangian density Lps(¢, K, X,Y, Z) which is not necessarily linear in X = F2| Y = FF,
and Z = (FO¢)?. In the following, we drop the ‘DS’ label to alleviate notation.

B.1 Hamiltonian density

The canonical momenta conjugate to the scalar and vector fields are respectively

70 = 2L kp+2L 7 [$B* + det(Vo, E, B)] , (B.1)
m=ALxE+ALyB —2L 7 [¢B x V¢ — (E x V¢) x V¢, (B.2)

where a coma denotes a derivative. The constraint is unchanged compared to the case where
L is linear in X, Y, Z, namely V - w = 0. The Hamiltonian density then reads

Hps = 2L x¢* — 4L xE* + YLy + 2L 7(¢B — E x V¢)? — L(K, X, Y, Z), (B.3)

and K, X, Y, and Z are expressed in terms of the fields as

K =(V¢) - ¢, (B.4)
X =2(B* - E?), (B.5)
Y = —4E - B, (B.6)
Z = (¢B — E x V$)? — (B-V¢)2 (B.7)

It would be tempting to conclude that £ x £ x <0, and £ 7z > 0 are necessary conditions for
Hps to be bounded by below, but unfortunately ¢?, E?, (qﬁB —~ExV¢)? K, X, Y, Z are
not independent variables, so that one cannot take, e.g., ¢2 — co while keeping the others
finite. The actual stability conditions could be much subtler, for instance they could involve
combinations of the derivatives of £, and thus require a dedicated study.

B.2 Equations of motion

The equations of motion induced by the general Lagrangian (2.8) read

0S

0= @ = E#) — 8# (2£,K8“¢ + 2£,ZFuaFVa 8V¢) ) (B8)
(SS o O ﬁ o nle]
0= 0 = =0, (4L XF'7 + 4Ly F'7 + 2L 7677 000030 F°, ) . (B.9)

As in eq. (4.3), we can isolate the second order part of the above system, and write it as the
matrix-valued differential operator

D

D¢ D?,
[Dg Dg/] , (B.10)
(oa

~16 —

267



268 Chapter 9  Sources of anisotropy

where

Di = (,C,Kn‘uy + E,ZF,upFup + QE,KKgf)“ud)’V + 4£7Kz¢’“¢’aﬁapﬁyp

+ 2L 156 ath g F10EC P pﬁa)a“ay, (B.11)

Dg — WU”/Df, _ {,C,ZEapua(ﬁ,aFVp 4 4(;5,# (ﬁ’KXFI/U + »C,KYFUG)

+ 2£’Kzgapua¢,u¢,a¢ﬁﬁ’ﬂp + 4¢7aﬁ‘upﬁ‘ap <£7ZXFVO' + £7zyﬁﬂ/0’)

2L 7€ 06 56 P FAEY, } 0,0y, (B.12)
D7 = {2L x (007 =) + L5 7 0 s

+ 8L xx FFTFY 4+ 16L xy FMOFY) 4 8L vy FHO V7

+ 8B b5 [Lx 7P FP, 4+ Ly g PP EO]

1L 770N 5 b b ST Y, }aﬂay, (B.13)

with the symmetrization convention T) = (T 4 T"*) /2. The above formulae can be used
for investigating the hyperbolicity of the equations of motion.
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Conclusion

HIS thesis aimed at providing an extensive picture of light propagation in cosmology,
focusing on the potential effects of the small-scale inhomogeneity and large-scale
anisotropy. The first issue was motivated by general arguments, such as the Ricci-Weyl
paradox, according to which observations involving very narrow beams—such as SNe—are
affected by the inhomogeneity of the Universe in a very different way than observations
involving much wider beams. Albeit adapted to the latter, the Friedmann-Lemaitre

geometry should be unable, in principle, to provide an accurate description of the former.

In fact, we have deduced from the analysis of Swiss-cheese models in Chap. [6] that the
expected effect of small-scale lensing on the interpretation of the Hubble diagram drastically
reduces as the cosmological constant increases. In other words, the surprising efficiency of
the standard ACDM model at consistently fitting all the cosmological data may be due to
A. If this conclusion turns out to be correct, then it would represent a strong argument in
favour of the cosmological constant (or any form of homogeneous dark energy) as driving
the recent acceleration of cosmic expansion, and against alternative mechanisms such as
backreaction. In the era of precision cosmology, however, A shall no longer suffice to ensure
the agreement between, e.g., SN and CMB observations. Hints of such a discrepancy
are already present in current data, and we have seen that taking the clumpiness of the
Universe into account is capable of reducing the resulting tension. In this context, the
stochastic lensing approach developed in Chap. [7| arises as a promising framework for
dealing with small-scale lensing, in order to interpret SN observations with the accuracy
that future surveys will require.

The possibility of a large-scale anisotropy in the Universe has motivations both from
the theoretical and observational points of view. May such a scenario be confirmed, the
questions of both its physical origin and its consequences on light propagation would
naturally follow. The present thesis contributed to both sides. In Chap.[§] I solved all the
equations of geometric optics in the Bianchi I spacetime, which provides a set of theoretical
tools to contrain any late time anisotropy, from the analysis of the Hubble diagram of
SNe, or from weak gravitational lensing. Besides, by studying in Chap. [J] the properties of
stability and causality of a large class of scalar-vector models, I reduced the landscape of
physically viable theories for anisotropic dark energy or inflation.

As always in scientific research, this dissertation raises more questions than it provided

answers. Most of the work reported here indeed calls for follow-ups, especially Part. [[I]

Let me mention two of them. First, in Chap. [0, when fitting the Hubble diagram using
Swiss-cheese models (or the Kantowski-Dyer-Roeder approximation), all our ignorance
about the actual distribution of matter on small scales was hidden in the smoothness
parameter f (or «). This parameter is unconstrained by SN data, and was therefore
arbitrarily fixed for practical uses. A more satisfactory approach would be to measure

it, either directly from numerical simulations, or indirectly via independent observations.
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Conclusion

Second, although Chap. [7| established the fundamentals of stochastic lensing, a lot remains
to be done: addressing the issue of non-Gaussianity, applying it to the perturbation theory,
including the effect of the large-scale structure, etc.

Finally, a few other projects marginally related to the above have called my attention
during the last three years. Concerning the fundamentals of gravitational lensing, it seems
to me that the range of validity of the infinitesimal beam approximation is not fully
understood yet: in which situations the propagation of a light beam can really be described
by the geodesic deviation equation? The answer to this question may lead to a better
understanding of the transition between the weak and strong lensing regimes, which are
currently dealt with using slightly different formalisms. Besides, [ am intrigued by the issue
of cosmic backreaction. In particular, I am surprised that most of the research activity on
this subject has been, so far, dedicated to averaging inhomogeneous cosmologies, while
much less was done about the physical consequence of having matter clumps decoupled
from cosmic expansion. I intend to address these questions in a near future.
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APPENDIX A

The equations of Einsteinian gravitation

HIS dissertation extensively exploited the general theory of relativity and the language
T of differential geometry. The present appendix aims at gathering the main associated
definitions and equations. Its title was chosen in the honour of the French mathematician
Georges Darmois || referring to his treatise on GR [258].
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Appendix A The equations of Einsteinian gravitation

A.1 Differential geometry

The general theory of relativity is naturally formulated in the language of differential
geometry. Mathematically speaking, spacetime is described by a four-dimensional dif-
ferential manifold M, i.e. a topological space which is locally homeomorphic to R*. A
homeomorphism M — R* is called a map, or coordinate system; it associates to each
event £ € M a set of four coordinates {a*},—_s.

A.1.1 Vectors, forms, and tensors

Vector fields

Consider a function f: M — R. The limit of [f(a* 4 cu*) — f(a*)]/e when e goes to zero
defines the derivative of f, at z*, in the direction fixed by the four numbers {u#}. The linear
map that associates to any function f such a derivative defines the vector w : f — w(f).
The action of a vector on a product of function satisfies the Leibnitz rule

u(fg) = u(f)g + fulg). (A1)

The set of all vectors, i.e. all derivatives, at an event F of M is called the tangent

space of M at FE; it is denoted TgM. The set of all tangent spaces, TM = Ugep/TEM,

form the tangent bundle of M. A section of TM, i.e. amap F € M +— u € TgM, defines

a vector field. The set of all vector fields along M is a vector space itself, denoted I'(M).

Any coordinate system {z#} naturally defines a basis for I'(M), namely the four

partial derivatives {0/0z*}, usually denoted {8,} for short. Any vector field w is then
decomposed over this basis as

u =u"0,. (A.2)

Of course, the functions {u*} depend on the basis at hand. In particular, if another

coordinate system {y“} is chosen, then the components of u over {8,} are easily shown
to be u® = (Qy*/dzt)u.

Lie brackets

Any tangent space T M enjoys the structure of a Lie algebra, the Lie bracket being simply
the commutator between two derivatives. It can indeed be shown that [u,v] = uv — vu
is a derivative on M, in the sense that it satisfies the Leibnitz rule. By definition, the Lie
bracket also satisfies the Jacobi identity

Vu,v,w € I'( M) [u, [v, w]] + [v, [w, u]] + [w, [u,v]] = 0. (A.3)

Because of the Schwartz theorem, the commutator of two partial derivatives vanishes
0,,0,] = 0. The Lie bracket of any two vector fields u, v thus reads
u Yy

[u,v] = [u'8,,v"0,] = (u'Ov" —v'o,u")0,. (A.4)

Now consider an arbitrary basis {e, } of I'(M). Because they are not necessarily associated
with a coordinate system, the elements of this basis do not commute with each other in

general. Their noncommutativity is quantified by structure functions C*,,, according to

e, e]=C", e, (A.5)

If all the structure functions of a basis vanish, the basis is called holonomous, and there
exists a coordinate system {z*} such that e, = 8,. In the opposite case, the basis is said
to be anholonomous. For this reason, the structure functions are also called anholonomies.



A.1 Differential geometry

Differential forms

Consider a tangent space TgM of the spacetime manifold. As in any vector space, one
can define linear forms, i.e. linear maps TpM — R. The set of all such linear forms
defines the cotangent space T M of M at E, and the set of all cotangent space along
M form its cotangent bundle T*M = UgepTpM. Just like a vector field is a section
of TM, a differential (one-)form is a section of T* M, i.e. a map which associate to any
event £ € M a linear form w € TgM. The set of all differential one-forms over M,
denoted Q'(M), is a vector space.
To a given coordinate system {z*} is naturally associated a basis {dz*} of Q'(M). Tt
is defined by the following duality relation
dz*(8,) = ok. (A.6)

v

Any one-form w is then decomposed as
w = w,da”, with w, = w(0,). (A.7)

Similarly to the vector case, the functions w, depend on the coordinate system that
subtends the basis. If one picks another coordinate system {y®}, then the components
of w over {dy“} are w, = (9x"/0y")w,,.

Tensors

A means to put together vectors and forms is provided by the tensor product ®. It is a
bilinear and associative combination law, such as, for instance

o (M) xI'(M) - T'(M)®T'(M) (A8)
(u,v) P u®v

where I'( M) ®T' (M) is a vector space. The above example defines a particular (2, 0)-tensor.

More generally, a (m, n)-tensor is an element of

TmnM) =TM)®@ ... TIM)@ Q' (M) ®...0 Q" (M), (A.9)

m times n times

which is the set of all linear combinations of objects of the form u;®...®u,, QW ®. ..Qw,,
where each u; is a vector field and each w; is a differential one-form on M. The resulting
vector space is therefore of dimension 4™*".

A natural basis for T, ,, (M) is obtained by combining the coordinate bases of I'(M)
and Q'(M). Any (m,n)-tensor X is then decomposed as

X =Xtmtm L0, ®...Q00,,dr" ®@...@dz". (A.10)

If one decides to change the coordinate system into {y*}, then the components of X over
the associated basis change as

oy™ oy*m ox™t oz’

Qaf...0m — M1 m
X = G g X e G e

(A.11)
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Lie derivative

We have seen that vector fields can be considered directional derivatives of functions
M — R. The Lie derivative is an extension of this construction, allowing one to define
directional derivatives of vectors, forms, and tensors. Let w be a vector field, the Lie
derivative along wu is denoted L,,. Its action on a function f coincides with the action of wu,
Lyf =u(f). On a vector v € I'(M), L, acts as

L,v = [u,v], (A.12)
it is thus linear with respect to w, and satisfies the Leibnitz rule
Lo(fv) = (Luf)v+ f(Lyv). (A.13)
The Lie derivative of a one-form w € Q'(M) is another one-form L£,w such that
Vv € T'(M) LyJw(v)] = (Lyw)v + w[Ly(v)], (A.14)

which is a kind of Leibnitz rule applied to the contraction of forms and vectors. Its
generalisation to tensors is then achieved using the following Leibnitz rule for the tensor

product,
L X®Y)=(L,X)RY + X ® (L£,Y), (A.15)

for any two tensors X, Y. The above relation implies that the Lie derivative of a (m,n)-
tensor is a (m,n) tensor.

In terms of components over an arbitrary coordinate basis, we therefore have, for any
vector fields u, v, one-form w, and (n, m)-tensor X,

(Lyv)* = w0t — v’ o ut (A.16)
(Lyw), = v’ Oyw, + w,0,u” (A.17)
(‘cuX)Hlmumm...Vn = upapxulmﬂmm...un - Xpm#mlq...l/n 8puﬂl T T Xulmpul...un apu'un
XA Qi L X O,
(A.18)

Note that the parentheses on the left-hand sides of the above relations are often omitted
in the literature, so that the components of e.g. L,v are denoted L, v".

A.1.2 Linear connections

Covariant derivative

As any vector fibre bundle, TM can be equipped with a linear connection V, which allows
vectors of the fibres to be transported and derived along the manifold. Here, since the
fibres of TM are nothing but the tangent spaces of M, a connection provides a way
to take directional derivatives of vectors, forms, and tensors, which differs from the Lie
derivative in general.

Let w be a vector field, V,, is called the covariant derivative along u associated with
the connection V. Its action on any function f is the same as the Lie derivative, i.e.
Vuf = u(f), while its effect on vectors is defined by the algebraic properties:

Vutow = Vyw + fV,w, (A.19)
Vulv+w) =V,v+ V,w, (A.20)
Vu(fv) =u(f) + Vyv. (A.21)
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Note that, so far, V,, has the same properties as L,, but while the Lie derivative of 9,
along 8, vanishes by definition, since Ly, 8, = [8,,8,] = 0, its covariant counterpart does
not in general. In fact, a linear connection is characterised by its specific action on a basis
of '(M), as

Vp,0,=V,0,=1",0,, (A.22)

where I'”,  are called the connection coefficients. There exist as many different connections
as there are such coefficients. Hence the Lie derivative can be considered a special case of
covariant derivative, associated with the trivial connection whose coefficients vanish. Note
also that V, if considered a map I'(M)? — I'(M), is not a tensor, because is is not perfectly
linear with respect to its second argument, as shown by Eq. . As a consequence,
the I'*,, do not change according to Eq. under coordinate transformations.

The covariant derivative of any vector u along a basis vector 9, can be written in
terms of the connection coefficients as

Vo=V, (ud,)=(0u")0, +1°, u"0, (A.23)
whose components, with the short-hand notation V,u” = (V,u)" thus read
Vo’ =0,u” + 17, u’. (A.24)

Extension to forms and tensors

Covariant derivatives can be extended to act on forms an tensors according to the same
rules as the Lie derivatives, that is, assuming a Leibnitz-like rule with respect to both the
contraction of forms with vectors, and the tensor product: for any vectors u, v, one-form w,
and tensors X,Y, we consider

Vulw(v)] = (Vuw)(v) + w(Vyv), (A.25)
Vu(XR®Y)=(V,X)?Y + X ® (V,Y). (A.26)

The covariant derivative of a (m,n)-tensor is thus also (m, n)-tensor. In terms of compo-

nents, Eq. (A.25)) implies

Vi = (V) = Oy — I7, 0, (A2
and Eq. leads to
VXt L, = (VX)L (A.28)
= Op Xttt L, AT X T X
=17, Xt = =T, X (AL29)

Parallel transport and geodesics

Let v be a curve traced on M. We parametrise v with A € [0,1], so that t = d/d\ =
(dz*/dX)D,, is a tangent vector of . A tensor X is said to be parallely transported along
~ iff its covariant derivative with respect to t vanishes all along v,

V.X = 0. (A.30)

The curve v is a geodesic iff its tangent vector is parallely transported along itself, Vt = 0.
In terms of components, this requirement is equivalent to

d2ar da* da
pe ST A3l
e ey =0 (A.31)

which is called the geodesic equation.
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Torsion

Any linear connection V defines two fundamental tensors which characterise its geometrical
properties. The first one, called torsion T, encodes the tendency of parallelograms
constructed by parallely transporting vectors not to close (see Ref. [303] for more details).
It is an antisymmetric (1, 2)-tensor defined as

T(u,v) =V,v—V,u—[u,v]. (A.32)
Its components over a coordinate basis are defined as T'(8,,9,) =17, 8, and read

T*,, = 21" (A.33)

[wv]

Hence the torsion of a connection represents the antisymmetric part of its coefficients.
Note that, as a consequence, torsion has no effect on geodesics.

Curvature

The second fundamental tensor associated with a connection is its curvature R, which
quantifies the tendency of vectors to rotate after being parallely transported along a loop.
It is a (1, 3)-tensor defined as

R(u,v)w =V, V,w — V,V,w — V[, yw. (A.34)
Its components over a coordinate basis are defined as R(9,,8,)8, = R’,,,8, and read
R, =017, -o1°, +1° 17 —T1°9 I7 (A.35)

Bianchi identity

The Jacobi identity for the commutator has been given in Eq. for three vector fields,
but it is actually valid for any three objects which can be ‘multiplied” together, including
when the underlying product is noncommutative. In particular, it can be applied to the
covariant derivatives along three arbitrary vector fields:

(Vs [V, Vol + [V, [V, Val] + [V, [V, V]| = 0. (A.36)
When applied to a coordinate basis, the above equation yields
[V, R(9,.0,)] + [V, R(8,,8,)] + [V, R(8,,9,)] = 0. (A.37)

which will turn out to be useful in general relativity.

A.1.3 Pseudo-Riemannian geometry

Metric

Let us now introduce an additional structure on M, namely the metric g. It is defined as
a (0, 2)-tensor which provides a notion of scalar product between two vectors,

(M) - R

(u,v) = g(u,v) =u-v (A.38)

g:
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which is clearly symmetric. In Riemannian geometry, g is positive-definite; in pseudo-
Riemannian geometry, this latter assumption is relaxed: there exist nonzero vectors u
whose scalar square g(u,u) can be zero or even negative. The signature of the metric is
defined as the signs of the eigenvalues of [g,,] seen as a matrix.

In GR, there is one eigendirection in spacetime whose associated eigenvalue has a sign
opposite to the others, defining the direction of time. In this thesis, we have adopted the
conventional signature (— + ++), which means that time is associated with a negative
eigenvalue of the metric. A nonzero vector u so that g(u,u) < 0,=0,> 0 is then said to
be respectively timelike, null, or spacelike.

Dualities and inverse metric

The metric provides a natural duality between vector fields and one-forms. Indeed, given a
vector field u there exists a unique one-form n,, = g(w, -), which is simply “do the scalar
product with w”. Because this relation is one-to-one and onto between I'(M) and I'*(M),
to any form w is conversely associated a vector field e¥, according to w = g(e®, ).

The component of n, over dz* is by definition 1,(9,) = g,u’. This quantity is
usually denoted u,, in order to emphasize the duality, so that n,, = w,dz*. In terms
of such notations, the metric tensor can be seen as a machine to lower indices. Now,
because the duality procedure also allows us to turn forms into vectors, there should be
a quantity which on the contrary raises indices, i.e. such that (e*)* = w" = g"w,. The
coefficients g"” can be expressed as functions of g,,, by imposing that the ‘vectorisation’ of
a one-form is the inverse of the ‘one-formisation’ of a vector; in other words

Vu e I'(M) e™ = u, which implies g, ¢” = 0}.. (A.39)

If g,,, and g"” are seen as the coefficients of two matrices, then the above means that those
matrices are inverse to each other. For that reason, the (2,0)-tensor ¢"**8, ® 8, is known
as the inverse metric.

It is interesting to note that this notion of duality provided by the metric is different
from the duality between bases {0, } and {d2*} mentioned previously. One can indeed
define four one-forms n, = ny, = gdz” # da’. The set {n"} is called metric-dual
to {9,}, while {dz*} is basis-dual to {0,}. Similarly, from the inverse metric we can
generate the vector fields e# = 4" = g8, # 8, which are metric-dual to {dz*}. The
definition of the inverse metric implies that the sets {n,} and {e"} are basis-dual to each
other,

Nn,(€") = 9updr’ (977 05) = 99" A2 (8s) = gpupy™ = 0. (A.40)

This duality scheme can be summarized on the following diagram:

{8,} (pasis duality {dat}

metric duality
metric duality

{'f]u} basis duality {eu}
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Levi-Civita connection

Once a manifold is equipped with both a metric and a connection, one can impose a
condition of compatibility between those two structures, that is, roughly speaking, a
Leibnitz rule for covariant derivatives with respect to scalar products,

Vuwlg(u,v)] = g(Vyu,v) + g(u, V,v) (A.41)
for any three vector fields u, v, w. Note that the above condition is equivalent to
Vu.g =0. (A.42)

Thus, a connection which is compatible with the metric is also said to be metric preserving.
Metric-preserving connections have the interesting property that they are entirely and
uniquely determined by their torsion [304]. A particular case is the one of zero torsion,
which defines the Levi-Civita connection. It is the connection of GR. Its coefficients are
known as the Christoffel symbols, and can be expressed as functions of the metric as

1
Fp;w = gpcrro_m” with FO’}LV = 5 (a,u,gua + al/g}LO' - acrg;w) . (A43)

Riemann tensor

The curvature of the Levi-Civita connection is called the Riemann tensor. Its components
can be expressed in terms of the metric as

Ropw = 9105, R(0,,0,)0,] (A.44)
=9(0,,2V,V,10,| by definition (A34) of R (A.45)
=20,9(0,,V,)0,) —29(V,0,,V,0,) by metric preservation (A.46)
= 2oy — 2o, L7, With Doy = 0,00, (A.47)

1 1 Tw
= 5 (goy,up - gpl/,/w') - Zg (gTa,u + g‘ru,o - gau,T) (gwy,p + gwp,u - gup,w)

— (< v) from Eq. (A.43]). (A.48)

The components of the Riemann tensor enjoy a number of symmetries summarised below:

Ruvpe = —Ruvop (A.49)
Ryvpe = —Ruppo, (A.50)
Ruppe) = 0, (A.51)
Ruvpe = Rpop (A.52)
Ryvipor) = 0, (A.53)

where R0 = VR0 While the antisymmetry of the second pair of indices
is a direct consequence of the definition of curvature, the antisymmetry the first pair of
indices is due to the fact that the underlying connection V is both metric compatible
and torsion free. Equation , sometimes called first Bianchi identity, is also due to
the fact that V is torsion free. The symmetry under exchange of the two pairs
of indices is a consequence of Egs. , . Those symmetries imply that only 20
among the 256 components of the Riemann tensor are independent. Finally, Eq. ,
sometimes called second Bianchi identity, is a consequence of and, again, of the
fact that V is torsion free.
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Ricci and Einstein tensors

The Ricci tensor is obtained by contracting the first and third indices of the components
of the Riemann tensor,
Ric(9,,0,) =R, =R, (A.54)

Note that the Ricci tensor does not require the metric structure to be defined, it therefore

exists also in non-Riemannian geometry. In (pseudo-)Riemannian geometry the Ricci
tensor is symmetric, due to Eq. (A.52). Moreover, the second Bianchi identity (A.53))
implies the interesting relation

VLR, = 2V R (A.55)

By contracting indices v and ¢ in the above, we obtain
L, 1
V.R, = 5 V.R, (A.56)

where R = RZ is called the Ricci scalar.
If we define the Einstein tensor E as

1
E(0,,0,)=E, =R, — iRgW’ (A.57)

then, by virtue of Eq. (A.56) this tensor is divergence free, V,E} = 0.

A.2 Gravitation

In the general theory of relativity, gravitation is encoded in the pseudo-Riemannian
geometry of spacetime, equipped with the Levi-Civita connection. As a field theory, the
fundamental quantity is therefore the metric g of the spacetime manifold?|

A.2.1 Geometrodynamics

Einstein field equations

The metric of spacetime is affected by the presence of matter via its stress-energy tensor T,
according to the Finstein field equation

|E+Ag=381GT, (A.58)

where A is the cosmological constant and G is Newton’s constant. In other words, any form
of energy or momentum locally generates Ricci curvature. Because the Einstein tensor E
is divergence free, the Einstein equation imposes the conservation of energy-momentum

v, TV =0, (A.59)

just like the Maxwell equation imposes the conservation of electric charge.

2In the Palatini formulation of general relativity, the metric and the connection are considered
independent dynamical quantities: V is not taken to be the Levi-Civita connection right from the
beginning. However, this property emerges from the action of general relativity without the need of any
modification [3].
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Action formulation

The Einstein field equation (A.58|) can be derived from an action principle, with S =
Sm + Seu + Sa. The first term S, denotes the action of matter fields, from which derives

their stress-energy tensor as
2 45
™ = — % (A.60)
vV —9g 6g,u,l/
where §/dg,, denotes the standard functional derivative, here with respect to g,,,, while g
is the metric determinant defined in Eq. ((1.6). In other words, T is such that, for a small
variation dg of the metric,

1
Sulg +3g] = Sulg) = 3 / di2v/=g 89, T" + O(|6g]). (A.61)

Example of such matter actions will be given in § [A.2.2] Note that, since g*g,, = o, the
variations of the metric and its inverse are related by 6¢g"” = —g¢"?¢g"?0g,,, so that the
lowered components 7}, are given by

-2 6Sn
V=g 0"
which is very similar to Eq. (A.61), except for the minus sign.

The other two terms of S are respectively the Einstein-Hilbert action Sgy and a
cosmological constant term, they read

T,, = (A.62)

1
Sgn = 16 G /d rv/—g R + boundary term, (A.63)
e p— /d4x\/ A, (A.64)

where the expression and origin of the boundary term can be found in Ref. [9]. It can
indeed be shown that

1 68w 1
v—g 6g 167G Bl (A.65)

1 9 A
oh G- (A.66)

V—gog 167G

The variation of the cosmological constant term is easily performed: thanks to the formula
relating the derivative of the determinant of a matrix to its trace we obtain

1 1
oyv/—g = s Vg 9" 0g,,, = —5 V9 Gu0g"” . (A.67)

The variation of the Einstein-Hilbert term is more involved, see e.g. Ref. [9] for a clear
and detailed derivation. In the end, the extremalisation of the complete action S leads to

S =g
= g~ 16mG Lot A = 8TC L), (A.68)

which is the Einstein field equation.
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A.2.2 Matter

Point particle

Consider a spinless point particle with rest mass m. Its movement within the spacetime
manifold is a curve z£(\), where A is an arbitrary parameter. The proper time 7 of this
particle is defined as the time measured in its rest frame, i.e. such that uw, = d/dr, where
u,, is the four-velocity of the particle, or dr? = — guwdabdzy. In absence of any external
force, the action of this particle is

d Hdxy
Sp = —m/dT = —m/d)\ —g,w% da;\p. (A.69)

If S, is considered a functional of the trajectory x4 (), then it is straightforward to check
that the stationarity of S, is equivalent to the geodesic equation,

58 d?z? dzt dz?
A R e 10

Free-falling particles therefore follow geodesics of the spacetime manifold.

When written as in Eq. , Sp cannot be used to derive the expression of the
stress-energy tensor associated with the point particle, because it is not an integral over
a four-dimensional region of spacetime. This issue can be fixed by introducing a Dirac
distribution dp as

dap day
4 4 p
Sp = —m/d :c/d)\ oW zr — 0 (N)] g\ d)\p' (A.71)
Applying the definition (A.61)) of the stress-energy tensor then yields
T _ m/dT op[zf — xf(7)] dak da (A72)
P V=9 dr dr
_ oplz* — x(t)] dxk day (A73)

=g "M@ at

where, in the second expression, we have used the (arbitrary) time coordinate t = 2° as
parameter A of the particle’s trajectory, and introduced the Lorentz factor v = dt/dr.

Perfect fluid

Consider now an ensemble of noninteracting point particles. Because they do not interact,
the action of the system is just the sum of the actions of the individual particles, so the

resulting stress-energy tensor is
T = Z T,. (A.74)
p

Let D be a domain of M centred around an event E, and whose dimensions are small
compared to the typical spacetime curvature radius. Within D, all vectors can be
considered to approximately belong to the same tangent space TgM, in particular the
four-momenta p, = myu,, of the particles in D, which implies that they can be summed.
Let p = Mu be their ensemble average, where M is such that @*u, = —1. The four-
velocity u defines a preferred frame, the particles’” barycentric frame, with respect to which
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we can pick Fermi normal coordinates. In this coordinate system, the total stress-energy
tensor reads

T =73 dp[z" — 33"5(75)] ToMp, (A.75)
peD

T = Z op [xk — x’;(t)] mepvé, (A.76)
peD

T9 =Y dpla* — x];(t)] YompUp vl (A.77)
peD

where v; = dx; /d7 is the velocity of particle p in the barycentric frame.
Now if the domain D contains a large number of particles, and if we coarse-grain T' on
the scale of D, then

0Ly T, TYZpe (A.78)

where p and p respectively define the energy density and the kinetic pressure of the fluid,

1 1 1 o
p= A Zp: YoMy, D 7 Zp: g'ypmp Oij U, (A.79)

When written in a fully covariant form, the stress-energy tensor of the system of particles
therefore reads

T = (p+p)utu”+pg". (A.80)
Scalar field

The case of matter fields is more easily handled, because their action directly takes the
form of the integral of a Lagrangian density over spacetime. In the case of a scalar field ¢,
minimally coupled to spacetime geometry, the standard action is

§= [diev=g]-30:00% - V(9)]. (A.81)

composed of a kinetic term (9¢)? and a potential term V' (¢). The associated stress-energy
tensor is then easily shown to be

1
Ty = 0,096 = 5(0°60,0) gy =V (6) g (A.82)

Vector field
The standard action of a minimally coupled vector field A reads

1

5 — /M d*zy/=g [—4F’“’FW _v(a)] (A.83)

where F,, = d,A, — 9,4, is the field strength of A, and A% = A*A,. The associated
stress-energy tensor is

1
Tow = Fupb,” = (F” Fpo) s = V(A?) G- (A.84)
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Introduction

Depuis sa naissance, il y a prés d'un siecle, a aujourd’hui, le domaine de la cosmologie
physique a levé le voile sur un grand nombre de questions fondamentales quant a la nature
et l'origine de ’Univers. La fin du vingtieme siecle, en particulier, a vu cette discipline
muer en une science de haute précision, grace a des expériences d’'une remarquable qualité,
qu’il s’agisse de l'observation du fond diffus cosmologique, des supernove, des grands
relevés de galaxies, ou encore du lentillage gravitationnel.

La précision atteinte en cosmologie observationnelle contraste toutefois avec la remar-
quable simplicité du cadre théorique au sein duquel les observations sont interprétées. En
particulier, dans le modele cosmologique standard, la relation entre le décalage spectral z
de sources lumineuses lointaines, dii a leur récession, et leur distance angulaire D, relation
indispensable a I'analyse de quasiment toutes les observations cosmologiques, est systémati-
quement calculée en supposant que la lumiére se propage a travers un univers parfaitement
homogéne et isotrope. Quoique plausible pour de tres larges faisceaux lumineux, cette
hypothese paralt néanmoins tres grossiere a petite échelle. Or les échelles mises en jeu
dans les observations cosmologiques actuelles sont d'une extréme variété (voir table ,
s’étalant sur 12 ordres de grandeur. Malgré cela, toutes les observations s’averent étre
cohérentes les unes avec les autres lorsqu’interprétées dans le cadre du modele standard.
L’objectif principal de cette these a été de comprendre les raisons d’un succes si surprenant.

observation échelle angulaire pertinente valeur typique (rad)
OAB échelle OAB a z ~ 0.5, 2 10711072
FDC échelle OAB & z ~ 1000 1072
feaz taille apparente d'un amas z ~ 0.5 1073
LF rayon d’Einstein a des distances cosmologiques 1074
Lf taille apparente d’une galaxie a z ~ 0.5 107°
SNela taille apparente d’une supernova a z ~ 0.5 10713

Table B.1 Ouvertures angulaires typiques des faisceaux lumineux impliqués dans différentes
observations cosmologiques : oscillation acoustique de baryons (OAB) observée dans les grands
relevés de galaxies, ou dans les anisotropies du fond diffus cosmologique (FDC); fraction de
gaz dans les amas de galaxies (fgaz); lentillage gravitationnel fort (LF) ou faible (Lf); et enfin
supernovee de type Ia (SNela).

B.1 Optique géométrique en espace-temps courbe

Mod¢éliser la propagation de la lumiere a travers le cosmos requiert une compréhension
profonde des lois de l'optique géométrique en présence de gravitation, c’est-a-dire en
espace-temps courbe.

B.1.1 Rayons lumineux

Les lois de I'électrodynamique classique montrent que, dans le régime eikonal, les ondes
électromagnétiques constituant la lumiere se propagent en suivant des géodésiques de genre
lumiére a travers I’espace-temps. Le vecteur tangent & une telle courbe, k* = dz# /dv, ot v
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est un parametre affine, n’est autre que le quadrivecteur d’onde ; par définition, il satisfait
aux équations

VK =0, KMk, =0. (B.1)

Le décalage spectral z d'une source lumineuse est défini comme étant la différence relative
entre la fréquence wg émise par la source et celle regue par I'observateur, wp, selon

Ws —wo

Z (B.2)

wo
Cette quantité constitue une mesure de la vitesse de récession de la source (effet Doppler)
ainsi que des effets gravitationnels de dilatation du temps (effet Einstein). Soit un référentiel
matérialisé par la quadrivitesse u, la fréquence d’un signal de quadrivecteur d’onde k

est la composante temporelle de celui-ci, c’est-a-dire w = u*k,,. Par conséquent 1 4 z =
(utk,)s/(utk,)o. Le décalage spectral d'une source est donc obtenu en résolvant (B.1)).

B.1.2 Distances en cosmologie

En cosmologie, la distance d’une source lumineuse peut étre mesurée de deux fagons
différentes : la premiere consiste en la comparaison de l'aire de cette source Ag avec sa
taille angulaire apparente €2p. La quantité

Da = \/éf (B.3)

définit alors une notion de distance, connue sous le nom de distance angulaire. Il s’agit de
la notion de distance naturellement exploitée dans l'interprétation du FDC, de 'OAB, ou
encore en lentillage gravitationnel.

La seconde possibilité revient a comparer la luminosité intrinseque Lg de la source a

I'intensité lumineuse Ip observée,
| Ls
Dy, = B.4
b 47T[O ( )

définit alors la notion de distance de luminosité. Il s’agit de la notion de distance la plus

commune en astronomie, son role en cosmologie étant incarné par I'observation des SNe.

Pour une méme source, les deux distances Dy, Dy, sont a priori différentes, mais elles ne
sont pas indépendantes ; en fait, il est possible de montrer que si le nombre de photon est
conservé entre la source et 1'observateur, alors Dy, = (1 + 2)2Dy.

B.1.3 Faisceaux lumineux

Puisqu’elles font intervenir les notions d’aire et d’intensité lumineuse, les distances définies
ci-dessus ne peuvent pas étre calculées a partir de la trajectoire d'un simple rayon lumineux :
elles nécessitent de considérer un ensemble de rayons, i.e. un faisceau, connectant I’ensemble
des points de la source a 'observateur. En optique gravitationnelle, la géométrie d’un
faisceau lumineux est commodément décrite par la matrice 2 x 2 de Jacobi D, reliant la
séparation angulaire 8 observée entre deux rayons a leur séparation physique &(v) en
tout autre point du faisceau,

§(v) =D(v) bo. (B.5)
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Il est alors clair que la distance angulaire d’une petite source lumineuse est reliée au
déterminant de la matrice de Jacobi, selon

2
Dy = ddQSZ = \/det D(vg). (B.6)

Si les deux rayons considérés sont tres proches I'un de l'autre, alors I’évolution de leur
séparation £(v) au cours de la propagation est régie par I’équation de déviation géodésique.
Il s’ensuit que I’évolution de la matrice de Jacobi avec v satisfait a I’équation de Sachs,

d*D
dv?

= RD, (B.7)

ou R est une certaine projection du tenseur de courbure de Riemann, appelée matrice
optique de marée. Celle-ci peut étre décomposée en une composante associée au tenseur
de Ricci R, et une composante associ¢e au tenseur de Weyl C,, ., selon

Z 0 —Re? ImW X xR,
R = + ¢ N , avec M (B.8)
0 % Im# ReW W x Cuypo-
focalisation de Ricci distortions de Weyl

Cette séparation est a la fois géométriquement et physiquement tres sensée. La contribution
de Ricci, d'une part, provoque une évolution homothétique de D : elle modifie ses valeurs
propres en préservant leur rapport et la direction des axes associés. Il s’agit donc d’une
focalisation isotrope du faisceau. La contribution de Weyl, d’autre part, tend au contraire
a modifier le rapport des valeurs propres de D et a faire tourner leurs axes, elle provoque
donc un cisaillement et une rotation du faisceau. Il est intéressant de remarquer que ces
deux contributions a R sont liées a des propriétés différentes de la distribution de matiere
rencontrée par la lumiere au cours de sa propagation. En vertu des équations d’Einstein,
le tenseur de Ricci est directement lié a la densité locale d’énergie-impulsion, & est ainsi
généré par la présence de matiere diffuse (gaz, matiére noire) traversée par le faisceau.
Au contraire, la courbure de Weyl est générée de fagon non-locale, a I'extérieur de corps
massifs; # est donc due a la matiere située a I'extérieur du faisceau.

B.2 Cosmologie au-dela de I’hypothése d’homogénéité

La discussion ci-dessus est la raison principale du questionnement quant a l'efficacité
du modele cosmologique standard a interpréter toutes les observations cosmologiques
avec précision. En effet, la lumiere provenant d’une treés petite source, par exemple une
supernova, se propage essentiellement a travers le vide intergalactique, ou la courbure
de l'espace-temps est dominée par sa composante de Weyl. Or I'espace-temps du modele
standard, décrit par la géométrie de Friedmann-Lemaitre (FL), posséde au contraire une
courbure de nature purement Ricci. Cette incompatibilité apparente entre réalité et modele
a été soulevée simultanément par Y. Zel’dovich et R. Feynman en 1964.

B.2.1 Observations dans un « grunivers »

Une premiéere facon d’évaluer I'impact de I'inhomogénéité a petite échelle de I’'Univers sur
la propagation de la lumiere consiste en I'utilisation de modeles alternatifs. A ce titre, les
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modeles « en gruyere » (Swiss-cheese models en anglais), que I'on baptisera « grunivers »
dans la suite, sont des candidats naturels. Leur construction est la suivante (voir Fig. ;
a partir d’un univers homogene, choisir une sphere comobile, puis concentrer la matiere
qu’elle contient en son centre. Ceci forme un « trou » au sein du « fromage » homogene
initial. A Vintérieur du trou, la géométrie spatio-temporelle est décrite par la métrique de
Schwarzschild (ou Kottler si A # 0), tandis qu’a I'extérieur la métrique de FL reste valable.
La procédure décrite ci-dessus assure que ces deux géométries se raccordent parfaitement a
la frontiere du trou, formant un espace-temps bien défini. Physiquement parlant, I'intérieur
du trou peut étre vu comme représentant le voisinage d'un objet gravitationnellement lié,
tel qu'une galaxie ou un amas de galaxie. La masse centrale est donc choisie de 1'ordre de
M ~ 10" M, (galaxie) ou M ~ 10> M, (amas). Le rayon comobile du trou correspondant,
Ry, = (3M /47mpo)'/3, olt py est la masse volumique moyenne de 1'Univers aujourd’hui, vaut
alors Ry ~ 1 Mpc pour une galaxie, Ry ~ 20 Mpc pour un amas.

FL FL
/ ) M
; . —_— . — .

™~—Kottl . .
sphéere comobile ORI

Figure B.1 Construction d’un grunivers a partir d’'un modele homogene et isotrope (FL).

L’opération peut ensuite étre répétée pour d’autres spheres, toutes disjointes les unes
des autres, d’ou 'aspect « en gruyere » du résultat. La quantité de trous introduits dans
le modele est quantifié par le paraméetre d’homogénéité

f= lim —=, (B.9)

ou V représente le volume d’'une région du modele, et Vi, la portion de ce volume occupé par
des régions homogenes. Les cas f = 0 ou f = 1 représentent donc respectivement un univers
rempli de masses ponctuelles ou un univers parfaitement homogene. L’avantage principal
de cette construction est qu’elle génere un modele potentiellement tres inhomogene, sans
toutefois affecter sa dynamique d’expansion ; elle est par conséquent tres adaptée a ’étude
de la question qui nous intéresse ici.

L’analyse de la propagation de la lumiere a travers un grunivers, décrite en détails
dans les § 6.2 et §[6.4] peut étre résumée comme suit :

1. La relation entre parametre affine v et décalage spectral z est tres peu affectée
par la présence des inhomogénéités. La correction relative due a un trou est ainsi
(z — zp)/2zrL = O(1s/Ry), ou s = 2GM est le rayon de Schwarzschild de la masse
centrale. Cette correction est donc de ’ordre de 10~® pour un trou galactique et
1075 pour un trou contenant un amas.

2. Les effets de distorsions de Weyl a 'intérieur des trous sont négligeables en premiere
approximation.

3. La focalisation de Ricci est, de maniere effective, réduite par le facteur f. Tout se
passe donc, pour le calcul de la matrice de Jacobi et donc des distances, comme si la
lumiere se propageait dans un univers homogene de densité réduite p — fp.
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Les propriétés décrite ci-dessus correspondent a ’approche effective de Kantowski-Dyer-
Roeder (KDR). Je les ai démontrées analytiquement, puis vérifiées numériquement a 1’aide
de deux simulations de propagation de lumiere réalisées au cours de cette these, I'une
présentant une distribution réguliére de trous, la seconde une distribution aléatoire.

Du point de vue de la cosmologie, j’ai dans un premier temps évalué I'erreur potentielle
sur les mesures de parametres cosmologiques que nous commettons en supposant que
I’Univers est parfaitement homogene. Pour ce faire, j’ai simulé des catalogues d’observations
de SNe, c’est-a-dire un ensemble de doublets (z, Dy,), dans un grunivers dont la dynamique
d’expansion est régie par des parametres « vrais » {Q2}. J’ai ensuite déterminé les parametres
cosmologiques « apparents » {Q} obtenus en ajustant ces observations simulées par la
courbe théorique DFY(z|{Q}), autrement dit, en supposant de facon erronée que la lumiere
provenant de ces SNe s’est propagée a travers un univers homogene. La différence entre
les jeux de parametres {Q} et {Q} est représentées sur la Fig. pour un grunivers
dont les régions FL présentent des sections spatiales plates (Q2x = 0), avec un parametre
d’homogénéité f = 0.26. La différence est significative en général, mais diminue fortement
avec {1y, ce qui est somme toute tres naturel : la constante cosmologique générant une forme
de courbure strictement homogene, si celle-ci domine alors la géométrie spatio-temporelle
du grunivers ne differe que tres peu du modele FL dont il est issu.

0.40F

0.35] HQDC]( N
0.30}

0.25-

0.20

0.15L, . . . . . . r
0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71

Q, ( background value) h

(a) (b)

Figure B.2 A gauche : différence entre les parametres cosmologiques apparents {Q} et réels {0}
dans des grunivers tels que Qx = 0, f = 0.26 et M = 10'' M, (traits et symboles pleins)
ou M = 10 My, (traits pointillés et symboles vides) dans les trous. A droite : contraintes
observationnelles sur (h, ) issues de 'analyse du FDC (Planck) d’une part, et du diagramme
de Hubble (SNLS) d’autre part, en supposant I’Univers soit homogene (f = 1) soit trés inhomogene

(f=0).

Dans un second temps, j’ai comparé deux analyses différentes de données réelles de
SNe (issues des trois premiéres années de la campagne SNLS) : d’abord en supposant que
leur lumiere s’est propagée a travers un univers homogene (approche standard, f = 1);
puis en remplagant le modele FL sous-jacent par un grunivers tres inhomogene (f = 0),
c’est-a-dire en exploitant la relation Dy, (z|{Q2}) dictée par I'approche de KDR qui, on
I’a dit, constitue une bonne approximation des propriété optiques de tels modeles. Les
contraintes observationnelles associées, dans le plan (h,2,) ou h = Hy/(100 km/s/Mpc),
sont représentées sur la Fig. [B.2D] ainsi que les contraintes indépendantes établies par
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I’observation du FDC par la mission Planck. Il résulte que la prise en compte de 'inho-
mogénéité a petite échelle de I’Univers, méme a travers un modele trés grossier comme le
grunivers, semble améliorer ’accord entre ces différentes observations cosmologiques.

L’analyse résumée ici répond en partie a la problématique principale de cette these.
Il semble ainsi que la prépondérance de la constante cosmologique dans I’Univers tardif
soit un ingrédient crucial du succes du modele cosmologique standard. En effet, si nous
vivions dans un Univers tel que 2y < €2, aujourd’hui, alors les observations impliquant
de tres fins faisceaux lumineux (par exemple les SNe) seraient bien davantage affectées
par l'inhomogénéité de 1’Univers, et paraitraient alors en profond désaccord avec les
observations impliquant de plus larges faisceaux (comme pour le FDC). Néanmoins, méme
dans notre propre Univers, pourtant dominé par A, la Fig. indique que la précision
atteinte par les observations actuelle est désormais suffisante pour que de tels effets soient
révélés, et nécessitent par conséquent d’étre pris en compte précisément.

B.2.2 Lentillage gravitationnel stochastique

La section précédente a mis en évidence la nécessité de modéliser avec précision 'effet de
I'inhomogénéité a petite échelle de I'Univers sur ses propriétés optiques. Bien que révélé
par I’étude du grunivers, ce modele s’avere étre trop peu flexible pour permettre une étude
réaliste du probleme. Une approche effective, qui pourrait prendre en compte les propriétés
complexes de I'Univers de fagon efficace, serait préférable.

On notera que la situation physique abordée ici, a savoir 'effet d’une multitude de
faibles interactions entre un corps (en l'occurrence la lumiere) et son environnement, n’est
pas sans rappeler le mouvement Brownien. Ce processus désordonné que ’'on peut observer,
par exemple, pour une poussiere micrométrique en suspension sur 1’eau, résulte des chocs
entre cette poussiere et les molécules formant le liquide. Un tel phénomeéne ne peut donc
pas étre expliqué en modélisant ’eau comme un fluide, car il n’est pas di a des courants
macroscopiques en son sein. Il n’est cependant pas nécessaire de suivre la dynamique de
chaque molécule indépendamment pour décrire le mouvement Brownien : en pratique, leur
effet donne lieu a une force stochastique, modélisée par un bruit blanc.

Cette analogie m’a amené a modéliser le lentillage gravitationnel dii aux petites
structures de I'Univers par un terme stochastique dans la matrice de marée optique, de
sorte que 1’équation de Sachs prend la forme d’une équation de Langevin,

ﬁf = ((R) + R) D, (B.10)

avec (0R) = 0. On notera que, malgré une notation suggestive, le terme de fluctuation SR
n’est pas nécessairement petit par rapport au terme déterministe (R). Les hypotheses
d’homogénéité et d’isotropie statistiques de I’Univers impliquent les propriétés suivantes :
(W) =0; (0Z0)H (w)) =0; (Re# (v) Im# (w)) = 0. Par ailleurs, le fait que I'on cherche
a modéliser de tres petites échelles permet de traiter le terme de fluctuation comme un
bruit blanc, donc d-corrélé :

(0Z(0)0Z(w)) = Cx(v)d(v — w), (W ()W (w)) =2Cy (v)d(v — w), (B.11)

ou I’étoile indique une conjugaison complexe. Les fonctions C'x sont analogues a des
coefficients de diffusion, et sont de I'ordre de §X? X Aven, ol 6X indique I'amplitude
typique des fluctuations de X, et Awveo, ’échelle typique de parametre affine pendant lequel
X reste cohérent.
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De I'équation de Sachs-Langevin (B.10) peut étre déduite I'équation de Fokker-Planck-
Kolmogorov régissant ’évolution, avec v, de la densité de probabilité p(v; D, D) de la
matrice de Jacobi. Cette équation prend ici la forme

dp - dp dp
-D X) D
go = Pangp,, ~ W Pasgg
+ 10 bandor + Cy (5acd )| DD Op (B.12)
- 17 — & e S .
5 (6% 0AB0CE w\0ACOEF — €Ac€EF)| PEBDPFD 9D As0Don
ou les indices A, B, ... défilent entre 1 et 2, et e4p est antisymétrique, avec €15 = 1.

Bien que difficilement soluble, cette équation aux dérivées partielles permet toutefois de
déterminer les équations différentielles ordinaires régissant les moments de p, desquelles on
peut ensuite déduire les moments de la distribution de la distance angulaire D,. Pour les
deux premiers, c’est-a-dire la moyenne (Dy) et la variance op,, on trouve en particulier

<DA> DO / dv, v dug /
—_— = — B.1
5DA DO DO U1 0 D2 1)2 d"Ug ’U3 CW(’Ug) -+ O(CW) ( 3)

2

3 2
d |fT ] —|—2D6(2C// C]) D2

da?

2
A = 90, D8 +6/ [dd‘SDA] +O(C), (B.14)

D2 s x2
Dy étant la distance angulaire en 'absence de fluctuations, c’est-a-dire telle que d? Dy /dv? =
(Z) Dy, et x est une variable abstraite telle que dz = dv/D3(v).

Dans le but de tester ce formalisme, je I'ai appliqué au grunivers étudié dans la
section précédente, en comparant les prédictions théoriques aux résultats numériques (voir
Fig. . On voit que la moyenne de D, est extrémement bien prédite par le formalisme
de lentillage stochastique ; ce n’est pas le cas pour son écart-type. Une étude approfondie
a révélé que l'origine du probleme réside dans 'hypothese de gaussianité des fluctuations
de #, sous-entendue des lors que 1’équation de Fokker-Planck-Kolmogorov est

invoquée.

r o
0.00F ' ' ' ' : 0.10F
~0.02} < 008 m = F
& ‘8'82‘ S 006/—_ -,
=& T < 0.04} 9
o -0.08} S
~0.10! 0.02¢
: ' ' ' ' ' 0.00% : : : :
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paramétre d'homogénéité f paramétre d'homogénéité f

Figure B.3 Moyenne (a gauche) et écart-type (a droite) de la distance angulaire D de sources
de décalage spectral z = 1 a travers un grunivers. La ligne bleue représente les prédictions
du formalisme de lentillage stochastique, tandis que les carrés noir indiquent les résultats de
simulations numériques.

Malgré cette faiblesse, une telle approche stochastique du lentillage gravitationnel aux
petites échelle reste autant prometteuse que novatrice. Elle ouvre la voie vers des méthodes
efficaces et flexibles pour estimer, par exemple, le biais et la dispersion du diagramme de
Hubble des SNe dus aux petites structures de notre Univers.
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B.3 Cosmologie au-dela de I’hypotheése d’isotropie

Le modele cosmologique standard est fondé sur les hypotheses d’homogénéité et d’isotropie
de I’Univers a grande échelle. Il est important de noter que ces deux hypothéses ne sont pas
redondantes : I'Univers peut étre homogene (identique en tout point) mais anisotrope ; par

exemple, son expansion pourrait étre plus rapide dans certaines directions que dans d’autres.
Comme toute hypothese fondamentale, 'isotropie cosmique se doit donc d’étre testée.

Deux aspects de la question peuvent alors étre distingués. Du point de vue observationnel,
d’abord : comment ’anisotropie modifie-t-elle nos observations et leur interprétation ? Du
point de vue théorique ensuite : quelles pourraient étre les sources d’une telle anisotropie ?

B.3.1 Optique dans un univers anisotrope

Notre capacité a détecter toute forme d’anisotropie cosmique requiert de comprendre la
propagation de la lumiére a travers un univers anisotrope. Pour ce faire, il est commode
de ne relaxer que ’hypothese d’isotropie, tout en conservant 1’homogénéité. Les modeles
correspondants suivent alors la classification de Bianchi des espace tridimensionnels
homogenes, et ont donc été baptisés espace-temps de Bianchi. Le plus simple d’entre eux,
dit Bianchi I, présente des sections spatiales euclidiennes, et sa métrique s’écrit

ds® = —dt* +a(t) > [eﬁi(t)dxir, (B.15)

=1

ou la somme des ; est nulle. Ce modele peut étre vu comme une extension du modele
isotrope de FL admettant trois facteurs d’échelle ae® au lieu d’un seul, et présentant donc
une expansion différente le long de chaque direction.

Les propriétés optiques d’un tel modele peuvent étre résumées ainsi :

e La dérive temporelle du décalage spectral n’est pas isotrope. Si 'on observe un
ensemble de sources comobiles ayant toutes le méme décalage spectral z a un instant
donné, a un instant ultérieur ces sources n’auront plus le méme décalage spectral les
unes par rapport aux autres.

e Les objets dérivent sur la sphere céleste. Si, a un instant donné, I’on pointe un
télescope dans une certaine direction pour observer une source lumineuse comobile,
alors, a un instant ultérieur la source n’apparaitra plus dans la ligne de mire. Il
s’agit ici d’un effet purement cosmologique, indépendant de 'effet de la rotation de
la Terre que 'on suppose avoir corrigé.

 La relation entre distance angulaire et décalage spectral Da(z) dépend de la direction
dans laquelle elle est évaluée.

o Les images sont déformées par rapport a leurs propriétés intrinseques. L’anisotropie
de 'expansion, a cause du lentillage de Weyl qu’elle engendre, tend a cisailler et faire
tourner les faisceaux lumineux. Cet effet évolue avec le temps, en général.

J’ai volontairement choisi d’exprimer ces propriétés avec des mots plutot qu’avec des
formules mathématiques. Celles-ci sont exposées en détail au Chap. [8| Je précise toutefois
que chacun des effets mentionné ci-dessus a été démontré analytiquement. En particulier,
j’ai établi une solution exacte de ’équation de Sachs, obtenant ainsi pour la premiere fois
I’expression de la matrice de Jacobi dans un univers anisotrope.
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L’étude rapportée ici ouvre la voie vers de nouvelles stratégies observationnelles visant
a contraindre I’anisotropie de I’expansion cosmique, en particulier a I'aide du diagramme
de Hubble, ou via ’analyse du lentillage gravitationnel faible des galaxies.

B.3.2 Modeéles scalaire-vecteur

L’intérét pour les modeles cosmologiques anisotropes a récemment été ravivé par ’observa-
tion d’anomalies dans le spectre de puissance du FDC aux faibles multipoles, attribuables a
une anisotropie cosmique. Le cas échéant, la question de son origine physique devrait alors
dtre abordée. A ce titre, le candidat le plus naturel serait un champ vectoriel de matiere,
tel qu'un champ électromagnétique a 1'échelle cosmologique. 11 est également envisageable
qu’un tel champ ait été responsable de la phase primordiale d’inflation (inflaton vectoriel),
ou encore de 'accélération actuelle de I'expansion cosmique (quintessence vectorielle). 11
s’avere toutefois difficile de générer de tels phénomenes a I'aide d'un champ vectoriel seul
(en particulier si celui-ci n’a pas de masse ainsi qu’imposé par l'invariance de jauge) sans
provoquer une trop grande anisotropie. Une maniére de contourner ce probleme consiste a
coupler le champ vectoriel avec un champ scalaire qui serait, lui, responsable de la majeure
partie de l'inflation ou de I'accélération tardive de I'expansion de 1’Univers.

C’est dans ce contexte général que s’inscrit la derniere partie de cette these. On y analyse
les propriétés de stabilité et de causalité d’'une large classe de modeles scalaire-vecteur,
afin de déterminer s’ils sont fondamentalement viables, sans avoir besoin de recourir a
une confrontation fastidieuse avec les observations. La condition de stabilité se traduit
mathématiquement par le fait que le hamiltonien de la théorie est minoré par une certaine
valeur. En outre, la causalité d’une théorie est assurée si ses équations du mouvement
sont des équations aux dérivées partielles du second ordre, de genre hyperbolique. Cette
condition implique en effet que le probleme de Cauchy associé a la donnée de conditions
initiales, c’est-a-dire de 1’état des champs et de leur dérivée temporelle le long d’une
hypersurface de genre espace, admet une unique solution.

Les résultats de cette étude peuvent étre résumés de la facon suivante. Soit une théorie
des champs contenant un scalaire ¢ et un vecteur A. Si cette théorie dérive d’un principe de
moindre action tel que (i) ¢ et A sont minimalement couplés a la gravitation ; (ii) I'action
ne contient que des dérivées d’ordre inférieur a 1 en ces champs; et (iii) est invariante sous
les transformations de jauge de A ; alors la forme la plus générale de cette action est

S0, Asg] = [ d'zy/=g L(6. K, X.Y.2), (B.16)
ou les scalaires K, X, Y, Z sont définis par

K =0,90"¢9, X =F"F,

ns

Y = F"FE,,, 7= (0.0F")0,6F",), (B.17)

avec FW = €0 F?7 /2 le dual de Hodge de la deux-forme de courbure associée a A,
elle-méme définie par F,, = 0,4, — 0, A,. Si 'on ajoute & cela 'hypothese que (iv) £ est,
au plus, quadratique en A, alors les seuls théories physiquement viables vérifient

£= 3 (6, K) = h(6) X = § f0)Y, (B.13)

la fonction f; étant positive, et la fonction fy devant vérifier les conditions suivantes :
fo(¢, K > 0) est minorée; dfy /0K > 0; et 0fy/0K + 2K%fy/0K?* > 0. Cela réduit de
facon drastique 'espace des possibilités pour cette classe de théories.
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Conclusion

Cette these avait pour objectif I’étude approfondie de la propagation de la lumiere a travers

I’Univers, en particulier lorsque les hypotheses d’homogénéité et d’isotropie sont relaxées.

Son premier volet a permis de comprendre que la domination de la constante cosmologique
dans la dynamique de 'expansion cosmique aujourd’hui n’est pas étrangere au succes
du modele standard. Il semble néanmoins que la précision croissante des observations
cosmologiques ne permettra bientot plus de négliger I'impact de I'inhomogénéité a petite
échelle de notre Univers. Le formalisme de lentillage gravitationnel stochastique proposé
dans cette these constitue alors une méthode prometteuse pour modéliser ces effets de fagcon
précise et efficace. Le second volet de cette these, consacré a la possibilité d'une anisotropie
a grande échelle de I"Univers, a contribué a la fois a une meilleure compréhension des
propriétés optiques de modeles cosmologiques anisotropes, et aux causes potentielles d’une
telle anisotropie. Le travail qui vient d’étre résumé appelle naturellement de nombreux
compléments, tant du point de vue fondamental qu’observationnel, que je souhaite aborder
dans un futur proche.
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Propagation de la lumiere dans des univers inhomogeénes ou anisotropes

Le modele standard de la cosmologie est fondé sur les hypotheéses d’homogénéité et d’isotropie
de I’Univers. Lors de I'interprétation de la plupart des observations, ces deux hypothéses sont
appliquées de facon stricte, au sens ot I’'on suppose que la lumieére émise par des sources lointaines
se propage jusqu’a nous a travers un espace-temps de Friedmann-Lemaitre. L’objectif principal
de cette these a été d’évaluer la pertinence de ces hypothéses, en particulier lorsque de tres
petites échelles sont mises en jeu. Apres une revue détaillée des lois de I'optique géométrique en
espace-temps courbe, on propose une analyse exhaustive de la propagation de la lumiere a travers
des modeles cosmologiques « en gruyéere », concus pour modéliser le caractere grumeleux de
I’Univers a petite échelle. L’impact sur 'interprétation du diagramme de Hubble est ensuite évalué
quantitativement, et s’avere étre plutot faible, en particulier grace a la constante cosmologique.
Lorsqu’appliquées aux données actuelles issues de 1’observation de supernovae, les corrections
associées tendent toutefois a améliorer 'accord entre les parametre cosmologiques mesurés a
partir du diagramme de Hubble d’une part, et & partir du fond diffus cosmologique d’autre part.
Ceci suggere que la précision des observations cosmologiques atteinte aujourd’hui ne permet
plus de négliger I'effet des petites structures sur la propagation de lumiere a travers le cosmos.
Un tel constat a motivé le développement d’un nouveau cadre théorique, inspiré de la physique
statistique, visant a décrire ces effets avec précision. Quant a I’hypothese d’isotropie, cette these
aborde d’une part les conséquences potentielles d’une anisotropie a grande échelle de 'univers
sur la propagation de la lumiére, en résolvant de fagon explicite toutes les équation de ’'optique
géométrique dans ’espace-temps de Bianchi I. D’autre part, on y analyse une classe de sources
d’anisotropie, a savoir les modeles scalaire-vecteur pour 'inflation ou I’énergie sombre. La plupart
d’entre eux ne sont pas physiquement viables.

Mots clés : cosmologie, lumiére, inhomogénéité, modeles « Swiss cheese », anisotropie, Bianchi I.

Light propagation in inhomogeneous and anisotropic cosmologies

The standard model of cosmology is based on the hypothesis that the Universe is spatially
homogeneous and isotropic. When interpreting most observations, this cosmological principle
is applied stricto sensu: the light emitted by distant sources is assumed to propagate through
a Friedmann-Lemaitre spacetime. The main goal of the present thesis was to evaluate how
reliable this assumption is, especially when small scales are at stake. After having reviewed the
laws of geometric optics in curved spacetime, and the standard interpretation of cosmological
observables, the dissertation reports a comprehensive analysis of light propagation in Swiss-cheese
models, designed to capture the clumpy character of the Universe. The resulting impact on the
interpretation of the Hubble diagram is quantified, and shown to be relatively small, thanks to
the cosmological constant. When applied to current supernova data, the associated corrections
tend however to improve the agreement between the cosmological parameters inferred from the
Hubble diagram and from the cosmic microwave background. This is a hint that the effect of
small-scale structures on light propagation may become non-negligible in the era of precision
cosmology. This motivated the development of a new theoretical framework, based on stochastic
processes, which aims at describing small-scale gravitational lensing with a better accuracy.
Regarding the isotropy side of the cosmological principle, this dissertation addresses, on the one
hand, the potential effect of a large-scale anisotropy on light propagation, by solving all the
equations of geometric optics in the Bianchi I spacetime. On the other hand, possible sources of
such an anisotropy, namely scalar-vector models for inflation or dark energy, are analysed. Most
of them turn out to be excluded as physically viable theories.

Keywords: cosmology, light, inhomogeneity, Swiss-cheese models, anisotropy, Bianchi I.




